AUGUST 1979

- CW keyer/trainer 16
- VLF dip meter 26
- ground systems for vertical antennas 31
- broadband vswr bridge 72
The 1KD-5 fulfills that need beautifully.

Tuba Complement

GENERAL INFORMATION (nominal)

- Smaller and lighter. Weighs about 27 pounds less...easier to take along on vacation trips and DXpeditions.
- Less expensive. If your budget is limited, but you still want a GOOD quality linear to kick your signal way up, with sharp, clear signals, the 1KD-5 will give you just about everything you want ...and without sacrificing quality.

GENERAL INFORMATION

Input Circuits: Cathode Pt input matching circuits for maximum drive and linearity.
Power Supply: Conservative power supply with solid state rectifiers for reliable, long term operation.
Dimensions: 8.75" high x 14" wide x 15" deep.
Weight: 48 pounds.
Price $695.00

2K-4A floor console linear amplifier . . still the "workhorse" of Amateur Radio. Engineering, construction and features second to none. Provides a long life of reliable service while its heavy duty components allow it to loaf along at full legal power. $1195.00

2KD-5 desk model linear amplifier . . lighter, more compact and less expensive, but still a heavy duty, high quality linear that will operate at full legal power month after month for years to come. $945.00

Tempo 2002 amplifier for 2-meter operation. 2000 watts PEP output on SSB or 1000 watts input on FM or CW. $795.00

Tempo VHF/UHF solid state power amplifiers for use in most land mobile applications. Call or write for list of models available

Tempo 100AL10 VHF linear amplifier. Power output of 100 watts (nom.) with only 10 watts (nom.) in. $209.00

3K A linear amplifier (for export and military use only) Superior quality, extremely reliable. At least three kilowatt PEP input on SSB... 2000 watt PEP output. $1595.00

4K ULTRA linear amplifier (for export and military use only) For the most demanding operation... SSB, CW, FSK or AM. For general coverage operation from 3.0 to 30 MHz, but can be modified for operation on frequencies up to 100 MHz. 100 watts drive delivers 4000 watts PEP input. $3450.00

All of the above except the 2002. 3K A & 4K ULTRA are available at Tempo dealers throughout the U.S.

Tank Power

HENRY RADIO'S

THE NEWEST MEMBER OF THE FAMOUS HENRY RADIO FAMILY OF FINE AMPLIFIERS

The 2KD-5 and 2K-4A linear amplifiers completely fulfill the needs of discriminating amateurs who want the very best and are willing to pay the price. But we have long felt that many amateurs would be satisfied with less power if they could still have the same high quality and dependability. The 1KD-5 fulfills that need beautifully.

- Quality that is unmatched in any other linear in its class. The same high standards of engineering and construction as the 2KD-5 and 2K-4A. Heavy duty components guarantee years of trouble free, dependable performance.
- Smaller and lighter. Weighs about 27 pounds less...easier to take along on vacation trips and DXpeditions.
- Less expensive. If your budget is limited, but you still want a GOOD quality linear to kick your signal way up, with sharp, clear signals, the 1KD-5 will give you just about everything you want ...and without sacrificing quality.

GENERAL INFORMATION

The 1KD-5 is a 1200 watt PEP input (100 watt PEP nominal output) RF linear amplifier covering the 80, 40, 20 and 15 meter amateur bands (10 meters on units shipped outside the U.S.)
Tube Complement: Eimac 3-500Z glass envelope tube operating in a grounded grid circuit.
ALC Circuit: ALC circuit to prevent overdrive from high power exciters, also boosts average talk power.
Type of Emission: SSB, CW, RTTY or AM
Antenna Relay: DC relay system for hum-free operation, requires shorting contact to ground during transmit to key amplifier into transmit.
Power Output Indicator: Self-contained relative RF power meter.
Tank Circuit: Pi-L place circuit with a rotary silver plated tank coil for greatest efficiency and maximum attenuation of unwanted harmonics.
When our customers talk...we listen.

DS3100 ASR

We've been taking notes.

Combining your ideas with some of our own, we've come up with what has to be the most advanced and convenient terminal available. These are some of the conveniences you can now enjoy by putting the DS3100 ASR in your RTTY and CW station:

ASR operation (Compose your transmission **while** receiving)

- 150-line receiver buffer
- 50-line transmit buffer
- Split screen to show buffers
- Internal real-time clock
- 10 programmable messages
- Automatic answer-back (WRU)
- Morse, baudot, or ASCII operation
- RTTY and CW identification
- Full 128-character ASCII
- 110-9600 baud ASCII
- 60-130 WPM baudot
- 1-175 WPM Morse

Write or call for the DS3100 ASR specifications and see how **you** have helped design the new standard in amateur radio terminals.

HAL Communications Corp.
Box 365
Urbana, Illinois 61801
217-367-7373

For our European customers contact:
Richter & Co., Hannover
T.E.C. Interline, Bissone
Why not visit your dealer today? Compare these return it within 30 days for a prompt refund.

NEW MFJ KW VERSA TUNERS HAVE THESE FEATURES IN COMMON

These 6 new MFJ KW Versa Tuners let you run up to 3 KW or 1.5 KW PEP (depending on the model) and match any feedline continuously from 1.8 to 30 MHz: coax, balanced line or random wire. Gives maximum power transfer. Harmonic attenuation reduces TVI, out of band emissions. All metal, low profile cabinet gives RF protection, rigid construction, sleek styling. Black. Rich anodized aluminum front panel. 5x14x14 inches.

3 KW VERSA TUNER IV’s

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFJ-984</td>
<td>3 KW VERSA TUNER IV</td>
</tr>
<tr>
<td></td>
<td>$299.95 EXCLUSIVE RF AMMETER</td>
</tr>
<tr>
<td></td>
<td>insures maximum power to antenna at minimum SWR. Built-in dummy load.</td>
</tr>
<tr>
<td></td>
<td>This is MFJ's best 3 KW Versa Tuner IV.</td>
</tr>
<tr>
<td></td>
<td>The MFJ-984 Deluxe 3 KW Versa Tuner IV gives you a combination of quality, performance, and features that others can't touch at this price.</td>
</tr>
<tr>
<td></td>
<td>An exclusive 10 amp RF ammeter insures maximum power to antenna at minimum SWR. A separate meter gives SWR, forward, reflected power in 2 ranges (2000 and 200 watts).</td>
</tr>
<tr>
<td></td>
<td>Versatile antenna switch lets you select 2 coax lines thru tuner and 1 thru or direct, or random wire, balanced line or dummy load.</td>
</tr>
<tr>
<td></td>
<td>A 200 watt 50 ohm dummy load lets you tune your exciter off air for peak performance. Efficient, encapsulated 4:1 ferrite balun.</td>
</tr>
<tr>
<td>MFJ-981</td>
<td>3 KW VERSA TUNER IV</td>
</tr>
<tr>
<td></td>
<td>$199.95 Accurate meter gives SWR, forward and reflected power in 2 ranges: 2000 and 200 watts. 4:1 ferrite balun.</td>
</tr>
<tr>
<td></td>
<td>The MFJ-981 3 KW Versa Tuner IV is one of MFJ's most popular Versa Tuners. An accurate meter gives you SWR, forward and reflected power in 2 ranges: 2000 and 200 watts. Encapsulated 4:1 ferrite balun.</td>
</tr>
<tr>
<td>MFJ-982</td>
<td>3 KW VERSA TUNER IV</td>
</tr>
<tr>
<td></td>
<td>$199.95 Antenna switch lets you select 1 coax thru tuner and 2 coax thru tuner or direct, or random wire and balanced line.</td>
</tr>
<tr>
<td></td>
<td>The MFJ-982 3 KW Versa Tuner IV gives you a versatile 7 position antenna switch that lets you select 1 coax thru tuner and 2 coax thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 balun.</td>
</tr>
</tbody>
</table>

1.5 KW VERSA TUNER III’s

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFJ-980</td>
<td>3 KW VERSA TUNER IV</td>
</tr>
<tr>
<td></td>
<td>$169.95 Heavy duty encapsulated 4:1 ferrite balun for balanced lines.</td>
</tr>
<tr>
<td></td>
<td>The MFJ-980 is MFJ's lowest priced 3 KW Versa Tuner IV but has the same matching capabilities as the other 3 KW Versa Tuner IV's.</td>
</tr>
<tr>
<td>MFJ-962</td>
<td>1.5 KW VERSA TUNER III</td>
</tr>
<tr>
<td></td>
<td>$169.95 SWR, dual range forward and reflected power meter, 6 position antenna switch, encapsulated 4:1 ferrite balun.</td>
</tr>
<tr>
<td></td>
<td>The MFJ-962 1.5 KW Versa Tuner III is an exceptional value. An accurate meter gives SWR, forward and reflected power in 2 ranges (2000 and 200 watts).</td>
</tr>
<tr>
<td></td>
<td>A versatile six position antenna switch lets you select 2 coax lines thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 balun.</td>
</tr>
<tr>
<td></td>
<td>Black front panel has reverse lettering.</td>
</tr>
<tr>
<td>MFJ-961</td>
<td>1.5 KW Versa Tuner III</td>
</tr>
<tr>
<td></td>
<td>$149.95 6 position antenna switch lets you select 2 coax lines thru tuner or direct, or random wire and balanced line.</td>
</tr>
<tr>
<td></td>
<td>The MFJ-961 1.5 KW Versa Tuner III gives you a versatile six position antenna switch. It lets you select 2 coax lines thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 ferrite balun.</td>
</tr>
<tr>
<td></td>
<td>If you already have a SWR/wattmeter, the MFJ-961 is for you. Black front panel has reverse lettering.</td>
</tr>
</tbody>
</table>

FOR YOUR NEAREST DEALER OR FOR ORDERS

CALL TOLL-FREE 800-647-1800

Why not visit your dealer today? Compare these 3 KW and 1.5 KW Versa Tuners to other tuners. You'll be convinced that its value, quality and features make it a truly outstanding value. If no dealer is available, order direct from MFJ and try it. If not delighted, return it within 30 days for a prompt refund (less shipping). Charge VISA, MC. Or mail check, money order plus $10 shipping/handling.

For technical information, order/repair status, in Mississippi, outside continental USA, call 601-323-5869.

Order By Mail or Call TOLL FREE 800-647-1800 and Charge It On

MFJ ENTERPRISES, INC.

MISSISSIPPI STATE, MISSISSIPPI 39762

P. O. BOX 494

More Details? CHECK — OFF Page 110
antenna gain and directivity
James L. Lawson, W2PV

microprocessor based cw keyer/trainer
John R. Beaston, N6TY

VLF dip meter converter
E. G. Von Wald, W4YOT

ground systems for vertical antennas
Alan M. Christman, WD8CBJ

traps and trap antennas
Karl T. Thurber, W8FX

curing frequency drift in the Swan 350 transceiver
Harold Klimpke, WA6IPH

amateur fm — another look
Carleton F. Maylott, W2YE

high-current dc power supply
Glen J. Thome, N8AKS

linear amplifier design considerations
William L. Orr, W6SAI

digital techniques: counters and weights
Leonard H. Anderson

broadband vswr bridge
Henry J. Perras, KZDI

a second look

advertisers index
82 new products

digital techniques
8 prestop

flea market
110 reader service

ham mart
90 short circuits

ham notebook
72 weekender
Many of the problems that Amateur Radio has had to face over the past few years — and will continue to face in the future — can be traced directly to one cause: the demands of an increasing number of Radio Amateurs for finite space in the radio spectrum. More and more stations have been squeezed into the same bands, creating a congested mess for the Amateur operator, particularly during peak occupancy periods on weekends and holidays. In many cases the effects of crowded band conditions are aggravated by poorly designed ham equipment: transmitters which contribute broadband noise and splatter, and receivers which cannot cope with nearby strong signals. The technology to solve these problems is available, but very seldom is it put to work; and until Radio Amateurs demand improved equipment performance it probably won’t be.

Herein lies the problem. How do you press for cleaner emissions from transmitters or push for receivers that will handle strong signals without overloading when there are no performance standards? And not only are there no performance standards, in general the published equipment specifications have not kept pace with technology. Gone are the days when receiver sensitivity and selectivity were the only things you looked for in a communications receiver; although today’s receivers must contend with an abundance of closely-spaced strong signals, receiver “specmanship” has changed little since the days of vacuum tubes.

A few of the manufacturers have begun to provide data on dynamic range, intercept point, and blocking, but you cannot compare equipment from different manufacturers because they don’t use the same standards or test procedures. And since there are no standards, receivers with identical operating specifications often have vastly different on-the-air performance. Intercept point is currently in vogue, and as one of my correspondents recently pointed out, “everyone suddenly has a ‘+20 dBm’ receiver — whether it costs $250 or $5000!” This points up the need for standardized test procedures. Specifications for intercept point and dynamic range are meaningless unless the input signal separation is specified, and that crucial information is usually not available to the consumer. If it’s not, caveat emptor!

The preponderance of “+20 dBm” receivers reminds me of the time a few years ago when every ssb transmitter on the market was advertised with third-order IMD down “more than 30 dB.” It didn’t matter whether the final was built with rf power tubes, TV sweep tubes, or transistors — the magic number for third-order IMD was always −30 dB. Then W6SAI and a few others pointed out that most of the TV sweep tubes couldn’t do better than −22 dB in rf linear service, and some were as bad as −18 dB! That spelled the beginning of the end for TV sweep tubes in amateur transmitters; as new ssb transmitters were introduced, more and more were designed around tubes and transistors which were intended for linear rf service.

Receiver intercept point and transmitter IMD are only two of the problem areas. How about those built-in speech “processors” that often add so much distortion they make large sections of the band virtually useless? (And as an aside, what are we to do about the operators who refuse to turn them off even when they’re told how bad they sound?) Established performance standards won’t improve operating habits, but they would make it a lot easier to purchase equipment that meets your needs. And in the long run, a realistic set of standards will inevitably result in better Amateur equipment for all of us.

Jim Fisk, W1HR
editor-in-chief
ICOM squeezes optimum performance into even the tightest spaces.

ICOM Performance comes in full feature, multi-mode fixed station transceivers and also in the diminutive IC-280, designed to fit the most cramped modern vehicle. This heavily endowed performer is microprocessor controlled with the most sophisticated program of any of the ICOM radios. Small size means big performance with ICOM.

The totally detachable small front section of the IC-280 houses the microprocessor for frequency control and memory. The IC-280's control head can store three frequencies of your choice which are selected by a four position front panel switch; and these frequencies are retained even when the front panel switch is turned off or power from the ignition is interrupted. And when power is completely removed from the IC-280 the ±600 KHz splits are still maintained!

Frequency coverage of the IC-280 is in excess of the 2 meter band and its performance can easily accommodate the 144-145 (20 KHz/step) band plan. The main section uses the latest innovations in large signal handling FET front ends to provide excellent intermodulation character and good sensitivity at the same time. The IF filters are crystal monolithics in the first IF and ceramic in the second, providing narrow band capacity for today and tomorrow's crowded conditions. The IC-280 will be providing ICOM Performance for years to come.

ICOM Performance: Nobody Does It Better.

All ICOM radios significantly exceed FCC regulations limiting spurious emissions. Specifications subject to change without notice.

Contact Information:

ICOM Information Service
3331 Towerwood Dr, Suite 304
Dallas, Texas 75234

Please send me a full-color ICOM Product Line Catalog and a list of Authorized ICOM Dealers.

NAME: ____________________________

ADDRESS: ________________________

CITY: __________________ STATE: ______ ZIP: ______

You may send a machine copy of this form.

© 1979 ICOM EAST, INC.
Dear HR:

Bob Stein's article on noise-figure measurement in the August 1978 issue was very good but I disagree with his statement that, for equal signal and image channel gains, the error will be 3 dB. The correct expression is:

\[F_{\text{double}} = \frac{1}{2} (F_{\text{single}} + 1) \]

and can be found in Radio Astronomy by John Kraus. In decibels the proper difference is:

<table>
<thead>
<tr>
<th>Decibels</th>
<th>F_{\text{double}}</th>
<th>F_{\text{single}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12.8 dB</td>
<td>8.4 dB</td>
</tr>
<tr>
<td>6</td>
<td>8.4 dB</td>
<td>4.3 dB</td>
</tr>
<tr>
<td>2</td>
<td>3.4 dB</td>
<td>2.3 dB</td>
</tr>
</tbody>
</table>

Stein's comment about putting a filter at the input of a preamp and not putting one after the preamp is very important. If one were to build a receiver with no filter after the preamp, the noise-figure meter would be correct for the entire receiver and best performance would not be achieved.

Charles H. Solie, WB5LHV
Houston, Texas

WB5LHV's letter referenced a book with which I was not familiar, and would have been welcome if for no other reason than bringing it to my attention. As it is, he certainly posed an argument which caused me a considerable amount of thought and research. To start with, the authorities for my discussion of image-response error in my article on automatic noise-figure measurements are as follows:

Eq. 13 in my article appears in slightly different, but equivalent, form in reference 2, above. To clarify the situation brought up by WB5LHV, it is necessary to start with the Friis/IEEE expression of noise factor. By definition, it includes only that noise from the input termination which appears at the output via the principle-frequency transformation of a heterodyne system, and does not include spurious contributions from an image-frequency transformation. The single-sideband (channel) noise factor, \(F \), is defined by the formula

\[F = \frac{N_{10}}{G k T_o B} \quad (1) \]

where \(N_{10} \) is the total noise power output from the receiver
\(G \) is the gain of the receiver
\(k \) is Boltzmann's constant, \(1.38 \times 10^{-23} \) joule/°K
\(T_o \) is the standard reference temperature, 290°K
\(B \) is the receiver bandwidth in Hz

Since the noise output of the receiver is the sum of (a) the internally generated noise plus (b) the termination noise times the receiver gain,

\[F = \frac{k T_r B + G k T_o B}{G k T_o B} \quad (2) \]

where \(T_r \) is the receiver noise temperature (often shown as \(G T_{10} \) where \(T_r \) is the effective noise input temperature).

Consider now a single-channel receiving system in which the receiver has no image rejection (equal gains in the signal and image channels). If a narrow-band noise source were connected to the receiver input, the preceding expressions of noise factors would apply. However, if a broadband noise source is used, there will be noise applied to both channels, so that the double-sideband noise factor, \(F' \), will be given by the relation

\[F' = \frac{N_{10}}{G k T_o (2B)} = F^2 \quad (3) \]

or

\[F = 2F' \quad (4) \]

On the other hand, if a double-channel radio astronomy receiver is under consideration, there is signal information in both channels and the receiver noise contribution is divided equally between channels. Therefore, the noise factor of a double-channel receiver in this application is expressed as

\[F' = \frac{1}{2} (k T_r B + G k T_o B) \]

\[= \frac{k T_r B + 2 G k T_o B}{2 G k T_o B} \]

\[= \frac{k T_r B + G k T_o B}{2 G k T_o B} + \frac{G k T_o B}{2 G k T_o B} \quad (5) \]

Then from eq. 2,

\[F' = \frac{1}{2} F + \frac{1}{2} = \frac{1}{2} (F + 1) \quad (6) \]

Thus, both relationships for \(F' \) are true, but are defined differently, depending on the application. Eq. 3 is applicable to a single-channel receiver which has no image rejection, because the receiver noise contribution will degrade only the signal channel, there being no signal information in the image channel. In the double-channel radio astronomy receiver, there is signal information in both channels, so that eq. 8 defines the relationship between the single- and double-sideband noise factors.

Since in radio communications we are concerned only with single-channel receivers, the discussion in my article is correct.

Robert S. Stein, W6NBI
in the TS-180S HF Transceiver features four memories with digital up/down paddle-switch tuning.

How will four memories improve operating efficiency on the HF ham bands?
The TS-180S with DFC features four memories, each one digitally tunable up and down in 20-Hz steps by means of digital paddle switches. It's like having four remote VFOs in addition to the built-in VFO. The memory DX chaser, for example, can program various DX pickups into the four memories, and periodically check those frequencies to determine if the DX station is listening for calls from his call area. The memories are usable for transmit, receive, or transmit operation. Therefore, a memory can be used for transmit and the VFO on receive, or vice versa, either of which can be tuned up or down in 20-Hz steps for working DX stations who are listening for calls several kilohertz away from their transmitting frequency. With the push of a button, the operator can listen to the transmit frequency, which he can tune, and be ready for a perfectly timed call to the DX station, immediately after another station finishes working the DX station.

The memories are also extremely convenient for contest operating. Picks could be stored and periodically checked for improved propagation or other conditions for "getting through" a "CG CONTEST" frequency could also be stored.

The memories are also very useful for storing net and schedule frequencies.

What frequencies are displayed on the digital readout during memory operation?
The digital display shows the memory frequency being used, whether in receive or transmit mode. It also shows the actual VFO frequency when the VFO is activated, or the fixed channel frequency, or the remote VFO frequency (if the optional VFO-180 is used). Separate RTT (receiver incremental tuning) controls are provided for VFO and memory/fixed channel operation, and the RTT frequencies, when RTT is utilized, are displayed.

When a frequency is stored in the "M" memory, the digital display can be switched to indicate the stored frequency and the difference between the stored and VFO frequencies (with signs to show VFO above or below the stored frequency). This function is handy for temporarily moving off of a net frequency with another station by a specified number of kilohertz, and, after completing the conversation, moving back immediately to the net frequency stored in the "M" memory.

What are the differences between the four memories in the TS-180S with DFC?
The M1 memory is intended for fast or temporary memory operation such as moving off of a net frequency. The M2, M3, and M4 memories are used for relatively longer storage applications, such as for net frequencies, schedules, etc. Any of the memories can be used for storing DX or contest "pullop" frequencies or transmit/receive frequencies when working "split frequency" operation with a DX station.

How are frequencies stored in memory, and how are they recalled?
The DFC memories can store frequencies from the TS-180S internal VFO, the fixed channel, and the optional remote VFO. The RTT frequency can also be stored, and frequencies can be shifted from one memory to another. To store an operating frequency in M1, simply set the main tuning to the desired frequency and push the DSP/M1 switch; a "beep" will be heard.

To recall the frequency stored in M1, set the M RECALL switch to M1. To receive on the memory frequency, the VFO switch should be in. To transmit on the memory frequency, the XM1 switch should be in. To transmit on the memory frequency, the XM1 switch should be in. To transmit on the memory frequency, the XM1 switch should be in.

To store frequencies in the other three memories, the main tuning is set to the desired frequency (which we will call frequency A for this explanation) and the M1 switch is pushed in (a "beep" will be heard). To store frequency B, push the M2 switch to release it, and then push again ("beep"). Now frequency B will be stored in the M2 memory and frequency A will shift to the M1 memory. To store frequency C, push the M3 switch to release it, and then push again ("beep"). Frequency C is now stored in the M3 memory, frequency B in the M1 memory, and frequency A in the M2 memory.

Strong another frequency in M1 will shift the memories again, and frequency A will be lost unless it is recalled and stored in M1 again before another frequency is stored. Therefore, as stations in memory are worked or, for some reason other than memory frequency is no longer needed, it can be erased automatically as it shifts out of memory where another frequency is stored in M1. This method of moving memory frequencies "up the stack" retains the chronological order of entry for easy operation, which is particularly important in a contest. The operator, then, does not need to remember which memory in which he stored a particular frequency. To recall any of the stored frequencies, simply set the M RECALL switch to the appropriate position.

How can the memories be tuned up or down in frequency?
On the front panel of the TS-180S are a pair of paddle switches for digitally tuning any of the memories up or down in frequency.

A memory frequency can be stepped up or down 20 Hz at a time. If the UP or DOWN switch is kept depressed, the frequency changes continuously in 20-Hz steps. The rate of change can be increased by depressing the opposite switch while the appropriate switch remains depressed. The original frequency can be recalled after it has been digitally tuned by the UP or DOWN switch, by moving the M RECALL switch to any position other than the one on which it is memorized, and then resetting it to the original memory position. The memory frequency, after it is digitally tuned, can be stored by pushing the DSP/M1 or the M2 switch.

Will memory frequencies be retained after power is shut off?
All memorized frequencies will be retained for approximately 30 seconds after power is shut off. Memory backup batteries (Panasonic W1-84 or G-13, Eveready 357, Duracell 101A, or Ray-O-Vac RW-27 or RW-43) may be installed to retain memory frequencies for an indefinite period after power is shut off. These batteries will function for about one year of normal operation. The batteries provide backup voltage for the M2, M3, and M4 memories. The M1/DOCP memory is intended for temporary applications, but can be modified for backup battery operation. The batteries are silver oxide type and are not supplied by Trio Kenwood. They are commonly available at local stores.
IARU'S DELEGATES for September's WARC in Geneva have been selected. Included are IARU President VE3CJ as well as G3CO, HK3DEU, J1INE, K1ZZ, KS5FM, W1RU, W4KFC, W8BAJ, YV5BPG and ZL2AZ. The IARU is expected to be one of a number of international organizations with formal recognition to participate in the WARC as observers, a status not granted to national groups such as the ARRL or RSGB. A large number of Amateurs have also been named to national delegations, of course.

RESTRICTIONS HOBBLING U.S. WARC delegates have been causing quiet concern in and out of Washington for the past few months. As a result of questions arising from another international conference several years ago, delegates drawn from industry are subject to Justice Department "guidelines" that severely limit their contributions in international conferences, in fear that they might act as advocates for their industries or employers instead of for the United States. It now appears that some relief is in sight as a result of Congressional action. Senator Goldwater, whose proposed Communications Act rewrite (S-622) addressed this very problem, is only one of several in Congress who are reported to be working at lifting the Justice Department restrictions so the U.S. WARC delegation will be able to function at full effectiveness.

AMATEUR RADIO PROVIDED EMERGENCY COMMUNICATIONS in wide areas of the country during the early summer months. In Wichita Falls (Texas) a computer teamed up with Amateur (and other) communications networks to provide a fast and efficient means of assessing damage and answering welfare inquiries.

St. Vincent's Volcano was still acting up in June, following its Good Friday eruption, with Amateurs continuing to provide around-the-clock assistance at VP2SRC. Jacksonville, Florida got help from Amateur Radio mobile and repeater units when communications were needed for firefighters involved with a giant oil-tank fire in nearby Hilliard.

The Tragic Crash of American Airlines flight 191 in Chicago disrupted local communications, and emergency channels were soon completely overloaded. Amateur Repeater W9SRO/R on 167.75/15 was put on emergency status, as was the CD station on 147.3 MHz in the downtown Civic Center. Many Amateurs with mobile and hand-held units provided site-to-hospital, traffic, and crowd-control communications during the first few hours after the tragedy.

A Light Plane Crash In Baja, California gravely injured three Americans, but thanks to Amateur Radio all are recovering. The aircraft went down near the yacht of WA6SAK, anchor near shore. The three seriously injured survivors were brought on board and WA6SAX/MM immediately called for help on the Manana Net, raising NCS N6AUT/MM and W8YRC. W6WUC, a doctor, joined the group and provided much-needed medical emergency advice that kept the three alive until the red tape could be cut for two ambulance planes to fly into Mexico and take the injured back to California.

FCC'S 900-MHZ CB Notice of Inquiry asks many questions, some of them with implications for services other than CB. The basic questions, of course, concern the limitations of present CB services, whether 900 MHz would solve those problems, and how much demand is there for 900-MHz CB service. In addition, however, the Commission wants to look at automatic transmitter ID, possibility of repeaters and interconnects, automatic transmitter time out and other built-in rules enforcement, and AM vs SSB vs FM.

Due Date For Comments on the NOI (PR Docket 79-140) is November 30, with Reply Comments due December 31.

HF RADIATION HAZARDS are the subject of a new FCC Notice of Inquiry, General Docket 79-174. Although the Commission noted that promulgation of RF radiation standards is the responsibility of health and safety agencies, it also recognized that it would have to consider radiation exposure standards adopted by other Federal agencies in its licensing activities. With the environment currently a hot public issue, this NOI could easily become a crucial one for Amateur Radio as well as most other radio services.

FCC LICENSE-FEE REFUNDS are now available to licensees who paid more than $20 for their licenses, including Extra-Class Amateurs who paid the $25 fee for a special callsign. Applications for the refund requires a special form, which with its instruction form resembles the infamous IRS Form 1040. Applications are available from any FCC Field Office or Federal Information Center, or can be requested by mail from FCC Fee Refund Program, P.O. Box 1788, Hyattsville, Maryland 20781. Questions about the program (only) will be fielded during business hours on two toll-free numbers, (800) 638-0251 (outside Maryland) and (800) 492-0501 (Maryland only).

CHARLIE CARROLL, K1XX, has joined Sanders Associates as an Engineering Associate and will be working in their Advanced Systems Department; Charlie, a staff editor at Ham Radio for three years, recently received his B.S. degree in economics and management.
New OMNI/SERIES B
Filters The Crowd

The new OMNI/SERIES B makes today's bands seem less crowded. By offering a new i-f selection that provides up to 16 poles of filtering for superior selectivity, and a new Notch Filter to remove QRM. No other amateur transceiver we know of outperforms it.

NEW I-F RESPONSE SELECTION. OMNI comes equipped with an excellent 8-pole 2.4 kHz crystal ladder i-f filter which is highly satisfactory in normal conditions. But when the going gets rough, the new OMNI/SERIES B, with optional filters installed, provides two additional special purpose i-f responses.

The 1.8 kHz crystal ladder filter transforms an unreadable SSB signal in heavy QRM into one that gets the message through. The 0.5 kHz 8-pole filter provides extremely steep and deep skirts to the CW passband which effectively blocks out even the very strong adjacent signals.

Both of these filters can be front-panel switched in series with the standard filter to provide up to 16 poles of filtering for near-ultimate selectivity. In addition, the standard CW active audio filters have three bandwidths (450, 300, and 150 Hz) to give even further attenuation to adjacent signals. In effect, OMNI/SERIES B has six selectivity curves—three for SSB and three for CW. That's true state-of-the-art selectivity.

NEW NOTCH FILTER. A variable frequency notch filter in OMNI/SERIES B is placed inside the AGC loop to eliminate interfering carriers and CW signals without affecting received signals. Attenuation is more than 8 "S" units (over 50 db) for any frequency between 0.2 kHz and 3.5 kHz.

OMNI/SERIES B RETAINS ALL THE FEATURES THAT MADE IT FAMOUS.
All solid-state; 160-10 meters plus convertible 10 MHz and AUX band positions; Broadband design for band changing without tuneup, without danger; Choice of readouts — OMNI-A for analog dial or OMNI-D for digital dial; Built-in VOX and PTT facilities; Selectable Break-in, instant or delayed receiver muting; Dual-Range Receiver Offset Tuning, ±5 kHz or ±0.5 kHz; Wide Overload Capabilities, dynamic range typically exceeds 90 dB and a PIN diode switched 18 dB attenuator is also included; Phone Patch Interface Jacks; Adjustable ALC; Adjustable Sidetone; Exceptional Sensitivity; 200 Watts input to final with full warranty on final transistors for first year, pro-rata for 5 years; 100% Duty Cycle for RTTY, SSTV or sustained hard usage; 12 VDC Circuitry for mobile use, external supplies for 117/220 VAC operation; Front Panel Microphone and Key Jacks; Built-in 25 kHz Calibrator in analog dial model; Zero-Beat Switch; "S"/SWR Meter; Dual Speakers; Plug-In Circuit Boards; Functional Styling, black textured vinyl over aluminum "clamshell" case, complementary reflective warm dark metal front panel; Complete Shielding; Easier-to-use size: 5½"h x 14¾"w x 14¼"d; Full Options: Model 645 Keyer $85; Model 243 Remote VFO $139; Model 252MO matching AC power supply $139; Model 258 Noise Blanker $49; Model 217 500 Hz 8-pole Crystal Ladder CW Filter $55; Model 218 1.8 kHz 8-pole Crystal Ladder SSB Filter $55;
OMNI owners note: Your OMNI can be converted to a SERIES B model at the factory for just $50 (plus $5 for packing and shipping). The notch filter replaces your present squelch control and provision is made for the two additional optional filters, a partial panel with new nomenclature is provided. Contact us for details.

Model 545 Series B OMNI-A $949
Model 546 Series B OMNI-D $1119
Experience the uncrowded world of OMNI/SERIES B. See your TEN-TEC dealer or write for full details.

![Image of OMNI/SERIES B transceiver](image-url)

OMNI-D TEN-TEC, INC.
Sevierville, Tennessee 37862
Export: 5752 L. Lincoln Ave., Chicago, Ill. 60646

OMNI-D TEN-TEC, INC.
Sevierville, Tennessee 37862
Export: 5752 L. Lincoln Ave., Chicago, Ill. 60646
The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?
OF A NEW AGE.

TS-1 Sub-Audible Encoder-Decoder • Microminiature in size: 1.25" x 2.0" x .65" • Encodes and decodes simultaneously • $59.95 complete with K-1 element.

TS-1JR Sub-Audible Encoder-Decoder • Microminiature version of the TS-1 measuring just 1.0" x 1.25" x .65", for hand-held units • $79.95 complete with K-1 element.

ME-3 Sub-Audible Encoder • Microminiature in size, measures .45" x 1.1" x .6" • Instant start-up • $29.95 complete with K-1 element.

TE-8 Eight-Tone Sub-Audible Encoder • Measures 2.6" x 2.0" x .7" • Frequency selection made by either a pull to ground or to supply • $69.95 with 8 K-1 elements.

PE-2 Two-Tone Sequential Encoder for paging • Two call units • Measures 1.25" x 2.0" x .65" • $49.95 with 2 K-1 elements.

SD-1 Two-Tone Sequential Decoder • Frequency range is 268.5 - 2109.4 Hz • Measures 1.2" x 1.67" x .65" • Momentary output for horn relay, latched output for call light and receiver muting built-in • $59.95 with 2 K-2 elements.

TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder • Frequency range is 67.0 - 263.0 Hz sub-audible or 1650 - 4200 Hz burst-tone • Measures 4.25" x 2.5" x 1.5" • $79.95 with 12 K-1 elements.

ST-1 Burst-Tone Encoder • Measures .95" x .5" x .5" plus K-1 measurements • Frequency range is 1650 - 4200 Hz • $29.95 with K-1 element.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, CA 92667
(800) 854-0547, California residents use: (714) 996-3021
antenna gain and directivity
over ground

A discussion of Yagi gain and directivity, reference antennas, and the effects of planet Earth

The concept of antenna directivity and antenna gain is now several decades old; in fact, the terms are now quite familiar and are used by both technical and nontechnical people alike, apparently without much thought to what they mean — and also what they do not mean!

Directivity is commonly defined as the ratio of the maximum radiated energy flux density (at some "best" azimuth and elevation angle) to the average radiated energy flux density, averaged over the entire solid angle or sphere. Note that this property is determined solely by the complete three-dimensional spatial pattern of radiated energy. Directivity has a nice conceptual ring; it should, and presumably does, measure quantitatively the ability of the antenna to focus, concentrate, or direct its radiated output in a specific direction — compared with a reference antenna which has zero directivity (i.e., equal output in all directions). This reference antenna is often referred to as an "isotropic radiator." However, this reference antenna is totally fictitious — nobody knows even in principle how to make such an antenna.* But it is a useful concept.

The gain of an antenna at any azimuth and elevation angle is normally defined as the ratio of actual maximum radiated energy flux density to that which would be produced by an isotropic radiator whose total radiated output power is the same as the antenna's input power. The gain of the antenna is then exactly the same as the antenna directivity multiplied by the radiation efficiency of the antenna. The radiation efficiency of an antenna is less than unity due only to conductor losses (and sometimes dielectric losses) and earth (ground) losses. In the remainder of this article I will assume these losses to be negligible and therefore will equate gain to directivity numerically, even though their definitions are different.†

It has been customary to object to the use of an isotropic radiator as the reference antenna because it is fictitious and physically unobtainable. Two suggestions have been made for alternative references:

*It is conceptually possible to approximate an isotropic source by the superposition of a very large number of independent and incoherent dipole sources whose orientations are uniformly distributed over the entire solid angle or sphere. It certainly would not be simple to make such a system, at least in the high-frequency region, nor to prove the accuracy of this approach to the isotropic assumption.

†Nearly all “normal” high frequency antennas have radiation efficiencies which closely approximate unity. This is not true for very short radiators, nor for antenna systems with significant ground losses.

By James L. Lawson, W2PV, 2532 Troy Road, Schenectady, New York 12309
(1) the infinitesimal dipole, whose pattern can be closely approximated by a very short linear radiator; and (2) the half-wave dipole. The infinitesimal dipole has a theoretical directivity or gain (over isotropic) of 1.5 (1.76 dB), and the half-wave dipole an isotropic gain of 1.64 (2.15 dB). Note, however, that these directivities or gains have been stated only for free-space conditions. Moreover, these free-space dipole reference alternatives are still fictitious and physically unobtainable in the real world, where real antennas interact with the real earth.

Conceptually, one can still use the free-space (fictitious) reference antennas, even though the real antenna is used over earth or ground. This has the difficulty, however, that one cannot experimentally make or use any of the reference antennas. Furthermore, the gain of an antenna referred to a free-space standard, even though quite correct, gives a value which is unnaturally high for most technical users. Nevertheless, it is a value which can in principle be derived, for example, from a complete measurement of the space energy flux density pattern of an antenna. The (isotropic) reference radiation is simply the average flux density over the complete 4π solid angle (complete sphere), which is clearly just one-half of the average flux density over the 2π solid angle of the irradiated hemisphere. The half space below the conducting ground plane is, of course, not irradiated.

