JULY 1979

- 432-MHz LO chain 27
- 40-meter Beverage 40
- test-equipment mainframe 52
- scaling antenna elements 58
- Amateur equipment survey 71

DISPLAY SSTV PICTURES ON A FAST-SCAN TV
We have never enjoyed such an overwhelming response to a new product. Letters of praise for Tempo's S-1 are coming in daily. Words such as great, fabulous, and fantastic are common. In a few short months the S-1 has taken the Amateur world by storm. In addition to its unique features and its versatility, it has now proven itself to be an extremely rugged and dependable unit...qualities unmatched at any price, but unheard of at the S-1's low price.

This amazing pocket sized radio represents a major breakthrough in 2-meter communications. Other units that are larger, heavier and are similarly priced can offer only 6 channels. The S-1's price includes the battery pack, charger, and a telescoping antenna. But, far more important is its proven performance record as a fully synthesized S-1's with incredible range and clarity of a high powered base station. This amazing pocket transceiver has now proved itself to be an extraordinary boost to the Amateur world. In a few short months the S-1 has made its mark.

The Tempo line also features a fine line of extremely compact UHF and VHF pocket receivers. They're low priced, dependable, and available with CTCSS and 2-tone decoders. The Tempo FMT-2 & FMT-42 (UHF) provide excellent mobile communications and features a remote control head for hidden mounting. The Tempo FMH-42 (UHF) and the NEW FMH-12 and FMH-15 (VHF) micro hand held transceivers provide 6 channel capability, dependability plus many worthwhile features at a low price. FCC type accepted models also available. Please call or write for complete information. Also available from Tempo dealers throughout the U.S. and abroad.

The Tempo FMT-2 & FMT-42 (UHF) provides excellent mobile communications and features a remote control head for hidden mounting. The Tempo FMH-42 (UHF) and the NEW FMH-12 and FMH-15 (VHF) micro hand held transceivers provide 6 channel capability, dependability plus many worthwhile features at a low price. FCC type accepted models also available. Please call or write for complete information. Also available from Tempo dealers throughout the U.S. and abroad.

The Tempo S-1 does it all... portable...mobile...base station and gives you 800 channels in one of the smallest hand helds.

The proven Tempo S-1 model offers the following features:
- UHF and VHF pocket transceivers
- Solid state amplifier adds tremendously
- Optional touch tone pad adds greatly to its convenience and the addition of a Tempo solid state amplifier adds tremendously to its power.

SPECIFICATIONS
- Frequency Coverage: 144 to 148 MHz
- Channel Spacing: Receive every 5 kHz, transmit simplex 600 kHz
- Power Requirements: 9.6 VDC
- Current Drain: 17 mA- standby, 500 mA-transmit
- Batteries: 8 cell- Ni-Cad pack included
- Antenna Impedance: 50 ohms
- Dimensions: 40 mm x 62 mm x 165 mm (1.6 x 2.5" x 6.5")
- RF Output: Better than 1.5 watts
- Sensitivity: Better than 5 microvolts
- Price: $349.00 With Touch Tone Pad: $399.00

SUPPLIED ACCESSORIES
- Telescoping whip antenna, Ni-Cad battery pack, charger.

OPTIONAL ACCESSORIES
- Touch tone pad: $55.00
- Tone burst generator: $29.95
- CTCSS subaudible tone control: $29.95
- Rubber flex antenna: $8.00
- Leather holster: $16.00
- Leather lighter plug mobile charging unit: $6.00
- Matching 30 watt output 138 VDC power amplifier (S30): $89.00
- Matching 30 watt output power amplifier (S90): $169.00

TEMPO VHF & UHF SOLID STATE POWER AMPLIFIERS
- Boost your signal... give it the range and clarity of a high powered base station. VHF (135 to 175 MHz)

<table>
<thead>
<tr>
<th>Drive Power</th>
<th>Output</th>
<th>Model No</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>130W</td>
<td>130A02</td>
<td>$299</td>
</tr>
<tr>
<td>10W</td>
<td>130W</td>
<td>130A10</td>
<td>$189</td>
</tr>
<tr>
<td>30W</td>
<td>130W</td>
<td>130A30</td>
<td>$199</td>
</tr>
<tr>
<td>2W</td>
<td>80W</td>
<td>80A02</td>
<td>$169</td>
</tr>
<tr>
<td>10W</td>
<td>80W</td>
<td>80A10</td>
<td>$149</td>
</tr>
<tr>
<td>30W</td>
<td>80W</td>
<td>80A30</td>
<td>$159</td>
</tr>
<tr>
<td>2W</td>
<td>50W</td>
<td>50A02</td>
<td>$129</td>
</tr>
<tr>
<td>10W</td>
<td>30W</td>
<td>30A02</td>
<td>$89</td>
</tr>
</tbody>
</table>

UHF (400 to 512 MHz) models, lower power and FCC type accepted models also available.

NEW TOLL FREE ORDER NUMBER: (800) 421-6631
For all states except California. Call residents please call collect on our regular numbers.

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127

Henry Radio Prices subject to change without notice.
Stalking the Ultimate DX.

Now you can really enjoy the challenge of working that tough to work 2-meter DX. The all new Boomer 3.2λ yagi gives 16.2 dB forward gain. A high efficiency, balanced feed system, with integral balun, gives a clear, precise pattern. The trigon reflector reinforces Boomer's 24 dB front to back ratio. Boomer has that right combination of features which will give you long path DX capability or allow you to participate in tropo, sporadic E, meteor scatter and EME activities.

The Boomer is designed to last with a large diameter round boom for more strength with less wind load. It has a reversible truss support, high strength aluminum mounting plates and all stainless steel hardware.

When you install Boomer, you'll appreciate our typical attention to detail. You can throw away the hack saw and hand drill. Boomer has a detailed instruction manual, precisely cut elements, plus machined and finished components which need only pliers and screwdriver to assemble.

When you are ready to move up to even higher gain, we have complete stacking kits with everything necessary to assemble two, four and larger yagi arrays.

Stalk down to your local dealer (anywhere in the world) for full details on Boomer.

A-3219 BOOMER
UPS SHIPPABLE

Cushcraft Corporation
The Antenna Company
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108
New MFJ 3 & 1.5 KW Versa Tuners
Run up to 3 KW or 1.5 KW PEP and match everything from 1.8 thru 30 MHz: coax, balanced line, random wire. Built-in balun.

3 KW VERSA TUNER IV’s
1. MFJ-984 3 KW VERSA TUNER IV
$299.95
EXCLUSIVE RF AMMETER insures maximum power to antenna at minimum SWR. Built-in dummy load.
This is MFJ’s best 3 KW Versa Tuner IV. The MFJ-984 Delux 3 KW Versa Tuner IV gives you a combination of quality, performance, and features that others can’t touch at this price.

2. MFJ-981 3 KW VERSA TUNER IV
$199.95
Accurate meter gives SWR, forward and reflected power in 2 ranges: 2000 and 200 watts. Encapsulated 4:1 ferrite balun.
The MFJ-981 3 KW Versa Tuner IV is one of MFJ’s most popular Versa Tuners. An accurate meter gives you SWR, forward and reflected power in 2 ranges: 2000 and 200 watts. Encapsulated 4:1 ferrite balun.

3. MFJ-982 3 KW VERSA TUNER IV
$199.95
Antenna switch lets you select 1 coax thru tuner and 2 coax thru tuner or direct, or random wire and balanced line.
The MFJ-982 3 KW Versa Tuner IV gives you a versatile 7 position antenna switch that lets you select 1 coax thru tuner and 2 coax thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 balun. If you already have a SWR/wattmeter, the MFJ-982 is for you.

1.5 KW VERSA TUNER III’s
4. MFJ-980 3 KW VERSA TUNER IV
$169.95
Heavy duty encapsulated 4:1 ferrite balun for balanced lines.
The MFJ-980 is MFJ’s lowest priced 3 KW Versa Tuner IV but has the same matching capabilities as the other 3 KW Versa Tuner IV’s. Features an efficient, encapsulated 4:1 ferrite balun for balanced lines.

5. MFJ-962 1.5 KW VERSA TUNER III
$169.95
SWR, dual range forward and reflected power meter, 6 position antenna switch, encapsulated 4:1 ferrite balun.
The MFJ-962 1.5 KW Versa Tuner III is an exceptional value. An accurate meter gives SWR, forward and reflected power in 2 ranges (2000 and 200 watts).

6. MFJ-961 1.5 KW VERSA TUNER III
$149.95
6 position antenna switch lets you select 2 coax lines thru tuner or direct, or random wire and balanced line.
The MFJ-961 1.5 KW Versa Tuner III gives you a versatile six position antenna switch. It lets you select 2 coax lines thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 ferrite balun. If you already have a SWR/wattmeter, the MFJ-961 is for you. Black front panel has reverse lettering.

NEW MFJ KW VERSA TUNERS HAVE THESE FEATURES IN COMMON
These 6 new MFJ KW Versa Tuners let you run up to 3 KW or 1.5 KW PEP (depending on the model) and match any feedline continuously from 1.8 to 30 MHz: coax, balanced line or random wire. Gives maximum power transfer. Harmonic attenuation reduces TVI, out of band emissions. All metal, low profile cabinet gives RFI protection, rigid construction, sleek styling. Black Rich anodized aluminum front panel. 5x14x14 inches.

Flip down stand tilts tuner for easy viewing. Efficient, encapsulated 4:1 ferrite balun. 250 ft, 6000 volt capacitors. 18 position dual inductor, 17 amp, 3000 V ceramic rotary switch (3 KW version), 12 position inductor, ceramic rotary switch (1.5 KW version). 2% metal, 50-239 coax connectors, ceramic feedthru for random wire and balanced line. One year limited warranty. Made in U.S.A.

3 KW VERSA TUNER IV’s
4:1 ferrite balun for balanced lines.
EXCLUSIVE RF AMMETER insures maximum power to antenna at minimum SWR. Built-in dummy load.

1. MFJ-984 3 KW VERSA TUNER IV
$299.95
EXCLUSIVE RF AMMETER insures maximum power to antenna at minimum SWR. Built-in dummy load.
This is MFJ’s best 3 KW Versa Tuner IV. The MFJ-984 Delux 3 KW Versa Tuner IV gives you a combination of quality, performance, and features that others can’t touch at this price.

An exclusive 10 amp RF ammeter insures maximum power to antenna at minimum SWR. A separate meter gives SWR, forward, reflected power in 2 ranges (2000 and 200 watts).

Versatile antenna switch lets you select 2 coax lines thru tuner and 1 thru or direct, or random wire, balanced line or dummy load. A 200 watt 50 ohm dummy load lets you tune your exciter off air for peak performance. Efficient, encapsulated 4:1 ferrite balun.

2. MFJ-981 3 KW VERSA TUNER IV
$199.95
Accurate meter gives SWR, forward and reflected power in 2 ranges: 2000 and 200 watts. 4:1 ferrite balun.
The MFJ-981 3 KW Versa Tuner IV is one of MFJ’s most popular Versa Tuners. An accurate meter gives you SWR, forward and reflected power in 2 ranges: 2000 and 200 watts. Encapsulated 4:1 ferrite balun.

3. MFJ-982 3 KW VERSA TUNER IV
$199.95
Antenna switch lets you select 1 coax thru tuner and 2 coax thru tuner or direct, or random wire and balanced line.
The MFJ-982 3 KW Versa Tuner IV gives you a versatile 7 position antenna switch that lets you select 1 coax thru tuner and 2 coax thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 balun. If you already have a SWR/wattmeter, the MFJ-982 is for you.

1.5 KW VERSA TUNER III’s
4:1 ferrite balun for balanced lines.

4. MFJ-980 3 KW VERSA TUNER IV
$169.95
Heavy duty encapsulated 4:1 ferrite balun for balanced lines.
The MFJ-980 is MFJ’s lowest priced 3 KW Versa Tuner IV but has the same matching capabilities as the other 3 KW Versa Tuner IV’s. Features an efficient, encapsulated 4:1 ferrite balun for balanced lines.

5. MFJ-962 1.5 KW VERSA TUNER III
$169.95
SWR, dual range forward and reflected power meter, 6 position antenna switch, encapsulated 4:1 ferrite balun.
The MFJ-962 1.5 KW Versa Tuner III is an exceptional value. An accurate meter gives SWR, forward and reflected power in 2 ranges (2000 and 200 watts).

6. MFJ-961 1.5 KW VERSA TUNER III
$149.95
6 position antenna switch lets you select 2 coax lines thru tuner or direct, or random wire and balanced line.
The MFJ-961 1.5 KW Versa Tuner III gives you a versatile six position antenna switch. It lets you select 2 coax lines thru tuner or direct, or random wire and balanced line. Encapsulated 4:1 ferrite balun. If you already have a SWR/wattmeter, the MFJ-961 is for you. Black front panel has reverse lettering.

FOR YOUR NEAREST DEALER OR FOR ORDERS
CALL TOLL-FREE 800-647-1800

Why not visit your dealer today? Compare these 3 KW and 1.5 KW Versa Tuners to other tuners. You’ll be convinced that its value, quality and features make it a truly outstanding value. If no dealer is available, order direct from MFJ and try it. If not delighted, return it within 30 days for a prompt refund (less shipping). Charge VISA, MC. Or mail check, money order plus $10 shipping/handling.

For technical information, order/repair status, in Mississippi, outside continental USA, call 601-323-5869.

Order By Mail or Call TOLL FREE 800-647-1800 and Charge It On
MFJ ENTERPRISES, INC.
P. O. BOX 494
MISSISSIPPI STATE, MISSISSIPPI 39762

More Details? CHECK—OFF Page 110
magazine

JULY 1979
volume 12, number 7

T. H. Tenney, Jr., W1NLB
publisher

James R. Fisk, W1HR
editor-in-chief

editorial staff

Marvin Hant, WB5CHQ
administrative editor

Charles J. Carroll, K1XX

Patricia A. Hayes, WA1WPW

Alfred Wilson, W6NF

assistant editors

Thomas F. McMullen, Jr., W1SL

Joseph J. Schroeder, W5JUV

associate editors

Wayne T. Pierce, K3SUK

cover

publishing staff

J. Craig Clark, Jr., N14CH
assistant publisher

T. H. Tenney, Jr., W1NLB

advertising manager

James H. Gray, W7UV

assistant advertising manager

Harold P. Kent, WA1WPP

Dorothy A. Sargent, KA1VUB

advertising sales

Susan Sherman
circulation manager

Ham Radio magazine is published monthly by

Communications Technology, Inc.

Greenville, New Hampshire 03048

Telephone: 603-676-1411

Address all editorial and advertising correspondence to

Greenville, New Hampshire 03048

subscription rates

United States: one year, $15.00

two years, $30.00

three years, $45.00

Canada and other countries via Surface Mail

one year, $18.00

two years, $36.00

three years, $54.00

Europe, Japan, Africa, Latin America

$60.00

All subscription orders payable in United States funds, please

foreign subscription agents

Foreign subscription agents are listed on page 93

Microfilm copies are available from

University Microfilms, International

Ann Arbor, Michigan 48106

Annual publication number 1976

Cassette tapes of selected articles from Ham Radio are available to the blind and physically handicapped

from Recorded Publications

919 Walnut Street, 8th Floor

Philadelphia, Pennsylvania 19107

Copyright 1979 by

Communications Technology, Inc.

File registered at U.S. Patent Office

Second-class postage paid at Greenville, N. H. 03048

and at additional mailing offices

(USPS 0568-9999)

Subscription inquiries and changes of address should be directed to Ham Radio magazine, Greenville, New Hampshire 03048.

Please include a recent issue from most recent issue if possible

Postmaster send Form 3579 to Ham Radio

Greenville, New Hampshire 03048

contents

12 displaying SSTV on a

fast-scan TV

Clayton W. Abrams, K6AEP

27 uhf local-oscillator chain

H. Paul Shuch, N6TX

34 linear amplifier design — part 2

William I. Orr, W6SAI

40 40-meter Beverage antenna

Byrd H. Brunemeier, KG6RT

45 versatile coaxial matchbox

John D. Mitchell, K4IHV

52 test-equipment mainframe

Robert P. Haviland, W4MB

58 scaling linear antenna elements

Harold F. Tolles, W7ITB

62 predicting close encounters

of Oscar 7 and 8

Martin Davidoff, K2UBC

71 amateur radio equipment survey

Thomas McMullen, W1SL

4 a second look

6 letters

110 advertisers index

82 new products

93 flea market

8 presstop

104 ham mart

110 reader service

78 ham notebook
This is the time of the year when many amateurs are working on their antenna systems for the coming DX season. If you’re considering installing a new tower, however, there are some potential legal problems you should consider, even before you dig the hole for the base and pour the concrete. Mervyn Hecht, Attorney-at-Law and a Trustee of the Personal Communications Foundation (PCF), discussed four of the possible problems in a recent PCF bulletin:

Error in calculating the property line. “This can come about in two ways. First, the property line may not be where you think it is, especially on hillside properties. Imagine how expensive it will be to move your misplaced tower if your neighbor discovers it is on his property and will not let you keep it there! If there are no property line survey marks you can rely on, and the tower is to be positioned anywhere near a property line, have that line surveyed before you dig the hole for the base.

Secondly, don’t forget that the antenna will be wider than the tower. If the tower is right next to a property line, the antenna will protrude into your neighbor’s “air space.” If that happens, your neighbor has the right to make you move the tower.

Blocking the neighbor’s view. This problem seems to crop up primarily on hillside properties. It may seem reasonable for the valley dweller with a hillside near his house to place his tower on the hillside, above the surrounding hills, but to a person who lives on the top of the ridge an antenna sticking up at the edge of his yard — so he has to look between the director and the reflector to see the setting sun — can be very frustrating. The legal aspects of blocking the view (or sunlight) are now in a state of change, but the trend is toward recognition by courts of these rights, and away from the absolute property rights characteristic of earlier times.

The radio operator must recognize the potential problem and try to position his tower and antenna where it will not interfere with any often-used view nor block the sunlight. If there is some problem in avoiding this result, consider an alternative such as a) a motorized or hand-cranked tower so the antenna can be lowered when not in use; b) a smaller sized antenna; c) meeting with the potentially offended neighbor to obtain the neighbor’s permission to erect the tower on some less offending spot owned by the neighbor.

Interference with underground or property line easements. Many property titles are legally “burdened” by deeds to telephone companies, electric companies, cable television operators, and other utilities which give these services various rights. Usually these rights are to install (either under or over the ground) various cables and pipes, and often to enter onto the property to replace, service, and check these installations. These easements are often so broad that although you own the property — and pay the property taxes — you have given up the use of these (usually five-foot wide) strips of land. If you install anything which blocks the utility company’s rights, or prevents them from exercising the rights granted, you may be required to move your tower. Even if the utility is not using the easement now, it may in the future (perhaps a few weeks after you install the tower), or the utility may just be run by difficult people who are intent on enforcing their rights.

Causing damage to the neighbor’s structure. There are three general ways I have seen this happen. First, mechanical drilling, such as with a jack hammer, which can cause shock waves to nearby structures. Second, digging a hole may result in loss of lateral support which can cause unexpected land movement resulting in damage to nearby structures. By far the most common major problems I have seen resulting from property line excavation, however, are related to water drainage. Particular care should be taken not to change any drainage pattern because, during a rain storm, the slightest change can cause thousands of pounds of water to accumulate in unexpected places.”

As if this is not enough to think about, Attorney Hecht further notes that although he has “not even mentioned deed restrictions, height limitations, airport clearance and lighting regulations, city permits, convenants running with the land, or neighbors running after you with a shotgun…” he does not wish to discourage radio amateurs from installing a tower. Just be aware that if you are going to dig a hole for a tower base, don’t dig near a property line unless you take special care to avoid the special problems that can arise.

Jim Fisk, W1HR
editor-in-chief
Sure you can build up to a 2 meter station with most of the features shown above with some other brand of equipment: if you can afford to add on all the optional pieces. You can spend a lot of money consuming your counter space and collecting knobs to fiddle with, and you can take a long time attaining the 2 meter operations you aspire to.

When you compare all the features, you’ll see why the IC-211 is the 2 meter standard: because that’s what its outstanding features are...standard, like two dual tracking VFO’s at no extra cost. Even the power supply transformer is built-in for working from AC or DC, and ICOM’s advanced LSI technology integrates all the high speed tuning functions through one single tuning knob to one instantly coordinated LED display. Also standard are built-in high SWR autopower control, and selectable output of 500 milliwatts and 10 watts for FM operation.

Your 2 meter contest operations were never easy, but now they are with the IC-211 and the one option that really makes the IC-211 the easiest 2 meter rig available, ICOM’s RM2 remote microprocessor controller. The RM2 adds multi-frequency memory, scan, remote frequency control and touch tone generation to the IC-211’s already astounding list of standard features. With the IC-211 and its compatible RM2, you’ll have a fully synthesized, latest state-of-the-art 2 meter station.

ICOM suggests you compare features when you compare cost, and demand all the features of the 2 meter standard, the IC-211.

ICOM INFORMATION SERVICE
3331 Towerwood Dr., Suite 304
Dallas, Texas 75234

Please send me a full-color ICOM Product Line Catalog and a list of Authorized ICOM Dealers.

NAME: ___________________________
ADDRESS: ________________________
CITY: ___________________ STATE: _____ ZIP: ________

You may send a machine copy of this form.

All ICOM radios significantly exceed FCC regulations limiting spurious emissions. Specifications subject to change without notice.

© 1979 ICOM EAST, INC.
lightning protection

Dear HR:

Many thanks for publishing K9MM's excellent article, "Lightning Protection," in the December issue. It is hoped that Amateurs will heed the warning.

Author Becker suggests grounding wooden poles by placing a grounding conductor on the pole — this is quite effective, but it may act as another antenna, radiate minute electrical noises, and reradiating some transmitting power. It is suggested that the ground wire be cut into 10-foot (3-meter) lengths with each end bent 180° on a half-inch radius (except the top spike) and stapled to the pole with each loop separated by 2 mm (1/16 inch) from its neighbor. This spacing is adequate for Amateur use.

It is further suggested that Amateurs become acquainted with the provisions of the National Electrical Code (NFPA no. 70) published by the National Fire Protection Association; it lists specific requirements for station protection. This document is available at most public libraries and is quoted briefly in part on page 645 of the 1978 ARRL Handbook. Compliance with the provisions of the NFPA Code may avoid insurance adjuster hassles if lightning plays havoc with your property.

Marchal H. Caldwell, Sr., W6RTK
Sacramento, California

Dear HR:

I have recently become a professional associate in the Lightning Protection Institute, a group of professionals, installers, and equipment manufacturers who have joined together to promote lightning protection and the safe design and installation of lightning protection systems. For this reason, and because I am a Radio Amateur with several wire antennas, I found the article in the December issue of ham radio particularly informative, accurate, and up to date as it discussed lightning theory, protection against direct strikes, and protection against surge and transient high voltages.

As is usually the case, the article was well written and documented, and, in my opinion, serves as the best source of lightning protection information that I have seen to date for the Radio Amateur. Unless I miss my guess, this is a better treatise by far than that found in the ARRL Radio Amateur's Handbook. Quite frankly, I feel it is so good that those editors ought to consider lifting the article and using it in the Handbook in toto.

Gerald B. Curtis, WB2FBL
Westmont, New Jersey 08108

Dear HR:

My Digital Display, which appeared in the March, 1979, issue of ham radio, occasionally will reset to 999.9 instead of 000.0. This problem is easily eliminated with the following simple circuit changes:

1. Lift pin 3 of U6 from ground and reconnect it to pins 2 and 8 of U6.
2. Disconnect the line between pins 6, 7 of U12, and pin 10 of U9. Reconnect pins 6 and 7 of U12 to pins 2, 3, and 8 of U6.

This ensures U12 will always begin a count cycle in the same state.

Frank C. Getz, Jr., N3FG
Media, Pennsylvania

Dear HR:

Now that the 10-meter band is practically fully open for worldwide direct communications, perhaps it's time to curtail Oscar 10-meter downlinks. The reason for my position is that 100 kHz is a lot to take out of the usable hf spectrum; now that the Soviets have orbited their two vehicles this has increased the "forbidden" territory to 200 kHz (29.3 to 29.5 MHz).

The pass time over any given area may be good for only 15 to 20 minutes of acquisition, but since direct skip prevails over such a wide area, in all directions, this means that the effective interference chances are multiplied by the number of passes and orbit time.

There are several other factors which seem to make satellites with 10-meter output unacceptable, one being the large number of Civil Emergency Preparedness stations which have been on these frequencies since 1945, another being the many low-power stations which have been squeezed out of the lower part of the 10-meter band.

I have suggested to AMSAT that if they lead the way now by deleting the 10-meter downlink, the Soviets may do likewise on their next venture. AMSAT is to be congratulated for serving 10 meters during the sunspot time, but the time to discontinue is now!

Samuel H. Beverage, W1MGP
North Haven, Maine

OSCAR 10-meter downlink

Dear HR:

Now that the 10-meter band is practically fully open for worldwide direct communications, perhaps it's time to curtail Oscar 10-meter downlinks. The reason for my position is that 100 kHz is a lot to take out of the usable hf spectrum; now that the Soviets have orbited their two vehicles this has increased the "forbidden" territory to 200 kHz (29.3 to 29.5 MHz).

The pass time over any given area may be good for only 15 to 20 minutes of acquisition, but since direct skip prevails over such a wide area, in all directions, this means that the effective interference chances are multiplied by the number of passes and orbit time.

There are several other factors which seem to make satellites with 10-meter output unacceptable, one being the large number of Civil Emergency Preparedness stations which have been on these frequencies since 1945, another being the many low-power stations which have been squeezed out of the lower part of the 10-meter band.

I have suggested to AMSAT that if they lead the way now by deleting the 10-meter downlink, the Soviets may do likewise on their next venture. AMSAT is to be congratulated for serving 10 meters during the sunspot time, but the time to discontinue is now!

Samuel H. Beverage, W1MGP
North Haven, Maine

Dear HR:

My Digital Display, which appeared in the March, 1979, issue of ham radio, occasionally will reset to 999.9 instead of 000.0. This problem is easily eliminated with the following simple circuit changes:

1. Lift pin 3 of U6 from ground and reconnect it to pins 2 and 8 of U6.
2. Disconnect the line between pins 6, 7 of U12, and pin 10 of U9. Reconnect pins 6 and 7 of U12 to pins 2, 3, and 8 of U6.

This ensures U12 will always begin a count cycle in the same state.

Frank C. Getz, Jr., N3FG
Media, Pennsylvania
What's unique about the PLL circuit in the TS-120S?

A single-conversion PLL (phase-locked loop) system is employed in the TS-120S. Only one crystal is required, instead of a heterodyne crystal element for each band, resulting in simplification of circuitry, and a marked improvement in overall stability. The single-conversion PLL system also improves the spurless characteristics during transmission and reception, and makes IF shift operation and mono-balanced indication available on any model.

The VCO frequency is obtained from the PLL circuit by synthesizing the VFO and CAR frequencies and reference oscillating frequencies of 10 MHz and 500 kHz supplied by the counter. Bandswtiching is accomplished by changing the preset value of the programmable divider in the PLL. Therefore, when switching bands, the frequency (except, of course, the 1-MHz and 10-MHz order digits) remains the same. The frequencies for each band and PLL stage are shown in the table.

The output passes through a lowpass filter (LPF) and is amplified, and the resulting digital signal is divided by a programmable divider, producing a 500-kHz output.

Information from the band switches is converted into BCD signals in the counter and the division ratio as shown in the table is preset. The lowpass filter consists of transistors mounted on the outside to minimize signals. A Motorola MC4044P functions as a phase comparator. Five VCO circuits with high-output transistors cover all of the bands.

If the output of the phase comparator unlocks, VCO output is switched off to prevent emission at unwanted frequencies and, at the same time, the digital display blanks to warn the operator.

The TS-120S digital counter employs a VFO frequency counting system.

First, the VFO frequency is mixed with a 5-MHz signal obtained from the reference oscillator chain and is converted to 0.5 to 1 MHz. This signal passes through a lowpass filter, is amplified, buffered, and shaped into a digital (square) wave, passes through a 1-second gate circuit, and is applied to a four-digit counter. The signal is counted from 10 Hz to 100 kHz and is fed to a preset counter to derive the carrier output.

The 100-kHz order digit presets at 5 to display the operating frequency on the 3.5, 28.5, 29.5, and WWV bands, and at 0 for display on 7.0, 14.0, 21.0, 28.0, and 29.0 MHz. The 1-MHz and 10-MHz order digits are determined by a matrix operating with bandswitching information.

The counter outputs are switched by the multiplexer and converted from BCD to seven-segment information by the decoder to light the fluorescent display tubes. The large digits have good luminous intensity and a dark filter, providing fatigue-free viewing over long operating periods. The display can be read easily, even in the car and other sunlit locations.

The reference oscillator produces a 10-MHz signal and performs time-base division, and generates gate pulses, latch pulses, and reset pulses, which are applied to the counter. The PLL circuit produces 10-MHz and 500-kHz outputs. The marker circuit produces a 100-kHz signal which synchronizes the 25-kHz multivibrator to obtain a marker signal as accurate as the reference frequency.

The 1/10 division at the first stage of the count-down chain utilizes low-power Schottky TTL, and other divisions use CMOS IC's for low power consumption and minimum spurious emission. With the IF shift circuit, the carrier frequency is independent of both transmitting and receiving frequencies.

When the VFO frequency is counted, the operating frequency is indicated as accurately as the reference oscillator frequency, provided that the 10-MHz reference is calibrated to WWV.

True operating frequencies are displayed accurate to three digits (100-kHz order), regardless of CW transmitting and receiving frequencies or the position of the band switch or mode switch. When the VFO is tuned to the extent that the 1-MHz and 10-MHz orders are switched (beyond the band edge), these digits are blanked out.

FREQUENCIES FOR EACH BAND AND PLL STAGE

<table>
<thead>
<tr>
<th>BAND</th>
<th>RANGE (MHz)</th>
<th>VCO (MHz)</th>
<th>MIX (1) INPUT (MHz)</th>
<th>MIX (1) OUTPUT (MHz)</th>
<th>MIX (1) OUTPUT (MHz)</th>
<th>DIVIDER RATIO</th>
<th>DCBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWV</td>
<td>14.3-15.0</td>
<td>23.33-23.83</td>
<td>24.32-24.83</td>
<td>1.0</td>
<td>1/2</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>3.5-4.0</td>
<td>12.33-12.83</td>
<td>14.32-14.83</td>
<td>2.0</td>
<td>1/4</td>
<td>1180</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.0-7.5</td>
<td>15.83-16.33</td>
<td>14.32-14.83</td>
<td>1.5</td>
<td>1/3</td>
<td>1101</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14.0-14.5</td>
<td>22.83-23.32</td>
<td>24.33-24.83</td>
<td>1.5</td>
<td>1/3</td>
<td>1101</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21.0-21.5</td>
<td>29.83-30.32</td>
<td>34.33-34.83</td>
<td>4.5</td>
<td>1/9</td>
<td>0111</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28.0-28.5</td>
<td>36.83-37.33</td>
<td>34.33-34.83</td>
<td>2.5</td>
<td>1/5</td>
<td>0111</td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>28.5-29.0</td>
<td>37.33-37.83</td>
<td>34.33-34.83</td>
<td>3.0</td>
<td>1/6</td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29.0-29.5</td>
<td>37.83-38.33</td>
<td>34.33-34.83</td>
<td>3.5</td>
<td>1/7</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>29.5-30.0</td>
<td>38.33-38.83</td>
<td>34.33-34.83</td>
<td>4.0</td>
<td>1/8</td>
<td>0100</td>
<td></td>
</tr>
</tbody>
</table>
The 220-MHz Situation has not changed much since the FCC's rejection of the various Petitions for Reconsideration. However, it now appears that the Amateur Service is not the only potential loser in the proposed shift that would make maritime prime user of the band. The U.S. Navy, which operates sophisticated satellite tracking equipment in and around 220-225 MHz, says that it was also unaware of the FCC's last minute shift and seems almost as unhappy about it as are Amateurs.

SHIFT OF RFI RESPONSIBILITY from manufacturers of susceptible equipment back to users of transmitting equipment (specifically CB, but certainly including Amateurs) was the theme of a May 27 Washington Post article by Norm Eisenberg, contributor to the Post's Bookworld section. In his piece he underscores "the danger that the responsibility for such interference may be placed on the equipment interfered with," thus causing the "victims" to be penalized. He further follows the traditional manufacturer's line that RFI preventative measures would degrade equipment performance and raise prices, urging readers to write their Congressmen opposing the RFI measures of the proposed rewrite of the Communications Act.

AMATEUR RADIO WAS ATTACKED as "one of the main non-ionizing radiation hazards in the United States" at an April 9-10 meeting of the Subcommittee on Public Health Aspects of Energy, in New York. The group is an arm of the New York Academy of Medicine's Committee on Public Health, reports K6YB, who has an article on the effects of Amateur RFI radiation on family and neighbors coming out in Ham Radio magazine later this year.

FCC'S LICENSING DIVISION will move to Gettysburg, the Commissioners decided in late May, providing Congress approves the shift. Affected would be about 160 people presently in the Washington office, leaving only Licensing Chief Dick Everett and his immediate staff behind.

Amateur And CB Licensees, whose applications are already done by the Gettysburg facility, would feel little change from the move. The greatest effect would be on the land mobile service, whose licenses are presently all processed in Washington.

A SPECTACULAR CARIBBEAN RESCUE directed by Amateur Radio saved three mariners when their sailboat went down near Saint Martin. ON7AP/MM, along with his wife and 2-year-old child, were en route from Saint Martin to the Azores in their small sailboat, l'Oiseau de Passage, when the craft began taking on water. As all their marine band equipment was in the flooded forward hold, Alfonso called into the Pacific-Caribbean DX Net on 14175 asking for help. Net controller VP2VBR, alerted KV4FZ via 2 meters, who in turn called Miami Coast Guard. A helicopter was dispatched, but couldn't find the stricken vessel before running low on fuel and putting into St. Martin. In the meantime FCC monitoring stations were taking bearings on ON7AP's signal, providing more accurate location information for the fixed-wing aircraft now searching.

As Alfonso Speaks Little English, VE3AUN — fluent in both French and English — took over the reins of the search and rescue effort with 9Y4HP, himself a pilot, offering valuable rescue advice on the side. The helicopter, Coast Guard 1438, was unable to reach San Juan Coast Guard directly, but joined the group on 14175 and was patched into San Juan by KV4FZ.

The l'Oiseau de Passage was finally spotted by a fixed-wing aircraft about 5:00 PM, nearly submerged with sails down and the engine dead. The helicopter arrived on the scene shortly thereafter, pulling the wife and child off the foundering vessel first and rescuing ON7AP a few moments later.

Alfonso's Greatest Regret, he said after the rescue, was not being able to save his Yaseu 12277. "That radio was the thing that saved our lives!"

Another Rescue In Late April found WD6FFV acting as the liaison between a sinking vessel Carmen and the Coast Guard. In this case, Mike relayed information between the vessel, which was northwest of Jamaica, and Long Beach and Miami Coast Guard. After about an hour of searching, the Coast Guard was able to locate the vessel, dropping the needed equipment to the stricken vessel.

THE AMSAT-OSCAR USERS DIRECTORY, a valuable tabulation found in each issue of the Callbook, needs a new compiler. WB2DNN, who has been doing a yeoman job on the project for the past several years, has asked for relief. Involved is reviewing logs and user reports and adding new calls to the Directory as they appear on the air. Contact AMSAT if interested in the job.
OMNI HAS IT ALL. All the advantages and capabilities, all the new conveniences and new levels of performance you need, whatever your HF operating specialty. All built-in, ready to use.

ALL SOLID-STATE. All the advantages of total solid-state from the pioneer of HF solid-state technology. Reliable, cool, stable — from receiver front-end to transmitter final.

