Historically, Amateur Radio operators have made important contributions to the art and science of communications. Once again Amateur Radio assumes leadership in advanced communications technology. You have the privilege of being one of the first to include a Narrow Band Voice Modulation (NBVM) system in your station. The VBC Model 3000 is the system that you have been hearing about for a year and have read about recently in QST and the 1979 ARRL Handbook. It is the world's first such system.

The VBC Model 3000 provides full audio level compression and expansion... complete intelligibility in only 1300 Hz bandwidth. It permits you to take full advantage of other stations' RF speech clipplers and processors... similar to the amplitude compression and expansion used for many years in telephone and satellite communications. The Model 3000 is for mobile and fixed station use and requires no modifications to your existing equipment. It is completely self contained, including its own audio amplifier. The unit automatically switches into transmit mode when microphone is keyed or voice operation is used. It connects just after the microphone on transmit and just prior to the speaker on receive. In addition to its basic function of operating in a narrow bandwidth, the Model 3000 also increases the performance of your station in the following ways:

- Reduces adjacent channel interference
- Increases signal to noise ratio
- Increases communications range

Some of its outstanding features include:
- High quality narrow band speech
- Self contained transmit/receive adapter
- Built in audio amplifier
- 5 active filters with a total of 52 poles
- Rugged dependable hybrid IC technology
- Low power consumption

Receive only features, such as sharp voice and CW filtering and amplitude expansion, provide improved reception without requiring a unit at the transmitting station. For the more advanced experimenter the Model 3000 is available in a circuit board configuration for building into your present transceiver.

Henry Radio is ready to offer technical assistance and advice on the use and servicing of the Model 3000 and will help introduce new owners to others operating NBVM units. Get in on the ground floor... order yours now.

Price: VBC Model 3000 $349.00
Circuit board configuration $275.00

For more detailed information please call or write. The Model 3000 will be available from most Tempo dealers throughout the U.S. and abroad.
DSI Super Meter

Transistor Tester — VOM

Diode Protected • Fused • Gold Plated Selector Switch

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Measurement Ranges</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCV</td>
<td>0 - .1V - .5V - 2.5V - 10V - 50V - 250V - 1000V</td>
<td>± 3% fs</td>
</tr>
<tr>
<td>ACV</td>
<td>0 - 10V - 50V - 250V - 1000V - 30Hz to 30kHz</td>
<td>± 4% fs</td>
</tr>
<tr>
<td>DCA</td>
<td>0 - 50µA - 2.5mA - 25mA - 250mA</td>
<td>± 3% fs</td>
</tr>
<tr>
<td>f</td>
<td>2 to 20MHz Range x 1 x 10 x 1k x 10k</td>
<td>± 3% arc</td>
</tr>
<tr>
<td>dB</td>
<td>+10db - +22db for 10VAC</td>
<td>± 4% fs</td>
</tr>
<tr>
<td>ICEO</td>
<td>0 - 150µA x 1k 0 - 15mA x10 0 - 150m x 1</td>
<td>± 3% arc</td>
</tr>
<tr>
<td>HFE</td>
<td>0 - 1000 @ x 10 ln</td>
<td>± 3% arc</td>
</tr>
</tbody>
</table>

- DC VOLTAGE
- DC CURRENT
- AC VOLTAGE
- Ω RESISTANCE
- AF OUTPUT — DB
- 20kΩ PER VOLT
- HFE DC AMP FACTOR
- ICEO LEAKAGE

$29.95

MODEL

YF-370

COMPARATIVE VALUE 49%

YF-370 $29.95

Shipping, Handling and Ins... $3.00

Every YF-370 is factory assembled, tested, and includes diode protected meter movement with a fused input and an extra fuse. The switch assembly has double wiping gold plated contacts to assure years of trouble-free service. At this low price buy two...one for the car and one for the shop.

CALL TODAY TOLL FREE: (800—854-2049) Calif. Res. CALL (800—542-6253) TO ORDER OR RECEIVE MORE INFORMATION ON DSI's FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10HZ TO 1.3GHz.

TERMS: MC — VISA — AE — Check — M.O. — COD in U.S. Funds. Orders outside of USA & Canada, please add $5.00 additional to cover air shipment. California residents add 8% Sales Tax.

DSI INSTRUMENTS, INC.

7924 Ronson Road, Dept. G, San Diego, CA 92111
NEW MFJ-962 1.5 KW Versa Tuner III

For $159.95 you can run up to 1.5 KW PEP and match everything from 1.8 thru 30 MHz: coax, balanced line, random wire. Built-in balun. SWR, dual range forward and reflected power meter. Flexible six position antenna switch. Outstanding value.

Where else can you get a 1.5 KW Tuner with SWR, dual range forward and reflected power meter, antenna switch and balun for only . . .

$159.95

The NEW MFJ-962 1.5 KW Versa Tuner III lets you run up to 1.5 KW PEP and match any feedline continuously from 1.8 to 30 MHz: coax, balanced line or random wire.

This gives you maximum power transfer to your antenna for solid QSO's and attenuates harmonics to reduce TVI and out-of-band emission.

An accurate meter gives SWR, forward, reflected power in 2 ranges (2000 and 200 watts).

A flexible six position antenna switch lets you select 2 coax lines thru tuner or direct, or random wire and balanced line.

A new all metal, low profile cabinet gives you RFI protection, rigid construction, and sleek styling. Black finish. Black front panel has reverse lettering. 5x14x14 inches. A flip down wire stand tilts tuner for easy viewing.

Efficient, encapsulated 4:1 ferrite balun. 500 pf, 6000 volt capacitors, 12 position inductor, ceramic switches. 50-239s, ceramic feedthrus. One year limited warranty.

Every single unit is tested for performance and inspected for quality. Solid American construction, quality components. One year limited warranty.

After a truly side by side comparison, you'll be convinced that its value, quality and features make it a truly outstanding value.

Why not visit your dealer today? If no dealer is available order direct from MFJ.

The MFJ-961 1.5 KW Versa Tuner III gives you a flexible six position antenna switch. It lets you select 2 coax lines thru tuner or direct, or random wire and balanced line.

Run 1.5 KW PEP. Match any feedline from 1.8 to 30 MHz: coax, balanced line, random wire.

Gives maximum power transfer. Harmonic attenuation reduces TVI, out of band emissions.

Black all metal cabinet. Black front panel has reverse lettering. Flip down wire stand tilts tuner. 5x14x14 inches.

Encapsulated 4:1 ferrite balun. 500 pf, 6000 volt capacitors, 12 position inductor, ceramic switches. 50-239s, ceramic feedthrus. One year limited warranty.

Every single unit is tested for performance and inspected for quality. Solid American construction, quality components.

For your nearest MFJ dealer, call toll-free 800-647-1800. Visit your dealer and compare. You'll find real value.

Why not see the NEW MFJ-961 1.5 KW Versa Tuner III at your dealer's today? If no dealer is available order direct from MFJ.
JUNE 1979
volume 12, number 6

T. H. Tenney, Jr., WINLB
publisher
James R. Fisk, W1HR
editor-in-chief

editorial staff
Martin Harris, WB1CHQ
administrative editor
Charles J. Carol, K1XK
Patrick A. Hewes, WAIWPM
Alfred Wilson, WNF
associate editors
Thomas F. McMullen, Jr., W1SL
Joseph J. Schneider, W1UV
associate editors

publishing staff
J. Craig Clark, Jr., NIACH
assistant publisher
Fred D. Miller, Jr., W1AUSO
advertising manager
James R. Gray, W1XU
assistant advertising manager
James R. Wilson, art director
Susan Shamrock
circulation manager

ham radio magazine
is published monthly by
Communication Technology, Inc.
Greenville, New Hampshire 03048

subscription rates
United States: one year, $15.00
Canada and other countries: $17.00
Address all editorial and advertising correspondence to
Greenville, New Hampshire 03048

foreign subscription agents
Foreign subscription agents are listed on page 33

microwave readers
are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3016
Copies of selected articles from this magazine
are available to the
blind and physically hand-capped
from Recorded Periodicals
919 Walnut Street, 8th Floor
Philadelphia, Pennsylvania 19107

Copyright 1979 by
Communications Technology, Inc.
Title registered at U. S. Patent Office

Second class postage
paid at Greenville, N. H. 03048
and at additional mailing offices

Subscription inquiries and changes of
address should be directed to ham radio
magazine, Greenville, New Hampshire 03048

Please include address label from most
recent issue if possible

Postmaster send Form 3579 to ham radio
Greenville, New Hampshire 03048

contents
12 rf power amplifier design
William I. Orr, W6SAI

19 AFC circuit for VFOs
Read C. Easton, K6EHV

24 satellite tracking systems
William D. Johnston, N5KR

32 diode noise source
Robert S. Stein, W6NB

46 160-meter magnetometer
Kenneth F. Carr, W8KUS

50 Digiscope — TTL test instrument
Thomas L. Seevers, W8BQI

58 talking digital readout
Raymond W. Brandt, N9KV

64 packet radio — computer linking
Ian Hodgson, VE2BEN

70 biquad bandpass filter
James M. Rohler, N6DE

74 gallon-size dummy load
Robert P. Haviland, W4MB

78 digital techniques: multivibrators
and analog interfacing
Leonard H. Anderson

4 a second look

110 advertisers index
96 coming events
78 digital techniques
93 flea market
104 ham mart

84 ham notebook
6 letters
86 new products
8 presstop
110 reader service
70 weekender

june 1979
Beginning with a small handful of amateur wireless operators in the early 1900s, the Amateur Radio population in the United States has grown to the point where it’s now approaching 360,000. Last year the growth rate was about 8 per cent, down slightly from 1977, and this year it is expected to be about the same. And while orderly growth is healthy for the hobby, in many ways the Amateur Radio Service is like the proverbial “house that Jack built,” with rooms added as they are required, with little thought to future construction — or indeed, to the esthetics of the architecture!

If you study the history of Amateur Radio, it’s easy to understand why this happened: for years there were more licensed Amateur Radio stations in this country than all the other radio services combined, many top members of the FCC were hams, and the management ranks of most major radio-electronics firms were filled with licensed amateurs — many, in fact, began their careers as Radio Amateurs. With influential friends in high places who had a vested interest in Amateur Radio, most operators gave little thought to the future. The complexion of Amateur Radio has changed over the years, however, and it’s obvious that we can no longer afford such a laissez faire attitude toward our future.

One matter that concerns many of the older hams is that in the past 25 years the character of Amateur Radio has evolved slowly away from being a technician’s hobby, where much of the operating equipment was homebuilt, to an operator’s hobby, where little or no technical expertise is required. This is not necessarily a problem because our activities are closely linked not only to a rapidly changing technology, but to a dynamic society that continually confronts Amateur Radio with new obstacles, challenges, and opportunities for providing useful public service. Nevertheless, more thought must be given to the impact of this trend on the long range future of Amateur Radio.

With a steadily increasing number of amateurs and greater government intervention in terms of changed licensing regulations, restrictive antenna covenants, and RFI requirements (not to mention WARC 79 and the proposed revision of the Communications Act), it’s increasingly apparent that all of us must give some serious thought to where the Amateur Radio Service should be in the coming decade. While long-range planning is hardly an exact science, it is possible to anticipate some of the problems, to perceive certain distant opportunities, and to develop appropriate recommendations. If we put our collective heads together, we should be able to plot a positive future course for Amateur Radio — rather than drifting out of control as we have for the past few years, reacting to external events as they have occurred. Positive results, however, will require a substantial amount of effort on a continuing basis by a large number of concerned amateurs. Complaining about the current state of affairs or railing about the “system” in the press is neither positive nor constructive.

Those of you who have read my editorials for the past eleven years know that I have pointedly avoided the politics of Amateur Radio. Therefore, when I suggest that a possible focus for future planning activities is the ARRL’s Long-Range Planning Committee, you know that suggestion is not politically motivated. For those of you who are not members of the ARRL, the Long-Range Planning Committee was established by the ARRL Directors in January for the purpose of “reviewing and making recommendations concerning programs which the ARRL is and should be providing to its members and to the Amateur Radio Service . . .”

At its initial meeting in February the members of the committee, according to one of those present, agreed upon several criteria which would govern the committee’s activities:

1. The general welfare of the entire Amateur Radio Service was to be served, not just parts of it.
2. No fact of the ARRL’s operation was exempt from scrutiny.
3. A subject as complex and far reaching as the future of Amateur Radio cannot be properly appraised without inputs from many different people — ARRL members or not.

If you have any comments or recommendations about the future of Amateur Radio, make it a point to let the Long Range Planning Committee (LRPC) have the benefit of your thoughts. A letter or card to Vic Clark, W4KFC (12927 Popes Head Road, Clifton, Virginia 22024), marked for the attention of the LRPC, will be acknowledged, and Vic will make sure that your comments are available to each of the members of the committee.

Jim Fisk, W1HR
editor-in-chief
The Final Warranty

Final Amplifier of the IC-701 HF Transceiver

When you look inside the purchase price of a new radio, go all the way to the bottom; and ask about the warranty coverage of the solid state finals. Surprisingly, most amateur radio manufacturers leave their final amplifiers less than fully guaranteed, which can get you caught with your finals down, just when you're expecting to be protected from repair costs on your brand new rig.

When you look into an ICOM radio, you see our quality and our confidence throughout. That's why ICOM radios are covered from front to finals during the entire new purchase warranty period. We're confident that an ICOM radio is simply the best value available for your Amateur Radio dollar, and we back it up with the final warranty.

So, when you look into the purchase of a new radio, look close for true value: look close for quality and confidence. And as you approach the final choice, ask your dealer about the final warranty. He'll tell you that when you choose ICOM, you're covered.

ICOM INFORMATION SERVICE
3331 Towerwood Dr., Suite 304
Dallas, Texas 75234

Please send me a full-color ICOM Product Line Catalog and a list of Authorized ICOM Dealers.

NAME ___________________________ CALL ___________________________

ADDRESS ___________________________

CITY ___________________ STATE __________ ZIP __________

All ICOM radios significantly exceed FCC regulations limiting spurious emissions. Specifications subject to change without notice.

HF/VHF/UHF AMATEUR AND MARINE COMMUNICATION EQUIPMENT

ICOM WEST, INC.
9944 3rd
Bellevue, Wash. 98005 (206) 747-9280

ICOM EAST, INC.
Suite 507
3331 Towerwood Drive
Dallas, Texas 75234
(214) 620-2780

ICOM CANADA
7511 43rd Dr.
Vancouver B C V6P 3Y8
Canada
(604) 321-1833
longhand printed-circuit layout

Dear HR:

The article, “Printed-Circuit Layout Using the Longhand Method,” which appeared in the November, 1978, issue of *ham radio* was especially interesting to me because I have been using the described technique for the past two years. However, the additional steps which I use will produce a better board and are desirable with high-density boards. First, lines on the paper pattern which represent the copper should be made red and the circuit components should be shown black. This makes reading and interpretation easier. Second, when the pattern is transferred to the copper foil surface by marking with a sharp point, the points should not be deep enough to produce burns (burrs tear the pen point and eventually make it difficult to produce a clean fine line). Third, after the points are on the copper those which are connected should be joined by a pencil line. This is important on a high-density board because it permits inking the lines rapidly and the pen point does not have time to dry. Lines produced with a dry point must be retraced; a smeared line is nearly always the result.

Maximum ground-plane area is a requirement for RF circuits, especially for VHF circuits. Filling in all the blank area with a pen is tedious and it’s difficult to make the area completely resistant to the etch solution. Tape can be used but covering small irregular areas is difficult. I find that an easy method is to outline the ground plane area first with the pen, then fill in all the enclosed area with the blue dye used by tool makers and machinists. I have tried many inks and paints for this step, and the blue machinists dye is superior to all others. It is easy to apply with a small brush and dries rapidly. The board may be etched minutes after application. A coat which appears too thin will resist the etchant even at elevated temperature. The ink wets the copper surface and flows easily but stops when it contacts the previously applied line.

The machinists dye is also useful for producing plug patterns on circuit boards. Coat a 1-cm (½-inch) strip at the board edge and use a sharp point or jeweler’s screwdriver to remove the ink from areas between the contacts. Use an old plug, placed against the board edge, for a pattern. It is easy to produce 22-contact plug patterns with this method.

I have used two types of the blue dye. One is called *Dyken Steel Blue* and is a product of Dyken Corporation of St. Louis, Missouri. Another is called *Mike-O-Blue* and is sold by Ashburn Industries of Houston, Texas. A four-ounce can is adequate for many boards.

This “longhand” method will produce high-quality circuit boards which have clean lines and ground-plane areas without pit marks commonly found on boards which have been prepared by other methods. Boards with 3-mil copper foil can be etched in less than ten minutes in a 50 percent etch solution (ferric chloride) heated by placing it in a tray or plastic dish floated in hot water. Use only enough etch solution to cover the board about 1 cm (½ inch) and agitate during etching to provide a washing action. In addition, the copper surface can be seen during the process so the board may be removed when completed.

I have tried many types of ink pens and find that the *Sharpie* brand is best; their number 49 has the best point. Store the pen with the point down, this aids in keeping a generous supply of ink in the point and is always ready to use.

During the past years I have spent many hours trying to find an easy method for producing “longhand” etched circuit boards and have concluded that the technique described in *ham radio*, along with the additions indicated above, is the best.

Robert J. Grabowski, W5TKP
Houston, Texas 77005

Dear HR:

During a literature search for an electronics project I recently went through my file of *ham radio* — and was distracted for three evenings reading the fine articles in three years of issues! Yours is by far the highest quality journal of all those devoted to Amateur Radio; please don’t compromise that quality.

Guy Rothwell, KH6JCD
Kailua, Hawaii

Dear HR:

I just breadboarded the CW processor described by Jones in the October, 1978, issue of *ham radio*. It’s really sharp! However, the 555 oscillator interacts with the operation of the 576. To cure this problem, I’ve installed a 100-ohm resistor between the 5-volt line and pin 8 of the 555, and a 220-μF capacitor between pin 8 and ground. It makes a real improvement.

Jeff Davis, VE3CBJ
Grimsby, Ontario
The Great Rebate of '79
UP TO $50.00
From KENWOOD

(Good April 15, 1979 through June 15, 1979)

- TS-820S / $50.00 rebate
- R-820 / $50.00 rebate
- TR-7600 / $20.00 rebate
- TL-922A / $50.00 rebate
- R-300 / $20.00 rebate
- TS-700SP / $35.00 rebate
- RM-76 / $20.00 rebate

Get a "GREAT REBATE" Coupon at your nearest Authorized Kenwood Dealer.