Another possibility is to use a reference antenna, preferably one that can be easily constructed, and place it at the same height as the antenna, or perhaps substitute it for the antenna in its actual position. This concept is appealing and is popular* because it suggests a relatively simple measurement technique. Unfortunately, the measurement technique is not simple, either in practice or in concept; moreover, gain ratios of different antennas measured in this way are generally not the same as if referred to the free-space reference, and also not the same as the actual ratios of peak energy flux densities. There is also the nagging question of what the “position” of an antenna system is (where one should substitute a reference dipole). For example, is the “position” of a stacked array over ground its mathematical center? The basic reason for this confusing state of affairs is that a dipole reference antenna itself exhibits a gain (referenced to free space) which depends upon

height over ground. Most importantly, the gain occurs at an elevation angle different from that of the test antenna, even though the antenna is located in the same position!

An example will illustrate the nature of this confusing conceptual problem. This example will approximate the situation for a large stacked Yagi system now in fairly wide use on the 14-MHz band. The Yagis are each constructed with six evenly-spaced elements on a boom 0.66 wavelength long. The lower Yagi is at a height over ground of 0.6 wavelength and the upper Yagi is at a height over ground of 1.6 wavelengths. I have calculated the pattern(s) and maximum gain(s) of these Yagis (individually and stacked) by methods which I shall not attempt to justify in this article,* but which I believe are essentially correct.

These gain figures, together with the elevation angles at which maximum gain occurs, are shown in tables 1, 2, and 3. Table 1 shows the (hypothetical) free-space gain of the Yagi system (in decibels) referenced to three different free-space standards. Table 2 shows the (hypothetical) gain(s) of reference half-wave dipole(s) over ground at the same height(s) as the Yagi system (the "height" of the stacked array is taken as its mathematical center). I've also included the elevation angle at which maximum energy flux density occurs. Table 3 shows the gain(s) of the Yagi system referred to various standards, including half-wave dipoles at the same "height" over ground.

Constructing table 3 presents a fundamental conceptual difficulty which needs resolution. In comparing the ratio of energy flux densities of the Yagi with the (substituted) reference dipole, what should be the elevation angle or angles at which this ratio is taken? The energy flux densities of the Yagi system and the reference dipole both vary with vertical angle, but vary differently. One can now define gain in any of several ways:

A. The maximum ratio of Yagi flux density, \(F_Y \), to reference dipole flux density, \(F_D \) (occurring at angle \(a_1 \));

B. The ratio of maximum \(F_Y \) (occurring at \(a_2 \)) to \(F_D \) at that same angle;

C. The ratio of \(F_Y \) to the maximum \(F_D \) (occurring at \(a_1 \));

D. The ratio of maximum \(F_Y \) (at \(a_2 \)) to the maximum \(F_D \) (at \(a_3 \)).

It is interesting that perhaps the most logical definition is the first; unfortunately, \(a_1 \) will generally be a vanishingly small angle where the performance of both Yagi and dipole becomes vanishingly low, and where minute ground resistance and height effects make an actual experimental comparison highly inaccurate. Moreover, we are not really interested in using the Yagi at this angle. The most relevant measurement is probably 2, where the Yagi is used at its "best" elevation angle, \(a_2 \).

To show how confusing these quantities become, table 3 shows "gain" at a very low angle — say 1 degree — approximating case A. Also included are the angle for maximum \(F_Y \) (case B), the angle for maximum \(F_D \) (case C), the "gain" as the ratio of maximum \(F_Y \) to maximum \(F_D \) (case D), and finally, in case E, the stacked-Yagi system at an angle which obviously produces a remarkable "gain" figure. This pathological behavior is due to the choice of an elevation angle at a fairly deep null in the reference dipole's pattern.

The tables show a perplexing array of gain figures. Which of them is correct? Actually, they are all correct; all of the differences are caused by the behavior of the reference antennas. The strange behavior of a reference dipole over ground, as shown in table 2, is due to its change in radiation resistance caused by mutual coupling with the ground image. This is a well-known effect.* The elevation angle at which the reference antenna's gain is maximum is generally larger than that for a Yagi (higher-gain) antenna at the same height due to the way in which the "natural" gain of the Yagi falls off at higher angles.

These tables also illustrate that the gain of a real antenna over real earth can not be stated unless its height is specified. Moreover, the concept of "stacking gain," i.e., increase in gain due to stacking, is determinable only in free space. Over earth, stacking does produce an increase in gain — but increase over what? It is probably best to avoid the temptation to use any "stacking-gain" figure, but simply to refer directly to the gain of the antenna system, which should now be understood to depend not only on the antenna components (Yagis), but also on their physical locations above ground! The tables also show

that big Yagis generally perform well over earth, but not quite by the same ratio as free-space gain.

What then should one use as a reference standard? It seems at the outset that the preferred definition should allow natural comparison of two different antennas (say the lower vs the upper Yagi in the previous example). That is, we require that the ratio of the maximum gains of the upper to lower Yagis is simply the ratio of maximum energy flux densities of upper to lower Yagis. This is true in principle, if we use one of the free-space references, but not true for the half-wave, "substituted" reference dipole! In other words, if one used what has become a popular idea — gain "measurements" through a substituted half-wave dipole — the results are guaranteed to be confusing and guaranteed not to represent, even conceptually, a true measure of peak energy flux.

If the substituted half-wave dipole is not to be used in gain measurements, how then can one go about experimentally measuring the gain of an antenna that is interacting with earth or ground? It is easy to see that this is a formidable problem. The maximum intensity angle must be determined by a test signal generator or test detector; this must be done at the correct elevation angle and at a range well beyond the near field of the antenna and well beyond the Fresnel zones. The test detector must be calibrated in absolute terms of energy flux per unit area, or, if absolute calibration is not possible, one must accurately measure the entire radiated pattern over the hemi-

sphere, with sufficient accuracy to determine gain with the required precision. That this is a difficult undertaking is obvious; there appears, however, to be no other way of experimentally determining gain.*

In view of these considerations, I would like to suggest that, conceptually, antenna gain be defined simply as the ratio of maximum radiated energy flux intensity at the best azimuth and elevation to the average radiated energy flux intensity over all angles, i.e., the full 4\pi solid angle or full sphere. I suggest that this definition, in fact, is quite common; it is consistent with using a free-space, isotropic reference standard, and it gives the right ratios of energy fluxes for different antennas and antenna combinations whether in free space or over earth. It can, and I believe should, be used uniformly in all situations (including over the conducting earth). It can, in principle, be measured by integrating the complete spatial energy flux pattern.

Please note that, in contrast, "gain" measurements through dipole substitution, in principle, will give wrong ratios of energy fluxes for different antenna combinations.

This isotropic gain definition (referred to free-space isotropy) will give much higher figures for gain than those to which we have become accustomed. But we can get used to that; after all, we are already used to the outrageous claims for gain made by commercial antenna manufacturers!

To summarize, note the following points:

1. Antenna gain or directivity should be referenced to a free-space standard in order to be useful in making meaningful comparisons.

2. Experimental "gain" measurements over the earth by (dipole or other) reference substitutions will give confusing results and incorrect comparison ratios.

3. Experimental measurement of gain over earth is exceedingly difficult and basically impractical.

4. Directivity or gain can be calculated! The accuracy depends upon the proper mathematical characterization of the physical antenna (Yagi) and the use of sufficiently accurate computational methods. It is likely that the overall accuracy of gain calculation using modern methods significantly exceeds the practical accuracy of experimental measurement.

5. Large (Yagi) antennas perform well over earth, but not by the same ratio as in free space.

*One can probably approximate the gain of an actual antenna by making measurements on a good model. While measurements are usually much easier to make on a (small) model, it is sometimes quite difficult to prove that the model is a faithful representation of the real thing and that all scaling laws are understood and properly applied.

Have you ever wanted some code practice to help increase your speed to pass that elusive 13- or 20-wpm barrier, but found W1AW being clobbered by interference and you have all the code tapes memorized? This combination CW trainer/keyer could be just what you need.

As a trainer, the trainer/keyer sends random five-character code groups with selectable speed, spacing, and character set. There's no guessing at what speed the trainer/keyer is sending because the speed and spacing are digitally selected by front-panel thumbwheel switches. Any speed or spacing from 1 to 99 wpm can be selected in 1-wpm steps. With separate speed and spacing switches, the character speed can be, say, 22 wpm while the character spacing is only 9 wpm; any combination is possible as long as the speed is greater than, or equal to, the spacing. Thus, for practice to get past that 13-wpm barrier, set the character speed at 15 wpm and gradually increase the spacing until 15-wpm spacing is reached. This technique, pioneered by Russ Farnsworth (W9SUV) in his "Easy Method" records and tapes, is known from numerous code-learning studies to be the best for rapidly building up code speed. In addition to the selectable speed and spacing, the trainer's character repertory is selectable. The five-character code groups can be constructed from either the alphabet or from the alphabet plus the numbers and punctuation.

In the keyer mode, the trainer/keyer performs as an iambic keyer with both dot and dash memories. As in the trainer mode, sending speed is digitally selectable in the same 1-wpm steps from 1 to 99 wpm. No more guessing at what speed you're sending!

microcomputer control

The trainer/keyer uses a new type of integrated circuit which will revolutionize Amateur Radio: a single-chip microcomputer. Notice that it's called a microcomputer rather than a microprocessor, which you've probably read about in equipment reviews or ads. There are several distinct differences.

By John Beaston, N6TY, 4415 Tilbury Drive, San Jose, California 95130
First, a microprocessor requires additional ICs to make a computer: RAM (random-access memory), EPROM/ROM (erasable-programmable or nonerasable read-only memory), and I/O (input/output). Ads for microprocessor systems (computers) usually show circuit boards crammed with these extra components. Microcomputers, on the other hand, have all the electronics from these additional components packed into a single piece of silicon — hence the name “single-chip” microcomputers.

Aside from the obvious difference of size, microcomputers are generally easier to use than microprocessors. A large part of microprocessor system design involves simply getting all the various components playing together. In a microcomputer, this task has already been accomplished by the microcomputer manufacturer. All you must do is tell the microcomputer what’s to be done and supply the interface to the high frequency rig, RTTY gear, or whatever.

Now, microcomputers aren’t going to make microprocessors obsolete. They are intended for slightly different applications. While microprocessors are perfect for applications such as small-business computers and high-speed communications, microcomputers are designed to bring the power of a computer to control-type applications. Microcomputer applications around the home might include a microwave-oven controller, an energy-management center, a repertory phone dialer, or a burglar/fire alarm system. In Amateur Radio, microcomputers are already appearing in applications such as scanning and remote-controlled high frequency and vhf rigs. Other applications that come to mind are self-tuning transmatches; automated tracking Oscar antennas; digital-station consoles; sophisticated accessories for RTTY, SSTV, and CW; and, of course, the CW trainer/keyer. Only imagination limits the applications.

Before going into the details of the trainer/keyer let’s discuss microcomputers in general, since they are so new.

Microcomputer basics

All microcomputers are similar internally. Fig. 1 shows a structure that applies almost universally. For the sake of illustration, let’s assume that this microcomputer is being used as a traffic-light controller.

Central processing unit. Looking at the function of the first block in the block diagram, the CPU (central processing unit) can be thought of as the master control sequencer — the brains of the microcomputer. It performs the actual counting of cars and changing of lights at the appropriate times. These actions result from following a list of instructions (the program) stored in the program memory. A typical program might be this: Leave the light green for street A until no cars have passed for 15 seconds, then give street B the green until either five cars are waiting on street A or until 30 seconds have elapsed, whichever occurs first.

I/O section. If our microcomputer is to execute this particular program it needs some way of detecting the presence of cars traveling on street A. Sensors imbedded in the roadway sense the presence of a vehicle. To feed the sensor information into the microcomputer, simply connect the sensor to one of the input ports in the I/O section (assuming voltage compatibility, of course). The CPU then reads information on an input port whenever told to do so by an instruction from the program memory.

Memory sections. Since the CPU must control each light in a traffic situation, it must remember which light is on in addition to other variables. Other such items might be the length of time a light has been lit, how long it needs to remain lit, and how many cars are waiting at street A while street B has the green. Each of these little pieces of information is stored in the microcomputer’s data memory.

Let’s compare the program memory and data memory, since they sound similar but have distinctly different functions. The program memory is simply a list of instructions in a format the CPU understands (machine language). The CPU reads and executes the instructions in sequence, one by one. For any given traffic intersection the list never changes. The CPU executes the same list of instructions over and over.

The data memory, on the other hand, holds data such as time or the number of cars waiting. Each location in the memory stores a particular piece of information. For example, assume location 3 in the data memory stores the number of cars waiting at street A, while street B is green. As soon as the light at B turns green, the CPU makes the contents of location 3 zero. Periodically the program memory instructs the CPU to check the car sensor, through the input port, to determine if another car has tripped...
the sensor. If such is the case the program instructs the CPU to increment the number in memory location 3, then to test it to determine if the number is equal to 5. If so, the CPU should change the light at B to red and the light at A to green. If the number is not yet 5, there's no need to change any light, so the program just continues executing without changing anything. The data memory, unlike the program memory, never tells the CPU what operations to perform; the data memory just stores information.

When the CPU determines it's time to change a light, it does so through an output port in the I/O section. Normally, each light is connected to a separate line on the output port. At the appropriate time, the CPU turns a light on or off by switching the port pin associated with a particular light. Since an output port's output level is TTL compatible (either 0 or 5 volts), an external switch between the output port and the light is needed for the actual switching.

Clock. The last block in the diagram is the clock generator. This block determines at what times the CPU reads and executes new instructions from the program memory. All operations within the microcomputer are synchronized to this master clock. The frequency of this master clock is set by an external crystal. Typical frequencies are in the range of 1-12 MHz.

Program memories. There are two different types of program memories, either ROM or EPROM. As the name implies, the ROM-based program memory can-

fig. 3. Schematic diagram of the CW trainer/keyer. All resistors are 1/4 watt, 10 per cent tolerance. S3 and S4 and the contacts of an iambic paddle.
not be changed. The actual user program is placed into the memory by the microcomputer manufacturer at the time the device is fabricated. Since this involves special tooling, the user is generally required to pay a fee — plus submit an order for a large number of devices. If only one microcomputer is needed for a special project, a ROM-based microcomputer isn’t the way to go.

Some microcomputers use EPROM for their program memory. EPROM technology allows the user to erase and reprogram the microcomputer at any time. These devices were originally developed to help the user debug his program before committing it to ROM. However, EPROM-based microcomputers are perfect for one-of-a-kind projects such as we hams usually undertake. They can be changed at any time with no worry about big orders or tooling costs. So if there’s a need for a particular gizmo, just use the EPROM version. It’s like having your own custom IC!

Intel 8748

The EPROM microcomputer used for the trainer/keyer is the Intel 8748. Its block diagram is shown in fig. 2. Notice the similarities to fig. 1. The 8748 has 1024 bytes of program memory and 64 bytes of data memory. (Each byte holds one instruction, or piece of data.) This may sound awfully small if you’re familiar with microprocessors; however, remember that microcomputers are used mostly for control applications. Very few of these applications require more than 1000 bytes of program. But if your particular application requires more, the 8748 is easily expanded to 4000 bytes of program memory and 320 bytes of data memory using external components.

The 8748 also contains a total of twenty-six I/O lines. There are two 8-bit I/O ports (PORT1 and PORT2) that can be mixed as any combination of input or output lines. Another 8-bit port (BUS) either expands memory or is a simple input or output port. The remaining two lines are the test inputs, T0 and T1. The CPU can test these inputs under program control. They also have special functions depending on the mode of the internal timer/counter.

The programmable timer on the 8748 is an 8-bit up

counter. This timer either measures time intervals or counts external events. The specific mode is selected by the program. In addition, the CPU can read, load, start, or stop the timer.

Rather than go into greater detail on the 8748, I’d suggest that any interested reader obtain The MCS-48 User’s Manual from Intel’s literature department. This manual provides all the hardware and software details for the 8748 as well as for several other single-chip microcomputers.

trainer/keyer circuitry

Fig. 3 shows the schematic of the 8748-based trainer/keyer. The circuitry is straightforward. It requires only three ICs, a crystal, an LED, and a handful of switches, resistors, and capacitors. The thumbwheel switches determining the character speed (SPEED) and spacing (SPACING) connect to the BUS (DB7 = DB0) and PORT2 (P27 = P20) lines respectively. The trainer/keyer assumes BCD (binary-coded-decimal) coding for the speed and spacing input. The use of BCD thumbwheel switches is the easiest way to get the inputs into this format. Simple spst toggle or Dip switches could also be used; however, the BCD coding must then be done manually. Notice that no pull-up resistors are required on PORT2, although they are needed on the BUS inputs. PORT2 has the pull ups internally.
fig. 6. The PADDLE routine implements the iambic keyer section of the trainer/keyer.

PORT1 (P17 = P10) is the remaining 8-bit I/O port. Unlike the BUS and PORT2 ports which are only inputs in this application, both inputs and outputs are mixed on the various lines of PORT1. The inputs on PORT1 are the MODE, FORMAT, and DOT/DASH switches. MODE selects between the trainer and keyer modes. When MODE selects the trainer, the FORMAT switch determines the trainer's character set. With the FORMAT switch open, the trainer sends code groups containing only the alphabet. When FORMAT is closed, the alphabet along with numbers and punctuation form the code groups. If the keyer mode is selected through the MODE switch, a paddle supplies the inputs through the DOT and DASH lines. These inputs are independent, so either iambic or noniambic paddles may be used. The FORMAT and SPACING inputs have no effect when the keyer mode is used.

There are two outputs on PORT1. P10 is the actual CW output and P13 is a status indication output. The two-input NAND gate, U2A, buffers the CW output. The other input is a TUNE switch, which clamps the NAND output high when depressed. This NAND output keys the sidetone generator, U3A, and/or the transmitter. Switch S5 disconnects the transmitter while in the trainer mode if desired. The sidetone generator uses one-half of the 556 as a bistable multivibrator triggered by the CW output. The transmitter keying circuit shown is for grid-block-keyed transmitters. For other keying techniques, a 5-volt relay could replace this circuit.

The status indicator output, P13, notifies the user if an invalid combination of speed or spacing is selected. In normal operation the STATUS LED is lit continuously as a power-on indicator. If 0 wpm is selected, or if the spacing is greater than the speed, the LED flashes on and off until the condition is corrected.

The trainer uses the internal timer/counter in the event-counter mode to generate random numbers. These random numbers are eventually used to select the CW characters within the code groups. U3B supplies the events to be counted. As with U3A, this half of the 556 is wired as a bistable multivibrator. This oscillator output is tied to the 8748 T1 input. T1 is a dedicated input to the event counter when using the event-counter mode. Since U3B is free running, the event counter simply increments through its entire 8-bit range. As we’ll see shortly, the program periodically reads the contents of the counter. This number then selects the next CW character to be transmitted. Random character generation is guaranteed because there’s no synchronization between the program and the free-running oscillator.

The last piece of hardware is the crystal. The crystal supplies the basic time interval in which the CPU steps through the program in the program memory. Keeping cost in mind, a standard TV color-burst crystal, 3.58 MHz, was chosen.

the code

Before describing the software, let’s review just how a Morse code character is developed. Every character is made up of elements: dots and dashes. One basic time unit relates all the elements and the spacing between them. Dots are one dot-time long, while dashes are three dot times in duration. Within a character, elements are separated by an inter-element space equivalent to one dot time. The space between characters within a word is defined as three dot times. Spaces between words are seven dot times. The basic time interval is a dot time. Fig. 4 illustrates this timing for “CQ DE”. For any given speed, the trainer/keyer uses the time for one dot element as the basic time unit. To convert from words per minute to this basic time
unit, we use the equation found in the ARRL Handbook:

\[\text{wpm} = 2.4 \text{(dots/second)} \]

Since in this formula a dot is made up of both the dot itself and the space between it and the next dot, the equation for the basic time unit becomes:

\[\text{dot time (second/dot element)} = 1.2 / \text{wpm} \]

We'll call this basic time unit a "dot time," with the understanding that it is the time equivalent to a dot element itself, not the dot element and the following space. For example, at 20 wpm, the dot time is 1.2/20, or 60 ms.

The trainer/keyer has a short delay program that takes 0.1 ms to execute. This program does nothing except wait for 0.1 ms. To get the time interval needed, say, for 20 wpm, we simply make this program execute 60 ms/0.1 ms, or 600 times. At one wpm, we need 1.2s/0.1 ms, or 12,000 times; while at 100 wpm the count is only 120. The trainer/keyer uses this software technique to generate the time for each code element.

The program is the heart of the trainer/keyer. It has three basic sections: start, keyer, and trainer. The flow charts for each of these sections are shown in figs. 5 through 7.

Program start. When power is turned on, the 8748 begins executing the program corresponding to the START flow chart, fig. 5. This routine first starts the event counter, then reads the speed selected through the SPEED thumbwheel switches. If the selected speed is 0 wpm, the program branches to a routine that flashes the STATUS LED once and returns to START. If the selected speed is something other than 0 wpm, the routine converts the BCD number into binary and uses this binary number to calculate how many 0.1-ms steps are needed to give the desired speed. This number of steps is called the SPEED loop constant. Once the SPEED loop constant is found, the same procedure is used for reading the SPACING thumbwheel switches and computing the SPACING loop constant.

Once both loop constants are known, the MODE switch is tested. If the trainer is selected, the program branches to the routine called TRAIN, fig. 7. If the keyer is selected, the PADDLE routine is executed, fig. 6.

Keyer routine. Looking at the latter first, PADDLE simply tests the DOT and DASH inputs. If the dot side of the paddle is pressed (the P14 input is 0), the routine sends a dot element by turning on the CW output, waiting in the delay loop for one SPEED dot time, turning off the CW output, and waiting out the
inter-element space for one more dot time. Then, to give the iambic nature to the keyer, the DASH input is examined to determine if the dash paddle is pressed. If so, a dash is sent by turning on the CW output for three SPEED dot times and waiting the one-dot-time inter-element space. Then the DOT input is tested again and the process repeats.

If neither side of the paddle happens to be pressed, the routine checks if either the SPEED, SPACING, or MODE inputs have changed. If one or more has changed the routine branches back to START to recalculate the loop constants, change modes, or both. If not, the DOT and DASH are tested again.

The one area not shown in the flow chart is how the dot and dash memories are incorporated. During the delay time of sending an element or an inter-element space, the input for the other side of the paddle is tested occasionally. If it’s pressed, a software flag (special bit) is set to indicate that memory is needed. When the current element is complete, this flag is tested. If it’s set, the opposite element is sent before continuing. No action is taken if it’s not set.

Trainer routine. The trainer routine is similar to that of the keyer except that the inputs come from internally selected characters. These characters are located in a special section of the program memory called the character table. The total number of characters in the table is 128. The frequency of occurrence of each character in the table roughly reflects its occurrence in everyday text. In other words, the table contains seven A characters, six Es, sixNs, etc., while containing only two Js, two Zs, and so on. Each number and punctuation character has two entries.

When the trainer needs a new character, it reads the internal event counter, which is driven from the free-running oscillator. This number is used as an offset into the character table to select the next character. If the event counter happened to be 27 when it was read, the twenty-seventh character in the table (in this case it is a G) is the next character transmitted.

Since the character set is variable, some testing is needed of the number read from the event counter. These tests ensure that the offset is within the table limits as well as within the selected character set. If the FORMAT selects all characters the entire table is used. If only alphabet characters are selected the offset range is restricted to only that particular portion of the table.

Characters in the table are stored in a binary form equivalent to Morse code. This form specifies that a dot is represented as a binary 1 while a dash is a 0.

fig. 7. The trainer section of the trainer/keyer uses the TRAIN routine.
fig. 9. PC-board layout for the CW trainer/keyer above and component layout diagram below.
Each of the 128 entries requires one byte (eight bits). The characters are right-justified and contain a trailing space. Fig. 8 illustrates the format for the letter B. To reproduce the Morse code equivalent, the trainer simply shifts the whole character one position to the right and tests the bit that falls off the right-hand end. If the bit is a 1, it sends a dot; if it's a 0 a dash is sent. This process repeats, bit-by-bit, until all the positions contain zeroes except the right-most. When this occurs, the character is complete, and a new character is fetched from the table.

Now that we understand the basic operation of the trainer, let's look at its flow chart again (fig. 7). Since the trainer uses both speed and spacing, the first operation checks for the validity of the selected combination. Speed greater than the spacing is invalid, and the STATUS LED blinks accordingly. If the combination is okay, the character counter is set to 5. This software counter keeps track of the number of characters remaining to be sent in a five-character code group. Next, the event counter is read, and a character is selected from the character table.

Character shifting is begun at this point. Let's assume the first element is a dash. The CW output is turned on and the delay routine waits three dot times as specified by the SPEED loop constant. The CW output is then turned off. Since the length of time until the next element depends on whether this element is the last in a character or is simply an intermediate, intercharacter element, the routine checks for the character-done condition of all bits zero except the rightmost. If not the last element, an inter-element space is needed, and the delay routine waits one SPEED dot time before the character is shifted for the next element. If the dash happened to be the last element, the delay routine then waits the inter-character space of three dot units, using the dot time specified by the SPACING loop constant. Since a character has just been completed, the character counter is tested to see if the character was the fifth character in a character group. If not, the character counter is decremented by one, and the routine reads the event counter and gets the next character.

If the just-completed character was the last of a group, an additional four SPACING dot times are awaited, to give a total of seven SPACING dot times between groups, which corresponds to a word space. The routine then returns to reset the character counter to 5 and begin the next group.

collection

Construction of the trainer/keyer is straightforward. PC and perforated board techniques work equally well. The printed circuit layout is shown in fig. 9 for those who would rather "roll their own."

The only constraint in the construction is that the crystal and its companion 20-pF capacitors be located as close as possible to the 8748 IC. Be sure to bypass all inputs and outputs from the enclosure to minimize RF entering the enclosure. As for the power supply, the trainer/keyer requires only a 5-volt supply. Any 5-volt supply capable of supplying 150-200 mA is sufficient. The PC board layout contains provisions for a diode bridge rectifier and three-terminal voltage regulator.

parts

Many of the larger mail-order IC houses stock 8748s. Otherwise, they can be purchased at any Intel distributor listed in the MCS-48 User's Manual. Demand for the 8748 is quite high, so availability may be limited; be sure to call around. Several versions of the 8748 are available. These different versions are denoted by another digit after the 8748; e.g., 8748-4. Any version will work in the trainer/keyer. The 8748-8 is the lowest-cost version, so ask for it if there's a choice. The only difference between different dash-numbered parts is the maximum crystal frequency. The maximum for the -8 is 3.6 MHz, while a "no dash" device works up to 6 MHz.

One caution. These devices are unprogrammed and must be programmed with the trainer/keyer software for use in this application. Intel distributors usually have a programming service available for a small charge, or an 8748 programmer can be constructed based on the timing shown in the user's manual. Programming requires a knowledge of the machine language program. Listings of this program are available from the author.

afterthoughts

The 8748 is an extremely flexible device. The number of applications for it within Amateur Radio are almost limitless. Other applications that have been built are a single-chip Morse code encoder/decoder and a WWVB digital clock that never needs to be set. As an example, the encoder/decoder allows you to receive and transmit CW directly on any Baudot or ASCII teleprinter, plus any terminal unit having RS-232 switching levels (ST-5 or ST-6). For transmit, the encoder accepts either Baudot or ASCII serial characters from the keyboard. Up to thirty-two characters are buffered and transmitted in CW at any speed from 1 to 99 wpm. On receive, the decoder adapts to any CW input speed all the way from 1 to over 100 wpm. Received characters are formatted in either Baudot or ASCII and sent serially to the printer. Why not pick up an MCS-48 User's Manual and get into computer-controlled ham radio the easy way?
Now you can really enjoy the challenge of working that tough to work 2-meter DX. The all new Boomer 3.2 λ yagi gives 16.2 dB forward gain. A high efficiency balanced feed system, with integral balun, gives a clear, precise pattern. The trigon reflector reinforces Boomers' 24 dB front to back ratio. Boomer has that right combination of features which will give you long path DX capability or allow you to participate in tropo, sporadic E, meteor scatter and EME activities.

The Boomer is designed to last with a large diameter round boom for more strength with less wind load. It has a reversible truss support, high strength aluminum mounting plates and all stainless steel hardware.

When you install Boomer, you'll appreciate our typical attention to detail. You can throw away the hack saw and hand drill. Boomer has a detailed instruction manual, precisely cut elements, plus machined and finished components which need only pliers and screwdriver to assemble.

When you are ready to move up to even higher gain, we have complete stacking kits with everything necessary to assemble two, four and larger yagi arrays.

Stalk down to your local dealer (anywhere in the world) for full details on Boomer.

Cushcraft Corporation
The Antenna Company
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108
dip meter converter
for very low frequencies

Using an ordinary dip meter at frequencies below 100 kHz can be a problem — this converter allows your meter to work accurately to 1 kHz.

You’re just starting to build some equipment for vlf. There’s a tuned circuit that you think you’ve cut to about 100 kHz, but something seems to be wrong. You reach for your trusty dip meter and you find

If your dip meter resembles my ancient Millen, you find that it cuts off at 1.7 MHz. It doesn’t come anywhere near vlf.

When faced with this disagreeable situation, I first devoted some thought to winding a few appropriate coils for the Millen. Then I toyed with the idea of starting from scratch with a VCO chip. Finally I tried a simple and rather obvious approach that worked beautifully.

By using a ripple counter (fig. 1) you can divide what you need by what you don’t have. Starting with a dip oscillator that’s well calibrated, you can go to a frequency as low as you like. No improvising of coil forms, no hunting around for calibration points, and no worries about the mechanical stability of a new tuning mechanism.

The 4040 counter chip divides by 2^1 through 2^{12}. This fits the approximately 2:1 tuning range of the typical dip oscillator and leaves no gaps in the spectrum. Some conditioning of the input is required, but the 4001 is inexpensive and readily available, and it can be used for this purpose.

All that’s necessary to measure a resonant frequency is to feed an rf probe from the divider output. Connect the probe directly to the tuned circuit. The rf volt meter measures the voltage drop across the circuit. When off resonance, the probe is essentially short circuited. At resonance, the test circuit looks like a large resistance, and the voltage rises accordingly. Since the probe is directly connected to the test circuit, it’s possible to measure not only the resonant frequency but the resonant impedance and Q as well. Seems like a nice bonus to get all this with such a simple apparatus.

the circuit

The first section of the 4001 is biased into its active region for use as an amplifier. This unloads the dip oscillator and helps keep its original calibration intact. There are different ways of handling the bias problem, but the one shown in fig. 1 proved to be thoroughly stable, and both the A- and B-series chips worked well. R1 provides a certain measure of input protection.

A characteristic of CMOS is that steady-state offsets propagate poorly through a series of gates. Tying together both inputs to the second gate assists the process under certain circumstances. In this case, I found that the third gate could be switched by manipulating the bias on the first gate. The steady-state output, however, could not be set anywhere except at a supply rail. The fourth gate wasn’t needed, so it was tied off. Supply voltages can vary from about 7 to 15 volts. For a variety of reasons, 12 volts seemed to be a good compromise.

From the divider chip, a 12-position rotary switch selects the desired subharmonic and routes it to the four output terminals. Terminal A is for using the gadget as a utility squarewave generator. Terminal B is normally connected to terminal C either directly or through R4. This resistor is located outside the case, because it must be changed under certain circum-

By E. G. Von Wald, W4YOT, 932 North Federal Highway, Lake Worth, Florida 33460
stances, as discussed later. Terminals C and D form the probe. C2 and CR1, with filter R5C3, form the business end of the rf voltmeter. A sensitive, high-resistance indicator—such as an electronic voltmeter—should be used to read the voltage.

As mentioned, the 4040 divides by a factor as high as 2^{12}. When you apply this divisor to the lowest frequency on the Millen, you get an output of a little under one-half kHz. This seemed pretty far below that required for my purposes, so the 12th output on the chip was left unconnected. The open position on the switch allows the instrument to be used as an rf probe with external excitation. It has a resistance (at these frequencies) in excess of a megohm, shunted by several picofarads.

construction

Construction is simple and, allowing for the difficulties of working with quasi microcircuitry, reasonably fast. Since CMOS lends itself to point-to-point wiring, the additional problems of working up an etched circuit board are avoided. Fiberglass perfboard with 2.6-mm (0.1-inch) hole spacing was used with no. 24 AWG (0.5-mm) solid wire. Stripped of its insulation, this wire laces nicely through two or three adjacent holes. When pulled up tight, it holds its position well, forming a stable anchor to the perfboard. Trim the wire about 5-mm (0.2 inch) above the adjacent socket terminal. Then use a soldering tool to bend the trimmed stub over against the terminal. Twist the wire so that it stays against the terminal by itself. Soldering becomes very easy this way.

The photograph of the instrument interior shows the mechanical layout. Metal shielding should be used to keep stray fields from the 4040 out of the rectifier circuit. Shielding was made from scrap flashing copper. The shield also serves as a mounting bracket.

A spacer and bolt were inserted close to the switch to provide extra rigidity when switching.

A word about using resistors at radio frequencies. The resistance values tend to fall off as frequency is raised. Henney\(^1\) gives some data for ½-watt film- and slug-type resistors. Fig. 2 summarizes this information for the frequency-resistance range likely to be encountered here.

adjustment

When the circuit has been wired and checked for accuracy, insert the chips and power up. Use a VOM set to about 10 mA in series with one of the supply leads. Set the selector switch about mid range.

Screw R2 all the way to one limit, then slowly bring it back past its midpoint. Supply current should

be negligible until you get near the active region, when it will jump rather suddenly to several milliamperes. Even with a 20-turn pot, this adjustment range is narrow — ¼ turn should carry you all the way through.

Leaving the pot set at the middle of the active region, short circuit terminal B to terminal C. Couple the dip oscillator to the input through a 3-turn link at the end of a short length of RG-58/U cable.

Set the dip oscillator to 4 MHz. When the oscillator is switched on, there should be another jump in current to perhaps 7 or 8 mA with a 12-volt supply. No further adjustment is necessary unless the supply voltage is changed by an appreciable amount. Should the output voltage vary appreciably across any single output range, either R2 is not set right or else more coupling to the oscillator is needed. Keep in mind, though, that there are about 4 or 5 pF of shunt capacitance at the rectifier and it's not always negligible (compared, in this case, with the resistance of R3). At 2-MHz output, for instance, the open-circuit voltage will be quite low. However, when a tuned circuit is connected, this shunt capacitance is simply absorbed into the tuning capacitance. At these frequencies, the error should not be serious.

Once the device is functioning properly, connect the probe across a marked i-f transformer. Output voltage should fall toward zero. To find the resonant frequency, start from above the expected frequency and tune down. When you get close to the target, the output should peak up nicely. After locating the proper resonance point, keep tuning down the spectrum. You’ll find peaks (considerably lower in voltage than at resonance) at regular odd submultiples of the resonant frequency. This is why it’s easiest to start hunting for resonance from the high end. It also provides a graphic illustration of just what the corners of square waves are made of.

You can use inductive coupling for resonance checking (but not for Q or impedance). Simply connect a multturn link directly across the probe terminals. Couple this link to the circuit in question. Output will still be a peak at resonance. Expect to use a lot of turns at these low frequencies.

operation

You can use the 20 kilohms of R3 by itself for routine frequency checking, with a short in the R4 position. Measuring circuit Q and resonant impedance is slightly more complicated. You have to make one or two voltage readings and do a little arithmetic.

The divider chip itself can be viewed as a generator with a low internal resistance. Shunting such a low resistance across a parallel-tuned circuit would greatly lower the apparent Q. The simplest way of avoiding this is to use a couple of megohms for R4 and make your measurements with a millivoltmeter.

If yours is a standard analog electronic voltmeter with a lowest range of 1½ volts, you can’t do this. The rectifier response would be somewhere between linear and square law, but you wouldn’t know where. The voltage readings would be completely unreliable. It’s better in this case to keep the voltage to the rectifier high, assume that it’s more or less linear, and make a correction for the shunting resistance. Here's how to do it.
Short the square-wave output terminal directly to the probe terminal. With no loads connected, switch the output to its lowest frequency range. Observe the voltage reading (use the dc scale). This should be around 4½ volts with a 12-volt supply. Call this voltage E.

Remove the short. Connect a suitable resistor in the R4 position. 50 kilohms would be a good value to start with. Now connect the probe to the tuned circuit and measure the voltage reading at resonance. Call this V_0. For best accuracy, V_0 should be somewhere around half to three-fourths of E. You may have to hunt a bit to get a resistor that brings V_0 within these limits. The amount of resistance required varies according to the resonant impedance of the circuit. If it’s very low, you may have to use the minimum (R3 alone).

Once you get V_0 within the proper limits, measure the Q in the usual manner by detuning the oscillator until you get $0.707V_0$ either side of resonance.

$$Q_a = \frac{F_{\text{resonant}}}{F_{\text{high}} - F_{\text{low}}} \tag{1}$$

Q_a is the apparent Q not the true Q. To find true Q:

$$Q = Q_a \left[\frac{1}{I - \frac{V_0}{1.27E}} \right] \tag{2}$$

The factor 1.27 comes about because the E you measure is a square wave and includes harmonics. Some of them tend to cancel the peak of the fundamental waveform. When the tuned circuit is connected, it bypasses these harmonics and they no longer affect things. (To be precise, 1.27 happens to be the coefficient of the first ac term in the Fourier series expansion of the squarewave after being normalized to the dc term.)