ALL HF BANDS. From 160 through 10 meters (and all the crystals) plus convertible 10 MHz and “AUX” band positions for possible future needs.

ALL BROADBAND. Band changing without tuneup — without danger to the final amp.

ALL READOUTS. Choose OMNI-A for analog dial (1 kHz markings) or OMNI-D for six 0.43” LED digits (100 Hz readability.)

ALL VOX AND PTT FACILITIES built-in; 3 VOX controls plus PTT control at front and rear jacks for external PTT switch.

ALL SQUELCH NEEDS for tuning and monitoring are built-in.

ALL FILTERS INCLUDED: 4-position CW/SSB filter (150 Hz bandwidth with 3 selectable skirt contours) plus 8-pole Crystal filter (2.4 kHz bandwidth, 1.8 shape factor.)

ALL MODE SWITCH puts all filters to work in any mode.

ALL BREAK-IN: Instant or delayed receiver muting to fit any band condition or mobile operation.

ALL VERSATILE OFFSET TUNING: dual ranges, ±5 kHz range for off-frequency DX or ±0.5 kHz range for fine tuning.

ALL SENSITIVE RECEIVER: from 2 μV on 160 m to 0.3 μV on 10 m (10 dB S+N/N) for ideal balance between dynamic range and sensitivity.

ALL OVERLOADS HANDLED: dynamic range typically exceeds 90 dB and PIN diode switched 18 dB attenuator also included for extra overload protection.

ALL LINEAR/ANTENNA BANDSWITCHING FROM FRONT PANEL: auxiliary bandswitch terminals on back panel for external relays or circuits are controlled simultaneously by the OMNI bandswitch.

ALL INTERFACE JACKS FOR PHONE PATCH: access to speaker and microphone signals.

ALL LEVEL ADJUSTABLE ALC: set output from low power to full, retain low distortion at desired drive to power amp.

ALL SIDETONE ADJUSTMENTS: pitch and volume.

ALL POWERFUL, ALL WARRANTED FINAL AMPLIFIER. 200 watts input to final. Proven design with full warranty for first year and pro-rata warranty for additional 5 years.

ALL 100% DUTY CYCLE. For RTTY, SSTV or sustained hard usage.

ALL-MODE POWER: basic 12 VDC for easy mobile use, external supplies for 117/220 VAC operation.

ALL FRONT PANEL MICROPHONE AND PHONE JACKS. Convenient.

PLUS ALL THE OTHER HANDY BUILT-INS: "Timed" 25 kHz crystal calibrator in OMNI-A with automatic 5-10 sec. "on" time for easy 2-hand dial skirt adjustment. . . Zero-Beat switch for placing your signal exactly on CW listening frequencies . . . SWR bridge switches "S" meter to read SWR each time you transmit for continuous antenna monitoring. . . Separate receive antenna capability. . . Dual speakers for greater sound at lower distortion. . . Plug-in circuit boards for fast, easy field service.

ALL FUNCTIONAL STYLING. "Clamshell" aluminum case clad in textured black vinyl with complementary nonreflective warm dark metal front panel and extruded aluminum bezel and bail. Convenient controls. Complete shielding. And easier-to-use size: 5¼"h x 14¼"w x 14d.

Model 545 OMNI-A $899 Model 546 OMNI-D $1069

Experience the all-encompassing HF world of OMNI. See your TEN-TEC dealer or write for all the details.

OMNI-A $899 OMNI-D $1069

Model 545 OMNI-A $899 Model 546 OMNI-D $1069
Swan’s Success Story:

100MX Power House
The Field-Proven Rig the Whole World’s Talking About.

235 Watt PEP and CW on ALL Bands
Price? You won’t believe it! Just ask your dealer.
All solid state quality American construction, with epoxy glass boards to withstand the rugged mobile environment.

Look to Swan for Quality Accessories . . . and Service

SWAN ELECTRONICS
A member of the Cubic Corporation family of companies.
305 Airport Road
Oceanside, CA 92054
714-757-7525
A Knob with a new twist "VRS™"

Swan Astro 150 Exclusive Microprocessor Control w/memory gives you over 100,000 fully synthesized frequencies, and more!

- VRS — Variable Rate Scanning, a dramatic new technique for unprecedented tuning ease and accuracy
- POWER — 235 watts PEP and CW on all bands for that DX punch
- Advanced microcomputer technology developed and manufactured in the U.S.A.
- Price? See your authorized SWAN dealer for a pleasant surprise!

Dual Meter
Reads PEP output in watts and receive “S” units.

Full Break-in CW
(or semi, switch selected)

Wide Frequency Coverage
10M — 28.0-30.0 MHz
15M — 20.8-23.0 MHz
20M — 13.8-16.0 MHz
40M — 6.0-8.3 MHz
80M — 3.0-4.5 MHz
160M — 1.8-2.4 MHz*
* in lieu of 10M band on Model Astro 151

Mike Tuning
For accurate 100 Hz steps or fixed rate scan.

PSU-5 Power Supply with Speaker
ASTRO-150 Transceiver
ST-3 Antenna Tuner

THE MOST ADVANCED HF SSB TRANSCEIVER AVAILABLE.
FULLY SOLID-STATE SWAN ASTRO 150

305 Airport Road / Oceanside, CA 92054 / 714-757-7525
display SSTV pictures on a fast-scan TV

Using an integrated circuit CRT controller plus software to provide the interface between a computer memory and a fast-scan TV

The missing link for all my SSTV projects was the interface from computer memory to a normal fast-scan TV set. Although commercial units are available, their cost tends to be high and designs complex. In this article I will present a hardware design that is simple and can be easily constructed for less than one-hundred dollars.

Product goals. Prior to starting the project I set a few goals for the interface:

1. The hardware design should be simple, and make use of a minimum of components.
2. The hardware should be reproducible, and flexible enough to allow for future expansion.
3. The software should be modular and use as much relative addressing code as possible and run in ROM.

Obviously, to accomplish a task like this took careful planning and much thought. The item which made the whole project possible was the new family of Large Scale Integration (LSI) chips called CRT controllers.

Specifications. The hardware and software package in this article will accomplish the following:

- **hardware**
 1. Display a digitized slow-scan TV picture located in RAM on a normal TV set with 128 pixels/line and 16 gray levels, expandable to 256 pixels/line.
 2. Allow for transmission of medium-scan Amateur television in any format.
 3. Provide the flexibility to enhance the digitized picture by simple hardware program commands which include interlaced or noninterlaced video and fast-scan picture zooming.

- **software**
 1. Receive or transmit Amateur Radio SSTV with 128 or 256 pixels per line and sixteen gray levels.
 2. Zoom by the use of software to transmit on SSTV or display on fast-scan TV any one of five quadrants of a digitized picture.
 3. Receive quarter-framed SSTV pictures, and display them on fast-scan TV or transmit the pictures on a composite single-framed picture.

In order to accomplish these feats, you must first have some means of digitizing the picture and interfacing the computer with the Amateur Radio receiver. Fig. 1 is a block diagram of my entire computer configuration. The detailed design of my SSTV analog interface board is contained in my previous articles.

general background

Fig. 2 is a block diagram of the computer video-interface card which is used to display the fast-scan TV. To help you understand the function of this card, I'll discuss how a microprocessor functions in this type of application.

A microprocessor is generally a complex logic element which moves data to and from memory or ports external to the system. In this process, the data could be altered in any manner. In my application, data is first moved from a port which contains an analog-to-digital converter attached to an SSTV demodulator. The data is then formatted in the microprocessor memory in such a way that if it is accessed in a serial manner, converted to an analog...
signal, and mixed with sync pulses, you could display the information as a picture on a television set. This movement of data is accomplished by a series of events called instructions. The art of creating these instructions is called computer programming.

If the microprocessor were fast enough, this process could be accomplished by software with a small amount of hardware. To date, none of the commonly available low-cost microprocessor chips are fast enough. Obviously, if you would like to display pictures from memory, some sort of hardware device must be constructed. As a result of this requirement, I designed the following video-interface card.

CRT controller block

At this time, four manufacturers have developed LSI CRT controller chips. They are basically complex devices which replace the function of approximately forty ICs and combine their functions into a single package. These chips are designed to interface with digital computers and are used mainly in communications terminals.

Each controller typically contains a number of functional units. Fig. 3 is a block diagram of the MC6845 CRT controller. These devices are used to address memory as a data refresh buffer, serialize the data from RAM, and mix it at the correct time with TV sync pulses. Each manufacturer's chip design has different features. Some of these features range from built-in character generators to full-color graphics.

Since an SSTV fast-scan display application consists of addressing large blocks of RAM (up to 16k), only one CRT controller met this requirement, the Motorola MC6845. The MC6845 is unique, because the chip has more versatility than do any of the other controllers. This IC contains eighteen programmable registers which control the vertical/horizontal timings and refresh RAM address, number of scan elements, and lines per picture.

The unique feature of the chip is that the software controls how the chip performs. For example, calculations of the various controller chip-register values were made by fine tuning with an oscilloscope and a TV monitor to achieve optimum results. This feature is similar to changing variable capacitors or potentiometers in older hardware technologies. Software is much faster and more reliable than the older techniques. With software you can achieve textbook waveforms with a little experimentation.

Memory accessing

Another subject which should be briefly discussed is direct-memory accessing (DMA). DMA is a technique for reading or writing to or from memory at a much faster rate than allowed by the microprocessor software. The three DMA techniques that can be implemented in microprocessors are:

1. Halting the processor.
2. Cycle stealing.
3. Multiplexing the CPU and DMA.

Each technique has its own advantages. When planning the project, two DMA methods were investigated as possibilities in this application, halting the CPU and multiplexing. The cycle-stealing method would not be fast enough for the refreshing or accessing of a video display system.
Multiplexing had a big advantage since the CPU and display could share the picture RAM area at the same time. This multiplexed-type of operation is easily implemented in the 6800 microprocessor since both phase 1 and 2 cycles have the same durations. In this configuration the CRT controller chip would drive the CPU. The CPU would operate as normal, addressing RAM at a phase 2 cycle time. The display would access memory during phase 1 cycle time. This method was considered the most desirable, however the standard SWTPC 6800 MP-A CPU card derives its baud rate from the CPU clock. Therefore, this DMA approach was not chosen. If it were, the baud rates derived from the CRT controller clock would be nonstandard.

The halting of the CPU was the method I chose for my card design. Additionally, halting of the CPU is the easy type of design to develop. All that has to be done to halt the CPU is to ground the halt pin on the bus (SS-50). In my application, I decided to be a little more elegant than just grounding the halt pin to start the operation. The 6800, like many of the more popular microprocessors, has an instruction called wait (WAI). When the microprocessor executes this command, it waits or does nothing until it receives an interrupt (or signal) from another source. This is the method I chose to halt the CPU. While in wait state, my special card takes control of the bus and provides the signals to RAM to sequentially take the pixels (picture elements) and transfer them to the TV monitor. When the microprocessor receives the interrupt, the interface card is disengaged and normal microprocessor operation resumes. The SSTV hardware interface to the software is an analog-to-digital (A/D) converter and a digital-to-analog converter (D/A). The A/D is used to receive the SSTV pictures, and the D/A is used to transmit SSTV. Both units are connected to an MC6820 PIA parallel port. Fig. 4 describes the 6820 PIA parallel port. Fig. 4 contains a schematic diagram of the video-interface card. Some of the major components have been previously discussed, with the details to follow.

Initialization. Before the whole process can start, the CRT controller chip must be initialized. This initialization tells the controller chip the type of video which will be displayed and where the picture is in the microprocessor memory. To accomplish this, registers in the controller chip must first be loaded with data by software, with hardware selecting the chip at the correct time.

Chip selection in the SWTP 6800 system is conveniently located on the system motherboard. I found it convenient to run a wire from the I/O selection line on the small socket to the CS line on the CRT controller chip. This left only the chip ENABLE control decoding which had to be installed on the card. Since data is valid only during phase 2 of the 6800 clock cycle, only two signals had to be ANDed, W/R and phase 2. The least significant bit of the address line (A0) was connected to the chip RS input. Thus when A0 is true, the register number can be loaded; when off, the data is loaded into the controller chip.

One important point should be noted when debugging this circuit: It does nothing without initialization. When initialized, you can observe the various output lines changing.

Buffering. Since the card shares the same bus as the microprocessor, all lines must be buffered with either tri-state or low-power Schottky ICs (74LS). Tri-state devices have three output states, ground, high, and floating. When floating, these chips exhibit a high impedance which is almost an open circuit. When not in use, the video card floats on the bus.

When a WAI instruction is executed by the microprocessor, the bus available (BA) line rises and the CPU card floats. I found that the SWTP MP-A CPU card has a bug and requires a slight modification to properly DMA the bus. Apparently Southwest designed the card for DMA; however, they allowed one buffer to be in the high state. You can correct
this problem by cutting the lead on U12 between pins 4 and 5. Leave the connection on pin 5, but connect a wire from pin 4 to pin 2 of U12. Since many manufacturers produce 6800 CPU cards, I suggest that you consult your schematics to ensure that your card will tri-state the bus when the 6800 BA line goes positive.

One line that my video card does not control during DMA is R/W. Since the video card is always reading RAM during refresh, I let this line float positive. The main reason for doing this is that I ran out of buffer modules on the three tri-state buffers (U16, U17, and U18). A more desirable state would be to condition this line positive.

Memory addressing. The memory addressing of the video card is the simplest part of the whole operation. All of the difficult work is accomplished by the CRT controller chip. When initialized, the memory is addressed at one half the pixel rate (650 ns). The appropriate sync pulses are also outputted from the chip and mixed with the video.

Data flow. The most important part of the entire video card is the flow of RAM data to the TV set. Since the CRT controller chip does the difficult task of addressing memory, all that has to be done is to serialize the information. When RAM is addressed, the data is presented to two latches (U5 and U6) where each holds four bits of a byte (nibble). The data is latched at the end of an addressing cycle, with both latches feeding a multiplexer (U7). First the lower nibble then the upper nibble are fed through the multiplexer. Since each pixel is a nibble, and a byte contains two pixels, the data rate is twice the memory-accessing rate. This allows the use of 450 ns memory to refresh a picture with 128 pixels per line. If you wish to refresh a larger buffer with more pixels per line (256), you must make the following changes.

1. Change the crystal frequency to twice the rate, 12.2888 MHz for 60-video standards.
2. Re-initialize the CRT controller chip for 128 characters per line and a memory start address of 0000.
3. Load a picture in RAM from address 0000 to 3FFF (16k bytes).
4. Place 16k of static 250-ns access time RAM at locations 0000 to 3FFF.

These steps will produce a fast-scan television picture with twice the resolution of comparable commercial units.

video modulator

The video modulator was designed for its simplicity and low cost. At first I considered using a digital-to-analog converter for the modulator. This method, on the surface, appeared to be a good approach. However, the component count and cost were considerably higher than I expected. Fig. 6 is a plot of the excellent linearity of this modulator. The four 1 per cent resistors could be replaced with 5 per cent values by a selection process. Only one resistor had to be fine-tuned in the modulator circuit, the 3.3 kilohm resistor which controls the 70-to-30 per cent

![fig. 3. Diagram of the functions internal to the MC6845 CRT-controller IC.](image-url)
fig. 5. Schematic diagram of the video-interface card.
relationship between video and sync. If the sync is too low or high, change the 3.3-kilohm resistor in series with U11. The sync portion of the video should be 30 per cent of the total swing of the video signal.

counters and timers

The main counter on the card is very simple. The clock signal is generated by U1 and is divided down by U3. The only tricky part is the nibble latch signal derived from U2. Since the data is valid only at the end of the addressing cycle, it must be latched as close to the fall of the address as possible. Calculations show that if 250-ns memory were refreshed, 256 pixels/line could be refreshed and latched with this scheme. If the latch is marginal, inverters could be placed in series with the line for additional delay.

The timer is used to return from a wait condition of the CPU. I derived this return signal by counting down the 110-baud rate on the SS-50 bus by 2048. This method gave me an interrupt every 1.1 seconds. I serviced this interrupt by software, with the interrupt generated by grounding IRQ on the bus line for approximately 2 µs (U15). The visible effect on the fast-scan TV is one missing scan line every 1.1 seconds.

U13 is used to drop the DMA at the correct time and issue the interrupt. The BA delay side of U13 causes the video card to float 8 µs prior to and after freeze and escape. Freeze is used to display a continuous picture on the TV screen by grounding the central line with a switch. Escape can be used to return to the CPU from DMA by grounding this line with a pushbutton. The push button will cause an interrupt.

![Diagram of the linearity of the fast-scan modulator in percentage of video signal to gray level.](image)

![Layout of the video-interface circuitry on the prototype board.](image)
I decided to revise my software from the previous articles of this project for three reasons:

1. To allow the programming code to reside on EPROM with slight changes. No self-modifying code was used.

2. To simplify software operation by providing routines that have proven effective in the majority of Amateur Radio SSTV contacts.

3. To add new features to the software.

Fig. 9 contains a memory map of the software. The software was written in a top-down manner with all of the major routines or subroutines callable from other programs. This means that if the software were placed on EPROM, the routines could be called like macros and used as a basis of a high-level programming package. Since the software demands the use of a small amount of RAM, twenty-two bytes were reserved in the A000 region which resides physically on the CPU card. The routines were made as versatile as possible by placing all delay constants and some limited code in this RAM region.

The RAM constants are initialized during execution of the program, and can be modified at any time to produce new effects in the reception or display of SSTV signals. Table 1 further defines the RAM constants.

CRT controller-chip software

The CRT controller chip contains eighteen registers which can be programmed to produce almost any type of video. The chip has quite a large amount of flexibility in horizontal and vertical timings. However, the crystal frequency selected must be approximately correct. I selected the CRT controller crystal by the following calculations.

The first step in crystal selection is to determine the over and under scan limits of your monitor. I determined that I could lock on video with a horizontal picture display time between 34 and 46 μs. Since the most desirable condition for my monitor (Sanyo VM4092) is to display a picture with a slight underscan, I found that 42 μs was optimum. The next step was to calculate the pixel time. I chose to display 128 pixels per line, and each pixel consisted of 64 bytes. Dividing 42 by 64, the pixel time was 656 ns. Converting this time to frequency and multiplying by four, which is the counter-divide ratio, 6.095 MHz was found to be optimum. This value was close to an off-the-shelf commercial frequency of 6.1444 MHz (651 ns).

The next task was to program the eighteen registers. The specification sheet for the MC6845 provides

*A copy of the source code is available by sending a self-addressed, stamped envelope to ham radio, Greenville, New Hampshire 03048.
more detail on the constant selection. I'll provide some of the logic on how I selected my constants, since I found the specifications somewhat confusing.

Horizontal-total register (R0). The horizontal total register is the television horizontal frequency divided by the clock —

\[
63.5 \mu s / 651 \text{ ns} = 96
\]

Bytes to be displayed (R1). For 128 pixels per line use 64, and for 256 pixels per line use 128.

Horizontal-sync frequency (R2). This register moves the horizontal-sync position. The effect on the TV set is to move the centering of the picture right or left. A value of 77 was found to be optimum.

Horizontal-sync width (R3). The pulse width should be 4-5 μs, which is a value of 7 (4.55 μs).

Vertical-total register (R4, R5). These two registers determine the vertical frequency. These values were determined experimentally by changing R4 (coarse) and R5 (fine tune) ending at 127, 10.

Vertical-displayed rows (R6). This constant determines the number of character rows that will be displayed. Since an SSTV picture displayed on fast scan

```
fig. 9. Program memory map for the SSTV routines.
```

must have the correct aspect ratio, a value of 120 was selected. This format causes eight lines not to be displayed on the fast-scan screen.

Vertical-sync position (R7). This constant was chosen by trial and error. A value of 120 produced optimum results.

Interlace (R8). This constant can select three types of interlaced video: normal, interlaced sync, or interlaced sync and video. An interlaced picture produced the best video. Therefore, a constant of 1 was selected.

Scan-line register (R9). This register is used to tell the controller the number of scan lines per character.
Fast-scan picture of a girl's face.

Since a pixel line has only one scan line, a value of 1 was programmed.

Refresh-buffer address (R12 and R13). These two registers determine the starting address for the refreshing of the fast-scan video picture. Since 120 lines are displayed, the top four and bottom four SSTV lines were truncated. Therefore, a refresh start address 0240 (hex) was chosen. This centers the SSTV pictures on the fast-scan TV display.

Fig. 10 is a source listing of a routine to load the CRT-controller registers.

A CRT controller gives you a flexibility never before attainable in a video display system. One example of this flexibility is the newly proposed medium-scan TV. When the medium-scan format is standardized, a special crystal dip socket could be constructed and new constants placed in the software. When this is done, the composite video could be connected directly to an Amateur Radio transmitter.

With a little imagination, numerous tricks can be played with the CRT-controller chip to enhance the pictures for display purposes.

Software

To provide flow charts for this entire package would be an enormous task. Therefore, I've selected

fig. 12. Flow chart of the SSTV picture receive routine (PIXR).

fig. 11. Diagram of the RAM space required for the SSTV pictures.
portions of critical routines to flow chart which represent how the package performs.

picture area

Fig. 11 provides a pictorial view of the digitized picture in RAM. The picture consists of a 16k-block of RAM. This 16k region could be divided up into two portions for low-density TV, or a single high-density area. I decided to use both densities in the software package. The low-density television area was designated as a primary and a secondary region. The primary region was used for receiving an SSTV picture with 128 pixels per line, and for displaying on low-density fast scan. The secondary region was used for picture enhancements and a second low-density picture-storage area. If you are somewhat confused, don't worry, I'm sure you will understand as I discuss the routines in more detail.

Main-line routine (START). The program is started by executing the instruction at location 4000 (hex). The first routine executed is START, which places a menu on the screen to display the program options. A routine selection is made by hitting a single key. The ESC key is used to jump to an undefined program. The ESC jump address assembled into this program is a location immediately after the ASCII table. This was done for future program expansions. Three levels of messages were programmed. The highest level is the START routine, used for the reception or transmission of SSTV with 256 pixels/line. The next level is FAST which is used for displaying fast-scan TV or transmitting SSTV with 128 pixels/line. The lowest level of messages are in the various routines. This menu scheme allows the calling of routines from other programs with the entry messages displayed.

table 1. RAM constants used to describe the displayed picture.

<table>
<thead>
<tr>
<th>label</th>
<th>location</th>
<th>bytes</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSAX</td>
<td>A014</td>
<td>2</td>
<td>temporary index register store</td>
</tr>
<tr>
<td>XSAX1</td>
<td>A016</td>
<td>2</td>
<td>temporary index register store</td>
</tr>
<tr>
<td>PIXC</td>
<td>A018</td>
<td>1</td>
<td>pixel counter</td>
</tr>
<tr>
<td>LINE</td>
<td>A019</td>
<td>1</td>
<td>line counter</td>
</tr>
<tr>
<td>CNT2</td>
<td>A01A</td>
<td>1</td>
<td>general counter storage</td>
</tr>
<tr>
<td>CNT1</td>
<td>A01B</td>
<td>1</td>
<td>general counter storage</td>
</tr>
<tr>
<td>RPIXC</td>
<td>A01C</td>
<td>1</td>
<td>receive pixels</td>
</tr>
<tr>
<td>RLINE</td>
<td>A01D</td>
<td>1</td>
<td>receive lines per picture</td>
</tr>
<tr>
<td>RSTAT</td>
<td>A01E</td>
<td>2</td>
<td>picture start address</td>
</tr>
<tr>
<td>RECV</td>
<td>A020</td>
<td>1</td>
<td>receive delay constant</td>
</tr>
<tr>
<td>TPCIT</td>
<td>A021</td>
<td>1</td>
<td>transmit pixels per line</td>
</tr>
<tr>
<td>TLINE</td>
<td>A022</td>
<td>1</td>
<td>transmit lines per picture</td>
</tr>
<tr>
<td>TRX</td>
<td>A023</td>
<td>1</td>
<td>transmit delay constant</td>
</tr>
<tr>
<td>NHOR</td>
<td>A026</td>
<td>4</td>
<td>program modifications used for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quarter framing, also used for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>temporary byte store</td>
</tr>
</tbody>
</table>

fig. 13. Flow chart for transmitting an SSTV picture (TRANS1).
Receive SSTV (RECV1). This routine is a general-purpose SSTV reception program. Table 1 lists the four constants (starting with R) which must be initialized for the routine to receive pictures from the A/D converter. This routine calls six other subroutines which store the picture in RAM (STORE), wait for vertical- and horizontal-sync pulses (VERT, HORIZ), and get pixels (GETA) from the A/D converter. The constant NHOR is used for quarter framing. This will be explained later. This constant is initialized with a RTS (39 Hex) which means the call immediately returns to the calling JSR. Fig. 12 is a flow chart of the PIXR routine which receives a SSTV picture.

Transmit SSTV (XMIT). This routine is a general-purpose transmission routine. Like RECV1, the routine can be used as a universal transmit routine. The three constants in the RAM region, starting with T, control the type of SSTV transmitted. This routine is set up to transmit 60-Hz SSTV. For those in 50-Hz countries, you may wish to redefine the TRX transmit delay constant. The XMIT routine is the main line, and four other subroutines are called; TRANS1, SVERT, SHORIZ, and DEL5. The XMIT routine MENU allows for the transmission of up to nine pictures to be transmitted. Fig. 13 is a flow chart of TRANS1, which is used to transmit an SSTV picture.

Initialization routine (INIT and LOAD). Two routines are used to initialize the system prior to execution of the routine, INIT and LOAD. INIT is a simple subroutine which initializes the PIA for transmission or reception of SSTV. The port assigned by the software is 8010 (Hex). The LOAD routine initializes the receive and transmit program constants, picture start address, and monitor jump address in the first part of the subroutine. In the second part of the routine, the CRT-controller registers are loaded with the constants previously described. The initialization routines set the SSTV picture formats for 256 pixels/line and the CRT controller is set to display 128 pixels per line.

SSTV zoom (ZOOM). ZOOM is used to enlarge a 256 pixel per line picture by two times and transmit it on SSTV. Five locations can be selected, the four picture corners and the picture center. The original picture is not destroyed in the process. The enlargement process is quite simple. Each pixel and line is retransmitted twice, the net result is a picture enlargement. The TRZ routine performs this operation, and is callable from another program. To use this routine, load RSTAT with the address of the upper left-hand corner position of the picture, then call the routine with a JSR instruction. Fig. 14 is a flow chart of this routine. The ZOOM main-line routine selects the program con-

![Fig. 14. Flow chart of the zoom routing on the SSTV picture (TRZ).](image-url)
stants and the number of loops through the program by displaying the routine's menu on the terminals screen.

Fast-scan format (FMT). This is the last of the 256 pixels/line routines. This routine takes a high-density picture and compresses it 128 pixels/line (low density). The process is accomplished by simple averaging of pixels. Fig. 15 is a flow chart of this routine.

![Flow chart of the SSTV format routine (FMT).](image)

This process produces some interesting effects when a high-density picture is compressed and displayed on high-density SSTV. The result is the original picture duplicated two times on the upper half of the screen. The compression of high-density pictures to low density by this algorithm process produces some artifacts. These artifacts can be seen in the photographs. I concluded that this problem was due to the simple algorithm I used. Since the artifacts occur mainly with black and white edges, I decided to live with this condition.

Fast-scan picture with the zoom routine.

Quarter-framing (QTR1). This routine is used to receive four different SSTV pictures and place each picture in a different location in a composite picture. The routine, when executed, asks which quarter frame is to receive a picture. The options are 0 through 4, which equates to upper left and right and lower left and right. The addresses of the various locations are listed in TABLE, which is stored in RSTAT when selected. Since a quarter-framed picture has 128 pixels per line and 64 lines, RPIX and RLINE are changed to 64. Additionally, every other line is received, the RTS instruction at NHOR is modified to jump to GETP1. This causes the PXR routine to add 64 to X and wait for a second horizontal sync pulse prior to placing a new SSTV picture line in RAM. This routine assumes that the picture received is the same frequency as the last picture received, i.e., 50 or 60 Hz.

Fast-scan TV routines (FAST). The main-line routine for all fast-scan options is FAST. All pictures displayed or transmitted in these routines have a density of 128 pixels. In these routines two picture areas are used. These areas are identified as areas 0 and 1. Each routine uses three areas in a slightly different manner. I'll discuss their use later. In order to return from FAST to START any other key, except 1 through

Girl's face with quarter frames.
5, can be pressed. All routine options selected by FAST will return to this routine after they are completed.

Display fast scan (FAST1, DISP). This subroutine controls all fast-scan displaying. When the main line program jumps to FAST1, the 256-pixel picture is formatted to 128 pixels and then displayed. If the jump is to FAST4, the 128-pixel picture is displayed. The routine places a menu on the terminal which asks for the number of cycles. A cycle is the number of times the DISP subroutine is executed. The DISP subroutine displays a picture for 7 interrupt cycles, or approximately 7.7 seconds/cycle. The response to this message should be 1 to F (15). The DISP subroutine operates in the following manner. Prior to displaying a picture three initialization steps are performed:

1. The B accumulator is loaded with the number of cycles to be displayed.
2. The interrupt service routine is loaded into the IRQ vector address in the monitor (A000).
3. Address A00E is cleared. This step is required if you use an RT-68MX monitor, as I do.

The interrupt mask is then cleared by a CLI and the display process is executed by a WAI command. The WAI causes the BA signal on the SS-50 bus to go positive, which tri-states the CPU card for DMA. After 1.1 seconds, an interrupt is generated by the hardware interface card and the RTI instruction (DISP3) is executed. This instruction restores all registers including the PC counter. The next instruction after WAI is executed and the process is repeated six more times.

Fast-scan receive/display (FRECV). This routine is used to receive and then display an SSTV picture. When FRECV is executed, a message asks if 50- or 60-Hz SSTV is to be displayed. The next message asks for the number of cycles. The response should be 1 to F (15). The number of cycles is the number of SSTV pictures you wish to receive and display on fast scan. The displayed picture will remain on the screen just long enough to allow reception of the next picture.

When two or more cycles are selected, the picture is first loaded into the secondary picture area 0. The next picture is loaded into picture area 1. This process allows you to store two low-density pictures in RAM. A flow chart of the FREC routine is shown in fig. 16.

Transmitting a low-density SSTV picture (FXMIT). This routine allows the displaying of low-density pictures on SSTV. The routine is an example of how to call the XMlT subroutine. Prior to calling XMlT, the number of pixels/line and display constants are changed. When XMlT is called, a low-density picture is transmitted on SSTV. The FXMlT routine displays a message which prompts the operator to display picture 0 or 1.

Fast-scan zoom (FZOOM). This routine demonstrates the flexibility of the CRT-controller chip. The routine is used to examine on-fast scan TV an SSTV picture in RAM. The picture is examined by magnifying (zooming in on) the picture by two times. The zoom is accomplished by moving the SSTV picture in...
area 0 to area 1. In this movement process, each pixel is doubled along with doubling the lines. The CRT-controller chip is then re-initialized for the picture 1 area by CRT3, and is then displayed on fast scan as a magnified picture. Fig. 17 is a flow chart of this routine.

This completes the description of the operation of the software package. A few systems considerations will be discussed in this section. The programming package assumes that a MIKBUG-like monitor is used. All MIKBUG calls are contained in the equate table at the beginning of the source code. The software assumes that two memory-mapped I/O ports

<table>
<thead>
<tr>
<th>SELECT ZOOM LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE ZOOM LOCATION ADDRESS</td>
</tr>
<tr>
<td>MOVE PICTURE TO AREA 1</td>
</tr>
<tr>
<td>INITIALIZE CRT TO AREA 1</td>
</tr>
<tr>
<td>SELECT NUMBER OF DISPLAY OPTIONS</td>
</tr>
<tr>
<td>DISPLAY AREA 1 PICTURE</td>
</tr>
<tr>
<td>RETURN TO FAST MONITOR</td>
</tr>
</tbody>
</table>

Fig. 17. Flow chart of - display a zoomed fast-scan picture (FZOOM).

are used for the SSTV analog-card (8010) and the CRT-controller card (803C). The 803X address was used because my system has a second motherboard. All of the CRT-controller program I/O calls are located in the routine with CRT 1 through 3 labels. Don't forget that the CRT-controller-chip's least-significant bit (LSB) of the address identifies either a register number or register data, i.e., LSB = 0 (data), LSB = 1 (register number).

Delay loops are also used for timings. The timing loops are used to receive and transmit SSTV pictures through the hardware interface. Delay-loop constants in the software were selected and based upon the SWTP MP-A CPU clock frequency of 1.7971 MHz. If you use another CPU card, the constants will have to be altered.

EPROM program relocating

If you wish to relocate the software to reside on EPROMS, the task is quite simple. I assembled this program on a boundary which can be easily relocated. I tried to use a minimum amount of absolute code in my assembly. To relocate the program, scan the source listing for JMP or JSR instructions which address the 4XXX RAM region. All that has to be done is change the 4XXX hex to another digit, i.e., CXXX. For example, I have relocated the software to run in 2708 EPROMS at location CXXX by this technique. Since the package is greater than 1k, two 2708 EPROMS are required.

summary

The displaying of gray-level pictures by use of microprocessors opens many new areas for the home hobbyist. The software techniques discussed in this article could be easily adapted for receiving/displaying weather satellite pictures by simply changing program constants. Only the hardware demodulator interface has to be modified. Potential applications are almost endless.

Some may find my SSTV character-generator picture of interest. I created this picture by software which is coresident with the fast-scan program. I do not intend to publish this program in this form.

acknowledgments

The interfacing of new devices like the CRT-controller chip was quite a challenge. Although Motorola did a fine job on their spec sheet, numerous questions arose. Without the help of Bruce Kinney (W6TED), I would have labored numerous extra hours.

If you wish to obtain a printed-circuit board for my fast-scan card, it can be obtained from Geoff Chapman, VK2AIT, for 25 dollars, Australian, which includes shipping. If you wish to write me for more information, please include an SASE for my reply.

*G. N. Chapman, VK2AIT, 70 Cliff Road, Epping, NSW, 2121, Australia.

references

NOW YOU CAN HAVE BOTH!
HIGH QUALITY & LOW COST!

The DS2000 KSR FROM HAL
HAL design experience now makes it possible to offer you an efficient, reliable, and cost-effective terminal for your RTTY or CW station. Investigate the new DS2000 KSR from the people who KNOW HOW to build RTTY and CW equipment. See how you can get great performance and save money too!

- Integrated keyboard and video generator
- 72 character line
- 24 line display
- 2 programmable “Here Is” messages
- Automatic carriage return and line feed
- QBF and RY test messages
- Word mode operation, full screen buffering
- All 5 standard Baudot speeds
- 110 and 300 baud ASCII
- CW identification at the touch of a key
- Morse code transmit
- Morse code receive (optional)
 self-tracking speeds from 1-175 wpm on a separate plug-in circuit board
 (Available June, 1979)
- All in a convenient, small cabinet
 (14.1" x 9.25" x 4.35")

Price: $449.00
Optional Morse Receive Board: $149.00
Optional 9” monitor: $150.00

BIG PERFORMANCE
SMALL SIZE...SMALL PRICE
If you’re looking for an RTTY demodulator with great performance on both the HF and VHF bands, take a look at the ST-5000 from HAL. The use of active filters with no phase-lock loop or ‘single-tone’ short-cuts ensure the kind of performance you expect. Full features in an attractive and conveniently small package make this demodulator a value that’s hard to beat!
- Hard limiting front end
- Active discriminator
- Active detector
- Wide and Narrow shift (850Hz and 170Hz)
- Normal and Reverse sense
- Autostart
- Self-contained high voltage loop supply
- RS-232C voltage output (direct FSK)
- Audio tone keyer (AFSK)
- Provision for external tuning scope
- Attractive, small cabinet (2.75” H x 8” D x 12” W)
- Fully assembled and tested

Price: $225.00

For more information call or write us at:
HAL COMMUNICATIONS CORP.
P.O. Box 365
Urbana, IL 61801
Phone: 217-367-7373

In Europe contact:
Richter & Co.; Hannover
I.E.C. Interelco; Bissone
uhf local-oscillator chain

for the purist

Design and construction of an LO system that offers excellent spectral purity, stability, and calibration tolerance with output between 380 and 540 MHz

For many experimenters a major stumbling block toward building a high-performance uhf or microwave station seems to be the local-oscillator chain. This is especially true in EME applications, where any degree of success demands spectral purity affording at least 60 dB spurious rejection, calibration tolerance to within a few hundred Hz, and frequency stability of a few tens of Hz over the temperature extremes encountered in the station. These stringent requirements, along with the extensive test-equipment required to verify them, seem to put the whole business of LO design and construction into the category of "more art than science."

background

Certainly the most artistic uhf LO developed in recent years is the circuit by Joe Reisert, W1JR, originally published in his now-defunct W6FZJ 432 MHz EME Newsletter. The circuit has since been presented in ham radio¹ and duplicated by hundreds of uhf enthusiasts with a high degree of success. I used Joe's circuit in my original 1296-MHz transceiver² and was entirely pleased with the results. The design offers exceptional spectral purity (fig. 1), good thermal stability, and adequate calibration tolerance (all as functions of the crystal used, of course).