<table>
<thead>
<tr>
<th>State</th>
<th>Address and Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>Long's Electronics 2608 7th Avenue South Birmingham 35233</td>
</tr>
<tr>
<td>ALASKA</td>
<td>Reliable Electronics 1086 4th Avenue Anchorage 96609</td>
</tr>
<tr>
<td>ARIZONA</td>
<td>Power Communications 5025 North 27th Avenue Phoenix 85017</td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>Kergis 960 Howard Avenue Burlingame 94010</td>
</tr>
<tr>
<td></td>
<td>Ham Radio Outlet 13754 Victory Boulevard Van Nuys 91404</td>
</tr>
<tr>
<td></td>
<td>Ham Radio Outlet 2626 West La Palma Anaheim 92801</td>
</tr>
<tr>
<td></td>
<td>Ham Radio Outlet 2075 Keeny Villa Road San Diego 92123</td>
</tr>
<tr>
<td></td>
<td>Henry Radio Company 931 North Euclid 92801</td>
</tr>
<tr>
<td></td>
<td>Henry Radio, Inc. 11240 West Olympic Blvd. Los Angeles 90064</td>
</tr>
<tr>
<td></td>
<td>Webster Radio 2607 East Ashlan Fresno 93726</td>
</tr>
<tr>
<td>COLORADO</td>
<td>CW Electronics 1401 Blake Street Denver 80202</td>
</tr>
<tr>
<td>FLORIDA</td>
<td>Amateur Electronic Supply 421 Commonwealth Orlando 32803</td>
</tr>
<tr>
<td></td>
<td>Amateur Radio Center 2900 Northeast Second Ave. Miami 33137</td>
</tr>
<tr>
<td></td>
<td>Grist Electronics 320 East Gregory Street Pensacola 32501</td>
</tr>
<tr>
<td>HAWAII</td>
<td>Lafayette Electronics 1115 McCull Associates Honolulu 96814</td>
</tr>
</tbody>
</table>

Honolua Electronics 815 Keeaumoku Street Honolulu 96814

HONOLULU

IDAHO

Roe Distributing Company 78 South State Street Preston 83853

ILLINOIS

Effkele Communications 5456 North Milwaukee Ave. Chicago 60630

Klaus Radio 8400 North Pioneer Parkway Palos 80654

INDIANA

Graham Electronics 153 South Pennsylvania Indianapolis 46240

Hooiser Electronics 43-S Meadows Shopping Ctr. Terre Haute 47802

Kryder Electronics 2810 Maple Road Ft. Wayne 46805

IOWA

HI Incorporated 1601 Avenue "D" Council Bluffs 51501

KANSAS

Associated Radio 6102 Bass Overland Park 66204

MAINE

Creag Radio Company Route One Bypass South Kittery 03904

MARYLAND

Electronic International 11305 Elklin Street Wheaton 20902

Professional Electronics 1710 John Avenue Baltimore 21224

MASSACHUSETTS

Tutte Electronics 200 Mystic Avenue Medford 02185

MICHIGAN

Radio Supply And Eng. 85 Golden Avenue Detroit 48201

MINNESOTA

Electronic Center 127 Third Avenue North Minneapolis 55401

MISSOURI

Ham Radio Center 5342 Olive Boulevard St. Louis 63132

Henry Radio Company 211 North Main Street Butler 66730

Midcon Electronics 2506 South Brentwood Blvd. St. Louis 63144

MONTANA

Conley Radio Center 318 North 16th Street Billings 59101

NEBRASKA

Communications Center 443 North 48th Street Lincoln 68504

NEW MEXICO

Electronic Module 601 North Turner Hobbs 88240

NEW YORK

Adromitech Radio Supply 185 West Main Street Amsterdam 12012

Ham Radio 30 Smith Street Farmingdale, L.I. 11735

NORTH CAROLINA

Bob's Amateur Radio Center 318 N. Main Street Salisbury 28944

Vickers 500 East Main Street Durham 27701

OHIO

Amateur Electronic Supply 28642 Euclid Avenue Wickliffe 44092

Brogan Electronics 314 Lee Street Dayton 45404

OKLAHOMA

Derricke Electronic 714 West Kenosha Broken Arrow 74012

Radio, Incorporated 100 South Main Tulsa 74119

OREGON

Portland Radio 1234 SW Stark Street Portland 97205

PENNSYLVANIA

Electron Exchange 138 Main Street Souderton 18964

Penntronics 4033 Brownsville Road Trevose 19047

J.B.S. Distributors 645 West Market Street York 17404

SOUTH CAROLINA

Acosta 420 Laurens Road Greenville 29607

G.I.S.M.O. Communications 3205 Cherry Road Rock Hill 29730

SOUTH DAKOTA

B Nigel Amateur Center 124 First Avenue NW Watertown 57201

TENNESSEE

Amateur Radio Supply of Nashville 615 Gallatin Road Madison 37115

Sears-Roebuck & Co. 1465 W. 4th Ave. Memphis 38106

TEXAS

AGL Electronics 3006 Forest Lane #309 Dallas 75234

Drake Electrics 112 South Lakes Corpus Christi 78404

Electronics Center 2629 North Haskell Dallas 75204

Madison Electronics 1505 McKinney Avenue Houston 77002

UTAH

Manville Supply Company 2780 South Main Street Salt Lake City 84115

WASHINGTON

ABC Communications 17500 15th Avenue NE Seattle 98135

Amateur Radio Supply Company 6213 13th Avenue South Seattle 98106

WISCONSIN

Amateur Electronic Supply 4828 West Fon du Lac Milwaukee 53218

As of June 1979, only the above are fully authorized Tri-Kenwood dealers.
WART: Management Association of Southern California and seven individuals, were denied by the Mode J.

Observatory and the Naval Research Laboratory on the proposed Virginia-West Virginia

generally critical document was almost contemptuous in its dismissal of the efforts of a "party line" response. Words like "propaganda, fiction, and "parrot-like" abound in the government's lengthy rebuttal. While acknowledging Amateur Radio has some value, the government repre-
sentatives strongly took the League to task for its inactivity.

The Number Of Respondents and their enthusiasm seem to have caught the Commission's attention, from staff level up. Japan's experience, where very elementary Amateur licenses have been granted, lead into a domestic restructuring of 10-meter Amateur use with a rapid influx of new "Amateurs" from 27-MHZ SSB ranks.

Nothing Of This Nature is likely to happen in the immediate future due to the immin-
ence of WARC and the current state of the FCC - still in the throes of reorganization. Is it likely that a new and very hard look at the domestic Amateur service after WARC from a new "consumer oriented" FCC with little knowledge of or concern for traditional Amateur Radio values.

BOTH RUSSIAN SATELLITES may be off the air for good. UA3CR is reported to have told G3IOR in an April conversation - "Both transponders will not be on again!" Telemetry on RS-1's weak beacon has been indicating battery trouble.

Simultaneous Mode A And Mode J operation will be offered by OSCAR 8 on Tuesdays and Fridays, effective June 1. Wednesdays will continue to be Experiment Days, primarily Mode J.

PETITIONS TO RECONSIDER MARITIME mobile's proposed 220 MHz allocation in the U.S.

WARC position have been denied by the FCC. The petitions, filed by the 220 MHz Spectrum Management Association of Southern California and seven individuals, were denied by the Commission on the grounds that the WARC position was the result of four years of extensive consideration of the needs and problems of all the services concerned.

Amateurs Received Hard Knocks in Reply Comments filed by the National Radio Astronomy Observatory and the Naval Research Laboratory on the proposed Virginia-West Virginia "quiet zone" (FCC Docket 78-352). In their very substantial filing the government representa-
tives strongly took the League to task for leading the Amateur community astray into a "party line" response. Words like "propaganda," "fiction," and "parrot-like" abound in the government's lengthy rebuttal. While acknowledging Amateur Radio has some value, the generally critical document was almost contemptuous in its dismissal of the efforts of those concerned Amateurs who made the effort to make their feelings known.

THE LONG AWAITED U.S.-HAITI reciprocal agreement was signed April 2 by Haiti, and now awaits State Department action.

ST. VINCENT'S VOLCANIC ERUPTION in the middle of April essentially destroyed conventi-
on communications throughout the Caribbean island as it left over 15,000 homeless. Amateur Radio immediately filled the breach, beginning when VPs2 SQ, SHE, SAIZ, SK, and others set up a communications center at police headquarters. Other Amateurs operating from police stations and relief centers throughout the island have since provided almost all communications for the hard hit nation.

Island Premier Milton Cato relayed a message to Miami Coast Guard via KV4FZ requesting help which was immediately forthcoming with three helicopter-equipped Coast Guard cutters, the Gallatin, Vigilant, and Dallas. Herb also requested an emergency OK for third-party traffic from the FCC and State Department - it was forthcoming in only ½ hours! Following the OK, 7152 (daytime), 3802 (night), 14287 (health and welfare via KA2CPA) and 14313 were all busy with emergency traffic.

Coast Guard And Military, along with the Amateurs, all used the Amateur bands for essential communications, K5PG/MM on the Gallatin, while the other cutters (without licensed Amateurs) were using their Coast Guard identification. C-130 transports from the Canal Zone, bringing in relief supplies, communicated principally on 40 meters. Amateur Bands also supplied inter-island communications. 8P6AA and 8P6AH have a link operating between the embassy in Barbados and St. Vincent police headquarters, handling all the relief traffic with that near-by country.

RECENT 27-MHZ EXPANSION PROPOSALS could actually threaten the Amateur 10-meter band as the Washington scene appears to be shaping up. Both the CB Magazine proposal for adding SSB CB channels (RM-3299) and the Washington State CB Radio Association's Petition for a new hobby class "Amateur" allocation below 28 MHz (RM-3317) are reported receiving very heavy positive response, almost entirely from CBers, CB organizations and (assumedly) those already active in the 27405-28000 kHz spectrum. The comments, almost without exception, endorse the merits of more flexible, higher power, longer range communications, and often cite a basic, no-code Amateur license as part of the package.

The Real Threat to the present integrity of 10 meters thus lies in the Washington State petition. Under present international allocations, the frequencies they want for a new "Amateur" service are not Amateur, and it's inconceivable that the FCC would opt to make such an allocation on the eve of a World Administrative Radio Conference. (CB Magazine's proposed CB expansion would, on the other hand, be legitimate now.) The problem with the Washington State proposal is that it could, without too much stretching, lead into a domestic restructuring of 10-meter Amateur use with a rapid influx of new "Amateurs" from 27-MHz SSB ranks.

Amateur Bands also supplied inter-island communications. VP7JW and VP2S are also being looked at closely. Ross and a few others set up a communications center at the Water Garden Hotel, while the other cutters (without licensed Amateurs) were using their Coast Guard identification. C-130 transports from the Canal Zone, bringing in relief supplies, communicated principally on 40 meters. Amateur Bands also supplied inter-island communications. 8P6AA and 8P6AH have a link operating between the embassy in Barbados and St. Vincent police headquarters, handling all the relief traffic with that near-by country.

The Number Of Respondents and their enthusiasm seem to have caught the Commission's attention, from staff level up. Japan's experience, where very elementary Amateur licenses have been granted, lead into a domestic restructuring of 10-meter Amateur use with a rapid influx of new "Amateurs" from 27-MHz SSB ranks.

Nothing Of This Nature is likely to happen in the immediate future due to the immin-
ence of WARC and the current state of the FCC - still in the throes of reorganization. Is it likely that a new and very hard look at the domestic Amateur service after WARC from a new "consumer oriented" FCC with little knowledge of or concern for traditional Amateur Radio values.

BOTH RUSSIAN SATELLITES may be off the air for good. UA3CR is reported to have told G3IOR in an April conversation - "Both transponders will not be on again!" Telemetry on RS-1's weak beacon has been indicating battery trouble.

Simultaneous Mode A And Mode J operation will be offered by OSCAR 8 on Tuesdays and Fridays, effective June 1. Wednesdays will continue to be Experiment Days, primarily Mode J.

PETITIONS TO RECONSIDER MARITIME mobile's proposed 220 MHz allocation in the U.S.

WARC position have been denied by the FCC. The petitions, filed by the 220 MHz Spectrum Management Association of Southern California and seven individuals, were denied by the Commission on the grounds that the WARC position was the result of four years of extensive consideration of the needs and problems of all the services concerned.

Amateurs Received Hard Knocks in Reply Comments filed by the National Radio Astronomy Observatory and the Naval Research Laboratory on the proposed Virginia-West Virginia "quiet zone" (FCC Docket 78-352). In their very substantial filing the government representa-
tives strongly took the League to task for leading the Amateur community astray into a "party line" response. Words like "propaganda," "fiction," and "parrot-like" abound in the government's lengthy rebuttal. While acknowledging Amateur Radio has some value, the generally critical document was almost contemptuous in its dismissal of the efforts of those concerned Amateurs who made the effort to make their feelings known.

THE LONG AWAITED U.S.-HAITI reciprocal agreement was signed April 2 by Haiti, and now awaits State Department action.
Novice, QRP, 200 w. deluxe — good, better, best — $299, $369, $399, $699, $869, $899, $1069. TEN-TEC has them all. A choice of seven HF transceiver models — a choice of power levels — a choice of operating features (and accessories) for beginner or old timer. Best of all, there's a wide choice of prices to fit every amateur budget.

TEN-TEC "OMNI" TRANSCEIVERS — REALLY CHOICE.
Top of the line. Deluxe in every respect. Deserving of a place in the finest of operating positions. All solid-state 100% duty cycle 200-watt final amp; 8-bands (160-10 m plus convertible 10 MHz and "Aux" band positions); broadband design for no tune-up; built-in VOX and PTT; built-in Squelch; 4-position CW-SSB filter and 8-pole crystal filter with separate mode switch to permit using all filters in all modes; 2-speed break-in; 2-range offset tuning; optimized sensitivity from 2 µV on 160 m to 0.3 µV on 10 m; greater dynamic range (typically better than 90 dB) plus PIN diode switched 18 dB attenuator; WWV at 10 MHz; front panel control of linear/antenna bandswitching; phone patch jacks; "timed" crystal calibrator (on "A" model only); zero-beat switch; SWR bridge; adjustable ALC and sidetone; dual speakers; plug-in boards; "damshell" aluminum case with black vinyl covering plus warm dark metal front panel; full shielding, optimum size for convenient operation: 5½"h x 14¼"w x 14½"d. Model 545 OMNI-A with analog dial, only $899; Model 546 OMNI-D with six 0.43" LED digital readouts, $1069. Model 645 keyer, $85, Model 243 Remote VFO, $139, Model 248 Noise Blanker, $49, Model 252 MO AC Power Supply, $119.

TEN-TEC "ARGONAUT" TRANSCEIVER—QRP CHOICE.
The challenge and excitement of working the world on 5 watts. And every feature you need: all solid-state; 5 bands (80-10 m); full amateur band coverage SSB/CW; sensitivity less than 0.5 µV; offset tuning; 4-pole IF crystal filter; 2.5 kHz bandwidth; analog dial; vernier tuning; automatic sidetone selection; built-in speaker; 5-watt input to broadband push-pull final amplifier; PTT; full CW break-in; adjustable sidetone volume and pitch; built-in SWR bridge; TVI filter; plug-in boards; small and light weight enough to go anywhere (4½"h x 13"w x7"d and 6 lbs.). World beating price, too: Model 509 only $369; Model 210 AC Power Supply just $34.

TEN-TEC 540/544 TRANSCEIVERS—POWER CHOICE.
200 watts from the bottom of 80 m to the top of 10 m — SSB or CW. No compromise from the leader in solid-state HF technology. Instant band change without tune-up; sensitivity 0.3 µV; offset tuning; 8-pole crystal-lattice filter; WWV at 10 & 15 MHz; push-pull solid-state final amp.; 100% duty cycle; adjustable ALC with LED Indicator; built-in SWR bridge; PTT; full CW break-in; adjustable sidetone pitch and vol.; zero-beat switch in Model 544. Choose the value leading Model 540 with analog dial and built-in 25 kHz pulsed calibrator for just $699 or the Model 544 with six 0.43" LED digital readouts for $869. Model 240 160M converter, $110; Model 262M AC Power Supply with VOX, $145; Model 252M AC supply only, $119.

TEN-TEC CW TRANSCEIVERS—BUDGET CHOICE.
The "Century 21" series. Unique. Modern technology with old-fashioned value. Fine performance, reliability, and simplicity of operation, all at low cost. Win raves from novices and confirmed brass pounders alike. All solid-state; 5 bands (80-10 m) full amateur band coverage; receive CW and SSB, transmit CW; sensitivity 1 µV or less; offset tuning; 3-position selectivity (2.5 kHz, 1 kHz, 500 Hz); 70 w input to push-pull Class C final amp.; broadband for no tune-up or resonating; full break-in; adjustable side-tone level; built-in AC power supply. Choose Model 570 with analog dial for only $299; Model 574 has a 5 LED digital readouts for only $399.

The choice is all yours when you choose TEN-TEC HF transceivers; see your nearest dealer or write for full details.

Arma
TEN-TEC, INC.
SEVIERVILLE, TENNESSEE 37867
(865) 429-1967

WIDEST CHOICE IN HF TRANSCEIVERS: TEN-TEC
The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?
OF A NEW AGE.

TS-1 Sub-Audible Encoder-Decoder • Microminiature in size 1.25” x 2.0” x 0.65” • Encodes and decodes simultaneously • $59.95 complete with K-1 element.

TS-1JR Sub-Audible Encoder-Decoder • Microminiature version of the TS-1 measuring just 1.0” x 1.25” x 0.65”, for handheld units • $79.95 complete with K-1 element.

ME-3 Sub-Audible Encoder • Microminiature in size, measures 45” x 1.1” x 6” • Instant start-up • $29.95 complete with K-1 element.

TE-8 Eight-Tone Sub-Audible Encoder • Measures 2.5” x 2.0” x 1.5” • Frequency selection made by either a pull to ground or to supply • $69.95 with 8 K-1 elements.

PE-2 Two-Tone Sequential Encoder for paging • Two call unit • Measures 1.25” x 2.0” x 0.65” • $49.95 with 2 K-1 elements.

SD-1 Two-Tone Sequential Decoder • Frequency range is 268.5 - 2109.4 Hz • Measures 1.2” x 1.67” x 0.65” • Momentary output for horn relay, latched output for call light and receiver muting built-in • $59.95 with 2 K-2 elements.

TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder • Frequency range is 67.0 - 263.0 Hz sub-audible or 1650 - 4200 Hz burst-tone • Measures 4.25” x 2.5” x 1.5” • $79.95 with 12 K-1 elements.

ST-1 Burst-Tone Encoder • Measures 9.5” x 5” x 5” plus K-1 measurements • Frequency range is 1650 - 4200 Hz • $29.95 with K-1 element.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, CA 92667
(800) 854-0547, California residents use: (714) 998-3021
design considerations
for linear amplifiers

So you want to build a linear amplifier! So do many other Radio Amateurs. Without doubt, the most popular piece of home-built transmitting equipment (aside from small circuit board projects) is the high frequency linear amplifier. It can be built without having an advanced degree in solid-state technology and computer analysis.