To find the tuned-circuit resonant impedance, you can use the formula

$$Z_0 = (R3 + R4) \left[\frac{1.27E}{V_0} - 1 \right] \tag{3}$$

These results should be accurate to within about 10 per cent or so, assuming you’re using 5 per cent resistors properly derated. Frequency readings will be a few per cent on the low side because of the parasitic shunt capacitances. Decoupling the test circuit by feeding it through a large resistor will greatly reduce this error, but the peaks are harder to locate.

By the way, if you’re accustomed to using a dip meter, you’ll notice something rather odd when measuring with this device. The precise peak at resonance seems somehow more elusive than the dip used to be. This is not just imagination. With the dip meter, the oscillator frequency tends to lock in with the test-circuit resonant frequency. This produces a sort of “slot” that holds the dip down over a certain tuning range and makes it more easy to observe. The effect is quite pronounced with very tight coupling to a very high-Q circuit. Such grabbing of control by what you’re trying to measure is entirely absent with this gadget. The result is a somewhat different “feel.”

conclusion

Despite its simplicity, this little indicator should be a big help in getting started at vlf. Now you can reach for your trusty dip meter — with the attachment — when working at 100 kHz. Or even 1 kHz!

reference

appendix

An approximate equivalent circuit, neglecting the internal resistance of the chip and the parasitic capacitances, looks something like this

\[E = I(R_1 + Z) \]
\[V = Iz \]

At resonance $Z_0 = (R_1 + Z_0)/Z_0$

Hence $Z_0 = R_0/(E_0/V_0 - 1)$

As measured, E and V are real. Z is, in general, complex, which leads to complex equations. However, for Qs greater than about 10, the following reasoning is far simpler and leads to the same practical results.

First, define the true Q.

$$Q = Z_0/X_0$$

When R_1 is in parallel with Z_0 (through the generator), the effective parallel resistance is

$$\frac{R_1Z_0}{R_1 + Z_0}$$

$$Q_a = \frac{[R_1Z_0/(R_1 + Z_0)][1/X_0]}{[R_1/(R_1 + Z_0)]Q}$$

Hence $Q = Q_a/(R_1 + Z_0)/R_1$

After substituting for Z_0 and some fiddling, you get the formula given. This notation is for sine-wave voltages. If E is a square wave some adjustment must be made, as indicated in the text.
Today's Amateur demands rugged, rapid and accurate communications between Hams in the know. That's why they choose the Wilson Mark Series of hand-held radios. With specifications like these..., why not choose the most popular radio available?

The Mark radios offer: • 144-148 MHz range • 6 Channel operation • Individual trimmers on TX and RX xtals • Rugged Lexan® outer case • Current drain: RX, 15 mA, TX, Mark II, 500 mA, Mark IV, 900 mA • A power saving Hi/Lo Switch • 12 KHz ceramic filter and 10.7 MHz monolithic filter included • 10.7 MHz and 455 KHz IF • Spurious and harmonics, more than 50 dB below quieting • Uses special rechargeable Ni-Cad battery pack • LED battery condition indicator • Rubber duck and one pair Xtals 52/52 included • Weight: 19 oz. including batteries • Size: 6" x 1.770" x 2.440".

Advantages such as solid state circuitry, rugged Lexan® case, removable rear panel (enabling easy access to battery compartment) and compact mini-size enhance the Mark Series portable radio's versatility. In addition, a full line of accessories is available to satisfy almost any of your requirements.

Options available, include Touch Tone Pad, Leather Case, Chargers for Desk Top, Travel or Automobile, Speaker Mike, and large capacity, small size Batteries.

For more details and/or the name of your nearest dealer, contact: Consumer Products Division, Wilson Electronics Incorporated, 4288 S. Polaris Ave., P. O. Box 19090, Las Vegas, NV 89119. Phone 702-739-1931, Telex 684-522.

Wilson Electronics Incorporated
A Subsidiary of Regency Electronics, Inc.
ground systems

for vertical antennas

Data to help you select the most efficient ground system for your vertical antenna

Over the past few years I’ve read and enjoyed the many articles about vertical antennas that have appeared in the Amateur magazines. Several of these articles refer to a very old research paper considered to be a classic in the field of ground system design. I finally located this paper, which was written in 1937 by three engineers who worked for RCA in New Jersey. Several of their main points are summarized in this article, and the important results presented given in graphical form.

Using several different antenna heights, the RCA engineers measured the transmitted field strength at ground level, while varying the number and length of the radial ground wires. The radials were buried at about 15 cm (6 inches), with a test frequency of 3.0 MHz. One test, using radials laid on the surface of the earth, gave essentially the same field strength readings as when the radials were buried.

interpreting the graphs

First let’s look at fig. 1. The actual measured field strength is plotted as a percentage of the maximum theoretical field strength for antenna heights from 10 to 90 degrees. Remember that one wavelength consists of 360 electrical degrees, so that 90 degrees equals 1/4 wavelength, while 45 degrees is 1/8 wavelength. Antennas taller than 1/4 wavelength were not used because of excessive height requirements. In fig. 1A each radial is 41 meters (135 feet) long, which amounts to 0.412 wavelength at 3 MHz. In fig. 1B each radial is 27 meters (90 feet) (0.274 wavelength), while fig. 1C was plotted for 13.7-meter (45-foot or 0.137-wavelength) radials. Figs. 2A through 2D show field strength as a function of antenna height for three radial lengths with the number of radials held constant.

What do these graphs mean? First, for any number of radials of any length, making the antenna higher will make it radiate more efficiently, although the graphs tend to flatten out in most cases once the antenna height reaches 1/8 wavelength or so. Fig. 1C shows that, even if many radials are used, the field strength doesn’t exceed 80 per cent of the theoretical maximum value because the radials (just over 1/8 wavelength) are simply too short. Using only 15 radials in this case gives results almost as good as using 113 radials. This holds true even if the antenna itself is very short.

If you use radials of about 1/4 wavelength (as in fig. 1B), the measured field strength increases to about 92 per cent of the theoretical maximum if 113 radials are installed. Increasing the length of the radials still further, to about 0.4 wavelength, as in fig. 1A, brings the measured field strength to 98 per cent of the theoretical maximum, if you again use 113 radials.

Looking at figs. 1A, 1B, and 1C, you can see that if you use only two radials for your ground system, the field strength will be virtually identical no matter how long the radials. Even if you use a full-size, 1/4-wavelength vertical, the field strength will be less than 65 per cent of the theoretical value. As the number of radials increases, the improvement in field strength is progressively greater (the curves become further apart) as the length of the radials is increased.

As you’ve already discovered from fig. 1C, putting down more radials may not yield much improvement if the radials are too short. Similarly, using very long radials is a waste of time if they are too few in number, as shown in fig. 2A. Fig. 2D illustrates the benefits that can be gained by using long radials if you can install a lot of them.

examples

1. Suppose you have a 15-meter (50-foot) tower section that’s base loaded with a low-loss inductor, and the system is resonant in the 160-meter “DX window” at 1825 kHz. The antenna height works out to be slightly less than 1/10 wavelength, or about 35 electrical degrees. Thinking that you’ll probably need lots of radials to get good efficiency with such a short antenna, take a look at fig. 2D, which is for a ground system of 113 radials. Using 0.137-wavelength radials (about 22.5 meters or 74 feet) the efficiency is about 68 per cent; it is 87 per cent for 0.274-

By Alan M. Christman, WD8CBJ, Box 44, Granville, West Virginia 26534
wavelength radials (45 meters, or 148 feet), and 96 per cent for 0.412-wavelength radials (68 meters, or 222 feet). By interpolation, 90 per cent efficiency would require 113 radials with lengths of about 0.32 wavelength (53 meters, or 173 feet).

Another approach is to use fig. 1A. About 96 per cent efficiency can be achieved by using 113 radials 0.412 wavelength long, as mentioned above. Using 60 of these radials yields 86 per cent efficiency; and, by interpolation, 90 per cent efficiency is attained by using 81 of these long radials. The first scheme requires 5948 meters (19,500 feet) of wire, while the second approach uses almost 5490 meters (18,000 feet).

2. Suppose you have a phased array of 1/4-wavelength verticals on 40 meters, and want 90 per cent efficiency. From fig. 1B, it seems that 60 radials, each 0.274 wavelength (12 meters, or 38 feet) will give the desired result. Or you can use fig. 1A to determine that 38 radials, each 0.412 wavelength (17 meters, or 57 feet), will also do the trick. Total wire length is 695 meters versus 662 meters (2280 versus 2170 feet)

3. Suppose you have a four-band trap vertical (40 to 10 meters) and your yard is such that the radials can’t be any longer than 5.8 meters (19 feet). This amounts to about 0.137 wavelength at 7150 kHz, so fig. 1C applies.

Now it looks like it would be a waste of time to put in more than fifteen radials, because very little field strength is gained by adding extra ones. But this is a multi-band antenna, and those 5.8-meter (19-foot) radials are 0.274 wavelength at 14.2 MHz and 0.412 wavelength at 21.34 MHz, so fig. 1B applies for 20 meters, and fig. 1A applies for 15 meters. If you use sixty radials, each 5.8 meters (19 feet) long, you won’t get much improvement on 40 meters, but the increase from 15 to 60 radials yields a gain in efficiency from 79 per cent to 91 per cent on 20 meters and from 77 per cent to 94 per cent on 15 meters. The results on 10 meters are better yet. Radials that are “short” on one band may be quite “long” on another higher band.

A tall antenna will have a broader bandwidth than a shorter antenna of the same diameter, so if a short antenna must be used, make it “fat.” Instead of aluminum tubing or pipe, make the vertical radiator from tower sections. Alternatively, a wooden telephone pole can be used to support a wire cage built around it. A short, fat antenna may have a bandwidth as great as, or greater than, that of a tall, thin one. A top hat can be used to capacitively load a vertical and make it seem taller. Experiments by W2FMI show that a top hat of diameter D will increase the effective height of the antenna by 20.2D. A taller antenna will also have a higher radiation resistance.
There's nothing sacred about a 1/4-wavelength vertical, but an antenna of this height will have zero reactance, and therefore may be easier to match to the transmission line because its base impedance will be purely resistive. As the antenna is made taller, up to a maximum of about 5/8 wavelength, the elevation angle of the major lobe of radiation becomes lower, a point at which it's useless to install any more of them.

If the radials are short compared with the operating wavelength, radiation efficiency will be low and relatively few radials will be needed to reach this point. If the radials are quite long, then many can be installed before reaching the point of diminishing returns. The “classic” ground system used by a-m broadcast stations consists of 120 radials, each 1/2-wavelength long, which gives a radiation efficiency on the order of 95-98 per cent.4

conclusion

Remember that these graphs were drawn from data taken at a specific location in New Jersey, and results may vary somewhat depending on local soil conductivity. However, the general results are still useful and may be used as a guide. It's important to note that for any given length of radials there comes which should improve the DX capabilities of the antenna. If a very tall antenna is erected, vertical stacking through the use of a coaxial sleeve or other means may be used to achieve extremely low radiation angles.3

references

ham radio
all about traps and trap antennas

These days, almost everyone who enters the Amateur Radio hobby purchases or builds a band-switching transmitter or transceiver covering 80 to 10 meters, allowing a degree of operating flexibility unknown in the days of single-band finals and plug-in coils. A logical extension of the bandswitching transmitter is an equally flexible antenna, capable of "instant" operation over the same bands the transmitter covers. Hence the trend to efficient, automatic, multiband antennas. One of the most popular, and technically sound, multiband antenna systems is the trapped antenna, both in its vertical and horizontal forms. Unfortunately, if ever there was confusion surrounding antennas, there’s confusion about trap antennas; a great deal of mumbo-jumbo has been written about them.

In this article, I will attempt to set things straight with a discussion of some of the basic antenna concepts necessary to put traps in perspective, then I’ll proceed to talk about both the trap dipole and the trap vertical. I’ll also make some suggestions on how to feed, match, and tune the trap antenna, and discuss some possible problems you may encounter with harmonic radiation and television interference (TVI).

basic concepts

Many beginners do not realize the importance of using a good antenna, and, as a result, waste much of their transmitter power and spend much of their time unsuccessfully trying to make contacts. While virtually any piece of wire can be “loaded up” using a wide-range antenna coupler on any band, the performance of such a makeshift antenna will not likely set any DX records. Far better for single-band operation is the dipole, or “doublet,” antenna, which is usually the simplest and most trouble-free kind you can use. The dipole is normally cut for the center of the desired band and fed with 50- or 75-ohm coaxial cable. A coax-fed dipole that is high and in the clear will usually work well over a range of ±2 per cent of the center frequency before the mismatch even goes above 2:1.

A simple half-wave dipole is cut to frequency using the formula \(F \) (in feet) = \(\frac{468}{\text{frequency} \text{ (in MHz)}} \). Whereas the impedance at the ends of the antenna is quite high, approaching 3000 ohms or more, the center impedance of a high-frequency dipole at moderate heights runs about 50-75 ohms. This presents a good match for easy-to-handle coaxial cable. The other end of the transmission line (which may be of any reasonable length) is connected to the output connector of the transmitter or transceiver. Thus, a good match is also effected between the transmission line and the transmitter, which normally has a pi network output circuit designed to handle line impedances under about 100 ohms.

Problems arise when you try to use a dipole far from its design frequency: For example, using one cut for the center of the relatively wide 80-meter band (3750 kHz) at the high end, 4000 kHz. The impedance will then be reactive, since the antenna is no longer perfectly resonant, and it may result in a moderately high SWR and loading problems at the transmitter. Also, if you try to use a dipole that’s cut for one band on another band, you may develop a severe transmission line mismatch (SWR) of up to 20 to 1 or higher. If you were to load up an 80-meter dipole with 40-meter rf from your transmitter, for example, you would find that the antenna no longer acts like an ordinary dipole, but rather like two half-wave antennas fed at their endpoints. The impedance might be around 3000 ohms, resulting in a mismatch to 75-ohm coax of about 40 to 1!

Thus, the dipole is essentially a single-band antenna, although there is an exception. At odd harmonics of its fundamental frequency the antenna's center impedance is low, so that it can be fed with low-impedance coax and work on certain higher-frequency bands. A 40-meter dipole, for example, can be used on 15 meters (21 MHz being an odd harmonic of 7 MHz); this fact is also made use of by trap manu-

By Karl T. Thurber, W8FX, 631 North Overbrook Drive, Fort Walton Beach, Florida 32548

34 W August 1979
facturers to make possible operation on several bands using a minimum number of separate traps. In fact, the horizontal trap dipole is really an ingenious and versatile adaptation of the basic dipole or doublet.

What about verticals? I'll cover trap verticals later, but first I want to discuss basic vertical antenna concepts. The vertical is popular on all the high-frequency bands, and especially on the three highest bands (20, 15, and 10) for DX work. The simplest vertical is a quarter-wavelength long, fed “against ground” or connected to “artificial” groundplane radials tied to the base of the antenna. The groundplane, or earth, acts as a sort of mirror image for the antenna, allowing it to be a quarter-wavelength long rather than a full half-wavelength. The vertical’s feedpoint impedance is usually between 25 and 40 ohms, so it offers a fair match to 50-ohm coax.

The vertical’s popularity stems from two factors. The first is that it is a space saver; all one needs is vertical space, rather than a long horizontal antenna “run.” If buried ground radials rather than above-ground radials are used, no horizontal space at all is required. (Of course, to be effective, the vertical should be installed as far as possible from other objects, such as house and utility wiring, and the ground system should be as extensive as possible.)

The second factor promoting the popularity of the vertical antenna for high-frequency work is that it produces a low angle of radiation, which places maximum signal near the horizon for good effect when working DX. When compared with a horizontal antenna mounted 10 to 15 meters high, the vertical will usually perform better over longer hauls, roughly 950 to 1300 km (600 to 800 miles) and beyond. On the other hand, the horizontal will usually give a better account of itself over shorter distances. The choice of vertical versus horizontal antennas for the high frequencies depends a great deal on what you want to use them for — and also on individual preference. Overall, I prefer the horizontal on 80 and 40 meters (for short- and medium-haul work), and the vertical on 20, 15, and 10 for long-path DX.

variations on a dipole

Lack of space has prevented many an Amateur from putting up any satisfactory antenna for the high-frequency bands, let alone install multiple antennas for each band on which he might want to operate. In many cases, an antenna length of about 30 meters (100 feet) is all that can be managed on a small city or suburban lot, not quite enough for operation on 75 and 80 meters. The trap antenna offers promise in this case, since its traps act as loading coils to “shorten” the required length to between 30 and 35 meters (100 and 110 feet) for 80-meter operation, and the electrical characteristics allow the antenna to be fed easily on the higher bands by an untuned (coax) feedline.

Trap operation is actually quite simple. Each is a parallel-tuned LC coil and capacitor circuit which is installed in the antenna to “divorce” the remainder of the antenna from the section on the “inside” of the traps. The principle involved is that an inductor and capacitor in parallel, when tuned to a given frequency and installed in a line, present a near-infinite impedance to rf current at that frequency. In effect, the parallel circuit acts to “trap” that particular frequency, acting as though it were the end of the antenna for that frequency. At all other frequencies (both above and below the trap’s resonant frequency), the trap is a short circuit so that rf passes through it as though it were not there.

Several trap dipole configurations are popular. In a simple trap scheme, only one pair of traps is required for operation from 80 through 10 meters. In this case, a basic flat-top length of about 32.4 meters (108 feet) is used for 80-meter operation, the shortening being due to the electrical loading caused by the traps. On 40 meters, the traps insulate, or “divorce,” the outside wire sections so that the antenna looks electrically like a 40-meter dipole. On the higher bands — 20, 15, and 10 meters — the trap dipole works out to electrical lengths that are roughly odd multiples of half-wavelengths (such as three half-waves on 20, five half-waves on 15, and seven half-waves on 10). Thus, use is made of the same principle that allows a simple 40-meter dipole to work on 15 meters.

In a more complex trap arrangement, a pair of traps (one on each side of antenna center) is required.
160 and 20 meters, or 80, 20, and 15 meters, to cite but two of many possible examples. Fig. 1 shows trap arrangement in a multiple-trap antenna.

Either trap scheme is capable of delivering good results. In the single-trap version, you can adjust the antenna length for the two lowest bands, but exact resonance on the higher bands (such as 20, 15, and 10) may not fall where you want it to fall and a high SWR may result. On the other hand, single trap antennas are lightweight; if matching becomes awkward, the feedline length can be adjusted to allow the antenna to take power, or an antenna coupler to be used. The multiple trap kind has the advantage that it can be adjusted for a low SWR on each band, but interaction between the traps can make adjustment tricky. Also, the many traps involved can introduce some system loss, and the antenna is heavy. In either case, trap antennas are not broad-band antennas, and they will show an increasing SWR as they are operated farther away from the center frequencies. Usable bandwidth is typically several hundred kHz, depending on the band, the design of the traps, and the physical antenna length involved. Although the ARRL Radio Amateur’s Handbook and Antenna Book, as well as numerous Amateur magazine articles, describe trap construction, in some respects it’s a good idea to purchase commercial traps, because the required low-loss construction and weatherproofing can be tricky.

Antenna installation is more critical with trap antennas than single-banders, especially since trap resonances are set assuming a high and clear antenna and they can easily be upset if these conditions aren’t met. It’s worthwhile to mount the trap dipole as high as possible, at least 10 meters (30 feet). If possible, the antenna should be a wavelength or more away from buildings and other obstructions, especially metallic towers and utility lines. It should also be well clear of tree limbs. Plastic clothesline (the kind without a metallic core) or rope can be used to support the antenna ends; the transmission line should be run away from the antenna at right angles for as far as practical and can be stapled directly to the house siding or run through TV-type standoff insulators in the shack. Do not try to use a trap dipole in a very limited space by bending down the ends at right angles; this will usually upset trap operation and detune the antenna, as well as unpredictably distorting the radiation pattern.

If space is a problem, however, you can run the flat-top in a horizontal-V or inverted-V shape with good results; many Amateurs actually prefer the V, believing that there is some apparent gain on the higher bands, directivity is enhanced, and the angle of radiation (for DX) is lowered. Inverted-V configurations have the advantage that the antenna requires

Fig. 1 Typical 80-10 meter multiple trap antenna using four pairs of traps. Section A-A forms the 10-meter antenna; the traps at the end of this section consist of resonant inductor/capacitor circuits which isolate the rest of the antenna when operating on 10. Sections B-B, C-C, and D-D work similarly on 15, 20, and 40 meters. The full antenna resonates on the 80-meter band, but is slightly shorter than a full-size dipole due to the loading effect of the coils. Antennas can also be constructed using fewer traps, as explained in the text. The antenna should be installed at least 10 meters (30 feet) above ground; plastic clothesline or rope can be used as halyards. The trap antenna can be fed with either coaxial cable or with 72-ohm twinlead, which should be run from the antenna at right angles as far as possible; slight tension on the feedline will minimize swing.

For each band (except the lowest). For example, to cover 80, 40, and 20 meters, you would need two pairs of traps—one for 40 and another for 20. A pair is not required for 80, since the antenna itself resonates on that band. For five-band coverage from 80 through 10 meters, you would use four pairs of traps. In this scheme, the antenna is resonated by the single-band traps as a “true” half-wavelength dipole on each band, rather than as some multiple of a half-wavelength as in the simpler arrangement. Any combination of traps can be selected to make a “custom” multiple-band trap antenna, such as one covering...
only one high center mast, as the ends are sloped downward and can be suspended from convenient lower supports. There is no hard and fast rule about the angle of the V, but 90-120 degrees is normally used; it should not be less than about 75 degrees. Such arrangements are perhaps the best way to get on the air on several bands from a small city lot, yet allow for some directivity and gain which can be helpful in competing on the higher bands. Fig. 2 shows some popular V configurations.

What about antenna placement and directivity? Generally speaking, since the trap dipole is, essentially, a dipole, the signal pattern will be bi-directional and roughly doughnut shaped, with maximum signal perpendicular to the wire direction (90 degrees). Maximum radiation angle will be about 30 degrees from the horizontal. These figures assume an antenna height of about a half-wavelength, although fairly similar patterns will result if the antenna is at least an eighth to a quarter wavelength high. As a practical matter, directivity will not be pronounced on 80 meters and will be only slightly noticeable on 40. On the higher bands (20, 15, and 10), however, the antenna becomes much more directional, and optimum radiation departs from the doughnut-shaped pattern to become more of a cloverleaf, with maximum radiation lying about 30 degrees off the ends. This is especially true of single trap dipoles where the antenna operates at some multiple of a half-wavelength.

Thus, if you were to run your antenna east and west, maximum signal would be radiated southwest, northwest, northeast, and southeast. If possible, orient the antenna so that the four main lobes of the cloverleaf lie in the most favorable directions from your particular location for working DX on these bands. If you use the V or inverted-V configuration, the antenna becomes more sharply directional, with some gain apparent on the higher frequencies. Some typical radiation patterns are shown in fig. 3.

A logical extension of the trap antenna is the multi-band rotatable beam, usually in the form of a triband covering 20, 15, and 10 meters. The tribander uses the same trap principles in resonating the director and reflector elements of the beam to give the antenna its directionality, front-to-back ratio, and gain figure. Few commercial trap beam antennas are available for 80 and 40 meter operation due to their unwieldy size, but for the high-frequency DXer, the three-band trap beam is probably a "best bet" if separate, full-size beams can't be installed.

trap verticals

The trap vertical's operation is very similar to that of the trap dipole; it works on the same principle.

As I've indicated, the quarter-wave vertical is a single-band antenna. But, like the dipole, it can be put to use on odd harmonics of its resonant frequency, so you can use the same antenna on, say 40 and 15
140-METER TRAP
15-METER TRAP

fig. 4. Typical trap vertical antenna configuration. The example shown operates on four bands, 80 through 15 meters, and uses three traps; many other variations are possible. Each trap isolates the higher sections as required to simulate a resonant quarter-wavelength at the operating frequency. A good radial ground system or groundplane is essential for good efficiency in the vertical antenna.

The trap vertical is a bit more sensitive to mounting position and grounding than single-band types; trap operation is easily upset by proximity effects. The antenna should be installed well clear of buildings, rain gutters, trees, and utility wires for good operation and low SWR. A good ground is extremely important for efficient performance. This means using six to twelve radials buried at least 15 cm (6 inches) in the ground, one or two ground rods at the base of the antenna, and possibly a direct connection to the house’s cold-water piping. Without a good ground, much of the transmitter’s power will be dissipated as heat, and the ground will not provide the proper mirror effect necessary for good results. If it is impossible to get a good ground connection, or if there are too many power-absorbing objects near the antenna when mounted at ground level, you can construct an artificial ground system, known as a groundplane, using at least four wires, or radials, connected together at the base of the antenna and running away from it like the spokes of a wheel. Usually, four quarter-wavelength wires are used, but, in the case of the multiband trap vertical, these would only be a quarter-wavelength for one band. In this case, you could run several quarter-wavelength wires for the lowest band to be used, and add several shorter “random” lengths which would take care of the higher bands. Using an artificial groundplane with a trap vertical is necessary in some congested locations and when the antenna must be installed atop a high building. In any case, be sure to carefully follow the antenna manufacturer’s suggestions for mounting and grounding whenever installing a trap vertical, since the ground system is an integral part of the antenna.

You should also be aware that there is another type of multiband vertical that is technically related to the trap but is a good deal less expensive due to its much simpler mechanical construction. This is the base-loaded vertical, which uses a section of aluminum tubing usually between 4.8 and 10 meters (16 and 33 feet) in length; it has a tapped loading coil connected to it at the ground end. By making adjustments to the coil, the antenna can be resonated and matched closely on each band. However, since there are no traps, the antenna does not automatically switch bands, but requires that the operator change tap settings outdoors at the antenna when switching bands. (Remote switching arrangements are possible using relays controlled from the radio shack; these
can become quite complex, however, for five-band operation.

feeding, matching, tuning, and harmonics

The trap dipole can be fed with 50- to 75-ohm coaxial cable (using either RG-58/U or RG-59/U for moderate power levels — RG-8/U or RG-11/U if you're running a full kilowatt); the antenna impedance at resonance will usually fall in this range. The larger coax will also have the lowest loss, and, if you use a cable having a polyfoam center insulating material, it will have about 30 per cent greater power-handling capacity and a similar reduction in signal loss. If you must use a long feedline, use the larger-size cable with foam insulation.

Since the dipole antenna is a balanced, or symmetrical, type, if you are using coax feed you may want to use a 1:1 balun transformer as the center insulator; this is not absolutely necessary, but using a balun can help equalize rf flow and prevent antenna current from flowing down the outside of the coaxial cable, causing distortion of the radiation pattern and possibly TVI. Commercial baluns are small devices resembling center insulators; most of them also have a convenient hang-up hook for V configurations and a coaxial connector.

You can also use 72-ohm twinline as the lead-in; it is less expensive than coax, and, since it is balanced, it does not require the use of a balun at the antenna — although you may still want to use one at the transmitter to mate with the coax output of most transmitters and transceivers. This type of line is frequently "lossier" than coax, however, and it should not be used on long runs, say over 45 meters (150 feet), unless special low-loss, transmitting-type twinline is used.

The vertical trap antenna should be fed with 50-ohm coax, and, if the cable is to be buried, the heavier RG-8/U type is preferred. A balun is not used with the vertical since it is an "unbalanced" type of antenna and works quite well when fed directly by coax.

I should point out that any multiband antenna, trap types included, involves compromises to allow it to cover several bands. It is not possible to get a perfect match on each and every band, or from band edge to band edge. Some advertising literature leads one to believe that the trap "match" is perfect over all bands, but this is not so. In most cases, it is necessary to adjust the traps, shorten or lengthen sections of the antenna flat-top, or even change transmission line length to get uniform transmitter loading on all bands.

What is important is to get a reasonable match across all the bands that you want to use; if the feed-line isn't too long, losses will not be excessive and the antenna will work well even on the higher bands with SWRs of 4:1 or 5:1, although you may want to use an antenna tuner to facilitate loading.

When using traps, you may find that one or more bands show a higher SWR than desired. Since most commercial traps are pre-tuned and sealed, this means that you must adjust antenna section lengths to "tweak" the SWR into shape. Reyco, in its product literature, gives a simple procedure for adjusting the traps in a dipole: After constructing the antenna according to the recommended dimensions, each band is checked for SWR (starting with highest band) and the point of lowest SWR is noted. If the resonant frequency is too high, the center sections are increased slightly in length until the SWR is lowest at the desired operating frequency; if too low, the lengths are decreased. The same procedure is followed on each band, working from the high to low, adjusting the wire sections between traps. Using the one-pair type system, you can use this procedure for the two lowest bands, but adjusting the lengths for best operation on, say 80 and 40 meters may "throw out" the SWR on one of the higher bands. These effects can't be overcome, but they can be minimized by cutting the feedline to certain lengths. Doing this will not affect the true SWR, but can help the transmitter to "see" a good match. You should find that starting with coax lengths of about 13.5,
25.5, 33, and 40.5 meters (45, 85, 110, and 135 feet), or twinlead lengths of 22.5, 30, 33, and 39 meters (75, 100, 110, or 130 feet) should reduce loading problems on the higher bands; the feedline can be lengthened or shortened as necessary to get a good compromise match on all bands. It may not be possi-

ble to get a perfect match on all bands, however, and trying to get the match down from, say, 2:1 to 1:1 on each and every band can be extremely frustrating and is probably just not worth the effort in terms of improved ability to get out.

Trap verticals are tuned in similar fashion, but instead involve either sliding the aluminum element lengths, tuning the traps themselves, or adjusting a special top-hat section. In most cases, you can get good results using nothing more than your SWR bridge in adjusting commercial trap antennas, but if you build your own traps (whether for dipole or verticals) you will have to first adjust them for resonance using a grid-dip oscillator or rf noise bridge, then seal them against weather before installation. Fig. 5 shows typical trap construction.

There is a potential problem in using multiband trap antennas that should be carefully considered, and that is the problem of harmonics. While a single-band antenna will reject even harmonics of the operating frequency, that rejection just isn’t there in the trap antenna, and, in fact, any harmonics present are efficiently radiated. This is an especially critical problem when using a five-band antenna system, since harmonics of even 80-meter signals will be radiated nicely through at least ten meters; this problem has caused many unsuspecting Novices operating on 80 and 40 to receive FCC citations for radiating out-of-band signals. While most pi network output circuits have good harmonic suppression, if they are loaded too heavily (such as when trying to get a high-SWR antenna to take power), their harmonic rejection can be destroyed and second-, third-, or higher-order harmonics are passed on to the antenna and radiated.

You can make a rough check on your own harmonics by having a friend listen to your signal on harmonically related frequencies; if he is located a short distance from your home, your signal should be received very weakly, if at all, on harmonics. This is not an infallible test, however, and a more certain approach to harmonic suppression is to use an antenna coupler or tuner in the transmission line between your transmitter and the antenna. The tuner will add a great deal of selectivity to the antenna system, causing harmonics to be reduced to an acceptable level. In addition, the tuner also helps the transmitter to “see” a near-perfect 50- to 75-ohm match and thereby load more consistently from band to band. This is a real plus when operating with a moderately high SWR on the transmission line, frequently the case when using multiband antennas. In addition if the coupler is installed so as to be in the circuit on receive (automatically the case when using a transceiver), it will add a good deal of front-end receiving selectivity as well, helping to prevent i-f image signals and very strong local stations on other bands from coming through and cross-modulating the receiver’s front end.

Not to be overlooked is the increased potential for TVI (television interference) when using multiband antennas. Certain conditions may cause the antenna to radiate vhf harmonics of your high-frequency signal, particularly on the lower TV channels (2 through 6). The short, well-matched transmission line between the transmitter and antenna coupler or tuner makes an ideal spot to install a lowpass filter, as shown in fig. 6; placing it there prevents any possible danger to the filter from high SWRs or upsetting its operation by SWR mismatches. The use of a good lowpass filter (which in itself can provide 60 dB or more harmonic attenuation) in connection with an antenna tuner should keep you out of trouble with both the FCC and your neighbors.

summary

Trap antennas, both horizontals and verticals, offer much to the ham who has space limitations and
cannot erect separate antennas for each band. Traps are capable of excellent performance if installed and adjusted properly, but one should keep in mind that certain trade-offs are involved in their design; this fact must be recognized when interpreting their performance.

fig. 6. Suggested multiband trap antenna system feeding arrangement. Due to the inherent nature of trap and other multiband antennas, harmonics are easily radiated. For this reason, you should use a lowpass filter and antenna coupler to suppress these harmonics. The antenna relay shown is required only if a transmitter is used, that is, if you are not using a transceiver. If you use a separate receiver, by placing the antenna relay as shown the antenna coupler is used to good advantage on receiving as well. While either 72-ohm twinlead or coax may be used to feed the trap antenna, coax is usually the best choice. In adjusting the antenna length, move the SWR bridge to the antenna side of the coupler; once the adjustments are made, place the bridge as shown for routine tuneup.

Trap antennas can take the place of five or more individual antennas. Remember that your trap is doing a big job for you, so install and treat it right. If you do, you can expect excellent performance from it.

bibliography

ham radio
curing frequency drift

in the Swan 350 transceiver

A frequency counter, some deliberation, and a handful of capacitors will help tame frequency drift in this popular rig

I recently undertook the task of reducing the more than 1-kHz frequency drift in K6OWA's Swan 350C transceiver. Since then I've had several queries from others who own these reliable rigs. The availability of a frequency counter made this project easy to implement. This article summarizes the techniques I used so that other Swan 350 owners can reduce frequency drift to a tolerable level. The final drift (or lack of it) achieved by this electronic surgery depends on your determination and patience.

analysis

Most VFOs drift to a lower frequency. However, K6OWA's Swan 350 had a positive frequency drift. Most drift occurs in the VFO coil, caused by changes in coil dimensions with temperature. Drift in the Swan 350 is likely aggravated by the seven tubes clustered around the VFO box. Lack of ventilation traps the heat inside, thus extending the time before drift levels off. On-off cycling over a period of years will gradually stretch the coil wire to the point where it will not return to normal — something like the "set" of a fishing pole. Compensation originally found adequate will no longer keep the drift within reason.

It's interesting to compare specifications of maximum frequency drift in present-day rigs. Several well-known units list 1 kHz, some less than 300 Hz, and a very few 100 Hz. My TS-520, rated at 2-kHz, came out with 75 Hz. Both the Alda 103 and the Swan 100MX are rated at less than 100 Hz. The ARRL's Amateur Radio Handbook (1976), on pages 166 and 169, shows homebrew VFOs. One stabilizes in 1½ minutes at 15 Hz, while the other levels off in only 30 seconds with a 25-Hz drift. Truly amazing.

mechanical considerations

Since mechanical ruggedness is synonymous with low frequency drift, begin by tightening all nuts and bolts around and in the VFO compartment, including the five screws holding the band coils to the chassis. In some cases the VFO circuit board is underneath the chassis and not in the can. Then apply Lubriplate to the bandswitch bearings to reduce torsion on
these parts. Thoroughly clean all eight wafers with contact cleaner and remove lint and dirt from the variable cap plates with a pipe cleaner.

compensation

The next step, compensation, will be facilitated by the use of a 7- or 8-digit frequency counter. Absolute accuracy isn’t imperative because the counter records approximate drift only. Begin with the chassis lying on its final-amplifier side, and connect a short piece of wire to pin 1 of the VFO amplifier, V1, (see your schematic). This will permit attachment of a counter probe with less chance of short circuits to other leads.

Set the bandswitch to 20M and the dial to 14,200 kHz. When the set is turned on, the counter will read roughly 8700 kHz, as noted on page 14 of the Swan manual. During the first run, connect a voltmeter to read the –10 volt bus from zener diode 1N2974. If this voltage is steady during a 45-minute test the zener need not be replaced. (A faulty diode will cause shift, however.) Leave the cover on the VFO box to simulate normal conditions. Have a sheet of paper ready to log data each five minutes from the moment the set is turned on. At least 30 minutes should elapse — certainly long enough to see a leveling off or maximum drift.

Turn off the Swan 350 and let it cool for the next run. Meanwhile make a graph of the first run as in fig. 2, curve A. K6OWA’s Swan 350 was still increasing in frequency after 45 minutes (past 1200 Hz). If experience convinces you that drift occurs on only one band, refer to your schematic and fig. 1, noting capacitors 1711, 1713, 1718, 1720, and 1723. These negative temperature coefficient caps compensate each band, the idea being that each coil needs individual compensation, and C1709 in series with the variable cap takes care of things in general. Most likely this won’t be the case — cap C1709 will be removed and replaced, thereby compensating all bands.

You’re now ready to make a substitution for C1709. Remove the VFO cover plate, probe, and voltmeter leads. Unsolder the rf and dc leads from beneath the chassis. (Two nuts and washers under the chassis and two nuts, washers, and two spacers hold the PC board to the chassis.) With the Swan 350 lying on its side, remove the PC board. This will position the PC board horizontally and will make board removal and replacement easier because the hardware won’t get lost in the equipment innards. The spacers especially have a nasty habit of getting lost if removed with the board in a vertical position. Unsolder C1709 at the variable cap (C1706) and carefully pull the PC board from the compartment.

![fig. 1. Partial schematic of the Swan 350 transceiver showing the VFO section. Capacitor C1709 is the subject of the modifications in this article.](image)

compensating capacitors

Capacitor C1709 is really an unknown and is suspect. Discard it since it’s incapable of compensating for the inherent frequency drift. The Swan manual specifies C1709 as a 22-pF capacitor with an N220 temperature coefficient, meaning 220 parts per million. (Capacitor C1709 in K6OWA’s rig was an N750, obviously tailored to compensate that unit.)