Joe's circuit was designed to be built in three-dimensional space above an unetched PC board, which was used merely as a ground plane. I developed printed-circuit artwork for this LO some time ago to improve its repeatability by ensuring proper component layout. During the PC-artwork development, it seemed reasonable to replace a number of discrete components with their microstripline equivalents, thus reducing component count and cost. This task completed, I trimmed from the circuit every nonessential component in further attempts at cost reduction. When I realized that my circuit bore little resemblance to Joe's original design I threw caution to the wind, abandoned his original framework altogether, and ended up with a completely new uhf LO.

spectral purity

The result is shown schematically in fig. 2. I call it "Mr. Clean" in recognition of the excellent spectral purity achieved (see figs. 3 and 4). The circuit can be

By H. Paul Shuch, N6TX, Microcomm, 14908 Sandy Lane, San Jose, California 95124
built for a 5-mW output at any desired frequency between 380 and 540 MHz, thus serving well as an LO for 432-MHz converters, 1296- or 2304-MHz converters (if followed by an appropriate ×3 or ×4 multiplier), or a weak-signal source. The circuit offers spurious rejection of more than 40 dB, a calibration tolerance of ±10 ppm, and temperature stability on the order of ±0.3 ppm/°C over the range of −10 to +60°C. To date I’ve built more than 50 copies of this circuit, all with equal performance. The design has also been successfully duplicated with little difficulty by W6OAL, KØJHI, and VWA6TLX.

The importance of spectral purity in a uhf LO cannot be overstressed, especially when the output frequency is multiplied into the microwave region. Fig. 5 is an example of the LO output of a popular European 1296-MHz receiving converter. Compare this figure with the LO of my 1296-MHz system (fig. 6).

oscillator circuit

The primary requirements for a usable local oscillator, as mentioned previously, are stability and spectral purity. Frequency stability is generally achieved by using an oscillator circuit that draws minimum current through the crystal (thus minimizing crystal heating). This in turn dictates operating the basic oscillator at an extremely low output power level and making up the necessary gain in the following buffer or multiplier stages.

I learned from Joe Reisert some time ago that it’s important to let the crystal oscillate at its natural resonant frequency. That is, when plugging a crystal into the oscillator circuit for which it was cut, you’ll achieve the greatest stability by letting the crystal oscillate wherever it wants to. Any attempt to VXO or “rubber” the crystal’s oscillation frequency to achieve a desired dial calibration will result in a net degradation of local-oscillator stability. This is especially true when the crystal frequency will subsequently be multiplied to the ultimate output frequency.

Since frequency pulling of the oscillator is to be avoided in the interest of stability, great precision is required in the crystal frequency calibration, with respect to the particular oscillator circuit used, if the i-f calibration is to bear any relationship to the operating frequency. Crystal manufacturers can generally optimize custom-ground crystals for operation...
in a particular circuit, provided the schematic is supplied. Unfortunately, when ordering high-precision crystals from two different reputable manufacturers for use in Reisert’s oscillator circuit, I found calibration errors on the order of 10 kHz at 432 MHz—certainly beyond my expectations for a $30 crystal! And since you can be certain the crystal manufacturer certainly didn’t build up Reisert’s circuit and check the crystal for proper operation in it, perhaps it’s better to use an oscillator circuit with which the crystal manufacturer has some experience.

I decided to use an oscillator circuit of the crystal manufacturer’s choosing. In so doing I found that crystals from widely separated production runs all fell well within the manufacturer’s calibration tolerance limits of ±0.001 per cent, as well as the claimed thermal stability specifications of ±0.002 per cent from −10 to +60°C. The crystal and oscillator circuit (on a PC board, inside a can for shielding) are available as a preassembled module from International Crystal Manufacturing Company as their Model OE-5. Specifications and the oscillator schematic are shown in fig. 7. This assembly costs around $20 in single quantities, supplied at your selected operating frequency in the 100-MHz range. Since it’s no more expensive than a crystal of equivalent specifications ordered separately, why bother to build your own oscillator circuit?

Output power from the OE-5 oscillator module is low, on the order of 1/2 mW, which certainly holds down crystal heating. Spectral purity is enhanced by starting with the highest crystal frequency practical (in this case, around 100 MHz), and performing lower-order integer multiplication in active stages whose bias current is optimized to the favored conduction angle for the multiplication desired. This oscillator, like Reisert’s, uses two common-emitter bipolar doublers operating Class C. Each multiplier stage affords about 5 dB gain, so the output power from the LO chain is on the order of 5 mW (7 dBm).

Note that, from the OE-5 circuit schematic in fig. 7, the oscillator output is taken from a link in a parallel-resonant circuit. This coupling link provides a dc bias return for the base of first doubler transistor, Q1, as seen in the LO chain schematic, fig. 2. Trimmer capacitor C1 is used to resonate the OE-5 module output coupling link, which provides a double-tuned interstage and greatly improved spectral purity. However, as with all double-tuned circuits, these two tanks are somewhat interactive, so during tuneup it may be necessary to readjust the OE-5 trimmer capacitor along with C1.

circuit description of the LO chain

The 200-MHz signal from Q1 is applied through

*Lead time for this oscillator module runs typically six to eight weeks, so order well in advance.
tuned circuit L1, C10, to the base of the second doubler, Q2. Nothing exotic here, but Q2’s collector feeds a rather unusual output-filtering arrangement, which is largely responsible for the spectral purity of this LO. Basically, microstripline inductors L2 and L3, with trimmer capacitors C8 and C9, form two parallel-resonant circuits. RFC2 inductively top-couples them for a standard two-pole bandpass.

There are really more filtering elements here than meet the eye. For example, Q2’s collector feed choke, RFC1, and coupling capacitor, C7, form a single L-section high-pass filter, which keeps any 200-MHz component from Q2’s base from entering the output filter. Additionally, C8, C9, and RFC2 form a pi network lowpass filter which supresses harmonics from Q2. Thus the entire output circuitry consists of one lowpass filter, one high-pass filter, and two bandpass sections — all ensuring that Mr. Clean lives up to its name.

construction

All components including the OE-5 oscillator module mount on a 63.5 × 76 mm (2.5 × 3 inch) PC board. PC-board artwork is provided in fig. 8. Microstripline dimensions are a function of the material used, so be certain to etch this board on 1.6 mm (0.0625 inch) thick fiberglass-epoxy PC laminate, double-clad with 1-ounce copper (0.035 mm or 0.0014 inch thick). One side of the board should remain unetched to serve as a ground plane.

Drill the board as in fig. 9. Note that to avoid short circuiting the OE-5 power and output pins as well as the rf output at J1, it’s necessary to remove ground plane metal from around the three holes marked countersink in fig. 9. A 3.25-mm, (0.125-inch) twist drill does an adequate job. Be careful not to drill too far through the board!

Note that in fig. 2 the ends of the output filter

fig. 6. The output spectrum of the author’s 1296-MHz system contrasts sharply with that of fig. 5. This clean display results from driving the uhf LO described in this article into a well-filtered multiplier circuit. Spurious rejection over the dc-to-2 GHz region approaches 80 dB.

fig. 7. Schematic, dimensions, and specifications on the International Crystal OE-5 oscillator module.

microstripline inductors (L2 and L3) are grounded through the board. This can be accomplished by installing small 1-mm (0.04-inch) OD eyelets through the board at two locations indicated in fig. 9. These eyelets can be set then soldered to both sides of the board to ensure a reliable ground. For those who prefer not to prepare their own board, an etched, drilled, and plated board, with eyelets in place, is available from the author.*

Component layout on the printed circuit board is shown in fig. 10. I recommend mounting all components except the OE-5 oscillator module; save that for last. Note that R3, C8, C9, C10, and the emitter and case leads of Q1 all ground to a large ground plane area on the stripline side of the board as well as the unetched ground plane side. Be sure to solder these components at both sides.

When mounting the OE-5 module to the ground plane side of the main board, there’s a slight chance that circuit traces on the OE-5 board might short circuit to the ground plane. Make a thin spacer from sheet acetate or Teflon the size of the OE-5 board, with holes drilled for the three pins. When installing

*An etched, drilled, and plated board for this local oscillator, complete with grounding eyelets for L2 and L3, is available for $6.50 postpaid in the U.S. and Canada ($7.00 elsewhere) from Microcomm, 14908 Sandy Lane, San Jose, California 95124. A completely assembled LO chain, adjusted to your selected operating frequency between 380-540 MHz, is also available at nominal cost. Send a stamped, self-addressed envelope to Microcomm for details. Amateurs indicate callsign on correspondence.
fig. 8. Full-size PC-board layout for the uhf local oscillator. Substrate material should be 1.6 mm (0.0625 inch) thick fiberglass-epoxy PC board, double-clad with 1 ounce copper (microstripline side shown).

the OE-5, grasp the three pins firmly with needle-nose pliers. Gently ease each pin, one at a time, into the main board. Do not use force.

tune up

There are at least three different techniques for tuning this local oscillator chain. I hope you can keep them straight, because in this section I’ll tell you a) how not to tune an LO, b) how I tune my LOs, and c) how to tune yours.

Avoid like the plague the “maximum smoke” technique. It’s not possible to successfully tune this circuit, Reisert’s circuit, or anyone else’s LO circuit, for maximum indicated output power alone. Fig. 11 illustrates quite graphically that if you tune for maximum power it’s likely to be distributed over a maximum number of frequencies. I can’t overemphasize the importance of tuning up uhf LO chains using proper test equipment together with a systematic procedure for minimizing spurious spectral responses. I’m a firm believer in the use of spectral analysis and wouldn’t dream of tuning up one of my own LO chains without the use of a microwave spectrum analyzer. Take another look at fig. 3 and compare it with fig. 11. You can see the dramatic effect of tuning each stage of the LO chain for maximum spectral purity rather than maximum output. And the test equipment needn’t put you into hock forever. Even a simple homebrew spectrum analyzer will allow you to achieve spectacular purity.

But you probably don’t have a spectrum analyzer and cringe at the thought of having to build one before you can tune the LO you’ve just finished constructing, right? There’s another way; I call it the “poor man’s spectrum analyzer.” You’ll need a vhf cavity wavemeter (a grid-dip oscillator in the wavemeter mode will do), some sort of a relative power-indicating device (the one I told you not to use in method a above), and a bandpass filter tuned to the approximate LO output frequency. (There are some constraints surrounding the selection of the proper filter, which I’ll cover later.) You’ll also need some sort of resistive attenuator or pad, 3 to 10 dB, with a 50-ohm impedance and a volt-ohmmeter.

Preliminary steps. First connect the pad to the LO output connector, the power meter to the other end of the pad, and a +12 Vdc supply to feed-through capacitor C2. Caution: Do not exceed 12 volts, as this is the V_{CEO} (maximum collector-to-emitter potential) of the 2N5179s used as the multiplier transistors! In fact, series diode CR2 does provide some protection, and I have not had any transistor failures operating at 13.5 volts from a fully charged car battery — but why take chances?

With power applied, tune C1 and the OE-5’s trimmer cap until the OE-5 oscillates, as indicated by an abrupt increase in supply current. With the OE-5 oscillating, set up the grid dipper in the wavemeter mode, tune it to the crystal frequency, and sniff around the microstripline going to the base of Q1 for some rf. Once you’ve found it, disconnect Vcc, then reconnect it. Did the oscillator start? If not, try retuning the OE-5 trimmer and C1 slightly until the oscillator starts reliably each time.

Now tune the first multiplier. As L1 and C10 are tuned through resonance, Q2 base will be biased into
conduction and supply current will increase by 5-10 mA (Q2's collector current). Try it. The only problem is that tank L1/C10 may resonate at more frequencies than the desired $f_{cr} \times 2$. So tune the dip-meter (still in wavemeter mode) to the second harmonic of the crystal frequency, couple it loosely to L1, and tune for an indication of rf. Once you've found it, repeak C1 and C10 for the combined occurrence of maximum rf and maximum supply current; then check to make sure the oscillator still starts up each time power is applied. If not, retweak the oscillator trimmer slightly until it does. At this point you should start to see some indication of rf at output connector J1. Remember that your relative-power indicator can't distinguish between frequencies, but wavelength, trough-line filter in aligning the LO, and I knew it had sharp skirts! Just for good measure I swept the filter, and the problem became immediately evident (see fig. 12). A quarter-wave transmission line, shorted at one end, makes a dandy resonator. Unfortunately, so does a three-quarter-wavelength transmission line. The filter I chose exhibited a passband at the third harmonic of the LO frequency, and by tuning for maximum signal through the filter, I was actually optimizing the spurious output! I mention this because quite a few bandpass filters exhibit multiple resonances. The halfwave slab resonator described in the ARRL VHF Manual and Handbook does, so it would not yield a spurious-free output if used as a tune-up aid.

Final adjustments. Now that you've completed the preliminary tune up you're ready to clean up your act. Insert the bandpass filter (tuned to the desired output frequency) between the pad and the power indicator, and carefully retweak all trimmers for maximum output power. The adjustments will interact, so go back and do it again. Check to make sure the oscillator still starts each time you apply power. When you're finished remove the filter and pad, and measure output power at J1. It should be on the order of 5-10 mW, and the spectrum should appear as in fig. 3.

But don't count on it. The first time I tried this procedure, I ended up with almost as much output at 1200 MHz as I had on 400 MHz. This didn't make much sense to me, as I was using a high-Q, quarter-wave, trough-line resonator first used as a tune-up aid for this LO, as described in the text. Vertical scale is 5 dB/cm, with the second major division from the top of the screen representing 0 dB insertion loss. Horizontal scale is 250 MHz/cm, yielding a dc-2.5 GHz display. Note that, while the insertion loss at 400 MHz (the desired frequency) is less than 1 dB, the insertion loss at the third harmonic (1200 MHz) is on the order of only 3 dB.
for this LO. Best bet is to use either an interdigital filter or helical resonator, or a multipole design whose interstage coupling is designed to suppress higher-order modes. The Microcomm model BP-70 is one such filter (see fig. 13), as is the Spectrum International model PS1432. Also useful are the surplus military filters of the F-197/U variety, which have recently surfaced at numerous ham auctions and flea markets around the country.

Given a single-response bandpass filter tuned to the approximate operating frequency of the LO, it's possible to tune this oscillator circuit to a degree of spectral purity rivaling that achieved on a laboratory microwave spectrum analyzer.

Conclusion

I've presented a uhf local-oscillator chain that offers stability, calibration tolerance, and spectral purity on a par with Joe Reisert's very fine circuit, but with fewer components and easy assembly on a PC board. I am currently using this LO in my 432-MHz receive converter, driving multipliers in my 1296- and 2304-MHz converters, in my 1296-MHz hand-held transceiver, and in an S-band satellite ground station design I am producing commercially. I find the circuit easy to assemble and extremely reliable. I hope other uhf and microwave experimenters find it useful.

References

linear amplifier design

The designer of a linear amplifier should be concerned with the proper potentials required to make the power tube operate in a linear manner. The word linear implies that the output signal of the amplifier is an amplified replica of the input signal. There's no such thing as a perfect linear amplifier, and the designer's problem is to make the practical amplifier (i.e., the amplifier that can be built) as linear as possible.

When a linear amplifier is driven by a complex signal, such as the human voice, nonlinearity results in intermodulation distortion. This unpleasant form of distortion creates a broad, raspy signal that throws annoying “buckshot” into adjacent channels. Proper design and operation of a linear amplifier reduces this distortion to a minimum.

amplifier circuit and mode

There's a lot of confusion with regard to the so-called “grounded-grid” amplifier. RF power amplifiers are classified according to circuitry and mode of operation. The two classifications should not be confused with one another. For Amateur service, the two most popular circuits are the grid-driven circuit and the cathode-driven circuit. As shown in fig. 1, the circuits are remarkably similar, the most obvious difference being the placement of the ground point in relation to the input and output circuits.

The mode of operation refers to the dynamic operating characteristics of the tube (class AB\(_1\), class B, or class C). Characteristics of the classes are given in reference material listed at the end of this article. For linear service, the power tube amplifier is commonly run in either class AB\(_1\) or class B service. Thus, modern equipment may have an intermix of circuitry and mode — the cathode-driven amplifier may be operated in a class AB\(_1\) mode, for example, or the grid-driven amplifier may be operated in the class B mode.

So far, I've not discussed the popular grounded-grid amplifier. This is a sloppy term which usually refers to a cathode-driven amplifier, working in the class B mode. “Grounded grid” implies cathode drive, but in such a circuit the grid may not necessarily be at dc ground potential, especially with respect to screen voltage (see fig. 2). Rf ground and dc ground are not always the same in a linear amplifier, and most circuit engineers shudder at the use of the term.

amplifier plate circuit

While this series of articles concerns itself with linear, cathode-driven-amplifier design, the remarks about the plate circuit apply equally well to grid-driven amplifiers. It is desirable to operate any linear amplifier with a very minimum of intermodulation distortion, with high-plate efficiency, and with high power gain. The latter is especially important, as it affords maximum power output with a given amount of drive power. The class B mode of operation meets these requirements.

Shown in fig. 3 is a graphical representation of a class B amplifier, showing the operating cycle of the tube. This is the portion of the electrical cycle over which the tube grid is driven positive (approaching +\(e\)) with respect to the cathode (or the cathode driven negative with respect to the grid). When the grid potential is highly negative with respect to the cathode (approaching -\(e\)), the tube is cut off and is inoperative. In the class B amplifier, the operating cycle is about one-half the electrical cycle, or approximately 180 degrees. The transfer curve plot shown indicates that the tube delivers power only over one-half of the electrical cycle and is cut off during the other half of the cycle. Does this mean that the output signal consists of half-sine waves as shown, and is therefore highly distorted? Not at all.

The amplifier plate circuit (often called the tank circuit) saves the day, since the energy storage ability (\(Q\)) of the circuit balances the energy between the halves of the cycle, much as the flywheel stores energy during the operating cycles of a gasoline engine. The plate circuit must, therefore, be designed to have sufficient \(Q\), or energy storage, for good operation. A \(Q\) value of 12 is commonly used for linear amplifier service, as it provides ample energy storage and at the same time provides reasonable reduction of harmonics generated in the amplifier.

By William I. Orr, W6SAI, 48 Campbell Lane, Menlo Park, California 94025
A comparison between grid-driven and cathode-driven amplifiers. RF and dc circuits have been simplified for clarity. In both cases, the grid- and plate-current meters are placed in the ground return circuits to remove any dangerous voltage from the meter movement. This, however, places the plate supply above dc ground by virtue of the voltage across the plate meter. If the meter coil should open, the negative lead of the supply rises to the value of the plate voltage. As a safety factor, a wirewound resistor is usually placed across the plate meter, and often the grid meter. The circuit configuration determines the difference between cathode- and grid-driven service. The applied voltages determine the mode of operation.

A rigorous design of the plate circuit calls for manipulation of the plate voltage and current to determine the operating parameters of the tube. The results of these tedious calculations can be summed up in simple formulas that provide the designer with circuit data in everyday terms.

A network is required that matches the plate load impedance of the power tube to the characteristic impedance of the transmission line, while at the same time maintaining a Q value of 12. The popular pi network can do the job. The plate load impedance (ZL) for a class B RF amplifier can be closely approximated by:

\[
\text{load impedance (ohms)} = \frac{\text{plate voltage}}{2 \times \text{peak dc plate current (amperes)}}
\]

As an example, a pi network is to be used to match a pair of 3-500Z tubes to a 50-ohm transmission line. The tubes operate with 2500 volts plate potential with a peak dc plate current of 800 mA (0.8 amp) for a PEP input of 2 kW.

\[
\text{load impedance} = \frac{2500}{2 \times 0.8} = 1560 \text{ ohms}
\]

Thus, the pi network plate circuit has to match a load impedance of 1560 ohms to a 50-ohm termination.

designing the plate circuit network

The approximate values of the pi network can be determined from three simple graphs. The plate inductance from **fig. 4**, the tuning capacitance (C1) from **fig. 5**, and the loading capacitance (C2) from **fig. 6**. The graphs are entered at the x axis and read up until the sloping line denoting a particular Amateur band is intersected. The value of the component is then read horizontally off the y axis. For example, the required inductance for a plate load of 1560 ohms for the 15 meter band is about one microhenry — as close as the graph can be read. Note that capacitor C1 is commonly referred to as the tuning capacitor and C2 the loading capacitor.

The graph for C2 tells us that the pi network cannot cope with impedance transformation values much greater than 100-to-1 at this value of Q. Note how the curves bunch together and “fall-off the graph” at plate impedances much higher than 5000 ohms.

![Diagram](image-url)
A more accurate, computer-derived summary of pi network values is given in table 1. Note that, for a given plate impedance, when the operating frequency is doubled the capacitance and inductance values are halved. (Fifteen- and forty-meter constants are related by a factor of three as 21 MHz is the third harmonic of 7 MHz.)

coil winding

Winding plate coil L1 to a given value of inductance takes an inductance meter, or a degree of experience and a dip-meter. A simple formula for calculating inductance when the coil dimensions are known is:

$$\text{Inductance (\mu H)} = \frac{R^2N^2}{9R + 10S}$$

where
R is the radius of the coil in inches
S is the length of the coil winding in inches
N is the number of turns

These calculations have been simplified in the ARRL type-A "Lightning Calculator," which is a simple slide rule providing direct read-out of the coil dimensions if the inductance is known. It takes the hard work out of designing coils.

Once the plate circuit has been designed and built, it is a good idea to "breadboard" it up and check it out with a dip-meter before the connections are finally soldered. Coil taps may have to be moved a bit to compensate for capacitance of the component to the chassis and adjacent parts.

amplifier-cathode circuit

The cathode-input circuit provides an impedance match between the 50-ohm coaxial output circuit of the driver/exciter and the input impedance of the cathode-driven amplifier (see table 2). The input im-
pedance \((Z_t)\) of a cathode-driven tube is related to the ratio of the peak cathode signal voltage to the peak cathode current (sum of grid and plate currents), and is commonly given in the tube data sheet. For the 3-500Z at 2500 volts, it is about 110 ohms. And for two tubes in parallel, it is about 55 ohms, but only over the operating cycle.

It is tempting to jump to the conclusion that if the amplifier input impedance is about 55 ohms and the coaxial line impedance driving it is 50 ohms, that no cathode impedance matching circuit is required. In fact, many commercially manufactured amplifiers leave it out for economy's sake. This omission is poor engineering practice, as the circuit \(Q\) is required in the cathode circuit as well as in the plate circuit. Omission of the cathode-tuned circuit can lead to distortion of the driving signal, increased intermodulation distortion, reduced amplifier efficiency, and driver loading problems. A circuit \(Q\) of 2 is adequate, and a simple rule of thumb is that the network circuit capacitances at resonance should be about 20 pF per meter of wavelength for one-to-one impedance transformation.

practical amplifier circuit

Armed with the information discussed so far, it is possible to draw up a schematic for a cathode driven, 2-kW PEP linear amplifier using two 3-500Z tubes in parallel (see fig. 7). This is a true "grounded-grid" circuit, as the grids are at both dc and rf ground potential.

fig. 6. Plot of the loading capacitance \((C_2)\) vs. plate load impedance \((Q = 12)\).

Note that plate and grid currents are measured in the cathode return circuit. This requires the amplifier plate power supply to "float" a little above ground potential in order to insert a meter in the negative lead to measure plate current. This removes the lethal plate voltage from the meter. The grid meter is out of the critical rf ground return path, which simplifies the metering circuit. A filament voltmeter is included. Filament voltage should be held to within

table 1. Computer-derived values for a pi network having a \(Q\) of 12 and working into a 50-ohm load. Values for \(C_1\) include the output capacitance of the tubes. These values are taken from a computer program derived by Bob Sutherland, W6PO.

<table>
<thead>
<tr>
<th>component</th>
<th>(Z_t) plate load impedance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td></td>
</tr>
<tr>
<td>band 1000</td>
<td>1500</td>
</tr>
<tr>
<td>160</td>
<td>1060</td>
</tr>
<tr>
<td>80</td>
<td>546</td>
</tr>
<tr>
<td>40</td>
<td>273</td>
</tr>
<tr>
<td>20</td>
<td>136</td>
</tr>
<tr>
<td>15</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>(C_2)</td>
<td></td>
</tr>
<tr>
<td>band 1000</td>
<td>1500</td>
</tr>
<tr>
<td>160</td>
<td>4421</td>
</tr>
<tr>
<td>80</td>
<td>2274</td>
</tr>
<tr>
<td>40</td>
<td>1137</td>
</tr>
<tr>
<td>20</td>
<td>568</td>
</tr>
<tr>
<td>15</td>
<td>379</td>
</tr>
<tr>
<td>10</td>
<td>284</td>
</tr>
<tr>
<td>(L_1)</td>
<td></td>
</tr>
<tr>
<td>band 1000</td>
<td>1500</td>
</tr>
<tr>
<td>160</td>
<td>8.84</td>
</tr>
<tr>
<td>80</td>
<td>4.55</td>
</tr>
<tr>
<td>40</td>
<td>2.27</td>
</tr>
<tr>
<td>20</td>
<td>1.14</td>
</tr>
<tr>
<td>15</td>
<td>0.76</td>
</tr>
<tr>
<td>10</td>
<td>0.57</td>
</tr>
</tbody>
</table>
±5 per cent of 5 volts, and it is prudent to monitor this voltage when expensive tubes are used. A plate voltmeter may be included in the amplifier, but it is easier to place it in the power supply.

Amplifier standby plate current is reduced by means of a 10-kilohm, 25-watt cathode resistor which is shorted out by the VOX relay of the exciter, causing the tubes to operate at the proper resting plate current when the amplifier is on the air. A zener diode is placed in series with the cathode dc return path to reduce the quiescent plate current during amplifier operation.

A 50-ohm wirewound resistor from the negative side of the plate supply to ground makes certain that the negative supply terminal does not rise to the value of the plate voltage if the positive side of the supply is accidentally shorted to ground.

Two reverse-connected diodes are shunted across the safety resistor to limit any transient surges under a shorted condition which might cause wiring insulation breakdown. In addition, the diodes protect the meters from transient currents. A resistor across the zener diode provides a constant load for it and prevents cathode voltage from soaring if the zener safety fuse opens.

Note that a 10-ohm, 50-watt wirewound resistor is placed in series with the B-plus lead to the plate rf choke. This resistor serves as a vhf choke to suppress harmonic currents in the power lead and also protects the tube and associated circuitry in case of a flash-over in the tube or plate circuit. The tremendous amount of energy stored in the power supply is instantaneously “dumped” into the amplifier when a

table 2. The pi-network circuit for a cathode-driven amplifier. This chart provides approximate values for the components of the cathode circuit. Capacitors should be 1-kV silver mica or equivalent. The inductor can be wound on a slug-tuned form. Value of C2 should take into account the cathode-grid capacitance of the tube which appears in parallel with C2 (information is from a computer program by W6PO).

<table>
<thead>
<tr>
<th>cathode Z_c (Ω)</th>
<th>band</th>
<th>C1 (pF)</th>
<th>C2 (pF)</th>
<th>L1 (μH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>3300</td>
<td>4100</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1700</td>
<td>2120</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>900</td>
<td>1120</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>560</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>300</td>
<td>370</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>220</td>
<td>275</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>3300</td>
<td>3900</td>
<td>2.84</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1700</td>
<td>2100</td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>900</td>
<td>1050</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>520</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>300</td>
<td>350</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>220</td>
<td>258</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>3300</td>
<td>3360</td>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1700</td>
<td>1800</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>900</td>
<td>910</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>450</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>300</td>
<td>300</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>220</td>
<td>220</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>3300</td>
<td>3300</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1700</td>
<td>1700</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>900</td>
<td>900</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>440</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>300</td>
<td>300</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>220</td>
<td>220</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>3300</td>
<td>3100</td>
<td>3.53</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1700</td>
<td>1670</td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>900</td>
<td>840</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>417</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>300</td>
<td>275</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>220</td>
<td>205</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>
fig. 7. Schematic diagram of the 3-500Z linear amplifier.

C3 250 pF, 4.5 kV plate spacing — Johnson 154-16
C4 500 pF, 4.5 kV
C5 1000 pF, 500 volt plate spacing
C6 0.001 μF, 5 kV — Centralab 858S-1000
C7, C8 500 pF, 10 kV TV-type “door knob”
C9-C14 0.01 μF, 500 volt mica capacitor. Ceramic disc is a suitable substitute if rated 1 kV.
PC 1 Three 100-ohm, 2-watt resistors in parallel
PC 2 Three turns of no. 14 AWG (1.6 mm) wound with 12.5-mm (0.5-inch) diameter and 19-mm (0.75-inch) length connected in parallel with the resistors. The coil may be wound around one of the resistors.

flash-over occurs, and much of this destructive energy is dissipated in the resistor.

Many modern-generation Amateurs have never worked with equipment operating at voltages higher than 12 volts. This amplifier, with the high-voltage plate supply, is positively lethal and the operator can be killed if his hands are inside the unit when the high voltage is on. It is imperative, therefore, that safety switches be incorporated in the amplifier design. It is poor engineering practice to leave these devices out! S4 is a normally open, pushbutton device that is closed only when the lid is placed on the amplifier enclosure. S3 is a shorting switch that shorts the high voltage to ground when the lid is removed. Construction of this special switch will be covered in a future article. Always remember — high voltage kills! Take necessary precautions.

Although not shown on the schematic, it is a good idea to use a filament transformer having a primary winding tapped for 105, 115, and 125 volts. This provides a plus or minus ten per cent adjustment from a normal line voltage of 115 volts. If a closer filament adjustment is desirable, the transformer can be run on the 105 volt tap with a rheostat in series with the primary winding to place the filament voltage “on the nose.”

The plus and minus leads to the high voltage supply should be run through high-voltage connectors and high-voltage cable. Test prod wire having a 10-kV breakdown is satisfactory. As an alternative, RG-58/U coaxial cable can be used for high-voltage leads along with PL-259 plugs and reducers and SO-239 receptacles. The shield of the coaxial line is grounded by the connectors.

ham radio
Discussion of a short Beverage antenna for 40 meters with particular emphasis on the matching transformer and termination.

Basically, my problem is one of geography. Living in a moderately rare DX location, I have become weary of pile-ups and the quick signal report exchanges. The insipid hello, goodbye, PSE OSL routine fails to satisfy the rag chewer that I am, with the result that I now tend to avoid the higher frequency bands and seek refuge lower in the spectrum. The 40-meter band offers attractive rag chewing possibilities, but everything about my location militates against a 40-meter pipeline to the folks back home.

For a starter, the band assignment in this part of the Pacific is only from 7 to 7.1 MHz. This narrow band is cluttered with Asian BC stations, and from about 7.03 to 7.1 MHz there is one continuous roar of JA ssb signals. To copy any W/K signals above 7.03 is well nigh impossible without a highly directive antenna. The Asian signals so totally overwhelm the receiver as to completely bury the much weaker W/Ks arriving from over 9600 km (6000 miles) away. After many frustrating attempts at rag chewing while listening on my vertical, I was convinced that, without some highly directive receiving antenna, it was a losing proposition.

Extensive research and meditation on this dilemma brought me to the conclusion that some sort of Beverage antenna offered the only hope in my circumstances. For me, multi-element phased or parasitic arrays on 7 MHz were out of the question, but a patch of jungle behind the house offered possibilities for a Beverage-type long wire. At this point, I must acknowledge my debt to others for supplying me with the three basic premises upon which my project was founded.

First, a simple low-to-the-ground, properly terminated long wire can achieve astonishing rejection of signals from unwanted directions. Second, such a wire will exhibit maximum front-to-back ratio if it is an odd number of quarter wavelengths long. And third, although most publications show a simple 600-ohm resistor for termination, no simple resistor alone will ever give optimum termination. A little inductance will always be needed in series with the resistor. (Apparently the intrinsic insulator and end capacitance of such a wire causes a slight mismatch which must be inductively cancelled out.)

After an hour of tramping about in the jungle, taking repeated compass sightings, I finally located a group of four trees that lay in a perfectly straight line, on the exact bearing needed to beam W/K. A coconut palm and a breadfruit tree about 58 meters (190

By B. H. Brunemeier, KG6RT, Box 209CK, Saipan, Mariana Islands, CM 96950
feet) apart provided the end supports, with two trees in between providing intermediate support points along the span.

There is no simple formula by which to determine the height of the wire above ground. I wanted it low enough that I might perform all adjustments while standing on an ordinary kitchen stool, and yet high enough to be well above the hands of any pedestrian traffic through the woods. A height of 2.3 meters (7.5 feet) satisfied both requirements. A piece of wire, number 10 AWG (2.6 mm) copperweld was cut to a length of 53.3 meters (175 feet), which is 1.25 wavelengths at 7 MHz. With a block and tackle it was stretched taut as a fiddle string, so that with the two intermediate support points, it hangs straight as an arrow. The coupling and termination enclosures were hung at wire level, and the ground system installed as shown in fig. 1. Any type of minibox enclosure may be used as long as it is all metal for total shielding and weather proofing.

The coil detail is shown in fig. 2. A surplus powdered-iron slug of unknown pedigree was used here because I had nothing else. A toroid could well be used in place of the slug; however, one precaution should be observed. The primary and secondary windings should be placed on opposite sides of the circle, with a tight electrostatic shield between them. The object is to prevent proximity coupling direct from the end of the hot wire over to the coax input.

For best unwanted signal rejection, all coupling must occur through the core material.

To compute the characteristic impedance of my wire, I used the standard single wire transmission line formula:

\[Z_o = 138 \log_{10} \frac{2h}{p} \]

where \(h \) is the height of the wire above ground and \(p \) is the radius of the wire measured in the same units. For my case, the computed \(Z_o \) is 489 ohms. Reasoning that the series coil would add a few ohms of rf resistance to the lumped resistor, I chose the next smaller resistor value, 470 ohms. A commercial slug-tuned coil was used for the inductance. After all adjustments were complete, the inductance actually in use was 3 \(\mu \)H, or an \(X_L \) of 132 ohms at 7 MHz.
The Beverage antenna is located such that it is broadside to the transmitting antenna (a base-fed vertical dipole), and located 38 meters (125 feet) away. The feedline is 50 meters (165 feet) of RG-58A/U coax. Such orientation ensures minimal coupling between the two. Under key-down conditions, with 500-watts input to my trusty old 813, the measured rf voltage at the receiver input is only 0.15 volts rms.

Before step-by-step adjustments are described, a little discussion of the back rejection theory will be helpful. As shown in fig. 3A, incoming signals propagating along the wire from the back side will induce a signal current into the wire. If the wire is unterminated at the front end, a standing wave of voltage will be set up with a maximum at the open end. Reflections traveling backwards along the wire for an odd number of quarter wavelengths will create a voltage null where the coupling coil is located at the rear end. Because there is almost no voltage acting on the relatively high impedance of the coil, very little signal will be coupled through to the receiver.