Recent FCC decisions, moreover, have made a linear amplifier homebrew project more inviting to Amateurs, particularly those interested in 10-meter operation. For a period of time, in the early spring of 1978, it was nearly impossible to buy an off-the-shelf, commercial linear amplifier; most manufacturers had stopped production in view of the drastic redesign requirements imposed by the new FCC rules. Home-constructed amplifiers, happily, are exempt from the FCC straitjacket. And, more and more, Amateurs are discovering the fun of building their own amplifiers. It's not as hard as you might think! There's still fun in building and adjusting equipment, and the high-frequency linear amplifier

By William I. Orr, W6SAI, 48 Campbell Lane, Menlo Park, California 94025
described in this series of articles is a good project for the home builder, whether you're an old timer or newly licensed Amateur.

what to build

The builder of a linear amplifier undoubtedly has many questions that must be answered before he can pick up a soldering iron or drill: what tubes to use, what plate voltage, drive level, harmonic suppression, TVI prevention, cooling, and packaging?

At this stage of the game, even the stoutest of hearts may falter. But cheer up, the overall problem is not complex if the project is approached on a workmanlike basis. The purpose of these articles is to provide a blueprint that will guide the builder through the design, construction, and checkout of a modern linear amplifier capable of operating on all Amateur frequencies between 3.5 MHz and 29.7 MHz. This first article covers design, selection of tubes and components, formulas that make the job easier, and practical construction considerations. A later article will cover the metal-work, assembly, and testing in detail.

Before you jump into the project, bending metal and soldering wires, you should know that there exists a vast amount of literature covering the design and construction of linear amplifiers. It would be foolish to ignore this storehouse of accumulated knowledge. At the end of this article is a list of suggested reading material, and you can learn a lot by observing what has happened in this interesting field of radio design. Since this series of articles cannot possibly cover every detail of building a linear amplifier, you can pick up a lot of very useful extra information if you scan some of the suggested reading material.

preliminary design

The first choice you will have to make concerns the tube (or tubes) to be used, the operating voltages, and the means of cooling the tubes so that their operating temperature will remain within the limits imposed by the manufacturer.

A word of warning is advisable on the subject of surplus or second-hand transmitting tubes. Large power tubes have a finite shelf life. The perfect vacuum has not yet been created, and old tubes (surplus World War II vintage in particular) are not to be trusted — they may have an imperfect vacuum. Surplus tubes marked JAN (which stand for Joint-Army-Navy procurement), such as JAN-813 or JAN-211, provide no warranty to the user, since the tubes are purchased by the military on a special contract with source inspection and no warranty return program. Thus, an Amateur who buys a JAN-labelled tube receives no warranty. New tubes purchased from a franchised dealer carry the manufacturer's full warranty. Dealers in surplus tubes, moreover, have no reliable facilities for testing transmitting tubes, which require a large, expensive, and exotic test console. Thus, the purchase of a surplus or second-hand tube may turn out to be penny wise and pound foolish.

To determine the tube type to be used, it is important to note that the most popular ham-type linear amplifiers seen in the various station descriptions and advertisements are capable of running 1-kW input on CW and 2-kW PEP input on ssb. The amplifiers use...
cathode-driven (grounded-grid) circuitry requiring a drive signal compatible with today’s modern exciter (about 80 to 100 watts PEP output). A representative amplifier circuit is shown in fig. 1.

Further investigation shows that the modern amplifier concept employs low-profile styling and is designed for desk-top operation next to the exciter. In some cases, the power supply is an external unit. In any case, the amplifier is capable of being controlled by the external VOX or push-to-talk circuit of the exciter. And it can be operated either from 120- or 240-volt primary service.

power capability

Given these general specifications, the next step is to determine what goes into the black box that is to become your new linear amplifier. If the linear amplifier is to run at 1-kW in the CW mode and 2-kW PEP in ssb service, the choice of tubes to be used narrows. And since cathode-driven (grounded-grid) service is contemplated, selection is restricted to a few tubes which have the ability to sustain this power level with good linearity and low intermodulation distortion. Linear operation implies that the output signal is an exact replica of the input signal; low intermodulation distortion means that unwanted, spurious distortion signals are not generated in or near the signal frequency. When both of these criteria are met, the ssb signal is clean and no power is lost in furry sidebands or splatter.

Table 1 shows some practical tubes for linear service and their operating characteristics. From an engineering point of view, there’s not much choice between using a single large tube or two smaller tubes in parallel in the high-frequency region. Multiple tubes are thought to be less efficient and generate more intermodulation distortion than one tube, but this is not the case. Power tubes designed for ssb service do not have to be matched pairs, as do the inexpensive TV sweep tubes used in some linear amplifiers.

Regardless of the tube or tubes chosen, grounded-grid triode operation implies class-B service (which you can find outlined in detail in the suggested literature). An important characteristic of this class of service is that tube efficiency is at maximum 66 per cent and usually runs close to 60 per cent. Inherent tank circuit losses in the amplifier reduce this a bit, so that the plate power output of a representative class-B amplifier may run about 55 per cent. However, in cathode-driven (grounded-grid) service, a portion of the driving power (feed-through power) appears in the plate output circuit and provides a measurable output efficiency of approximately 60 per cent for the stage.

Now, if your maximum input power level is known, as well as plate efficiency, it is easy to determine the power output of the amplifier as well as the power dissipation of the tube (generally known as plate dissipation).

If the 2-kW PEP power input condition is chosen and an overall amplifier efficiency of 60 per cent is assumed, the PEP output will be

\[2000 \times 0.60 = 1200 \text{ watts}\]

The remainder of the power \((2000 - 1200 = 800 \text{ watts})\) is consumed in plate dissipation and circuit losses. Tube plate dissipation at 60-per cent efficiency runs close to 800 watts. Circuit losses run from 50 to 100 watts. These figures may add up to a little more than 800 watts of power loss, but a portion of this is accounted for by the plate dissipation attribu-
table to the feedthrough power previously mentioned. So, without doing anything more complicated than a little grade-school math, the general operating parameters of the amplifier have been determined.

At the 1-kW CW condition, power input is 1000 watts and tube efficiency remains close to 60 per cent, provided certain circuit precautions are taken (these will be discussed later). You can estimate the need any test equipment at all. All you do is weigh the amplifiers. Unless one of them has lead fishing weights in it, the heavier amplifier is the toughest and best!"

There is more than a grain of truth in this remark. Attempting to cram a 2-kW PEP amplifier into a shoe box is a time consuming and complicated task, since the problem of getting rid of the heat caused by tube dissipation and circuit losses is a formidable one.

fig. 2. A representative air cooling system for a ceramic-metal power tube, such as the 8877. A forced-air cooling system is shown in (A); the blower is mounted on the chassis which acts as a plenum chamber. With the chassis airtight, the air is forced past the tube socket, tube base, and out the anode. The chimney is used to direct the air through the finned anode. An electrical analogy of the cooling is shown in (B). The blower is represented by a generator and the various back pressures by the voltage drops across the series-connected resistors. Total back pressure is the sum of the resistances. Representative fan and blower performance is illustrated in (C). The blower efficiency drops as the back pressure is increased, while the fan fails to deliver air at any appreciable back pressure. The ability to overcome back pressure is proportional to the speed of rotation of the blower or fan, plus the physical design of the blades. An inefficient fan allows air to slip around the ends of the blades. It is difficult to determine a good blower or fan, as opposed to a poor one, by intuition. Graphs of blower and fan performance may be obtained from the manufacturers.

power output and tube and circuit losses yourself for this power level.

Linear amplifiers and their power supplies have grown sleek and physically smaller in recent years. More efficient components are used and cooling techniques have improved, permitting the amplifier to be squeezed into a compact cabinet with high eye appeal. Some manufacturers and designers, however, have cheated, by skimping on the power transformer or by using an inadequate cooling system that allows the tubes to overheat during extended periods of operation. One old timer, when asked to judge the relative merits of two competitive, widely advertised linear amplifiers, replied, "That's easy! You don't imagine a metal box the size of a 2-kW PEP linear amplifier with an 800-watt bulb burning inside of it! Or consider that a burner on an electric stove may be only 600 watts. This will give you a picture of the amount of heat that has to be removed from a 2-kW PEP linear amplifier during operation to prevent it from burning up.

The human voice, which is the usual modulating device in ham radio, luckily has a low average power level with quite high peak power. Thus, an amplifier designed for voice operation can have a power supply designed for low average power, yet be capable of sustaining full peak power for a short time interval. Many manufacturers count on this low average voice
power and skimp on the power transformer in an effort to squeeze their amplifier into a small cabinet. But what happens if speech processing is used to raise the average voice level and the amplifier is operated continuously during a DX contest? Or the amplifier is used for RTTY? The power transformer, amplifier, and tubes may not stand up under this added burden. Make sure your design is capable of tough, continuous operation. This is the least expensive approach for the long run.

tube cooling

Once the tube type has been chosen, the next item of business is to adequately cool the tube. The manufacturer’s data sheet provides maximum tube temperatures and usually the amount of air required to do the job. What does this entail? An air cooling system is shown in fig. 2. It can be compared with a series electrical circuit, wherein the resistance to the flow of air created by the tube and accessories is equivalent to the opposition to current flow provided by resistors. The air resistance (back pressure) is equivalent to the voltage drop across the resistor, and the number of cubic feet of air per minute (cfm) required to overcome the back pressure can be compared with the voltage necessary to force current through the resistors. Back pressure is measured by a manometer and is expressed in terms of equivalent inches of water. Once back pressure and cfm are determined, the blower can be chosen that will force the required air through the system.

Air requirements for some popular transmitting tubes are listed in table 2. As an example, the 8877’s maximum operating temperature is 250 degrees C. To hold this value, about 22 cfm are required to overcome a back pressure of 0.2 inch of water. This provides an anode dissipation of 1000 watts, more than sufficient for ssb operation at the 2-kW PEP level. The full anode dissipation rating of 1500 watts can be achieved with an air flow of 35 cfm, but at the price of a higher back pressure value of 0.41 inch of water. In passing, it should be noted that axial fans do not like working into high values of back pressure, as fig. 2C indicates.

A single 3-500Z tube requires 13 cfm air flow at a back pressure of 0.08 inch of water per tube. For two tubes, the air flow requirement doubles to 26 cfm, but the back pressure remains the same. Generally speaking, air flow is easy to obtain, but back pressure ability is hard to come by in simple, inexpensive, and relatively noiseless blowers. Amateurs like blowers that don’t make noise. Unfortunately, movement of air creates noise, and the higher the back pressure requirement the more air noise that will be created.

(This limits the size of a practical, air-cooled, transmitting tube to about 50 kW, above which it would probably require a Volkswagen engine to run the blower and would produce sufficient noise to drive the operator out of the station. Hence, the use of water or vapor cooling in the largest transmitting tubes.)

choice of blower

The most common air impellers are the centrifugal (squirrel cage) blower and the axial fan. The axial fan is the quieter of the two, but does not have the ability to work into a high level of back pressure. The ability of the squirrel cage blower to overcome back pressure is a function of the blower speed in rpm and the diameter of the wheel — the larger the diameter, the lower can be the rpm for a given amount of back pressure. Suggested blower specifications and fan information are included in the data for popular tube types.

It must be remembered, too, that the hypothetical Amateur living at an altitude of 1600 meters (5000 feet), in Denver, Colorado, for example, exists in a world of thinner air than that encountered at sea level and would have to increase the air requirements out-
lined in the illustration by about twenty per cent to achieve the same degree of cooling.

amplifier enclosure

Once the cooling requirements have been determined, all that remains is to get the cooling air into and out of the amplifier box. Why enclose the amplifier? Aside from cooling requirements, today's electrical specifications require rf harmonic suppression of a high order. This means that the amplifier must

![Diagram](image)

fig. 3. Both input and output chokes of a grounded-grid amplifier can form a parasitic oscillator circuit. Usually the cathode choke, RFC1, has more inductance than the plate choke, RFC2, but stray capacitance between the plate choke and the enclosure can lower the resonant frequency of the plate parasitic circuit until an uncontrolled oscillation can occur. This unwanted oscillation can be cured by removing turns from the plate choke, moving the choke farther away from the metal walls, or by placing a resistor either in series or in parallel with the choke. Means for detecting such parasitics are discussed in the text.

be placed in an rf-tight box and that connections to the amplifier be carefully filtered to prevent unwanted harmonic energy from escaping and blocking out Joe Sixpack's television receiver next door. All amplifiers generate and amplify harmonics of the driving signal; the task is to keep them from harm's way. Proper filtering will do the job.

Ventilation holes can be placed in an rf-tight box, provided they are properly screened. Wires can enter and leave the box provided they are properly filtered. A screened opening should be about twice the size of an unscreened opening to obtain the same air circulation, since the screening material represents nearly 50 per cent coverage of the area. A series of many small holes drilled in the top and bottom of an enclosure will provide ventilation without letting any great amount of rf energy escape, provided the holes are small compared with the harmonic frequency. For high frequency work quarter-inch holes are satisfactory. More smaller holes will work, too. Copper wire screening can be placed over the blower opening if the mating surfaces between screen, blower, and chassis are free of paint so that electrical continuity exists between the various metals.

indicating meters

Several meters are required to properly tune and operate a linear amplifier. At the very least, grid and plate currents should be monitored, and it is convenient to be able to read filament voltage. The grid and plate currents can be read on one meter switched between the appropriate circuits, but the use of separate meters is recommended for ease in tuning. All meters should be checked for accuracy before installation in the amplifier.

Placing the meters in the walls of the amplifier box is bad, since the rf energy can easily escape through the meter case and glass, invalidating the otherwise good shielding of the unit. It is wiser to place the meters on a separate front panel, with the amplifier box supported behind the meter panel. Meter leads are then brought out through appropriate filtering networks.

parasitic suppression

"You don't have to worry about shielding or neutralization. A grounded-grid amplifier just won't oscillate." Right? Wrong. A grounded grid amplifier makes a very good oscillator under certain conditions.

Low-frequency parasitic oscillations. Any amplifier can oscillate in the low-frequency region (200-1500 kHz) by virtue of the interelectrode capacitances of the tube forming some resonant circuit with either the input or plate rf chokes (fig. 3). A sure cure for this problem is to change the type of choke, or else place a resistance in series or in parallel with the choke to inhibit oscillation. In the designs discussed here, the inductance of the input choke is very low compared with that of the plate choke, so that oscillation is improbable.

A low-frequency parasite can often be heard in a nearby broadcast receiver as an unsteady carrier or a rough buzz. Or, it can be found when the amplifier is operated with plate voltage (but no excitation) and the controls tuned at random. A small neon lamp is held near the plate lead. If a parasite is present the bulb will ignite with a bright yellow glow. The bulb should be held at the end of a dry wooden stick, as dangerously high voltage is present and exposed when the amplifier is operated with the cabinet shielding removed.

Vhf parasitic oscillations. Vhf parasites are created by resonant circuits formed by connecting leads and interelectrode capacitances of the tube (fig. 4). They can be suppressed by loading the circuit until oscillation is impossible. A parasitic choke, com-
posed of an inductor and resistor in parallel, will do the job. The suppressor is placed in the plate lead, but a second suppressor is sometimes required in the input circuit.

The suppressor represents a portion of the lead wound up into a coil and shorted by a resistor. At the parasitic frequency there is a large voltage drop across the coil. The resistor acts as an rf load for this voltage drop. If the load is tightly coupled to the tube, oscillation will not take place, but if the load is tightly coupled at the operating frequency, the suppressor will probably overheat and burn up. The number of turns in the inductor must be determined by test so that sufficient inductance exists to do the job, but not enough inductance is used to couple too much fundamental energy into the resistor.

A vhf parasite can be determined by the neon bulb test. The bulb will glow with a bright purple color if oscillation is taking place.

High frequency parasitic oscillations. The grounded-grid amplifier can be turned into a splendid oscillator if the input circuit is detuned too far from resonance. The tuning range of the input circuit should therefore be quite restricted. It is a good idea to tune the input circuit to the middle of the Amateur band in use and then forget it. Actual adjustment of this circuit will be discussed in a subsequent article.

High frequency parasitic oscillation can also take place if output power from the amplifier finds its way back into the input circuits. Shielding and filtering (which also reduces vhf harmonic energy radiation) serves to reduce the possibility of high frequency oscillation. In some instances, the grounded-grid amplifier must be neutralized to achieve stability. Luckily, this is generally not required for amplifier operation below 30 MHz but the builder should be aware of the fact that high frequency oscillation at the operating frequency can take place in a grounded-grid amplifier if the proper precautions are not exercised.

summary

So far, we’ve slogged through a quicksand of physical design problems. Let’s sum up what has to be done as far as this aspect of amplifier design is concerned:

1. The amplifier tube has to be chosen for the particular power level desired and must be properly ventilated and cooled.

2. The amplifier has to be placed in an rf-tight box for harmonic suppression and operational stability.

3. Circuit design must ensure that unwanted oscillations do not take place.

The next article in this series will discuss the electrical design of the linear amplifier.

Bibliography

10. Care and Feeding of Power Grid Tubes, Laboratory Staff, Varian, EIMAC Division, San Carlos, California, 1967.
AFC circuit for VFOs

Add a new measure of stability to an existing VFO by incorporating this AFC circuit.

The search for frequency stability in Amateur equipment, both commercially manufactured and homebrew, has been one of the longest and most fervently pursued in the history of ham radio. In the earliest days, when King Spark reigned supreme, frequency stability wasn’t much of a problem since the damped waves covered a considerable portion of the spectrum. However, as the state of the art advanced (and in those days it was an art), the vacuum-tube oscillator became re rigeur, receiver selectivity improved (necessary because of a more crowded spectrum), and the need for greater oscillator stability quickly became apparent. That need has been with us ever since!

In the early 1930s, crystal controlled transmitters became the way to go, with a powerful assist from the Federal Radio Commission (the ancestor of the FCC). You could actually find the same ham at the same spot on the dial (almost) night after night. After all, during the depression, who could afford more than one or two crystals? They cost about two days’ pay (about $7.50) each! Crystal control was undeniably a great advance over the self-excited oscillators then in use for transmitter frequency control. By the standards of the day, transmitters became literally “rock stable.” Unfortunately, receivers of that period didn’t enjoy the same stability. The superheterodyne had become popular, and the instability of its high frequency oscillator (HFO) required a frequent touch of the tuning dial (in much homebrew gear) to keep the desired station audible. Manufactured gear was better, of course, but few Amateurs could afford it. By today’s standards these oscillators were pretty crude, but we were dealing with a lot of CW and a little a-m telephony. With the broad bandpass windows in those old receivers, a-m was easily handled, and a changing CW beat note could be tolerated as long as the band wasn’t crowded.