A second trial run must now be made. I chose a parallel combination of 10-pF/N150 and 12-pF/NPO. The N value of this new combination is

\[
N_{eq} = \frac{10}{22} \times 150 = N68
\]

Put everything back, tighten the board securely, reconnect the counter, and begin anew with another run.

Fig. 2, curve C, shows a negative drift (more than 300 Hz). The next, and you hope final, attempt must
Capacitor C1709 must be tailored for individual cases. Naturally, any long-term drift will approach zero. (A): Frequency drift of the as-built Swan 350 transceiver extrapolated to 1500 Hz after a warm-up period of one hour. C1709 was a 22-pF/N150 compensating capacitor. (B): The third test run, using an N120 capacitor for C1709. The measured frequency drift is 105 Hz after 35 minutes from a cold start. (C): A trial run using substitute N68 capacitor for C1709. The measured frequency drift is 335 Hz after 30 minutes from a cold start.

have C1709 with an N between 68 and 150. I tried a 12-pF/N220 and a 10-pF/NPO resulting in N120.

Out comes the oscillator board; again watch out you don’t lose hardware. Replace the VFO top cover and connect the counter after soldering the N120 combination in place. The set will have cooled off sufficiently during this process for the next run to be from a cold start. Somewhere in this operation you’ll take out time for lunch, so let the Swan 350 cool off — too much time and effort will have been expended to take chances on a set that hasn’t reached room temperature.

The last run will perhaps be what you’ll settle for in performance. Ralph, K6OWA, and I were quite elated when we finished the third run and plotted curve B (fig. 2, ending up with frequency drift close to 100 Hz. Any set that stabilizes in 30 minutes or so with that amount of drift is a pleasure to operate. This Swan 350 certainly takes no back seat to many new sets off the assembly line. Perhaps at some convenient time, another trial could be made using a 12-pF/NPO and 10-pF/N220 combination:

$$N_{eq} = \frac{10}{22} \times 220 = N100$$

Mathematically, any VFO can be compensated to achieve no drift. This particular Swan 350 might need an N105 or perhaps an N95; this must be determined experimentally. Generally you must weigh the advantages gained with close-to-zero drift and the effort expended.

When you’ve made mods to satisfy your standards, you must refer to the Swan manual, page 14. With the counter reading the VFO frequency, adjust the trimmers for each band to correspond with the dial-frequency/oscillator-frequency table. Follow manual instructions.

obtaining parts

If you live near an electronics emporium procurement of capacitors to conduct the tests will be simple; if you’re on a Pacific atoll, you must provide yourself with enough NEG caps to experiment with. In our case, it seemed logical to use half of the 22-pF total value in an NPO (thus the 10- or 12-pF values), while the other half can be used with negative N values to suit. One of each of N220, N150, and N110 would be a starter and would probably bring the frequency drift within reason. This evaluation must be made on the second trial with a new cap value.

The direction of drift would dictate whether higher or lower N values will work. Two or three attempts should give a good idea of the necessary value. If a supplier has a poor selection, combinations other than 10 pF and 12 pF could be tried. Eight pF and 14 pF could be combined in a ratio that might do the job.

closing remarks

The technique outlined applies to any VFO, tube or transistor, in which an increase in temperature causes a frequency change. Getting rid of the heat in a Swan 350 is impossible; the set is already quite well ventilated, so an extra muffin-pan blower won’t suffice! Thermal insulation of the outside VFO walls from the heat of adjacent tubes might help. However, I feel that the lack of circulation in the VFO itself is the cause of excessive frequency drift. A perforated chassis and sidewalls would allow heat to escape, whereas the Swan 350s, as designed, trap heat inside the box.

Further suggestions on drift problems are covered in many articles in the Amateur Radio literature: The ARRL handbooks and the new Solid State Basics from ARRL also elaborate on design of VFOs to minimize frequency drift.

acknowledgment

Neither K6OWA nor I have a frequency counter, so credit must be given to Reed Craven, WB6BFK, for the use of his counter, thus making this interesting project possible.
The CT-50 is a versatile and precision frequency counter which will measure frequencies to 60 MHz and up to 600 MHz with the CT-600 option. Large Scale Integration, CMOS circuitry and solid state display technology have enabled this counter to match performance found in units selling for over three times as much. Low power consumption (typical 300-400 mW for the CT-50 with optional battery operation). All CT-50 display options and input signals are correctly identified and may be output to an accurate frequency generator. High resolution (5 mHz) is made possible by a newly designed, high-precision digital-to-analog converter. The CT-50 has a precision 6 digit LED display. RF shielded all metal case, easy pushbutton operation, automatic decimal point, fully socketed IC chips and input protection for up to 30V peak output with no overload. All of these features are housed in a sturdy, lightweight, easy to use assembly. Clear step by step instructions guide you to the finished unit you can rely on.

Order your today!

CT-50 Standard Counter
CT-50WT 60 MHz counter, wired and tested $79.95
CT-600 600 MHz scaler option add...

CAR CLOCK

The UN-KIT only 5 solder connections.
Here's a super looking, rugged and accurate car clock which is a snap to build and install. Clock movement is completely assembled - you only solder 5 wires and install screws and you have a high quality, reliable display. Display is bright green with automatic brightness control effect of displaying the time of day or night. Comes in a satin finish anodized aluminum case which can be attached to any 5 different ways using 2 sided tape. Choice of black or gold color tape.

DC-3 kit 12 hour format $22.95
DC-3 wired and tested $29.95
110V AC adapter $5.95

Under dash car clock
12-24 hour clock in a beautiful transom case. Jumbo RED LEDs, high accuracy (1 min/mo), easy 3 wire hook-up, display blank with ignition, and superb instructions. Optional dimmer automatically adjusts display to ambient light level.

DC-1 clock with bracket $27.95
DC-1 dimmer, adapter $2.50

PRESCALER

Extend the range of your counter to 600 MHz. Works when connected to a 12 volt transistor preamp to give super sens. Typically 20mV for 100 kHz or 100mV for 10 MHz.

PS-1B, 600 MHz prescaler $35.99
PS-1BK, 600 MHz prescaler $39.99

VIDEO MODULATOR KIT

Converts any TV to monitor Super stable, tunable over ch. 3-6. Runs on 5.15V battery. For use in the market.

Complete kit $12.95

TONE CODER

A complete tone coder on a single PC board. Features 400-5000 Hz adjustable range via 20 turn pot voltage regulation. 567 IC for output. Also available as a standalone unit.

Complete kit $12.95

WHISPER LIGHT KIT

A great attention getter which alternately flashes 2 jumbo LEDs. Use for side windows and panel lights, anything! Runs on 3 to 5V.

Complete kit $2.95

LED Blinky KIT

A great attention getter which alternately flashes 2 jumbo LEDs. Use for side windows and panel lights, anything! Runs on 3 to 5V.

Complete kit $2.95

OP-AMP SPECIAL

741 mini dip $14.95
741 voltage follower $12.95
741 op-amp $10.95

FM MINI MIKE KIT

A super high performance FM wireless mike kit. Transmits a stable signal up to 300 yards with exceptional audio quality by means of its built in ferrite core mike. FM receiver is included in this complete kit, no extras needed, and it takes only 1-2 hours to assemble. Your choice of three colors: silver, gold, or bronze. Blue (specified) $12.95

CLOCK KITS

Our Best Seller your Best Deal.

Try your hand at building the finest looking clock on the market. This satin finished aluminum case looks great anywhere. While 4" LED height provides a highly readable display. This complete kit has extra needed, and it takes only 1-2 hours to assemble. $22.95

FM WIRELESS MIKE KIT

Transmits up to 300' to any FM Broadcast radio. Uses any type of mike (Runs on 3 to 5V). Type FM-2 has added sensitivity and keying stage.

FM-2 kit $29.95
FM-2 kit $49.95

COLOR ORGAN/MUSIC LIGHTS

See music come alive! 3 different lights flicker with music. One light for each color. One color per channel. Provides up to 300W. Great for parties, band music, etc. Complete kit $17.95

SUPER SLIGHT

A super sensitive "slight" which will trigger up to 1000" on a dot line. A great compliment to your sound system. $2.95

POWER SUPPLY KIT

Complete triple regulated power supply provides voltage regulation at 3.3V, 6V, and 12V. Great for all types of equipment.

Complete kit $19.95

SMALL CONTROLLERS

40512 $5.95
40516 $5.95
40518 $5.95
40519 $5.95
40521 $5.95
40522 $5.95
40523 $5.95

STACKERS

2220 $5.95
2221 $5.95
2222 $5.95
2223 $5.95
2224 $5.95
2225 $5.95
2226 $5.95

WHISPER LIGHT KIT

A great attention getter which alternately flashes 2 jumbo LEDs. Use for side windows and panel lights, anything! Runs on 3 to 5V.

Complete kit $2.95

SIREN KIT

Produces upward and downward wave characteristics of a siren. Produces 35 volts at 1A and 24 VCT.

Complete kit $5.95

PHONE ORDERS CALL (716) 271-8487

MORE DETAILS? CHECK OFF PAGE 110...
Should the FCC regulations that combine F3 and A3 emissions be changed? Here’s one Amateur’s viewpoint

Casual observers of Amateur Radio practice have found that operators seldom use more than three types of emission and frequency bands, even though Amateurs are allowed as many as thirteen emission types on seven bands, twelve types on six bands, eleven types on two bands, six types on four bands, five types on one band, and two types on one band (160 meters). Most Amateurs use two types of emission: CW (type A1) and a-m or SSB phone (type A3), on several of the bands listed and largely ignore frequency and phase modulation (type F3). Mobile operators, however, make good use of fm on the vhf and uhf Amateur bands. Fixed-station operators have little use for fm on the high-frequency (3-30 MHz) bands, even though A3 and F3 emissions are listed together on virtually all subbands except 160 meters.1

amateur fm

The disuse of fm on the 15-, 20-, 40-, and 80-meter bands is because of deterrents such as lack of suitable transmitters and receivers and the FCC’s bandwidth limitation. Paragraph 97.65c, under the heading of Emission Limitations, reads: “On frequencies below 29.0 MHz and between 50.1 and 52.5 MHz, the bandwidth of an F3 emission (frequency or phase modulation) shall not exceed that of an A3 emission having the same audio characteristics; and the purity and stability of emissions shall comply with the requirements of 97.731.” This paragraph deserves special attention.

Amplitude modulation contains only one pair of sidebands. The audio-frequency limit for voice communications is nominally 3 kHz; therefore, the a-m bandwidth can’t exceed 6 kHz. However, fm contains one or more pairs of sidebands, equally spaced from the carrier frequency or adjacent sidebands. Therefore the fm bandwidth can’t be less than, and may greatly exceed, the a-m bandwidth.

We note that FCC specifies fm bandwidth, not frequency deviation, which is not proportional, although some Amateur publications1 give a simple rule of thumb that fm bandwidth equals twice the maximum frequency deviation plus the maximum audio frequency. One book1 states that this rule of thumb doesn’t hold for narrowband fm, and defines sliver-band, narrowband, and wideband deviations as 2.5, 5, and 15 kHz, for which bandwidths are 6, 13, and 33 kHz approximately. The last two of these bandwidths are far below accurate values of 16, 22, and 48 kHz, respectively, which further analysis has proved.

bandwidth

Bandwidth is a complex function of deviation and audio frequency, not of deviation alone. It depends on a factor known as modulation index or deviation ratio — the ratio of maximum deviation to maximum audio frequency, which is a pure number. There’s no simple relationship, such as a direct proportion between bandwidth and deviation, although bandwidth generally increases with deviation in a nonlinear manner for a fixed audio frequency. An increase in audio amplitude at any audio frequency increases the deviation, the number of sideband pairs, and the bandwidth. Also, an increase in audio frequency at any given deviation increases the spacing between the

By Carleton F. Maylott, W2YE, 279 Cadman Drive, Williamsville, New York 14221
sidebands, which increases the bandwidth. The overall effect of changes in audio amplitude and frequency on bandwidth is often hard to evaluate, as, for example, the case of complex speech waves where the amplitude of the various frequency components varies somewhat inversely with the frequency.2

development

The fact that bandwidth is not a function of deviation alone is shown by the following example. Assume two cases with the same deviation of 10 kHz but different audio frequencies of 5 and 10 kHz respectively. In the first case, four pairs of significant sidebands (at least 1 per cent of carrier amplitude) are 5 kHz apart, so the bandwidth is $4 \times 2 \times 5$ kHz, or 40 kHz. In the second case, only three pairs of significant sidebands occur but are twice as far apart, so the bandwidth is greater ($3 \times 2 \times 10$ kHz). Since $60/40 = 1.5$, it appears that bandwidth is not in direct proportion to audio frequency for a fixed deviation.3

In fm broadcasting, the maximum permissible deviation is 75 kHz and the maximum audio frequency (for high-fidelity music) is 15 kHz, so the modulation index might approach 5 (75/15) if both values occur simultaneously. Similarly, in Amateur wideband fm, the deviation may be 15 kHz and the audio frequency may be limited to 3 kHz (for speech only); so the same modulation index would occur. A ratio of five signifies eight sideband pairs; hence bandwidths of 240 (8 x 2 x 15 kHz), or 48 kHz respectively are indicated. These values are extremes, which are not realized in practice because complex music and speech waves have smaller amplitudes at the higher frequencies. So less deviation and fewer sideband pairs occur than the indicated values.

narrow-bandwidth case

If we consider a narrow bandwidth of 6 kHz with a 3-kHz audio-frequency limit, as in Amateur a-m, there can be only one pair of significant fm sidebands. This corresponds to a modulation index of no more than 0.4 and a deviation of no more than 1.2 kHz ($1.2/3.0 = 0.4$). Under these conditions, the fm carrier retains 96 per cent of its unmodulated amplitude, and the sidebands have only 4 per cent of the amplitude they would have at a modulation index of 2.4 (or 5.5) — the ideal condition wherein all carrier power is converted to sideband power.

If the FCC had specified a 3-kHz deviation limit instead of an a-m bandwidth limit, a better condition would prevail. A modulation index of unity (3/3) would yield three pairs of sidebands, 18 kHz bandwidth ($3 \times 2 \times 3$ kHz), 76.5 per cent carrier amplitude, and 23.5 per cent sideband amplitude.4

Even the latter imaginary case wouldn't offer much of an advantage over the former real case, because power is proportional to the square of the amplitude (voltage or current), hence the sideband power is only 5.5 per cent (100×0.235^2) of the ideal power.

From this discussion it follows that Amateurs can't make much use of narrowband fm wherein the bandwidth may not exceed 6 kHz. Accordingly, the FCC listing of type F3 along with type A3 emissions on bands below 29.0 MHz is misleading and serves no useful purpose, so it should be dropped. On the other hand, if a deviation of 5 kHz or 22 kHz bandwidth were permitted on certain Amateur bands, as on certain commercial frequencies, fm operation would be quite feasible, because the carrier amplitude would be only 41 per cent, and the total sideband amplitude would be 59 per cent.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
M & %F & P & ΔF & (BW) \\
\hline
0.4 & 100:96 & 1 & 0:1.2 & 0:6 \\
0.5 & 94 & 2 & 1.5 & 12 \\
0.83 & 83 & 3 & 2.5 & 16 \\
1.00 & 77 & 4 & 3.0 & 18 \\
1.67 & 41 & 5 & 5.0 & 22 \\
2.00 & 22 & 6 & 6.0 & 24 \\
2.40 & 0 & 7 & 7.2 & 30 \\
3.00 & 26 & 6 & 9.0 & 36 \\
3.33 & 34 & 8 & 10.0 & 38 \\
4.00 & 40 & 7 & 12.0 & 42 \\
5.00 & 18 & 8 & 15.0 & 48 \\
5.50 & 0 & 9 & 16.5 & 51 \\
6.00 & 15 & 9 & 18.0 & 54 \\
6.67 & 25 & 10 & 20.0 & 60 \\
7.00 & 30 & 11 & 21.0 & 66 \\
\hline
\end{tabular}
\caption{Amateur fm characteristics.}
\end{table}

Notes:

- f = 3 kHz, fixed
- $M = \Delta F/1 = \Delta F/3$, so $\Delta F = 3M$
- $%F = \text{carrier amplitude in per cent from reference 2}$
- $P = \text{pairs of sidebands of 1\% minimum amplitude (reference 2)}$
- $\Delta F = \text{deviation (±)} = f_M + 3M$
- $BW = \text{bandwidth} - 2P$
- $BW = 6P$

(BW ranges from 1.4 to 2.0 times rule-of-thumb bandwidth, 2 ΔF + 3 and 1.5 to 4.0 times 2 ΔF.)

These points may be emphasized by reference to table 1, which may be converted to a series of curves if desired.

eferences

ham radio
Adjustable to Any Desired Speed

Now available from Palomar Engineers — the new Electronic IC KEYER. Highly prized by professional operators because it is EASIER, QUICKER, and MORE ACCURATE.

It transmits with amazing ease CLEAR, CLEAN-CUT signals at any desired speed. Saves the arm. Prevents cramp, and enables anyone to send with the skill of an expert.

SPECIAL RADIO MODEL

Every amateur and licensed operator should know how to send with the IC KEYER. EASY TO LEARN. Sent anywhere on receipt of price. Free brochure sent on request.

Send check or money order. IC KEYER $97.50 in U.S. and Canada. Add $3.00 shipping/handling. Add sales tax in California.

Fully guaranteed by the world's oldest manufacturer of electronic keys. ORDER YOURS NOW!

Palomar Engineers
Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343
Temperature controlled design for "key-down" operation over a wide frequency range. Newly engineered for coverage of any new or expanded hf amateur bands within FCC amplifier rules. Also features wide frequency coverage for MARS, and other services authorized for this type of amplifier.

- 2 kW PEP, 1 kW cw, RTTY, SSTV operation — all modes, full rated input, continuous duty cycle.
- 160-10" meter amateur band coverage, plus expanded ranges for any future hf band expansions or additions within FCC rules. These ranges also include increased coverage for MARS, embassy, government, or other such services.
- The Drake L-7 utilizes a pair of Eimac 3-500 Z triodes for rugged use, and lower replacement cost compared to equivalent ceramic types. Tubes are included.
- Accurate built-in rf wattmeter, with forward/reverse readings, is switch selected. Calibrated 300/3000 watt scales.
- Temperature controlled two speed fan is a high volume low noise type and offers optimum cooling.
- Adjustable exciter agc feedback circuitry permits drive power to be automatically controlled at proper levels to prevent peak clipping and cw overdrive. Front panel control.
- By-pass switching is included for straight through, low power operation without having to turn off amplifier.
- Bandpass tuned input circuitry for low distortion and 50 ohm input impedance.
- Amplifier is comprised of two units — rf deck for desk top and separate power supply.
- Operates from 120/240 V ac, 50/60 Hz primary line voltage.

Prices and specifications subject to change without notice or obligation.

Model 1528 Drake L-7 Linear Amplifier, Amateur Net ... $1099.00

For a FREE Drake Full Line Catalog contact your favorite Drake Dealer.
high-current regulated dc power supply

A high-current, regulated power supply incorporating rf protection, current limiting, and over-voltage protection

The present popularity of the two-meter fm band has attracted many Amateurs to that portion of the spectrum. Many hams use two-meter rigs in double-duty service, both in mobile and fixed-station applications. In either case, 12 Vdc is required for input power. For mobile use, the automotive electrical system provides input power; however, in fixed station use the rig requires a power supply which converts ac power to nominal 12 Vdc with current capacities ranging from about 3 to 10 amperes. Such a power supply should contain the following features:

1. Voltage Regulation — For steady-state regulation, the output voltage should remain within 1 per cent of the desired value over the full range of output current capability. Instantaneous load changes, or dynamic regulation, commonly encountered when keying or unkeying the transmitter, should not produce excessive voltage overshoot or undershoot. Additionally, the settling time required for return to steady-state regulation conditions should be minimal, on the order of milliseconds.

2. Current Limiting — The power supply should be protected against excessive output current. The current should be automatically limited to a preselected safe value.

3. High-voltage shutdown — In case of a power supply fault, which would apply unregulated dc to the rig, a protection circuit is required to disable the power supply output within milliseconds after fault condition detection. The radio being powered is thus protected against excessively high voltages which could permanently damage semiconductors or other components.

4. Rf protection — The voltage regulation and other control circuits should be rf bypassed to eliminate the possibility of voltage instability or other adverse effects caused by strong rf fields.

The power supply described in this article incorporates the outlined features. By using the specified components you can construct a power supply which is totally adequate for 30- or 40-watt transmitters.

circuit description

This power supply uses a standard series-pass circuit controlled by a 723 monolithic IC regulator. The high-voltage shutdown circuit is controlled by a μA741 operational amplifier. All regulation and control circuits are contained on one circuit card, compatible with a 15-contact edge connector.

The power circuit consists of a transformer, bridge rectifier, pi-section filter, and series-pass transistors. This is a standard circuit commonly used in many regulated power supplies.

Operator controls consist of an ON/OFF toggle switch, a pushbutton switch to reset the high-voltage shutdown circuit, and appropriate indicators.

By Glen Thome, N8AKS, 917 Delaware Avenue, Elyria, Ohio 44035
fig. 1. Schematic diagram of the chassis-mounted components. CR1 is a 15-amp, 50-PRV bridge rectifier; CR2 a 1.5-amp, 200-PRV diode (1N4818); and CR3 a 1.5-amp, 600-PRV silicon diode (1N4822). K1, a 4pdt, 24-VDC relay, is available from Potter and Brumfield as type KHP17D11 or Allied Control type T163X-147. The choke, L1, is a Stancor C-2688 with a 10-mH, 12.5-amp rating. The rf choke, L2, is wound with fifteen turns of number 14 AWG (1.6-mm) stranded insulated wire on a Genelex G49S/191 toroid. The power transformer, manufactured by Triad (F-79U), supplies 24 Vac at 10 amps. The bridge rectifier, CR1, and the pass transistors, Q1 through Q3, are mounted on finned heatsinks on the rear of the enclosure. For CR1, use Termalloy part 6169, and for the pass transistors part 6423.

The panel-mounted meters allow the operator to monitor output voltage and current. Voltage and shutdown level adjustment potentiometers on the circuit card are accessible through the front panel.

Power Circuit. The power circuit handles ac input, rectification, filtering, and dc-output functions (see fig. 1). The ac-input circuit contains ON/OFF switch S1, input fuse, and power transformer T1 as major functional components. The indicator assembly, connected across the primary of T1, illuminates when input power is applied. C1A and C1B provide noise and rf suppression at the primary of T1. The relay contacts of K1 are normally closed to allow current flow through the primary of T1. If the high voltage shutdown circuit activates at any time, the contacts of K1 open to interrupt power to T1, thereby protecting the dc load from high output voltage.

CR1 rectifies the low-voltage ac supplied by the secondary winding of T1. The resultant pulsating dc is filtered by C2, C3, and L1. The filtered, unregulated dc supplies power to components on the circuit card and is applied to the collectors of series-pass transistors Q1-Q3.

The series-pass transistors perform the regulation function in the power circuit, under control of the regulator circuit. Under changing line and load conditions, the drive signal applied to the base-emitter circuit of transistors Q1-Q3 varies automatically. The changing drive signal serves to increase or decrease the collector-emitter voltage on Q1-Q3 as output voltage, output load, and ac input voltage levels dictate. The result of automatically varying the collector-emitter voltage on Q1-Q3 is to hold the emitter output voltage at a nearly constant level. This emitter output voltage is used as the regulated dc output.
The dc output circuits comprise metering, fusing, and suppression functions. A dc ammeter and voltmeter provide output current and voltage level monitoring capability. L2, wound on a toroid core, serves as an rf choke to decouple the power supply from any stray rf which may appear on the dc leads. C5A and C5B provide further rf suppression at the power supply output terminals. CR3 and C4 suppress voltage spikes generated by instantaneous load changes that could falsely trigger the high-voltage shutdown circuit.

Control Circuits. The control circuits, located on the circuit card (see fig. 2), comprise voltage regulation, current limiting, and high-voltage shutdown circuits. Various functions of the control circuits are described as follows.

Voltage regulation and current limiting functions are performed by U1, a monolithic IC voltage regulator. A voltage divider, R2, R3, and R4, is essentially connected across the power supply output. The setting of R3 primarily determines supply output voltage. R5 and R6 provide temperature compensation for U1, with C2 and C4 providing rf bypassing. Operating power for U1 is derived from the unregulated dc through isolation diode CRI, while C3 provides input power filtering. The output of U1 is applied to driver transistor Q1 through the normally closed contacts of K1. Q1 essentially increases the current-handling capability of U1. The output of Q1, as derived from the emitter circuit, drives the series-pass transistors in the power circuit.

The current limiting point is determined by the value of R6. When a voltage drop of 0.6 volt appears across R6, U1 begins current-limiting action.

The high-voltage shutdown circuit is composed of the comparator and relay-driver circuits. U2 is used as a comparator. The reference input of approximately 7.3 volts is derived through R12, CR2, and CR3. CR2 provides a stable, regulated voltage for the reference input applied to the inverting input of U2. CR3, in series with CR2, provides temperature compensation for the comparator circuit. The output voltage of the power supply is sampled in a voltage divider composed of R9, R10, and R11. A portion of the sampled output voltage is applied to the noninverting input of U2 through the wiper contact of R10. During normal operation, the reference voltage at the inverting input of U2 is higher than the sampled voltage at the noninverting input; therefore, the output of U2 is low and Q2 is biased into cutoff. In the event power supply output voltage rises to a sufficiently high level, the sampled voltage becomes higher than the reference voltage. The output of U2 changes to a high level, which biases Q2 into conduction. The resulting voltage developed across R17 triggers CR6 through steering diode CR7. When CR6 is triggered into conduction, K1 in the power circuit and K1 on the circuit card are energized and the following actions occur:

1. The output of U1 is disconnected from Q1, and the base of Q1 is grounded to drive it and the series-pass transistors into cutoff.

2. Power is applied to an LED, giving visual indication of a high-voltage shutdown condition.

fig. 2. Schematic diagram of the voltage regulator and high-voltage shutdown circuits. CR2 is a 6.8-volt, 1-watt zener diode; CR3 is a 1N4003 (1 amp, 400 PRV); CR4 is another zener (15 volts, 1 watt); and CR6, the SCR, is rated at 4 amps, 200 PRV (C106B). The relay, K1, is the same type of relay used in the chassis-mounted components. The circuit card accepts a Potter and Brumfield relay socket, type 9KH2, for a KHP17D11 relay. Except as marked, all resistors are 10 per cent tolerance, $\frac{1}{2}$ watt.
View of the author's power supply. The capped access holes, in the lower righthand corner of the front panel, allow access to the high voltage shutdown level and voltage adjustment controls mounted on the circuit board.

3. The primary circuit of the power transformer is opened to remove input power from the supply.

The approximate time from detection of a high voltage condition to supply shutdown is 3 milliseconds.

construction

Parts placement and general layout of the power supply are not critical; however, standard construction techniques and practices should be used when building the supply. Particular care should be taken in one area — lead lengths of rf bypass and decoupling components on the output terminals should be as short as possible. Additionally, meters should not be located near the power transformer or filter choke.

The particular construction technique chosen is at the discretion of the builder, but the power supply should be totally enclosed and shielded when assembly is complete. The supply shown in the accompanying photographs was built in a homemade cabinet to reduce construction cost.

Adequate ventilation must be provided for the power semiconductors, especially the series-pass transistors. The heatsinks specified in the parts list are adequate to handle device dissipation, but heatsinks of smaller size are not recommended. The series-pass transistor heatsink should be mounted outside of the power supply cabinet, on the rear panel, to ensure adequate ventilation. A thin coating of silicone grease, or other suitable thermal joint compound, must be applied to the mounting surfaces of all power semiconductors and insulating washers.

A circuit card pattern for the control circuits is shown in fig. 3. Pads are provided to make the circuit card compatible with a standard 15-contact edge connector; however, the circuit card can be permanently mounted and hardwired into the complete circuit.
initial startup and adjustment
1. Before initial power supply startup, verify that all wiring is correct. If a tapped power transformer is used, ensure that the secondary voltage is no higher than 24 Vac.

2. On the regulator circuit card, adjust R3 and R10 fully clockwise.

3. Close S1 to start the power supply. Output voltage should be 10 Vdc or slightly less.

4. Adjust R3 on the regulator circuit card to 15 Vdc with no load at the output terminals. Turning the adjustment screw counterclockwise increases output voltage.

5. Slowly turn the adjustment screw of potentiometer R10 counterclockwise until the high voltage shutdown relays close. The LED should illuminate at this time, and supply output voltage should drop to zero.

6. Adjust R3 one turn clockwise, then press S2 to reset the shutdown circuits. Output voltage should now be present at the output terminals.

7. Slowly adjust R3 counterclockwise while noting the voltage at which the shutdown relays close. This voltage should be approximately 15 Vdc; if not, adjust R10 as necessary. The shutdown level can generally be adjusted to any desired level within the range of 13-16 Vdc. Individual operating requirements will determine the exact level.

8. Repeat Steps 6 and 7 if necessary to obtain the desired high voltage shutdown level.

9. Adjust R3 one or two turns clockwise, then reset the shutdown circuits by pressing S2.

10. Adjust R3 for the desired power supply output voltage. Adjustment is now complete.

ham radio
432 Mhz Linear Transverter

UP YOUR FREQUENCY!

- EXTRA RANGE (434-436 Mhz) for Satellite operation.
- 10 Watts RMS output power.
- Simple Frequency Range Selection Using Toggle Switches.
- Highly Stable Regulator Controlled Crystal Oscillator Stages
- 30 dB Receiver Gain.
- Better than 3.0 dB Noise Figure.
- Antenna Changeover Achieved by Low Loss Pin Diode Switch.
- 50 Mhz and 144 Mhz I.F.'s Available.

MMT432/28-S — PRICE: $329.95 INCLUDING SHIPPING

144 Mhz Linear Transverter

Join the Fun on 2 Meter Sideband — using your 28Mhz Transceiver.

- 10 WATTS RMS OUTPUT POWER
- 30dB RECEIVER GAIN
- BETTER THAN 2.5dB NOISE FIGURE
- 50 Mhz I.F. AVAILABLE

MMT 144/28 — PRICE: $259.95 INCLUDING SHIPPING

432 Mhz LINEAR AMPLIFIER

ALL MODE

100 WATTS OUTPUT

- 100% DUTY CYCLE RATED
- RFVOX
- 10dB MINIMUM GAIN
- FULLY PROTECTED VSWR, OVERHEATING, REVERSE POLARITY

MML432/100 — PRICE: $449.95 INCLUDING SHIPPING

432-436 Dual Range Receiving Converter

- OSCAR, MODE J RECEPTION
- 30dB GAIN
- BETTER THAN 3.0dB NOISE FIGURE
- I.F.'s AVAILABLE: 28-30Mhz, 144-146Mhz

MMC 432/28-S — PRICE: $95.95 INCLUDING SHIPPING

GUARANTEE

ALL MICROWAVE MODULES PRODUCTS ARE GUARANTEED FOR 1 YEAR. IN ADDITION, THEY MAY BE RETURNED WITHIN 10 DAYS FOR A FULL REFUND IF YOU ARE NOT SATISFIED FOR ANY REASON.

TEXAS RF DISTRIBUTORS, INC.

JOE - WA5HNK
CARL - W5UPR

TEXAS RF DISTRIBUTORS IS THE EXCLUSIVE IMPORTER OF MICROWAVE MODULES PRODUCTS, AND WE SUPPLY A COAST-TO-COAST DEALER NETWORK. WRITE OR PHONE FOR DETAILS OF THESE PRODUCTS AND THE OTHER VHF AND UHF MICROWAVE MODULES PRODUCTS WHICH WE STOCK.

Exclusive U.S.A. Distributors of Microwave Modules Products

4800 WEST 34TH STREET • SUITE D12A
HOUSTON, TEXAS 77092
PHONE 713/680-9797 • TELEX 791322

august 1979
For the ultimate in quality and performance

TS-180S with DFC

All solid-state, this innovative 160-10 meter SSB/CW/FSK transceiver with DFC (Digital Frequency Control) includes four memories which can be digitally tuned up or down in 20-Hz steps, slow or fast, by means of memory-shift paddle switches. The original stored frequency can be recalled, and the newly tuned memory frequency can also be stored. The memories are usable in transmit, receive, and transceive modes. It's like having four remote VFO's, but with even more flexibility. Separate VFO and memory RIT controls are provided. The solid-state final requires no dipping or loading, and runs up to 200 watts PEP input. It covers 50 kHz above and below each band (100 kHz with the tunable memories) and is adaptable for three new bands (to be considered at WARC). The built-in microprocessor-controlled digital display shows the actual VFO frequency, or the fixed-channel frequency, or the remote VFO frequency (if the optional VFO-180 is used), and it also shows the RIT frequencies. When a frequency is stored in the “M1” memory, the digital display can be switched to indicate the stored frequency and the difference between the stored and VFO frequencies simultaneously. Other features include IF SHIFT, selectable CW receive bandwidths, tunable noise blanker, RF AGC, and improved RF speech processors. Optional accessories, besides the VFO-180 remote VFO, include the DF-180 Digital Frequency Control; SP-180 external speaker; YK-88SSB SSB filter; YK-88CW CW filter; AT-180 antenna tuner/SWR and power meter/antenna switch; PS-30 base station power supply (turns on and off remotely with TS-180S power switch); MC-50 base station microphone, and HS-4 head phones.

TL-922A

Linear amplifier for 160-15 meters runs maximum legal power with 80 watts or more drive. RF input power is 2000 watts PEP on SSB and 1000 watts DC on CW and RTTY. Features include variable threshold level ALC, turn-off delay circuit for blower, and hefty construction.

SM-220

Station monitor combines a wideband (10 MHz) oscilloscope and built-in two-tone generator to monitor all transmitted and received waveforms. It also shows a trapezoid pattern for checking linearity. Pan-display option allows observing number of signals in ±20 or ±100 kHz band segments.

Specifications for Model TS-180S

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>160m: 1.8-2.00MHz</th>
<th>80m: 3.50-4.00MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40m: 7.00-7.30MHz</td>
<td>20m: 14.00-14.30MHz</td>
</tr>
<tr>
<td></td>
<td>10m: 21.00-21.50MHz</td>
<td>5m: 28.00-29.70MHz</td>
</tr>
<tr>
<td></td>
<td>WWY: 10.00-10.50MHz (receive only)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modes</th>
<th>SSB (LSB and USB)</th>
<th>CW/FSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Requirements</td>
<td>R: 13.8 VDC, 1.8 A</td>
<td>N: 13.8 VDC, 2.1 A</td>
</tr>
<tr>
<td>Final Power Input</td>
<td>160-15m 200 W PEP (SSB)</td>
<td>100 W DC (CW)</td>
</tr>
<tr>
<td></td>
<td>160 W PEP (FSK)</td>
<td>140 W DC (CW)</td>
</tr>
<tr>
<td></td>
<td>160 W PEP (FSK)</td>
<td>140 W DC (FSK)</td>
</tr>
</tbody>
</table>

Audio Input Impedance	5000-50 KΩ
RF Output Impedance	50 Ω
Frequency Stability	Within 100Hz during any 30-minute period after warmup, +1KHz during first hr. after 7 min. warmup.
Carrier Suppression	Better than 40dB
Sideband Suppression	Better than 60dB
Spurious Radiation	Better than 60dB
Harmonic Radiation	Better than 40dB
Audio Frequency Response	400-2600Hz, within ±6dB
Receiver Sensitivity	0.25µV at 10dB S/N
Image Ratio	Better than 60dB
IF Rejection	Better than 60dB
Receiver Selectivity	SSB: CW Wide: 2.4kHz (-6dB) 4.2kHz (-6dB), CW Narrow: 0.5kHz (-6dB) 1kHz (-6dB)
Audio Output Impedance	4-15Ω

See your Authorized Kenwood Dealer for complete information.

TRIO-KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT/COMPTON, CA 90220
"Cents-ability" in a quality HF Rig!

The TS-520SE is an economical new version of the TS-520S...the world's most popular 160-10 meter Amateur transceiver. Now anyone can easily afford a high quality HF transceiver, providing 200 watts PEP input on SSB and 160 watts DC on CW!

The TS-520SE is a high-quality 160-10 meter SSB/CW transceiver intended for ham-shack use. The following changes were made to produce the new "SE" model:

- Replaced the heater switch with a CW WIDE/NARROW bandwidth switch, for use with the optional CW-520 500-Hz CW filter. A big improvement for the CW operator!
- Removed DC converter terminals. Now it operates strictly on 120 VAC and is not intended for mobile use.
- Removed transverter terminals. Now it is strictly a 160-10 meter SSB/CW transceiver.

All other proven features and high quality of the TS-520S have been retained in the TS-520SE, including:
- Effective noise blanker.
- Three-position (OFF, FAST, SLOW) amplified-type AGC circuit.
- RIT control.
- Eight-pole crystal filter.
- Built-in 25 kHz calibrator.
- Front-panel carrier level control.
- Semi-break-in CW with sidetone.
- VOX/PTT/MANUAL operation.
- TUNE position for low-power tune up.
- Built-in speaker.
- Built-in cooling fan.
- 20-dB RF attenuator.
- Provisions for four fixed channels.
- Speech processor consisting of a very effective audio compression amplifier.