This can be clearly demonstrated by simply removing the coil from the circuit and connecting the hot lead of the coax directly to the rear end of the wire. Under these conditions, a standing wave of current will appear in the wire with a maximum at the rear end, coupling very well into the low impedance of the coax. With the front end of the wire unterminated, take an S-meter reading on some sky wave signal arriving from the back side. This establishes the ability of the wire to receive a certain signal level, apart from any termination or phasing attenuation. Once an average level is noted, reinsert the coupling transformer. On my antenna, the rear-side signal dropped by 18 dB when the coil was reinserted, showing that some amount of front-to-back ratio is achieved through the phase relationship of the odd quarter wavelength. The drop in signal noticed is not related to coil losses when the coil is reinserted. A similar comparison was made with the signal from a Kuala Lumpur station broadcasting on 6.03 MHz. At this frequency, the wire is about one wavelength long, and it showed no front-to-back change at all when the coil was reinserted into the circuit. Coil losses with iron-core coupling are so insignificant that they do not show up in the meter readings.

After my termination was reconnected and carefully adjusted for minimum back pick-up, the front-to-back ratio was increased by another 15 dB, giving a total front-to-back ratio of 33 dB for both effects working together. Referring to fig. 3B, if the front end termination is a perfect match for the characteristic impedance of the wire, the induced rear side signal current is almost totally absorbed in the termination, and there is no reflection to speak of going back to the coupling end.

In my location there was no possibility of enlisting the help of a "local" 40-meter station to provide a rear-side signal for tuning purposes. The closest dry land off my back is the island of Borneo, 4000 km (2500 miles) away! I selected a station in Kuching, Sarawak, (broadcasting on 7.16 MHz) to be my reference for all front-to-back adjustments. To get accurate measurements on a signal from that far away is difficult but not impossible. Taking readings on a vertically polarized local signal can be misleading. The Beverage does respond to vertical polarization, but it depends on the slight forward tilt of the incoming wave front to produce the small horizontal vector actually coupling into the wire. If a local vertical signal is used, the wavefront is so square to the ground that coupling into the Beverage is much less than a low-angle sky wave arrival would provide. Comparisons with a front-side vertically polarized signal from KG6RJ, only 3.2 km (2 miles) away, showed the Beverage about 12 dB less responsive than it would be to low-angle sky waves from the same direction.

An aged Hammarlund HQ180 receiver S-meter was used for all readings. The bandwidth was set to the narrowest position so the S-meter would respond only to the carrier of the station concerned and not to the buckshot of BC stations or QRM. The rf gain must be set to maximum for all readings. Since all readings are a comparison of the vertical reference (transmitting) antenna vs the Beverage, the first step is to establish a loss figure for the Beverage. Because it
presents a very small “capture area” to incoming wave fronts, and being very long and close to lossy ground, the Beverage is very inefficient, compared with the vertical. In order to derive its intrinsic loss, the termination must be disconnected and the coupling coil temporarily removed from the circuit. The center lead of the coax is jumpered to the end of the Beverage wire for the first comparison.

The Kuching signal was then tuned in using the vertical antenna. The HQ-180 antenna trimmer was detuned to where the Kuching signal just peaked to the 20 dB over S9 mark. This is to avoid taking any readings at the compressed top end of the S-meter scale where the calibrations are very inexact. The meter is watched for about one full minute to get the feel of the QSB and to make sure the needle never swings beyond the 20 dB mark. Then the vertical coax is disconnected from the receiver and the Beverage connected.

With the Beverage antenna in use, the meter is again watched for about one full minute, noting the very highest swings of the needle. With mine, the peaks were an average of 20 dB lower, showing the basic Beverage wire alone has a receiving loss of 20 dB compared with the vertical.

Next, the coupling coil and termination were re-attached. The same comparison procedure was followed; first tuning in the signal on the vertical, adjusting the antenna trimmer until the signal peaks 20 dB over S9; then attaching the Beverage antenna and noting the drop in S-meter readings. The QSB is accentuated on the Beverage because it is very selective to polarity, responding best to vertically polarized incoming wave fronts.

The procedure is repeated with different settings of the termination coil, changing it in increments of about two turns of the slug between trials. As the optimum point is approached, the S-meter responses on the Beverage will go lower and lower. When I got my termination to the optimum setting, the S-meter dropped dramatically from the 20 dB over S9 mark on the vertical to only S3.5 on the Beverage — counting downward from the 20 over 9 mark, allowing 6 dB per unit, a decrease of 53 dB.

Note that 53 dB is not the front-to-back ratio of the Beverage working alone! That is merely the difference between the two antennas. In the first test described, it was already established that the Beverage had an efficiency of 20 dB less than the vertical. Subtracting this constant from the difference readings between the two gives an absolute front-to-back ratio of 33 dB for the Beverage alone.

It must be remembered that S-meters are notoriously unreliable as regards absolute decibel calibration. While useful for noting changes in a given signal, they must be regarded with suspicion when seeking to establish accurate decibel levels. Listening experience with this antenna would seem to indicate the actual suppression is not quite as dramatic as these figures indicate. The Hammarlund HQ180 exhibits different sensitivity on each band, so, obviously, if the meter were accurate on one band, it would be lying on all the others. At 7 MHz, it seems to be a bit generous with its dB read-out. Nevertheless, the suppression of this antenna must be called excellent, more than worth the very small investment required for materials. It is hard to imagine more suppression per dollar than the Beverage offers.

Taking hundreds of readings by the same comparison method, I found that when the Beverage was terminated at its best front-to-back rejection, the front-to-side rejection was also best. A strong Chinese broadcast station (7.025 MHz) from somewhere in the rear quadrant was reduced 30 dB by the pattern of the Beverage alone. Japanese ssb signals arrive from a 30-degree-wide sector and do not all show the same front-to-side rejection ratio. The average values were from 36 to 40 dB front-to-side ratio for the Beverage alone (in the sector of 60 to 90 degrees relative in the pattern).

The proof of the pudding is always in the eating, and this antenna has certainly proven itself with my goals in view. The Beverage does not completely eliminate the undesired Asian signals, but it does knock them down far enough that distant signals, which would have been completely overwhelmed with the vertical, can now be heard. The only disadvantage noted is that because of its polarity selectivity, the Beverage antenna shows magnified QSB effects. That is a small price to pay for the rejection in unwanted directions. Rag chewing with W/K generals on 40-meter CW is now commonplace and pleasurable, whereas before it was a grim struggle if possible at all.

In conclusion, let me add that, due to my unique location, all of these rejection figures were derived on signals arriving from 2400 to 9500 km (1500 to 6000 miles) away, which implies low-angle arrival. I am unable to specify just how the rejection figures would work out for high-angle signals. Perhaps someone situated in the center of the United States could perform further experiments to add high-angle rejection data to what I have already established for DX-only responses. Any takers?

references

Ham radio
We are proud to introduce the newest member of our famous Thunderbird line of Tri-Band antennas. The TH5DX offers outstanding performance on 20, 15, and 10 meters. It features 5 elements on an 18 foot boom, with 3 active elements on 15 and 20 meters and 4 active elements on 10 meters. The TH5DX also features separate air-dielectric Hy-Q traps for each band. This allows the TH5DX to be set for the maximum F/B ratio and the minimum beam width possible for a Tri-Band antenna of this size. Also standard on this antenna are Hy-Gain's unique Beta-match, rugged Boom-to-mast bracket, taper-swaged elements and improved element compression clamps.

<table>
<thead>
<tr>
<th>Spec</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom length</td>
<td>18 feet</td>
</tr>
<tr>
<td>Longest Element</td>
<td>31 feet</td>
</tr>
<tr>
<td>Turning Radius</td>
<td>18 feet</td>
</tr>
<tr>
<td>Surface Area</td>
<td>6.4 sq. feet</td>
</tr>
<tr>
<td>Wind load</td>
<td>164 lbs.</td>
</tr>
<tr>
<td>Weight</td>
<td>50 lbs.</td>
</tr>
<tr>
<td>VSWR at resonance</td>
<td>less than 1.5:1</td>
</tr>
<tr>
<td>Power Input</td>
<td>Maximum Legal</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>50 ohms</td>
</tr>
<tr>
<td>-3dB Beamwidth</td>
<td>66° average</td>
</tr>
<tr>
<td>Lightning Protection</td>
<td>DC ground</td>
</tr>
<tr>
<td>Forward Gain</td>
<td>8.5 dB</td>
</tr>
<tr>
<td>Front-to-Back Ratio</td>
<td>25 dB</td>
</tr>
</tbody>
</table>

NOTE: These are original Polar Charts on file at Hy-Gain Electronics
Improvements for your Johnson Matchbox antenna tuner — coax-to-coax tuning plus antenna switching

The Johnson Matchbox antenna tuner has been around for a long time. The Matchbox was manufactured in two versions, one for 275 watts and one for 1 kilowatt. The circuit used excellent quality components and was conservatively rated. This article describes modifications that can be made to the Matchbox that eliminate the need for disconnecting and connecting coax and wire feedlines and add the convenience of changing antennas with the turn of a switch.

features

The 275-watt Matchbox uses Johnson Series 154 capacitors, which are rated at 3000 Vac. The coil is wound with no. 12 (2.1-mm) wire. It is to be noted that transmatch articles in QST and the ARRL Handbook specify Series 154 capacitors for use at 2 kW.

The Johnson Matchbox will match the 52-ohm output of a transmitter into loads ranging from 25-1200 ohms for balanced transmission lines to 25-3000 ohms for unbalanced lines. The tuned circuit provides at least 15 dB harmonic attenuation. Most Amateur transmitters and amplifiers for the high frequency bands use pi networks. The nominal design load impedance for this network is 52 ohms, with a maximum VSWR of 2:1. Maximum efficiency is obtained when the amplifier is loaded to its rated input and the load impedance is within design limits.

By John D. Mitchell, K4IHV, 436 Pinellas Road, S.E., Winter Haven, Florida 33880
Tuning coax with the Matchbox and experimentally selecting a line length will produce a 1:1 VSWR at the transmitter output on all frequencies within the antenna and Matchbox ranges.

test connections

The rear-panel photograph shows the simple hookup I used to experiment with coax-to-coax tuning before modifying. Remove the screw from the top center of the rear panel. Temporarily mount a SO-239, by one corner, into the screw hole. Run a lead from the center terminal of the SO-239 to the balanced-line terminal, directly below. Ground the other balanced-line terminal. Connect the end of the coax line from your beam to the temporary SO-239. Run the transmitter output through a VSWR bridge to the Matchbox input. Use the tuning procedure you used for balanced lines.

modifications

The schematic of fig. 1 shows the Johnson Matchbox as built with the modified circuits in a dashed box. The parts list in fig. 1 shows the values and descriptions of the parts used in the original Matchbox. (Early instruction manuals for the Matchbox did not include this information.) The parts needed to make the modification are shown in fig. 2. Proceed as follows:

1. Bypass or remove the relay. Run a line directly from the input SO-239 to the braid from the coupling coil.

2. Remove the tuning capacitor C1 by removing the nuts on the stators. Remove the support posts and slip C1 away from the solder lugs on the connecting leads. Do not distort the leads.

3. Remove the leads attached to the front and rear end plates of matching capacitor, C2. Remove the
other ends of these same leads from the balanced-line output insulators. The leads will be used to connect C2 to the standoff insulators. Do not remove the single-wire output lead.

4. Install standoff insulators on each side of the center output insulator. See photograph of wiring connections.

5. Punch or drill a 1.27-cm (1/2-inch) hole for a SO-239 connector into the rear panel directly behind and below C1. Drill two mounting holes and install the connector from the inside. (You may want to add more connectors if your switch has more than two positions.)

6. Use fig. 3 as a template. Cut a 6.35 by 10.16 cm (2.5 by 4 inch) switch mounting plate from 0.17-cm (0.065-inch) aluminum sheet. Use a sharp centerpunch and mark the centers for all holes, right through the template. All screw holes are for 6-32 (M3.5) screws. (I drilled mine for 8-32 [M6] to allow for minor errors.) The ML7464910-G1/407 switch has a 1.27-cm (1/2-inch) shaft bushing. Centralab Ham Switch 2551 has a 0.95-cm (3/8-inch) bushing. The 2551 has six positions. The rear shaft bushing nut on C1 requires a 1.59-cm (5/8-inch) hole for clearance.

7. Assemble the switch plate and switch. Attach this assembly to the rear end plate of C1. Use 6-32 by 1/4-inch (M3.5 by 0.635 cm) brass screws. Longer screws will damage the C1 insulator. Install C1 in its original position. Attach connections from the band switch to the stators. Check the rear stator plate lead. It must clear the switch plate.

8. Drill a 0.635-cm (1/4-inch) hole in the cabinet front panel 6 cm (2-3/8 inches) above the C1 shaft hole.

To complete wiring refer to the schematics, drawings, and photographs.

Before replacing the cover, run through these checks:

Temporarily install the dials and switch knobs. Remember C1 and C2 are hot! Use the insulated coupling on C2. Keep your hands clear. Even at low power, you can be burned!

Run tests on 20, 15, and 10 meters. If the impedance at your transmitter is outside the Matchbox range on any band change the feedline length.

feedline tests

My feedline length was determined by inserting a 180-degree 14.0 MHz line between my wall entrance panel and the Matchbox. The impedance at the input of this 7-meter (23-foot) line was outside the Matchbox range on 20 meters but satisfactory on 15 and 10 meters. I reduced the line length by making 0.3-meter (1-foot) cuts to 0.9 meter (3 feet). I recorded readings for each length, dial readings, and measured VSWR. A review shows that at a 5.8-meter (19-foot) line length, the system was in tolerance at the edges of all bands. I made a new 5.8-meter (19-foot) line and verified the previous tests.

In this view the rear panel holds an extra SO-239 which has been installed to experiment with coax-to-coax tuning.
All wiring connections from C2 to the new selector switch are visible in this inside view of the modified Matchbox. This photo also shows the two new standoff insulators which are used for the junction points.

wrap-up

Replace the cover. Record dial readings at each 100 kHz on 20 and 15 meters and at each 500 kHz on 10 meters. Using a dummy load I can tune and load the transmitter, set the Matchbox to the recorded dial settings, select the antenna, and start transmitting without a touch-up.

During one of the many tests conducted with this Matchbox, I found that I could match the CL-33 antenna on 7155 kHz. W4TBU at Henderson, Kentucky, was worked from Winter Haven using my tri-band CL-33 beam. The report was S2. I haven’t tried loading the two-meter beam.

some additional suggestions

A number of switches are satisfactory for this modification. The ML7464910-G1/407 from Fair Radio Sales* is excellent and inexpensive. Centralab’s 2551 Ham Switch is a good commercial unit. It has two decks and six positions. Contacts are rated at 9 amperes. It has 2000-Vac insulation.7

The kilowatt Matchbox can be modified for coax tuning. Switch ML7464910-G1/407 will work in the kilowatt model. Catalog no. ML7762999-G1/397 switch requires more space, 7.62 cm diameter by 12.7 cm long (3 x 5 inches). It has two decks and three positions. Contacts and insulation are more than ample for the legal Amateur power limit.

Centralab switch JV9033 will also work in the kilowatt Matchbox. This switch has two poles, eight positions, 17-ampere contacts, and 3000-Vac insulation.7

references

7. Centralab Industrial Distributor Catalog, Series 201.

*Fair Radio Sales, Post Office Box 1105, Lima, Ohio 45802.
Tri-Ex®

Puts the World at Your Fingertips

Get your antenna high enough with a TRI-EX tower and bring the world to you.

Receive signals which you have never heard before.

Send your call to other HAMS who have never heard you.

A TRI-EX tower will give you listening power...calling power...and stay-up power that means durability.

Durability comes from TRI-EX's 25 years of building quality towers. These years of experience combined with the latest engineering knowledge and materials are used to design and build towers which stay up under the antenna loads and wind speeds specified. After manufacture our steel towers are hot dipped in molten zinc (galvanizing). All exposed steel is covered inside and out including the inside of tubing.

Our aluminum towers are self-resistant to corrosion. TRI-EX TOWERS makes them all: GUYED TOWERS, CRANK-UP TOWERS, FREE STANDING TOWERS, STACKED TOWERS.

And we will install a tower on your site, upon request.

Call, or write TRI-EX now for information on the right TRI-EX tower for you. We will send you our complete list of prices, delivery dates, installation information and the name of your nearest dealer. Call TOLL FREE.

Call our New Number
1-800-528-6050, Extension 1025

In Arizona, dial:
1-800-352-0458, Extension 1025

Tri-Ex®
TOWER CORPORATION
7182 Rasmussen Avenue, Visalia, California 93277
MICROWAVE MODULES LTD.

432 Mhz Linear Transverter

UP YOUR FREQUENCY!

- EXTRA RANGE (434-436 Mhz) for Satellite operation.
- 10 Watts RMS output power.
- Simple Frequency Range Selection Using Toggle Switches.
- Highly Stable Regulator Controlled Crystal Oscillator Stages
- 30 dB Receiver Gain.
- Better than 3.0 dB Noise Figure.
- Antenna Changeover Achieved by Low Loss Pin Diode Switch.
- 50 Mhz and 144 Mhz I.F.'s Available.

MMT432/28-S — PRICE: $329.95 INCLUDING SHIPPING

144 Mhz Linear Transverter

Join the Fun on 2 Meter Sideband — using your 28Mhz Transceiver.

- 10 WATTS RMS OUTPUT POWER
- 30dB RECEIVER GAIN
- BETTER THAN 2.5dB NOISE FIGURE
- 50 Mhz I.F. AVAILABLE

MMT 144/28 — PRICE: $259.95 INCLUDING SHIPPING

432 Mhz LINEAR AMPLIFIER

100 WATTS OUTPUT

- 100% DUTY CYCLE RATED
- RFOX
- 10dB MINIMUM GAIN
- FULLY PROTECTED VSWR, OVERHEATING, REVERSE POLARITY

MML432/100 — PRICE: $449.95 INCLUDING SHIPPING

432-436 Dual Range Receiving Converter

- OSCAR, MODE J RECEPTION
- 30dB GAIN
- BETTER THAN 3.0dB NOISE FIGURE
- I.F.'s AVAILABLE: 28-30Mhz, 144-146Mhz

MMC 432/28-S — PRICE: $95.95 INCLUDING SHIPPING

GUARANTEE

ALL MICROWAVE MODULES PRODUCTS ARE GUARANTEED FOR 1 YEAR. IN ADDITION, THEY MAY BE RETURNED WITHIN 10 DAYS FOR A FULL REFUND IF YOU ARE NOT SATISFIED FOR ANY REASON.

TEXAS RF DISTRIBUTORS is the EXCLUSIVE IMPORTER of MICROWAVE MODULES PRODUCTS, and we supply a COAST-TO-COAST DEALER NETWORK. WRITE OR PHONE FOR DETAILS OF THESE PRODUCTS AND THE OTHER VHF and UHF MICROWAVE MODULES PRODUCTS WHICH WE STOCK.

TEXAS RF DISTRIBUTORS, INC.

JOE - WA5HNK
CARL - W5UPR

Exclusive U.S.A. Distributors of Microwave Modules Products
4800 WEST 34TH STREET • SUITE D12A
HOUSTON, TEXAS 77092
PHONE 713/680-9797 • TELEX 791322

More Details? CHECK — OFF Page 110
WHAT A FINE PAIR!!

MML 144/100
10 WATTS IN – 100 WATTS OUT

MML 432/100
10 WATTS IN – 100 WATTS OUT

100% DUTY CYCLE RATED
IDEAL FOR REPEATERS!

* FULLY PROTECTED AGAINST POOR LOAD
* EQUIPPED WITH RF VOX AND MANUAL
* SUPPLIED WITH POWER LEAD AND ALL
VSWR, OVERHEATING AND EXCESSIVE OR
CONNECTORS
REVERSE VOLTAGE

MML 144/100
SPECIFICATIONS:

- Power Input: 10 watts nominal
- Frequency Bandwidth: 144-148 Mhz @ – 0.5dB
- RF Input Connector: 50ohm BNC
- RF Output Connector: SO239
- Power Requirements: 13.8 nominal @ 14 amps
- Weight: 4kg (8lb 13oz)
- Overall Size: 315 x 142 x 105mm (12 3/8 x 5 5/8 x 4 1/8")

PRICE: $329.95 INCLUDING SHIPPING

MML 432/100
SPECIFICATIONS:

- Power Gain: 10dB minimum
- Power Output: 100 watts RMS output @
- Power Input: 10 watts nominal for 100
- Frequency Bandwidth: 435 Mhz ± 15 Khz @ – 1dB
- RF Input Connector: 50ohm BNC
- RF Output Connector: 50ohm 'N' Type
- Power Requirements: 13.8 nominal @ 20 amps
- Weight & Overall Size: Same as MML 144/100
- for 100 watts output

PRICE: $449.95 INCLUDING SHIPPING

GUARANTEE

ALL MICROWAVE MODULES PRODUCTS
ARE GUARANTEED FOR 1 YEAR. IN
ADDITION, THEY MAY BE RETURNED
WITHIN 10 DAYS FOR A FULL REFUND
IF YOU ARE NOT SATISFIED FOR ANY
REASON.

TEXAS RF DISTRIBUTORS IS THE EXCLUSIVE IMPORTER
OF MICROWAVE MODULES PRODUCTS, AND WE SUPPLY
A COAST-TO-COAST DEALER NETWORK. WRITE OR
PHONE FOR DETAILS OF THESE PRODUCTS AND THE
OTHER VHF AND UHF MICROWAVE MODULES PRODUCTS
WHICH WE STOCK.

TEXAS RF DISTRIBUTORS, INC.
JOE - WA5HNK
CARL - W5UPR

Exclusive U.S.A. Distributors
of Microwave Module Products

TEXAS RF DISTRIBUTORS
4800 WEST 34TH STREET • SUITE D12A
HOUSTON, TEXAS 77092
PHONE 713/680-9797 • TELEX 791322
test-equipment mainframe

Construction ideas for those wanting convenience and a professional appearance for test equipment

Over the years I've built many pieces of test equipment, at first without paying much attention to size or appearance. Size became important because of extended operation aboard a sailboat and led to a series of units packaged in standard 51 x 77 x 128 mm (2 x 3 x 5 inch) miniboxes. As these units were developed, I realized that good appearance wasn’t really difficult. (See reference for a description of many of these designs and for hints on obtaining good appearance.)

These units served me well but had some disadvantages. The main one was in assembly of a test setup, which involved chasing down the right unit or units, getting batteries together, and interconnecting the units to secure the desired signals. Storage was another problem, as well as keeping batteries on hand.

The appearance of the Tektronics 500-series plug-in units and mainframe led me to adopt some of their ideas and to the development of the mainframe and plug-in system described here — very handy and a great time saver.

The idea of the mainframe can be seen in the photo of the first (or prototype) version. At the bottom a chassis contains power supplies and control circuits, some interconnect circuits, and a series of switches. Receptacles at the top of the chassis are spaced to accommodate four miniboxes of the same size 51 x 77 x 128 mm (2 x 3 x 5 inch) for individual instruments. A receptacle on the front panel allows use of another instrument on an extension cable or makes the power supplies and interconnect points available externally.

The chassis used in the prototype are special boxes, having an L-shaped cross section. This can be seen more clearly in the photo of the second version,

fig. 1. Dimensions of angle stock needed for the first version of rack. Location of the pieces are shown.

By R. P. Haviland, W4MB, 2100 South Nova Road, Box 45, Daytona Beach, Florida 32019
which also shows the receptacles (Jones plugs) that accept the instrument packages. This version uses a different method of interconnect (tip jacks) instead of switches feeding a pair of buses.

Mainframe construction

Two methods of construction were used. The four-unit frame is designed for hacksaw and tin-snip fabrication. The five-unit frame is designed for forming with a sheet-metal brake. With care and a little time, the bends of the second type can be made with a vise. The pieces may be fastened with rivets or self-tapping screws.

Dimensions of the four-unit rack are shown in **figs. 1 and 2** for the sheet metal and angle pieces respectively. The do-it-yourself stock available in hardware stores is easiest to work, although the rack could just as well have been made from sheet iron and iron angle.

Dimensions for the five-unit rack are shown in **fig. 3**. This unit can also be built from thin do-it-yourself aluminum stock. It will be more rugged if at least 1.3-

![Diagram showing dimensions of sheet metal for first version of the rack. Hardware "hobby" aluminum sheet is satisfactory.](image)

fig. 2. Dimensions of sheet metal for first version of the rack. Hardware "hobby" aluminum sheet is satisfactory.

![Diagram showing dimensions for the second version of the rack. Bend on the dotted lines to 90 degrees. If prepainted sheet stock is used, watch the direction of bends carefully.](image)

fig. 3. Sheet-metal dimensions for the second version of the rack. Bend on the dotted lines to 90 degrees. If prepainted sheet stock is used, watch the direction of bends carefully.
The original instrument design was based on ±9 volts rather than ±12 volts. If desired, provisions for these (or other) voltages can be made. Alternative connections for this requirement are also shown (fig. 4B).

unit interconnections

In addition to the power leads, three bus leads are provided for unit interconnection. The interconnection schematic of the four-unit rack is shown in fig. 5. One bus, C, is common to all units. It is usually used for a sync signal. The other two can be switch selected as shown.

In the five-unit rack, the common bus is retained, but the unit leads A and B are brought to tip jacks, which gives more flexibility but is slightly less convenient.

The front panel also has an 8-pin receptacle (a tube socket was used in the prototype). This receptacle can be used with an extension cable to power another instrument or to power experimental equipment. It's convenient to make up several cables, a long and short one with instrument receptacles, and another pair with pigtail leads. A supply of "short preventers," made from alligator clips covered with transparent vinyl tubing, is a further convenience.

![First version of the home-built equipment rack with home-built plug-ins. Instruments are described in reference 1. This unit can be built with tin snips and hacksaw.](image)

mm (0.05-inch) stock is used. Aluminum sold in rolls as mobile-home skirting is satisfactory, as is sheet iron.

I've decided on a flat white finish for all small instruments, with black lettering. The mainframe was finished the same way. Steps for obtaining a good appearance are as follows:

1. Complete the instrument and get it working.
2. Remove the case and clean it with steel wool and soap. Polish any scratches; smooth all corners.
3. Spray with desired color paint, using several thin coats.
4. Add lettering, using a pressure transfer kit. Watch location with respect to dials and binding posts. If any are crooked, remove and start over.
5. With lettering complete, warm the case to about 92C (200F), which improves letter adhesion.
6. Finish the instrument with a thin coat of transparent spray, such as Krylon spray varnish.
7. Reassemble.

With a little practice, a professional-looking appearance can be obtained.

power supplies

Each of the units shown contains two independent power supplies. One provides ±12 volts regulated. This is used mainly for instruments based on op amps but is also for general use. A 12.6-volt ac line is also brought out of this supply. The second unit provides +5 volts, primarily for TTL logic.

Circuits for the supplies used in the prototypes are shown in fig. 4A. These are IC regulated circuits.

![fig. 4. Circuit for power supply used in the racks, (A). The 320 regulator case must be insulated from the ground. (B) shows an alternative connection for +9, ±12 volts. The negative line would be similar.](image)
The nominal 51 x 77 x 128 mm (2 x 3 x 5 inch) instrument cases are usually 54 x 77 x 131 mm (2-1/8 x 3 x 5-1/8 inches) and vary from one manufacturer to another. Rack spacing is laid out with this in mind.

The drilling and cutout pattern for the end of the instrument case is shown in fig. 6. This is for 8-pin Jones plugs. The alignment of the plug-in with the mainframe affects appearance, so the plug cutout is oversize to allow for adjustment.

A first trial at the rack used tube sockets for receptacles. These were undesirable, giving poor alignment and requiring too much insertion/removal force. The Jones plugs are much better.

battery operation

Most of the instruments used with these racks have low power drain, so battery operation for portable use is possible. A convenient way of obtaining this is to build up a case with a receptacle on each end. Eight A-cells will last quite a while as the 12-volt supply. Four D-cells with one diode in series will do reasonably well for the 5-volt supply, or a lantern battery can be used. If much portable operation is planned, use nickel-cadmiums instead of regular dry batteries.

instruments

The instruments shown in the prototype setup are, from left,

Sine-wave/square-wave audio oscillator, 20 Hz-20 kHz.

Function generator, square-wave, triangle, pulse and sine-wave, period, 20 microseconds – 20 seconds.

Summing step-gain amplifier, -40 to +40 dB gain.

Signal tracer or general-purpose amplifier.

These instruments and others are fully described in reference 1.

Two of the instruments shown in the prototype photo have been refinished and relabeled to fit the plug-in format. The other two have been modified for the connector plug but have not been refinished.

Additional instruments have been designed and built. I hope to describe these in a later article.

reference

ham radio
It's a compact, up to 200 watts PEP input, all solid-state HF transceiver with such standard features as built-in digital readout, IF shift, new PLL technology ...and requires no tuning!

Exciting and perfect for car or ham shack use! But, there's more to say about the TS-120S! This unique all solid-state HF, SSB/CW transceiver produces a hefty signal and also offers a lot of other great features in a very attractive, compact package.

FEATURES:
- All solid-state with wideband RF amplifier stages. No final dipping or loading, no transmit drive peaking, and no receive preselector tuning! Just dial your frequency and operate!
- Five bands, plus WWV. Transmits and receives on 80/75, 40, 20, 15, and all of 10 meters...and receives WWV on 15 MHz.
- 200 watts PEP (160 watts DC) input on 80 15 meters, 160 watts PEP (140 watts DC) input on 10 meters. LSB, USB, and CW.
- Digital frequency display (standard). 100-Hz resolution. Six digits. Special green fluorescent tubes eliminate viewing fatigue. Analog subdial, too, for backup display.
- IF shift (passband tuning), to remove adjacent frequency interference and sideband splatter.
- Advanced PLL circuit, which eliminates need for heterodyne crystal elements for each band. PLL lock frequency, CAL marker signal, and counter clock circuit use single reference frequency crystal. Simplifies circuitry, improves overall stability. Also improves transmit and receive spurious characteristics.
- Attractive, compact design. Measures only 3½" high X 9½" wide X 13½" long, and weighs only 4.9 kg (11.7 lbs). A perfect size for convenient mobile operation and rugged enough for either mobile or portable use. Also has all the desired features for optimum ham-shack operation at home.
- Noise blanker. You'll wonder where the ignition noise went.

See the big little TS-120S rig and matching accessories (VFO-120 remote VFO, SP-120 external speaker, PS-30 AC power supply, MB-100 mobile mounting bracket, AT-120 antenna tuner and YK-88C CW Filter) at your nearest Authorized Kenwood Dealer!
Compact in size... big on performance!

TR-7625
- Featuring 25 watts RF output (switchable to 5 watts low power), the TR-7625 is a high-performance 2-meter FM transceiver with memory, and is designed to permit multi-channel (800-channel) operation. Compact and perfect for mobile or ham shack use. When used with optional RM-76 Microprocessor Control Unit, the TR-7625 offers a whole new dimension in channel memory and scanning capability.

RM-76
- Combined with the TR-7600 or TR-7625, this optional Microprocessor Control Unit allows the operator to store frequencies in six memories (simplex/repeater), scan all memory channels automatically scan the band in 5-KHz steps, manually scan up or down in 5-KHz single or fast continuous steps, set lower and upper scan limits, clear scan (for transmitting), stop scan (with HOLD button), scan for busy or open channel, select simplex mode (simplex, transmit frequency offset ±6000 Hz or ±1 MHz), or one memory transmit frequency. Operates on 143.95 MHz simplex (MAR). Display indicates frequency even while scanning and functions (such as autoscans slow scan memory limit, upper scan limit, and error, i.e., transmitting out of band).

TS-700SP
- Here's an outstanding 2-meter all-mode transceiver that provides an extra dimension of versatility over the entire 2-meter band. Feature-packed and equipped for SSB, FM, CW and AM. Complete with built-in digital frequency readout, receiver pre-amplifier, VOX, sidetone and microphone.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>TR-7625</th>
<th>TS-700SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range: 144.00 to 147.95 MHz</td>
<td>144.0 to 148.0 MHz</td>
</tr>
<tr>
<td>Mode: FM</td>
<td>SSB (USB/LSB), CW, AM, FM</td>
</tr>
<tr>
<td>Dimensions: 161mm (6-3/16") wide</td>
<td>164mm (10-7/8") wide</td>
</tr>
<tr>
<td>81mm (3-1/8") high</td>
<td>81mm (3-1/8") high</td>
</tr>
<tr>
<td>239mm (9-1/16") deep</td>
<td>308mm (12-5/8") deep</td>
</tr>
<tr>
<td>Weight: 1.70kg (3.7 lb) Approx.</td>
<td>1.15kg (2.5 lb) Approx.</td>
</tr>
<tr>
<td>RF Output Power: High: 100 (35) watts</td>
<td>SSB, FM CW - 10 watts</td>
</tr>
<tr>
<td>Low: (10) watt approx (adjustable up to 10 watts)</td>
<td>AM - 3 watts</td>
</tr>
<tr>
<td>Modulation: Variable reactance direct shift</td>
<td>Variable reactance direct shift</td>
</tr>
<tr>
<td>Microphone: Dynamic microphone with PTT switch (500 ohm)</td>
<td>Low-impedance microphone (500 ohm)</td>
</tr>
<tr>
<td>Sensitivity: Less than 0.5 µV for 20 dB (10 KHz)</td>
<td>Less than 0.4 µV for 20 dB (10 KHz)</td>
</tr>
<tr>
<td>Selectivity: More than 75 dB at 30 KHz of adjacent channel</td>
<td>More than 75 dB at 30 KHz of adjacent channel</td>
</tr>
<tr>
<td>Image Rejection: More than 70 dB</td>
<td>Better than 70 dB</td>
</tr>
</tbody>
</table>

TR-8300
- Designed for use in the 70-cm amateur band. Unique design of the TR-8300 makes it a great choice for mobile or fixed-station use. This FM transceiver is capable of F3 emission on 23 crystal-controlled channels (three supplied). Transmitter output is 10 watts.

ACCESSORIES
- VFO-700 remote VFO, SP-70 external speaker, KPS-7 power supply, MC-50 base microphone, MC-305 mobile noise-cancelling microphone, and MC-45 Touch-Tone microphone.

See your Authorized Kenwood Dealer for more details.

TRIO KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT COMPTON, CA 90220
Many high-performance dipole and Yagi-Uda antenna systems have been developed over the years, but scaling them for use at other frequencies can produce disappointing results when the elements’ length and diameter cannot, from a practical standpoint, be scaled directly. Fig. 1 was developed a number of years ago for element lengths near a half wavelength. The advent of the modern hand calculator has turned nuisance calculations into a challenge.

using fig. 1

As seen in fig. 1, the relative wave velocity on any element is a function of that element’s length-to-diameter ratio, with:

\[\frac{l_n}{d_n} = r_n \]
\[\text{(1)} \]

where \(l_n \) = the length of the nth element
\(d_n \) = the diameter of the nth element
\(r_n \) = the length-to-diameter ratio

Once the relative wave velocity, \(v_{rn} \), has been determined from fig. 1, the free-space wavelength and element length are related by:

\[\frac{l_o}{v_{rn}} \text{ or } l_o \text{ = } \frac{d_n r_n}{v_{rn}} \]
\[\text{(2)} \]

where \(l_o \) = the length of the nth element
\(d_n \) = the free-space wavelength

For changes in an element’s diameter, the new and old lengths can be equated by:

\[\frac{l_o}{v_{rn}} = \frac{l_n}{v_{rn}} = \frac{L_n}{V_{rn}} = \frac{D_n R_n}{V_{rn}} \]
\[\text{(3)} \]

where \(L_n \) = the new length
\(D_n \) = the new diameter
\(V_{rn} \) = the new relative velocity
\(R_n \) = the new length-to-diameter ratio

practical examples

Length for a given diameter. How long should a 3/8-inch diameter rod be when it is a one-half wave-length radiator at 150 MHz? From the standard wavelength formula, a free-space, half-wavelength radiator is 39.3429 inches long. * Rearranging eq. 2 yields:

\[\frac{l_o}{d_n} = \frac{r_n}{v_{rn}} \text{ with } \frac{r_n}{v_{rn}} = \frac{39.3429}{0.375} = 104.9 \]

By moving along fig. 1, you will find a point on the curve where the length-to-diameter ratio divided by the relative velocity equals 104.9, \(r_n = 96.3 \) and \(v_{rn} = 0.918 \).