Use of the Amateur bands was rapidly increasing, however, and by 1939 or 1940 the trend was away from crystal control toward something known as the ECO, or electron-coupled oscillator. Great strides had been made in stabilizing the same old Hartley and Colpitts oscillators by using higher gain tubes such as the new pentodes, looser coupling between oscillator and load, and a myriad of other tricks that today we take for granted.

Rather than labor the points unduly, it is best to say that today, both VFO and crystal oscillators are in wide use in the ham bands, the more stable crystal oscillator being used for certain receiving functions, MARS frequency assignments, vhf repeater channels, and so forth. The VFO, of course, finds its major application in the HFO of the modern hf transceiver. A new state-of-the-art device, the frequency synthesizer, actually uses both techniques: a reference crystal oscillator of high stability and a particular type

By Read C. Easton, K6EHV, 3691 Gay Way, Riverside, California 92504
thing that causes the oscillatory period of this network to vary (other than deliberate variation) will have an adverse effect on the stability of the VFO. The sole exception to this statement is the AFC circuit. However, this can be considered a form of operator control and, in fact, the operator can alter the VFO frequency through manipulation of the AFC circuitry. Undesirable factors include changes in temperature, change in the load on the VFO, changes in supply voltage, and vibration. An excellent measure of the designer's success is the stability of his VFO. From a manufacturing standpoint, add one more vital point. It must be reproducible! I once built a little VFO that was a marvel of stability. Three other people tried to reproduce it. Their versions oscillated and they were in the correct frequency range — but they drifted. The circuit was not easily reproducible. Therefore, it was useless except to me.

VFO improvement

Many papers have exhaustively covered the trials and tribulations of VFO design, both from the homebrew aspect and from the commercial viewpoint. It seems sufficient to note that most of the hints, techniques, design criteria, and other good and valid information presented in VFO design papers1,2,3 are basically aimed at reducing frequency drift. We have relatively simple formulas for calculating the component values, but no one has yet come up with a magic formula to make the VFO stable.

The recent article by PA0KSB4 suggests one solution to the stability problem. Fig. 1 shows a stabilizing device in block diagram form — a single stage...
binary counter, a storage element (D-type flip-flop), a clock (low frequency crystal oscillator), and an integrator to drive the control element. Fig. 2 shows the entire control element, a tuning diode, a bypass capacitor, an isolation resistor, and a small coupling capacitor. Room for these tiny components could easily be found in any VFO I've looked at. As you can see from the size of the coupling capacitor (1 pF), the effect of the VFO (dial) calibration won't be a major one. In all cases so far, minor readjustment of individual band trimmers has easily absorbed the small additional capacitance represented by the control element.

practical AFC package

The actual circuit of the AFC unit is shown in fig. 3. There are a few changes from the original. First, in this country at least, there are no 100-megohm ½-watt resistors commercially available. To my knowledge, the highest value ½-watt resistor available in quantity in this country is 22 megohms. A series pair of these resistors, along with a 2-µF capacitor (metalized Mylar or polycarbonate) will provide an 88-second integrator time constant, as compared with the 100-second value in the original circuit. The slightly shorter time constant has proven entirely adequate in practice. It must be noted that high-leakage capacitors, such as electrolytics, are unsatisfactory in this application. The added expense of the low-leakage capacitor has to be accepted to obtain a smoothly operating unit.

The circuit likes a low impedance input; this point is mentioned in the original article, but without particular emphasis. As a majority of the radios manufactured in this country have a VFO output impedance in excess of the 50 to 100 ohms which I (and apparently the AFC circuit) consider low impedance, a broadband autotransformer has been added at the input to help the interface problem. Use of this approach has allowed sampling of the VFO output voltage without detriment to either its output amplitude or intrinsic stability. This particular transformer has been examined with a Hewlett-Packard 250B Rx meter and found to be essentially flat from about 2 to over 23 MHz. This is more than adequate for any range of VFO frequencies yet encountered.

Routine equipment turn-on generally gives a ramp voltage of about one quarter maximum. This, plus normal voltage change due to operation, necessitated some form of metering. An early approach with Atlas equipment involved switching the S-meter. However, this method has since been discarded in favor of three LEDs which, with the addition of a 7406, illuminate upper and lower limit red warning lights when the ramp voltage comes within one volt of either end of its range. In between, a green LED glows. The transition from red to green, at each end of the range, is reasonably abrupt. Only a few millivolts of overlap exist between the red and green LEDs. This metering system provides an adequate Go/No-Go indication which is particularly useful under mobile operating conditions. Trying to read a conventional analog meter under crowded freeway conditions is not exactly conducive to an extended life expectancy! Also, the components of the LED metering system are noticeably less expensive than a meter.

In addition to metering, this approach makes possible construction of the AFC circuitry in a completely separate box without a multitude of connecting wires. The length of the four-wire umbilical isn't critical, allowing the user to position the box for optimum convenience. This concept also reduces the amount of internal work necessary to incorporate the drift-cancelling circuitry. For example, in the case of the Atlas 180/210 series, the device plugs directly into the AUX VFO socket. A 100-ohm resistor at the radio end of the connecting cable prevents any interaction between the AFC system and the VFO in the radio. Internal work on the radio is limited to installation of the control circuitry within the VFO compartment and adding one wire from the control element to pin 1 of the AUX VFO socket (normally unused) to carry the ramp voltage. All other voltages are already present. The digital dial (if used) plugs into this same socket, but, because of the plug construction on

fig. 1. Block diagram of the AFC control unit. The clock controls both the counter and storage sections, determining when to count and when to transfer information to the next stage. The integrator serves to smooth out the information going to the control element, preventing the VFO from jumping back and forth in frequency.

fig. 2. Schematic diagram of the control unit which is installed inside the VFO. Since the added capacitance is very small, any change in frequency is easily compensated for by the VFO's trimmers.
fig. 3. Diagram of the logic portion of the AFC control unit. The transformer is bifilar wound with nine turns of number 26 AWG (0.4-mm) enamel insulated wire over a Q2 ferrite toroid. Core should be 9.4 mm (0.37 inch) outside diameter, 5 mm (0.2 inch) inside diameter, and 4.9 mm (0.19 inch) thick.

both the digital dial and the AFC unit, they piggyback without trouble or interaction. In a transceiver as compact as the 210X, minimal work within the radio is a worthy consideration. Conversely, within the Atlas VFO compartment there is more than adequate room for the control-element components. After having modified several of these radios, total conversion time is less than an hour, including the minor recalibration required.

adaptability

The AFC unit will perform equally well on older tube-type VFOs. It has successfully been installed in Heathkit tube-type VFOs (SB400 series) with no problems. No adverse effects on dial linearity were noted. Since this VFO is not bandswitched, only one recalibration is needed. Even though the piston capacitor is of very low capacitance, more than enough range is available after adding the AFC control element.

Initial examination of an older Swan 350 proved enlightening. Although the schematic shows a solid-state VFO and emitter follower practically identical to the early Atlas units (as well as a tube-type VFO amplifier), maximum RF voltage was only 60 millivolts (at 7 MHz). Other bands weren’t much different. This RF level doesn’t allow resistive isolation in the pickoff line, because the input voltage to the AFC unit then becomes too low for reliable operation of the counter.

Even with a relatively poor VFO, AFC lockup will occur within a minute. It takes a little time for the integrator to do its thing. A good VFO will normally stabilize within about 15 seconds of turn-on. For example, the Atlas 350-XL with AFC settles down in ten to fifteen seconds, while a relatively poor home-brew unit, the first one on which the AFC approach was tried, took about a minute to stabilize. However, this VFO was so bad that without AFC it would drift noticeably during a two-minute transmission. I threw the whole thing together in a hurry several years ago and never got around to taming it. Consequently, it was a natural for AFC experiments. The first time the modified rig was used on the air, I was accused of having bought a new radio. “We don’t have to chase you any more!” Constant attention had to be paid to the ramp voltage though, because that VFO never did settle down on its own. About once an hour the ramp voltage would have to be reset because it would be getting perilously close to its range limit. Conversely, the Atlas 350-XL can run all day and nothing has to be reset. The ramp voltage has more than enough range to keep this excellent VFO locked up indefinitely.
fig. 4. Examples of measured drift from VFOs with and without AFC.

The system of automatic frequency correction described in this article offers an order of magnitude stability improvement. It is not a universal cure for all the ills that may beset a VFO. For example, this circuitry cannot correct the frequency jump that is caused by sticking or misaligned mechanical tuning assemblies or from worn or corroded contacts on a bandswitch or variable capacitor shaft. Sudden frequency excursions of this type look to the circuit like "human intervention," a frequency shift too rapid to be corrected. One demonstration of AFC capability that invariably generates astonishment is connecting a counter capable of reading the VFO frequency to the nearest Hertz to a cold radio which is AFC equipped. When the radio is turned on, the counter will faithfully reveal the rapid initial warmup drift, the sudden stop, and then will remain for hours within about 5 Hz of the original lockup point (see fig. 4).

In the near future, buyers of Atlas equipment will be able to order this feature as an option; a retrofit program exists for older Atlas equipment. For those brave souls willing to invade the mysterious innards of their VFO, the system is available as a package; the modification really isn't all that hard to perform. If AFC of the VFO isn't the final answer to outstanding stability in older gear, it must be pretty close to it.

references
improving antenna accuracy
in satellite tracking systems

A review of the problems encountered in Amateur tracking systems, with suggestions for improving accuracy and operating efficiency

Most users of the OSCAR communications satellites have some form of antenna tracking system for obtaining the greatest advantage from the available transmitter power and for increasing the strength of the received downlink signal. These systems range from simple, manually switched dipoles to elaborate arrays driven in azimuth and elevation under microprocessor control. But most setups fall somewhere in between — often with antennas driven in azimuth and elevation by rotators with separate control boxes manually operated by the same person carrying out the communications — similar to the arrangement shown in fig. 1.

This general arrangement is simple, inexpensive, and not particularly difficult to operate when the satellite is low in the sky. On these passes, neither azimuth nor elevation changes very rapidly, and it's a simple matter to update the antenna position from time to time. However, as the satellite gets closer and the elevation angle gets higher, things begin to change much more rapidly, which requires more frequent updating of antenna direction. On some passes activity gets downright frantic as the satellite passes close overhead and the operator finds that the elevation rotator is about to hit the stops and the azimuth angle has suddenly switched from south to north!

Even microprocessor-controlled systems are not entirely immune to these problems. What happens is that the azimuth angle begins to change so fast that the rotator simply can’t keep up with it. Add to this the time lag in updating the antenna position in a manually controlled system, and you frequently find yourself in a situation where the elevation control has the antenna pointing straight up (or nearly so) as the satellite azimuth angle suddenly swings 150 degrees or more in a few seconds. So then you’re stuck. The azimuth rotator slowly trundles around the 150 degrees (or 210 degrees in the other direction if the mechanical stop happens to be in the way), while the satellite merrily recedes into the distance.

Slew rate. The rate at which the azimuth angle changes is called the slew rate. What we’d like to do is find a way to anticipate excessive slew rates so we can reduce or eliminate the problem. The first order of business is to find the minimum elevation angle at which the slew rate can exceed the azimuth-rotator rotation speed. This, of course, depends on what kind of rotator you have, but most rotators turn a full circle (360 degrees) in one minute or 6 degrees/second, so we’ll use this figure for the sake of argument.

If you ask a dozen different OSCAR users what that critical minimum elevation angle is you’ll get as many different answers, but most will probably say it lies between 60 and 70 degrees. Experience in manually operated Az-El control systems does indeed seem to point to a number in this range; but surprisingly, the correct number for OSCAR 7 is an elevation angle of 87.3 degrees — a mere 2.7 degrees from the vertical! The mathematical procedure for arriving at this number is detailed in Appendix A*

*Appendix A is not included with this article but is available on request from the author. Please include a 229 x 305 mm (9 x 12 inch) self-addressed envelope with 28 cents postage. Overseas readers may send one IRC (5 for Air Mail) and omit the envelope.

By Bill Johnston, N5KR, 1808 Pomona Drive, Las Cruces, New Mexico 88001
along with the procedure for finding the maximum azimuth error (lag) between satellite and rotator as well as the lag duration. For most rotators the critical angle is extremely high. The faster the rotator, the higher the angle.

Obviously, then, the slew rate can exceed the capacity of the typical azimuth rotator for only a very short time on any given pass (in fact, for well under ten seconds at the maximum). So why does the slew rate cause so much trouble? We can best answer that by taking a look at just how high the slew rate can go, and in particular by looking at the special case where the satellite passes directly overhead.

Here we have the satellite approaching, let's say, from the southeast. Since it’s going to pass overhead, it’s coming straight toward us the whole time it’s in view, and the azimuth angle doesn’t change at all. (Actually, due to earth rotation, the satellite’s ground track is slightly curved, and the azimuth angle will change a little.) At the instant the satellite passes through the zenith, the slew rate jumps to infinity, then becomes zero again as the satellite recedes to the northwest.

In other words, on an overhead pass, the slew rate is infinitely high if only for an instant. If the satellite passes very close by, but not directly overhead, the slew rate will become very high (but not infinite) and will remain high for a longer period of time.

Incidentally, the rate of change of the elevation angle is always quite low. For OSCAR 7, the fastest it can possibly change is a little more than a quarter of a degree per second, so this is never a factor we have to worry about.

As mentioned earlier, OSCAR 7’s slew rate can exceed the 6 degree/second speed of a typical rotator for less than ten seconds at the most on any given pass. But even after the slew rate decreases, it still takes a little time for the rotator to catch up. The worst-possible case is again the overhead pass, where the total duration of the lag is 30 seconds. (Appendix A gives details on how to compute the duration of the lag for other passes.)

Pointing error. Even though we can develop a temporary azimuth error of up to 180 degrees, the actual pointing error is not as bad as it might seem. For example, suppose we have an overhead pass and the elevation rotator hits the stops at 90 degrees, as shown in fig. 2. The azimuth suddenly swings 180 degrees, and the azimuth rotator direction is now in error by that amount. Even if the elevation control remained at 90 degrees and we waited 30 seconds for the azimuth rotator to come around, the satellite elevation angle would have changed by only about 8 degrees in that time. So the absolute pointing error between antenna and satellite true elevation angle would at most be about 8 degrees, regardless of the magnitude of the azimuth error. Once the azimuth rotator comes around to its proper alignment, the elevation rotator can be brought to bear on the satellite in less than 1-1/2 seconds (assuming a 6 degree/second turning rate).

With typical antenna beamwidths of 15 to 30 degrees at the half-power points, an 8-degree pointing error is inconsequential. Judicious operation of the
Everything we've said so far seems to indicate that the overall problem isn't nearly as great as we thought, so why even bother worrying about it? Well, first of all, the relatively small pointing error described above can be achieved only if the antenna is kept on track at all possible times. From a practical standpoint, in a manually operated control system, this simply isn't feasible. If you devote all your time to operating the antenna controls you have no time for communicating.

The end result is that the actual time lags and pointing errors are usually quite large. Nevertheless, a number of ways are available to improve the performance of such a system without putting an increased workload on the operator. Another good reason to attack this problem is that improvement in pointing accuracy allows the use of higher-gain antennas, which have inherently narrower beamwidths. This is especially beneficial when the antenna is under some form of automatic control.

Planning. A good rule in manually operated systems is to plan each pass ahead of time. Check to see how high the elevation angle will be to locate any potential trouble spots. During the pass, instead of playing a constant game of catch-up with the antenna, lead the satellite by half the interval between antenna corrections. For example, if you normally reposition the antenna every two minutes, then each time you move the antenna, set it to where the satellite will be one minute from that time. In this way the antenna will be a little ahead half the time and a little behind half the time, and the average pointing error will be reduced to half of what it would have been otherwise.

Mechanical considerations. Consider the azimuth at which the mechanical stop on the azimuth rotator should be placed. Since most rotators turn only 360 degrees, the ideal location for the stop would be at the azimuth corresponding to the point where the satellite first comes into view on a pass that will take it directly over the ground station. (For most locations, this would be an azimuth of about 162 degrees for ascending passes, or about 15 degrees for descending passes.) In this way there would never be any interference from the stop for the type of pass (ascending or descending) you selected for its location, and interference to the other type of pass would be no worse than if you did nothing at all.

It may seem that some rotators require the stop to be oriented to a particular direction (usually south). But this isn't true; you can orient the antenna to any direction you like on the mast. All that's required is that, once you've reset the antenna, you draw a new dial face for the position indicator. Fig. 3 illustrates an example where the regular dial face of an indicator requires that the stop be at 180 degrees and as modified for the stop at 160 degrees.

You might also try to obtain or modify a rotator that will turn more than 360 degrees. One that will turn 390 degrees with stops set at 180 degrees and 210 degrees, would work very nicely for both ascending and descending passes. As shown in fig. 4, if rotation starts from the 180-degree stop, the antenna can move clockwise a full turn through 180 degrees,
finally hitting the other stop at 210 degrees. These stops wouldn’t have to be mechanical stops in the rotator but could be electrical stops in the control box or appropriate software if the system is under microprocessor control. Some sort of indicator (a pilot light, perhaps) could be used to let you know when the rotator is inside the extra 30 degrees, so you’ll know which way to turn it if you’re getting ready to track the satellite’s initial azimuth as it comes over the horizon.

antenna elevation inversion system

Although most elevation control systems are set up with stops at 0 and 90 degrees, there’s no law that says they have to be that way. And in most cases there is no physical reason that limits the equipment to this range. Remember the overhead pass? Suppose you don’t touch the azimuth control, but when the antenna elevation reaches 90 degrees you let it keep right on going over on its back. All of a sudden you’ve eliminated a whole slew of problems. Instead of frantically chasing after the azimuth control, just ignore it, and every once in a while give the elevation control a slight touch up. Even when the pass isn’t directly over head, much time and effort can be saved on high passes by inverting the antenna at the proper moment.

Antenna motion resulting from an elevation inversion system of this type is illustrated in fig. 5. Manufacturers of optical and electronic tracking equipment often incorporate this feature into their products, although they sometimes refer to inversion as “dumping.”