The TS-520SE functions with many popular accessories, including:
- DG-5 digital frequency display/counter.
- VFO-520S remote VFO.
- SP-520 external speaker.
- CW-520 500-Hz CW filter.
- AT-200 antenna tuner/SWR and RF power meter/antenna switch.
- TL-922A linear amplifier.
- MC-50 dynamic microphone.
- SM-220 Station Monitor with BS-5 pan display module.

The TS-520SE is an economical new version of the TS-520S...the world's most popular 160-10 meter Amateur transceiver. Now anyone can easily afford a high quality HF transceiver, providing 200 watts PEP input on SSB and 160 watts DC on CW!

The TS-520SE is a high-quality 160-10 meter SSB/CW transceiver intended for ham-shack use. The following changes were made to produce the new "SE" model:

- Replaced the heater switch with a CW WIDE/NARROW bandwidth switch, for use with the optional CW-520 500-Hz CW filter. A big improvement for the CW operator!
- Removed DC converter terminals. Now it operates strictly on 120 VAC and is not intended for mobile use.
- Removed transverter terminals. Now it is strictly a 160-10 meter SSB/CW transceiver.

All other proven features and high quality of the TS-520S have been retained in the TS-520SE, including:
- Effective noise blanker.
- Three-position (OFF, FAST, SLOW) amplified-type AGC circuit.
- RIT control.
- Eight-pole crystal filter.
- Built-in 25 kHz calibrator.
- Front-panel carrier level control.
- Semi-break-in CW with sidetone.
- VOX/PTT/MANUAL operation.
- TUNE position for low-power tune up.
- Built-in speaker.
- Built-in cooling fan.
- 20-dB RF attenuator.
- Provisions for four fixed channels.
- Speech processor consisting of a very effective audio compression amplifier.

The TS-520SE functions with many popular accessories, including:
- DG-5 digital frequency display/counter.
- VFO-520S remote VFO.
- SP-520 external speaker.
- CW-520 500-Hz CW filter.
- AT-200 antenna tuner/SWR and RF power meter/antenna switch.
- TL-922A linear amplifier.
- MC-50 dynamic microphone.
- SM-220 Station Monitor with BS-5 pan display module.

Ask your Authorized Kenwood Dealer about the amazing TS-520SE...and its surprisingly affordable price!
design considerations for linear amplifiers

Building a high-power, high-frequency linear amplifier and companion power supply is an interesting, challenging, and constructive project. And don’t let anybody tell you that you can’t do it! Many new hams approach equipment construction with great timidity. Be assured it isn’t all that difficult. The toughest part of the work, in fact, is finding the necessary components. This is where flea markets, classified advertisements, surplus stores, and the junk box of neighboring Amateurs play an important part. You can find all the stuff you need, it just takes a little perseverance.

Before you begin bending metal, punching holes, and wiring, you should have the amplifier completely designed on paper, as outlined in the previous articles of this series. Once this task is done, you can make a parts list and start rounding up the components. You should also start thinking about the physical layout and assembly of the amplifier.

amplifier layout and assembly

Modern design indicates that the linear amplifier be enclosed in a metal cabinet, or box, that is shock-proof, rf radiation-proof, compact, and easy to build. Many people build their linear amplifiers on a readily available aluminum chassis and then box up the chassis with aluminum sides and top to form a complete enclosure. This is not a bad idea. The cost is low and the chassis forms a platform and underchassis area that is hard to duplicate with simple tools. Once the enclosure is built, holes are drilled in it for leads and cables, control shafts, and for cooling air to enter and escape. Components within the box are positioned so that rf leads are short and direct and power wires are not coupled to the strong rf field within the box (see fig. 1). By paying attention to mechanical detail and armed with a knowledge of circuit design and a dose of common sense, the average Amateur can build a linear amplifier that looks good and works as well as the book says it should.

The object of using an all-metal amplifier enclosure is to keep the strong rf currents and subsequent harmonics within the box. Since these currents travel only on the surface of metal, the box can be made “electrically tight.” Whenever a hole is made in the box, or a conductor brought into it, a leakage point is established through which rf energy can escape. It is important that these “rf holes” be reduced to a minimum in number and size, and that their effect upon circuit operation be controlled.

openings into the enclosure

Holes, leads, and shafts break the rf-tight amplifier box. Large holes for ventilation can be used without harm, provided they are screened so that air can enter and leave but rf energy cannot escape. Perforated metal sheet, having many closely spaced holes, is the best screening material to place over the openings. Copper wire window screen is not as effective because of wire corrosion which produces a film of insulating oxidation between the individual wires at the crossover points.

If a perforated sheet is to be used, it may be made by drilling lots of holes in the enclosure wall. Or the hole pattern can be drilled in an auxiliary plate placed over the ventilation hole. If such a plate is used, it should be bolted or riveted to the enclosure with a bolt-to-bolt spacing of about 2.5 cm (1 inch) so that rf energy cannot leak out through the crack between the surfaces. Mating surfaces between the metals should be clean and free of paint (fig. 2). A screened ventilation opening should be about three times the size of an equivalent unscreened opening, since the screening material reduces the area of air passage.

By William I. Orr, W6SAI, 48 Campbell Lane, Menlo Park, California 94025
fig. 1. A representative amplifier enclosure. Basic unit is an aluminum chassis with bottom plate. The plate circuit enclosure is made of aluminum stock. For ease in assembly, aluminum channel angle stock is pop-riveted around outer edge of chassis to mate with the bottom of plate circuit enclosure. Angle stock is run up each corner and riveted to the four plates. Additional angle stock runs around the inside edge of the top of the enclosure and is tapped for 6-32 (M3.5) screws, which hold the lid on. Lid may be made of perforated metal for ventilation or may be modified from a solid aluminum sheet as discussed in the text. Additional angle stock may be required to hold bottom plate in place and to make the under-chassis area relatively air-tight. Blower to cool the tubes is mounted on the rear apron of the chassis. The completed enclosure is mounted behind a relay rack panel for appearance.

Control shafts passing into an rf-tight box should be made either of phenolic-insulating rod or of metal, grounded at the point of entry by means of a spring contact (fig. 3).

Long, narrow slots in the enclosure should be avoided, or else shunted with a ground strap every few inches; otherwise the opening tends to act as a "slot antenna" through which harmonic energy can readily pass — more easily than through a much larger circular hole, in fact.

Meters mounted in a wall of the shielded box pose a problem, as they are a source of prolific rf leakage. Unless the body of the meter is shielded and the leads well bypassed, it is more prudent and less time consuming to mount the meters outside the enclosure and to filter the meter leads running into the box.

pass-through leads

Careful attention must be paid to power and meter

fig. 2. Ventilation holes are cut in sheet aluminum by means of a nibbling tool. Cover plate is cut slightly larger and drilled for ventilation holes. Plate and sheet aluminum are then drilled together for holes to place pop-rivets. If it is necessary to remove the cover plate for insertion of tubes, the plate may be held in position with sheet metal screws or by 6-32 (M3.5) nuts and bolts (provided assembly is such that you can get your hand inside the enclosure to hold the nut in place). Most side ventilation plates are fixed in position; top cover plates are removable.
leads entering and leaving the rf-tight box. Harmonic currents inside the box can easily flow out of the enclosure on these leads or even on the outer shield of a coaxial line if the shield is not properly grounded at the point of entry (fig. 4). Unshielded leads entering the box must be carefully bypassed and filtered at the point of entry to prevent rf energy from escaping from the box and flowing down the leads. A combination of bypass capacitors and small filter inductors will close off this escape route. The inductor must have ample capacity to carry the current flowing in the lead. Feedthrough-style capacitors are often used in low-voltage power and metering leads.

amplifier wiring within the enclosure

Wiring within the rf-tight box can couple to rf energy because of the storing field within the box. Any lead in the box can pick up fundamental and harmonic energy and feed it outside the enclosure (fig. 5). On the other hand, the lead can pick up rf energy from an outside source (your exciter, for example) and leak it into the box causing amplifier instability. The solution for this problem is to bypass or filter all internal power and control leads at each end, dress them close to the chassis, and keep them physically remote from areas of high rf energy.

All these precautions may seem more complicated and time-consuming than they really are. Unfortunately, most circuit diagrams leave off much of the important rf bypassing circuitry since it tends to clutter up the diagram; its existence may be only briefly mentioned in the text. And the filter circuitry is often left out of commercially produced units as a cost-cutting measure.

When you build your own amplifier, you can afford to take the time and do things the right way. Always remember that holes, shafts, and leads are sources of rf leakage from an rf-tight enclosure and, unless protected, are a direct invitation to TVI, harmonic radiation, and amplifier instability. Sadly enough, many modern amplifiers on the market look like they’re in an rf-tight enclosure, but, in reality, they are only sitting in an attractive dust cover.

practical amplifier layout

A simple to understand and practical parts layout for a representative high-frequency linear amplifier using two 3-500Z tubes is shown in fig. 6. The layout can be adapted to other tubes. The assembly consists of an aluminum box made up from a standard chassis. A bottom plate pressurizes the underside of the chassis and a blower is mounted on the rear apron of the chassis. Air is introduced under the chassis and is expelled through the tube sockets and air chimneys. The heated air from the tubes escapes through the perforated top and side areas of the plate circuit compartment.

The meter and control circuits are placed outside the shielded enclosure. Wiring for these circuits is not critical, and is done with 600-volt insulation hookup wire. High voltage wiring is done with test-

fig. 3. A single-circuit phone jack makes a good grounding device for a 6.5-mm (%-inch) diameter shaft. The jack is mounted in the shaft hole, which is drilled out to accept the jack. The wiper contact of the jack rides on the shaft as it is rotated. The contact arm of the jack is grounded to the enclosure wall. Jack is positioned so that wiper arm is inside amplifier box.

fig. 4. Improper termination of coaxial line can destroy effectiveness of the shield (A). Rf currents within the enclosure can escape via the outside shield of the line as it passes through the hole. Properly grounding the shield of the coaxial line to the box (B) ensures isolation of currents within the box. Rf currents outside the box are also prevented from entering the box.
prod wire of the type used for instrument test leads (10-kV insulating rating) or equivalent high-voltage cable. TV-type capacitors are used for lead filtering (fig. 7).

Low voltage leads enter the amplifier enclosure via 1-kV feedthrough capacitors, which are also shunted at the point of entry with a larger value of capacitance to suppress low-frequency rf energy and transients which can pass through most feedthrough capacitors with little attenuation. A simple homemade rf choke and bypass capacitor are placed on each lead inside the enclosure. Note that all capacitors used on the 120-volt ac power line should be rated at 1.6 kV in accordance with the Electrical Underwriter's Code. Don't use run-of-the-mill disc bypass capacitors on the power line, as it is a source of random voltage transients which can easily puncture the standard 600-volt-working capacitor.

Power leads from the panel controls to the terminal strip on the rear of the amplifier must either pass through the box or go around it. It is easy to pass through the enclosure without breaking the rf seal with a short section of 1.3-cm (0.5-inch) diameter thin-wall electrical conduit with wall fittings on each end of the section (fig. 8). An rf tight passageway through the amplifier for various wires is formed by the conduit. Coaxial fittings are used for the input and output rf connections and are mounted to the wall of the box.

The mouth of the blower is covered with a small piece of copper window screen. While not the best material, this screen doesn't reduce the air flow as much as a perforated metal sheet would do.

While all this hum-drum filtering and bypassing might seem like overkill, it is the only way to achieve an amplifier that is rf radiation proof and one that keeps rf energy where it belongs. The rf energy leaves the box only via the output circuit where harmonics can be suppressed by means of a suitable lowpass filter before they reach the antenna. Without the filtering and bypassing, the harmonics suppressed in the antenna circuit would pass down the power leads or be radiated directly from the amplifier circuitry.

B-plus safety switch

A quick way to kill yourself is to remove the amplifier cover and fiddle around inside the box when the high voltage is turned on. Even the best of us might forget to turn things off and disconnect the amplifier from the supply before work is performed. A B-plus shorting switch will pay big dividends in operator longevity. It is simple to make (fig. 9). The shorting ring is made of spring brass and is depressed when the amplifier lid is in place. When the lid is removed, pressure is taken off the shorting ring and it makes a direct contact between the high voltage circuit and the chassis. This short circuit results in a blown line fuse if the amplifier is inadvertently turned on when
fig. 6. A practical layout for a linear amplifier using two 3-500Z tubes. This is representative of a layout using any popular tube or tubes available for the Amateur service. A 43-cm (17-inch) chassis is used, with depth chosen to allow proper placement of components. Tuning and loading capacitors are mounted symmetrically on the main panel with the plate bandswitch between them. Panel meters are placed across lower portion of the panel. An area for the plate coils lies between the two capacitors, immediately behind the bandswitch. The 3-500Z tubes, air system sockets, and chimneys are near one rear corner of the chassis with the air blower placed on the rear apron between the sockets. To the side of the tubes is the filament transformer. To reduce transformer heating caused by infra-red radiation from the tubes, the transformer (which is normally black in color) is given a coat of white stove enamel. This reflects the heat from the tubes and reduces transformer operating temperature. The fixed-tuned cathode input circuit and bandswitch are located beneath the chassis, and the switch control shaft is brought out to the panel. Some Amateurs gang the input and output circuit band-change switches, but this is not necessary. The bottom of the amplifier is sealed with a metal plate, and the top area is made up of perforated aluminum sheets to permit ample tube ventilation.

the lid is removed. It also makes sure the filter capacitors are discharged before hands can be poked inside the amplifier.

metering circuits

When you have power tubes in your linear amplifier that may cost upwards of $100, it is a smart and thrifty idea to take good care of them. As far as metering goes, it is wise to monitor both grid and plate current (and screen current if a tetrode tube is used) plus filament voltage. And a plate voltmeter is a handy thing and necessary if you run close to the maximum power level.

The meters are mounted outside the rf-tight box to remove them from the strong rf field of the amplifier. A single meter may be used as a matter of thrift to measure either grid or plate current if an appropriate switching circuit is employed, such as shown in fig. 10, where one meter does the work of two.

For economy and simplicity, a 0-1 mA dc meter is used. The scale will read 0 to 100 mA for grid current and 0 to 1000 mA for plate current. The scale need not be re-inked, since the user merely adds zeros to the reading to get the exact current value.

The meter is converted into a simple voltmeter circuit by a series-connected resistor. This voltmeter then reads the voltage drop across a shunt resistor placed in the circuit to be monitored. The whole circuit is inexpensive, accurate, and easy to make up. It does not require precision resistors — inexpensive one-percent metal film resistors will do (or carbon resistors in pinch).

As an example, suppose a 3.9-kilohm series resistor (a standard value) is used. The 0-1 mA meter is now turned into a voltmeter which reads 3.9 volts full
FOR THE
EXPERIMENTER

INTERNATIONAL CRYSTALS & KITS/OSCILLATORS • RF MIXERS • RF AMPLIFIER • POWER AMPLIFIER

OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz. OX-Lo, Cat. No. 035100. 20 to 60 MHz. OX-Hi, Cat. No. 035101.
Specify when ordering. $5.22 ea.

OF-1 OSCILLATOR
Resistor/capacitor circuit provides oscs over a range of freq with the desired crystal. 2 to 22 MHz. OF-1 Lo, Cat. No. 035108. 18 to 60 MHz. OF-1 Hi, Cat. No. 035109.
Specify when ordering. $4.48 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz. Lo Kit, Cat. No. 035105. 20 to 170 MHz. Hi Kit, Cat. No. 035106.
Specify when ordering. $5.80 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mw, depending on frequency and voltage. Amplifier can be amplitude modulated 3 to 30 MHz, Cat. No. 035104.
Specify when ordering. $6.06 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz. Lo Kit, Cat. No. 03512. 20 to 170 MHz. Hi Kit, Cat. No. 035103.
Specify when ordering. $5.80 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107.
Specify when ordering. $6.06 ea.

.02% Calibration Tolerance

EXPERIMENTER CRYSTALS (HC 6/U Holder)
Cat. No. Specifications
031080 3 to 20 MHz — for use in OX OSC Lo Specify when ordering $6.25 ea.
031081 20 to 60 MHz — for use in OX OSC Hi Specify when ordering $6.25 ea.
031300 3 to 20 MHz — for use in OF-1O OSC Specify when ordering $5.22 ea.
031310 20 to 60 MHz — for use in OF-1H OSC Specify when ordering $5.22 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: MIS Dept., PO. Box 34297. Oklahoma City, Oklahoma 73132

ICM
INTERNATIONAL CRYSTAL MFG. CO., INC.
10 North Lee / Oklahoma City, Okla. 73102
All that is necessary now is to design a shunt which will produce a 3.9 volt drop across it at the desired full scale reading of the meter. Let's say we want 100 mA (0.1 amp) full-scale deflection for grid-current measurement. The shunt resistor (by Ohm's law) is:

\[\text{Shunt resistor (ohms)} = \frac{E}{I} = \frac{3.9}{0.1} = 39 \text{ ohms} \]

This, also, is a standard resistance value. If you want to read plate current at 1000 mA (1 amp) full-scale, the appropriate shunt resistor is:

\[\text{Shunt resistor (ohms)} = \frac{3.9}{1} = 3.9 \text{ ohms} \text{ (a standard resistance value)} \]

Simple, isn't it? No expensive precision resistors are needed and everything is figured out by simple mathematics. Other full-scale meter readings can be worked out by changing the value of the shunt resistor.

inexpensive perforated metal sheet

A good way to make a ventilated rf-tight metal box is to use perforated aluminum sheet stock found in many hardware stores and home improvement centers. Ideally, the holes should be small and closely spaced so that it seems as if there is more open space than solid metal. As an alternative, you can make your own perforated sheet from solid aluminum sheet and an electric drill. The trick is to make up a drilling jig out of a small steel plate (fig. 11). This sounds like doing it the hard way, but once the jig is made, it can be used rapidly and can be reused time and time again. It is a worthwhile addition to the home workshop. The jig is held in position on the sheet with a pair of C-clamps and the holes easily and quickly drilled with an electric drill to the pattern you wish.

amplifier layout

If you look through the various Amateur magazines and handbooks (particularly those of the pre-1970 era) you'll see plenty of homebrew linear amplifiers. They bear a remarkable similarity as far as layout goes. Indeed, so do most of the linear amplifiers currently on the market. Time spent in seeing how others solved their problems is a big asset when
the amplifier. But you'll never need this, since hams and tube complement can be changed at will while still retaining the panel, circuitry, and main body of the linear amplifier. You should lay the parts out on the chassis before you start drilling holes and bending metal. Some Amateurs make a cardboard mock-up of their amplifier and slide the components around in a three dimensional layout to make sure that one part does not mechanically interfere with another and that the dials fall on the panel in a symmetrical pattern.

Once general parts placement has been ascertained, the sides, back, bottom, and top of the enclosure can be laid out and cut from sheet aluminum. The finished parts can be held together by means of bent-over edges on the sheets or by means of aluminum angle stock cut to fit. Some people use nuts and bolts to hold everything together, while others use sheet metal screws or pop-rivets. The top of the enclosure is held in position with removable screws so that it can be taken off for tube installation.

The amplifier box is supported from the panel by spacer rods cut long enough to leave space for the meters between panel and amplifier. Shaft extensions can be used to couple the panel controls to the control shafts extending from the amplifier wall.

If your assembly is completely knock-down and the chassis plate is replaceable, the amplifier circuitry and tube complement can be changed at will while still retaining the panel, circuitry, and main body of the amplifier. But you'll never need this, since hams rarely rebuild their equipment!

Recommended Reading

The new 21st edition of the Radio Handbook is now available and has a greatly expanded section on design and construction of linear amplifiers. Photographs show many different designs using popular power tubes. The new Radio Handbook is available from Ham Radio's Bookstore. Also read "A Beginner's 50 Watt Rig" by Bill Wildenhein, WB8YFB, in the July and August, 1978, issues of Ham Radio Horizons. This is a goldmine of design, construction, and layout information. You should also read "Custom Design and Construction Techniques for Linear Amplifiers Using the 8877," by Merle Porten, K6DC, in the September, 1971, issue of QST. A reprint of this article can be obtained at no cost from the Amateur Service Dept., EIMAC, Varian Division, 301 Industrial Way, San Carlos, CA 94070. Ask for bulletin AS-45.
counters and weights

Counting in the digital sense is really a sequence of flip-flop state changes. The sequence repeats and the number of state changes required for one sequence is termed the division ratio. Thinking in terms of state changes is a clue in understanding counter operation. To make sense of certain flip-flop counters, the bit weight system is used.

states and weights

Each flip-flop in an array represents a bit of data. A counter always has the same number of bits, but each bit may be 1 or 0 depending on the sequence. A chain, or cascade, of flip-flops will have an orderly sequence of bit state changes, but it is still difficult to interpret the changes into decimal notation.

Assume four flip-flops in cascade. The maximum number of states is sixteen. Weights are assigned to each bit. The least-significant bit, or LSB, will have a weight of one; it represents the input flip-flop, which changes the fastest. The next bit has a weight of two; the next four. The most-significant bit, or MSB, has a weight of eight. Mathematically, the bit weight is 2^n, where n is the bit significance.

Converting binary states to decimal notation involves adding up the weights of any bit that is a 1. Forget any 0 bits. Table 1 has four-bit binary states with equivalent decimal weights. Note that the maximum decimal number is fifteen. What happened to sixteen? Simple. An all-zero binary state is decimal zero, so all sixteen are accounted for. A decimal sixteen would require five binary bits with the MSB at 1, the remainder at 0.

Table 1 also gives hexadecimal notation. This is common in microprocessor state designation, and some four-stage counter packages are called hexadecimal counters.

simple counter chain

Fig. 1 has three negative-edge, clocked, JK flip-flops in cascade. J and K inputs of all are tied high, so each stage divides by two. With three in cascade the total division, or count, is eight.

This simple cascade is a ripple-through counter since each successive stage state change is dependent on the previous stage propagation delay. A ripple-through counter should not be used at high speed for selecting a particular state.

Suppose you wanted to select a decimal 2 state. The flip-flop states would be ABC (A and C low, B high). For a short period of time this same state would occur after the fourth negative clock edge after A had toggled low but B was still high. It is a very short time, but the select gate might pass this “glitch.”

A solution is to make the counter synchronous using anticipated carry. Carry in counters is the state change output, that can cause the next stage to toggle. You can see that carry anticipation is possible by examining all previous flip-flop states and the clock before a toggle occurs; they are all high.

table 1. Four-bit binary states with decimal weights.

<table>
<thead>
<tr>
<th>decimal</th>
<th>MSB</th>
<th>binary states</th>
<th>LSB</th>
<th>hexadecimal notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0 0 0 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0 0 1 0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0 0 1 1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0 1 0 0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0 1 0 1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0 1 1 0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0 1 1 1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0 0 0 0</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0 0 0 1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0 0 1 0</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0 0 1 1</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0 1 0 0</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0 1 0 1</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0 1 1 0</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0 1 1 1</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

By Leonard Anderson, 10048 Lanark Street, Sun Valley, California 91352
Synchronous counter modification is shown in fig. 2. Additional AND gates set up the next flip-flop stage so that all change state at the same time. Carry out will have the same width as the high clock state but occurs only every eight clock periods.

Difference in state change time is caused only by differential flip-flop propagation delay (quite small) or the AND gate delay. The latter may be compensated for by adding inverters to the first stage outputs for any state select gating.

fig. 1. Cascade of three JK flip-flops with waveforms.

fig. 2. Synchronous three-stage binary counter using anticipatory carry.

decade counting

A minimum of four stages are necessary for division by ten. JK flip-flops can be used, and the control inputs will enable a binary state sequence from decimal 0 through decimal 9. This type of counter is called a binary-coded-decimal, or BCD, and is shown in fig. 3.

This is a cascade of divide-by-two (stage A) and a divide-by-five (last three stages). Ten is divisible by two, so state feedback isn’t required for the first stage. Note that Q_D is made to both J and K inputs of stage B; as long as it is high (Q_D low), B will toggle on every negative edge of Q_A. Stage D will not toggle since G_1 holds its J input low until a decimal 7 is reached.

At the decimal 7 state, both J and K of stage D are

fig. 3. Binary-coded-decimal decade counter.
INPUT IS MADE TO ALL \(\bar{z} \) FLIP-FLOP CLOCK INPUTS

<table>
<thead>
<tr>
<th>Q OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT A B C D E GATE</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

TRUTH TABLE:

0	1	1	1	1
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0

fig. 4. Five-stage, self-correcting decade ring counter.

high; D is set up to toggle. It did not toggle when G1 went high, since the control input must be present before a clock arrival. The eighth clock will make A, B, and C all low. D goes high from QA, since G1 has set up the toggle condition. Stage B is now inhibited from its J and K inputs made low from QD.

The tenth clock will toggle stage D again, making QD low. This action removes B's inhibit, but B does not toggle, since the inhibit was still there when QA went low. If this is confusing it won't hurt to review the JK rules given in reference 1.

ring counters

These are shift registers modified by output-to-input state feedback. A shift register is a cascade of JK or D flip-flops with the Q and \(\bar{Q} \) of one stage feeding the J and K inputs of the next (Q to D only for D flip-flops). The clock is common to all stages, and any input to the first stage will shift through all stages at each clock edge.

A divide-by-ten ring counter is shown in fig. 4 with the state truth table. It's common in CMOS and is sometimes called a "Johnson," or "switched-tail," counter. The latter name is from inverted output state feedback. This one is called self-correcting from the AND gate connection.

At power-on you cannot be sure that all flip-flops reach one of the desired ten states. With five stages, the maximum number of states is 32 (2^5), so the counter must be able to shift out of an undesired state. One such pattern is 01101, and you can try it out on scratchpaper with and without and AND gate.∗

Ring counters are inherently synchronous and are a bit easier to decode into specific states. Fig. 4 will decode all ten states into decimal using only two-input gates for each state. A disadvantage is the number of flip-flops, which must be one-half of the count.

odd-modulo ring counters

Modulus is another name for division ratio. Odd-modulo ring counters may have advantages over cascades with different state feedback. Divisions of three, five, seven, and nine don't require extra gating for correction. Fig. 5 shows two counters with state tables.

A modulo-7 counter is created by adding a flip-flop before stage A. A modulo-9 adds two flip-flops. In both cases the Q output is connected to the next J, \(\bar{Q} \) to K. The last three stages in divisions of five, seven, and nine will go through the modulo-5 pattern, skipping the 001 state between 011 and 000. All are self-correcting.

ssb quadrature counter

Fig. 6 is a variation of a ring counter and has been used in several phasing-type, single-sideband designs. It's made from one high-speed, dual-D package and uses all four binary states. Quadrature (90-degree) phase is maintained over a wide frequency range.

A disadvantage is that the VFO (clock input) must be four times the output frequency, and differential

* See appendix
fig. 6. Two-stage SSB quadrature counter.

delay may limit the 90-degree difference. Differential delay in one package is never specified. It must be low since one degree of phase error in only 0.397 nanoseconds at 7 MHz. Output loading should be equal to minimize differential delay, and mixer output filtering must be used to eliminate harmonics.

direct set and clear

Both CMOS and TTL packages have a variety of different flip-flop and counter arrangements. Direct set (or preset) and clear (or reset) may be separate or common or in a combination. Specification sheet data should be studied carefully for each package to make certain all functions and pinouts are understood.

appendix

Starting the decade ring counter without the gate (Qg directly to KA) at a state of 01101 will produce this sequence: 00110, 00010, 10010, 10100, 11000, 11010, and back to 01101. It never arrives at a desired state. Adding the gate breaks the sequence at 11000. Both J and K inputs of the first stage are now 0 and it holds at a 1 state; the remaining stages shift through for the next state of 11100, a desired state. Remaining states are in the desired sequence. The worst glitch state is 01100 with the gate. It will go through 10110, 11011, then 01101 for the pattern given above.

reference

ham radio
WASORC CHICAGO F.M. CLUB presents
CHICAGO'S NINTH ANNUAL
MANUFACTURERS DISPLAYS
With Many Manufacturers Displaying THE LATEST IN RADIO GEAR FOR SALE & SHOW

FLEA MARKET
HUGE INDOOR and OUTDOOR FLEA MARKET
Open 6:00 a.m. to 6:00 p.m. Saturday and Sunday
• FLEA SPACE IS FREE WITH ADMITTANCE TICKET • SPACE FOR HUNDREDS OF TABLES & CARS
• Bring Your Own Table and Chairs • Flea Space Set Up Starting at 6:00 p.m. Friday Night

DOOR PRIZES
THOUSANDS AND THOUSANDS OF DOLLARS GIVEN AWAY AS DOOR PRIZES.
LAST YEAR WE GAVE OUT OVER $8,000 WORTH OF EQUIPMENT, AND THIS YEAR???

SEMINARS & DEMONSTRATIONS
• ON ANTENNAS • OSCAR • INTRODUCTION TO HAM RADIO • RTTY • MICROPRESSING
• DX POSITION • DIRECTION FINDING • TALK'S AND FORUMS

LADIES PROGRAMS
WITH DEMONSTRATIONS AND DOOR PRIZES FOR THE YL'S AND NON-HAM MEMBERS OF THE FAMILY
Kids under 12 Free with Ticket Holding Adult...Also Entertainment for the Kids with Clowns, Shows and Balloons.

FREE CAMPING ON GROUNDS AND SOME WITH POWER HOOK-UP
We Can Make Hotel Reservations for You at Mundeline Holiday Inn. (Map Will Be On Ticket)
25 Minutes from Chicago, 45 Minutes from Milwaukee

ADVANCE TICKETS $2.00 ($3.00 At Gate)
write RADIO EXPO, BOX 305 MAYWOOD, IL 60153

RADIO
SEPT. 15 & 16, 1979

TALK IN
16/76 — .52
222.5/224.1 — .5
Hy-Gain 3806
2-Meter Hand-Held Amateur Transceiver
SPECIALLY PRICED ONLY $119.95

- Low cost, 6-channel hand-held provides superb voice transmission over short to medium distances
- Sharply tuned on-frequency selectivity in the RF amplifier stages plus FET in the 1st and 2nd mixers for virtual immunity to out-of-band signals
- Intermodulation distortion and cross-modulation
- Separate microphone and speaker elements for enhanced audio
- Internally adjustable mic preamp—a Hy-Gain exclusive
- Specialty gasketed case seals out water, dirt and corrosive salt air
- Watertight, high-impact ABS plastic case—ribbed for non-slip grip
- Top-mounted controls for instant access

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3807</td>
<td>Nicad Battery Pack</td>
<td>$21.95</td>
</tr>
<tr>
<td>1104</td>
<td>Touch Tone Pad</td>
<td>$44.95</td>
</tr>
<tr>
<td>1106</td>
<td>AC Battery Charger</td>
<td>$9.95</td>
</tr>
<tr>
<td>1107</td>
<td>Cigarette Lighter Adaptor Cord</td>
<td>$6.95</td>
</tr>
<tr>
<td>1108</td>
<td>Antenna Adaptor Cord</td>
<td>$6.95</td>
</tr>
<tr>
<td>1110</td>
<td>Carrying Case (Leather)</td>
<td>$12.85</td>
</tr>
<tr>
<td>1111</td>
<td>Carrying Case (Vinyl)</td>
<td>$6.95</td>
</tr>
<tr>
<td>269</td>
<td>Rubber Duck Antenna</td>
<td>$7.95</td>
</tr>
<tr>
<td></td>
<td>Crystal Certificates</td>
<td>$3.95</td>
</tr>
</tbody>
</table>

PLEASE ENCLOSE $2.50 FOR SHIPPING AND HANDLING PER UNIT

Hy-Gain 3806
2-Meter Hand-Held Amateur Transceiver
SPECIALLY PRICED ONLY $119.95

CALL TOLL FREE
1-800-228-4097

for Quality Ham Radio Products at Discount Prices

YAESU
KENWOOD
DRAKE
ICOM
STANDARD
EDGECOM
KDK
PANASONIC
DENTRON
HY-GAIN
MOSLEY
CUSHCRAFT
WILSON
HUSTLER
LARSEN
BENCHER
ROBOT
TAYLOR
SWAN
TEMPO
MIDLAND
CDE
MIRAGE
AEA
E.T.O. ALPHA
VHF ENGINEERING
BERK-TEK CABLE
CONSOLIDATED TOWER
SHURE
TELEX
ROBOT-SSTV
BENCHER

Our Mail Order Hours (CST)
M-F 8 am to 12 Midnight
Saturday 8 am to 6 pm
Sunday 12 Noon to 8 am

Call and Talk to
Don WBØYEZ Ken WDØEMR
Denny WØOR Eli KAØCEJ
Bill WBØYHJ John WBØMTS
Joe WAØWRI Blaine WBØQILH
Jim KAØCRK Bob WBØRQZ

Communications Center
443 N. 48th, Lincoln, Nebraska 68504
In Nebraska Call (402) 466-8402

August 1979 Page 71
broadband power-tracking VSWR bridge

One of the problems that most hams have experienced with commercial power and VSWR meters has been the maker's inability to provide adequate isolation between the forward and reflected power sampling ports over a wide bandwidth. There is also the problem of having to recalibrate the VSWR meter when the output power is varied. The power/VSWR meter described in this article has been designed to be truly independent of these problems. My goal was to design a dual-directional coupler with a flat response to at least 55 MHz, and a directivity greater than 30 dB. Three couplers were designed to meet these requirements, with coupling factors of 30, 24, and 20 dB. The 30-dB coupler can be used with transmitting systems having outputs up to 1000 watts. The 24-dB coupler can be used with systems below 200 watts, and the 20-dB coupler can be used with a 100-watt limitation. The 24-dB coupler turns out to be the most practical for average ham use.

circuit description

rf section. The rf sampling and detection circuit shown in fig. 1 was perfected with the use of a network analyzer having the capability of resolving amplitude variations of less than 0.1 dB over a 1 to 500 MHz frequency range.

In order to obtain the isolation between the forward and reflected power sampling detectors, two properly phased transformers are required. The toroid for the transformers is of "H" type magnetic material with a diameter of 9.5 mm (0.375 inch) and a thickness of 3 mm (0.125 inch), large enough to safely pass 200 watts without saturating the core. The primary of each coupler consists of a 2.5-cm (1-inch) piece of 0.141-inch OD semi-rigid coax with the solid copper outer jacket used as an electrostatic shield. It should be noted that the jacket is soldered to the groundplane of the printed circuit board on only one side of the toroid. Soldering on both sides would result in a shorted turn and actually degrade the performance of the coupler. The secondary of each transformer consists of fifteen turns of no. 31 AWG (0.2-mm) enamelled wire evenly spaced around the core. This provides 24 dB of coupling.

It is very important in winding the secondary of the transformers that the wire be spaced as evenly as possible. I found that having the turns spaced too closely caused the high-end performance to roll off at a much lower frequency than desired. The final design has a coupling response of 23.9 ± 0.1 dB from 1 to 200 MHz, and a roll-off of 0.15 dB at 50 MHz. The insertion loss is negligible. The directivity (isolation between the forward and reflected power ports) is greater than 35 dB from 1 to 30 MHz rolling off to 25 dB at 200 MHz.

The rf detector uses a pair of germanium diodes as a positive halfwave rectifier. The output is then filtered and passed to the analog tracking circuit. In order to avoid large offsets in the rectified voltage, the diodes are matched as closely as possible in the center of the high-frequency band. The setup shown in fig. 2 allows matching to within 10 mV.

By Hank Perras, K1ZDI, Aglipay Drive, RFD 1, Amherst, New Hampshire 03031

Table 1. Values of return loss for different VSWR values.

<table>
<thead>
<tr>
<th>VSWR</th>
<th>Return loss (dB)</th>
<th>$P_{out} = 1$ kW</th>
<th>$P = 100$ watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.05:1</td>
<td>32.2</td>
<td>0.6</td>
<td>0.06</td>
</tr>
<tr>
<td>1.1:1</td>
<td>26.4</td>
<td>2.3</td>
<td>0.23</td>
</tr>
<tr>
<td>1.2:1</td>
<td>20.8</td>
<td>8.3</td>
<td>0.83</td>
</tr>
<tr>
<td>1.5:1</td>
<td>14.0</td>
<td>39.8</td>
<td>3.98</td>
</tr>
<tr>
<td>2.0:1</td>
<td>9.5</td>
<td>112.0</td>
<td>11.20</td>
</tr>
<tr>
<td>3.0:1</td>
<td>6.0</td>
<td>251.0</td>
<td>25.10</td>
</tr>
<tr>
<td>4.0:1</td>
<td>4.4</td>
<td>363.0</td>
<td>36.30</td>
</tr>
<tr>
<td>infinite</td>
<td>0.0</td>
<td>1000.0</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Return loss (dB) = -10 \log_{10} \left[\frac{VSWR - 1}{VSWR + 1} \right]^2.
30-dB coupler

This coupler is useful for high-power operation, that is, up to 1000 watts. With this looser coupling, adequate VSWR tracking for very low values of reflected power will be limited to approximately 100 watts of transmitter output. In other words, the VSWR will indicate properly as the power is varied from 100 to 1000 watts. Tracking very low values of VSWR becomes a problem as the output is reduced. The value of power in the reflected wave (see Table 1) is determined by:

\[P_{sec} = P_{out} (dBm) - return\ loss\ (dB) - coupling\ (dB) \]

The only differences in the construction of this coupler are the meter faceplates and the coupling transformers. The transformers consist of the same one-turn primary as the 24-dB coupler, but the secondaries have thirty-one turns of no. 30 AWG (0.25-mm) enamelled wire even spaced around a type-H, magnetic-material toroid 12.5-mm (0.5-inch) diameter by 5-mm (0.188-inch) thick.