From eq. 1, the rod length then becomes

\[l_n = d_n \cdot r_n \]
\[= (0.375)(96.3) \]
\[= 36.12 \text{ inches} \]

Change of diameter. Assume that one-half wavelength element is 39-1/8 inches long, and that its diameter of 1.5 inches should be increased to 2.0 inches for added strength. What should the new length be? By eq. 1:

\[r_n = \frac{l_n}{d_n} = \frac{391.125}{1.5} = 260.75 \]

From fig. 1, the relative velocity, \(v_{rn} \), is about 0.9411, and substituting into a rearranged eq. 3 produces:

\[\frac{l_n}{v_{rn} D_n} = \frac{R_n}{V_{rn}} = \frac{391.125}{0.9411(2.0)} = 207.802 \]

Move along the curve on fig. 1 and find the new length-to-diameter ratio divided by the new relative velocity factor which gives the above ratio, or:

\[\frac{R_n}{V_{rn}} = 207.802 = \frac{194.3}{0.9351} \]

The new length-to-diameter ratio is 194.3, and the new relative velocity factor is 0.9351.
From this, the new element length becomes

\[L_n = R_n D_n = 194.3(2.0) \]
\[= 388.63 \text{ inches} \]

Change of frequency. Assume that a 146-MHz director has a diameter of 3/8 inch and a length of 35.0 inches, and is to be used at 14.2 MHz with a new diameter of 2.0 inches. What is the new length?

By Harold F. Tolles, W7ITB, Post Office Box 232, Sonoita, Arizona 85637

*Contrary to normal ham radio style, the examples in this article do not, for two reasons, include metric conversions. First, the element sizes are common in the U.S., used here as examples rather than for absolute conversion to the metric system. Second, the added complexity of metric conversions would tend to hinder understanding of this article and its formulas.
fig. 1. Graph of the cylindrical wire relative velocity vs. an element’s length-to-diameter ratio.* This excludes the small spacing effects in series-fed antennas.

First:

\[\frac{L_n}{d_n} = \frac{35.0}{0.375} = 93.333 \]

From fig. 1, the relative velocity factor is about 0.9168, and the free space wavelength is:

\[l_o = \frac{35.0}{0.9168} = 38.1763 \text{ inches} \] or \(0.4722 \lambda \) at 146 MHz.

From this, the 0.4722 \(\lambda \) at 14.2 MHz is 392.5162 inches \((L_o)\).

Therefore:

\[\frac{L_n}{D_n} = \frac{392.5162}{2.0} = 196.2581 = \frac{R_n}{V_{rn}} \]

Move along the curve on fig. 1, and find that:

\[\frac{R_n}{V_{rn}} = 196.2581 = \frac{184.0}{0.9375} \]

The new element length, \(L_n \), becomes

\[L_n = R_nD_n = 184.0 \times 2.0 = 368 \text{ inches} \]

summary

As the above examples show, fig. 1 can be used to solve a number of element scaling problems in a short period of time when a hand calculator is available. Moving from left to right on the figure increases (quite rapidly) the \(R_n/V_{rn} \) ratio, and solving for \(L_n \) in terms of \(R_nD_n \) and \(V_{rn}L_o \) (where \(L_o = L_n/V_{rn} \)) is a good check (as well as refinement) of the ratio obtained from the fig. 1 curve.

I have used this procedure many times to scale beam elements with excellent results. For example, I scaled one high-performance, free-space, 3-element Yagi-Uda array directly from the 2-meter Amateur band to the 40-meter Amateur band, and the maximum gain frequency shift on the 40-meter band was only 10 kHz!

It appears that good results can be obtained when the element lengths are within \(\pm 20 \) per cent of free-space, one-half wavelength, but the error is also a direct function of the number of antenna elements. I have not found this error to be significant in array scaling.

Fig. 1 assumes that the elements are either shunt-excited or are parasitic. When driven elements are series-fed, a small gap capacitance exists across the end of the feed line which is in parallel with the element self-series impedance. This affects the driven element impedance more than it does the driven element gain. When the driven series-fed element is essentially one-half wavelength, good scaling results occur when the gap is omitted in scaling this element.

reference

*For greater accuracy, a full-size copy of the author's original graph is available by sending a self-addressed, stamped envelope to ham radio, Greenville, New Hampshire 03048.
YOU ASKED FOR IT
YOU GOT IT

DSI QUIK-KIT®

50 HZ — 550 MHZ COUNTER KIT
95% ASSEMBLED 100% TESTED
Performance You Can Count On

FREQUENCY COUNTER APPLICATION:
- Ham Radio — Two Way Radio — CB
- Audio Amplifier & Receiver Repair
- Computer Maintenance & Construction
- A Must for TV — PLL & VTR Repair

$99.95
MODEL 3550K
includes built-in
Pre-Amp & Prescaler

DSI OFFERS THE BEST OF TWO WORLDS . . .
An unprecedented DSI VALUE . . . in a high quality, LSI Design, 50 HZ to 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes all competitive makes, both in price & performance.
With 95% of the assembly completed by DSI, you are only one hour away from solving all of those difficult bench problems, from adjusting 60 HZ clock-time bases to setting the frequency of a 468 MHZ Mobile Radio. CALL TODAY TOLL FREE: (800—854-2049) Calif. Res. CALL (800—542-6253)

FACT: Every 3550 QUIK-KIT® PC board is factory assembled and tested before shipment.
FACT: The problems of bad LED's, IC's, and Capacitors are a thing of the past. FACT: No manufacturer except DSI offers a 550 MHZ frequency counter with . . . 8 digits, .5 in. LED's, TCXO, 1 HZ resolution and a one year warranty on parts for under $100.00. . . . We do not know how long we can hold this low, low price.

GO WITH THE LEADER . . . BUT A FULL FREQUENCY COUNTER KIT TODAY, SAVE TIME & MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

DSI — GUARANTEED SPECIFICATIONS — MADE IN USA

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>@ 144MHz</th>
<th>@ 220MHz</th>
<th>@ 450MHz</th>
<th>Number of Readouts</th>
<th>Size of Readouts</th>
<th>Power Requirements</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700</td>
<td>$268.95</td>
<td>50Hz - 700MHz</td>
<td>Proportional Oven 2 PPM 0° - 40°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>3"H x 8"W x 6"D</td>
</tr>
<tr>
<td>3600A</td>
<td>$199.95</td>
<td>50Hz - 600MHz</td>
<td>Oven 5 PPM 17° - 37°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2½"H x 8"W x 5"D</td>
</tr>
<tr>
<td>3550W</td>
<td>$149.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 4 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2½"H x 8"W x 5"D</td>
</tr>
<tr>
<td>3550K</td>
<td>$99.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
<td>115 VAC or 8.2 - 14.5VDC</td>
<td>2½"H x 8"W x 5"D</td>
</tr>
</tbody>
</table>

1 Hz Resolution to 55 MHz • 10 Hz Resolution to 550 MHz • .1 and 1 Sec. Gate Time • Auto Zero Blanking

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>@ 144MHz</th>
<th>@ 220MHz</th>
<th>@ 450MHz</th>
<th>Number of Readouts</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3550W</td>
<td>$149.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
</tr>
<tr>
<td>T-101 (incl.)</td>
<td>$59.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
</tr>
<tr>
<td>AC-9 (incl.)</td>
<td>$29.95</td>
<td>50Hz - 550MHz</td>
<td>TCXO 1 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 Inch</td>
</tr>
</tbody>
</table>

3550W Wired $149.95
T-101 (incl.) NC
AC-9 (incl.) NC
Shipping (incl.) NC

TERMS: MC — VISA — AE — Check — M.O. — COD in U.S. Funds. Orders outside of USA and Canada, please add $20.00 additional to cover air shipment. California residents add 6% Sales Tax.
NEW FROM DSI!

50 Hz — 500 MHz
1 Meg INPUT — 1 Hz RESOLUTION — 1 PPM TCXO

8 DIGITS

- AC—DC Operation
- BNC Inputs 1 Meg Direct 50 Ohms Prescaled
- 8 Large .4” LED Readouts
- Auto Decimal Point & Zero Blankling
- 1 Year Limited Warranty Parts & Labor
- 100% Factory Assembled in U.S.A.

$149.95

MODEL 500 HH
50 Hz — 500 MHz
Without Battery Capability

SAVE $5.00

MODEL 500 HH ...$169.95
MODEL 100 HH ...$119.95

The 100 HH and 500 HH hand held frequency counters represent a significant new advancement, utilizing the latest LSI design... and because it's a DSI innovation, you know it obsoletes any competitive makes, both in price and performance. No longer do you have to sacrifice accuracy, ultra small readouts and poor resolution to get a calculator size instrument. Both the 100 HH and 500 HH have eight .4 inch LED digits—1 Hz resolution—direct in only 1 sec. or 10 Hz in .1 sec.—1 PPM TCXO time base. These counters are perfect for all applications be it mobile, hilltop, marine or bench work.

CALL TODAY! CALL (800-854-2049) TO ORDER OR RECEIVE MORE INFORMATION ON DSI'S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10 Hz TO 1.3 GHz.

FREQUENCY COUNTER CONSUMER DATA COMPARISON CHART

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SUG/STD. LIST PRICE</th>
<th>FREQUENCY RANGE</th>
<th>TYPE OF TIME BASE</th>
<th>ACCURACY OVER TEMPERATURE</th>
<th>SENSITIVITY</th>
<th>DIGITS</th>
<th>PRE-SCALE INPUT RESOLUTION</th>
</tr>
</thead>
</table>
| DSI INSTRUMENTS | 100 HH | $ 99.95 | 50Hz-100MHz | TCXO | 1 PPM | 2 PPM | 17° - 40°C | 100 Hz - 25 MHz
| DSI INSTRUMENTS | 500 HH | $149.95 | 50Hz-550MHz | TCXO | 1 PPM | 2 PPM | 6° - 40°C | 25 MHz
| CSC‡ | MAX-550 | $149.95 | 1kHz-550MHz | Non-Compensated | 3 PPM @ 25°C | 8 PPM | 25 MHz
| OPTOELECTRONICS | OPT-7000 | $139.95 | 1kHz-600MHz | TCXO | 1.8 PPM | 3.2 PPM | 500 MHz

* 1 KHz - 50 MHz 1 Continental Specialties Corp.

The specifications and prices included in the above chart are as published in manufacturer's literature and advertisements appearing in early 1978. DSI INSTRUMENTS only assumes responsibility for their own specifications.

100 HH...$ 99.95
500 HH...$149.95
W/Battery Pack ...$119.95
W/Battery Pack ...$169.95

These prices include factory installed rechargeable NiCad battery packs.

DSI INSTRUMENTS, INC.
7924 Ronson Road, Dept. G
San Diego, California 92111

T-500 Ant. $ 7.95
AC-9 Battery Eliminator $ 7.95

TERMS: MC - VISA - AE - Check - M.O. - COD in U.S. Funds
Please add 10% to a maximum of $10.00 for shipping, handling
and insurance. Orders outside of USA & Canada, please add
$20.00 addition to cover air shipment. California residents add
6% Sales Tax.

* 1 KHz - 50 MHz 1 Continental Specialties Corp.
This article presents a fast, simple, and accurate method for predicting close encounters between Oscar 7 and 8.

In early 1975, Amateur Radio operators added another first to their long list of communications accomplishments when two earth stations communicated via a path involving a direct satellite-satellite link. Each station transmitted to AMSAT-Oscar 7 on 432 MHz; the signals were then relayed to AMSAT-Oscar 6 on 146 MHz, and back down to the ground on 29 MHz. Never before, in any radio service, had two satellites been directly interlinked to support communications between two ground stations.

Communication via the ESSE (earth-satellite-satellite-earth) path, using Amateur spacecraft, has been possible only when the satellites involved were relatively close to each other. Of course, it’s also necessary that the transponder frequencies be suitable. Close-approach periods, lasting approximately three weeks, occurred about every six months for the AMSAT-Oscar 6 and AMSAT-Oscar 7. I still clearly remember the reference orbit (first orbit of the GMT day) on Wednesday, February 5, 1975, during the first close-approach period. AMSAT (and the new RS) satellites are reserved for special experiments on Wednesdays, with a very interesting test scheduled for this particular day. The distance between the two spacecraft was less than 1200 km on the reference orbit, and Amateurs with 432-MHz transmit capabilities were being encouraged to try for interlinking QSOs. Strict cooperation was needed if the tests were to succeed; anyone transmitting to Oscar 6 on 146 MHz might desensitize the transponder and con-
fuse stations receiving on 29 MHz. The results are history — the tests were a huge success. Cooperation was excellent; rapid fading, which many feared might be a serious problem, was minimal, and dozens of QSOs were made. Rag-chewing quality signals were heard on the 29-MHz downlink from W2GN, W8DX, VE2BYG (VE3SAT), K3JTE (W3PK), and many others uplinking on 432 MHz.

AMSAT later received written reports of completed ESSE QSOs from fifty-five Amateurs in twelve countries during the January/February, 1975, close-approach period. Contacts were reported for satellite separation distances ranging up to 2000 km, and reception of the Oscar 7 mode B beacon repeated by the Oscar 6 transponder was reported for satellite separation distances ranging up to 7000 km. ESSE tests involving these two spacecraft continued during periods of close approach until mid 1977, when Oscar 6 ceased operation.

The transponder frequencies for Oscar 8 where chosen so that ESSE tests could resume. Both mode A and mode J are suitable. Fig. 1 illustrates the links and transponder frequencies involved in ESSE communications using Oscar 7 and Oscar 8. Almost immediately following the launch of Oscar 8 (March 5, 1978), it became apparent that ESSE communications could take place when sensitivity measurements by K1HTV and W6CG of the Oscar 8 transponders (modes A and J) showed that, as long as the satellite agc wasn’t being activated, good return sig-
tion is presented as a function of the elapsed time (in minutes) since the last Oscar 7 ascending node. Eight curves are shown in fig. 2. Each one is labeled by a parameter r, which indicates the difference (in minutes) between the Oscar 7 and Oscar 8 ascending nodes. Our convention is to use positive values for r when Oscar 8 crosses the equator after Oscar 7. For example, if an Oscar 7 ascending node occurs at 0141Z, and an Oscar 8 ascending node occurs at 0144Z, the curve labeled $r = 3$ applies; if both ascending nodes occur at the same time, the curve labeled $r = 0$ is used. Fractions of a minute should be rounded off. The following series of questions and answers best illustrate how the curves are interpreted.

Q. Under what conditions will Oscar 7 and Oscar 8 pass closest to one another?

A. Fig. 2 shows that the intersatellite distance approaches a minimum value on orbits when the Oscar 8 ascending node occurs about four minutes after the Oscar 7 ascending node. The point of closest approach will occur about 27 minutes after the Oscar 7 ascending node. You can also see that the separation distance is never less than 550 km, the difference in altitudes of the two spacecraft.

Q. How can a ground station at 40 degrees north latitude pick the optimum orbits for intersatellite communications?

A. A station at 40 degrees north latitude has access to Oscar 7 only until 23 minutes after the ascending node (on an overhead pass). The station cannot access the satellite at the point of intersatellite closest approach. Looking at fig. 2 you can see that, beginning at 15 minutes after the Oscar 7 ascending node, the intersatellite distance becomes less than 1700 km when $r = 2$, 3, or 4 minutes (Oscar 8 ascending nodes occurring 2, 3, or 4 minutes after the Oscar 7 node). The time slot between 15 and 23 minutes after the Oscar 7 node is the best window. We’ve arbitrarily chosen 1700 km as our cutoff point because signals will be down 10 dB relative to 550 km (absolute closest approach) due to $1/r^2$ path losses.

Each ground station using close-encounter curves will find it convenient to shade in the area during which access to Oscar 7 is not possible. For example, a station at 40 degrees north latitude would shade in the region below the threshold for intersatellite communications if Oscar 8 has an ascending node 2 to 4 minutes later. How is this information used to select specific orbits?

A. Just read down the Oscar 7 and Oscar 8 time columns in the W6PAJ orbit calendar until you locate an Oscar 8 node occurring 2 to 4 minutes after an Oscar 7 node. When you find one, use your usual tracking aid (Satellabe, Oscarlocator, etc.) to determine if both satellites are within range during any portion of the time slot (15 to 23 minutes after the Oscar 7 node).

Q. Should a station at 40 degrees north latitude concentrate on morning descending orbits or evening ascending orbits for intersatellite communications experiments?

A. It’s hard to say. Fig. 2 shows that, during 1979, the evening orbits provide shorter intersatellite distances. Other factors, however, such as the normally lower transponder loading early in the day, might lead to better results on morning orbits. For morning passes, a station at 40 degrees north latitude would select orbits with $r = 4$, 5, or 6 and concentrate on times between about 35 and 40 minutes past the Oscar 7 ascending node.

Q. Over what period of time can fig. 2 be used?

A. If the relative orientation of the Oscar 7 and Oscar 8 orbital planes remained constant, fig. 2 could be used indefinitely. Because there is a slight drift in the relative orientation of these planes, a graph like the one shown in fig. 2 must be drawn for a specific date. In this case, the predicted positions of the orbital planes for July 1, 1979, were used. The drift, however, is so slow that fig. 2 will provide reasonably good results (within one minute or 200 km) for all of 1979.

Q. How often can one expect to find Oscar 7 and Oscar 8 in a position suitable for interlinking tests?

A. A close approach, while both satellites are in range of your ground station, will occur about once every seventeen days for evening (local time) orbits. For morning orbits, the figure is also about once in seventeen days. On the average then, if morning and evening passes are considered, any ground station will have a good shot at interlinking about once every eight or nine days.

These answers were derived as follows. The probability of a close encounter occurring on a given south-north satellite pass is equal to the probability of r being 2, 3, or 4 minutes. With three suitable one minute time slots out of a 103-minute period, the probability of a close encounter occurring on a specific orbit is $3/103$. On the average, there are two
close in Oscar 8 south-north passes each day, so the probability of a close encounter is 2(3/103) per day, which translates into once every seventeen days. The analysis for north-south orbits is similar, except for the fact that the three desirable time slots for τ are 4, 5, and 6 minutes.

Keep in mind that Oscar 7 must be in mode B if communications are to be possible during a close encounter. Concern for Oscar 7's health and longevity has forced AMSAT to begin selecting modes on a day-by-day basis, so you just have to take a chance that it will be in mode B.

Q. Is Doppler shift a serious problem?

A. Doppler shifts are not a serious obstacle. The real problems are spurious responses (birdies) and desensitization in the receiving system. Finding your own downlink signal will always involve some searching, and you'll quickly realize the value of good filtering on the transmitter and receiver (to prevent birdies and desensitization) and thorough testing of your ground station when the satellites are not in range (to learn the location and characteristics of any remaining birdies).

The following considerations should help you reduce the amount of searching you must do for your downlink. The total Doppler shift consists of contributions from each of the three links involved. The 70-cm link(s) produce the largest effect. For a mode-B/mode-A linkup, the total Doppler should be less than ±6 kHz. A rough, but close, guess of the value can be obtained by just considering the position of Oscar 7 (mode-B transponder) and using the frequency offset regularly seen for a mode-B QSO. With a mode-B/mode-J linkup, the Doppler can be up to ±12 kHz. Once again, the value can be estimated by concentrating on the 70-cm links. If both satellites are moving either toward you or away from you, the Doppler shifts will tend to cancel. During optimal-access periods, one of these two cases usually exists, so searching for your downlink can be confined to a ±6 kHz window.
fig. 3. The position vectors for two satellites. This diagram represents Oscar 7 as satellite 1 and Oscar 8 as satellite 2.

Q. I’ve been using the close-encounter curves to listen to the Oscar 7 mode-B beacon through Oscar 8 mode A, and signal strength correlates reasonably well with the curves but not completely. Why?

A. Distance is only one aspect of Oscar 7/Oscar 8 radio-link performance. Another important factor is relative orientation of the spacecraft antennas. This can be accurately modeled if a computer is available. The close-encounter curves would enable us to save a great deal of computer time by restricting path-loss studies involving antenna patterns to a small portion of a limited number of orbits. Ground stations must also take into account transponder loading and the performance of the satellite-ground communications link if they hope to explain all observations of the Oscar 7 mode-B beacon through Oscar 8.

table 1. Notation for intersatellite distance problem

SPP = subsatellite point. Numerical values for Oscar 7 and Oscar 8 are shown in brackets.

<table>
<thead>
<tr>
<th>parameter</th>
<th>satellite 1 [Oscar 7]</th>
<th>satellite 2 [Oscar 8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>radial distance (geocenter to satellite)</td>
<td>$r_1(7,831\text{ km})$</td>
<td>$r_2(7,281\text{ km})$</td>
</tr>
<tr>
<td>position vector (geocenter to satellite)</td>
<td>\vec{r}_1</td>
<td>\vec{r}_2</td>
</tr>
<tr>
<td>period (note: $P_1 \geq P_2$) (minutes)</td>
<td>$P_1[114.945\text{ minutes}]$</td>
<td>$P_2[103.231\text{ minutes}]$</td>
</tr>
<tr>
<td>orbital inclination (degrees)</td>
<td>$i_1[101.7\text{ degrees}]$</td>
<td>$i_2[99.0\text{ degrees}]$</td>
</tr>
<tr>
<td>elapsed time since ascending node of satellite (minutes)</td>
<td>t</td>
<td>$t - \tau$</td>
</tr>
<tr>
<td>latitude of SSP at time indicated</td>
<td>$\theta_1(t)$</td>
<td>$\theta_2(t)$</td>
</tr>
<tr>
<td>longitude of SSP at time indicated</td>
<td>$\lambda_1(t)$</td>
<td>$\lambda_2(t)$</td>
</tr>
<tr>
<td>longitude of SSP at ascending node</td>
<td>λ_{10} (occurs at $t = 0$)</td>
<td>λ_{20} (occurs at $t = \tau$)</td>
</tr>
</tbody>
</table>

The mathematical derivation of the close-encounter curves is outlined in this appendix. Note that it is not necessary to read this section to use the close-encounter curves. To understand the following material, you need some background in spherical coordinates and three-dimensional vectors. Our analysis focuses on two satellites in circular orbits, as shown in fig. 3. The notation used is summarized in table 1. Note that the subscript 1 is used to refer to the satellite with the longer period (higher altitude). The intersatellite distance, $s(t)$, is given by the magnitude of the vector $(\vec{r}_1 - \vec{r}_2)$

$$s(t) = \sqrt{(r_1 - r_2) \cdot (r_1 - r_2)}$$

$$= \sqrt{r_1^2 + r_2^2 - 2(\vec{r}_1 \cdot \vec{r}_2)} \quad (1)$$

To evaluate $\vec{r}_1 + \vec{r}_2$, express the Cartesian components of each position vector in terms of the spherical coordinates of the given satellite ($\phi =$ colatitude, $\lambda =$ longitude). Both coordinate systems have their origins at the geocenter and rotate with the earth. The orthogonal unit vectors i, j, k are defined as follows: i is along the line joining the geocenter to the intersection of the equator and the prime meridian, j is along the line joining the geocenter to intersection of the equator and the 90 degree east meridian, k is along the line joining the geocenter and the subsatellite point of each satellite. Numerical values for Oscar 7 and Oscar 8 are shown in brackets.

$$s(t) = \sqrt{r_1^2 + r_2^2 - 2(\vec{r}_1 \cdot \vec{r}_2)} \quad (1)$$

The coordinates θ and λ, for each satellite, appearing in the brackets on the right hand side of eq. 4, are the same as those of the respective subsatellite points (SSPs):

$$\theta_1(t) = \arcsin [\sin i_1 \sin (360^\circ - \frac{t}{P_1})]; \quad (5A)$$

$$\theta_2(t) = \arcsin [\sin i_2 \sin (360^\circ - \frac{t}{P_2})]; \quad (5B)$$

$$\lambda_1(t) = \lambda_{10} + \frac{t}{4} + (-1)^{P_2/P_1} n_1 \arccos \left[\frac{\cos (360^\circ - \frac{t}{P_1})}{\cos \theta_1(t)} \right]; \quad (6A)$$

$$\lambda_2(t) = \lambda_{20} + \frac{t}{4} + (-1)^{P_1/P_2} n_2 \arccos \left[\frac{\cos (360^\circ - \frac{t}{P_2})}{\cos \theta_2(t)} \right]; \quad (6B)$$

where

$$n_2 = \begin{cases} 0 & 90^\circ \leq \lambda_1 \leq 180^\circ \\ 1 & 0^\circ \leq \lambda_1 < 90^\circ \end{cases}$$

$$n_3 = \begin{cases} 0 & \theta(t) > 90^\circ \{ \text{Southern Hemisphere} \} \\ 1 & \theta(t) < 90^\circ \{ \text{Northern Hemisphere} \} \end{cases}$$

Here are the sign conventions: North latitudes are positive, south latitudes are negative, all longitudes are in degrees west, and longitude displacements toward the west are positive.
The sign convention for longitudes adopted in eqs. 6A and 6B is the same as that used in the Satellab, Oscar locator, W6PAJ Orbit Calendar, and most other U.S. and Canadian Amateur literature. It's a very convenient convention for stations located between 0 and 180 degrees west longitude. Most non-Amateur literature, recognizing the computational advantages of a right-hand coordinate system, is based on a different sign convention—east longitudes and displacements towards the east are regarded as positive. This approach was used in the best treatment of orbits available in the Amateur literature—Peter D. Thompson, Jr., "A General Technique for Satellite Tracking," QST, November, 1975, page 29.

Although the situation may sound confusing at first, it's really just a minor problem once you're aware of its existence. Since both conventions have merit and are well established, the best course of action for radio Amateurs working on basic computations appears to be to use a right-hand coordinate system for computations and then, as a final step, transform to the U.S./Canadian convention.

To compute the intersatellite distance, \(s \), as a function of time for a specific set of two orbits, eqs. 5A, 5B, 6A, and 6B are substituted in eq. 4. The result is indicated symbolically by:

\[
\Delta r = \sqrt{(t_2 - t_1)^2 - \Delta \lambda^2} \quad (7)
\]

You can see that \(s \) depends on a set of constants \(t_1, t_2, P_1, P_2, r_1, r_2 \), the parameter \(\Delta \lambda = \lambda_2 - \lambda_1 \), which is a measure of the difference in longitudes at the ascending node, the parameter \(r \), which expresses the difference in time of the two ascending nodes, and the time \(r \), measured from the ascending node of satellite 1. Once the two satellites are chosen, the six constants are known and eq. 7 expresses the fact that the intersatellite distance is a function of three variables.

If you have a TI-59, HP-67, or similar programmable hand calculator, you can use eq. 7 in conjunction with equatorial crossing curves to first compute \(\Delta \lambda \) and \(r \) for a specific set of two orbits, and then calculate the distance, \(s \), every 2 minutes over the course of the orbits. Although this method works, it's very time consuming if you're trying to evaluate a large number of orbits for their suitability for interlinking experiments. This leads to the problem of finding some simple way of expressing eq. 7 in graphical form.

The \(\Delta \lambda \) term in eq. 7 can be written:

\[
\Delta \lambda = \left(\frac{t_2 - t_1}{p_1 + p_2} \right) \cdot \frac{\pi}{360} \quad (8)
\]

where \(\Delta \lambda \) is a slowly varying function describing the relative orientation of the orbital planes of the two satellites.

The 1979 W6PAJ orbit calendar, using data by Dr. Tom Clark (W3WII), predicts that \(\Delta \lambda^* \) will be 18.6 degrees on January 1, 1979, 13.0 degrees on July 1, 1979, and 19.4 degrees on December 31, 1979. If \(\Delta \lambda^* \) can be treated as a constant, then eq. 7 will depend only on two variables, and a function of two variables can often be illustrated on a single graph as a set of curves. To test this approach, three graphs (each graph consisting of a set of close-encounter curves) were drawn for \(\Delta \lambda^* = 18.6 \) degrees, 9.0 degrees, and 19.4 degrees. (All computations were performed on an HP-97 programmable calculator.) From these graphs, it was evident that a 0.4-degree change in \(\Delta \lambda^* \) had a negligible effect on the close-encounter curves. A single graph (fig. 2) can therefore be used for all of 1979.

references

ham radio

FREE: HAL-TRONIX 1979 Special Clock Kit — with purchase of any Frequency Counter.

COMPLETE KITS: Containing of every essential part needed to make your counter complete.

HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ — FEATURES: TWO INPUTS, ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUPPRESSION, TIME BASE 0.1 SEC OR 1 SEC, GATE AND 10 SEC GATE AVAILABLE. ACCURACY ±0.02%. UTILIZES 10 MHZ CRYSTAL 5.395.

COMPLETE KIT...

HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ — FEATURES: TWO INPUTS, ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUPPRESSION, TIME BASE 0.1 SEC OR 1 SEC, GATE AND 10 SEC GATE AVAILABLE. ACCURACY ±0.02%. UTILIZES 10 MHZ CRYSTAL 5.395.

COMPLETE KIT...

HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ — FEATURES: TWO INPUTS, ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUPPRESSION, TIME BASE 0.1 SEC OR 1 SEC, GATE AND 10 SEC GATE AVAILABLE. ACCURACY ±0.02%. UTILIZES 10 MHZ CRYSTAL 5.395.

COMPLETE KIT...

HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ — FEATURES: TWO INPUTS, ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUPPRESSION, TIME BASE 0.1 SEC OR 1 SEC, GATE AND 10 SEC GATE AVAILABLE. ACCURACY ±0.02%. UTILIZES 10 MHZ CRYSTAL 5.395.

COMPLETE KIT...

HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ — FEATURES: TWO INPUTS, ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUPPRESSION, TIME BASE 0.1 SEC OR 1 SEC, GATE AND 10 SEC GATE AVAILABLE. ACCURACY ±0.02%. UTILIZES 10 MHZ CRYSTAL 5.395.

COMPLETE KIT...

HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ — FEATURES: TWO INPUTS, ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUPPRESSION, TIME BASE 0.1 SEC OR 1 SEC, GATE AND 10 SEC GATE AVAILABLE. ACCURACY ±0.02%. UTILIZES 10 MHZ CRYSTAL 5.395.

COMPLETE KIT...

HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ — FEATURES: TWO INPUTS, ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY, AUTOMATIC ZERO SUPPRESSION, TIME BASE 0.1 SEC OR 1 SEC, GATE AND 10 SEC GATE AVAILABLE. ACCURACY ±0.02%. UTILIZES 10 MHZ CRYSTAL 5.395.
Great articles out of our past

Why not give Audion a satisfaction-guaranteed trial? Just fill out the short questionnaire in this form and return to Audion, and you'll receive a trial of 14 days where you can listen to our library, with no strings attached, no obligation to buy, and no credit card required. Use the satisfaction guarantee and we'll refund your purchase price if you are not completely satisfied. The minimum purchase price is $50.00. No other purchases or returns are accepted except as noted above. If you have any questions, please contact our Customer Service Department at 800-555-1234.

To order a satisfaction-guaranteed trial of Audion, please complete the form below and return it to Audion.

Name:
Address:
City:
State:
Zip:
Phone:
Fax:
Email:

Copyright © 2023 Audion. All rights reserved.
ELECTRONICS

More Details? CHECK — OFF Page 110
Features:
- Stainless Steel Whip
- Fiberglass Loading Coil
- Base Tuned
- Logging Scale
- Resettable to Exact Frequency
- Positive Tuning Lock
- Heat Treated Beryllium Copper Contacts
- No Coils to Change
- Correlation Chart from Logging Scale to Frequency Furnished
- Modular Construction for Easy Road Hazard Repair and Service
- 90 Day Warranty – Factory Service
- No Tuners or Impedance Transformers Required: 50 Ohms Input
- Less than 1.5 to 1 VSWR — Any Frequency within the Tuning Range, 3.5 MHz to 30 MHz Inclusive

Maximum length — 116 inches — at 3.5 MHz
Minimum length — 92.5 inches — at 30 MHz:
3/8-24 Base Mount (Standard)

Patents applied for.
Not an import, manufactured entirely in the U.S.A.

Dealer Inquiries Invited PRICE — $119.95

Contact your local dealer or order below

Name ____________________________
Address ____________________________
City ____________________________ Zip ______
State ____________________________

Total ____________________________
Parcel Post or UPS Shipping $6.00
Idaho Residents Add 3% Sales Tax
Total Enclosed ____________________________

Master Charge or VISA
Bank No. ____________________________ Expiration Date ____________

More Details? CHECK — OFF Page 110
When you mention public service among a group of Amateurs, the reaction is usually something like "Oh, yeah, that message-handling stuff," or, "Well . . . I'm a member of the Sunday Morning Pizza-Parlor Net on the local repeater, and we handled twenty-one messages during the blizzard last winter."

That's public service, but it's the Amateur Radio community performing a service for the rest of the world. Let's try it the other way around; how about some service for Amateurs for a change, especially for the newcomers.

The idea is simply this: Evaluate your Amateur equipment and let *Ham Radio Horizons* know about it. The results will be published for all to see and heed (or disregard, as they see fit).

This type of test is based upon the old truism that the marketplace is the final test of a product. Problems can arise when you rely just on what you hear — only those who are grossly dissatisfied will make noises about it, and they may not represent a fair cross section of equipment in use. There may be 100 satisfied owners (the silent majority) for every ham who thinks he got a lemon (and he may have very valid reasons for thinking so).

That's why we would like to hear from everyone who has a rig of the types indicated on the Owner Report form: This month, we're looking for evaluations of the Atlas 210X/215X, the Drake Twins T4X-C/R4C, or the Kenwood TS-820. In coming months, we'll be requesting reports on other popular rigs.

To make the processing of responses a manageable job, it was necessary for us to design the Owner Report as a questionnaire. Obviously, to allow someone to ramble on for page after page about his pet or his "lemon" would present an impossible problem in evaluating the reports and sifting the data. The *Ham Radio Horizons* staff has carefully considered the type and number of questions we would like you to answer, and we believe they will provide valuable feedback. This information will serve as a guideline to new Amateurs who want to know what kind of rig they should consider, what they should expect of it, and what to avoid. It will also provide equipment manufacturers and designers with some useful guidelines for the engineering of new gear, or for correcting major problems (if any) in equipment they now have in the hands of Amateurs. The end result should be better service to all Amateurs. We'll all be winners.

guidelines

It should take you only a few minutes to fill out the Report Form on the next two pages. Most answers can be a simple yes or no, or an X or a check-mark. In some cases, comments are asked for. Don't be afraid to say what you really think about the point in question. Was the dealer uncooperative? Did it take too long to obtain a part needed for service? Was the equipment damaged in shipment? Was the sale promotion or the advertisement misleading? Say so.

Don't worry — if you indicate that you don't want your name used, we will honor that request. We're not out to "get" anyone, nor are we out to let anyone off easy. As a line in an old TV show used to go . . . "Just the facts, sir," (or Ma'am, as the case may be).

We're looking for *Owner's* reports, please; if you've listened to a buddy praise or grumble about his rig, talk him into filling out the report. A club station? Well — okay, we'll accept your report based on your use of it.

Note that we're asking about three rigs on the first Report. Just indicate which of the three you're talking about in your response, and we'll sort them out.