One thing you must do when using this type of system is to modify the azimuth and elevation control dial faces. Otherwise, when the antenna inverts, the azimuth dial will be 180 degrees off. It’s normally a simple matter to extend the scale on the elevation control, and an example of how to label both faces is shown in fig. 6. The numbers on the normal (right-side up) side of the elevation dial are black; those for antenna inversion are red. When elevation dial is in the red, the corresponding azimuth red scale is used, and vice versa.

fig. 6. Azimuth and elevation dial faces for an antenna elevation inversion system. Numbers on the normal side of the dials are black; those for antenna inversion are red. When elevation dial is in the red, the corresponding azimuth red scale is used, and vice versa.

fig. 5. Antenna movement with an elevation inversion system. No azimuth change is made in these illustrations.

systems under microprocessor control

Many of the ideas discussed so far, although especially suited for systems under manual control,
are applicable to automatic control systems. Let’s take a look at some factors that again affect both types of systems but are of special interest in systems under microprocessor control.

We already know that slew rates vary widely, from a small fraction of a degree per second up to a hundred degrees per second and higher. Most rotors, though, have only one speed, so you have to constantly turn it off and on to keep it on track. These start/stop operations put a lot of wear on the rotator, and the very nature of the procedure prevents the antenna from being exactly on the satellite at all times. Ideally, we’d like a rotator with a speed that varies according to the satellite slew rate, since this would produce a smooth and continuous motion with no pointing error.

Variable-speed rotators. Finding a variable-speed rotator suitable for your station would probably be no easy task, although you could build one from scratch with an appropriate motor. On the other hand, if your rotator is driven by a synchronous ac motor, it would be a simple matter to build a variable-frequency ac power supply that would in turn vary the motor speed. The microprocessor would select the correct frequency to produce the desired rotator speed. This, of course, would require calculating the slew rate in addition to the azimuth and elevation angles. The procedure for doing this is given in Appendix A.

Even the operator of a manually controlled system might find a variable-speed control handy, as it could reduce his workload to a certain extent. Commercially made speed controls, operated by a small joy stick and capable of handling motors of up to 15 watts, are available through a number of amateur telescope dealers. They are advertised as “drive correctors.” You can save yourself some money, though, if you’re willing to build your own.

It’s even easier to vary the speed of rotators driven by dc motors, but whether the rotator is ac or dc, you’ll have to invest some time in designing the interface circuitry between the control system and the microprocessor.

Microprocessor interface circuitry. Regardless of whether the rotator speed is variable or fixed, there will be times when the slew rate exceeds the rotator’s capability. To reduce the complexity of the microprocessor software, the computer would calculate the slew rates for the pass ahead of time and store the information concerning the time period (if any) during which excessive slew rates will occur. Then, during actual tracking, the microprocessor would instruct the antenna to begin leading the satellite by a few degrees just before it gets to the bad area. The end result would be a worst-case pointing error of no more than 4 or 5 degrees, and then only for five or ten seconds.

There are, of course, many things the software should take into consideration; unfortunately we can’t discuss all of them here. But whatever you do, make sure that the software knows where the rotator’s mechanical stop is, and make sure it knows how to minimize interference from the stop.

operational procedure for a microprocessor-controlled tracking system

Now that we’ve discussed a number of the factors in developing a system, let’s see how an interactive microprocessor-controlled tracking system might operate. The software would be designed for fully automated operation while at the same time incorporating interrupt capability to permit the operator to take control when desired.

The tracking program could be called up by typing in the word TRACK. Once activated, the program would accept additional commands. Entering NEXT PASS for example, would cause the computer to check the station’s digital clock, compute the starting time of the next pass for each of the active satellites, and flash a message similar to the following on its display screen:

```
28 OCT 78 16:35 UTC
SATELLITE MODE PASS START
Oscar 7 A 17:04 1:29
Oscar 8 J 16:21 1P
Oscar 9 B 16:44 09
RS2 A 17:51 1:16
RS4 A 16:50 15
```

```
LENGTH ELEVATION DIR PRIMARY COVERAGE
9 15 15 WEST
12 32 32 EAST
21 88 88 OMNI
4 6 6 NE
18 76 76 OMNI
```

which satellite?

Suppose, as in example above, you decide to work OSCAR 9, which has a Mode B ascending pass starting in nine minutes and lasting for 21 minutes. (Since it will be an overhead pass, the computer shows the coverage to be omnidirectional.) You would type in OSCAR 9, to which the computer would reply:

```
PREPARE TO TRACK?
```

Upon receiving a response of YES, the microprocessor would make calculations to determine if
the azimuth slew rate will become excessive and would store the information regarding that part of the pass. It would then calculate the initial azimuth angle and swing the antenna to that point on the horizon (0 degrees elevation). As this operation is being carried out, the microprocessor would check the clock and display on the screen:

READY OSCAR 9 MODE B
T MINUS 0:43 AZ 163 EL 0

Following this, the computer would update the T time (TIME TILL START) every second as it counted down from 8 minutes, 43 seconds. You’d then be free until T minus 15 seconds, at which time the computer would begin emitting a persistent “beep-beep-beep” to alert you of the approaching satellite acquisition. At T minus zero the beeping would stop and the screen would flash:

TRACKING OSCAR 9 MODE B 21:00 REMAINING
AT T PLUS: 00 AZ 163 EL 0

As the pass progresses the computer would count down the time remaining while counting up the T time and would continually update the azimuth and elevation numbers so that you’d know where the antenna is pointing at any given moment. A few minutes before the satellite reaches the point where the slew rate becomes excessive, the microprocessor would instruct the antenna to begin leading the satellite by a few degrees. The pointing error will therefore be kept to a minimum, and a few seconds later the antenna will be right back on target. When the pass ends, the screen flashes:

PASS COMPLETE AT T PLUS 21:00 AZ 354 EL 0

At this point you can shut down the station if you’re finished. Or, if you wish to try another pass, you can enter NEXT PASS to obtain a list of upcoming passes. Perhaps you’re interested in what’s available the next day. In that case you’d enter ALL PASSES 29 OCT to obtain a complete list. Or maybe you’re interested only in Mode J for the next afternoon, so you’d type in MODE J PASSES 29 OCT PM to obtain a list of only the passes in which you’re interested.

An interrupt capability would be incorporated into the software so you can stop in the middle of a pass if desired. For example, during the OSCAR 9 pass described above, suppose you communicate for ten minutes, then decide to try a different satellite. You’d type in STOP, which halts the tracking of OSCAR 9, followed by NEXT PASS RS4, to which the computer replies:

28 OCT 78 16:54 UTC

This tells you that the pass for the Soviet satellite RS4 is in progress (IP), having begun at 16:50, with 14 minutes remaining in the pass. Furthermore, it’s a descending Mode A pass with a fairly high elevation angle and more or less omnidirectional coverage. In reply to the computer’s question, you might type in YES.

The computer would immediately bring the antenna to bear on the satellite at its current position in the sky and begin to track RS4 as it flashed:

TRACKING RS4 MODE A 14:00 REMAINING AT
T PLUS 04:00 AZ 328 EL 11

The possibilities are unlimited, but the examples we have looked at should give you a good idea of the convenience that appropriately designed software can bring to a station that has a microprocessor-controlled satellite tracking system. You have a free hand in programming all the features that suit your situation.

summary

We began by discussing problems encountered in satellite tracking and described how some of them can cause serious pointing errors in both manually and automatically controlled systems if corrective measures are not taken. A number of approaches were covered for improving accuracy. A major concern is that, if at all possible, we reduce the workload on the operator (who would prefer to spend his time communicating rather than operating antenna controls), and we have presented some ways to do just that. Finally, we looked at some special problems associated with microprocessor-controlled systems and discussed some software features that should be included in the finished system.

We concluded by looking at an example of an operational procedure for a microprocessor-controlled tracking system. Here we discussed how the computer could provide detailed data on various satellites as well as controlling the tracking antenna in a convenient and accurate manner.

A number of hams have incorporated many of these features into their stations. The sky’s the limit when you begin to work on your own system.

ham radio
Swan’s Success Story:

100MX Power House
The Field-Proven Rig the Whole World’s Talking About.

235 Watt PEP and CW on ALL Bands
Price? You won’t believe it! Just ask your dealer.
All solid state quality American construction, with epoxy glass boards to withstand the rugged mobile environment.

Look to Swan for Quality Accessories ... and Service

Swan ELECTRONICS
305 Airport Road
Oceanside, CA 92054
714-757-7525
A Knob with a new twist "VRS™"

Swan Astro 150 Exclusive Microprocessor Control w/memory gives you over 100,000 fully synthesized frequencies, and more!

- VRS — Variable Rate Scanning, a dramatic new technique for unprecedented tuning ease and accuracy
- POWER — 235 watts PEP and CW on all bands for that DX punch
- Advanced microcomputer technology developed and manufactured in the U.S.A.
- Price? See your authorized SWAN dealer for a pleasant surprise!

Dual Meter
Reads PEP output in watts and receive "S" units.

Full Break-in CW
(or semi, switch selected)

Wide Frequency Coverage
10M — 28.0-30.0 MHz
15M — 20.8-23.0 MHz
20M — 13.8-16.0 MHz
40M — 6.0-8.3 MHz
80M — 3.0-4.5 MHz
160M — 1.8-2.4 MHz*
*In lieu of 10M band on Model Astro 151

PSU-5
Power Supply with Speaker

Mike Tuning
For accurate 100 Hz steps or fixed rate scan.

THE MOST ADVANCED HF SSB TRANSCEIVER AVAILABLE.
FULLY SOLID-STATE SWAN ASTRO 150

305 Airport Road / Oceanside, CA 92054 / 714-757-7525
diode noise source
for receiver noise measurements

Construction of a temperature-limited diode noise source for accurate automatic and manual noise-figure measurements to 500 MHz

The saturated temperature-limited thermionic diode has been used extensively for measurement of receiver noise figures in the high-frequency, vhf, and low uhf regions. Its characteristics are predictable and repeatable, and it may be used either in conjunction with an automatic noise-figure meter or with its own power supply and indicating meter for manual noise-figure measurements.

A recent article described the use of diode noise sources with automatic noise-figure meters and indicated that many homebuilt sources could be used with the Hewlett-Packard models 340A, 340B, and 342A. The article also stated that most, if not all, of these noise sources were unsatisfactory because of their high VSWR at frequencies above 250 MHz or so. Described here is a noise source, using the Sylvania 5722 diode, which is patterned after the Hewlett-Packard Model 343A VHF Noise Source, and which appears to be comparable to that commercial unit at frequencies up to at least 450 MHz.

The noise source may also be used to make manual noise-figure measurements by either the twice-power or Y-factor method. Either technique requires a fixed plate supply and a variable filament supply, with an appropriate plate-current meter. In the past it has been normal practice to vary the diode filament voltage by means of a small variable auto-transformer or a power rheostat. Such control devices change voltage in discrete, albeit small, steps. This, coupled with voltage changes in the primary power source, make it difficult to establish and then to maintain the desired diode plate current. W6GXD described an improved power supply which minimized the problem. This article will present an updated version of his approach, using modern solid-state techniques.

diode noise source

To understand how a temperature-limited thermionic diode is used as a noise generator, we must start with the basic concepts of noise power. A resistance at a temperature other than absolute zero generates across its open-circuit terminals a voltage which is caused by the random motion of free electrons. This noise voltage, e_n, is infinitely broadbanded and defined by the equation

$$\frac{e_n^2}{B} = 4kTR$$

where

- k = Boltzmann's constant 1.374×10^{-23} joule/°K
- T = absolute temperature in °K
- R = resistance in ohms
- B = bandwidth, in Hz, of device under test

Since our treatment of noise deals with receivers or amplifiers of finite bandwidth, eq. 1 is usually written as

$$e_n^2 = 4kTRB$$

When resistance R is connected to a matched load resistance, R_L (equal to R), maximum transfer of noise power will result. The noise power, P_n, dissipated in the load will be

$$P_n = \frac{e_n^2}{4R} = \frac{4kTRB}{4R} = kTB$$

By Robert S. Stein, W6NB1, 1849 Middleton Avenue, Los Altos, California 94022

32 June 1979
Eq. 3 defines the available noise power from resistance R. Although its derivation is beyond the scope of this article, effective input noise temperature, T_e, is defined as

$$T_e = \frac{T_{ih} - YT_{ic}}{Y - 1}$$ \hspace{1cm} (4)

where

- T_{ih} = hot input noise temperature in °K
- T_{ic} = cold input noise temperature in °K
- Y = ratio of hot output noise power to cold output noise power

In the case of a temperature-limited thermionic diode (fig. 1), shot-noise current, i_n, can be determined from the equation

$$i_n^2 = 2qIB$$ \hspace{1cm} (5)

where

- q = electronic charge, 1.600×10^{-19} coulomb
- I = dc plate current in amperes
- B = bandwidth, in Hz, of device under test

The total available noise power, P_n, from a diode noise source is the sum of the diode shot-noise power and the terminating resistor noise power. From eqs. 3 and 5,

$$P_n = \frac{R}{4} (2qIB) + kTB$$ \hspace{1cm} (6)

This equation can be factored and rearranged as

$$P_n = kB \left[\left(\frac{q}{k} \right) \left(\frac{IR}{2} \right) + T \right]$$ \hspace{1cm} (7)

Since

$$\frac{q}{k} = \frac{1.600 \times 10^{-19}}{1.374 \times 10^{-23}} = 11644.8$$ \hspace{1cm} (8)

then

$$P_n = kB(5822IR + T)$$ \hspace{1cm} (9)

If, in eq. 3, the temperature is T_{ih}, then

$$kT_{ih}B = kB(5822IR + T)$$ \hspace{1cm} (10)

or

$$T_{ih} = 5822IR + T$$ \hspace{1cm} (11)

where T_{ih} is the noise temperature of the diode with its load resistance, R, at a temperature of T. Thus when I is zero, T_{ih} is equal to T.

The excess noise ratio, ENR, is defined as the ratio of the available noise power at temperature T in excess of that available at a standard temperature (T_o) to the available noise power at T_o, and is expressed as

$$ENR = \frac{kTB - kT_oB}{kT_oB} = \frac{T - T_o}{T_o}$$ \hspace{1cm} (12)

At a standard reference temperature of 290°K,

$$ENR = \frac{T - 290}{290} = \frac{T}{290} - 1$$ \hspace{1cm} (13)

or

$$ENR = \frac{T_{ih}}{290} - 1 = \frac{5822IR + T}{290} - 1 = 20.08IR + \frac{T}{290} - 1$$ \hspace{1cm} (14)

Since the term $\frac{T}{290}$ is the noise power contribution of the load resistor, if a temperature of 290°K is used for the load, eq. 14 reduces to

$$ENR = 20.08IR$$ \hspace{1cm} (15)

If R equals 50 ohms and I is expressed in milliamperes,

$$ENR \equiv I$$ \hspace{1cm} (16)

and

$$ENR_{dB} = 10 \log I$$ \hspace{1cm} (17)

Note that this commonly used equation is predicated on the temperature of the load resistance being 290°K (17°C or 62.6°F). In actual practice, the load resistance temperature may be as high as 310°K (37°C or 98.6°F). In this case, the excess noise ratio will be lower, yielding receiver noise-figure measurements which are higher than the true noise figure. The corrections for these errors are plotted in fig. 2.

A schematic diagram of the actual temperature-limited diode noise source is shown in fig. 3. You will note that the output circuit is considerably more complicated than those used in most of the previously published designs. It is this output circuit, properly arranged physically, which makes this noise
source comparable to the Hewlett-Packard model 343A.

The diode output circuit must theoretically satisfy two requirements: it must present a 50-ohm impedance (1:1 VSWR) to the receiver connected to the output connector, and it must present a load to the diode which results in a constant ENR over the usable frequency range. In practice, however, it appears that these two conditions cannot be satisfied concurrently, and, as in all designs, a compromise must be reached. The compromise in this case is to keep the VSWR as low as possible and to permit the ENR to change over a portion of the frequency range. The rationale for this is simply one of a known factor versus an unknown. If the VSWR is other than 1:1, the mismatch loss between the noise source and the receiver will be indeterminate. (Although noise power obeys all power-transfer laws, noise is random in phase; therefore the loss is ambiguous rather than known.) On the other hand, it is possible to determine the ENR, although not to any precise degree of accuracy, so that measurements using a known value are possible.

An expanded schematic of the diode output circuit appears in fig. 4. The numbered components correspond to those shown in fig. 3, while those having letter subscripts represent the distributed reactive components, as follows. C_{pf} is the plate-to-filament capacitance of the tube; L_p is the series inductance of the tube structure and tube pins; L_s is the series inductance present in R1 and the plate pin connectors; and C_s is the shunt capacitance of the tube socket and/or C6.

If R1 and L3 are both replaced by shorts, and C7 is removed from the circuit, there will be a steep rise in the ENR to a resonant point, as shown on curve A of fig. 5. The VSWR at 432 MHz with this configuration will be about 3.5:1. K2PEY, in his circuit, damped out this resonance by adding a 51-ohm series resistor (R1), resulting in curve B. However, the VSWR was still approximately 1.5:1 at 420 MHz according to his article, and about 1.8:1 at 432 MHz by measurement.

W8BBB modified the circuit further by adding L3 in series with R2. Since his article provided no figures on ENR or VSWR, there is no basis for its comparison with the earlier configurations or with the one presented at this time.

Incorporating R1, L3, and C7 in the circuit results in curve C of fig. 5. It can be seen that the ENR has a rising characteristic with frequency, but the VSWR is less than 1.2:1 at 432 MHz. Thus, we have achieved a low VSWR, but at the cost of having an ENR which changes with frequency. As previously stated, however, we know the ENR to a fair degree of accuracy and we have minimized the indeterminate mismatch loss.

The noise source is enclosed in an 83 x 54 x 41 mm (3-1/4 x 2-1/8 x 1-5/8 inch) aluminum utility box. Two methods of mounting and making connections to the 5722 noise diode are presented, both of which have proved to be equally usable.

If suitable VSWR-measuring equipment is available (either a network analyzer or a slotted line and SWR indicator), the method shown in fig. 6 is preferable, since it permits optimization of the noise-source VSWR by adjustment of capacitor C6. The tube is mounted by means of a 19-mm (3/4-inch) diameter wrap-around plastic clamp positioned so that the cable tube pins pass through a 16-mm (5/8-inch) diameter hole in the shield plate. The cable clamp is attached to the enclosure by means of a metal stand-off post. Connections to the tube are made via contacts which have been removed from a 7- or 9-pin miniature tube socket and slipped over the appropriate tube pins.

If you are unable to measure the VSWR of the noise source, use a standard 7-pin, saddle-mount, mica-filled phenolic tube socket, from which the center ground post and the contacts for pins 2 and 5 have been removed; mount the socket on the shield plate. Do not use a black Bakelite or ceramic socket, or one which has a shield base. The added capacitance of the mica-filled phenolic socket is just about optimum at 432 MHz, so capacitor C6 can be omitted.