It will be necessary to construct the bridge in two sections separated by a shielded compartment. The printed circuit board can be cut in half, separating the coupler from the tracker. The board was designed with this purpose in mind, to obtain greater isolation, if needed, and to operate the coupler at some remote location in the coax.

A word of caution in winding the transformers – be very careful to avoid nicking the enamelled wire. This could result in a short to the outer shell of the semi-rigid coax used as the primary. I would suggest the use of clear epoxy on the entire transformer after assembly.

![fig. 1. Schematic diagram of the broadband VSWR bridge and power supply. As specified in the text, T1 and T2 are wound to provide a coupling factor of either 24 or 30 dB.](image)

![fig. 2. Setup for determining diode characteristics to select closely matched diodes as the detectors.](image)
View of the circuit board used in the broadband VSWR bridge. The board can be cut between the rf and current tracking portions for remote operation.

Current tracker. This portion of the bridge makes the overall performance of the unit truly automatic. It is based upon the RC4200, a four-quadrant multiplier that is used as a current-ratio comparator. A reference current, established at pin 8, is used in the internal bridge portion of the IC. Forward and reflected currents from the diodes are fed to pins 1 and 5 and not the 4200. Thus, VSWR readings remain constant when transmitter power is varied from 200 watts down to 10 watts over the frequency range of 1.8 to 148 MHz.

The forward power is monitored by the use of a voltage follower fed from a 3-to-1 resistive divider. This divider network is necessary to keep the rectified voltage below the +5 volt supply.

I decided to have an expanded range for VSWR with 4:1 full scale being a reasonable choice. This is accomplished by shunting the 39-kilohm resistor with an additional 60 kilohms. The circuit of fig. 1 can be modified to include a peak rms capability for monitoring the output power. Fig. 3 shows the modification.

alignment and testing

The VSWR is aligned using the setup in fig. 4. The transmitter is first tuned up into a single dummy load. Then, with four loads in parallel, the antenna tuner is adjusted to reestablish a 50-ohm load to the transmitter. With the range switch in the 4:1 position, R2 is adjusted for a full-scale meter reading. Power is then noted on the series power meter, and R1 adjusted for the same reading on the power meter of the bridge.

used internally to track the current ratio by the formula \(I_4 = (I_3/2)/I_5 \). It becomes evident that using this configuration will allow a constant VSWR to be displayed over a fairly wide dynamic power range, the limitation actually being the diode detectors and

Next, one of the four loads is removed and VSWR readings are taken using both positions of the switch. The readings should exhibit a ratio of 3:1. This completes the testing and the bridge is now ready to be installed in the line permanently.
construction

This VSWR bridge is constructed on a single 10 x 5 cm (4 x 2 inch) printed circuit board, which is mounted on stand-offs inside an aluminum box. The rf is brought into and out of the box with short pieces of RG-58, stripped on one end for soldering to the terminal and groundplane of the printed circuit board. The other end uses a male BNC connector connected to a bulkhead feedthrough connector. Two feedthroughs are mounted on the back of the main cabinet, one being used for rf in, and the other for rf out.

The meters are 1-mA full-scale movements with custom-designed scales. The face plates were removed and soaked in a solvent to remove the paint. They were then repainted with white spray. The next step was to tape the base plate to a pad of paper, and with the aid of a little geometry and a compass, a new arc was drawn on the white paint. The scale divisions were computed by changing power into a current ratio and finding the antilog.

broadband transformer design

It is very important in broadband toroidal transformer design to select a material that has a high permeability. This results in a transformer that, when measured on a vector impedance meter, will display a high real part of the impedance and a small reactive part, as indicated by a small phase angle reading. The low frequency roll-off is determined by the permeability of the material and the number of turns used, with a minimum number being determined by the impedance levels that the transformer will be working into. The high frequency roll-off is determined, for the most part, by the interwinding capacitance of the wires.

acknowledgments

I would like to thank Mark Stevens, WA1WSV, for his original ideas on the toroidal transformer approach, and also Eric Blomberg, N1BF, who helped design the current tracking portion of the bridge.
New 2 Meter Avanti Mobile Antenna
Mounts on glass — no holes!

- Receives and transmits through glass.
- Superior performance equivalent to 5/8 wave.
- Superior radiation full Omni-Directional.

It's easy to install — no holes to drill, no magnet to scratch the paint, no clamps. Uses an especially developed epoxy adhesive that secures antenna to window like a 1/4" bolt. The capacity coupling box is simply attached with a special adhesive tape to inside of window. Worried about crimping or corroding coaxial cables? It's all inside and out of sight.

Models also available for 220 MHz and 432 MHz.

AH 151.3G SPECIFICATIONS
Gain: Equivalent to 1/2 wave
2 meter V.S.W.R. Band With: Better than 1.11
Maximum power: 150 watts
Nominal Impedance: 50 Ohms
Chrome plated casting, Stainless Steel hardware. Sawed whip holder.
Height: 33".
Performance and Mechanical Patents Pending

Buy one from your nearest AVANTI dealer. If your dealer does not have one in stock, have him call the following toll free number and we will ship him one within 24 hours:

(800) 323-9429

See Avanti's other new amateur mobile and base antennas. Write for new catalog today.

Avanti Research and Development, Inc.
340 Stewart Ave., Addison, IL 60101
1979 In Canada: Lenbrook Ind., Scarborough, Ontario M1H 1H6

ANTENNA COMPONENTS
Antenna wire, stranded #14 copperweld.. $0.65
Antenna Wire, stranded #15 copperweld.. $0.25
Vans Gorden HI-Q Baluns, 1:1 or 4:1.. 9.95 ea.
Unadilla/Reycy, W2AU Baluns, 1:1 or 4:1... 14.95 ea.
Vans Gorden HI-Q center insulators.. 4.95 ea.
Unadilla/Reycy, W2AU center insulators... 9.75 ea.
Ceramic "Dogbone" end insulators, pair.. 9.85
Unadilla/Reycy plastic end insulators, pair.. 3.50
Poly guy rope, 450 lb. test, 100' roll.. 3.48
Poly guy rope, 275 lb. test, 100' roll.. 3.00
Unadilla/Reycy W2VS Traps, KW-10 thru KW-40............................. 21.95 pr.
Belden 8214 RG-8-U type foam coax... 28.85
Belden 8219 RG-58/A/U foam coax.. 11.10
Belden 8219 RG-58/A/U foam coax, Ultraflexible............................. 15.15
Amphenol 83-15P PL-259 silver plated connectors............................. 1.75 ea.
Amphenol UG-175/U adapters (RG-58).. 2.55 ea.
Amphenol PL-258, straight adapter.. 1.07

LARSEN MOBILE ANTENNAS
Larsen Mount LM-150 2 mtr. whip and coil..................................... 21.65
LM-MM magnetic mount... 13.29
LM-TLM truck lid mount... 12.77
New Motorola type mount, NMO-150 2 mtr. whip and coil................. 23.22
NMO-MM magnetic mount... 14.91
NMO-TLM truck lid mount... 15.98

Other Larsen Models Available
Complete Palomar Engineers Line Available
Century International Rubber Duck Antennas in Stock
WRITE FOR A FREE COPY OF OUR CATALOG

BRAND NEW
from SCELBI:
PRACTICAL ANTENNAS!

You’ve never seen an antenna book quite like this:
- How to build practical beams, quads, and wire antennas.
- Computer-generated beam headings to every known country in the world
- Charts and tables to eliminate tricky calculations.
- Practical ideas for the newcomer.
- Complete bibliography of magazine articles on antennas.
- Tips on how to keep your antenna up. And much, much more.

New format, big diagrams, easy-to-read text. And it’s completely brand new! Durable vinyl cover. $9.95. Order now.

Ham Radio’s Bookstore
Send Practical Antennas to:
Name: __
Street: __
City: __________________ State: __________ Zip: __________

Please enclose $9.95 plus $1.00 shipping or credit card information.

G & C Communications
730 Cottonwood
Lincoln, Nebraska 68510

VISA

M A S T E R C H A R G E
SUB-DEALER INQUIRIES INVITED!
(Send letterhead for sub-dealer package)

New Equipment - All new equipment on display is operating for actual "on the air" QSO's. We really know our gear!

Used Equipment - We recondition and guarantee all our used equipment. We make sure it satisfies you!

Service Shop - You've probably heard about our fine service reputation - using most modern test equipment, Heathkit, Tektronix, many others. We do it right!

Inventory Warehouse - Our large volume assures you the best prices!

Call Toll Free 1-800-243-7765
FREE
Monthly Used Equipment / New Specials List
Courteous, Personalized Service

SUB-DEALER INQUIRIES INVITED!
(Part of the sub-dealer package)

PARTIAL USED EQUIPMENT LIST (Guaranteed 30 Days - 7 Days Refund Policy)

COLLINS RADIO
7553 Receiver With CW FILTER 479.00
MP-1 DC Power Supply 75.00
KWMS-2N 1045W SSB 562 Transceiver (Exc. Cond.) 699.00
S10F-2 AC Supply 149.00
75/5 10-80 Meter Recev. 3 Mechanical Filters 218.00
755 10-80 Meter Receiver 299.00
321 1W SSB 12-W Transmitter 379.00
32B-1 4-watt AM 189.00
32L 10-80 Meter Amp 195.00
75S-1B 10-80 Meter Receiver 649.00
KWM-2 (round) 10-80 Meter SSB 562-2 P.S. 1099.00
KWM-2 32 MIHZ RCVR - Excellent Condition 549.00

DRAKE
2U-1000 Meter RCVR W. Xtal Cal & 2C-Q Multiplier SPKR 218.00
TR 6 6-Meter XCVR W/ NB 579.00
1K 10-100 Meter Xmt W/ AC-4 P.S. 419.00
SSR 1 General Coverage Receiver 219.00
AC 10 Power Supply 379.00
RC 10 100 Meter RCVR W/ M-4 Speaker 459.00
1K 10 100 Meter XMT W/ AC-4 P.S. 329.00
1R 6W NB 6 Meter XCVR W/ AC-4 679.00
Supp. Shure 444 Mike 189.00
TR 333 C-2 Meter Port. XCVR W/ Case, Mike, Cord, Nicads, 12 Volts 179.00
Z1 10-80 Meter RCVR W/ Xtal Cal. 75.00

DENTRON
JR. Master Tuner 49.00
WP-1A 2.8K Peak Headroom Wattmeter (Like New) 125.00
GLA 1000 Watt Amp. W 10 Meter Mod. (New finals) 275.00
MT-3004J 3KW Tuner 259.00
MLA 2500 10-80 Meter - 2Kw 629.00

HEATHKIT
SM210 Volt OMM Meter 80.00
HMR 202S 2 Meter XCVR W/ Touch Tone Mike 249.00
SB104 10-80 Meter Solid State Digital XCVR 599.00
W/ HP114UP P.S. Speaker 75.00

SB101 10-80 Meter XCVR W HP28H AC & HP114UP P.S. 449.00
HP 16,80,15 Meter CW/SSB Romanes + VFO 159.00

KENWOOD
TR-7200A 3 Channel 2 meter FM XCVR W. Bracket, DC Cord, Xats-52 94, 94, 28, 48, 40, 34, 44, 16, 26, 10, 70 189.00
T-5200 10-80 Meter XCVR W. DK-52D - Adapter, Back For DC 519.00
DG 5 Digital Display, Frequency Counter 129.00
DG-5 General Coverage XCVR 219.00
T-525A 2M Mode XCVR Digital 529.00

SWAN
Swan 1001 1500 WPR 5K Meter 50.00
Swan 250 6 Meter XCVR W. Nuine Blk, 117XC Sppr. Sppk 529.00
Swan 706C - 10 80 Meter XCVR W. 117XC 612.00
Supp. Sppk., Vos, DC Supply. 329.00
Swan 260 U-Cymet 10-80 XCVR W. AC, DC 289.00
Supp. built in 329.00
Swan 350 10-80 Meter XCVR W. 117XC AC Supply 329.00
Swan 249 117XC Supply 149.00
Swan 500 10-80 Meter XCVR W. 117AC. AC Supply 395.00

TEN TEC
505-Ampere 5200 Amp-Scop 10-80 Meter XCVR 265.00
Triton 11 10-80 Meter XCVR W. CW Filter 200 Watt P.E. P. Input - Solid State 399.00

VALME
VO 100 - Scope 149.00
FLX 400 10-80 Meter XMR 299.00
FIRX 400 2-80 Meter RCVR W. Matching Speaker 319.00
FT-401B 10-80 Meter XCVR 485.00
FT-100 80 Meter XCVR 375.00
FT-101EX 10-160 Meter XCVR W. Mike, Fan 459.00
FT-101EX 10-160 Meter XCVR W. Mike, Fan 459.00
SP-401P Phone Patch 15.00
1HF-7 5-30 MHZ - General Coverage XCVR 250.00

AUTHORIZED DEALER . . .
FOR OVER 50 MAJOR LINES.

NEW AND USED EQUIPMENT "Get on our used equipment mailing list.
TRADES WELCOME "The best allowances anywhere" "We buy good used SSB gear"
OUR EVERYDAY LOW PRICES "remain the same for cash or trade-ins!
SAME DAY U.P.S. SHIPPING "Just a phone call away"
COMPLETE RADIO SERVICE SHOP "Mail Order Repair Service"
- Fast Efficient Service
- We Repair All Brands
- All Work Guaranteed
- Most Repairs Done and Shipped Within 7 Days
- Amateur Extra / First Class Licenses
- Free Shipping Both Ways If Work Is Done
- Send Us Your Defective Equipment U.P.S Collect

OUR FINE REPUTATION SPEAKS FOR ITSELF . . . "YOU SHIP IT - WE FIX IT"

Alda
B & W
Alliance
CDE
Atlas
CES
Beatson
Barber
Bird

DI1
Drake
E4O
Fischer
Brecher
Dentron

ICOM
KD1
KLM
Heinle
Larsson
PIPO

MEJ
Medallion
Shure
Mirage
PIPO

TRAC
Rohn
Vetroplex
Wilson
Tec
Yaesu

"We can match most any other quote!"

Call or Write for your super quote today!

THOMAS COMMUNICATIONS
95 Kitts Lane, Newington, Connecticut 06111
"Near ARRL Headquarters"
Connecticut Residents Call: 203-667-0811
OPEN MON.-FRI. 10-6 • THURS. 10-8 P.M. • SAT. 10-4
EASY DIRECTIONS: Rt. 15 South - 2 blocks past McDonald’s (Berlin Turnpike)

VISA
WE EXPORT
(Sub-Dealers wanted in foreign countries)
Heathkit Micoder Touch-Tone pad adapted to low-impedance input

A quick and easy method of adapting the Micoder to transmitters such as the ICOM 22A, 22S, and 230 is to simply replace the audio-input pot (500 ohms) with a 10-kilohm pot. In the ICOM 22A this pot is R62, which is located behind the microphone connector. In the ICOM 230 it’s R34, which is located on module AF.

The Micoder is designed for a 10-kilohm output load. For the ICOM 22A/22S, a Radio Shack 10-kilohm pot (part number 271-218) will work if bent slightly to allow the case to close. I used the 10-kilohm pot (Heath part number 10-1039, R122), which was left over when I converted my HD-1982 to an HD-1984. This conversion, which is available from Heath stores for about $9.00, provides a crystal-controlled oscillator that is quite stable and requires no adjustment or alignment.

Incidentally, there are two levels of Heath conversion kits. One has a zener for regulation and one does not. If yours has the zener, load resistor R105 should be changed from 820 to 470 ohms for the Micoder and to 1200 ohms if used with the Heath HT.

I set the Micoder level control, R103, at 50 per cent range. The new 10-kilohm pot should be set by trial and error with another station while on the air.

I also taped the removed pot (580 ohms) to an inside cover so that it could be easily retrieved for restoration to the original low-impedance microphone input.

E. L. Linde, WB2GXF

off-the-air S-line monitoring

While modifying the S-line for full break in (QSK) may not be desired by many, there are those who wish to monitor the off-the-air CW signal of the 32S-1 rather than listen to a sidetone. This modification may be made by placing the 75S-1 FUNCTION switch to OPR. However, this results in a very strong signal. You’re then required to constantly adjust the RF GAIN to compensate for this strong signal, as well as the weaker received signal from the desired station. With the addition of two readily available components, off-the-air monitoring can be more pleasant.

Refer to fig. 1. With S1 in the NORMAL position receiver operation is normal. In the MONITOR position, R1 (Radio Shack 271-215) is added to the receiver’s rf gain circuit. During receive, R1 is shorted by the contacts on the 32S-1 VOX relay, K1. When the transmitter is keyed, normally closed K1 contacts open, inserting R1. R1’s resistance is adjusted only once to provide a comfortable monitoring level in the speaker or head-

fig. 1. Radio Shack 271-215 pot for off-the-air monitoring level (R1) is added to the 75S-1 rf gain-control circuit.

The small size of the Radio Shack phones; CW SIDETONE is disabled by S1b. If you have difficulty obtaining a pot with a dpdt switch or if only an spst switch is available, S1b may be eliminated and the CW SIDETONE cable can be disconnected.

The small size of the Radio Shack
After six months of operation I found that the rig will also work in Teletype service. We have a net that runs AFSK at 170 Hz in the New York City area. (Nothing gives as good an indication of how well a rig works as 20 minutes of key-down operation.)

Everything seemed to be what I wanted. But — when I closed down for the night I found that the Memorizer forgets! Whenever I took the rig into the house, or just out of the car, I found this to be true. I looked into the instruction manual one evening, and out came the answer.

Remembering that my LED watch could remember time with just a low-power battery, I thought perhaps the same idea would work in the FT-227R. A check of the schematic shows that when the rig is connected to a battery, as in an automobile, and the memory switch is pressed, 5 Vdc is constantly applied to the PLL board. This is the PB-1773A unit in the book. The 5 Vdc was derived from the 13.5-volt line from the auto battery. A further check showed that the ICs in the PLL were of the CMOS type and would probably work on very little voltage if pushed. The solution to the problem was simply adding 3 Vdc and a 1N4002 diode (fig. 4). These mods allow a small voltage on the PLL circuit through a diode to prevent higher voltage from ruining the two AA cells. It’s that simple.

Construction

The first step in making the addition is to remove the five screws and put aside the bottom cover (this is the one with the speaker). Looking into the unit you’ll see the PLL circuit in back of the front panel. In my unit the PLL circuit was covered by a fiber insulating cover.

Remove the three screws that hold the PLL circuit cover. Remove the cover. With the rig facing to the right, look at the upper left-hand corner of the board. You should see three traces running toward the “bottom,” or down the long length of the board. Follow the third trace in from the end. It should go to pin 16 of all the ICs. This is the power trace and the one that we want.

Solder a 100-150 mm (4-6 inch) wire to it. Find a ground point on the board. Anywhere will do. Solder another wire of the same length to it. Replace the cover and the three screws on the PLL board. Observe good construction practice and use a very small (25-watt or so) soldering iron.

This should leave you with two wires sticking out of the PLL board with the cover on. Next solder two AA batteries in series. Solder the anode of the diode (unbanded end) to the positive side of the “top” battery, and the cathode (banded) side to the wire coming from the PLL board connected to ground. This will put a positive voltage on the PLL at all times.

Now solder the ground wire from the PLL board to the negative end of the batteries. That’s all there is to the electrical mods.

I wrapped the batteries and diode with PVC electrical tape and located them in an empty area of the board.

Total drain on the system is only 3 mA, so the batteries should last for quite a while. I’ve had the system in operation for some months and haven’t yet replaced the batteries.

With this system you can have memory for the low, low price of under $0.65. This may be one of the best modifications available for the money. Now, if you have one frequency in memory and another on the dial, the radio will remember both frequencies, even if the power is off and the rig is removed from the automobile.

Stephen Mendelsohn, WA2DHF
NEW FROM LUNAR

Modular Erectable Towers

- Ideal for ground or roof mounts
- One man can assemble and erect
- Lightweight
- High quality aluminum alloy
- High stability
- Modular and portable
- Extremely rugged

These unique antenna towers can be installed on the ground or roof. Since they're easily transported and site erected, they're a natural for field and portable operations.

Constructed of sturdy aluminum alloy, they're sturdy enough to handle large size HF beams and EME arrays as well. Also available with optional stainless steel hardware for harsh environments.

Base is approximately 60” high and weighs 28 pounds. Tower sections are 72” high and weigh 21 pounds.

LUNAR'S NEW MODEL 2M 10-150 LINEARIZED AMP
Now ready and being shipped. We held off on announcing it until it was right.... Ready now. Order today from your Lunar dealer.

TUNE in with DAVIS

FREQUENCY COUNTERS

NOW ... for the FIRST TIME
RECEIVE FREQUENCY ADAPTER
ONLY $49.95

7208 10 Hz to 600 MHz MINI COUNTER
- All Metal Cabinet
- 8 Digit 4 LED Readout
- 115v or 12v Operation
- 1 & 1 Sec Gate Times
- Automatic DR

7208 Kit $149.95
7208A Assembled $199.95

Options:
- Prop Crystal Oven (OCXO) *1 ppm 10° to 50°C $39.95
- Ni-Cad Battery, Built-in with charger $39.95
- Handle $5.95
- VHF/UHF Preamp $10.00
- Receive Frequency Adapter $49.95

*OCXO - achieve superior frequency stability through the use of proportional control oven which maintains the crystal at a stable temperature.

CALL FACTORY DIRECT
1-716-874-5848

TERMS: Add $3.00 shipping to U.S. & Canada. Other countries add 10% to total price. N.Y. State residents add 7% sales tax. C.O.D. for $1.00. P.O. accepted from rated companies.

WANTED FOR CASH

490-T Ant. Tuning Unit
(Also known as CU1658 and CU1669)

618-T Transceiver
(Also known as MRC95, ARC94, ARC102, or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112 and some aircraft units also required.

We stand on our long term offer to pay 25% more than any other bonafide offer.

DCO, INC.

10 Schuyler Avenue
No. Arlington, N. J. 07032
Call Toll Free
800-526-1270
(201) 998-4246
Evenings (201) 998-6475

DCO, INC.

10 Schuyler Avenue
No. Arlington, N. J. 07032
Call Toll Free
800-526-1270
(201) 998-4246
Evenings (201) 998-6475
MECHANICAL & ELECTRICAL ENGINEERS

THERE'S A LOT TO BE SAID FOR CAREER STABILITY... AND WE'RE SAYING IT LOUD AND CLEAR

We're General Electric Mobile Radio. We produce a broad range of sophisticated, high-quality VHF/UHF two-way radio systems—fixed station as well as mobile.

Our customers in business and industry... and especially in the public sector (police, fire and ambulance services, for example) depend on us for the most advanced land mobile communications systems they can buy. On a continuing basis. So neither our business nor your career is at the mercy of a single contract.

We continue to design, build and sell the finest systems and equipment available. And our engineers continue to do work that is personally and professionally satisfying—making valuable contributions to a wide variety of ongoing development programs.

That said, we have openings for creative self-starters with an appropriate degree and experience in one or more of the following areas:

RF CIRCUIT DESIGN
Experience in the design of small signal and high power, broadband circuits up to 1 GHz. Applications include circuits for transmitters, receivers, and synthesizers.

LOGIC/SIGNALLING CIRCUIT DESIGN
Analog and digital circuit design for control, signal processing, and selective signaling. Applications include the control of rf devices, telephone interface terminal equipment, and various tone control devices.

MICROCOMPUTERS
Software and hardware design of microprocessor-based circuits. Experience with one of the popular microprocessor families is desirable.

ADVANCED ENGINEERING
MS degree desirable. Must be creative and imaginative in developing new approaches to communication circuits and systems.

ADVANCED MANUFACTURING ENGINEERING
Develop product cost and manufacturing automation projects for all product lines. Interface with product design groups to maximize automation potential of new designs.

CONSULTING ENGINEER
Requires Ph.D. degree. Must be able to provide a high degree of technological leadership in computer-aided design, circuit synthesis and analysis, and in communication theory.

MICROCIRCUITS DEVELOPMENT
Enter level and experienced people required in all phases of the hybrid technology, with emphasis on thick film.

We offer excellent technical facilities, challenging assignments, talented and experienced colleagues, and ample opportunities for growth and advancement. Plus peace of mind. Plus choice living in progressive Lynchburg (just the right size at 70,000) at the foothills of Virginia's beautiful Blue Ridge Mountains.

For full details, send your resume and salary history to: Professional Relations, Ref. 98-G, General Electric, Mountain View Road, Lynchburg, VA 24502

An Equal Opportunity Employer M/F
Ten-Tec Omni hf transceiver

The new Omni high-frequency transceiver by Ten-Tec has just about everything the discriminating Amateur operator could ask for. It's Ten-Tec's top-of-the-line radio - deluxe in every respect from the functional styling to the smallest detail of operating convenience. Truly an engineering masterpiece for those who demand the best.

All-solid-state design is featured, of course. The radio covers 160 through 10 meters and has convertible 10-MHz and AUX band provisions. This means that you can receive WWV and the Omni can transmit between 10-10.5 MHz or 18 MHz should additional Amateur frequencies be granted during the WARC conference. The radio is broad-banded, which means you can change bands without the inconvenience of tune-up and without danger of out-of-resonance damage to the final amplifier.

If you demand operating convenience, the Omni leaves little to be desired. VOX and PTT circuits are built in. A built-in squelch circuit, unusual in hf radios, is also included. It's great for tuning and decreasing band noise while monitoring a frequency for net operation or schedules.

The Omni has a four-position CW/ssb filter. Bandwidth is 150 Hz with three selectable skirt contours for optimum CW reception. The fourth position of the selectivity switch selects the sideband filter, which is an 8-pole crystal lattice design with 2.4-kHz bandwidth and a 1.8-shape factor.

For the CW operator, the Omni features two-speed break-in. A front-panel switch selects either fast or slow speeds. The fast speed is instant, full break-in. Slow speed has a longer mute time before the receiver is activated — useful when working in a crowded band with heavy interference or when operating mobile. The slow setting allows better sidetone readability under adverse conditions. The receiver is totally muted to CW speeds as low as 10 wpm, which is still short enough for full break-in.

Offset tuning is essential in a transceiver. The Omni features two-range offset tuning. One range is ±0.5 kHz for fine tuning the received signal. Another offset tuning range allows you to tune the receiver over a ±5 kHz range for working stations above or below the frequency set by the main tuning control.

Ten-Tec engineers have included a receiver section designed to achieve an ideal balance between dynamic range and sensitivity. This means you can hear loud local stations and weak DX stations without the nuisance of front-end overload. Receiver sensitivity is 2 μV on 160 meters and 0.3 μV on 10 meters: about 85 dB overall. Even greater overload performance can be attained by a switchable PIN diode attenuator on the front-panel rf gain control. Great for eliminating that kilowatt down the street!

WWV is available by switching to the 10-MHz band position. And the Omni is ready to receive on this band (10-10.5 MHz) now. Transmitting capability is available on this band if it becomes available for Amateur Radio later.

Some of the many other Omni features include provision for front-panel control of linear amplifier and antenna systems, phone-patch jacks, "timed" crystal calibrator (Model 545 Omni-A), zero-beat switch, SWR bridge, adjustable alc and sidetone, dual speakers, and plug-in circuit boards.

For planning your new station, here are the dimensions of the Omni and packaging information. The radio measures 14.6 cm high, 36 cm wide, and 35.5 cm deep (5½ × 14½ × 14 inches). To blend with any decor the Omni features functional styling: a "clamshell" aluminum case is clad in textured black vinyl with a nonreflective, dark metal front panel surrounded by an extruded satin-finish aluminum trim bezel and tilt bail.

The Ten-Tec Omni is available in two models. The Omni-A with analog dial, sells for $899. The Omni-D, with six 11-mm (0.43-inch) LED digital readouts is $1069. Accessories are also available including model 546 keyer, $85; model 243 remote VFO, $139; model 248 noise blanker, $49; and model 252MO ac power supply, $119.

For a comprehensive look at the Omni, write for the Ten-Tec Omni brochure available from Ten-Tec, Incorporated, Sevierville, Tennessee 37862.

Kantronics morse code teletype reader

Kantronics' Field Day* is a tri-mode microcomputer system that reads and displays Morse code and radioteletype signals and computes Morse code speeds. It is a complete unit that doesn't require peripheral equipment or television monitors for use.

Field Day is lightweight and portable. A movable support arm tilts the unit to four different viewing angles.

*"Field Day" is a trademark of Kantronics, Incorporated. All rights reserved.
and doubles as a handle for field use. The enclosure is sturdy and durable, but light and compact as well. Front-panel controls include ON/OFF, SPEED (display), EDIT, (word) SPACE, and RESET.

Field Day copies incoming or outgoing signals through the audio output of a receiver. (Outgoing signals are monitored through receiver sidetone provisions.) An internal speaker is enclosed, and volume is adjusted through the receiver audio gain potentiometer. If Morse code is being copied, Field Day screens out unwanted signals with an active 200-Hz bandwidth filter. The 750-Hz center frequency signals are then entered into the microcomputer system, which uses an 8035 chip.

Once signals are converted to alphanumeric text, they are advanced from right to left across ten 14-segment displays. When in the codespeed mode, the leftmost LEDs display the speed while text advances across the others.

Two Morse copying modes are accessed on the front panel. In the standard copying mode, fairly strict Morse specifications are applied to the incoming code. If spacing or weighting is incorrect, the unit will display a variety of mumbo-jumbo. This mode is good for copying good code, and acts as the perfect "judge" for practicing Morse sending.

When the code editor is engaged, Field Day processes the signals with a relaxed program that effectively analyzes and edits poorly sent code. The corrected version is then displayed. With the code editor in use, a majority of the signals found on the air were edited on 90 per cent accuracy levels in laboratory tests. These tests used random signals from all classes of Amateur bands.

In addition to code editing, a word spacing control is included on the Field Day front panel. This control determines the most likely word breaks and inserts spaces into bunched copy.

Field Day computes code speed with an accurate sampling program. This program is based on the basic Morse element, which is the duration of a single dit. The speed is tracked during the transmission, and changes are conducted and displayed on the LEDs. Morse code speeds are displayed at the touch of a front panel button. When not in use, all ten LEDs are devoted once more to code-text display.

In RTTY mode, which is controlled from the back panel, the standard 60, 67, 75, and 100 words-per-minute Baudot teletype speeds are copied. With no other teletype equipment, the two-tone signals can be read as standard text. Also found on the back panel are terminals for audio input, TTL compatible inputs, TTL compatible demodulator output from the unit, and a phone jack for attaching headphones.

The Field Day enclosure is cream-colored with a brown, tan, and cream front panel. The 14-segment LED displays are red and are protected by a red polylysol filter, laminated into the front panel.

For more information, contact Rick Link, WB0KDE, Advertising Manager, Kantronics, Inc., 1202 East 23rd Street, Lawrence, Kansas 66044.

fast-scan ATV transmitter/converter

P.C. Electronics, of Arcadia, California, has put their ATV modules into a single attractive enclosure for those hams who are more interested in operating than building. All that is needed with the TC-1 is a Technician or higher Amateur license, a TV set tuned to channel 2 or 3, a 435-MHz antenna, and a video source. The video source can be a closed-circuit TV camera, computer video, teletype video, or video tape recorder.

The TC-1 ATC transmitter/converter contains a sensitive, varactor-tunable, 420 to 450 MHz converter with output on TV channel 2 or 3. No modification to your TV set is necessary to receive fast-scan ATV because the same standards are used as in commercial broadcast. The transmitter section of the TC-1 runs 10 watts peak output on 439.25 or 434.0 (or any other ATV frequency by special order).

Computer alphanumerics, graphics, and color can be transmitted because the modulator has a bandwidth of 8 MHz. This allows you to play Star Trek or blackjack over the air.

Price of the TC-1 is only $399 delivered in the U.S. Options include AC/12 Vdc for portable work, $30; off-the-air video detector and monitor driver (to see the actual transmitted picture), $25; and on-carrier audio for those areas with an inband ATV repeater, $50. The 117-Vac, 50-60 Hz power supply is built in. UPS delivery prices are included to save you the trouble of trying to figure out the charges. Direct mail-order sales saves you the cost of dealer markup.

Send an addressed, stamped envelope for a catalog of modules, cameras, and monitors. Write P.C. Electronics, 2522 Paxson Lane, Arcadia, California 91006.

sweepable function generator

The Model 2001 four-waveform function generator, from Continental Specialties, is electronically sweepable over a 10:1 to 100:1 range. The 2001 offers sine, triangle, square, and TTL square waves from 1 Hz to 100 kHz in five pushbutton-selectable overlapping ranges, tuned with a 10:1 vernier dial featuring fifty increments. Accuracy is ±5 per cent of the dial setting. The TTL output will drive ten
TTL loads with rise and fall times of less than 25 ns.

Sine-, square- and triangle-waveform outputs are variable over a range greater than 40 dB. The high level output is rated 0.1-10 volts p-p into an open circuit; 0.05-5 volts p-p into a 600-ohm load. A separate low level output, 40-dB down from the TTL output, is rated at 1-100 mV into an open circuit; 0.5-50 mV into a 600-ohm load. A variable-amplitude control, once set, holds the output signal to within less than 0.5 dB over the entire frequency range.

The sinusoidal waveform offers less than 2 per cent distortion. The triangular waveform is within less than 1 per cent of linearity error. The standard (not TTL, which is a separate output) square wave features rise and fall times of less than 100 ns and a time symmetry error of less than 2 per cent.

A voltage-controlled sweeping oscillator (sweep VCO) may be zero referenced from any frequency setting. A banana jack input will accept any signal from 0 to ±10 volts and offers a 22k input impedance.

The Model 2001 is calibrated at 25°C ±5°C, but operates over a 0-50°C range. The 26.4 x 7.6 x 17.8 cm (10 x 3 x 7 inch) package weighs 1.0 kg (2.2 pounds). Power requirements are 6 watts at 105/125 Vac, 50/60 Hz. A 220-240 Vac, 50/60 Hz powered version is optionally available. Also available is a 20-dB banana jack adapter output attenuator. Suggested resale price for the Model 2001 is $124.95.

For additional information, contact Continental Specialties Corporation. East Coast: 70 Fulton Terrace, New Haven, Connecticut 06509; (203) 624-3103; TWX (710) 465-1227. West Coast: 351 California Street, San Francisco, California 94104; (415) 421-8872; TWX (910) 372-7992. Overseas: CSC UK LTD, Spur Road, North Feltham Trading Estate, Feltham Middlesex, TW4 40TJ, England; 01-890-0782; International Telex (815) 881-3669.

tunable power amplifier

A tunable master oscillator/power amplifier demonstrating Class-E switching-mode rf power amplifier circuit technology is available from Design Automation, Inc., of Lexington, Massachusetts.

The Design Automation Model E10-3 is a tunable, 10.5-MHz power amplifier that demonstrates Class-E rf operation, while permitting observation of the voltage and current waveforms on a 100-MHz oscilloscope. Four different, and interchangeable, transistors provided with the circuit demonstrate its low sensitivity to variations in transistor characteristics. Load network components adjust over a ±20 per cent range; transistor duty ratio over a 35-60 per cent range.

Deviations from nominal in transistor characteristics, component values, load, frequency, and input drive have little effect on the performance of Design Automation's patented Class-E circuitry. Serving the same function as conventional Class-B and -C circuits, Class-E circuits offer 80 per cent or higher efficiency, 20 per cent or lower power dissipation, and lower second-breakdown stress on power output devices, the firm claims.

For more information, contact Design Automation, Inc., Nathan Sokal, 809 Massachusetts Avenue, Lexington, Massachusetts 02173.

system three antenna by wilson

Wilson Electronics is proud to announce the latest in tri-band antennas for 10-15-20 meters. The System Three features lightweight design yet heavy-duty construction materials, low swr across all three bands, boom length of 4.2 meters (14 feet), wind-survival rating of 100 mph, direct feed with 52-ohm coax or with a balun, and power-handling capability of 2000 watts.

The System Three is listed at an economical price of $179.95. For more information, see your favorite dealer or contact Wilson Electronics, Consumer Products Division, P.O. Box 19000, Las Vegas, Nevada 89119.

Personal-Size DVOM

A new, 3½-digit, pocket-sized, digital multimeter has just been introduced by The Hickok Electrical Instrument Company for electrical/electronic test, calibration, and field-service applications. The instrument, designated the LX 303, while priced under $75.00, contains features generally found in more expensive units, including auto-polarity, auto-zero, and automatic over-range indication. A rugged, compact unit that fits easily in the palm of the hand, the LX 303 features a large one-half-inch, angle-mounted LCD readout for high readability indoors and out, even in bright sunlight. A reading rate of 3 readings per second makes accurate reading fast and convenient. Battery

For more information, see your favorite dealer or contact Wilson Electronics, Consumer Products Division, P.O. Box 19000, Las Vegas, Nevada 89119.
Further Your Frequency Counting 10 Ways... with DSI

Whatever your needs in frequency measurement and readout, you're sure to achieve optimum results with DSI precision digital instruments. Their portability and rugged construction—coupled with the judicious use of the latest technologies in solid-state design—have culminated in equipment that provides the best performance/price trade-offs available.