By Thomas McMullen, W1SL, Managing Editor, *Ham Radio Horizons*
Our published report will be on one rig at a time. Important: If you have more than one rig of the type you're talking about, or if you own (or have owned) one or more of the other brands and models indicated, send us an addressed, stamped envelope and we'll rush extra forms right back to you.

Note the optional personal data section, item 26, on the second page. You don't have to fill in every line — you can leave them all blank if you wish. We have no desire to get you in trouble with your friendly local dealer if you feel that might be a problem. However, if you wish to "stand up and be counted," then fill in the name and address portion, and sign the form. We may, or we may not, publish portions of your comments, depending upon space available.

As the saying goes, this can be a fun thing. However, it also has its serious side. If there are outstanding problems in the rigs we depend upon, here's the chance to call them to the attention of the people who make and sell (and service) Amateur equipment. If your rig has always lived up to your expectations, and you couldn't ask for anything better — that's a great recommendation to new Amateurs, and a pat on the back for the engineers who designed the thing in the first place.

deadline

Note the cutoff date for getting your comments back to *Ham Radio Horizons* — August 31. It will take quite a bit of time to evaluate and arrange the responses, which means you'll see the results (on one of the three rigs) later this year. Results for each type of equipment will be published in separate issues. Note that there is a space on the form for you to tell us what rig(s) you would like to see reported on in the future. We have several in mind, but your voice counts, too. If you don't have a rig of the type named, send us a postcard with your choice of equipment to be reviewed.

Obviously, a very new model would not get a fair shake until enough of them are out in the field to obtain a meaningful number of comments. This will all work out well, though — by the time we have gathered and published results on the rigs that have been around a while, the newer ones will have been used and evaluated by more hams. Keep watching the pages of *Ham Radio Horizons* for Report Forms.

An important point must be made here: This is not a comparison. We're not comparing any make or model with any other make or model. The Report Form No. 1 concerns the Kenwood TS-820, the Drake C-line, or the Atlas 210X/215X. We'll publish results of each one separately. Future reports will cover equipment by Yaesu, Ten-Tec, Swan, Alda, Heath, and Icom, as well as other models by Drake, Kenwood, and Atlas. All popular equipment will have its day in the sun.

Ham radio readers please note — the results will be published only in *Ham Radio Horizons*; an announcement will be made in *ham radio* to let you know which issue of *Horizons* to look for.

We're looking forward to some interesting results and comments. There may well be some pleasant surprises in store, as well as some that are not so pleasant. That's fine, and, to borrow a modern cliche, the bottom line tells it all: Would you buy this rig again?

Fill in the Report Form, and mail it in right away to *Ham Radio Horizons*, Owner's Report No. 1, Greenville, NH 03048.
Owner Report on Amateur Radio Equipment
(Fill out this form in accordance with your experience. Please type or print clearly.)

1. Make and Model (circle one only) Atlas 210X/215X Drake Twins T4XC/R4C Kenwood TS-820
2. What year did you buy it? New? Used?
3. Where did you buy it? Dealer Mail Order Individual Flea Market
 800 Number Other
4. Would you buy from the same source again?
5. Amount of use: Daily Often Occasional Seldom
6. Is this your primary or backup rig?
7. What modes have you used? CW SSB RTTY SSTV AM
 Other
8. What is the rig's best feature? ____________________________
9. Why? ____________________________
10. Worst feature? ____________________________
11. Why? ____________________________
12. Have you had any problems? Explain ____________________________
13. Have you had the rig serviced? Where? Manufacturer Dealer Other
14. Was the service satisfactory? Yes No
15. What accessories have you purchased for this rig? ____________________________
16. Have you been able to obtain all the accessories and parts you need? ____________________________
17. Have you been satisfied with these accessories? Yes________ No.________

18. If not, why? __

19. Accessories you would like for this rig ____________________________________

20. Additional features you would like to see in a rig of this type

21. Give the equipment a score from 1 to 10 (with 1 being poorest, 5 average, and 10 excellent).
 Ease of operation ___________________________ Performance ___________________________
 Reliability ___________________________ Maintenance ___________________________
 Durability ___________________________ Parts Availability ___________________________
 (in continuous use) ___________________________ Accessories ___________________________
 Instruction Book ___________________________ Price ___________________________
 Dealer Service ___________________________ Flexibility ___________________________

22. How long have you been licensed? ______ Your Age_______ License Class________
 Principal activities: Contest______ DX_______ Rag Chewing______
 Traffic Handling_______ Experimenter_______

23. What antenna do you use most? Beam________ Wire_______ Other________

24. What rig would you like to see reported on in the future? __________________________

25. Would you buy this same rig again? __

26. (Optional: fill in the following only if you wish.)
 Submitted by: Name ___________________________ Call_________________________
 Address____________________________________
 City ___________________________ State ___________ Zip____________________
 (Signature) ______________________

 (Your signature authorizes Ham Radio Horizons to quote portions of your comments in our report.) May we
e use your name and/or call?
 Yes________ No.________

 Note: If you own more than one of the rigs indicated, please write to us for additional copies
 of this form. Use a separate form for a report on each rig.

 Completed survey forms must be returned no later than August 31, 1979, to be included in our report.
WHERE RELIABILITY AND ACCURACY COUNT

INTERNATIONAL CRYSTALS 70 KHz to 160 MHz

CRYSTAL TYPES
(GP) for "General Purpose" applications
(CS) for "Commercial" equipment
(HA) for "High Accuracy" close temperature tolerance requirements

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders.

WRITE FOR INFORMATION

INTERNATIONAL CRYSTAL MANUFACTURING CO., INC.
10 North Lee / Oklahoma City, Okla 73102
Twelve pages packed with performance-proven Larsen Külrød antennas and a variety of mounts for mobile, portable and base station two-way communications. Models for the complete range of amateur frequencies in low, high and UHF bands. Write for your free copy today.

Repeater Jammers Running You Ragged?

Here's a portable direction finder that REALLY works—on AM, FM, pulsed signals and random noise! Unique left-right DF allows you to take accurate (up to 2º) and fast bearings, even on short bursts. Its 3dB antenna gain and .06µV typical DF sensitivity allow this crystal-controlled unit to hear and positively track a weak signal at very long ranges—while the built-in RF gain control with 120 dB range permits positive DF to within a few feet of the transmitter. It has no 180º ambiguity and the antenna can be rotated for horizontal polarization.

The DF is battery-powered, can be used with accessory antennas, and is 12/24V for use in vehicles or aircraft. It is available in the 140-150 MHz VHF band and/or 220-230 MHz UHF band. This DF has been successful in locating malicious interference sources, as well as hidden transmitters in "T-hunts", ELTs, and noise sources in RFI situations.

Price for the single band unit is $195, for the VHF/UHF dual band unit is $235, plus crystals. Write or call for information and free brochure.

L-TRONICS
5546 Cathedral Oaks Road
(Attention Ham Dept.)
Santa Barbara, CA 93111

Larsen Külrød
Registered trademark of Larsen Electronics, Inc.

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95.

Now available in KIT FORM—GLB Model 200 MINI-SIZER.

Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95

Send for FREE 16 page catalog.

We welcome Mastercharge or VISA

GLB ELECTRONICS
1952 Clinton St., Buffalo, N.Y. 14206

JAN CRYSTALS
KEEP YOU ON THE AIR

- CB
- CB standard
- 2 meter
- Scanners
- Amateur Bands
- General
- Communication
- Industry
- Marine VHF
- Micro processor crystals

Send for our latest catalog. Write or phone for more details.

JAN Crystals
2400 Crystal Drive
Ft. Myers, Florida 33907
all phones (813) 936-2397

More Details? CHECK — OFF Page 110
CALL TOLL FREE
1-800-228-4097

Hy-Gain 3806
2-Meter Hand-Held Amateur Transceiver
SPECIALY PRICED ONLY $119.95

- Low cost, 6-channel hand-held provides superb voice transmission over short to medium distances
- Sharply tuned on-frequency selectivity in the RF amplifier stages plus FET's in the 1st and 2nd mixers for virtual immunity to out-of-band signals, intermodulation distortion and cross-modulation
- Separate microphone and speaker elements for enhanced audio

Accessories:

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3807</td>
<td>Nicad Battery Pack</td>
<td>$31.95</td>
</tr>
<tr>
<td>1134</td>
<td>Touch Tone Pad</td>
<td>$44.95</td>
</tr>
<tr>
<td>1106</td>
<td>AC Battery Charger</td>
<td>$9.95</td>
</tr>
<tr>
<td>1107</td>
<td>Cigarette Lighter Adapter Cord</td>
<td>$9.95</td>
</tr>
<tr>
<td>1108</td>
<td>Antenna Adapter Cord</td>
<td>$9.95</td>
</tr>
<tr>
<td>1110</td>
<td>Carrying Case (Leather)</td>
<td>$17.95</td>
</tr>
<tr>
<td>1111</td>
<td>Carrying Case (Vinyl)</td>
<td>$9.95</td>
</tr>
<tr>
<td>269</td>
<td>Rubber Duck Antenna</td>
<td>$5.95</td>
</tr>
<tr>
<td></td>
<td>Crystal Certificate</td>
<td>$3.95</td>
</tr>
</tbody>
</table>

PLEASE ENCLOSE $2.50 FOR SHIPPING AND HANDLING PER UNIT

CALL TOLL FREE
1-800-228-4097
for Quality Ham Radio Products at Discount Prices

YAESU
KENWOOD
DRAKE
ICOM
STANDARD
EDGECOM
KDK
PANASONIC
DENTRON
HY GAIN
MOSLEY
CUSHCRAFT
WILSON
HUSTLER
LARSEN
BENCHER
ROBOT
TAYLOR
SWAN
TEMO
TEN-TEC
MIDLAND
CDE
AUTEK
MIRAGE
AEA
E.T.O. ALPHA
VHF ENGINEERING
BERK-TEK CABLE
CONSOLIDATED TOWER
SHURE
STELE
ROBOT-SSTV
BENCHER

Our Mail Order Hours (CST)
M-F 8 am to 12 Midnight
Saturday 8 am to 6 pm
Sunday 12 Noon to 8 am

Call and Talk to
Don WBØYEZ Ken WDØEMR
Denny WØQR Eli KAØCEJ
Bill WBØYHJ John WBØMTS
Joe WAØWR Blaine WBØQLH
Jim KAØCRK Bob WBØRQZ

Communications Center
443 N. 48th, Lincoln, Nebraska 68504
In Nebraska Call (402) 466-8402

July 1979
a very simple synthesizer system

Some time ago my wife, Barbara, and I built a general-coverage receiver with a digital frequency readout. The local oscillator is a free-running MC1648, tuned by a variable capacitor with a small varactor for bandspread. Since the i-f is 10.7 MHz, the local oscillator tunes 13.7-40.7 MHz for the 3-30 MHz receiver range. The stability of this oscillator was adequate for normal operation, but when the receiver was left tuned to 30.0000 MHz for 24 hours the thermal variations in a normal room caused a slow frequency drift of about 1.5 kHz. This was most annoying. We dreamed of a synthesized local oscillator to alleviate this problem. Unfortunately all the synthesizers looked complicated and our small chassis was already pretty crowded, so for a long time we did without.

Recently, MacKeand\(^1\) published a simple frequency-lock-loop circuit that reminded me of an earlier, more complex, circuit by Ryder\(^2\). Study of the short article by DeLaGrange\(^3\) gave us a good insight into the theory of frequency-locked loops but no practical circuit for this application.

Finally, I realized that a very simple approach could be taken, which I illustrate by the following example.

If I tune my receiver to 30.0000 MHz and it begins to drift up in frequency to 30.0001 MHz, all I have to do is sense this small change and apply it through the varactor to drive the frequency down. When it's driven down until the frequency counter reads 30.0000 MHz again, I can start forcing it back up again, hovering about the transition between 30.0000 and 30.0001 MHz. This could be accomplished simply by sensing the 1 bit of the latch on the least-significant bit of the frequency counter and applying it to the varactor through a lowpass filter. Then any odd LSB signal will drive the frequency slowly down, and an even count will drive it slowly back up.

What if the frequency were initially drifting down? When the counter reached 29.9999 MHz, the feedback scheme would drive it further down until the even count 29.9998 MHz came up. The 1 bit would change and the circuit would hover between 29.9998 and 29.9999 MHz. We could therefore lock onto any frequency in 200-Hz increments. If we invert the 1 bit before applying it to the lowpass filter, we can lock onto all the in-between 100-Hz points by taking the even-odd transition for lock instead of the odd-even. A block diagram of the scheme is shown in fig. 1. A slightly more elaborate diagram of the scheme used in our receiver is shown in fig. 2, and a complete schematic, except for the frequency counter, is shown in fig. 3.

Actually, the most important part is the use of the op amp U4B to perform the frequency lock. Although I show a free-run position, I never really use it anymore. The receiver just smooth...
in the loop are available from Motorola Semiconductor, Phoenix, Arizona.

references

Pat O'Neil, AA7M, and Barbara O'Neil
Motorola Semiconductor, Inc.

Heath HW-101 sidetone control
I'm basically a night owl. If you're like me, you find many a late-night CW ragchew interrupted by friend wife complaining of "that loud beepin'." I finally decided to correct the situation on my HW-101 by adding a sidetone volume control. Extra front-panel controls on radios tend to look somewhat tacky, so I decided that the addition must not be conspicuous.

After some pondering, I decided on a concentric af gain control as the solution. Heathkit provided the lever knob and knob insert. All that was needed was a switched dual control.

A call to the local parts distributor proved informative. They carried Clarostat controls in modular form; custom dual controls were no problem. The inside shaft would hold the original af gain-control knob; the rear pot, therefore, must be a 1-megohm replacement for the present control. (Don't forget the switch.)

I decided to control the sidetone by replacing R318 (100 kilohms) in the audio amplifier circuit with the front control in the dual assembly. Then, by connecting C311 to the wiper of the sidetone control, the amount of sidetone injected into the af circuit could be controlled. Hookup is straight-forward; I suggest, however, you use shielded cable for the interconnections.

The modification looked good, provided no surprises, and best of all — works great!

J. K. Davis, AD9M

XR-205 waveform generator as a capacitance meter
A 205 chip, a counter, and a calculator provide a means of measuring capacitance to within 1 or 2 per cent. The frequency is determined by a capacitance connected across pins 14 and 15 of the chip. \(f \) in Hz.

The specification sheet gives this constant as 400, but I find it to be 260 with my generator, so this is apparently a nominal value.

I use a compression trimmer of about 200-1500 pF, permanently wired across pins 14 and 15, with parallel binding posts and short clip leads for connecting additional capacitance. The trimmer tunes across the i-f range.

I was fortunate in having several 1 per cent capacitors as standards, but only one is required. The first step is to determine the capacitance of the trimmer plus strays, \(C_{tr} \), at a known frequency, after which the constant, \(k \), may be determined from

\[
k = FC_{tr}
\]

The procedure for determining \(C_{tr} \), the trimmer capacitance, is as follows:

Set the trimmer to about mid range and note the frequency, \(F_1 \). Connect a known capacitor and note the new frequency, \(F_2 \). Divide \(F_2 \) by \(F_1 \) and call this quotient \(f \). Now calculate \(C_{tr} \) from the following formula:

\[
C_{tr} = \frac{fC_{standard}}{(1-f)}
\]

where \(C_{tr} \) = trimmer plus stray capacitance (\(\mu \)F)
\(C_{standard} \) = standard or known capacitance (\(\mu \)F)

\(f = \frac{F_2}{F_1} \) (Hz)

Now calculate \(k \) from \(k = F_1C_{tr} \). Save \(F_1 \) for measuring unknown capacitors.

The measurement procedure, after \(k \) and \(C_{tr} \) have been determined, is to first set the frequency to \(F_1 \) with the trimmer capacitor. Connect the unknown capacitor and measure \(F_2 \).

Divide \(k \) by \(F_2 \) and subtract \(C_{tr} \) from \(C_{unknown} \) (\(C_u \)):

\[
C_u = \frac{k}{F_2} - C_{tr}
\]

As before, \(C \) is in \(\mu \)F; \(F \) in Hz. These calculations would be difficult without a pocket calculator but are easy with one. Assuming the trimmer, \(C_{tr} \), is 300 pF, with 75 pF in parallel, \(k/F_2 \) would come out 0.000375 . . . on the calculator.

A half-dozen 1 per cent capacitors, from a few pF to 0.1 \(\mu \)F, were measured within 1 per cent of the nominal value. Indications are that the accuracy holds up to several hundred \(\mu \)F. EXAR-205 chips available from JAMECO.

W. S. Skeen, W6WR
JE600 Hexadecimal Encoder Kit

FULL 8 BIT LATCHED OUTPUT — 19 KEY BOARD

The JE600 Encoder Keyboard provides two separate hexadecimal digits produced from sequential key entries to allow direct programming for 8 bit microprocessor or 8 bit memory circuits. Three (3) additional keys are provided for user operations with one having a bistable output available. The outputs are latched and monitored with 9 LED readouts. Also included is a key entry strobe.

FEATURES:

- Full 8 bit latched output for microprocessor use
- 3 User Define keys with one being bistable operation
- Debounce circuit provided for all 19 keys
- 9 LED readouts to verify entries
- Easy interfacing with standard 16 pin IC connector
- Only +5VDC required for operations

NOW!!! OVER 300 AUTHORIZED DISTRIBUTORS... HERE’S JUST A SAMPLING:

<table>
<thead>
<tr>
<th>State</th>
<th>Stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>Lafayette Radio Electronics</td>
</tr>
<tr>
<td>ARIZONA</td>
<td>Arkansas</td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>Yuma Electronics</td>
</tr>
<tr>
<td>GEORGIA</td>
<td>Peachtree</td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td>Oklahoma</td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>Chicago</td>
</tr>
<tr>
<td>MONTANA</td>
<td>Billings</td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>Las Cruces</td>
</tr>
<tr>
<td>NORTH DAKOTA</td>
<td>Grand Forks</td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>Virginia</td>
</tr>
<tr>
<td>WASHINGTON</td>
<td>Seattle Radio</td>
</tr>
</tbody>
</table>

ASK YOUR ELECTRONICS STORE TO STOCK JIM-PAK® TODAY!!

JIM-PAK®

71 Howard Avenue, San Carlos, California 94070 • (415) 592-8097

INTEGRATED CIRCUITS MICROPROCESSOR LED'S SOCKETS CAPACITORS DIODES TRANSISTORS RESISTORS POTentiometers
DSI Super Meter
Transistor Tester — VOM
Diode Protected • Fused • Gold Plated Selector Switch

- DC VOLTAGE
- DC CURRENT
- AC VOLTAGE
- Ω RESISTANCE
- AF OUTPUT — DB
- 20kΩ PER VOLT
- HFE DC AMP FACTOR
- ICE0 LEAKAGE

$29.95
MODEL
YF-370
COMPARATIVE VALUE 49%

YF-370 $29.95
Shipping, Handling and Ins... $3.00

Every YF-370 is factory assembled, tested, and includes diode protected meter movement with a fused input and an extra fuse. The switch assembly has double wiping gold plated contacts to assure years of trouble-free service. At this low price buy two...one for the car and one for the shop.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Measurement Ranges</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCV</td>
<td>0 - .1V - .5V - 2.5V - 10V - 50V - 250V - 1000V</td>
<td>± 3% fs</td>
</tr>
<tr>
<td>ACV</td>
<td>0 - 10V - 50V - 250V - 1000V</td>
<td>± 4% fs</td>
</tr>
<tr>
<td>DCA</td>
<td>0 - 50µA - 2.5ma - 25ma - .25A</td>
<td>± 3% fs</td>
</tr>
<tr>
<td>Ω</td>
<td>.2 to 20mΩ</td>
<td>Range x 1 x 10 x 1k x 10k</td>
</tr>
<tr>
<td>dB</td>
<td>+ 10db + 22db for 10VAC</td>
<td>± 4% fs</td>
</tr>
<tr>
<td>ICEO</td>
<td>0 - 150µA x 1k</td>
<td>0 - 15ma x10</td>
</tr>
<tr>
<td>HFE</td>
<td>0 - 1000Ω</td>
<td>@ 10Io / Io</td>
</tr>
</tbody>
</table>

CALL TODAY TOLL FREE: (800—654-2049) Call. Res. CALL (800—542-6253) To ORDER OR RECEIVE MORE INFORMATION ON DSI'S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10Hz TO 1.3GHz.

TERMS: MC — VISA — AE — Check — M.O. — COD in U.S. Funds. Orders outside of USA & Canada, please add $5.00 additional to cover air shipment. California residents add 6% Sales Tax.

DSI INSTRUMENTS, INC.
7924 Ronson Road, Dept. G, San Diego, CA 92111
For literature on any of the new products, use our Check-Off service on page 110.

FT-101ZD transceiver

Yaesu Electronics Corporation of Paramount, California, is pleased to announce the introduction of the FT-101ZD transceiver. The FT-101ZD is all new in design and offers many of the features of the internationally acclaimed FT-901 DM.

The FT-101ZD i-f is a no-compromise high frequency SSB/CW transceiver which offers variable bandwidth of 2.4 kHz to 300 Hz, digital plus analog display, a built-in rf speech processor, built-in ac power supply, a new highly effective noise blanker, rugged 6146B final tubes, all-band coverage 160-10 meters, WWV, plus WARC band expandability, and a true frequency counter (no more recalibrating when changing modes). Additionally, the FT-101ZD is compatible with all of the FT-901DM accessories. The FT-101ZD is now available from your local Yaesu dealer.

Hy-Gain model TH5DX antenna

Hy-Gain Electronics, division of Telex Communications, Inc., introduces the newest member of the famous Thunderbird line of triband antennas. The TH5DX offers outstanding performance on 20, 15, and 10 meters. It features five elements on an 18-foot boom, with three active elements on 15 and 20 meters and four active elements on 10 meters. The TH5DX also uses separate air-dielectric Hy-Q traps for each band. This allows the TH5DX to be set for the maximum front-to-back ratio, and the minimum beam width possible for a triband antenna of this size.

Also standard on this antenna are Hy-Gain's unique beta-match, rugged boom-to-mast bracket, taperswaged elements, and improved element-compression clamps.

Contact your nearby Hy-Gain dealer, or write to Hy-Gain Electronics, Division of Telex Industries, 8601 Northeast Highway 6, Lincoln, Nebraska 68505.

boom microphone

Shure Brothers Inc. has announced a new lightweight, head-worn microphone with dual monitoring capability for use in a variety of studio and remote professional broadcasting applications.

The new Shure SM14 consists of a headband, unidirectional dynamic microphone, and two integral earphone assemblies to permit the monitoring of separate sound sources. Each of the twin earphone assemblies has its own transformer and phone plug.

The SM14's dual monitoring feature provides several distinctive advantages over a single-earphone system. Besides enabling the user to monitor two separate sound sources, such as program material and studio directions, the double receiver system helps prevent background noise interference. In addition, having two monitoring systems provides a reliable back-up should one system fail.

The SM14 is a low-impedance microphone, allowing extra-long lengths of microphone cable to be used. To prevent the microphone wires from getting in the way, the SM14 is equipped with a snap-on connector that fastens to the user's belt or shirt.

The complete unit is constructed of stainless steel, aluminum, and high-impact thermoplastic. It is mounted on a lightweight, cushioned headband and features an adjustment knob to permit the boom to extend or pivot to fit any head. For additional information, write Shure Brothers Inc., 222 Hartrey Avenue, Evanston, Illinois 60204.

TRS-80 microcomputer technical reference handbook

Radio Shack has published a technical reference handbook for their TRS-80 microcomputer system. The illustrated 108-page book is intended primarily for technically oriented persons with a good working knowledge of digital logic circuits.

Written in a clear, informal manner, the TRS-80 Microcomputer Technical Reference Handbook includes technical information and schematics for both Level-I and Level-II TRS-80 systems.

Topics covered are theory of operation, adjustments and troubleshooting, the outside world (connections to external devices), parts list, and foldout schematics.

MECHANICAL & ELECTRICAL ENGINEERS

THERE'S A LOT TO BE SAID FOR CAREER STABILITY... AND WE'RE SAYING IT LOUD AND CLEAR

We're General Electric Mobile Radio. We produce a broad range of sophisticated, high-quality VHF/UHF two-way radio systems—fixed station as well as mobile.

Our customers in business and industry... and especially in the public sector (police, fire and ambulance services, for example)... depend on us for the most advanced land mobile communications systems they can buy. On a continuing basis. So neither our business nor your career is at the mercy of a single contract.

We continue to design, build and sell the finest systems and equipment available. And our engineers continue to do work that is personally and professionally satisfying—making valuable contributions to a wide variety of on-going development programs.

That said, we have openings for creative self-starters with an appropriate degree and experience in one or more of the following areas:

RF CIRCUIT DESIGN
Experience in the design of small signal and high power, broadband circuits up to 1 GHz. Applications include circuits for transmitters, receivers, and synthesizers.

LOGIC/SIGNALLING CIRCUIT DESIGN
Analog and digital circuit design for control, signal processing, and selective signalling. Applications include the control of rf devices, telephone interface terminal equipment, and various tone control devices.

MICROCOMPUTERS
Hardware and software design of microprocessor-based circuits. Experience with one of the popular micro-processor families is desirable.

ADVANCED ENGINEERING
MS degree desirable. Must be creative and imaginative in developing new approaches to communication circuits and systems.

ADVANCED MANUFACTURING ENGINEERING
Develop product cost and manufacturing automation projects for all product lines. Interface with product design groups to maximize automation potential of new designs.

CONSULTING ENGINEER
Requires Ph.D. degree. Must be able to provide a high degree of technological leadership in computer-aided design, circuit synthesis and analysis, and in communication theory.

MICROCIRCUITS DEVELOPMENT
Enter level and experienced people required in all phases of the hybrid technology, with emphasis on thick film.

We offer excellent technical facilities, challenging assignments, talented and experienced colleagues, and ample opportunities for growth and advancement. Plus peace of mind. Plus choice living in progressive Lynchburg (just the right size at 70,000) at the foothills of Virginia's beautiful Blue Ridge Mountains.

For full details, send your resume and salary history to: Professional Relations, Ref. 98-F, General Electric, Mountain View Road, Lynchburg, VA 24502

GENERAL ELECTRIC

An Equal Opportunity Employer M/F
THE TOWER OF THE YEAR.
WE GOT IT.

Tower Master's new self-supporting, crank-up TMZ-471 is the tower of the year.
It's taller.
It's bigger.
It's stronger.

It's one of an all new line of hot-dipped galvanized steel towers made expressly for HAM Operators now available from Tower Master. Made to meet the demanding requirements of today's modern equipment. And if you're a HAM, you know what we mean.

Like Tower Master's TMZ-HD-554 and -571, with top section OD's of 15 inches to easily accommodate the new "Tail Twister" CDE rotor.

Or try the TMM-HD-554 and -571 series from Tower Master, with top section OD's of 14-3/4 inches. These freestanding crank-ups will also hold the "Tail Twister."

That's why we call the increasingly popular TMZ-471 the tower of the year! We are convinced it really is. You will be, too. Just write — or call — Tower Master today. Lou may answer the phone. Do it now.

Or, see your dealer today.

WOODLAKE INDUSTRIAL PARK
353 SOUTH ACACIA STREET
P.O. BOX 566, WOODLAKE, CALIFORNIA 93286
209/564-2483 Day 209/733-2438 Night

FREE!
RADIO AMATEURS
WORLD ATLAS
with purchase of famous
CALLBOOK
MAP LIBRARY!

Here's an offer you can't refuse! You receive three, information-packed, Amateur Callbook maps, folded, plus the World Atlas for only $3.75 plus $1.50 shipping and handling. If purchased separately, total value of map/atlas offer would be $6.25, plus shipping. You save $2.50 and get these invaluable radio amateur aids!

1. Prefix Map of the World, folded. World-wide prefixes. Shows 40-zone map on one side, 90-zone map on the other. Size 40" x 28"
2. Map of North America, folded. Includes Central America and Caribbean to the Equator. Shows call areas, zone boundaries, prefixes, etc. Size 30" x 25"
3. Great Circle Chart of World, folded. Centered on 40°N, 100° W. Shows cities, latitude, longitude, great circle bearings and more! Size 30" x 25"

Plus special FREE bonus! The Callbook's own Radio Amateur World Atlas, FREE with the purchase of the 3 maps. Contains eleven full color maps of the world, looking at things from the radio amateurs point of view.

Callbook Map Library $3.75
Shipping $1.50
Total $5.25

Special Limited Offer!
Amateur Radio Emblem Patch only $2.50 prepaid
Pegasus on blue field, red lettering. 3" wide x 3" high. Great on jackets and caps. Sorry, no call letters.

ORDER TODAY!

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.50 for shipping. Illinois residents add 5% Sales Tax.

RADIO AMATEUR CALLBOOK INC.
DEPT. F
925 Sherwood Drive
Lake Bluff, IL 60044

Woodlake, Calif. 93286
209/564-2483 Day 209/733-2438 Night
ERC PROMISES UP TO THE MINUTE STATE-OF-THE-ART DESIGN AND PERFORMANCE
WE'VE DONE IT FOR 1979

FOUR SIMULTANEOUS FILTERS IN ONE FOR UNPARALLELED QRM FREE RECEPTION (SSB & CW)
PLUS A SPECIAL PATENTED CW PROCESSOR

The brand new SL-56 audio active filter supercedes our SL-55 in both concept and performance. Consolidation of many components has allowed us to make 16 operational amplifiers (compared to 6 in the SL-55) into a filter guaranteed to out perform any other at a cost only slightly higher than the SL-56. The features of the SL-56 are so advanced from its predecessor that calling it the SL-56A is not justified. Unlike other filters that simply offer a choice of one or two filter types at a time (notch, bandpass, etc.) SL-56A provides what really needs a simultaneous action of a 6 pole 200 Hz fixed highpass filter and a 6 pole 1600 Hz fixed lowpass filter with a 60 Hz notch which tunes over the 200-1600 Hz range. This filter combination is unbeatable for the ultimate in QRM free SSB reception. Adjacent channel QRM is eliminated on the high and low sides at the same time and does not introduce any hollowness to the desired signal, on CW the SL-56A is a dream. The lowpass, highpass and notch filters are engaged along with the tunable bandpass filter (400-1600 Hz) providing the needed action of a simultaneous filter types. The bandpass may be made as narrow as 24 Hz (368). Additionally, a special patented circuit follows the filter sections which allows only the peaked signal to "gate itself" through to the speaker or headphones (4-2000 QMPS). Receiver noise, r.f. and other signals are rejected. This is not a regenerative, but a modern new concept in CW reception. The SL-56 connects in series with the receiver speaker output and drives any speaker or headphones with one watt of audio power, requires 115 VAC, easily converted to 12 VDC operation. Collins Gray Cabinet and Wrinkle gray Panel.

WARRANTY ONE YEAR FULLY RFI PROOF FULLY WIRED AND TESTED AVAILABLE NOW $75.00 POSTPAID IN THE USA AND CANADA. VIRGINIA RESIDENTS ADD 4% SALES TAX.

ATTN SL-55 OWNERS: THE CIRCUIT BOARD OF THE SL-56 IS COMPLETELY COMPATIBLE WITH THE SL-55 CHASSIS. OUR RETROFIT KIT IS AVAILABLE AT $35.00 POSTPAID.

ERC INTRODUCES A BRAND NEW CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD.

Requires 115 VAC AT LESS THAN 1/16 AMP.

Collins Gray Cabinet. Wrinkle Panel - Bright Red LED Digits (.33").

Decimal Point is the Pilot Light.

The model SL-65A (20-2000 watts) and the QRP model SL-65A* (.2-20 watts) digitally indicate antenna VSWR under any transmission mode -- SSB, CW, RTTY, AM etc. There is no calibration required and no crossed meter needles to interpret. Simply look at the readout and that is the VSWR. Speaking normally into a SSB TRANSMITTER MIC. instantaneously causes the VSWR to be displayed through out your entire transmission. Reversing the position of a front panel toggle switch and the display indicates the net power (forward less reflected) that is accepted by the antenna. The peak of the net PEP is detected and displayed without flicker for any modulation type. Display update is constant yet flicker free as you may change the power according to your voice. There is nothing like this quality instrument available anywhere else. It is the only VSWR/NET POWER INDICATOR that lets you know the state of your antennas and transmitted power at all times while transmitting. Either model is a sophisticated device containing four circuit boards and thirteen integrated circuits.

WARRANTY ONE YEAR SL-65

NET POWER INDICATOR

- The power displayed is the detected peak of the PEP for any modulation. This provides the operator that the transmitter is "talked up to", display decay time is about one second.
- The power displayed is that which is accepted by the antenna (forward less reflected).
- Power is displayed on the same two digits as VSWR in two autoranged scales of 20 to 500 watts and 500 to 2000 watts. Tripower at the 500 watt level is automatic ex: a reading of 1.2 could mean 120 or 1200 watts. You must know which range you are in.
- Accuracy is to 10 watts in the lower range and 100 watts in the upper range. Divide power specs by 100 for SL-65A.

PRICE: $185.00 POSTPAID IN USA & CANADA. VA. RESIDENTS ADD 4% SALES TAX.

BOOKLET AVAILABLE AT $2.00 REDEMABLE TOWARD PURCHASE.
* PATENT PENDING.

More Details? CHECK — OFF Page 110
NEW!

YAESU FT-101 ZD — Thoroughbred from a long line of Winning Transceivers
- Digital & Analog Frequency Display • TX-RX Offset • 160-10 Meters
- SSB/CW • 180 Watts DC Input • Rugged 6146 Finals • IN STOCK • CALL NOW!

We also have
- ANTENNAS FOR HF & UHF
- ROTORS
- TOWERS JUST CALL OR WRITE FOR THE
- REPLACERS BARRY PRICE:
- MICROPHONES BETTER... or REPAIR lab on premises.
- KEYS & KEYERS STOP IN!!
- TUBES and much, more

WE STOCK THESE FAMOUS NAME BRANDS

YAESU

Z6 - Thoroughbred from a long line of Winning Transceivers

Digital & Analog Frequency Display
TX-RX Offset
160-10 Meters
SSB/CW 180 Watts DC Input
Rugged 6146 Finals
IN STOCK
CALL NOW!

We also have
- ANTENNAS FOR HF & UHF
- ROTORS
- TOWERS
- REPLACERS
- MICROPHONES
- KEYS & KEYERS
- TUBES and much, more

WE STOCK THESE FAMOUS NAME BRANDS

YAESU

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, N. Y. 10012
(212) 925-7000

CUSTOM-MADE 8-POLE CRYSTAL FILTERS
GET THE BEST FOR LESS. IMPROVE YOUR RIG — OLD OR NEW
NO SET IS BETTER THAN ITS FILTER!

CW FILTERS — $55 EA.
HEATH: All but SB-104
250 Hz for COLLINS 755-3B/C $150 EACH

NEW!

SSB FILTERS — $55 EA.
1.8 and 2.4 kHz for YAESU: *FT-101 (all but ZD), *FR-101, *FT-301, FT-7
1.8 kHz only YAESU: Ftdx400, 560, etc. KENWOOD: *TS-520, *R-599, *TS-820, *R-820
1.8 and 2.1 kHz HEATH: All but SB-104

AM FILTERS — $55 EA.
6.0 kHz for YAESU: *FT-101 (all but ZD) and *FR-101

*DIODE SWITCHING BOARDS

Permit addition of one or two filters more than those for which room is normally provided.
Single type — YAESU only — $12.
Dual type (YAESU or KENWOOD) $21.

Reduce QRM with FOX-TANGO’s superb quality crystal filters. Custom-made for each rig, installation is a breeze — just drop the filter into existing holes. When ordering, state make of rig, model, filter type, and bandwidth desired. Prices include airmail postage to U.S., Canada, and Mexico. For overseas insured airmail add $5 for crystal filters, $2 for diode switching boards. Satisfaction guaranteed or money back. Dealer inquiries invited.