Other than the mounting and the elimination of C6, the socket method of construction follows that
shown in fig. 6. In either case, mount the tube so that pins 3 and 4 are in a plane perpendicular to the bottom of the housing. To reduce the plate lead inductance, the contacts for pins 1 and 6 should be bent at right angles toward one another and soldered together. The usual vhf wiring techniques are required. Disc capacitors C3, C4, and C5 must be soldered directly between the tube pin contacts and the mounting plate, with lead lengths at an absolute minimum. Rf chokes L1 and L2 are each ten turns of no. 26 (0.4-mm) or no. 28 (0.3-mm) enamel-covered wire, close spaced and air wound to approximately 0.1 inch (2.5 mm) diameter.

Although R2 is shown as a nominal 51-ohm resistor, its optimum value is 50 ohms. It is suggested that a resistor as close as possible to 50 ohms (measured on a resistance bridge or accurate digital multimeter) be selected. Five per cent, 1/4-watt carbon-film resistors are recommended for both R1 and R2; the application of heat when soldering to the necessary short leads of ordinary composition resistors generally changes their values.

One lead of R2 is wound to form L3, a three-turn coil 2.5 mm (0.1 inch) in diameter and 5 mm (0.2 inch) long. Except for this lead, all other connections to the plate of V1 or to J1 must be made virtually leadless. C7, R2/L3, and C6 (if used) are all grounded to a solder lug attached to one of the mounting screws for J1.

A shielded, two-wire cable, brought out of the housing through a neoprene grommet, is used to connect the noise source to either a Hewlett-Packard automatic noise-figure meter or to the noise-source power supply unit. If the noise source is to be used with a noise-figure meter, the appropriate pin connections to a Cannon WK-5-22C-5/16 connector are shown in fig. 3. Otherwise, any convenient pair of mating connectors can be used on the noise-source cable and the power supply. Obviously, the male of the pair should be attached to the cable so that high voltage is not exposed on the power-supply connector.

The 5722 diode generates a considerable amount of heat, which can affect the resistance values of R1 and R2. To minimize the heat within the housing, discard the U-shaped part of the utility box that mates with the half shown in fig. 6. In its place, use a similar piece made from perforated aluminum stock. This will retain the integrity of the shielding and will allow heat convection from within the enclosure.

If VSWR-measuring equipment is available and C6 has been included in the circuit, the VSWR of the noise source can be optimized. This can be done without applying filament or plate power to the diode. Table 1 shows the VSWR of several configurations of the noise source, with and without a tube socket. The frequency at which C6 should be adjusted depends on your preference. Adjusting C6 for minimum VSWR at 432 MHz results in a VSWR of less than 1.2:1 over the entire usable range of the noise source. If the VSWR adjustment is made at 222 MHz, the VSWR increases to slightly less than 1.3:1 at 432 MHz.
MHz and is only 1.1:1 at 145 MHz. Since noise-figure measurements at 432 MHz would appear to be of greater import than at other frequencies within the range of the noise source, it is recommended that the VSWR be optimized at that frequency. When so adjusted, the VSWR at the other amateur frequencies appears to be at least equal to that of the Hewlett-Packard model 343A.

For those amateurs interested in tweaking to the diode noise source for manual noise-figure measurements appears in fig. 7. It consists of an adjustable, regulated switching supply for the filament of the 5722 noise diode, supplied by transformer T1, and a simple half-wave rectified dc plate supply. High voltage is obtained from T2, a 12.6-volt transformer which has its low-voltage winding connected to the secondary of T1, thereby providing approximately 115 volts ac for the plate supply.

| Table 1. VSWR measurements for several configurations of diode noise sources. See text and fig. 3 for description of configurations (second column). |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| | | 30 MHz | 50 MHz | 145 MHz | 222 MHz | 432 MHz | 500 MHz | 550 MHz |
| unit | configuration | | | | | | |
| 1 | no socket, C6 and L3 optimized at 432 MHz | 1.04 | 1.07 | 1.12 | 1.15 | 1.03 | 1.06 | 1.14 |
| 2 | no socket, C6 and L3 optimized at 432 MHz | 1.05 | 1.09 | 1.20 | 1.19 | 1.03 | 1.12 | 1.23 |
| 2 | no socket, C6 optimized at 300 MHz | 1.05 | 1.06 | 1.08 | 1.08 | 1.16 | 1.27 | 1.37 |
| 3 | no socket, C6 optimized at 222 MHz | 1.04 | 1.04 | 1.04 | 1.04 | 1.29 | 1.41 | 1.51 |
| 3 | with socket, C6 omitted, C7 optimized at 432 MHz | 1.04 | 1.06 | 1.09 | 1.14 | 1.05 | 1.15 | 1.25 |
| 4 | with socket, C6 omitted, C7 optimized at 432 MHz | 1.06 | 1.10 | 1.18 | 1.22 | 1.04 | 1.12 | 1.23 |
| 5 | with socket, C6 omitted, no optimization | 1.07 | 1.13 | 1.23 | 1.28 | 1.14 | 1.21 | 1.33 |
| 6 | with socket, C6 omitted, C7 optimized at 432 MHz | 1.05 | 1.08 | 1.13 | 1.17 | 1.09 | 1.23 | 1.34 |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
crease in plate current. Conversely, if the diode plate current tries to fall, the noninverting input of U2 will become more positive. This will increase the output of U2, increasing the base current of Q1, and raising the diode filament current to negate the decrease in plate current.

The thermal inertia of the diode filament intro-

duces a considerable time lag between the time that an error voltage is detected and the time that the filament current is compensated. Therefore the op amp, instead of operating in a linear mode, functions more like a comparator in that its output switches between a level equal to the voltage on pin 4 and about 1.5 volts less than the voltage on pin 8. The op amp output and the diode filament current are a series of rectangular pulses whose frequency varies between approximately 500 and 1000 Hz and whose duty cycle also varies; both the frequency and duty cycle depend on the setting of the diode current pot.

Zener diode CR6, connected between the base of Q1 and the diode filament return, has been incorporated to clamp the base voltage, and hence the diode filament current, to a safe value should there be any failure in the regulating circuit. Since the peak-to-peak amplitude of the voltage at the base of Q1 must be very close to 6 volts in order to obtain 20 to 25 mA diode plate current, a five per cent zener diode has been specified to preclude clamping at too low a voltage.

The positive side of the diode plate supply is returned to ground through a 1-milliamp meter and a selected shunt. Three usable ranges, of 3, 10, and 30 mA, have been incorporated; the maximum diode current is between 20 and 25 mA with the circuit shown. The values of the meter shunts (R12, R13, and R14) will depend on the internal resistance of the meter you actually use. R12 must be equal to the meter resistance divided by two, R13 to the meter resistance divided by nine, and R14 to the meter resistance divided by twenty-nine.

power supply construction

The power supply can be housed in any convenient enclosure and can be built in the same way as any conventional power supply. Only a few precautions need be observed. The negative terminal of plate-supply filter capacitor C9 should be returned directly to the transformer winding, and the negative side of the filament-supply filter capacitor C8 should be connected directly to the negative terminal of the bridge rectifier. Otherwise excessive ripple can appear in the outputs.

Transistor Q1 must be mounted on a heatsink which is insulated from chassis ground, or it must be insulated from a grounded heatsink by means of a mica or plastic insulator. If chassis-type construction is used, the chassis can serve as the heatsink. Otherwise, a heatsink having a radiating area of approximately 65 square cm (10 square inches) should be satisfactory. Be sure to apply a thin coating of silicone heatsink compound to the heatsink side of the transistor, and to the insulator if one is used.

fig. 7. Schematic diagram of the noise-source power supply. The values of R12, R13, and R14 are discussed in the text. Film resistors may be deposited carbon or metal. The meter range switch must be a shorting type to protect the meter when the switch is rotated.
As mentioned previously in the discussion of the noise source, J2 can be any female connector which will mate with the noise-source cable connector. Inexpensive types, such as the Amphenol 91-PM3L for the noise-source cable and Amphenol 78-PCG3 for the power supply, are more than adequate.

A word about the meter is in order. Since the accuracy of the noise-figure measurement is a function of the accuracy with which the diode current is measured, a high-quality meter should be used. The accuracy of shunt resistor R12 is equally, if not more, important. (R13 and R14 are of lesser importance, since the accuracy of noise-figure measurements on these ranges is generally not critical.) If possible, the accuracy and tracking of the 3-mA meter range should be checked against a milliammeter of known accuracy.

One way of trimming R12 to the proper value is to use a one per cent metal-film resistor whose resistance is the closest value higher than one-half the meter resistance. Then shunt the metal-film resistor with higher-value composition resistors (starting at about ten times the one per cent value) until the meter reading is correct.

After double checking the circuit, connect the noise source to the power supply. Set the diode current control for minimum current and set the meter range switch to its 30-mA position. Energize the power supply and slowly increase the diode plate current by means of the diode current control. The current should increase smoothly from zero to a maximum of between 20 and 25 mA. If a plate current of at least 20 mA cannot be reached, it is likely that CR6 is limiting the base voltage of Q1. Reduce the plate current to zero, turn off the power supply, and disconnect one side of CR6. Then turn on the power supply again and increase the diode plate current to its maximum. If the plate current is now higher than could be obtained with CR6 connected, another zener diode should be used which has a slightly higher zener breakdown voltage. Alternatively, the existing zener voltage can be increased by about 0.6 volt by connecting an ordinary silicon diode in series with CR6; the diodes should be connected anode-to-anode.

If current limiting is not being caused by the zener diode, check the various voltages throughout the power supply. They should approximate the values listed below. Except for the output of U1, a 20 per cent variance in voltages can be expected because of component tolerances, especially in the transformers.

The voltages across CR6 and the filament of V1 must be measured using an oscilloscope because they consist of rectangular pulse trains. Use extreme care when making such measurements, since the scope ground connection will be elevated from the power-supply chassis ground by the plate-supply voltage.

The two characteristics of the noise source which required evaluation were the VSWR and the ENR. The former presented no problem, since suitable VSWR-measurement equipment was available. Table 1 shows the VSWR of six of the homebuilt noise sources at various frequencies between 30 and 550 MHz. For comparison purposes, the measured VSWR of three Hewlett-Packard model 343A noise sources are also included. It can be seen that the comparison is favorable, especially at the amateur band frequencies of 432 MHz and below.

Measuring the excess noise ratio is another matter, however. Short of sending a unit to the National Bureau of Standards, or equipping a primary standards laboratory, there is no way to measure the noise output quantitatively. As derived earlier in this article, the theoretical ENR of a temperature-limited diode, when terminated by a resistive load at the standard reference temperature of 290°K, is nearly equal to 10 log I in a 50-ohm system, where I is the diode plate current in milliamperes.

While we might accept this expression as an abso-
lute value at frequencies below 30 MHz, we know from experience and from Hewlett-Packard's specifications for the 343A noise source that the ENR gradually increases above 30 MHz to the limit of the source's frequency range. (This frequency limitation results from the transit time of the electrons passing from cathode to anode becoming an appreciable part of the period at high frequencies, and from the series inductances shown in fig. 4.)

Since there was no method by which the actual noise output of the diode could be measured directly, we resorted to measurement by transfer. While this is a far from ideal technique, it was the only feasible method, and provided us with usable data. The transfer method used was as follows. A hot-cold noise source and a precision variable attenuator were used in conjunction with a Hewlett-Packard noise-figure meter (in its manual mode as an indicator). The test setup is shown in fig. 8.

The noise source comprised two 50-ohm terminations, one immersed in liquid nitrogen (boiling point at 77.3°K) and one housed in a thermostatically controlled oven (temperature at 380°K). The VSWR of each termination was measured through the coaxial switch and found to be less than 1.02:1. The noise figures of four receivers, one each at 28, 144, 220, and 432 MHz, were determined by means of the test setup shown, taking into account the measured insertion loss of the coaxial switch (approximately 0.05 dB at 432 MHz, and insignificant at lower frequencies). These noise figures provided the reference for the transfer measurement.

The noise figures of the same receivers were then remeasured, using six different homebuilt noise sources and two Hewlett-Packard model 343A noise sources. In each case, the noise figure was determined manually, by means of the twice-power method, and automatically, using a Hewlett-Packard model 340A Automatic Noise Figure Meter; the test setups for these measurements appear in figs. 9 and 10.

The results of these noise-figure measurements were analyzed and plotted as errors in the ENR of each noise source, compared to theoretical noise power. Errors were determined by comparison with receiver noise figures measured using a hot-cold noise source. A positive error indicates output noise power in excess of the theoretical noise power; therefore a measured noise figure must be increased by the indicated error.

Analyzing the results of these measurements proved to be somewhat more difficult than performing the tests. At 28 MHz we expected the ENRs to be very close to the theoretical value. This proved to be the case for the manual measurements, but the automatic noise-figure measurements were generally on the high side, indicating a lower ENR than expected. The conclusion was that the error was in the automatic noise-figure meter, which is specified as having a possible error of ±0.5 dB. By way of comparison, the milliammeter shown in fig. 9 was an accurate digital meter, the loss of the 3-dB pad had been checked at 30 MHz, and the noise-figure meter was used only as a reference indicator, so that any error in that instrument was eliminated by using a fixed meter reference reading. The trend of low readings in the automatic mode is continued at 144 and

fig. 11. Errors in excess noise ratios of six homebuilt 5722 noise sources and two Hewlett-Packard model 343A noise sources, compared to theoretical noise power. Errors were determined by comparison with receiver noise figures measured using a hot-cold noise source. A positive error indicates output noise power in excess of the theoretical noise power; therefore a measured noise figure must be increased by the indicated error.

error. It must be reiterated that the ENR error is the deviation from the theoretical low-frequency ENR, and is a normal and expected deviation. Our tests were made to determine the magnitude of the deviation.

Analyzing the results of these measurements proved to be somewhat more difficult than performing the tests. At 28 MHz we expected the ENRs to be very close to the theoretical value. This proved to be the case for the manual measurements, but the automatic noise-figure measurements were generally on the high side, indicating a lower ENR than expected. The conclusion was that the error was in the automatic noise-figure meter, which is specified as having a possible error of ±0.5 dB. By way of comparison, the milliammeter shown in fig. 9 was an accurate digital meter, the loss of the 3-dB pad had been checked at 30 MHz, and the noise-figure meter was used only as a reference indicator, so that any error in that instrument was eliminated by using a fixed meter reference reading. The trend of low readings in the automatic mode is continued at 144 and
220 MHz but not at 432 MHz, where both types of measurements yielded closely related results.

Although one of the homebuilt noise sources produced an ENR well outside of the expected range at 220 MHz (for some unexplainable reason), the results seem to indicate that a homebuilt noise source can be constructed and can be expected to provide an ENR within the range specified by Hewlett-Packard for their model 343A. No attempt was made to apply a temperature or mismatch-loss correction, since the intent was a comparison between the homebuilt noise source and the Hewlett-Packard 343A. Both types of noise sources were subjected to the same possible receiver mismatch and were operated under identical environmental conditions.

noise-figure measurements

As previously stated, the noise source can be used in conjunction with its own power supply to make noise-figure measurements, or it may be used with a Hewlett-Packard model 340B or 342A Automatic Noise Figure Meter. It may also be used with a modified Hewlett-Packard model 340A, as described in reference 1. The techniques employed in automatic noise-figure measurements are treated briefly in that article, and in detail in the Hewlett-Packard manuals covering such equipment.6-9 The homebuilt noise source, when equipped with the appropriate power connector, can be considered as a direct replacement for the Hewlett-Packard model 343A at frequencies to at least 450 MHz.

Table 2 summarizes, for the amateur frequencies of interest, the nominal noise-figure correction which must be added to the measured noise figure because of the noise-source ENR increase with frequency, as shown in fig. 11. The table also includes the accuracy of the ENR, based on Hewlett-Packard’s specifications for the model 343A noise source and the measured equivalence of the homebuilt versions. Thus, this is the uncertainty of the corrected noise figure due to ENR only, but does not include other errors discussed in reference 1.

Since the ENR is higher, at frequencies over 30 MHz, than the nominal 5.2-dB value for which Hewlett-Packard automatic noise-figure meters are calibrated, it follows that the ENR may be reduced to 5.2 dB by reducing the diode plate current. The required value of current plotted against frequency is shown in fig. 12, and is included in table 2. By setting the diode current to the value indicated for the frequency of measurement, no ENR correction need be applied to the noise-figure reading. Manual noise-figure measurements may also be made in conjunction with an automatic noise-figure meter, as described in the previously referenced manuals.

Manual measurements, using the power supply described in this article, can be made in one of two ways: the twice-power method and the Y-factor method. The former is the one most familiar to most amateurs, and will be covered first. Fig. 13 shows four configurations, in order of preference, for the twice-power noise-figure measurement. In each diagram, the "receiver under test" means any receiver or portion thereof (such as a converter or mixer) which provides an output at either an intermediate or audio frequency. If AGC is incorporated in the receiver, the AGC should be disabled and the rf gain control

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{frequency (MHz)} & \text{ENR accuracy (dB)} & \text{NF correction (dB)} & \text{ENR (dB)} & \text{automatic noise-figure meter diode current (mA) to compensate for NF correction} \\
\hline
28 & \pm 0.20 & 0 & 5.20 & 3.31 \\
50 & \pm 0.23 & +0.13 & 5.33 & 3.21 \\
144 & \pm 0.28 & +0.45 & 5.65 & 2.99 \\
220 & \pm 0.30 & +0.65 & 5.85 & 2.85 \\
432 & \pm 0.38 & +1.17 & 6.37 & 2.53 \\
\hline
\end{array}
\]

fig. 12. Diode current required by a temperature-limited diode noise source to maintain a nominally constant 5.2-dB excess noise ratio (curve by J. R. Reisert, W1JR).
set so that the receiver is not overloaded by the noise input. There should be a direct connection between the noise-source output connector and the loss pad, and between the pad and the receiver. This means *no cables*, and a minimum of adapters.

The use of a loss pad with a diode noise source is not absolutely essential, but can minimize several problems. First of all, most receivers do not present a 50-ohm input when optimized for a noise match. Because the rated ENR of a noise source is based on a 50-ohm load, there will be an indeterminate mismatch loss if the receiver VSWR is greater than 1.0:1. A 3 to 6 dB pad will not eliminate the mismatch loss, but may reduce it somewhat.

A second reason for using a loss pad is to ensure a 50-ohm source impedance for the receiver, since the VSWR of the noise source is not a perfect 1.0:1. Any tendency of the receiver to “take off” when looking into an impedance other than 50 ohms will be reduced by the use of a pad.