GENERAL-PURPOSE MODELS

Featuring automatic decimal points and zero blanking, and including built-in antennas and battery trickle chargers, these ruggedly housed portable instruments—that can be taken wherever you need to go—are ideal for use by service and testing technicians, communications people and sophisticated amateur/professional radio operators.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>7700G</th>
<th>3550K*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>50Hz–700MHz</td>
<td>50Hz–1.3GHz</td>
</tr>
<tr>
<td>Accuracy Over Temperature</td>
<td>0.2PPM±0.005°C</td>
<td>1.0PPM±0.005°C</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>at 50Hz</td>
<td>at 220MHz</td>
</tr>
<tr>
<td>(Typical)</td>
<td>10mV</td>
<td>10mV</td>
</tr>
<tr>
<td>(At 1kHz)</td>
<td>25mV</td>
<td>25mV</td>
</tr>
<tr>
<td>Number of Digits</td>
<td>8 (Auto Decimal Point & Zero Blanking)</td>
<td>8 (Auto Decimal Point & Zero Blanking)</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>115VAC or 8.2 to 14.5Vdc</td>
<td>115VAC or 8.2 to 14.5Vdc</td>
</tr>
<tr>
<td>Dimensions</td>
<td>3"x6"x8"</td>
<td>3"x6"x8"</td>
</tr>
<tr>
<td>Prices (in Single-Unit Qty.)</td>
<td>$269.95</td>
<td>$199.95</td>
</tr>
</tbody>
</table>

* Model 3550K Quick-Kit (95% Assembled and 100% Tested by DSI). Priced at just $99.95. 20-Hour Rechargeable Battery Pack Option-03. $39.95 (in Single-Unit Qty.).

COMMUNICATIONS MODELS

These instruments offer a host of premier features like: tight accuracies over wide temp. and frequency ranges, 25dB pre-amplification with adjustable 60dB attenuation, 0.001Hz resolution—10Hz-1kHz; selectable 0.1, 1.0 and 10 sec. time-base, and 50 ohms or 1.0 meghm input impedance. They're handsomely packaged in rugged cabinets whose portability and dependable long-term performance will prove a boon for the most exacting field or test-bench requirements.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CT70</th>
<th>3550K*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>50Hz–700MHz</td>
<td>10Hz–1.0GHz*</td>
</tr>
<tr>
<td>Accuracy Over Temperature</td>
<td>0.2PPM±0.005°C</td>
<td>0.1PPM±0.005°C</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>at 50Hz</td>
<td>at 1kHz</td>
</tr>
<tr>
<td>(Typical)</td>
<td>50mV</td>
<td>20mV</td>
</tr>
<tr>
<td>(At 1kHz)</td>
<td>10mV</td>
<td>10mV</td>
</tr>
<tr>
<td>Number of Digits</td>
<td>8 (Auto Decimal Point)</td>
<td>8 (Auto Decimal Point)</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>115VAC or 8.2 to 14.5Vdc</td>
<td>115VAC or 8.2 to 14.5Vdc</td>
</tr>
<tr>
<td>Dimensions</td>
<td>3"x8"x6"</td>
<td>3"x8"x6"</td>
</tr>
<tr>
<td>Prices (in Single-Unit Qty.)</td>
<td>$369.95</td>
<td>$359.95</td>
</tr>
</tbody>
</table>

* Optional (01) 1.3GHz Version Available. 20-Hour Rechargeable Battery Pack Option-03. $39.95 (in Single-Unit Qty.).

HAND-HELD POCKET-SIZE MODELS

No bigger than a small calculator and utilizing the latest in LS1 technology, these instruments are a major advancement that obsolesces competitive makes. As small as they are, they do not sacrifice anything in accuracy and readout size. They feature resolutions of 1.0Hz—direct in just 1.0 sec.—or 10Hz in 10 sec.; and 10PPM TCXO; and have BNC direct inputs of 1.0 meghm (50 ohms pre-scaled). All this, and their cost-conscious pricing make them a most effective buy where pocket-size convenience is a key consideration.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>500HR</th>
<th>100HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>50Hz–500MHz</td>
<td>50Hz–1000MHz</td>
</tr>
<tr>
<td>Accuracy Over Temperature</td>
<td>1.0PPM TCXO Time-Base (17 to 40°C)</td>
<td>1.0PPM TCXO Time-Base (17 to 40°C)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>at 100Hz</td>
<td>at 500Hz</td>
</tr>
<tr>
<td>(Typical)</td>
<td>30mV</td>
<td>30mV</td>
</tr>
<tr>
<td>(At 1kHz)</td>
<td>30mV</td>
<td>50mV</td>
</tr>
<tr>
<td>Number of Digits</td>
<td>8 (Auto Decimal Point & Zero Blanking)</td>
<td>8 (Auto Decimal Point & Zero Blanking)</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>8.2 to 14.5VAC* or 115VAC (using External AC Adapter)</td>
<td>8.2 to 14.5VAC* or 115VAC (using External AC Adapter)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>3.5"x1.25"x5.75"</td>
<td>3.5"x1.25"x5.75"</td>
</tr>
<tr>
<td>Prices (in Single-Unit Qty.)</td>
<td>$169.95</td>
<td>$169.95</td>
</tr>
</tbody>
</table>

* Built-in Rechargeable Battery Pack Included as Std.
NEW TOWER DESIGN

TRI-EX'S "SUPER Z 25" TEN FOOT (3 METER) TOWER SECTION

- Tower sections may be joined to 200 feet (61 meters) high.
- Full ten foot useful length — No three and one-half inch loss of length per section as occurs when joining tower sections which have swedged joints.
- Easy to erect — Joining sleeve fits easily into each lower section leg and holds tower sections together while sections are being bolted.
- Can be disassembled easily — The joining sleeve tends not to freeze into the next section like a swedged joint tends to do; thus a "Super Z 25" tower may be disassembled after long use and re-erected at another location.
- Steel tower section — Hot dipped galvanized (42 lbs. - 19 kg.)
- Lightweight, strong, non-corroding Triexium™ tower section (18.5 lbs. - 8.4 kg.) also available. Triexium™ is a special space-age, lightweight, high-strength alloy similar to those used in jet planes and space craft. It is non-corroding and cannot rust. It is care-free and maintenance-free. Meets Uniform Building Code and is actually stronger than steel sections. It never needs painting.

See your dealer or call or write Tri-Ex for more information today.

(209) 625-9400

Tri-Ex® TOWER CORPORATION

7182 Rasmussen Avenue, Visalia, California 93277

VHF power amplifier

Mirage Communications is now offering a new solid-state 2-meter amplifier, the B108.

The B108 represents a new generation of all-mode amplifiers for vhf
NEW FROM DSI!
50 Hz — 500 MHz 8 DIGITS
1 Meg INPUT — 1 Hz RESOLUTION — 1 PPM TCXO

- AC—DC Operation
- BNC Inputs 1 Meg Direct 50 Ohms Prescaled
- 8 Large .4" LED Readouts
- Auto Decimal Point & Zero Blanking
- 1 Year Limited Warranty Parts & Labor
- 100% Factory Assembled in U.S.A.

$149.95
MODEL 500 HH
50 Hz — 500 MHz
Without Battery Capability

SAVE $500
With Battery Capability
MODEL 500 HH...
MODEL 100 HH...

The 100 HH and 500 HH hand held frequency counters represent a significant new advancement, utilizing the latest LSI design... and because it's a DSI innovation, you know it obsoletes any competitive makes, both in price and performance. No longer do you have to sacrifice accuracy, ultra small readouts and ultra resolution to get a calculator size instrument. Both the 100 HH and 500 HH have eight .4 inch LED digits — 1 Hz resolution — direct in only 1 sec. or 10 Hz in .1 sec. — 1 PPM TCXO time base. These counters are perfect for all applications be it mobile, hilltop, marine or bench work. CALL TODAY TOLL FREE: (800—854-2049) Cal. Res. CALL (800—542-6253) TO ORDER OR RECEIVE MORE INFORMATION ON DSI'S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10 Hz TO 1.3 GHz.

FREQUENCY COUNTER CONSUMER DATA COMPARISON CHART

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SUG./STD. LIST PRICE</th>
<th>FREQUENCY RANGE</th>
<th>TYPE OF TIME BASE</th>
<th>ACCURACY OVER TEMPERATURE</th>
<th>SENSITIVITY</th>
<th>DIGITS</th>
<th>PRE-SCALE INPUT RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSI INSTRUMENTS</td>
<td>100 HH</td>
<td>$99.95</td>
<td>50Hz-100MHz</td>
<td>TCXO</td>
<td>1 PPM</td>
<td>25 MV</td>
<td>8</td>
<td>100 Hz</td>
</tr>
<tr>
<td>DSI INSTRUMENTS</td>
<td>500 HH</td>
<td>$149.95</td>
<td>50Hz-550MHz</td>
<td>TCXO</td>
<td>1 PPM</td>
<td>25 MV</td>
<td>8</td>
<td>100 Hz</td>
</tr>
<tr>
<td>CSC†</td>
<td>MAX-550</td>
<td>$149.95</td>
<td>1kHz-550MHz</td>
<td>Non-Compensated</td>
<td>3 PPM @ 25°C</td>
<td>8 PPM</td>
<td>6</td>
<td>NA</td>
</tr>
<tr>
<td>OPTOELECTRONICS</td>
<td>OPT-7000</td>
<td>$139.95</td>
<td>10Hz-600MHz</td>
<td>TCXO</td>
<td>1.8 PPM</td>
<td>3.2 PPM</td>
<td>7</td>
<td>NA</td>
</tr>
</tbody>
</table>

continental specialties corp.

1 kHz · 50 kHz

TERMS: MC · VISA · AE · Check · M.O. · COD in U.S. Funds. Please add 10% to a maximum of $10.00 for shipping, handling and insurance. Orders outside of USA & Canada, please add $20.00 addition to cover air shipment. California residents add 6% Sales Tax.
A built-in receive preamp is a standard feature. The preamp utilizes a J310 FET in the latest, low-noise circuit design. It provides at least 10 dB of gain and a 2-2.5 dB noise figure. The preamp may be operated with or without the power amplifier's being turned on. Another standard feature is a rear panel connector for remote-control operation. An optional remote control head, the RC-1, is available with either a 1.8-meter (6-foot) or 5.4-meter (18-foot) cable.

Keying is provided by either the internal rf sensing circuit or the external transmitter. For ssb operation, the relay-drop-out delay is fully adjustable.

The B108 has a list price of $169.95. The RC-1 remote control head lists for $24.95. For further details, contact your local dealer or Mirage Communications, P.O. Box 1393, Gilroy, California 95020.

communications essentials and filters brochure

A new four-page brochure describing essential communications accessories and filters is now available from the J.W. Miller Division, Bell Industries of Compton, California.

Models CN-720 and CN-620 SWR and power meters provide simultaneous direct reading SWR, forward power, and reflected power. Model
DSI Super Meter

Transistor Tester — VOM

Diode Protected • Fused • Gold Plated Selector Switch

- DC VOLTAGE
- DC CURRENT
- AC VOLTAGE
- Ω RESISTANCE
- AF OUTPUT — DB
- 20kΩ PER VOLT
- HFE DC AMP FACTOR
- ICEO LEAKAGE

$29.95

MODEL

YF-370

COMPARATIVE VALUE 49¢

YF-370 $29.95

Shipping, Handling and Ins. $3.00

Every YF-370 is factory assembled, tested, and includes diode protected meter movement with a fused input and an extra fuse. The switch assembly has double wiping gold plated contacts to assure years of trouble-free service. At this low price buy two...one for the car and one for the shop.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Measurement Ranges</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCV</td>
<td>0 - .1V - .5V - 2.5V - 10V - 50V - 250V - 1000V</td>
<td>± 3% fs</td>
</tr>
<tr>
<td>ACV</td>
<td>0 - 10V - 50V - 250V - 1000V - 30Hz to 30kHz</td>
<td>± 4% fs</td>
</tr>
<tr>
<td>DCA</td>
<td>0 - 50μA - 2.5ma - 25ma - .25A</td>
<td>± 3% fs</td>
</tr>
<tr>
<td>Ω</td>
<td>.2 to 20mΩ</td>
<td>Range x 1 x 10 x 1 k x 10k</td>
</tr>
<tr>
<td>dB</td>
<td>+ 10db - + 22db for 10VAC</td>
<td>± 4% fs</td>
</tr>
<tr>
<td>ICEO</td>
<td>0 - 150μA x 1k x 10 - 0 - 15ma x 10 - 0 - 150m x 1</td>
<td>± 3% arc</td>
</tr>
<tr>
<td>HFE</td>
<td>0 - 1000 @ x 10</td>
<td>$\frac{I_F}{I_L}$</td>
</tr>
</tbody>
</table>

TERMS: MC — VISA — AE — Check — M.O. — COD in U.S. Funds.

Orders outside of USA & Canada, please add $5.00 additional to cover air shipment. California residents add 8% Sales Tax.

DSI INSTRUMENTS, INC.

7924 Ronson Road, Dept. G, San Diego, CA 92111
REMOTE CONTROLLED ANTENNA SWITCHING LETS YOUR FEEDLINE WORK HARDER...

control unit with indicator lights

MODEL 50
Remote Antenna Switch $150.00 + $3 shipping

... AND

Cleans up your act in the shack!

Eliminates the tangle of feedlines and manual switches usually associated with multiple antennas.
With 3kW power rating, high-speed low-loss operation, rugged weather-proof construction and LED indication of antenna in use, it adds up to THE solution to your antenna switching problems.

Order factory-direct or write for complete information on our line of available models.

ANTENNA MART
515-292-7114
box 1010, i.s.u. station, ames, iowa 50010

RF-440 rf speech processor increases talk power with splatter-free operation. Models CS-201 and CS-401 coaxial switches ensure high isolation — better than 50 dB at 300 MHz, and better than 45 dB at 450 MHz.

A broad line of interference filters includes highpass, lowpass, audio, and ac power-line filters. For additional information, contact Jerry Hall, Operations Manager, J.W. Miller Division, Bell Industries, 19070 Reyes Avenue, Compton, California 90224. Telephone (213) 537-5200.

short circuits

grounded-grid matching circuit

The author inadvertently supplied the wrong schematic for the wideband grounded-grid matching circuit published in the March, 1979, issue of ham radio. This schematic shows the correct matching network. All inductors are in µH and capacitors in pF.

phase coherent RTTY modulator

The schematic diagram of the phase-coherent RTTY modulator published in the February, 1979, issue of ham radio contains an error. The resistor between pin 7 of U1 and the LOW-ADJUST potentiometer should be 10k. The op-isolator to be used as a current loop interface should be connected as shown here.
YOU ASKED FOR IT
YOU GOT IT
DSI QUIK-KIT®

50 HZ — 550 MHZ COUNTER KIT
95% ASSEMBLED 100% TESTED
Performance You Can Count On

$99.95 includes built-in Pre-Amp & Prescaler

MODEL 3550K

DSI OFFERS THE BEST OF TWO WORLDS... An unprecedented DSI VALUE... in a high quality, LSI Design, 50 HZ to 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes all competitive makes, both in price & performance.

With 95% of the assembly completed by DSI, you are only one hour away from solving all of those difficult bench problems, from adjusting 60 HZ clock-time bases to setting the frequency of a 468 MHZ Mobile Radio. CALL TODAY TOLL FREE: (800—854-2049) CA Res. CALL (800—542-6253) TO ORDER OR RECEIVE MORE INFORMATION ON DSI'S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10HZ TO 1.3GHZ.

FACT: Every 3550 QUIK-KIT® PC board is factory assembled and tested before shipment. FACT: The problems of bad LED's, IC's, and Capacitors are a thing of the past. FACT: No manufacturer except DSI offers a 550 MHZ frequency counter with... 8 digits, .5 in. LED's, TCXO, 1 HZ resolution and a one year warranty on parts for under $100.00. FACT: We do not know how long we can hold this low, low price.

GO WITH THE LEADER... BUY A DSI FREQUENCY COUNTER KIT TODAY. SAVE TIME & MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>@ 1450kHz</th>
<th>@ 2260kHz</th>
<th>@ 450kHz</th>
<th>Number of Readouts</th>
<th>Size of Readouts</th>
<th>Power Requirements</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700</td>
<td>$269.95</td>
<td>50Hz - 700MHz</td>
<td>Proportional Oven 2 PPM @ 0° C - 20° C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>3.5"H x 8"W x 6"D</td>
</tr>
<tr>
<td>3900A</td>
<td>$199.95</td>
<td>50Hz - 600MHz</td>
<td>Oven 2 PPM @ 17° C - 27° C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2.5"H x 8"W x 5"D</td>
</tr>
<tr>
<td>3550W</td>
<td>$149.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM @ 65° C - 85° F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2.5"H x 8"W x 5"D</td>
</tr>
<tr>
<td>3550K</td>
<td>$99.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM @ 65° C - 85° F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2.5"H x 8"W x 5"D</td>
</tr>
</tbody>
</table>

1 HZ Resolution to 55 MHZ • 10 HZ Resolution to 550 MHZ • .1 and 1 Sec. Gate Time • Auto Zero Blanking

3550K Kit .. $99.95
T-101 Ant. ... 3.95
AC-9 AC Adp. .. 7.95
Shipping, Handling, Ins. .. 10.00

DSI INSTRUMENTS, INC. 7924 Ronson Road, Dept. G San Diego, California 92111

TERMS: MC — VISA — AE — Check — M.O. — COD in U.S. Funds. Orders outside of USA and Canada, please add $20.00 additional to cover air shipment. California residents add 6% Sales Tax.
SHORTWAVE PROPAGATION HANDBOOK
For many hams, both new and old, radio wave propagation is still a mystery. Realizing this, the authors went about the task of preparing a simplified text that could be understood by hams, swl's and engineers alike. Stress has been given to simplified explanations and charts. The authors also detail a simplified method of do-it-yourself propagation forecasting. To assist your forecasting efforts, the book contains a complete listing of the 12 month smoothed sunspot numbers since 1749. Join those who know how to predict when the bands will open to specific areas of the world. © 1979

ARRL Radio Amateur's LICENSE MANUAL
Rewritten and updated version of the popular ARRL License Manual. 8 1/2" x 11" format -- over 3 times more copy than 75th edition. Now written in a conversational style with multiple choice questions similar to FCC exam for Tech, General, Advanced and Extra. Study guide provided for Novice. Most up-to-date compilation of rules and regulations -- a must for every active Amateur. 168 pages. © 1979. Latest edition available.

80 METER DXING
by John Devoldere, ON4UN
Going for 5 Band DXCC or just looking for a new DX challenge? This is positively the last word on working 80 meter DX. The author combines his many years of 80 meter operating experience with that of others to produce chapters on propagation, antenna systems, station equipment and international operating practices peculiar to 80 -- all in a handy scrapbook format. What are the best times to be on? What's the best antenna? You'll find answers to these and many more 80 meter questions. 80 pages. © 1978

THE RADIO AMATEUR ANTENNA HANDBOOK
by William I. Orr, W6SAI, and Stuart Cowan, WZLX
If you're pondering what new antennas to put up this summer, we recommend you read this very popular book. It contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. But, you'll also get information not usually found in antenna books. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and some new information on the increasingly popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. We don't expect you'll agree with everything Orr and Cowan have to say, but we are convinced that The Radio Amateur Antenna Handbook will make a valuable and often consulted addition to any Ham's library. 190 pages. © 1978

PRACTICAL ANTENNAS
PRACTICAL ANTENNAS is not quite like any other ham antenna books. Written by a knowledgeable DX'er, this new book is chock-full of helpful hints and suggestions on the how-to's of putting up a super antenna system. Chapters include information on design and construction of practical Yagis, quads and wire type antennas. Inside you'll also find a complete bibliography of antenna articles from the popular amateur publications. Charts and tables are designed to eliminate all those tricky calculations. And, SCELBI has included a list of computer generated beam headings from major population centers to all the countries of the world. A new format, large easy-to-read text and durable vinyl cover make PRACTICAL ANTENNAS a "must" for every ham library. © 1979

CONFIDENTIAL FREQUENCY LIST
Here's a necessary companion to any general coverage receiver. In this completely new edition of the very popular CFL is the most recent listing of station frequencies, call signs, locations, emission modes and power for just about any interesting non-ham signal you can pick up from 4 to 26 MHz. Stations are listed by frequency for easy identification and location. From foreign military to weather broadcasts, the CFL is 96 pages of the most up-to-date shortwave listing information available. 96 pages. © 1979.

GOING SAILING WITH AMATEUR RADIO
Are you into sailing? Then you need GOING SAILING -- an extremely helpful book, especially for the boating and yachting enthusiast who wants to incorporate Amateur Radio in his ship's gear. Whether it is just for fun or safety measures, bringing Amateur Radio aboard makes a lot of sense. Next time you're headed for sea, take Amateur Radio and a copy of this great new book for long range radio communications. 64 pages. © 1978

Ham Radio's Bookstore
Greenville, NH 03048
very much is mentioned. Next 3 issues $1. "The Ham Trader", Sycamore, IL 60176.

Buy-Sell-Trade: Send $1.00 for catalog. Give name and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8120 Consor, Overland Park, KS 66204, (913) 361-5900.

Mobile Ignition Shielding provides more range with no noise. Available most engines. Many other suppression accessories. ture, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

FiberGlass Vaul廷g PoleS: Perfect Quad spreaders or VH/FUHF boom. SASE for info. K5WSB, Box 10324h, Cedar Park, TX 78613, (512) 259-2164.

Museum for radio historians and collectors now open. Frank admission. One of the "new" and commercial station exhibits, 1925 and telegraph displays, 15,000 items. Write for details. Antique Wireless Assn., Holcomb, N. Y. 14469.

MOSLEY 10-15 meter beam. If you already have a 2 meter monobander, here's an excellent way to get on 10-15. $75 plus shipping. Would prefer local pickup, however: Craig Clark, P.O. Box 83, Greenville, NH 03048.

HEATH SB-101 KYCW 5555. SB-200 Linear $350, SB-630 Console $1250, SB-600 Spkr. $20, HP-23P $80, Heath CW Filter $30. All mint, satisfaction guaranteed. Also - WA4UX type keyboard $50. Want SB-110, SB-810 $10. A44UK Jerry Flanders, Box 874, Lubbock, TX 79418.

Mobile HF Antenna, 3.5-30 MHz inclusive, 75 watts peak, center loaded coil, tuned from the base, eliminating coil changing or removing from mount. Less than 1.5 to 1 VSWR on all ham bands. $199.95 each - contact your local dealer or order from Antek, Inc., Box 415, Route 1, Hansen, ID 83334. (208) 423-4100. Master Charge and VISA cards accepted. Dealer inquiries invited.

Attention: UHF and Microwave Amateurs, at last a single source for your state-of-the-art Preampifier and coaxial components. Send for free catalog. Cascade Microwave Labs, Rt. 1, Box 25, Jefferson, OR 97352.

Qsl Cards 500510. 400 illustrations, sample. Bowman Printing, Dept. H1, 743 Harvard, St. Louis, MO 63105.

Audio Frequency Generator: Heath IG-1272. Pushbutton plus variable frequency selection. Calibrated output. Brand new condition. $120 new, sell for $75. MFJ random wire antenna tuner. $15. Amero TX-62 6 meter AM and CW transmitter. 80 watts. 50, W8BBKJ, Box 246, Portage, MI 49081 or call (616) 375-7499 after 6 EDT.

Electronic Bargains, Closed shops, Surplus! Parts, equipment, store, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unused FREE catalog. ETCQ012, Box 762, Plattsburgh, N.Y. 12901. Surplus Wanted.

14 Pin DIP extender cable. 36" long with MOLDED plug end. Highest quality. $2.00 ea. 6 for $10.00.

Molded bridge rectifier. 100 volt PIV @ 2 amps. 45G ea. or 5 for $2.00 pdd.

Photocell — first quality plastic encapsulated. Dark resistance 100 megohm; Life resistance 150 ohms. 20G each. 6 for $1.00 pdd.

7 segment display FND type. Cosmetic rejects. Common anode .5 high. Real nice. 75G each.

Jumbo LEDs .2 inch diameter. Color-Red. Prime factory units. Net seconds or rests. 20G each. pdd.

40PT Relay, 12 VDC coil. Potter Brumfield, 5 amp contacts. factory new, of course, a beauty. Also available with 24 VDC coil. $1.90 ea. pdd.

Vertical Mount Trimmer Pots — All highest quality. No junk. 100 - 1000 - 2000 - 5000 - 10K - 25G - 50K - 250K - 500K Ohms. All have thumbscrew adjust. Your choice 5 for $1.00 pdd.

Highest Quality E. F. Johnson Trimmer Caps — Hard-to-find P.C. board mount. .5-11 mmfd. No junk. 90c each; 10 for $7.50 pdd.

Super-buy — 5000 mfd. at 40 volt electrolytic cap. Factory new and complete w/all hardware. $1.35 ea. pdd.

Just arrived — thousands of IC's. Removed from sockets on new P.C. boards. All marked with standard numbers and in the 7400 series. Examples of nos. are 7406-7403-7407-7496 etc. Chance of a lifetime. Sorry no choice of numbers. We mixed them up. 50 for $7.50 pdd. 100 for $12.50 pdd.

Transformer: 115V AC Primary, Secondary 17-0-17V @ 7 Amps. We tested and find good for 10 Amps intermittent duty. Ideal for 2M rigs! $9.80 ea. pdd.

All items PPD USA. Send STAMP FOR LIST OF BARGAINS. PA Residents add 6% SALES TAX. Fone 412-863-7006.
FREQUENCY ALLOCATION CHART. See how the entire radio spectrum is used: 2 kHz to 200 GHz. Send $3.00 Collins Chart Co., Box 935, Coronado, CA 92118.

RTTY — Bandpass active filter 2125/2295 Hz; bit — $11.95; W/T $16.95. NS-1A PLL Demodulator W/T $26.95; kit — $19.95, board only $4.95. All postpaid. SASE for info. Nat Silentite Electronics, Tavares, FL 32778.

HEATHKIT SB-200 Like new $385; SB-102 with extra tubes & CW filter $355; HP-23 Power supply $43; SB-600 Spkr. $23; New Shure 444 mic in box $30; Drake L.P. filter new $18; Syntek RF pre-amp $40. All or part — write K5FOD, 120 Embleton Rd., Owings Mills, MD 21117.

WANTED: Hilltop property near Pollock Pines, California. WA5COD, 4 Ajax Place, Berkeley, CA 94708.

MOTOROLA 150 MC desk top FM receiver $20; HP050AG Lab type Audio Generator $75; Factory manuals, R.C.A. G.E., Motorola — $5.00 each. KE/K2T, 2256 Alexander, Los Osos, CA 93402.

CALL TOLL FREE for an EZ deal. 800-247-2476/1793. Iowa call 800-362-2371. See ad elsewhere. WBEZ, Bob Smith Electronics, RFD 3, Fort Dodge, Iowa 50501.

RTTY AFSK Modulator PC board. See Feb. 79 Ham Radio. Drilled $5.00. F. E. Hinkle, 12412 Moissy Bunk, Austin, TX 78750.

EZ deals are the best! Try me and see for Yaesu, Drake, KLM, Swan, Cushcraft, DenTron, VHF Eng., ICOM, CDE, Hustler, Wilson and more. Call, see or write WBEZ, Bob Smith Electronics, RFD 3, Hwy 169 6.7, Fort Dodge, IA 50501. (515) 576-3886.

WANTED: Motorola KXX 1024 and KXX 1052 channel elements. WA5CDA, 4 Ajax Place, Berkeley, CA 94708.

THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices; catalog 2 West 22nd St., Baltimore, MD 21218.

PORTA PAK — Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $80.00. 9 amp hr $103.00. Charged included, shipping extra. P.O. Box 67, Somers, WI 53171.

WANTED — Radio transmission discs. Any size or speed. Larry, W7FIZ. Box 724, Redmond, Washington 98052.

TEST EQUIPMENT CATALOG listing used Tektronix, HP and GR equipment at bargain prices. PTI, Box 8690, White Bear Lake, MN 55110. Price $1.00 refundable with first order.

STOP LOOKING for a good deal on amateur radio equipment — you’ve found it here — at your amateur radio headquarters in the heart of the Midwest. Now more than ever, where you buy is as important as what you buy! We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, Atlas, ICOM, DenTron, MFJ, Tempo, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan, and many more. Write or call us today for our low price list and try our personal and friendly Hoosier service. MOOSER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

FREE SAMPLE COPY — Buy-Sell Trade publication for ham/computer gear. $3.25 subscription includes 3 line ad. Write Lectronics Emporium, P.O. Box 826-H, Derry, N. H. 03038.

SATELLITE TELEVISION — movies, sports, etc. Build or buy your own Earth Station. Send $3.00 for information. Satellite Television, Box 140, Oxford, Conn., 06478.

PERFECT S&S RECEIVER: Drake D-4, MS-4 matching speaker, 26 extra crystals, manuals. Looks and works like brand new. Will ship anywhere. $255 or best offer. W. Calvert, WA9EZT, 21114-94th Avenue North, Port Byron, Ill. 61275.

HAM'S CUSHCRAFT HAS OPENINGS for people with experience in building and evaluating antennas. If you have experimented with antenna designs and have made gain and pattern measurements, call or write today. Cushcraft Corporation, 48 Perimeter Road, Manchester, New Hampshire 03103. Tel: (603) 627-1977.
Coming Events

ILLINOIS: Fox River Radio League Hamfest, Kane Co. Fairgrounds Exhibition Hall, St. Charles, Sunday, August 26th. Tickets: $1.50 advance — $2.00 at gate. Contact: Martin Schwanbarger, WB9TNQ, 1051 Northfield Drive, Aurora, IL 60505.

RADIO EXPO '79, September 15 and 16, Lake County Fairgrounds, Routes 120 and 45, Grays Lake, Illinois. Manufacturers' displays, flea market, seminars, ladies' programs. Advance tickets $2.00. Write EXPO, P.O. Box 305, Maywood, IL 60153. Exhibitors inquiries: EXPO Hotline (312) 345-2255.

CINCINNATI HAMFEST: 43rd Annual — Sunday, September 16, 1979 at Stickers Grove on State Route 128, one mile west of Ross (Vineoh, Ohio. Exhibits, prizes, food and refreshments available. Flea Market (radio related products only), Music, Good Fellowship, Hidden Transmitter Hunt and Sensational Airshow. AD SENSATION! Advance Registration $4.00. For further information: Lillian Abbott, K8CSC, 1424 Main St., Cincinnati, Ohio 45210.

CONNECTICUT: Third annual WEL IRC Flea Market, August 25, Radio Towers Park, Branford St., Hamden. Dealers $5.00 gate; $4.00 advance. Refreshments. Admission: $15.00 under 12 free. Rain date September 1. Send preregistration to: WEL IRC, P.O. Box 83, New Haven, CT.

INDIANA: The annual LaPorte County Hamfest, Sunday, August 26, rain or shine. County Fairgrounds on Highway 2, west of LaPorte. Paved outdoor flea market. Indoor display. Tables available $1.00 each. Overnight trailer hookups for early birds. Advance tickets $1.00. SASE to P.O. Box 30, LaPorte, IN 46350.

THE SAMAGON VALLEY RADIO CLUB of Springfield, Illinois holds its Fourth Annual Hamfest on Saturday, September 23rd. Local and Samagon County Fairgrounds in New Berlin, 16 miles west of Springfield. Indoor display area and covered pavilion. Hear Randy Rowe N8TG talk on the Navassa DX-pedition Various exhibitors, kids activities and food available. Overnite camping. First Prize: Atlas RX101XTX110 with power supply. Tickets: $1.00 advance. $2.00 gate. Information: John Sams, WA9KRL, S.V.R.C., 10th South Sixth, Springfield, IL 62703.

KANSAS: The Kansas-Nebraska Radio Club's 28th annual Hamfest and Flea Market, Saturday, August 11 and Sunday, August 12, Cloud Community College, Concordia. Technical talks. Banquet Saturday, 7 PM. Hawaiian style luau, Sun, Sept. 12-14, Big price drawing. 3 PM. For info: WWJOD, Box 404, Beloit, KS 67420.

INDIANA: The 2nd annual Hoosier Backyard Hamfest, September 9, Hensonsburg School, Bloomington. ATV, ATV RPT, SFTV demonstrations, home computer show, indoor swap, refreshments, door prizes. Tickets $1.00 per head over 12. Talk on in 147.78-168. Inquiries to HBYH, 7381 W. Highway 46, Ellettsville, IN 47429.

BLOSSOMLAND: Fall Swap Shop, October 7, Berrien County Youth Fairgrounds, Berrien Springs, Michigan. Large convenient facilities and refreshments. Tables restricted to radio and electronic items. Advance ticket donation $1.50. Tables $2.00. Write Charles White, 1940 Union Ave., Benton Harbor, MI 49022. Make checks payable to Blossomland ARA.

ILLINOIS: 1979 National Quarter Century Wireless Association Convention, September 7, 8 and 9, Chicago. Scheduled tours: scenic, Central FAA facility, etc. Exhibits of early days of radio. Main banquet — Friday night. DXCC banquet, Saturday night.

THE MT. AIRY VHFs Radio Club (the Packrats) is pleased to announce the establishment and sponsorship of the Sam Harris Memorial VHFs Activity Award. The purpose — to promote club activity, portable operation, VHFs, VHF contest operations. Rule for the award: 1. The award will be given to the top scoring multi-operator, portable station operating in the September ARRL VHFs QSO Party. 2. Top score determined by the ARRL using their current contest rules for eligibility. The top scoring station is not to be an ARRL affiliated club. 3. The winner must be a portable operation. Permanent stations are not eligible. Eligibility defined by Mt. Airy VHFs Radio Club. The award and trophy will be retained by the winning group for a period of one year at which time it will be exchanged for a permanent, engraved trophy.

NEW JERSEY: The Devils Tech Amateur Radio Club's third annual flea market, Saturday, August 11, in rear parking lot at Delevy Technical Institute, 478 Great S. Woodbridge. (Between Rt. 1 and Rt. 9) Space $2.00. Admission: Free.

WANTED FOR CASH

4CX150 4CX1000 4-65 4-250
4CX500 4CX1500 4-125A 4-400
4CX300A 4CX3000 4-1000
4CX350A 4CX5000 304TL
4CX10,000 Call Ted — 5CX1500 W2KUW

Other tubes and klystrons also wanted.

DCO, Inc.
10 Schuyler Avenue
& No. Arlington, N.J. 07002
800-526-1270
Everyday (201) 996-6475

THIS IS IT

RF DIRECTIONAL WATTMETER
with VARIABLE RF SIGNAL SAMPLER — BUILT IN
IN STOCK FOR PROMPT DELIVERY
AUTHORIZED DISTRIBUTOR

MODEL 4431 THRULINE®
Webster associates
115 BELLARINE
ROCHESTER, MI 48063
CALL TOLL FREE
800 — 521-2333
IN MICHIGAN 313 — 376-0420

TEST EQUIPMENT

All equipment listed is operational and unconditionally guaranteed. Money back if not satisfied. Prices listed are FOB Monroe.

Boonton 193A Q mtr 20 MHz calib attn.. 395
Q S 1200.. 395
GR 101A Stand sig gen 5 kHz.. 255
HP170A (US1A10) 30 MHz scope with reg horiz, dual trace vert plugs.......................... 475
Tek 565 Dual beam 10 MHz scope less plug ins (3 SERIES).................................... 625
URM 95 Stand Sig Gen 10 MHz 50/MHz calib attn.. 225
Weinschel 70 Prec RF attn DC.. 395
1270 6 0-600, 16 db steps RF... 395
1270 8 0-600, 8 db steps RF.. 395
1270 10 0-600, 10 db steps RF.. 395
1270 12 0-600, 12 db steps RF.. 395

GRAY Electronics
P.O. Box 941, Monroe, Mich. 48161
Specializing in used test equipment.

SSTT-4 ULTRA TUNER DELUXE

ULTRA TUNER DELUXE. Matches any antenna — coax fed or random wire on all bands (160-10 meters). Tune out the SWR on your antenna for more efficient operation of any rig. Home, mobile, portable — only 9"2"5 x 2 1/2" x 6"8. 300 watt RF output capability • SRW meter with 2-color scale • Antenna Switch selects between two coax fed, M/M, random wire, or tuner bypass. Efficiencies: Alien wounded inductors • 200 pt. 1000 V. Capacitors • Attractive brown finished enclosure.

only $64.95

SSTT-2 ULTRA TUNER

Tunes out SWR on any antenna coax fed or random wire (160-10 meters). Any rig up to 200 watts RF output. Rugged, yet compact. 2"5 x 2 1/2" x 11/2".

only $37.95

SSTT-3 MOBILE IMPEDANCE TRANSFORMER

Matches 50 ohm coax to the lower impedance of a mobile whip. Taps between 3 and 50 ohms. Output 200-300 watts output. 25" x 2"5 x 11/2".

only $19.95

SSTT-1 RANDOM WIRE ANTENNA TUNER

All bands (160-10 m) with any wire • 200W output • Any transmitter • Home or portable • N/C tuner tip indicator.

only $29.95

SST-1 KARL BUMMLOAD. 1000W PE
SST-1 255.0 Hertz. See lid: 81-9-3-8/8.

only $17.95

SST-1 83 HR. CLOCK. Giant red LED numerals. Month and day also at push of button. Beautiful for your desk. 110 VAC.

only $22.95

SST-1-1 DIAL for balanced lines 300W

only $5.00

Call (213) 376-5897 to order C.O.D., VISA, or Master Charge.

To Order: Send a check or money order — or use your M/C or VISA. Add $3 shipping and handling. Call, write or send sales tax.

Guarantee: All SST products are unconditionally guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund (less shipping) if you are not satisfied for any reason.