Fox-Tango Corp.
Box 15944A, West Palm Beach, FL 33406

FLORIDA RESIDENTS ADD 4% SALES TAX

More Details? CHECK-OFF Page 110
CURTIS LSI's help you

Speak Morse

- **8044:** Keyer-On-A-Chip* (replaces 8043)...
 - $14.95
- **8044-3:** IC, PCB, Socket, Manual...
 - $24.95
- **8044-4:** Semi-Kit...
 - $54.95
- **8045:** Morse Keyboard-On-A-Chip IC...
 - $59.95
- **8045-1:** IC, PCB, FIFO, Socket, Manual...
 - $89.95
- **8045-2:** Semi-Kit...
 - $159.95
- **8046:** Instructionkeyer-On-A-Chip IC...
 - $49.95
- **8046-1:** Semi-Kit...
 - $79.95
- **8047:** Instructionkeyer-On-A-Chip IC...
 - $39.95
- **8047-1:** IC, PCB, RAM, Socket, Manual...
 - $69.95
 (add $1.75 on above for postage and handling)

FT-227 "MEMORIZER" OWNERS: SCANNER KIT
- Selects keyer width (up to full width) = Scan only the portion of band you select = Scan at a rate of 200 kHz per second = Switch modification or module allows you to scan past or lock on any occupied frequency. Complete kit includes instructions on inside page. Use switch to select desired frequency.
 - **FT-227:** $34.95

IC-22S SCANNER KITS
- Also available...
 - $54.00 Assembled
 - $59.95 Preassembled and tested + $11.50 postage and handling

KLAUS
QUALITY AMATEUR RADIO EQUIPMENT & ACCESSORIES

KENWOOD

- **TS 520 S**
 - HF TRANSCEIVER
- **TS 600**
 - MULTIMODE 6-M TRANSCEIVER
- **TS 820 S**
 - HF TRANSCEIVER

...call or write for the KLAUS price...

AYESU

- **FT-901 D**
 - HF TRANSCEIVER
- **FT-227 R**
 - 2-METER FM TRANSCEIVER

...call or write for the KLAUS price...

CUSHCRAFT

We have a complete stock of Cushcraft antennas — too many to mention in detail, so ask about our 2-meter line of verticals and beams for special low, low prices.

KLAUS RADIO Inc.
8400 N. Pioneer Parkway, Peoria, IL 61614
Phone 309-691-4840
Tim Daily, Amateur Equipment Sales Manager
YOUR REPEATER DOWN IN THE MOUTH? GIVE IT A HELPING HAND WITH A WaCom Duplexer!

NO DELAY — NOW IN STOCK — READY FOR SHIPMENT — TUNED TO DESIRED TX and RX FREQUENCY

• 6 Meter Close Spaced
• 2 Meter 600 KHz Spaced
• 220 MHz
• 432 Rack Mount
• Frequency Stability Over Wide Temperature Ranges

Also available double shielded cables with PL-259 and Type N connectors.

repeater's unlimited
a division of
creative electronics
P.O. BOX 7054
Marietta, Georgia 30065
or outside Ga.
800 241-4547

WE ACCEPT
VISA
M/C

QUARTZ CRYSTALS
"IN A HURRY" SINCE 1970

CRYSTALS AVAILABLE FOR:
• CB – Synthesizers
• Amateur - HF, VHF, UHF
• Industrial
• Scanner
• Marine – LB & VHF
• Conversion Crystals
• Special Attention to R & D.
• Micro-processor Types.

DISCOUNTS AVAILABLE TO DEALERS & MANUFACTURERS
CALL "BONNIE" FOR PRICES & DELIVERY
VISA & MASTER CHARGE
credit cards accepted.

CAL CRYSTAL LAB, INC.
1142 N. Gilbert Street
Anaheim, CA 92801
(714) 991-1580

GREGORY ELECTRONICS
The FM Used Equipment People.

New Low Price!

2 Meter Portable
G.E. MASTR PR 36
132-150 MHz - 5 Watts
ALL SOLID STATE
with Ni-Cad Battery

NOW
$158.

Vehicular Charger 4EP63A
(sold only with unit) $25

State of the art
TECHNICAL EXCELLENCEx
in RTTY

The FSK-1000 Demodulator

If you demand the finest, no compromise technology, you need the FSK-1000 demodulator. Can’t be outcopied because its design, computer grade parts, and modern technology offer landline copy over radio circuits.

Uses either 170 volt, 60 Ma. or RS-232 loops

Being introduced now at
$397.00
FOB Columbus, Ohio
5449.00 August 1, 1979

More Details? CHECK-OFF Page 110
JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:

SPECTRONICS SUMMER DISCOUNT SALE!

DRESS UP YOUR REPEATER

JUST IN: SURPLUS MOTOROLA BASE STATION CABINETS AT A FRACTION OF ORIGINAL COST:

Now is the perfect time to house your repeater in a great cabinet for a great price. These are in mint condition except for minor dents and scratches. Send F.O.B. Oak Park, Ill. Freight Collect. Quantities Limited.

LIMITED QUANTITIES — ORDER NOW:
Telemetry Communications & Instrumentation, Corp.

10 GHz Microwave Transceiver

Features
- Low cost
- High sensitivity
- ACF
- Function meter
- Tone oscillator
- Electronically tuneable
- Squelch & volume controls
- Transmit-receive
- Telemetry/Video data
- AC-DC operation
- Multiple IF/FRE's
- Modular construction
- Weatherproof case
- Completely wired/tested

Three Models Available

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMX10</td>
<td>10 GHz, 10 MW Gunn Transceiver</td>
</tr>
<tr>
<td>TVX10</td>
<td>10 GHz, 0.5 MW Gunn Transceiver</td>
</tr>
<tr>
<td>TMVX10</td>
<td>10 GHz, 10 MW Gunn Transceiver</td>
</tr>
</tbody>
</table>

Options
- 45, 60, 100, 111 MHz IF freq available
- Narrow band crystal filters
- 50 Hz, 220 VAC power supply
- Higher Gunn OSC power output
- Higher gain antennas

Price List
- **Model TMX10** $349.95
- **Model TVX10** $349.95
- **Model TMVX10** $499.95

Telemetry
- 10 GHz, 10 MW Gunn Transceiver
- 16 dB Horn Antenna
- 10.7 MHz Post IF Amp/Modemod
- Crystal IF Filters
- Integrated Circuit Modulator
- Internal Voltage Regulators
- ACF
- Tone Oscillator

Video
- 10 GHz, 0.5 MW Gunn Transceiver
- 16 dB Horn Antenna
- 45 MHz Low Noise Pre-Amp
- 45 MHz Post IF Amp/Modemod
- Audio Subcarrier Mod/Modemod
- Room for 10 video channels
- Internal Voltage Regulators
- Volume Control

TCI Corp.
411 N. Buchanan Circle #3
Pacheco, CA 94553

To Order Call (415) 676-6102

or Write for FREE DETAILED DATA SHEET on this and our VHF/UHF TRANSMITTER & RECEIVER PRODUCT LINE.

Iron Powder and Ferrite Products

AMIDON Associates

Fast, Reliable Service Since 1963

Small Orders Welcome Free 'Tech-Data' Flyer
Toroidal Cores, Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

12033 Otsego Street, North Hollywood, California 91607

Rubber Duckie Antennas

- Frequency Range: 450-1700 MHz
- AN1-450...5/16-32 Threads. Male Studs
- AN2-450...1/4-32 Threads. Male Studs
- AN1-600...1/4-32 Threads. Male Studs
- AN1-950...1/4-32 Threads. Male Studs

Power Supply
- Model: E-HA 6.5 A, 250 VAC, 250 VDC
- Model: E-HA 6.5 A, 250 VAC, 250 VDC
- Model: E-HA 6.5 A, 250 VAC, 250 VDC
- Model: E-HA 6.5 A, 250 VAC, 250 VDC

LEDs
-η: 3.50

Connectors
- BNC M/M: $0.95
- BNC P/(F/M: $0.95
- D-Sub: $0.95

MC4 Pin Headers
- 240 K2-125 $0.95

PC Mount Panel
- 120-90 $0.95

Van Gorden Engineering

Box 5126, S. Euclid, Ohio 44121

HI-Q Balun

- For dipole, yagi, inverted vee, dipoles & dipoles
- For full legal power & more
- Puts power in antenna
- Broadband 3-40Mhz.
- Small, light, weather-proof
- 1:1 impedance ratio
- Replaces center insulator
- Helps eliminate TVI
- Fully Guaranteed

MP JR

Marlin P. Jones & Assoc.
Box 12063
Lake Park, FL 33403
(305) 848-8236

*Fla. residents, & sales tax.
*MC & USA accepted, please include expiration date and signature as on card.
*Add $1.00 for order under $10.00.
*Canada & foreign orders please add sufficient postage.
*USA orders please add 5% postage.

“Rubber Duckies”

From G & C Communications
516 North Buchanan Circle
Groton, New York 13050

Model	**Description**	**Price**
G&-C-1 | 516 Knurled Stud Fits | $6.50
G&-C-2 | BNC Connector | $9.95
G&-C-3 | TNC — Connector for Wilsom | $12.95
G&-C-4 | PL-259 Connector | $6.50
G&-C-5 | Type F Connector fits Wilsom and Tempo | $9.50

Equipment made in USA by OEM MFAS. Send to G & C Communications 730 Cottonwood, Lincoln, NE 68510

Add $1.00 for handling and shipping.

(Dealer and OEM RFQ’s Welcome)
ELECTRONICS SUPPLIERS, SHOPS, IMPORTERS, MANUFACTURERS... HONG KONG IS CHEAPER

Owing to the rising value of the Japanese Yen, products from Japan are becoming very expensive. We have equivalent quality products at far better prices from Hong Kong, Taiwan and Korea. We can supply in both large and small quantities with proven quality.

Even if you have never imported goods before, we can show you how!

For technical data and prices on complete Telrex line, write for Catalog PL-7.

TV and Communications Antennas Since 1921

Telrex LABORATORIES

P.O. Box 879 - Asbury Park, New Jersey 07712

Phone 201-775-7252
TPL proudly presents the first true power 1/4KW SSB/AM, FM or CW solid state linear amplifier. A remote control plug allows you to operate with the amplifier on or off, or in SSB/AM, FM or CW from the dashboard.

The 2002 utilizes the latest state of the art engineering including microstrip circuitry and modular construction. The three final transistors combine to produce 250W when driven by 15W or more at 13.8VDC.

POWER INPUT
- 5-20W Carrier FM or CW
- 20W PEP maximum SSB or AM

POWER OUTPUT
- 200-250W carrier FM or CW
- 300W PEP SSB or AM

FREQUENCY RANGE:
- 144 to 148 MHz
- Will operate with slight degradation at 142-150 MHz.

Model 2002 $499.00

Can be ordered for repeater application for additional information contact TPL COMMUNICATIONS INC. 1324 W. 135TH ST. GARDENA, CA 90247 (213) 538-9814

From RSGB the Fifth Edition of the RADIO COMMUNICATION HANDBOOK

no other choice ... it's simply the best Handbook available!

First published in 1938, the *Radio Communication Handbook* is the world's largest and most comprehensive textbook on the theory and practice of amateur radio. The text has been completely revised and reset for this fifth edition. Chapters on image and satellite communication have been added which reflect the current interest in these fields. Although written primarily for the amateur radio operator, the authoritative treatment of the subject matter will also ensure that the book finds a place on the shelf of the professional radio engineer.

Volume I
1. PRINCIPLES
2. ELECTRONIC TUBES AND VALVES
3. SEMICONDUCTORS
4. HF RECEIVERS
5. VHF AND UHF RECEIVERS
6. HF TRANSMITTERS
7. VHF AND UHF TRANSMITTERS
8. KEYING AND BREAK-IN
9. MODULATION SYSTEMS
10. RTTY

Order RS-RCHI, ©1976 $18.95

Volume II
11. PROPAGATION
12. HF AERIALS
13. VHF AND UHF AERIALS
14. MOBILE AND PORTABLE EQUIPMENT
15. NOISE
16. POWER SUPPLIES
17. INTERFERENCE
18. MEASUREMENTS
19. OPERATING TECHNIQUE AND STATION LAYOUT
20. AMATEUR SATELLITE COMMUNICATION
21. IMAGE COMMUNICATION

Order RS-RCH2, ©1977 $16.50

Both volumes available
Regularly $35.45
SAVE OVER 15%
Now Only $29.95
ORDER RS-RCH12

Call or Write for Delivery or Quote

KENWOOD TS180S

LEAVE A MESSAGE & WE'LL CALL YOU BACK!

MADISON ELECTRONICS SUPPLY, INC.
1508 McKinney • HOUSTON, TEXAS 77002
713/658-0268

MASTERCHARGE • VISA

All prices fob Houston, except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sales. Send letterhead for Dealer price list. Texas residents add 6% tax please add postage estimate. $10.00 minimum. W5JJ, W5MBB, K5AAD, N5JJ, AG5K, W5VM, WD5ED, K5ZD, W5TGU, W5AYF, K5RC, K5GBB, W5U6V

From Ham Radio's Bookstore
Greenville, NH 03048

More Details? CHECK—OFF Page 110
RATES Non-commercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

FOR SALE DRAKE ** recline:** all filters, extra crystals for 10, 160, WWV. With matching speaker, power supply, and manuals. Excellent condition, on air daily, $150 or closest offer. W7XU, P.O. Box 169, Peterborough, N.H. 03458, (603) 924-6759.

WANTED — Radio transcription discs. Any size or speed. Larry, W7F1Z. Box 724, Redmond, Washington 98052.

TEST EQUIPMENT CATALOG listing used Tektronix, HP and GR equipment at bargain prices. PTI, Box 8699, White Bear Lake, MN 55110. Price $1.00 refundable with first order.

S LINE in perfect shape 7553A, 325B, 3126A, $162FZ, $1500.00; Swan antenna Tuner ST-1, 50 new; $125.00; Heath-Miller Supply $25.00; Heath HP23 Supply $25.00; Johnson Matchbox 275W $85.00. Write W2CPI or call 602-881-3144 between 10 and 1 and Must be picked up — no shipping.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

WANTED: Heath HO-10 monitor scope; please quote price and condition in first letter. Jim Flak, W1HHR, HAM RADIO, Greenville, NH 03048.

WANTED: Passband tuning unit from R-4A or R-4B, or complete junked receiver with tuner still intact. K1XX, ham radio, Greenville, NH 03048.

PC BOARDS Deluxe Memory Keyer, April HR, Glass, plated, drilled, $18.00. RTC Electronics, Box 2514, Lincoln, Nebraska 68502.

SELLING OUT — SX101-A, HT32B, test equipment, milks, antiques, tubes & etc. (SASE) J. Davis, 802 Chain St., Norristown, PA 19401.

ATLAS 215X mint condition in original box with manual $550.00 UPS included. WBFSFM, (774) 631-8288.

BUY-SELL-TRADE. Send $1.00 for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, R.D. 3, Conner, Overland Park, KS 66204 (913) 381-5900.

VOICE OF AMERICA has opportunities for U.S. citizens qualified as Civil, Electronic, Mechanical and Electrical Engineers. Supervisory openings available in Libya and Philippines. High broadcast station construction projects. BS in Engineering or equivalent experience in construction and contract supervision required. Must be available on a worldwide basis. Salary commensurate with skills and experience plus housing and overseas allowances. Civil Service Application (Form SF-171) available from Personnel Management (formerly the Civil Service Commission). Job Information Centers and most federal buildings should be sent to Interna

½ " HANDLINE — 500, with jacket. Solid copper center conductor. 500' or 1000' rolls — 45¢/ft. (freight collect). Connectors available. Info — SASE. JRS Electronics, P.O. Box 1893-A, Cincinnati, Ohio 45201.

RM-300 RTTY MODEM, the complete TU and AFSK generator on one board. This modem featured Sept '78 Ham Radio. Complete Documentation $2.00 RM-300 Modems, Copy only just $21.35. Complete RM-300 or 400 kit less promo $71.25. PROMO programmed with your call $7.00. WADNR Eclipse Communica
tions, S.Westwood Drive, San Rafael, CA 94901.

QUALITY NEW COMPONENTS. ¼ and ½ watt carbon film resistors; electrolytic, mylar, tantalum, disc, mica capacitors; trimpots; miscellaneous other items includ
ing chassis, enclosures. Enclose 15¢ stamp for catalogue. MRF Field Engineering Group, P.O. Box 349, Gales
burg, IL 61401.

BEST OFFER TAKES! Two Motorola HT 220 walkie-talkies & battery charger. 1.8 Watt. UHF frequency. Standard switch. Laurie Fiebiger, 1590 County Road 6, Mpls. MN 55411 (612) 559-1515.

MUSEUM for radio historians and collectors now open. Free admission. Old time amateur radio stations, 15,000 square feet of displays, including coil station exhibits, 1925 store and telegraph displays. Free admission. Old time amateur radio stations, 15,000 square feet of displays, including coil station exhibits, 1925 store and telegraph displays. Free admission. Old time amateur radio stations, 15,000 square feet of displays, including coil station exhibits, 1925 store and telegraph displays.

SATELLITE TELEVISION — For information on building or buying your own Earth Station send $3.00 to Satellite Television, R.D. 3, Box 140, Oxford, New York 13830.

COLLINS FILTERS $30 each, $455N-20, 40, 80, 160 with matching components. Guaranteed. Ernie Frank, WA2EVT, P.O. Box 364, Columbus, Sri Lanka (Ceylon).

MOBILE HF ANTENNA. 3.5-50 Mhz inclusive, 750 watts PEP, center loaded coil, tuned from the base, eliminat
ing coil charging or removing from mount. Less than 1.5 to 1 VSWR on all amateur bands. $119.85 each — contact your local dealer or order from Antec, Inc., Box 415, Route 1, Hansen, ID 83234. (208) 423-4100. Master Charge and Visa cards accepted. Dealer inquiries invited.

QLS CARDS 500/10. 400 illustrations, sample. Bowman Printing, Dept. HR, 743 Harvard, St. Louis, MO 63130.

ELECTRONIC BAGGAGE CLOSEOUTS, SUPPLIUS! Parts, equipment, stereo, industrial, educational. Amazing values. Fascinating items unavailable in stores or catalogs anywhere. Unusual free catalog. ETCO-012, Box 762, Plattsburgh, N.Y. 12901. SUPPLIUS WANTED.

14 Pin DIP extender cable. 36" long with MOLDED plug each end. Quality $2.00 ea.

6 for $10.00

Molded bridge rectifier. 100 volt PIV @ 2 amps. 45c ea. or 5 for $2.00 p.p.d.

Photocell — first quality plastic encapsulated. Dark resistance 100 megohm; Light resistance 150 ohms. 20c ea. 6 for $1.00 p.p.d.

Single RCA type jack. High quality factory new. 15c ea.

7 segment display FND type. Cosmetic repairs. Common anode .5 high. High nice. 75c each.

Jumbo LEDs. 2 inch diameter. Color Red. Prime factory units. Not seconds or retests. 20c ea. p.p.d.

Vertical Mount Trimmer Pots

All highest quality. No junk. 100 - 1500 - 2500 - 5000 - 10K - 20K - 25K - 50K - 250K - 500K ohms. All have thumbscrew adjust. Your choice $5.00 each.

SUPER-BUY — 5000 mfd., 40 volt electrolytic cap. factory new and complete w/all hard
dare. $1.35 ea. p.p.d.

Just arrived — thousands of ICs. Re
moved from sockets on new P.C. boards. All marked with standard numbers and in the 7400 series. Examples of nos. are 7406-7495-7496 etc. Chance of a life
time. Sorry no choice of numbers. We mixed them up. 50 for $7.50 p.p.d. 100 for $12.50 p.p.d.

Transfermer: 115V AC Primary. Secon
dary 17-0-17V @ 7 Amps. We tested and find-good for 10 Amps intermittent duty. Ideal for 2M rigs! $8.00 ea. p.p.d.

ALL ITEMS PPD USA

SEND STAMP FOR LIST OF BARGAINS
PA RESIDENTS ADD 8% SALES TAX
FONE 412-863-7006

12754 BAY DRIVE NORTH HUNTSVILLE, PA. 15642

July 1979
OHIO: Official ARRL 5th Annual Hall of Fame Hamfest.
Sunday, July 15, Stark County Fairgrounds, Canton, Ohio. Members tickets $2.50; non members $3.00 at the gate. Contact WB8SPD, 1087 Hazelview Ave., Alliance, OH 44601.

CWSP AREA: The CWSP award is issued by the “Sao Paolo Group of CW” for all Hams that have worked 5 different group members of the group mode CW only and valid QSO’s after October 15, 1976. LOGS: Call, date, time band and report. Do not send G6’s — only QSL’s via personal callers. QSO’s must be in the SWL. Same rules. Endorsement for 50, 75, 100, 125, 150 stations from Sao Paolo State (PY2). Applications must be sent to: CWSP, P.O. Box 10598 01900, Sao Paulo, SP, Brasil.

NEW ENGLAND: The Central New England Amateurs Radio Club’s Annual Hamfest and Steak Fry, July 28 and 29, Victoria Springs State Park near Ansemoine. Talk-in on 144.320 from 8AM through 6PM for week-enders. Registrations to: Harry Roblyer, W0DLM, Burlew, NE 68623 or C. J. Christensen, Taylor, NE 68679.

ILLINOIS: Big Thunder Amateur Radio Club’s Annual Hamfest, Sunday, July 22, Boone County Fairgrounds, one mile north of Belvedere. Talk-in on 23.573 MHz. Donations $2.00. Advance $1.50. For info and tickets: Michael Sanlucce, W9M, Box 1810, Peoria, IL 61611.

NEW YORK: Radio Central Amateur Radio Club’s “Ham- Central”, Sunday, August 5, rain date Sunday, August 12, Mr. William R. Kelm, 29 McCormick Rd., Long Island, 9:00 AM to 4:00 PM. (Open 7:00 AM for sellers) $3.00 tailgate selling fee, 9:00 AM to 12:30 PM and under 12 years free. QSL cards to be used for Radio Central-St. Charles Hospital Repeater. Talk-in on 22V/L/H: 144.7115/43.51 and 144.52 MHz. WADEC, Notice table, Country Fish & Game, Special Doors, Table space for flea market. For more info: Radio Central ARC, “Ham-Central”, P.O. Box 62, Mill River Rd., Norwalk, CT 06854 or call Joan Longin, (516) 924-8433 or Robin Goodman, (516) 744-6260.

NEW JERSEY: The Englewood Amateur Radio Association’s 20th Annual QSO Party. TIME: From 2000 UTC Saturday, July 22 to 0700 UTC Sunday, July 23 and from 0900 UTC Sunday, July 23 to 2300 UTC Monday, July 24. Phone and CW are considered the same contest. A station may be contacted once on each band — CW and phone are considered one contact. CW contacts may not be made in phone band segments. New Jersey stations may work other New Jersey stations only during call-in sessions. Call-in sessions are: 3GQ New Jersey Group “NJQG”. CW contacts may be identified by signing “DE NJ” on CW and “New Jersey calling” on phone. Suggested frequencies: 3550, 7000, 14035, 14035, 20120, 21110, 21355, 28100, 50-50-5, and 144-144. Suggest phone activity on even hours: 15 meters on odd hours: 1500 to 2000 UTC. For further info: QSL Card Exchange, 14Q6 Group, QSO number, RST, and QTH (ARRL section or country) New Jersey stations send copy to QTH, SSO@ARRL. Fees and conditions to: P. O. Box 528, Englewood, NJ 07631. Send Size #10 SASE. Stations planning participation in New Jersey are requested to advise the Englewood ARC by July 7.

INDIANA: Delaware Amateur Radio Association’s Hamfest, Saturday, August 11, County Road 300 E & 100 N, Springfield Park, Muncie, 7 AM (EST) Tickets: $15 advance, $20 at the gate. Returned covered table $1.00. No extra charge for outside. Hourly drawings 9 till 3. Grand Prize Tempo Syncom-1. For Info: SASE to DAR, P.O. Box 321, Muncie, IN 47302.

OHIO: The 15th Annual Western Ohio Ham-a-rama, July 29, Bowling Green Fairgrounds, Bowling Green. Gates open 10:00 AM. Tickets $15.00 advance, $20.00 door. Dealer tables and space, food and drink available. Tickets, KB7TH talk-in on 52. For info: Wood County ARC, c/o Eric Willman, 14118 Bishop Rd., Bowling Green, OH 43402.

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?
- You can send broadcast quality video of home movies, video tapes, computer games, etc. at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex - 15 to 100 miles.

ALL IN ONE BOX
TC-1 Transmitter/Conv
Plug in camera, ant, mic and you are on the air $399 ppd

HI*CHI HV-62 TV CAMERA
High performance closed circuit camera just right for ATV, with lens $239 ppd

PUT YOUR OWN SYSTEM TOGETHER

TVC-1B CONVERTER tunes 420 mhz down to ch 2 or 3 $49.50 ppd
TXAS EXCITER $69 ppd
PA5 10 WATT LINEAR $79 ppd
FMAS Audio Subcarrier $24.50 ppd

SEND FOR OUR CATALOG, WE HAVE IT ALL
Modulars for the builder, complete units for the operator, antennas, color cameras, repeaters, preamps, lines, video ider and clock, and more, 19 years in ATV.

Call 213-447-4665 5-6 pm ur time

P.C. ELECTRONICS
2022 PASADENA
ARCADIA, CA 91006
Tom W6ORG

MADISON ELECTRONICS SUPPLY, INC.
1508 McKinney • HOUSTON, TEXAS 77002
713/658-0258

MASTERCHARGE • VISA

ALL BAND TRAP ANTENNAS!

PRETUNED - COMPLETELY ASSEMBLED - ONLY ONE NEAT SMALL ANTENNA FOR UP TO 6 BANDS! EXCELLENT FOR CONGESTED HOUSING AREAS - APARTMENTS, PLUS - 100 WATTS CW. FOR NOVICE AND ALL CLASS AMATEURS!

COMPLETE AS SHOWN with 90 ft. RG58U-52 chm feedline, and PL259 connector, Insulators, 30 ft. 300 lb. test decrow and supports, center connector with built in lightning arrester and static discharge molded, sealed, weatherproof resonant traps "X"-you just switch to band desired for excellent worldwide operation - transmitting and receiving! WT. LESS THAN 5 LBS.

160-80-40-20-15-10 bands 2 trap: with 90 ft. RG58U connector - Model 777BU $59.95
80-40-20-15-10 bands 2 trap: with 90 ft. RG58U connector - Model 996BU $54.95
40-20-18-10 bands 2 trap: with 90 ft. RG58U coax connector - Model 1008BU $53.95
20-15-10 bands 2 trap: with 90 ft. RG58U coax connector - Model 1007BU $52.95

SEND FULL PRICE FOR POST PAID INSURED DEL IN USA. (Canada is $6.00 extra for postage)

WESTERN ELECTRONICS
Dept. AR-7
Kearney, Nebraska, 68847

SYNTHESIZERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our 1/3 page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS
196-23 JAMAICA AVENUE
HOLLIS, N. Y. 11423

Duns #01-048-6066
Cash plus shipping paid for clean late model Motorola GE, RCA mobiles, Base Stations. Accessories. We also sell used and reconditioned equipment. For further information contact:

Jesse La Fleur
The Communications Center
1629 Wyoming
El Paso, Texas 79902
(915) 545-1133

Call for cash order 16 years of fair dealing

DX OPERATORS
CUSTOM CALCULATED, PERSONALIZED BEAM HEADING AND DISTANCE CHART TO OVER 350 FOREIGN COUNTRIES BASED ON YOUR EXACT LOCATION, UP TO DATE FOR 1979. SEND CALL SIGN AND $4.95 TO W6COMP, P.O. BOX 86, SOUTH SALEM, N. Y. 10590. N. Y. RESIDENTS ADD 5% SALES TAX

EACSIMILE
COPY SATELLITE, PHOTOS, WEATHER MAPS, PRESS!
The Fax Are Clear - on our full size (18-1/2" wide) recorders. These commercial-military units now available at surplus prices. Learn how to copy with our FREE Fax Guide.

3720 NAUTILUS
ATLANTIC SURPLUS SALES
BROOKLYN, N. Y. 11224

I PAY CASH
for your military surplus electronics
If you have or know of availability:
TT-98 TT-76 Teletypewriter phone me collect

Dave - (213) 760-1000
Introducing **SCR4000**

The Super-Deluxe

450 MHz FM Repeater!

shown in optional cabinet

180 Day Warranty

Spec Comm is proud to announce the long awaited SCR4000 UHF Repeater. This unit incorporates many deluxe features often requested by our customers over the last 2½ years. See Features below for just a few. The rest of the unit is basically the same as our world SCR1000 VHF Repeater which is well known for superior performance, quality and reliability.

Features:

- 30 Wt. Output
- Front End: 2 JFETs + 6 Pole Filter
- Double-Balanced Rcvr. Mixer for Super Dynamic Range!
- 8 Pole IF Crystal Filter
- Rcvr. Discriminator & Deviation Meters!
- Ultra-High Stability Transmitter Crystal Oscillator/Oven
- All New State-of-the-Art Xmtr. & Rcvr. Boards
- Plus — Many More Features Found in the Well Known SCR1000 VHF Repeater!

You'll be happy to hear that the SCR4000 is very reasonably priced... about ½ that of other “top name” units (which don’t offer nearly as many convenient features as the SCR4000)! Also, a complete line of options & accessories are available, such as full Autopatch, Tone Control units, Duplexers, Antennas, Cabinets, etc.

The SCR4000 is sold factory direct only, or through authorized foreign sales reps. Since there has been tremendous demand for the SCR4000, we suggest you get your order ASAP!

Please Call or Write for further info.

A Full Line of Repeater Boards, Sub-Assemblies & New VHF FM Transceivers Are Also Available: Inquire.

Spectrum Communications

Dept. HJ — 1055 W. Germantown Pk.
Norristown, PA 19401 (215) 631-1710

FAIR RADIO SALES

Dealers: Please Allow for Shipping. Send for FREE Copy of New Catalog 79!

Please Allow for Shipping. Send for FREE Copy of New Catalog 79!

More Details? CHECK — OFF Page 110
Heavy Duty Power Supplies
from ASTRON
High Quality • Rugged • Reliable

SPECIAL FEATURES
• SOLID STATE ELECTRONICALLY REGULATED
• FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
• CROWBAR OVER VOLTAGE PROTECTION on Models RS-7A, RS-12A, RS-20A & RS-35A
• MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
• HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
• THREE CONDUCTOR POWER CORD
• ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
• INPUT VOLTAGE: 105 - 125 VAC
• OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
• RIPPLE: Less than 5 mv peak to peak (full load & low line)
• REGULATION: ± 0.05 volts no load to full load & low line to high line

Other popular POWER SUPPLIES also available: (Same features and specifications as above)

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (amps)</th>
<th>ICS* (amps)</th>
<th>Size (in.)</th>
<th>Shipping Wt. (lbs.)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
<td>$136.95</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 11 ½</td>
<td>20</td>
<td>$94.95</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 ¼ x 6 ½ x 9</td>
<td>8</td>
<td>$49.95</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 ¾ x 6 ½ x 7 ½</td>
<td>5</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

*ICS — Intermittent Communication Service (50% Duty Cycle)
If not available at your local dealer, please contact us directly.

1971 South Ritchey Street
Santa Ana, CA 92705
(714) 835-0682

The Popular
CUA 64-12
by Heights

Light, permanently beautiful ALUMINUM towers
THE MOST IMPORTANT FEATURE OF YOUR ANTENNA IS PUTTING IT UP WHERE IT CAN DO WHAT YOU EXPECT. RELIABLE DX — SIGNALS EARLIEST IN AND LAST OUT.

ALUMINUM
Complete Telescoping and Fold-Over Series Available
Self-Supporting
Easy to Assemble and Erect
All towers mounted on hinged bases
And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.
Write for 12 page brochure giving doz-
ens of combinations of height, weight and wind load.
Please include 30¢ (stamps or coins) for postage and handling when re-
questing our free literature.

ALSO TOWERS FOR WINDMILLS

MANUFACTURING CO.
In Almont Heights Industrial Park
Almont, Michigan 48003

Inside View — RS-12A
ASCII MORSE RTTY

MONITOR $139.
(12" B&W)

COMPLETE KEYBOARD TERMINAL $350. Kit 295
(Less Monitor)

8CT-100 STAND ALONE VIDEO BOARD
- Partial Kit $95.
- Full Kit $157.
- Assembled & Tested $187.

COMPUTER

Features
- ASCII & BAUDOT
- Auto Sync. 1-150 WPM
- Microcomputer Interface

TRANSEIVER

TERMINAL UNIT

RTTY (TX/RX)

MRS-100

- Partial Kit $95.
- Full Kit $225.
- Assembled & Tested $295.

KEYER OPTIONAL

SECOND ANNUAL LITTLE ROCK HAM-A-RAMA
LITTLE ROCK, ARKANSAS

Aug. 4 & 5, 1979
9:00 a.m. to 6:00 p.m. Saturday
9:00 a.m. to 2:00 p.m. Sunday
(Dealers may set up Friday evening)

ARKANSAS STATE FAIRGROUNDS

- Dealer displays in air-conditioned building
- ARRL State Convention
- ARRL forum and MARS meeting
- Giant flea market, $2 per parking space
- Party Saturday night
- Covered flea market area in case of rain
- No commercial dealers in flea market area
- RV hookups on fairgrounds and two KOA campgrounds within 20 miles
- Hamfest located 2 miles west of I-30 on Roosevelt Road
- Talk-in on 146.34194
- Hourly door prizes plus 2 major prizes

For further information contact:
Morris Middleton AD5M
19 Elmherst Drive, Dept. C
Little Rock, Ark. 72209
Phone (501) 568-0938

More Details? CHECK — OFF Page 110

THE BIG SIGNAL

UNADILLA W2AU Baluns

Still Only $14.95

- The Original Lightning Arrest
- 650° Strength
- Stainless Hardware
- Sealed
- Guaranteed

DEALERS WANTED - OVER 300 WORLD-WIDE

P-b12

THE DRY WET CELL:

Makes Mobile Portable

Use p-b 12 to convert your mobile equipment to handy portables.

p-b 12: a 12-volt sealed lead-acid battery and a perfect power source for your radio needs: small, rechargeable with most home units, powerful and convenient. p-b 12 delivers 2.5 amp.-hrs. (@250 ma), is only 8"x3 3/4"x1 1/4", weighs 2 lbs., and carries a 1-year warranty. p-b 12 is only $49.95 and if you need one, our battery charger is only $19.95. Add $1.50 for postage and handling: Conn. residents add state tax. Send check, money order, or use Master Charge or Visa. Ask for our free brochure.

PORTABLE COMMUNICATION SUPPLY, INC.
P.O. Box 345, Trumbull, Conn. 06611
(203) 268-6684

july 1979
Now— the industry's first truly super keyboard

INFO-TECH M-300C TRI-MODE KEYBOARD
A microprocessor controlled keyboard that generates: Morse, RTTY, & ASCII.

Morse Features:
- 4 to 125 W.P.M. in 1 W.P.M. increments.
- 9 adjustable weight levels
- relay keying
- sidetone with tone and level adjustments
- special keys: AS, BK, BT, AR, SK, CQ, DE

RTTY Features:
- 4 speeds
- 2 shifts (170 & 850 hz)
- built in AFSK
- built in CWID
- built in RY generation

ASCII Features:
- 110 & 300 Baud
- 2 shifts (170 & 850 hz)

Other Features:
- Built in quick brown for generator on all modes
- Automatic CR/LF
- 700 Character Running Buffer
- 10 recallable, user programmable message memories of 120 characters each
- CQ & DE special keys on all modes
- Keyboard control of all functions
- 4 row keyboard eliminates figures/letters shifting on RTTY
- Many more features.