In fig. 13A, the i-f output of the receiver under test is connected to a video or rf voltmeter (depending on the receiver output frequency), which is used only as an indicator. To terminate the 3-dB pad properly and present a constant load impedance to the receiver, the voltmeter must have a 50-ohm input impedance.*

With the noise source off and the 3-dB pad out of the circuit, a reference reading is established on the voltmeter. The 3-dB pad is then inserted between the receiver and the voltmeter, the noise source is turned on, and the noise-source plate current is adjusted until the same voltmeter reference is obtained. The uncorrected noise figure (in dB) of the receiver plus the loss pad between the noise source and the receiver is equal to $10 \log I$, where I is the diode plate current in milliamperes. The uncorrected receiver noise figure is determined by subtracting the attenuation of the loss pad from the calculated noise figure. The receiver noise figure must then be corrected for frequency by adding the noise-figure correction listed in *table 2* or, at frequencies not listed in the table, the nominal Hewlett-Packard 343A error shown in fig. 11. Note that the noise-figure accuracy is limited by the degree of uncertainty in the noise-source ENR, as indicated in *table 2* and fig. 11. Other uncertainties in the measurement will be discussed later.

The advantages of the circuit shown in fig. 13A are twofold: the measurement is independent of both the voltmeter calibration and any nonlinearity in the receiver detector. Fig. 13B shows a similar setup, except that the 3-dB increase in noise power depends on the voltmeter calibration. In this arrangement, the voltmeter ideally should be a true rms type so its readings are proportional to the square root of the power. It need not have 50-ohm input impedance, but should be calibrated in dB, although the latter feature is not absolutely essential. An average-responding voltmeter can be used with little loss in accuracy, but a peak-responding type should be avoided if at all possible.†

* A high-impedance meter can be converted to 50 ohms by means of a 50-ohm, feed-through termination, such as the Heath SU-511-50, Tektronix 011-0049-01, Hewlett-Packard 10100C, or Systron-Donner 454.

† The terms “average-responding” and “peak-responding” refer to the voltmeter circuit, not the meter scale calibration. The Hewlett-Packard model 400D is a typical average-responding meter calibrated in rms volts. Voltmeters which employ rf probes, such as the Hewlett-Packard model 410B and the various Heath, Eico, and similar electronic voltmeters, are invariably peak-responding meters, with their meter scales also calibrated in rms volts. In all of these instruments, the rms meter calibration is based on a sinusoidal waveform, which is not valid for noise voltage.
When the arrangement of fig. 13B is used, a reference reading is established on the voltmeter with the noise source off. Then the noise source is turned on and the diode plate current is adjusted until the meter reading is exactly 3 dB greater than the reference reading. (If the voltmeter does not have a dB scale, the diode current should be adjusted until the meter reading is exactly 1.41 times the reference voltage.) The noise figure is determined as described for fig. 13A.

Figs. 13C and 13D correspond to the test circuits just discussed except that the audio output of the receiver is measured by means of an audio-frequency voltmeter. Both of these circuit configurations depend on the linearity of the receiver detector; fortunately, most modern receivers use product detectors which are generally quite linear over a 3-dB range. The receiver beat-frequency oscillator must be on, of course, for the product detector to function.

Noise-figure measurements are made exactly as described for figs. 13A and 13B. In fig. 13C, the impedance of the voltmeter need not be 50 ohms, but its impedance and that of the 3-dB pad must be the same. In some cases, it may not be convenient or even possible to disable the receiver AGC when making measurements in accordance with figs. 13C or 13D. In view of the fact that the noise levels introduced are extremely low, the AGC in most, if not all, receivers will not be activated; so there is very little likelihood of any error occurring if the AGC cannot be disabled.

The less familiar Y-factor method of measuring noise figure requires a precision variable attenuator, as shown in fig. 14. The resolution of the attenuator should be at least 0.1 dB, and preferably 0.01 dB, and must be of known accuracy at the converter output frequency. With the noise source off, the precision attenuator is adjusted to obtain a convenient reference reading on the voltmeter. The noise-source plate current is then set to a value which corresponds to a known ENR, e.g., 3.31 mA, and the precision attenuator is readjusted to obtain the reference meter indication. The difference between the two attenuator settings, when converted from dB to the equivalent power ratio, is called the Y-factor, and is related to noise figure by the expression

\[
NF = ENR - 10 \log (Y - 1) \tag{18}
\]

where both the noise figure (NF) and excess noise ratio (ENR) are in dB.\(^*\) Fig. 15 shows noise figure plotted against Y-factor (expressed in dB) for the nominal excess noise ratios obtained when the diode current is set to 3.31 mA. These curves obviously eliminate corrections because of differences in ENR at various frequencies, but are still subject to the uncertainty of the ENR tolerance.

There is a third method of manually measuring noise figure which is not recommended, but which should be mentioned because of its past appearance in some publications. It entails inserting a precision variable attenuator between the noise source and the receiver under test, then determining the noise figure from the ENR of the source and the calibration of the attenuator. This method is generally inaccurate because of variations in attenuator accuracy with frequency, and because the load impedance presented to the noise source by the attenuator-receiver combination may change as the attenuator setting is changed.

measurement errors

Some of the possible sources of error in noise-figure measurements are already apparent from the preceding discussion, especially that which is inherent in the noise source itself. However, there are addition-

\(*\) This relationship is derived in eqs. 1 through 9 of reference 1.
al errors which must be considered and which are discussed in greater detail in reference 1. These errors comprise the following:

1. Noise-source accuracy, corrected for frequency
2. Noise-figure meter or power-supply millimeter accuracy
3. Receiver image-response error
4. Temperature error
5. Mismatch error

If all errors are in dB, they accumulate additively. Therefore, the total measurement error will be the sum of the above. This is an imposing list, and could total well over 1.5 dB if all errors were of the same algebraic sign. However, many of these errors will cancel because of opposing signs, and generally the accuracy of commercial test equipment is better than the limits of its specifications. Nevertheless, these possibilities of error are very real and cannot be ignored except for comparative measurements using the same equipment at one particular time. And even then, the mismatch errors between the noise source and different receivers under test still exist.

acknowledgments

Bob Melvin, W6VSV, was responsible for both the noise-source analysis and the power-supply design, and must share credit for this article. Bryan Westfall, K6OJM, and Steve Mieth, K6YFK, provided equipment and invaluable assistance in making the hot-cold measurements used to evaluate the performance of the noise source. Appreciation is also due Cliff Buttschardt, W6HDO; Duke Moran, W6SPB; Paul Shuch, N6TX; and Bob Sutherland, W6PO; for the use of their commercial and homebuilt noise sources for the evaluation process.

references

5. Louis N. Anciaux, W8NNM, "Accurate Noise-Figure Measurements for VHF," ham radio, June, 1972, page 36.
6. Operating and Service Manual, 340A Automatic Noise Figure Meter, Hewlett-Packard Company, Palo Alto, California 94304.
7. Operating and Service Manual, 340B Automatic Noise Figure Meter, Hewlett-Packard Company, Palo Alto, California 94304.
8. Operating and Service Manual, 342A Automatic Noise Figure Meter, Hewlett-Packard Company, Palo Alto, California 94304.

ham radio
MICROWAVE MODULES LTD.

432 Mhz Linear Transverter

UP YOUR FREQUENCY!

- **EXTRA RANGE (434-436 Mhz)** for Satellite operation.
- 10 Watts RMS output power.
- Simple Frequency Range Selection Using Toggle Switches.
- Highly Stable Regulator Controlled Crystal Oscillator Stages
- 30 dB Receiver Gain.
- Better than 3.0 dB Noise Figure.
- Antenna Changeover Achieved by Low Loss Pin Diode Switch.
- 50 Mhz and 144 Mhz I.F.’s Available.

MMT432/28-S — PRICE: $329.95 INCLUDING SHIPPING

144 Mhz Linear Transverter

Join the Fun on 2 Meter Sideband — using your 28Mhz Transceiver.

- 10 WATTS RMS OUTPUT POWER
- 30 dB RECEIVER GAIN
- BETTER THAN 2.5dB NOISE FIGURE
- 50 Mhz I.F. AVAILABLE

MMT 144/28 — PRICE: $259.95 INCLUDING SHIPPING

432 Mhz LINEAR AMPLIFIER

100 WATTS OUTPUT

- 100% DUTY CYCLE RATED
- RFVOX
- 10dB MINIMUM GAIN
- FULLY PROTECTED VSWR, OVERHEATING, REVERSE POLARITY

MML432/100 — PRICE: $449.95 INCLUDING SHIPPING

432-436 Dual Range Receiving Converter

- OSCAR, MODE J RECEPTION
- 30 dB GAIN
- BETTER THAN 3.0 dB NOISE FIGURE
- I.F.’s AVAILABLE: 28-30Mhz, 144-146 Mhz

MMC 432/28-S — PRICE: $95.95 INCLUDING SHIPPING

GUARANTEE

ALL MICROWAVE MODULES PRODUCTS ARE GUARANTEED FOR 1 YEAR. IN ADDITION, THEY MAY BE RETURNED WITHIN 10 DAYS FOR A FULL REFUND IF YOU ARE NOT SATISFIED FOR ANY REASON.

TEXAS RF DISTRIBUTORS IS THE EXCLUSIVE IMPORTER OF MICROWAVE MODULES PRODUCTS, AND WE SUPPLY A COAST-TO-COAST DEALER NETWORK. WRITE OR PHONE FOR DETAILS OF THESE PRODUCTS AND THE OTHER VHF AND UHF MICROWAVE MODULES PRODUCTS WHICH WE STOCK.

TEXAS RF DISTRIBUTORS, INC.

JOE - WA5HNK

CARL - W5UPR

Exclusive U.S.A. Distributors of Microwave Modules Products

4800 WEST 34TH STREET • SUITE D12A

HOUSTON, TEXAS 77092

PHONE 713/680-9797 • TELEX 791322

More Details? CHECK-OFF Page 110
MML 144/100

- **Power Input**: 10 watts nominal
- **Frequency Bandwidth**: 144–148 MHz @ -0.5dB
- **RF Input Connector**: 50ohm BNC
- **RF Output Connector**: SO239
- **Power Requirements**: 13.8 nominal @ 14 amps
- **Weight**: 4kg (8lb 13oz)
- **Overall Size**: 315 x 142 x 105mm (12 3/8 x 5 5/8 x 4 1/8")

Specifications:

<table>
<thead>
<tr>
<th>Power Gain</th>
<th>10dB minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output</td>
<td>100 watts RMS output @ 1dB compression</td>
</tr>
<tr>
<td>Power Input</td>
<td>10 watts nominal for 100 watts output</td>
</tr>
<tr>
<td>Frequency Bandwidth</td>
<td>435 MHz + 15 Khz @ -1dB</td>
</tr>
<tr>
<td>RF Input Connector</td>
<td>50ohm BNC</td>
</tr>
<tr>
<td>RF Output Connector</td>
<td>50ohm N' Type</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>13.8 nominal @ 20 amps for 100 watts output</td>
</tr>
<tr>
<td>Weight & Overall Size</td>
<td>Same as MML 144/100</td>
</tr>
</tbody>
</table>

Price: $329.95 including shipping

Guarantee

All Microwave Modules products are guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund if you are not satisfied for any reason.

MML 432/100

- **Power Output**: 100 watts RMS output @ 1dB compression
- **Power Input**: 10 watts nominal for 100 watts output
- **Frequency Bandwidth**: 435 MHz ± 15 Khz @ -1dB
- **RF Input Connector**: 50ohm BNC
- **RF Output Connector**: 50ohm N' Type
- **Power Requirements**: 13.8 nominal @ 20 amps for 100 watts output
- **Weight & Overall Size**: Same as MML 144/100

Price: $449.95 including shipping

Texas RF Distributors is the exclusive importer of Microwave Module products, and we supply a coast-to-coast dealer network. Write or phone for details of these products and the other VHF and UHF Microwave Module products which we stock.

Texas RF Distributors, Inc.

Joe - WA5HNK
Carl - W5UPR

4800 West 34th Street • Suite D12A
Houston, Texas 77092
Phone 713/680-9797 • Telex 791322

More Details? CHECK OFF Page 110
ground currents measuring
in 160-meter antenna systems

Several years of operating on 160 meters has verified one thing for sure: The antenna is the name of the game. All the store-bought boxes and smooth-turning dials are useless without that super skyhook. This article describes an instrument that will tell you the behavior of rf ground currents in your antenna system: where it’s going, how much, where the current divides, and the location of any conducting element within the instrument’s field.

top-band antennas

Few Amateurs are lucky enough to have room for even a simple dipole on 160 meters. Such an antenna requires a length of at least 76 meters (250 feet) and it won’t work too well as a DX antenna unless it’s 30 meters (100 feet) or more in the air.

Loading a tower or short vertical antenna is often the best that space will allow. Many articles have been published on how to load this or that antenna on 160 meters and make it work. I’ve tried many and found that most have a common problem: ground losses. The shortest piece of wire that will resonate is ½-wavelength long. That’s 78 meters (257 feet) at 1824 kHz.

Shortened vertical antennas will work, but all verticals shorter than ½ wavelength must use the earth as a mirror image to supply the missing portion of the antenna. A typical example is the ¼-wavelength vertical that works against its mirror image to produce the patterns you see in the Radio Amateur’s Handbook. The problem is usually found in the not-so-perfect ground around your station. In most cases this lossy ground becomes part of your antenna system. This is particularly true for short verticals and inverted L antennas. These antennas are electrically in series with the lossy ground. Working with such an antenna can be frustrating; often you can hear well enough, but much of your transmitter power ends up heating the worms.

Many of the better signals on 160 meters come from hams that have buried literally thousands of feet of copper in the ground to reduce these losses. The prospect of putting that much wire into the ground makes my back ache just thinking about it. Can’t you hook onto your water pipes for some of that ground? How about the backyard fence? Would it help to drive a few ground stakes? All the mathematical gymnastics I could muster just didn’t tell me where those ground currents actually went. What I needed was a device that would measure the rf current in the ground system and tell me where it was actually going. I finally built a device that does just that: it’s called a magnetometer.

the magnetometer

The idea of a magnetic fieldstrength indicator is far from new. An article in the older ARRL Antenna Handbooks describes a less-sensitive model for higher frequencies. The 160-meter instrument described here uses a six-turn link and full-wave rectifier to make the impedance match to the meter more effective. Somehow the unit works better on 160 meters than on the higher-frequency bands. One reason is that it’s harder to get a proper ground on 160 meters, and ground currents tend to be higher for longer distances through every possible path. By using the magnetometer you can tell the relative current and direction in any wire near your antenna or ground system — or in your antenna itself, for that matter. You can locate a buried ground or radial by sweeping

![fig. 1. Schematic of the homebrew magnetometer.](image)

<table>
<thead>
<tr>
<th>quantity</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aluminum minibox, 102 × 128 × 77 mm (4 × 5 × 3 inches)</td>
</tr>
<tr>
<td>1</td>
<td>25-kilohm potentiometer</td>
</tr>
<tr>
<td>1</td>
<td>0-30 or 0-50 microammeter</td>
</tr>
<tr>
<td>4</td>
<td>germanium diodes (1N34 or equivalent)</td>
</tr>
<tr>
<td>1</td>
<td>102-mm (4-inch) broadcast ferrite loopstick (about 6.5 mm or ½ inch — round works best)</td>
</tr>
<tr>
<td>1</td>
<td>365-pF variable</td>
</tr>
<tr>
<td>1</td>
<td>0.1 μF disc ceramic</td>
</tr>
<tr>
<td>1</td>
<td>terminal strip</td>
</tr>
<tr>
<td>2</td>
<td>rubber grommets</td>
</tr>
</tbody>
</table>

By Kenneth F. Carr, WØKUS, 1306 Gilbert Street, Charles City, Iowa 50616
the magnetometer over the area and watching the meter deflection. You can compare relative currents in different radials or grounds.

In my basement, where the rf current in the water pipes comes to a T intersection, I can measure how the current divides, if it does, and the relative currents in each section of pipe. In my case, the gas pipe was a better ground than the water pipe!

The magnetometer is not sensitive to the antenna's radiated field. It is shielded from this field by the aluminum box and will not act as a field-strength meter unless held perpendicular to a conductor carrying rf current. The slot must be aligned perpendicular to a conductor to allow the magnetic field to reach the loopstick.

It is this magnetic field that operates the device. Fifty watts of rf power into your antenna is usually enough to give a useful reading. (Do your testing during the daylight hours when 160 meters is quiet.) A few minutes with the magnetometer will tell you exactly where your rf energy is flowing.

Unless your antenna is textbook perfect, and few are, you're sure to get a few surprises. I checked W0NFL's station in this manner. Jim was using an inverted L antenna and loaded it through a series-tuned capacitor. Although he had several ground stakes and many buried ground wires, some rf still flowed into the station. All pipes and the furnace air duct in the basement were bonded together and tied to the ground system.

I still remember Jim's surprise when we found that he was loading his kitchen sink. It turned out that the soil pipe provided the best rf ground, and the only path to that was through the S-trap under the kitchen sink. Boy was it hot!

I've used my magnetometer for about four years and have had nothing but good luck and fun with it. I sent a sketch to a couple of my 160-meter cronies, W9GDW and N0BD. Both report that it works well for them too.

construction

The best part about the magnetometer is that it is inexpensive, requires no power supply, and most hams can build it in one evening, often from parts in the junk box. Parts placement isn't critical, and I'm sure that any reasonable approximation of the schematic (fig. 1) will work. Use the most sensitive meter you can find and germanium diodes for best results. The loopstick I used was made to operate in the broadcast band with a 365-pF capacitor. I removed about ten turns from the coil to obtain resonance in the 160-meter band. A grid dipper works well to check tuning range. The loopstick is mounted 25.5 mm (1 inch) from the bottom of the minibox and about 19 mm (¾ inch) in from the back. Drill a 12.5-mm (½-inch) hole in each side of the box at these points. Use a hacksaw to cut a slot from the back of the box down to the holes. I used rubber grommets to mount the loopstick. The pickup winding is a six-turn loop of hookup wire wound over the center of the loopstick winding. A few more holes and there you have it: another gadget that no serious 160-meter antenna nut can live without.
New 2 Meter Avanti Mobile Antenna
Mounts on glass — no holes!

- Receives and transmits through glass.
- Superior performance equivalent to 5/8 wave.
- Superior radiation full Omni-Directional.

It's easy to install — No holes to drill, no magnet to scratch the paint, no clamps. Uses an especially developed epoxy adhesive that secures antenna to window like a 1/4" bolt. The capacity coupling box is simply attached with a special adhesive tape to inside of window. Worried about crimping or corroding coaxial cables? It's all inside and out of sight.