SSTT ELECTRONICS
P.O. Box 1 LAWNDALE, CALIF 90260 (213) 376-5897

August 1979 #95
OHIO: INTERSTATE QSO PARTY. August 25 and 26, 1979. 2 PM to 10 PM EDT (0200-2400Z) each day. Out-of-state stations work OH stations, OH stations work anyone; one per mode per band. Repeater contacts permitted, but satellite contacts are not permitted. Out-of-state stations send RST, serial number of QSO and ARRL section or country. OH stations send RST, serial number of QSO and ARRL section or country. Equipment for awards are eligible for awards. Suggested frequencies: up to 5 kHz from lower end of General Class bands. Try fifteen meters on the air and ten meters on the half-hour, 1600-2300Z. For complete information — Jeff Maass, K8ND, 4410 Norwell Drive, Columbus, OH 43220.

TEXAS: The Panhandle Amateur Radio Club's 1979 Golden Spread Hamfest. Friday evening, Saturday, and Sunday, August 10, 11, and 12, The Inn of Amarillo, 601 Amarillo Blvd. West, Amarillo. Pre-registration $6.00 per person by August 6. At door — $12.00 per person. Swaps fest, tech sessions, displays, Army/Navy MARS meetings and more. Ladies' programs, free bingo, hospitality hours. Over $200.00 in major door prizes.

NEW JERSEY: Sussex County Amateur Radio Club Hamfest, Saturday, September 9, 9 AM to 5 PM, rain or shine. Sussex County Farm and Horse Show Grounds, Route One and the Railroad Station. Multi-transmitter stations are eligible for awards. Suggested frequencies: up to 5 kHz from lower end of General Class bands. Try fifteen meters on the air and ten meters on the half-hour, 1600-2300Z. For complete information — Ed Johnson, 10073, West Milford, NJ 07480 or W7BND, 11200 Edgewood, P.O. Box 95, Newton, NJ 07860 or W8ZP, 3800 Garnet Ave., Sacramento, CA95823.

PENNSYLVANIA: The Mid-Atlantic Amateur Radio Club's annual J.B. Hamfest, August 19, Budco 309 Twin Drive in Theater, 309 Expressway Dr. and Rt. 63, Mont- gomeryville, PA 19403 at 4 PM. Door open 8 AM for setup. Admission: $5.00, $1.00 for additional, for non-Hams in party. Refreshments available. Door prizes: Raffle. Talk-in on 144.765 MHz simplex and on repeater, W3BZOE, 147.660 MHz. Information: Gene Hoenig, WBA6FTJ, 417 Ammons Circle, New Oxford, PA 17353 or call (215) 221-3366 days or (215) 235-3321 eves or weekends.

VIRGINIA: Fourth annual Tidewater Hamfest — Computer Show — Flea Market will be held in the Norfolk, VA Cultural and Convention Center SCOEPE October 20 and 21, 1979. 60,000 square feet of air-conditioned exhibit and Flea Market tailgating space are available. Door open at 9:00 AM, admission $2.00, $1.00 for additional, $1.00 for children under 14. Show-attendance purchase only. Specials: Talk-in on 144.765 MHz simplex and on repeater, WBA6FTJ, 147.660 MHz. Information: Gene Hoenig, WBA6FTJ, 417 Ammons Circle, New Oxford, PA 17353 or call (215) 221-3366 days or (215) 235-3321 eves or weekends.
HAVE BARRELS OF FUN- WITHOUT DRAINING YOU DRY! WHY PAY FOR USELESS FRILLS?
LET US HELP YOU WITH YOUR REPEATER PROJECT
NOW AVAILABLE STOCK FROM "repeaters unlimited" a division of creative electronic
YOUR ONE-STOP REPEATER SHOP
GET AN EXCELLENT BASIC DESIGNED REPEATER WITH DEPENDABLE PERFORMANCE!
IN STOCK - READY TO SHIP
VHF ENGINEERING
REPEATERS FOR ALL AMATEUR BANDS ALSO NEW ACCESSORY ITEMS
JUST CALL OR CONTACT: neil or judi
P.O. BOX 7054 404 971-2122
MARIETTA, GA. OR OUTSIDE GA 800 241-4547
we accept AMEX, VISA

QUARTZ CRYSTALS "IN A HURRY" SINCE 1970
CRYSTALS AVAILABLE FOR:
- CB - Synthesizers
- Amateur - HF, VHF, UHF
- Industrial
- Scanner
- Marine - LB & VHF
- Conversion Crystals
- Special Attention to R & D.
- Micro-processor Types.
DISCOUNTS AVAILABLE TO DEALERS & MANUFACTURERS
CALL "BONNIE" FOR PRICES & DELIVERY
VISA & MASTER CHARGE
credit cards accepted.

CAL CRYSTAL LAB, INC.
1142 N. Gilbert Street
Anaheim, CA 92801
(714) 991-1580

FOUR SIMULTANEOUS FILTERS IN ONE FOR UNPARALLELED QRM FREE RECEPTION (SSB & CW). PLUS A SPECIAL PATENTED CW PROCESSOR.

THE BRAND NEW SL-56 AUDIO ACTIVE FILTER SUPERcedes OUR SL-55 IN BOTH CONCEPT AND PERFORMANCE. CONSOLIDATION OF MANY COMPONENTS HAS ALLOWED US TO MAINTAIN OPERATIONAL AMPERAGE. COMPARED TO 6 IN THE SL-55, INTO A FILTER GUARDIAN TO OUT PERFORM OTHER DISSIPATE AT A COST ONLY SLIGHTLY HIGHER THAN THE SL-55 FILTERS. THE FEATURES OF THE SL-56 ARE SO ADVANCED FROM ITS PREDECESSOR THAT CALLING IT THE SL-55A IS NOT JUSTIFIED. UNLIKE OTHER FILTERS THAT SIMPLY OFFER A CHOICE OF ONE OR TWO FILTER TYPES AT A TIME (NOTCH, BANDPASS, ETC.), SL-56 PROVIDES WHAT IS REALLY NEEDED: SIMULTANEOUS ACTION OF A 6 POLE 200 Hz FIXED HIGHPASS FILTER AND A 6 POLE 1600 Hz FIXED LOWPASS FILTER WITH A 60 dB NOTCH WHICH IS TUNABLE OVER THE 200-1600 Hz RANGE. THIS 3 FILTER COMBINATION IS UNBEATABLE FOR THE ULTIMATE IN QRM FREE RECEPTION. ADJACENT CHANNEL QRM IS ELIMINATED ON THE HIGH AND LOW SIDES AT THE SAME TIME AND DOES NOT INTRODUCE ANY HOLLOWNESS TO THE DESIRED SIGNAL. ON THE SL-56 IS A DREAM. THE LOWPASS, HIGHPASS AND NOTCH FILTERS ARE ENGAGED ALONG WITH THE TUNABLE BANDPASS FILTER (400-1600 Hz PROVING THE NEEDED ACTIVATION OF 4 SIMULTANEOUS FILTER TYPES). THE BANDPASS MAY BE MADE AS NARROW AS 16 Hz (36 dB). ADDITIONALLY, A SPECIAL PATENTED CIRCUIT FOLLOWs THE FILTER SECTIONS WHICH ALLOWS ONLY THE PEAKED SIGNAL TO "GATE ITSELF" THROUGH TO THE SPEAKER OR HEADPHONES. RECEIVER NOISE, SHIFT AND OTHER SIGNALS ARE REJECTED. THIS IS NOT A REGENERATOR, BUT A MODERN NEW CONCEPT FILTER FROM THE SL-55 CONNECTS IN SERIES WITH THE RECEIVER SPEAKER OUTPUT AND DRIVES ANY SPEAKER OR HEADPHONES WITH ONE WATT OF AUDIO POWER. EASILY CONVERTED TO 12 VDC OPERATION. COLLINS GRAY CABINET AND WRINKLE GRAY PANEL.

WARRANTY ONE YEAR FULLY RF PROOF FULLY WIRING AND TESTED AVAILABLE NOW $75.00 POSTPAID IN THE USA AND CANADA. VIRGINIA RESIDENTS ADD 4% SALES TAX.

ATTN SL-55 OWNERS: THE CIRCUIT BOARD OF THE SL-56 IS COMPLETELY COMPATIBLE WITH THE SL-55 CHASSIS. OUR RETROFIT KIT IS AVAILABLE AT $35.00 POSTPAID.

SL-56 AUDIO ACTIVE FILTER (3.9 x 5.5 x 7.5 INCHES)

THE MODEL SL-65* (20-2000 WATTS) AND THE QRP MODEL SL-65A* (0.2-20 WATTS) DIGITALLY INDICATE ANTENNA VSWR UNDER ANY TRANSMISSION MODE - SSB, CW, RTTY, AM, FM, ETC. THERE IS NO CALIBRATION REQUIRED AND NO CROSSED METER NEEDLES TO INTERPRET. SIMPLY LOOK AT THE METER AND DISPLAYED 6 LIMITS, AND NO CROSS METER NEEDLES TO INTERPRET. SIMPLY LOOK AT THE METER AND DISPLAYED 6 LIMITS.

REQUIRES 115 VAC AT LESS THAN 1/16 AMP.

COLLINS GRAY CABINET, WRINKLE PANEL - BRIGTH LED DIGITS. (33%). DECIMAL POINT IS THE PILOT LIGHT.

1.8-30 MHz

WEIGHT IS 2.75 POUNDS.

THE MODEL SL-56* (20-2000 WATTS) AND THE QRP MODEL SL-65A* (0.2-20 WATTS) DIGITALLY INDICATE ANTENNA VSWR UNDER ANY TRANSMISSION MODE - SSB, CW, RTTY, AM, FM, ETC. THERE IS NO CALIBRATION REQUIRED AND NO CROSSED METER NEEDLES TO INTERPRET. SIMPLY LOOK AT THE METER AND DISPLAYED 6 LIMITS.

REQUIRES 115 VAC AT LESS THAN 1/16 AMP.

COLLINS GRAY CABINET, WRINKLE PANEL - BRIGTH LED DIGITS. (33%). DECIMAL POINT IS THE PILOT LIGHT.

1.8-30 MHz

WEIGHT IS 2.75 POUNDS.

THE MODEL SL-56* (20-2000 WATTS) AND THE QRP MODEL SL-65A* (0.2-20 WATTS) DIGITALLY INDICATE ANTENNA VSWR UNDER ANY TRANSMISSION MODE - SSB, CW, RTTY, AM, FM, ETC. THERE IS NO CALIBRATION REQUIRED AND NO CROSSED METER NEEDLES TO INTERPRET. SIMPLY LOOK AT THE METER AND DISPLAYED 6 LIMITS.

REQUIRES 115 VAC AT LESS THAN 1/16 AMP.
Coaxial RF Probe for Frequency Counters and Oscilloscopes That Lets You Monitor Your Transmitted Signal Directly From the Coax Line.

Only $9.95

plus 1.00 postage

FINALLY! A RF PROBE that lets you connect into your coax cable for frequency measurements and modulation waveform checks directly from the transmitter.

JUST CONNECT THE CoaxProbe into your transmission line and plug the output into the frequency counter or oscilloscope. Insertion loss is less than .2db so you can leave it in while you operate.

A NECESSITY IN ANY WELL-ORGANIZED HAM SHACK, the CoaxProbe eliminates "jerry-rigging" and hassles when tapping into the coax line is desired.

A SPECIAL METHOD OF SAMPLING keeps output relatively constant with a wide variation of power. Power output of 8 watts gives .31v out. while 80 watts will give 1.8~ (rms 3-30 mhz.) 2000 watts PEP rating too!

USE IT ON 2 METER RIGS TO ADJUST FREQUENCY. The CoaxProbe has a range of 1.2 to 150 mhz.

MONITOR YOUR MODULATION WAVEFORM. With an oscilloscope of proper bandwidth, you can check your modulation for flattopping, etc. Ideal for adjusting the speech processor.

NOW YOU CAN MONITOR SIGNALS when connected to the dummy load, eliminating unnecessary on-the-air radiation.

AVAILABLE FOR THE FIRST TIME TO AMATEURS. Try it for 10 days. If not satisfied, send it back for refund (minus shipping charges).

Order today from:

Eagle Electronics
Box 426 B, Portage, MI 49081
Michigan Res. Add 4% Sales Tax

More Details? CHECK – OFF Page 110
A Knob with a new twist “VRS™”

Swan Astro 150 Exclusive Microprocessor Control w/memory gives you over 100,000 fully synthesized frequencies, and more!

- VRS — Variable Rate Scanning, a dramatic new technique for unprecedented tuning ease and accuracy
- POWER — 235 watts PEP and CW on all bands for that DX punch
- Advanced microcomputer technology developed and manufactured in the U.S.A.
- Price? See your authorized SWAN dealer for a pleasant surprise!

Dual Meter
Reads PEP output in watts and receive "S" units.

Full Break-in CW (or semi, switch selected)

Wide Frequency Coverage
10M — 28.0-30.0 MHz
15M — 20.8-23.0 MHz
20M — 13.8-16.0 MHz
40M — 6.0-8.3 MHz
80M — 3.0-4.5 MHz
160M — 1.8-2.4 MHz*
*In lieu of 10M band on Model Astro 151

Mike Tuning
For accurate 100 Hz steps or fixed rate scan.
Kantronics' Field Day

Morse/radioteletype reader & speed display

only $449.95

Kantronics' Field Day reads code signals right off the air. Its powerful microcomputer system picks out signals, computes their speed and even reads sloppy copy up to 80 words per minute.

The Field Day is simple to use. You plug it into your station receiver just as you would a set of headphones. Code and teletype conversations are converted from dots and dashes to standard alphanumerical text. The text advances from right to left across ten big ½ inch displays.

The Field Day displays incoming or outgoing code speed for you at the touch of a button, right on the front panel. The Field Day is enclosed in a compact, lightweight package including speaker. HWD 3.44” by 8.50” by 9.25”. The Field Day has the features that make it a truly great code reader. Write us for a complete Kantronics authorized dealer list.
SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Sent F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

BIG SELLERS AT DAYTON!

ANTENNA SALE!

CALL US FOR SUPER DEALS ON ALL OF YOUR ANTENNA NEEDS!

DIGITRAN KEYBOARD

PHONE: (312) 846-6777

SPECTRONICS, INC. — 1009 GARFIELD ST., OAK PARK, ILL.-60304

More Details? CHECK — OFF Page 110
Arizona

HAM SHACK
4506-A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert. Classes, sales & service.

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR.
PHOENIX, AZ 85016
602-249-3739
Your Complete Amateur Radio Store.

POWER COMMUNICATIONS
6012 N. 27 AVE.
PHOENIX, ARIZONA 85017
602-242-6030
Arizona's #1 "Ham" Store.

California

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232
CARSON, CA 90745
800-421-2258
- Calif. Res.
Not The Biggest, But The Best - Since 1962.

JUN'S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
Not The Biggest, But The Best — Since 1962.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Delaware's largest stock of amateur radio equipment & accessories.

Florida

AGL ELECTRONICS, INC.
1800-B DREW ST.
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416

SUNRISE AMATEUR RADIO
1351 STATE RD. 84
FT. LAUDERDALE, FL 33315
(305) 761-7676
"Best Prices in Country. Try us, we'll prove it."

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Illinois - 800-972-5841
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed & Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Massachusetts

SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312-848-6777
One of America's Largest Amateur & SWL Stores.

Indiana

KRYDER ELECTRONICS
GEORGETOWN NORTH SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
Your Complete Amateur Radio Store.

Iowa

BOB SMITH ELECTRONICS
RFD #3, HIGHWAY 169 & 7
FORT DODGE, IA 50501
515-576-3886
800-247-2476/1793
iowa: 800-362-2371
For an EZ deal.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5901
America's No. 1 Real Amateur Radio Store. Trade - Sell - Buy.

REVCOM ELECTRONICS
6247 N. HYDRAULIC
WICHITA, KS 67219
316-744-1083
New - Used HF, VHF, & Microwave Gear. Manufacturing & Sales.

Maryland

THE COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREL, MD 20810
800-638-4486

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Amateur Radio Dealer

TUFTS RADIO ELECTRONICS
209 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

Michigan

RSE HAM SHACK
1207 W. 14 MILE
CLAWSON, MI 48017
313-435-5660
Complete Amateur Supplies.

Minnesota

PAL ELECTRONICS INC.
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
Midwest's Fastest Growing Ham Store, Where Service Counts.

Missouri

HAM RADIO CENTER, INC.
8340-42 OLIVE BLVD.
ST. LOUIS, MO 63132
314-255-3636
For Best Price and Fast Delivery Call toll free 1-800-325-3636

Nebraska

COMMUNICATIONS CENTER WEST
1072 RANCHO DRIVE
LAS VEGAS, NV 89106
800-634-6227
Kenwood, Yaesu, Drake and more at discount prices.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION
CONCORD, NH 03301
603-224-9961
Icom, DenTron & Yaesu dealer. We service what we sell.

New Jersey

ATKINSON & SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since "55".

New York

AM-COM ELECTRONICS INC.
RT. 5
NORTH UTICA SHOPPING CTR.
UTICA, NY 13502
315-732-3656
The Mohawk Valley's Newest & Largest Electronics Supermarket.

Ohio

AMATEUR RADIO
SALES & SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas and Towers for All Services.

Pennsylvania

ELECTRONIC EXCHANGE
136 N. MAIN STREET
SOUDERTON, PA 18964
215-723-1200
Demonstrations, Sales, Service New/Used Amateur Radio Equip.

South Dakota

BURGHARDT
AMATEUR RADIO CENTER, INC.
P. O. BOX 73
WATERTOWN, SD 57201
605-886-7314
"America's Most Reliable Amateur Radio Dealer".

Texas

HARDIN ELECTRONICS
5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461-9761
Your Full Line Authorized Yaesu Dealer.

Oklahoma

KRYDER ELECTRONICS
5826 N.W. 50TH
MacARTHUR SQ. SHOPPING CTR.
OKLAHOMA CITY, OK 73122
405-789-1951
Your Complete Amateur Radio Store
Budwig Mfg. Co.

WE STOCK THESE FAMOUS NAME BRANDS
- AEA
- ALDA
- ANTENNA SPECIALISTS
- ATLAS
- B & W
- BIRD
- COMMUNICATIONS SPECIALISTS
- ICOM
- COLLINS
- CUSHCRAFT
- DENTRON
- DRAKE
- EIMAC
- E-Z WAY
- HY-GAIN
- KDK
- KLM
- MFJ
- MIRAGE
- MOSLEY
- NEWTRONICS
- ROBOT
- ROHN
- STANDARD
- SWAN
- TEN-TEC
- TRI-EX
- VHF
- ENGINEERING
- WILSON
- YAESU

We also have
- ANTENNAS FOR HF & UHF
- ROBBER
- TOWERS
- REPEATERS
- MICROPHONES
- KEYS & KEYSERS
- TUBES and much more

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, N. Y. 10012

DIPOLAR

ANTENNA CONNECTOR

HY-FIELD (HQ-1) dipole connector has
standard NO. 200 socket molded into glass
filled plastic body. To accept wire PL-259 plug on handie. Bipolar leads
are wired for maximum gain. Guaranteed at your dealer or $4.95

DIPOLE

Budwig Mfg. Co.
PO Box 829, Ramona, CA 92065
Ca. Res. add 6% Sales Tax

I PAY CASH

for your military surplus electronics
If you have or know of availability:

TT-98 TT-76 Teletypewriter

phone me collect

Dave — (213) 760-1000

NEW — NEW — NEW

TOUCH-TONE® MICROPHONE
DATA CODER 5

$39.00

JUST LOOK AT THESE FEATURES:
- Tough "Mobile Environment" Microphone
- Positive Action Tactile Keys
- High Impedance Ceramic or 500-ohm Dynamic Cartridge
- Adjustable Tone Balance and Output Level
- "Positive Hold - Easy Lift" Hanger
- For Vehicle or Hand-held Portable Use
- Complete... Not a Kit... $39.00

Available at:
- Ham Radio Center
- Henry Radio, Los Angeles
- Electronic Equipment, Virginia
- CW Electronics, Denver
- C & A Electronics, Long Beach

Send for Complete Dealers List & Catalog

Pipo Communications
P.O. Box 3435
Hollywood, California 90025
(213) 925-2151

More Details? CHECK — OFF Page 110
THE TOWER
OF THE YEAR.
WE GOT IT.

Tower Master's new self-supporting, crank-up TMZ-471 is the tower of the year.
It's taller.
It's bigger.
It's stronger.

It's one of an all new line of hot-dipped galvanized steel towers made expressly for HAM Operators now available from Tower Master. Made to meet the demanding requirements of today's modern equipment. And if you're a HAM, you know what we mean.

Like Tower Master's TMZ-HD-554 and -571, with top section OD's of 15 inches to easily accommodate the new "Tail Twister" CDE rotor.

Or try the TMM-HD-554 and -571 series from Tower Master, with top section OD's of 14-3/4 inches. These freestanding crank-ups will also hold the "Tail Twister."

That's why we call the increasingly popular TMZ-471 the tower of the year! We are convinced it really is. You will be, too. Just write — or call — Tower Master today. Lou may answer the phone. Do it now.
Or, see your dealer today.

WOODLAKE INDUSTRIAL PARK
353 SOUTH ACACIA STREET
P.O. BOX 566, WOODLAKE, CALIFORNIA 93286
209/564-2483 Day 209/733-2438 Night

THE MAN BEHIND THE TOWER
His name is folklore in the tower industry. One of the giants of tower design. Maybe you recognize him. He's Lou Trisso. We asked him to design the TMZ-471 for Tower Master. We like what he's come up with. You will, too.

FREE!
RADIO AMATEURS
WORLD ATLAS
with purchase of famous
CALLBOOK
MAP LIBRARY!

Here's an offer you can't refuse! You receive three, information-packed, Amateur Callbook maps, folded, plus the World Atlas for only $3.75 plus $1.50 shipping and handling. If purchased separately, total value of map/atlas offer would be $6.25, plus shipping. You save $2.50 and get these invaluable radio amateur aids!

World-wide prefixes. Shows 40-zone map on one side, 90-zone map on the other. Size 40" x 28".

Includes Central America and Caribbean to the Equator. Shows call areas, zone boundaries, prefixes, etc. Size 30" x 25".

3. Great Circle Chart of World, folded.
Centered on 40 °N, 100 °W. Shows cities, latitude, longitude, great circle bearings and more! Size 30" x 25".

Plus special FREE bonus!
The Callbook's own Radio Amateur World Atlas, FREE with the purchase of the 3 maps. Contains eleven full color maps of the world, looking at things from the radio amateurs point of view.

$3.75
$1.50
Total $5.25

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.50 for shipping. Illinois residents add 5% Sales Tax.

Order Today!
MORE FEATURES FROM ALLIANCE!

HD-73 HEAVY-DUTY ROTATOR

with exclusive Dual-Speed Control!
For antennas up to 10.7 sq. ft. of wind load area. Mast support bracket design permits easy centering and offers a positive drive no-slip option. Automatic brake action cushions stops to reduce inertia stresses. Unique control unit features DUAL-SPEED rotation with one five-position switch.

SPECIFICATIONS:
- Max. wind load bending moment-10,000 in.-lbs. (side-thrust overturning)
- Starting torque - 400 in.-lbs.
- Hardened steel drive gears
- Bearings - 100-¾ diameter (hardened)
- Meter - D'Arsonval, taut band (back-lighted)

There's much, much more — so get the whole story!

Mail this coupon for complete details!

YES! □ Send me complete details on the HD-73!
□ Give me the name of my nearest dealer!

NAME
ADDRESS
CITY
STATE ZIP

The ALLIANCE Manufacturing Co., Inc., Alliance, Ohio 44601
A NORTH AMERICAN PHILLIPS COMPANY

© 1978 The Alliance Mfg. Co., Inc.

MORE DETAILS? CHECK-OFF Page 110
Hustler: The First Family of fixed station two meter gain antennas.

Whatever your requirement, Hustler provides outstanding performance. Precision engineered antennas manufactured with finest materials available.

Hustler: DEALERS The First Family of fixed station two meter gain antennas.

Also available in 1-1/4 meter

TPL 1/4 KILOWATT LINEAR AMPLIFIER

TPL proudly presents the first true power 1/4KW SSB/AM, FM or CW solid state 2 meter linear amplifier

A remote control plug allows you to operate with the amplifier ON or OFF, or in SSB/AM, FM or CW from the dashboard.

The 2002 utilizes the latest state of the art engineering including microstrip circuitry and modular construction. The three final transistors combine to produce 250W when driven by 15W or more at 13.8VDC.

POWER INPUT: 5-20W Carrier FM or CW 20W PEP maximum SSB or AM

HARMONIC ATTENUATION: All Harmonics Attenuated 60 dB or Greater

POWER OUTPUT: 200-250W Carrier FM or CW 300W PEP SSB or AM

CURRENT DRAIN: FM-40 Amps @ 250W SSB-30 Amps @ 300W PEP

DUTY CYCLE: FM 50% @ 150W 33% @ 250W SSB 60% @ 150W 50% @ 250W

FREQUENCY RANGE: 144 to 148 MHz

Model 2002 $499.00

can be ordered for repeater application for additional information contact

TPL COMMUNICATIONS INC.

1324 W. 135TH ST., GARDENA, CA 90247 (213) 539-9814

Canada: Lenbrook Industries, Ltd., 1145 Bellamy Rd., Scarborough, Ontario M1L 1H5

Export: EMEC Inc., 2350 South 30th Avenue, Haltom City, Florida 33009

More Details? CHECK — OFF Page 110

august 1979 109
SUMMER SPECIALS

Cush Craft “boomer” $79.95
KLM 144-146-13 lb. $59.95
OMNI-J & heavy duty magneto mount complete 49.95
TRIEX W-51 FT self-support tower (Reg. $891) Your cost (FOB California) $791.00
Tona PFFIT 144/200 MARS $199.95
RIW 432/19 el. $59.95
Klitzing VHF-UHF Amplifiers
2M 10W in - 100W Out $179.00
432 10W in - 500W Out $189.00
Bird 43 and slugs, UPS paid in USA stock
Microwave Modules 432-25W $329.95
Deluxe Amp: 432-100W output $440.00
Telrex TBSM, in stock $415.00
New Palomar Engr Trans. Preamp $95.90
Benchner Paddles $39.95 Chromo $49.95
ETO 76 Amplifiers, stock
Lunar 6M-220 In Line Preamps $49.95
Lunar 1000W Preamp $149.95
UPS paid USA $196.00
Janel QSA-5 $41.95
CDE Ham-3 $129.95, Ham-X $209.95
VHF Engs. blue line amps stock
VHF Kits, stock
Cetron 572S $29.50
Midland 13-509-220 MHZ - 12 ch - 10W 159.00
13-513-220 MHZ synthesized 20-10W $389.00
Motorola HEP 170 $0.29
Motorola 2.5A 1000V PI0 Epoxy Diode $6.95
Non Linear Systems Miniscopes 15 - $318.00
Miniscope - 215 $43.00
-10%, accessories available
Aerocruze 1000P W/P $195.00
NEW $149.95
GEO146B or 8950 $7.95
Technical Books: Ameco, ARR, Sams, Tab, Rider Radio Pub., Callbook, Cowan, etc. Call
NEW Beelden 9405 (2416) & 18" wire rotor cable, heavy duty for long runs 0.28
8448 std. 8 wire rotor, per ft. 0.17
9806 double shield RG6 Foam, per ft. 0.42
9214 RG8X per 100' 0.26
8237 RGB $0.27
8267 RG213 $0.27
Amphenol Silver Plate PL269 $0.59
TRIEX 1/2" Foam Hardline $0.65/ft. — Connectors, ea. 15.00
7/8" Hardline 1/50ft. — Connectors, ea. 25.00
Berkley RG25 $12.00, ohm, kW, per ft. 0.16
Consolidated HD-18 Ga. Galv. Tower, 10' section 29.95
Robot “Slow Scan” Now in Stock — Call Alliance HD73 Rotary 109.95
Telgore 1-sec: support 55 ftw breakover 499.00
40 ftw breakover 349.00
Swan T464A, T264A, T282 — 20% off list
Collins replacement parts available.

Looking for antique parts?
Write specific need to W5GJ.

THIS MONTH'S SPECIALS:

Icom IC280 — $359.00
Dentron GLA 1000 Amp. $319.00
Bearcat 250 — $299.00
Dentron Clipperton L — $499.00

MASTERCHECK • VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $1.00 minimum.

MADISON ELECTRONICS SUPPLY, INC.
1508 MCKINNEY
HOUSTON, TEXAS 77002
713/658-6268

INDEX

AED 710
Alliance 700
Aluma 599
Antena Mart 109
*Astron 734
Atlantic Surplus 83
Avanti 775
Barry 76
Bauman 101
Budwig 233
Cal Crystal 709
Communications Center 534
Comm. Spec. 330
Cont. Spec. 248
Creative Elect. 751
Curtis Electo 634
Cushcraft 764
DCC 324
DSI 666
Dames Comm. 561
Data Signal 127
Dave 766
Design Automation 786
DRAKE 836
Eagle 841
E.T.O. 854
Elec. Research Virginia 865
Erickson 876
Fax Tango 657
G & C Comm. 754
GLB 552
Gen. Elec. 956
Gray 665
Gregory 965
Gulf 635
Hall
Hall Tronix 245
Ham-O-Rama 150
H. R. B. 106
Henry 952
Hickock 402
Hustler 171
Icom 109
Inter Crystal 333
Jameco 333
Jan 107

*A please contact this advertiser directly.
Limit 15 inquiries per request.

August, 1979

Please use before September 30, 1979

 Tear off and mail to:
HAM RADIO MAGAZINE — “check off”
Greenville, N. H. 03048

NAME.

CALL.

STREET.

CITY.

STATE.

ZIP.

110itaugust1979
THERE'S
NOTHING ELSE
LIKE IT

The world's highest auto suspension bridge
spans the Royal Gorge... 1053 feet above the
turbulent waters of the Arkansas River at
Cañon City, Colorado. There's nothing else
like it!

There's nothing else like an ALPHA 77Dx
linear amplifier, either. It's THE ULTIMATE in
conveniently-packaged high frequency power
for industrial, government, and serious
amateur radio use.

ALPHA 77Dx incorporates extra-heavy-duty
components and modern, user-oriented
engineering. It carries the industry's only
TWO YEAR WARRANTY in licensed amateur
service. If you'll accept only the finest quality
and superlative performance, the ALPHA
77Dx "Ultimate Linear" is your clear choice.

Contact your dealer or ETO for detailed infor-
mation on the entire ALPHA line of superb
linears.

ETO
EHRHORN TECHNOLOGICAL OPERATIONS, INC.
P.O. BOX 708 • CANON CITY, COLORADO 81212 • (303) 275-1613
Covers 160-10 meters, digital frequency control with 4 memories and manual scanning. 200W PEP/160W DC 160 - 15 meters and 160W PEP/140W DC on 10 meters, adaptable to new bands, IF shift, tunable noise blanker, dual RIT (VFO and memory/fix) SSB, CW, and FSK, 13.8 VDC operation, and built-in digital display to show VFO freq. and difference between VFO and M-1 memory freq.

1499.95 List. Call for quote.

KENWOOD TS-180S solid state HF transceiver

Covers 160-10 meters. digital frequency control with 4 memories and manual scanning. 200W PEP/160W DC 160 - 15 meters and 160W PEP/140W DC on 10 meters, adaptable to new bands. IF shift, tunable noise blanker, dual RIT (VFO and memory/fix) SSB, CW, and FSK, 13.8 VDC operation, and built-in digital display to show VFO freq. and difference between VFO and M-1 memory freq.

1499.95 List. Call for quote.

DRAKE TR/DR7
general coverage digital R/O transceiver

Covers 160 thru 10 meters, reception from 1.5-30 MHz continuous, 0-30 MHz with optional Aux-7, modes: USB, LSB, CW, RTTY, AM equiv., true passband tuning, RIT, built-in RF wattmeter/VSWR bridge, SSB 250W PEP, CW 250W AM equiv. 80W. Power supply required for AC operation.

1395.00 List. Call for quote.

KENWOOD TS-120S HF transceiver

Covers 160 thru 10 meters plus WWV, modes: USB, LSB, CW, and built-in power supply, digital and analog frequency readout, 5146B final tubes, RF speech processor, variable IF bandwidth, noise blanker, heater switch, VOX, attenuator 10 dB or 20 dB selectable.

895.00 List. Call for quote.

YAESU FT-901 DM HF transceiver

FREQ. coverage: 160 thru 10 meters, 200W PEP, RF speech processor, built-in VFO, reject tuning, LED freq. display with memory, built-in Curtis Kreyer, 6146B final tubes, AC/DC power supply built-in audio peak freq. tuning.

1459.00 List. Call for quote.

TEN-TEC Century 21 CW transceiver

Full break-in, 75 watts input, all solid state, built-in speaker, receives CW or SSB but transmits CW only, overload protection, offset receiver tuning, adjustable level sidetone, built-in regulated power supply. Crystals are provided to cover the 80 thru 10 meter bands.

349.00 List. Call for quote.

TEN-TEC Omni D transceiver

Totally solid state, covers 160 to 10 meters, digital readouts, VOX and PTT, built-in squelch, built-in 4-pole CW/SSB filter, 2 speed break-in, power input 200 watts with 50 ohm load, 100% duty cycle, basic 12 VDC operation power supply required for 117 VAC operation, and more.

1069.00 List. Call for quote.

KENWOOD TS-820S HF transceiver

160 thru 10 meters, modes: CW, USB, LSB, FSK, input power SSB: 200W PEP, CW: 160W DC, FSK: 100W DC, power requirements: 120/220 VAC 50/60 Hz, noise blanker, speech processor, PLL, CW sidetone, and semi-break-in and digital readout built-in.

1299.00 List. Call for quote.

Long's Electronics

MAIL ORDERS P.O. BOX 11347 BIRMINGHAM, AL 35202 • STREET ADDRESS 2808 7TH AVENUE SOUTH BIRMINGHAM ALABAMA 35233

Remember, you can Call Toll Free: 1-800-633-3410 in the U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.
Today's technology, backed by a proud tradition, is yours to enjoy in the all-new FT-101ZD transceiver from Yaesu. A host of new features are teamed with the FT-101 heritage to bring you a top-dollar value. See your dealer today for a "hands-on" demonstration of the performance-packed FT-101ZD.

SPECIFICATIONS

TRANSMITTER
- PA Input Power: 180 watts DC
- Carrier Suppression: Better than 40 dB
- Unwanted Sideband Suppression: Better than 40 dB @ 1000 Hz, 14 MHz
- Spurious Radiation: Better than 40 dB below rated output
- Third Order Distortion Products: Better than -31 dB
- Transmitter Frequency Response: 300-2700 Hz (-6 dB)
- Stability: Less than 300 Hz in first 30 minutes after 10 min. warmup, less than 100 Hz after 30 minutes over any 30 min. period
- Negative Feedback: 6 dB @ 14 MHz
- Antenna Output Impedance: 50-75 ohms, unbalanced

RECEIVER
- Sensitivity: 0.25 uV for S/N 10 dB
- Selectivity: 2.4 kHz at 6 dB down, 4.0 kHz at 60 dB down (166 shape factor); Continuously variable between 300 and 2400 Hz (-6 dB); CW (with optional CW filter installed): 600 Hz at 6 dB down, 1.2 kHz at 60 dB down (2:1 shape factor)
- Image Rejection: Better than 60 dB (160-15 meters); Better than 50 dB (10 meters)
- IF Rejection: Better than 70 dB (160, 80, 20-10 m); Better than 60 dB (40 m)
- Audio Output Impedance: 4-16 ohms
- Audio Output Power: 3 watts @10% THD (into 4 ohms)

GENERAL
- Frequency Coverage: Amateur bands from 1.8-29.9 MHz, plus WWV/JJY (receive only)
- Operating Modes: LSB, USB, CW
- Power Requirements: 100/110/117/200/220/234 volts AC, 50/60 Hz; 13.5 volts DC (with optional DC-DC converter)
- Power Consumption: AC 117V: 75 VA receive (65 VA HEATER OFF) 285 VA transmit, DC 13.5V: 5.5 amps receive (1.1 amps HEATER OFF), 21 amps transmit
- Size: 345 (W) x 157 (H) x 326 (D) mm
- Weight: Approximately 15 kg.
- Compatible with FT-901DM accessories

Yaesu The radio.
From transistor to 25kW is one easy step with EIMAC.

EIMAC high-gain tetrode and cavity combination for FM and TV.

The new EIMAC 8990 and companion CV-2200 cavity amplifier are expressly intended for single-tube 25 kW FM and TV service. This tough tetrode exhibits a power gain over 20 dB and has a rated anode dissipation of 20 kW. It's also ideally suited to VHF-TV linear service, thanks to the new low-loss internal structure.

EIMAC's 8989 is a similar tetrode, rated for 10 or 15 kW FM service in the CV 2210 cavity. The 8989 is suitable for VHF-TV service as well.

For complete information:

Get a copy of EIMAC's Quick Reference Catalog and Data Sheets on the 8989 and 8990 from Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

For more information on Varian's CTC Transistors operating in the 88 to 108 MHz range, contact Varian, CTC Division, Telephone (415) 592-9390.

Tomorrow's new generation today.

EIMAC's 8989 and 8990 new-generation tubes augment the 4CX5000A, 4CX10000A, and 4CX15000A in today's new equipments. High power gain, improved electrical stability and low internal inductance combine to provide tomorrow's power tube today.