Best of all, $450.00 still only F.O.B. Factory

Order direct or from these dealers:

Global Communications
606 Poco Isles Blvd
Cocoa Beach, Florida 32931
305-783-3624

Cohoon Amateur Supply
Highway 475
Trenton, Kentucky 42286

Dialta Amateur Radio Supply
212 48th Street
Rapid City, S. Dakota 57701

Emona Electronics
661 George Street
Sidney N.S.W. Australia

Germantown Amateur Supply
3202 Summer Avenue
Memphis, Tennessee 38112
800-238-6168

Ham Radio Center
8342 Olive Blvd
St. Louis, Missouri 63132
800-325-3636

Rickies Electronics
2800 W. Meighan Blvd
Gadsden, Alabama 35904
205-547-2534

Universal Amateur Radio
1280 Aida Drive
Reynoldsburg, Ohio 43068
614-666-4267

N & G Distributors
7285 N.W. 12th St
Miami, Florida 33126
305-592-9685

PANACOM
P.O. Box 76093
Caracas 107 Venezuela

Marcucci SPA
via F. LLI-Bronzetti
Milan, Italy

INFO-TECH CORPORATION
Specializing in Digital Electronic Systems
2349 Weldon Pkwy. St. Louis, Missouri 63141
Phone (314) 576-5489

More Details? CHECK—OFF Page 110
The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?
TS-1 Sub-Audible Encoder-Decoder • Microminiature in size, 1.25" x 2.0" x .65" • Encodes and decodes simultaneously • $59.95 complete with K-1 element.

TS-1JR Sub-Audible Encoder-Decoder • Microminiature version of the TS-1 measuring just 1.0" x 1.25" x .65", for handheld units • $79.95 complete with K-1 element.

ME-3 Sub-Audible Encoder • Microminiature in size, measures .45" x 1.1" x .6" • Instant start-up • $29.95 complete with K-1 element.

TE-8 Eight-Tone Sub-Audible Encoder • Measures 2.6" x 2.0" x .7" • Frequency selection made by either a pull to ground or to supply • $69.95 with 8 K-1 elements.

PE-2 Two-Tone Sequential Encoder for paging • Two call unit • Measures 1.25" x 2.0" x .65" • $49.95 with 2 K-2 elements.

SD-1 Two-Tone Sequential Decoder • Frequency range is 268.5 - 2109.4 Hz • Measures 1.2" x 1.67" x .65" • Momentary output for horn relay, latched output for call light and receiver muting built-in • $59.95 with 2 K-2 elements.

TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder • Frequency range is 67.0 - 253.0 Hz sub-audible or 1650 - 4200 Hz burst-tone • Measures 4.25" x 2.5" x 1.5" • $79.95 with 12 K-1 elements.

ST-1 Burst-Tone Encoder • Measures .95" x .5" x .5" plus K-1 measurements • Frequency range is 1650 - 4200 Hz • $29.95 with K-1 element.

COMMUNICATIONS SPECIALISTS
426 West Tait Avenue, Orange, CA 92667
(800) 854-0547, California residents use: (714) 998-3021
Ham Radio’s guide to help you find your loci

Arizona

HAM SHACK
4506-A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert. Classes, sales & service.

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR.
PHOENIX, AZ 85013
602-249-3739
Your Complete Amateur Radio Store.

POWER COMMUNICATIONS
6012 N. 27 AVE.
PHOENIX, ARIZONA 85017
602-242-6030
Arizona’s #1 “Ham” Store. Kenwood, Yaesu, Drake, Icom and more.

California

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232
CARSON, CA 90745
800-421-2258
With 34 years experience in the Ham Radio business!

JUN’S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-477-1824
“Best Prices in Country. Try us, we’ll prove it.”

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world’s Radio Amateurs since 1933.

SHAYER RADIO
3550 LOCHINVAR AVE.
SANTA CLARA, CA 95051
408-247-4220
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec.

Connecticut

THOMAS COMMUNICATIONS
95 KITTS LANE
NEWINGTON, CT 06111
800-243-7765
203-667-0811
Call us toll free - See our full page ad in this issue.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Delaware’s largest stock of amateur radio equipment & accessories.

Florida

AGL ELECTRONICS, INC.
1800 B DREW ST.
CLEARWATER, FL 33751
813-461-HAMS
West Coast’s only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY’S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33751
813-535-1191

SUNRISE AMATEUR RADIO
1351 STATE RD.
LAUDERDALE, FL 33315
(305) 761-7676
"Best Prices in Country. Try us, we’ll prove it."

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
“Amateur Excellence”

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Illinois - 800-972-5841
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed & Fri.; 9:30-9:00 Thurs; 9:00-3:30 Sat.

Indiana

KRYDER ELECTRONICS
GEORGETOWN NORTH SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
Your Complete Amateur Radio Store. 10-9 T, TH; F; 10-5 W, SAT.

Iowa

BOB SMITH ELECTRONICS
RFD #3, HIGHWAY 169 & 7
FORT DODGE, IA 50501
515-576-3886
800-247-2476/1793
Iowa: 800-362-2371
For an EZ deal.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5901
America’s No. 1 Real Amateur Radio Store. Trade - Sell - Buy.

REVCOM ELECTRONICS
6247 N. HYDRAULIC
WICHITA, KS 67219
316-744-1083
New - Used HF, VHF, & Microwave Gear. Manufacturing & Sales.

Maryland

THE COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486

Massachusetts

TEL-COM, INC.
675 GREAT RD. RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England you can rely on.

Dealers: YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.
<table>
<thead>
<tr>
<th>State</th>
<th>Name</th>
<th>Address</th>
<th>City, State Zip</th>
<th>Phone</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>Evans Radio, Inc.</td>
<td>Box 893, Rt. 3A Bow Junction, Concord, NH 03301</td>
<td>603-224-9961</td>
<td></td>
<td>Icom, DenTron & Yaesu dealer. We service what we sell.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Atkinson & Smith, Inc.</td>
<td>17 Lewis St., Eatontown, NJ 07724</td>
<td>201-542-2447</td>
<td></td>
<td>Ham supplies since “55”.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Bargain Brothers Electronics</td>
<td>216 Scotch Road, Glen Roc Shopping Ctr., West Trenton, NJ 08628</td>
<td>609-983-2050</td>
<td></td>
<td>A million parts - lowest prices anywhere. Call us!</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Metuchen Radio</td>
<td>216 Main Street, Metuchen, NJ 08840</td>
<td>201-494-8350</td>
<td></td>
<td>W2AEF "T" Bruno</td>
</tr>
<tr>
<td>New York</td>
<td>Radios Unlimited</td>
<td>P.O. Box 347, 1760 East Avenue, Somerset, NJ 08873</td>
<td>201-469-4599</td>
<td></td>
<td>New Jersey's Fastest Growing Amateur Radio Center.</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Communications Center West</td>
<td>1072 Ranch Drive, Las Vegas, NV 89106</td>
<td>800-634-6227</td>
<td></td>
<td>Kenwood, Yaesu, Drake and more at discount prices.</td>
</tr>
<tr>
<td>Nevada</td>
<td>Communications Center West</td>
<td>1072 Ranch Drive, Las Vegas, NV 89106</td>
<td>800-634-6227</td>
<td></td>
<td>Kenwood, Yaesu, Drake and more at discount prices.</td>
</tr>
<tr>
<td>Ohio</td>
<td>Amateur Radio Sales & Service Inc.</td>
<td>2187 E. Livingston Ave., Columbus, OH 43209</td>
<td>614-236-1625</td>
<td></td>
<td>Antennas and Towers for All Services.</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Kryder Electronics</td>
<td>5826 N.W. 50th, MacArthur Sq. Shopping Ctr., Oklahoma City, OK 73122</td>
<td>405-789-1951</td>
<td></td>
<td>Your Complete Amateur Radio Store</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Electronic Exchange</td>
<td>136 N. Main Street, Souderton, PA 19464</td>
<td>215-723-1200</td>
<td></td>
<td>Demonstrations, Sales, Service</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>LaRue Electronics</td>
<td>1112 Grandview Street, Scranton, Pennsylvania 18509</td>
<td>717-343-2124</td>
<td></td>
<td>Authorized Atlas Radio East Coast Service Center.</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Burghardt Amateur Radio Center, Inc.</td>
<td>P.O. Box 73, Watertown, SD 57201</td>
<td>605-886-7314</td>
<td></td>
<td>"America's Most Reliable Amateur Radio Dealer".</td>
</tr>
<tr>
<td>Texas</td>
<td>Hardin Electronics</td>
<td>5635 E. Rosedale, Ft. Worth, TX 76112</td>
<td>817-461-9761</td>
<td></td>
<td>Your Full Line Authorized Yaesu Dealer.</td>
</tr>
</tbody>
</table>
2nd ANNIVERSARY SALE

10% DISCOUNT
ON ALL LUNAR AMPS • PRE AMPS TOWERS

...at all participating dealers July 1 through July 31.

This is your opportunity to own that Lunar amp and pre-amp that are the standard of the industry, or the all new modular/ portable antenna tower by Lunar—

AND SAVE 10%!

Call or write for the name of your nearest participating Lunar dealer.

NEW VISUAL CODE READER AND ELECTRONIC KEYER

Works with any keyer, including squeeze keyer in speeds from 7 WPM to 40 WPM. Both in a single unit:
- All Solid State
- Makes code learning faster and easier
- A single connection to your receiver or transceiver speaker puts it into operation
- Hard copy read-out of CW available with TU-102 TTY interface Module accessory

Our popular, lowest priced CODE READER KIT
Model KCR101
$149
Ready made CODE READER...Model CR101 $225

BUY FACTORY DIRECT & SAVE! SEND FOR FREE LITERATURE.
USE YOUR BANKAMERICAN OR MASTER CHARGE

Atronics
106 Laguna Hills, CA 92653
(714) 830-6428

WANTED FOR CASH

460-T Ant. Tuning Unit
(Also known as CU1658 and CU1669)

618-T Transceiver
(Also known as MRC95, ARC94, ARC102, or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112 and some aircraft units also required.

We stand on our long term offer to pay more than any other bonafide offer.

DCO, INC.
10 Schuyler Avenue
No. Arlington, N. J. 07032
Call Toll Free
800-526-1270
Evenings (201) 998-6475

More Details? CHECK-OFF Page 110
FREQUENCY COUNTER KIT
Outstanding Performance
Incredible Price $89.95

SPECIFICATIONS:
- Frequency range: 6 Hz to 65 MHz
- 600 MHz with CT-600 Option Large Scale Integration
- CMOS circuitry and solid state technology have enabled this counter to measure frequencies in units as high as over 300 MHz. Low power consumption (typically 300-400 mA) makes the CT-50 ideal for portable battery operation.
- The CT-50 includes a large 8 digit LED display, RF-shielded all metal case, easy pushbutton operation, automatic on-off, and full 16 digit display.

CT-50: 60 mhz counter kit $89.95
CT-50/CT-110: 60 mhz counter kit $159.95
CT-600: 600 mhz option $29.95

CAR CLOCKS
The UN-KIT, only $100
5 solder connections! This is a snap to build and install. Clocks movement is completely assembled and includes all mulitples, 3 wires and 2 switches, takes about 15 minutes! Display is bright with automatic brilliance, control photocell-actually assures you of a highly readable display day or night. Comes in a satin finish aluminum case which can be attached 5 different ways using 2 sided tape. (choice of silver, black or gold case). 6 wire hookup, displays, blank with igniter, and instruction. Optional amber dimmer automatically adjusts display to ambient light level. DC-11 clock with mfg bracket $22.95
DC-11 clock with dimmer adapter $27.95

Under dash car clock
12" 24 hour clock in a beautiful polished aluminum case. Includes super sens, typically 20 mhz at 150 MHz. 10 or 100 ratio. PS-1B: 600 mhz prescaler $59.95
PS-1BK: 600 mhz prescaler kit $49.95

PRESCALER
Extend the range of your CT-50 to 600 MHz. Works with any counter Includes 2 transistors and is adjustable. Super sens, typically 20 mhz at 150 MHz. 10 or 100 ratio. PS-1B: 600 mhz prescaler $59.95
PS-1BK: 600 mhz prescaler kit $49.95

VIDEO TERMINAL
A completely self-contained stand alone video terminal card. Requires only an ASCII keyboard and TV set to become a complete terminal unit. Two units available, common features are simple 5v supply, XTAL controlled sync and baud rates (9600), complete ASCII keyboard and keyboard control of cursor. Parity conrol and display. Accepts and generates ASCII plus parallel keyboard output. The 3216 is 32 char by 16 lines, 2 pages with memory dump feature. The 6416 is 64 char by 16 lines, with scrolling, upper and lower case (optional) and has RS-232 and 20ma loop interface. Optional components include sockets and complete documentation. RE-3216: terminal card $149.95
RE-6416: terminal card $189.95
Lower Case option, 6416 only $13.95
Power Supply Kit $14.50
Video IF MODULATOR, VD-1 8.99
Assembled, tested units $60.00

CALENDAR ALARM CLOCK
The clock that's got it all. 6" 5 LEDs 12 hour, 24 hour alarm, 4 year calendar, battery backup, and lots more. The Super 7001 chip is used. Size 5 x 4 x 2 inches. Complete kit less case (not available). 32.95

30 Watt 2 mtr PWR AMP
Simple Class C power amplifier features 8 times power gain 1 W in for 8 out. 2 in for 16 out. For inboard 1 out. Max output power is 30 watts. Complete kit includes all parts, case and T/R relay. PA-1: 30 W PWR amp kit $72.95
TR-1: RF sense T/R relay kit $6.95

FM MINI MIKE KIT
A super high performance FM wireless mike kit. Transmits a stable audio signals up to 300 yards with exceptional audio quality. By means of its built in electret microphone, it includes case, on-off switch, antenna, battery and instructions. This is the best unit available. FM-3 kit $12.95
FM-3 wired and tested 16.95

CLOCK KITS
Try your hand at building the finest looking clock on the market. Its satin finish anodized aluminum case looks great anywhere. The 4 LED lights provide a highly readable display. This is a complete kit, no extras needed and it only takes 1-1/2 hours to assemble (your choice of colors silver, gold, bronze, black, blue, gray). Complete kit $22.95
Clock kit 12 hour, DC-10 $27.95
Clock with 10 mm ID timer 12 hour, DC-10 $27.95
Alarm clock 12 hour, DC-10 $24.95
12V DC car clock, DC-7 $27.95
For wired and tested kits add $10.00 to kit price

Ramsay's famous MINI-KITS

FM WIRELESS MIKE KIT
Transmits up to 300 ft. to any FM broadcast radio. Any type or make of mike. Runs on 3 to 8v. Type MK-1C has added sensitivity and performance. FM-1 $9.95
FM-2 $9.95

COLOR ORGAN/MUSIC LIGHTS
See music come alive from different lights. Perfect for the home. The sounds can be heard for the ears for the ears. Each channel channel can be set to a different color and dimmable. Up to 300 Gf for parties, bands, music, music stores and more. Complete kits, ML-1 $7.95

LED Blinky Light
A great attention getter which alternately blinks and blinks LEDs. Use for name badges, buttons, warning signs, etc. Anything runs on 3 to 15 volts. Complete kit, BL-1 $2.95

VIDEO MODULATOR KIT
Converts any TV to video monitor Super stable, tunable over whole 0-4,6 runs on 5-500 KHz, accepts external video signal. Best unit on the market. Complete kit, VD-1 $6.95

TONE DECODER
A complete tone decoder on a single PC board. Selects a single input. Features: 400-500 KHz. For hi-fi or broadcast, up to 300 Gf for parties, bands, music stores and more. Includes all parts, case, cables and more. Complete kit, TD-1 $7.95

SUPER SLEUTH
A super sensitive FM receiver which picks up a wide variety of signals. Maximizes output power of various amateur FM transmitters. Tuned to different frequencies. Complete kit SN $5.95

POWER SUPPLY KIT
Complete regulatred power supply, provides 7 volt x 10 amp at 75+ at 6 volt x 10 amp. Excellent load regulation, high efficiency and small size. Complete kit $5.95

SIREN KIT
A unique, upward and downward tonal characteristic of a siren speaker. A 3 volt 15 watt speaker uses 3-4 volts stereo. Complete kit SM-1 $3.95

FM RADIO MODULATOR KIT
Converts any TV to video monitor. Super stable, tunable over whole 0-4,6 runs on 5-500 KHz, accepts external video signal. Best unit on the market. Complete kit, VD-1 $6.95

PHONES
PHONE ORDERS CALL
(716) 271-6487

More Details? CHECK — OFF Page 110

july 1979

107
Kantronics' Field Day
Morse/radio telegraph reader & speed display

only $449.95

Kantronics' Field Day morse code/teletype reader reads code signals right off the air. Its powerful microcomputer system picks up signals, computes their speed and even reads sloppy copy up to 80 words per minute.

The Field Day is simple to use. You plug it into your station receiver just as you would a set of headphones. Code and teletype conversations are converted from dots and dashes to standard alphanumerical text. The text advances from right to left across ten big ½ inch displays.

The Field Day displays incoming or outgoing code speed for you at the touch of a button, right on the front panel. The Field Day is enclosed in a compact, lightweight package including speaker. HWD 3.44" by 8.50" by 9.25". The Field Day has the features that make it a truly great code reader. Write us for a complete Kantronics authorized dealer list.

KANTRONICS
The Lightweight Champs.
1202 East 23rd Street
Lawrence, Kansas 66044
Phone: 913-842-7745
We accept Visa, Master Charge checks and money orders.

Radio World

CENTRAL NEW YORK'S FASTEST GROWING HAM DEALER

Featuring Yaesu, Icom, Drake, Atlas, Ten-Tac, Swan, Denxtron, Pace, Palomar, Alda, Midland, Wilson, KDK, MFJ, Microwave Module, Standard, Tempo, Astron, KLM, H5, Gain, Mosley, Larsen, Cushcraft, Hunte, Mini Products, Universal and Tristao Towers. We serve everything we sell! Write or call for quote. You Won't be Disappointed.

We are just a few minutes off the US Thruway (I-90) Exit 32

ONEDA COUNTY AIRPORT TERMINAL BUILDING
ORISKANY, NEW YORK 13424

拨 1-800-448-7914 Bob

ONEIDA COUNTY AIRPORT TERMINAL BUILDING
ORISKANY, NEW YORK 13424

拨 1-800-448-7914 Bob

七 七

July 28 thru August 10, 1979

Have trouble finding time to study for Upgrading?

Do it on your vacation at the

OAK HILL ACADEMY
AMATEUR RADIO SESSION

20 years of successful teaching

Two weeks of intensive code and theory starting at your level.

Classes from Novice thru Amateur Extra
- Expert instructors
- Friendly surroundings
- Excellent Accommodations

C. L. PETERS, 4KDNJ, Director
Oak Hill Academy, Amateur Radio Session
Mouth of Wilson, Virginia 24363

Name ____________________________
Address ___________________________
City/State/Zip _______________________

ANTENNA MART

model sw-5 heavy duty -
REMOTE CONTROLLED ANTENNA SWITCH - $1350 plus $3 shipping
- order direct or write for brochure

ANTENNA MART
515-292-7114
box 1010, i.s.t. station, ames, iowa 50010

TOP QUALITY MOBILE ANTENNAS
FROM G & C Communications
- Stainless Steel Radiator
- Heavy Nickel-Chrome Plated Brass Base and Fittings
- Mounts Come with 17 RH-58AU and PL-259 Connectors.
- Compatible with Motorola TAD and TAE Mounts.

When ordering, suffix "T" indicates complete antenna assembly with trunk lid mount. Suffix "M" indicates for 1/2 wave mounting.

BM-2700T 27-31 MHz ½ wave horn-loaded 200 watt rating
Covers 10 meters or CB. Great mobile antenna for converted CB rigs 49" at lowest frequency and approximately 42" when cut for ten meters. Complete with trunk lid mount assembly $29.95

BM-MATH 144-174 MHz wave gain antenna. 200 watt rating. Complete $29.95

BM-MAT 58 or BM-MAT 22 ½ wave matching coils (these coils with whom allow same mounting assembly to be used on different bands) $29.95

BM-MAT 58 or BM-MAT 22 ½ wave gain antenna $29.95

Note: Deduct $4.00 from "T" price for "M" assemblies.

Additional Information On Other Antenna Models Available

G & C Communications
Dept. HH, 730 Cottonwood
Lincoln, NE 68510

We accept American Express, Master Charge, Visa, personal checks, and money orders only.
AUTHORIZED DEALER . . .
FOR OVER 50 MAJOR LINES.

NEW AND USED EQUIPMENT “Get on our used equipment mailing list.”
TRADES WELCOME “The best allowances anywhere”
“We buy good used SSB gear”

OUR EVERYDAY LOW PRICES “remain the same for cash or trade-ins!”
SAME DAY U.P.S. SHIPPING “Just a phone call away”
COMPLETE RADIO SERVICE SHOP “Mail Order Repair Service”
• Fast Efficient Service • Most Repairs Done and Shipped Within 7 Days
• We Repair All Brands • Amateur Extra/First Class Licenses
• All Work Guaranteed • Free Shipping Both Ways If Work Is Done
• Send Us Your Defective Equipment U.P.S. Collect

OUR FINE REPUTATION SPEAKS FOR ITSELF . . .
“YOU SHIP IT — WE FIX IT”

OPEN MON.-FRI. 10-6 • THURS. 10-8 P.M. • SAT. 10-4
EASY DIRECTIONS: Rt. 15 South — 2 blocks past McDonald’s (Berlin Turnpike)

“We can match most any other quote!”

“We want your used gear! — We will buy or trade.”
SUMMER SPECIALS

- Cush Craft "boomer" ... $79.95
- KLM 144-148 -13 lb. ... 59.95
- OMNI-J 6 & heavy duty magnet mount complete ... 49.95
- TRIEX W-51 FT self-support tower (Reg. $89) Your cost (FOB California) ... 791.00
- Tonna 898 Antennas 144/146 el. ... 69.95
- RIW 432/19.4 el. ... 59.95
- Klitzing VHF-UHF Amplifiers
 - 2M 10w - in - 100W Out ... 175.00
 - 420 ITW - in - 50W Out ... 189.00
 - Bird 43 and 43A, USP, paid in USA ... stock
- Microwave Modules 432-28S ... 329.95
- Deluxe Amp. 432-100W output ... 449.00
- Telrex TSBEM, in stock ... 415.00
- New Pushman Engr. Trans. Preamp ... 9.50
- Banker Paddles ... $39.95 Chrome ... 49.95
- ETO 76 Amplifiers ... stock
- Lunar 6M-220 In Line Preamps ... 49.95
- Lunar 2M Amp 10-80 w Preamp, UPS paid USA ... 196.00
- Janeli QS-5 ... 41.95
- CDE Ham-3 ... $129.95, Ham-X ... $209.95
- VHF Engrs blue line amps ... stock
- VHF Kits ... 29.50
- Midland 13-220 MHz - 12 ch - 10W 159.00
- 13-513 220 MHz synthesized ... 30-10.2W ... 389.00
- Motorola HEP ... 70.29
- Mallory S-25A/1000 PVI epoxy dioxide ... 5.50
- Non Linear C12000 Minivox ... 318.00
- Minicope - 215 ... 435.00
- -10%, accessories available
- Aeroveo 100/150/2000 Vehl feed thru ... 75.00
- GE6146B of 8900 ... 239.95
- Technical Books: Ameco, ARR, Sams, Tab, Rider Radio Pub, Callcock, Cowan, etc ... stock
- NEW Belden 9405 (#161#18) 8 wire rotary cable, heavy duty for long runs ... 0.28
- 8448 std. 8 wire rotary, per ft ... 0.17
- 9668 double shield RG6, Foam, per ft 0.42
- 8211 RG59, Foam ... 0.26
- 8237 RG6 ... 0.23
- 8267 RG213 ... 0.59
- Anpenhol Silver Plate PL259 ... 0.79
- Times 1/2" Foam Hardline $0.55/ft ... 149.95
- Connectors, ea ... 15.00
- 7/8" Hardline $1.50/ft ... 25.00
- Bernet RG8A, 53 ohm, Kw, per ft ... 0.16
- Consolidated HD-18 Galv Tower, 10' section ... 29.95
- Robot "Slant Scan" Now in Stock ... 109.95
- Telnet self-support ... 55 ft breakover ... 49.75
- 40 ft breakover ... 349.00
- Swan TB44a, T83a, T82 ... 20% off list Collins replacement parts available

Looking for antique parts? Write specific need to WSOJ

THIS MONTH'S SPECIALS:

- Icom IC280 ... $359.00
- Dentron GLA 1000 Amp ... $319.00
- Bearcat 250 ... $299.00
- Dentron Clipperton L ... $499.00

MASTERCARF • VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $1.00 minimum.

MADISON ELECTRONICS SUPPLY, INC.

1508 McKinley
HOUSTON, TEXAS 77002
713/685-0288

INDEX

- AED ... 710
- Aluma ... 589
- Amidon ... 409
- All-Com ... 733
- Antenna Mart ... 009
- Astron ... 734
- Atlantic Surplus * A-Tronx ... 382
- Audio Amateur ... 964
- Barry ... 233
- Budwig ... 799
- Cal Crystal ... 799
- Communications Center ... 534
- Corp. Spec. ... 330
- Creative Elec ... 751
- Curtis Electro ... 034
- Custom Cable ... 442
- DCO ... 324
- DSI ... 566
- Daves Co ... 551
- Data Signal ... 270
- Dave ... 24
- Dick Smith ... 577
- Ergie ... 745
- E.T.O. ... 797
- Elec. Research Virginia ... 288
- Fair Radio ... 048
- Fox Tangle ... 557
- G B C Comm. ... 754
- GLB ... 552
- Gen. Elec ... 799
- Grey ... 966
- Gregory * Group III ... 763
- Gulf ... 635
- Hal * ... 796
- Hal Tronx ... 254
- HBB ... 150
- H. R. Magazine ... 150
- Heads * ... 068
- Henry ... 062
- Hy Gain ... 064
- IRL ... 781
- Icon ... 351
- Int. Crystal ... 666
- Jameco ... 333
- Jan ... 067
- Jensen ... 293

*Please contact this advertiser directly. Limit 15 inquiries per request.

Advertisers Check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between number and name. Ex: Ham Radio 104

Advertisers Index

AED Electronics ... 97
Aluma Tower Co ... 96
Amazon Associates ... 90
Antec, Inc ... 70
Antenna Mart ... 98
Astron Corporation ... 98
Atlantic Surplus Sales ... 96
A-Tronx ... 75
The Audio Amateur ... 68
Barry Electronics ... 96
Budwey Mfg. Co ... 89
Cal Crystal Lab, Inc ... 88
Communications Center ... 96
Communications Specifications ... 102, 103
Creative Electronics ... 88
Curio Electronics ... 67
Cushcraft ... 1

DCO, Inc ... 106
DSI Instruments ... 60, 61, 81
Dunes Communications Systems ... 84
Data Signal, Inc ... 95
Dave, Inc ... 91
Dick Smith Electronics PTY LTD ... 91
Eagle Electronics ... 98
Ehrenh Technological Operations ... 111
Electronic Research Corp. of Virginia ... 98
Fair Radio Sales ... 76
Fox Tangle Corp ... 98
G.B. Communications ... 99, 108
GLB ... 76
General Electric ... 85
Gray Electronics ... 86
Gregory Electronics ... 88
Group III Sales Company ... 57
Hal Communications Corp ... 93
Hal Tronx ... 70
Ham Radio's Bookstore ... 92
Ham Radio Magazine ... 94, 95, 96
Heights Mfg. Co ... 57
Henry Radio Stores ... 118
Hy-Gain Electronics ... 44
I.R.L ... 5
Ilco ... 101
Info Tech ... 101
International Crystal ... 75
Jameco Electronics ... 59
Jan Crystals ... 76
Jensen Tools & Alloys ... 57
Jim Pak ... 80
Jones, Martin P & Assoc ... 90
Kantronics ... 108
Tric-Kenwood Communications, Inc ... 7, 56, 57
Klaus Radio, Inc ... 87
L Tronx ... 116
Larsen Antennas ... 76
Little Rock Hamara ... 76
Long's Electronics ... 102
Lunar Electronics ... 106
MFJ Enterprises ... 114
Madison Electronic Supply ... 92, 96
Microwave Filter, Inc ... 100
Oak Hill Academy Amateur Radio Session ... 108
P.C. Electronics ... 86
Palmer Engineers ... 69
Portable Communications Supply ... 100
Radio Amateur Callbook ... 94
Radio World ... 84
Rumsey Electronics ... 107
S.E.T. Electronics ... 69
Shaword Engineering ... 95
Space Electronics ... 95
Specronics ... 89
Spectrum Communications ... 97
Spectrum International ... 10
Swan Electronics ... 101
T.C.I ... 90
T.P.L Communications ... 99
Telrex Laboratories ... 51
Ten Tech ... 91
Texas RF Distributors ... 50, 51
The Communication Center ... 96
Thomas Communications ... 109
Tower Master ... 84
Tri Ex Tower Corporation ... 69
Van Gorden Engineering ... 90
Vanguard Labs ... 96
Varian, Elect. Develop. Corp ... 94
Webster Associates ... 94
Western Electronics ... 96
Whitewhuse, G.R. & Co ... 95
Wilcorp, Inc ... 98
Xitex Corporation ... 97
Yoel Electronics Corp ... 98

Advertisers Index

Advertisers Check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"
WHY WISH YOU’D BOUGHT ALPHA?

IS SOMETHING ELSE “JUST AS GOOD?”

New ALPHA owners often tell us, “I wish I’d saved my time and money and bought an ALPHA in the first place.” Why not benefit from their experiences? Compare first!

TRY TO GET ANY OTHER MANUFACTURER TO TELL YOU - IN WRITING - THAT IT’S SAFE TO OPERATE HIS DESK TOP LINEAR AT A FULL D-C KILOWATT... SAY FOR 24 HOURS KEY-DOWN. OR, ASK HIM FOR A FULL YEAR WRITTEN WARRANTY. LOTS OF LUCK!

YOUR NEW ALPHA WILL HAPPILY AND COOLY RUN THAT KILOWATT KEY-DOWN... FOR 24 DAYS IF YOU WISH. AND YOU’LL BE PROTECTED BY ETO’S UNMATCHED WARRANTY FOR TWO YEARS. WE PUT IT IN WRITING ALL THE TIME. IT’S THE WAY WE BUILD AND WARRANT EVERY ALPHA!

The new ALPHA’s are the best we’ve ever built. Nothing else even approaches an ALPHA’s combination of power, convenience, quality, and owner protection. The ETO/ALPHA two year limited warranty offers you eight times as much protection as the industry-standard 90 day warranty.

The new ALPHA 374A adds NO-TUNE-UP operation to all the other traditional ALPHA qualities and capabilities. You can hop instantly from one HF band to another, with full maximum legal power and with little or no amplifier tune-up at all! (If new amateur bands are added, you can manually adjust your ALPHA to work them, too.)

In 1974 the original ALPHA 374 set a standard of high power convenience that has remained unmatched since. Despite its small size, not even one 374 owner ever burned out a power transformer. Impressive? The new 374A has an even huskier power supply. And it has ETO’s ducted-air system with acoustically-isolated centrifugal blower to insure cool, whisper-quiet operation.

Before you get serious about any other brand of linear, compare its convenience and quality, its transformer heft, its cooling system efficiency and noise level - and its warranty - with the ALPHA’s. Be sure to ask around about its reputation.

Call or write for detailed literature and thoroughly check out all the great new ALPHA’s... so you don’t make a mistake.

EHRHORN TECHNOLOGICAL OPERATIONS, INC.
BOX 708, CAÑON CITY, CO 81212 (303) 275-1613
KLM KT-34 tribander
20, 15, and 10m antenna

349.95 List. Call for quote.

HY-GAIN TH6DXX tri-beam antenna

299.95 List. Call for quote.

CUSHCRAFT ATV-5 HF 5 band vertical antenna
Wide operating bandwidth: 2.1 SWR bandwidth with 50 ohm feedline is 1 MHz on 10 meters, more than 500 KHz on 15 and 20 meters. 160 KHz on 40 meters, and 75 KHz on 80 meters. Resonance can be adjusted C.W. or SSB. Coaxial connector takes PL-259. Hgt. 293 inches. 2000W all bands.

109.95 List. Call for quote.

HY-GAIN HB-MAG 287 Hy-bander foldover antenna
A magnet mount antenna with foldover for mounting on hatchback cars. 5/8 wave provides low angle radiation for maximum gain. Rachet foldover through 180 degrees. Hoids position in up to 120 mph. Less than 1.41 VSWR. 144-148 MHz, 3 dB gain. Available 286 trunk lip mount 15.95.

19.95 Call today.

B&W Vacationer™ 370-10 portable collapsable antenna
Covers: 40-2 meters and CB bands, complete with coils, shorting straps, antenna whip, insulator, bracket w/mounting stud, coax (RG58/U), and counter poise. Max length 57". Vise type mount. PL259 connector needed. VSWR is 1.1:1.

32.50 Call today.

HY-GAIN 205BA monoband beam antenna

289.95 List. Call for quote.

DENTRON All band doubler antenna
Cover 160-10 meters, has a total length of 130' (14 ga. stranded copper) Center fed thru 100' of 470 ohm PVC covered, balanced transmission line. Assembly is complete. Antenna tuner required. Tunes 160 thru 10 with 1 antenna.

24.50 Call today.
NEW FT-7B 100 W
MOBILE/BASE HF TRANSCEIVER

Enough power to drive those linears! The FT-7B is the high powered version of the popular 20 watt FT-7 that so many hams are running mobile in cars, boats, and planes around the world. Use the FT-7B as a top quality base station. New improvements include an audio peak filter (like our FT-901DM) to give you super CW selectivity, drive control, four 10M positions, full 80-10M coverage, 28.5-29.0 MHz crystal supplied (other crystals available as options), optional YC-7B Plug-in Remote Digital Readout, optional FP-12 Speaker/Power Supply Console.

RECEIVER
Sensitivity: 0.5uV for S/N 20 dB
Image rejection: Better than 50 dB
IF rejection: Better than 50 dB
Selectivity: -6 dB: 2.4 KHz, -60 dB: 4.0 KHz
Cross-modulation: Better than 60 dB immunity at 20 KHz off a 20 dB input signal
typical
Audio output: 3 watts @ 10% THD

TRANSMITTER
Emission: LSB, USB (A3j), CW (A1), AM (A3)
Input power: A1, A3j; 100 watts DC
Carrier suppression: Better than 50 dB below rated output
Unwanted sideband suppression: Better than 50 dB @ 1000 Hz
Spurious emission: Better than -40 dB
Distortion products: Better than -31 dB

Price And Specifications Subject To Change Without Notice Or Obligation

The radio.

YAESU ELECTRONICS CORP., 15954 Downey Ave., Paramount, CA 90723 • (213) 633-4007
YAESU ELECTRONICS Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246
From transistor to 25kW is one easy step with EIMAC.

EIMAC high-gain tetrode and cavity combination for FM and TV.

The new EIMAC 8990 and companion CV-2200 cavity amplifier are expressly intended for single-tube 25 kW FM and TV service. This tough tetrode exhibits a power gain over 20 dB and has a rated anode dissipation of 20 kW. It's also ideally suited to VHF-TV linear service, thanks to the new low-loss internal structure.

EIMAC's 8989 is a similar tetrode, rated for 10 or 15 kW FM service in the CV-2210 cavity. The 8989 is suitable for VHF-TV service as well.

For complete information:
Get a copy of EIMAC's Quick Reference Catalog and Data Sheets on the 8989 and 8990 from Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

For more information on Varian's CTC Transistors operating in the 88 to 108 MHz range, contact Varian, CTC Division, Telephone (415) 592-9390.

Tomorrow's new generation today.
EIMAC's 8989 and 8990 new-generation tubes augment the 4CX5000A, 4CX10000A, and 4CX15000A in today's new equipments. High power gain, improved electrical stability and low internal inductance combine to provide tomorrow's power tube today.