AH 151.3G SPECIFICATIONS

<table>
<thead>
<tr>
<th>Gain</th>
<th>Equivalent to 5/8 wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 meter V.S.W.R. Band Width</td>
<td>Better than 1.5:1</td>
</tr>
<tr>
<td>Maximum power</td>
<td>150</td>
</tr>
<tr>
<td>Nominal impedance</td>
<td>50 Ohms</td>
</tr>
<tr>
<td>Chrome plated casing, Stainless Steel hardware, Swivel whip holder</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>33"</td>
</tr>
</tbody>
</table>

Performance and Mechanical Patents Pending

Buy one from your nearest AVANTI dealer. If your dealer does not have one in stock, have him call the following toll free number and we will ship him one within 24 hours:

(800) 323-9429

HF/VHF/UHF PRE-AMPLIFIERS
28 MHz-1300 MHz

PA1-series pre-amplifiers are the ideal units to improve marginal receiver or converter performance. 20 dB nominal gain and low, low noise figure. All units complete with built-in regulated power supply and adjustable front panel gain control.

Prices range from $44.50 to $62.50 depending upon frequency. Write for technical bulletin A-1010.

VHF/UHF TEST GENERATORS
50 MHz-1300 MHz

TG1-series test generators are crystal-controlled small-signal sources ideal for "ON-THE-AIR" test simulation or antenna experimentation. They are indispensable for receiver or converter 'front-end' alignment.

Power output, 10 mV nominal into a 50 ohm load. Units require 12 Vdc source. (Not furnished)

Prices range from $32.00 to $55.00 depending upon frequency. Write for technical bulletin A-1011.

Call or Write for Delivery or Quote

ICOM IC701 with AC/MIC

LEAVE A MESSAGE & WE'LL CALL YOU BACK!

All prices fob Houston, except where indicated. Prices subject to change without notice. All items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6%. Tax - please add postage estimate. $1.00 minimum. W5CU, W5MGB, K5AAE, MGJ, AG5K, WS5VM. WD5EDE, KSZD, WASTGU, WB5AYF, K5RC, K5BG, WB5USV

MADISON ELECTRONICS SUPPLY, INC.
1508 McKinney • HOUSTON, TEXAS 77002
713/658-0268

HERMES RESEARCH & DEVELOPMENT CO.
3997 Elkcam Boulevard Southeast
St. Petersburg, Florida 33705
(813) 823-1032

More Details? CHECK — OFF Page 110
NOW YOU CAN HAVE BOTH
HIGH QUALITY & LOW COST!

The DS2000 KSR FROM HAL
HAL design experience now makes it possible to offer you an efficient, reliable, and cost-effective terminal for your RTTY or CW station. Investigate the new DS2000 KSR from the people who KNOW HOW to build RTTY and CW equipment. See how you can get great performance and save money too!

- Integrated keyboard and video generator
- 72 character line
- 24 line display
- 2 programmable "Here Is" messages
- Automatic carriage return and line feed
- QBF and RY test messages
- Word mode operation, full screen buffering
- All 5 standard Baudot speeds
- 110 and 300 baud ASCII
- CW identification at the touch of a key
- Morse code transmit
- Morse code receive (optional)
- Self-tracking speeds from 1-175 wpm on a separate plug-in circuit board
 (Available June, 1979)
- All in a convenient, small cabinet
 (14.1" x 9.25" x 4.35")
Price: $449.00
Optional Morse Receive Board: $149.00
Optional 9" monitor: $150.00

BIG PERFORMANCE
SMALL SIZE...SMALL PRICE
If you're looking for an RTTY demodulator with great performance on both the HF and VHF bands, take a look at the ST-5000 from HAL. The use of active filters with no phase-lock loop or 'single-tone' short-cuts ensure the kind of performance you expect. Full features in an attractive and conveniently small package make this demodulator a value that's hard to beat!
- Hard limiting front end
- Active discriminator
- Active detector
- Wide and Narrow shift
 (850hz and 170hz)
- Normal and Reverse sense
- Autostart
- Self-contained high voltage loop supply
- RS-232C voltage output (direct FSK)
- Audio tone keyer (AFSK)
- Provision for external tuning scope
- Attractive, small cabinet
 (2.75" H x 8" D x 12" W)
- Fully assembled and tested
Price: $225.00

For more information call or write us at:
HAL COMMUNICATIONS CORP.
P.O. Box 365
Urbana, IL 61801
Phone: 217-367-7373

In Europe contact:
Richter & Co.: Hannover
I.E.C. Interelco; Bissone
the digiscope

Eliminate a lot of expensive test equipment by using the digiscope, a self-contained test instrument for TTL circuitry.

If you experiment with or repair digital circuitry, this article is for you. Even if you don’t, consider the fact that most new equipment contains at least some logic circuitry. Whether you’re a digital expert or merely contemplating an upgrade of your troubleshooting skills, you’ll find the digiscope very useful.

To understand my claim, look at a few digital basics. Logic circuitry uses only two levels of voltage, and at times a dc voltmeter is all you need to find a problem or debug an experiment. Unfortunately, voltage levels in many circuits don’t stand still, and rapid level changes make the voltmeter almost useless. Professional technicians depend on the oscilloscope to see what is happening in such circuits. The cost of a good oscilloscope may exceed the cost of the device you’re trying to check. That’s where the digiscope fits in. The objective is to provide oscilloscope function at multimeter prices.

You might be interested in how the digiscope evolved. Last year, several of our club members decided to built the frequency counter described by Jim Pollock. Naturally, some of the counters (including mine) didn’t work on the first try. I had worked with digital circuitry previously and enjoyed helping with a few of the counters using an oscilloscope for the repairs. As I used the scope, I began to realize that, for these types of circuits, oscilloscope functions could be approximated using inexpensive TTL devices. The result is that many more people could work with complex circuits without making a major investment in test equipment.

oscilloscope functions

To see how I have approximated an oscilloscope function, take a brief look at the digiscope features.

1. A level indicator serves as a basic voltmeter by indicating a 0 or 1 level in the circuit under test.

2. Pulse duration from 0.1 microsecond to 999 milliseconds can be measured. A variation of this feature allows the measurement of time between the trailing edge of a pulse and the leading edge of the next.

3. The length of time between the leading edges of two pulses at different circuit points can be measured.

4. You can defer the measurement of a pulse until after the occurrence of a pulse at another circuit point. This is similar to an oscilloscope’s external sync. In addition, this measurement can be delayed for up to 99 milliseconds after the occurrence of the sync pulse, with a delay resolution of 0.1 millisecond. This approximates the oscilloscope’s delayed sweep.

By Tom Seevers, WB0CLH, 2133 Heather Lane, Lincoln, Nebraska 68512
5. Auxiliary gates are available on the front panel, including a latch to check for pulse occurrence or coincidence between two or three pulses.

6. An event counter, inherent in the design, allows counting up to 999 events with overflow indication. Since some readers may not be familiar with the equivalent oscilloscope functions, I will include examples of digiscope use in circuit explanations.

clock and display circuits

Before looking at uses for the digiscope, I'll examine the clock and display circuits, since they are the key to understanding basic digiscope functions. At the heart of the display circuitry is the 74143 TTL IC which combines the functions of the 7490 and 7447, serving as a decade counter as well as a decoder for the displays. Three of the counters are used, permitting up to 999 counts with a latched overflow indicator. Input to the first 74143 is from the clock, with options of 0.1 microsecond, 1 microsecond, 0.1 millisecond, and 1 millisecond.

The pulse to be measured acts as a gate for the counter, allowing clock pulses to be counted during the time the pulse being measured remains at a logic 1 level. Initially, the counter is reset from the front panel. The next pulse to arrive allows counting. After the first ends, further counting is inhibited so that the display may be read. Input clock pulse options allow a measured range from 100 nanoseconds to 999 milliseconds. Resolution varies from 0.1 microsecond to 1 millisecond. A decimal point is displayed when necessary to indicate either 0.1 microsecond or 0.1 millisecond resolution.

The clock circuit and divider chain is almost identical to that used in the WB2DFA 50-MHz counter referred to earlier. The only change is that a 10-MHz crystal is used to obtain 0.1-microsecond measurement resolution. Although oscillators of this type are usually recommended for use up to 1 MHz, the 10-MHz crystal has worked well. No starting or stability problems have been observed. Counting range is changed by selecting the required frequency via S1A.

As an example of operation, consider the pulses shown in fig. 1. Suppose you would like to examine the pulses of fig. 1B. To do this, connect the data-in test lead to the appropriate point, and set the range switch to 0.1 millisecond. Push the reset button to enable the scope. During the pulse time, pin 13 of U1 (see fig. 2) is a 1 for its duration, or 10 ms. During this 10 ms, one hundred pulses from pin 12 of U4 are passed to the counter/display circuits. At the end of the 10 ms pulse time, the display is then held with 100 displayed. S1B selects the necessary decimal point line causing the display to read 10.0 milliseconds, the length of the pulse. So that I may view the measurement, subsequent pulses are blocked, until the reset is pressed, so that the display may be read.

Having measured the pulse width of fig. 1B, you might be interested in the length of time between two consecutive pulses. To determine this, simply change S10 to the invert position and press reset. Fig. 1B would now appear as a train of 30-ms pulses with 10-ms separation. Using the same circuitry, the scope would now indicate a pulse length of 30.0 milliseconds. Other factors, such as rise and fall times as well as the existence of jitter, have not been determined, however repeated measurements may help determine the extent of any jitter.

one-shot/swallow circuitry

Recall I said that after the measured pulse ends, further pulses would be ignored. This is accomplished with U12A. The trailing edge of the measured pulse causes U12A to be set, pulling pin 13 of U10 low which prevents subsequent pulses from passing through U10A. This condition exists until the reset switch is pressed.

An interesting problem could arise when the scope is reset. Suppose that the instant after the reset line is grounded you're halfway through a pulse. An erroneous measurement would be obtained. To prevent this, the scope discards the first pulse after reset, ensuring that a partial pulse is not used. After reset, pin 2 of U10 is low, preventing pulses from passing to the counters. The first pulse, whether partial or complete, is blocked with its subsequent trailing edge used to set U12B. Indirectly, this causes pin 2 of U10 to go high. The second pulse is now successfully passed through U10A to the counters. By swallowing the first pulse, I ensure that only complete pulses are measured.

external sync

Examining pulses of uniform length is a fairly easy task. Unfortunately, the pulses may be of varying lengths, as illustrated in fig. 1A. By using the gating
method I have described, repeated measurements would randomly show pulses of 10 milliseconds and 2 milliseconds. In our simple case, merely finding both pulses may be sufficient. A more precise method is to look for a pulse only at the time it should occur.

As an example, suppose I want to measure the first pulse of fig. 1A. Note that this occurs after the pulse of fig. 1B. By connecting the external sync input to the appropriate spot and placing the norm/external sync switch in the external sync position, U16A is set by pulse C. The next pulse to arrive at data-in is pulse A, the one I want to measure. In the external sync mode, the pulse-swallowing circuitry is disabled by U13B. Since I know exactly when to expect pulse A, partial pulses are not a problem.

delayed sync

To illustrate the delayed sync logic, assume that you want to look at only pulse B in fig. 1A. To avoid random measurement, use the external sync feature. If pulse C began between T1 and T2.7, the external sync feature would be sufficient. However, what is needed is a way to use pulse C as the sync but delay the input until after pulse A.

This capability is provided by the delayed sync circuitry. With the digiscope set up as in the last example, place S11 in delay position. Note that in the delay mode, setting U16A is still not sufficient for U13A to pass a signal; U16B must now also be set. This will occur at T0 plus some amount of delay selected on the front panel. In this example, the delay switches are set for 20 ms. Thus, at T2, U16B will set, enabling pulse B to pass through U13A to the counter. In this example, pulse B could be selected with a delay ranging from 11 to 27 milliseconds.

The delayed sync logic allows me to enable measurement at a precise instant after the occurrence of the external sync. This delay can range from 0.1 to 99 ms. S4 selects delay increments of 0.1 or 1 ms. Counters U17 and U18 are responsible for delay timing and are held at zero after the reset is pressed. When the external sync pulse arrives at U16A, U17 and U18 are allowed to begin accumulating delay pulses. The desired delay is set into the thumbwheel switches. These switches present a BCD format to U19 and U20, where they are compared with the count in U17 and U18. When the count exceeds the amount set in the switches, a negative pulse is passed to U16B. This results in the set of U16B and the enabling of data-in.

The precision of the sync delay circuit is very good, since it is based on the crystal-controlled clock. Accuracy however, is dependent on the resolution inherent in the delay range you have selected. Actually, the delay begins not at arrival of the external sync, but at the next clock pulse after external sync. Thus delay error could be from zero up to one unit of resolution. Any error always results in early expiration of delay. Suppose I select a 0.1-ms delay increment and set a delay of 4.6 ms in the thumbwheels. Actual delay will vary between 4.5 and 4.6 ms. For greater resolution, I could simply use smaller units of time in incrementing the delay counters. A circuit illustrating optional resolution of 1 or 10 microseconds is illustrated in fig. 3. It should be recognized however, that an increase in resolution reduces the total delay available.
Occasionally it may be necessary to measure the time between two pulses at different pins. As an example, I might wish to measure the time between the rise of pulse C and the rise of pulse A. To do this I would connect the pulse A line to the data-in jack, while the other point would be connected to the external sync input and S3 placed in the A-B position. S2 should be placed in the external sync position, S10 in the invert position, and the reset button pressed. When pulse C arrives, it will set U16A, which will set U14B. The Q output of U14B enables the counter input and timing begins. When pulse A arrives at data-in, U12B is set. The Q output of U12B resets U14B, ending the counting cycle. With the range switch set to 1 ms, 10 ms will now be displayed.

accessory circuits

To assist in examining unusual situations, some accessory circuits are provided. These are simply logic gates with inputs and outputs extended to the front panel. U11D and U11E provide a basic logic tester. Connecting the tester input to another logic circuit will cause the appropriate front panel LED to indicate a 0 or 1 condition. Note that a 1 will be indicated if connected to an open circuit. Both 0 and 1 will be lit if connected to a pulsing circuit or one with a faulty voltage level between 0 and 1. Each LED is mounted in a 14-pin socket next to the counter display sockets. LED function is indicated by transparent lettering on a negative film placed between the bezel and the LED. The overrange and test latch indicators are also located in this socket.

Also available on the front panel are AND, OR, and inverter circuits. These can be used to combine pins of a circuit for making tests not otherwise possible. An example would be measurement of the overlap of pulses A and C. I could connect the lines of fig. 1 to the front panel connections of U10. The output could be inverted using U11B. The output of U11B is then connected to data-in. If overlap exists, it can now be measured to the nearest 100 ns.

If I simply wanted to detect the existence of overlap, a test latch circuit is available. It is composed of U10B and U9A. In this example, I could connect to any two inputs of U10B. Overlap would be indicated by the lighting of the test latch display at the output of U9A. This latch is reset with the reset switch.

A totalize function is provided by S5. With this switch in the TOTALIZE position, front panel input is provided to the counters. External events, which are available as TTL pulses, can then be accumulated. I suggest using an accessory inverter to shield the more expensive counter chip from possible excessive voltage levels. Accumulation can be reset at any time with the front panel reset switch.

construction

While building the digiscope I found it difficult to stop adding features. If you build this project, I think you’ll find it a good idea to leave room for additions. For example, I think a good addition would be selectable CMOS inputs for working on CMOS circuits. To facilitate this, I left some blank IC positions on my circuit board. While a circuit board is suggested, you could wire wrap this project; my original effort was done on plugboard and didn’t seem to suffer too much from all the stray wire.* One note on the 10-MHz crystal is that not any crystal will work well in this circuit. I achieved the best results with a crystal obtained from Jan Crystals. A suggested power supply is illustrated in fig. 4.

conclusions

The digiscope is an exciting approach to digital trouble shooting. It can give a way of working on complex circuits without expensive test equipment. If you are interested in digital circuits but don’t know how to start, I suggest obtaining the *TTL Cookbook*. I know you’ll find working with logic a lot easier than you expected. Whether you’re new to TTL or a veteran in logic circuits, I think the digiscope will be a valuable addition to your workbench.

reference

A drilled and plated set of circuit boards with additional instructions are available for $19.00 postpaid from RTC Electronics, Box 2514, Lincoln, Nebraska 68502.

fig. 4. Schematic diagram of a suggested power supply for use with the digiscope.
NEW FROM DSI!

50 Hz — 500 MHz 8 DIGITS
1 Meg INPUT — 1 Hz RESOLUTION — 1 PPM TCXO

- AC—DC Operation
- BNC Inputs 1 Meg Direct 50 Ohms Prescaled
- 8 Large .4” LED Readouts
- Auto Decimal Point & Zero Blanking

$149.95
MODEL 500 HH
50 Hz — 500 MHz

$99.95
MODEL 100 HH
50 Hz — 100 MHz

The 100 HH and 500 HH hand held frequency counters represent a significant new advancement, utilizing the latest LSI design... and because it’s a DSI innovation, you know it obsoletes any competitive makes, both in price and performance. No longer do you have to sacrifice accuracy, ultra small readouts and poor resolution to get a calculator size instrument. Both the 100 HH and 500 HH have eight .4 inch LED digits — 1 Hz resolution — direct in only 1 sec. or 10 Hz in .1 sec. — 1 PPM TCXO time base. These counters are perfect for all applications be it mobile, hilltop, marine or bench work.

CALL TODAY FOR MORE INFORMATION ON DSI’S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10 Hz TO 1.3 GHz.

<table>
<thead>
<tr>
<th>MANUFACTURER</th>
<th>MODEL</th>
<th>SUG LIST PRICE</th>
<th>FREQUENCY RANGE</th>
<th>TYPE OF TIME BASE</th>
<th>ACCURACY OVER TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSI INSTRUMENTS</td>
<td>100 HH</td>
<td>$99.95</td>
<td>50Hz-100MHz</td>
<td>TCXO</td>
<td>1 PPM 1 Hz</td>
</tr>
<tr>
<td>CONTINENTAL SPECIALTIES</td>
<td>MAX 50</td>
<td>$89.95</td>
<td>100Hz-50MHz</td>
<td>Non-Compensated</td>
<td>3 PPM 25°C 1 Hz</td>
</tr>
<tr>
<td>DSI INSTRUMENTS</td>
<td>500 HH</td>
<td>$149.95</td>
<td>50Hz-550MHz</td>
<td>TCXO</td>
<td>1 PPM 1 Hz</td>
</tr>
<tr>
<td>CONTINENTAL SPECIALTIES</td>
<td>CSG-50</td>
<td>$149.95</td>
<td>1kHz-550MHz</td>
<td>Non-Compensated</td>
<td>3 PPM 25°C 1 Hz</td>
</tr>
<tr>
<td>OPTOELECTRONICS</td>
<td>OPT-700</td>
<td>$139.95</td>
<td>10Hz-600MHz</td>
<td>TCXO</td>
<td>1.8 PPM 1 Hz</td>
</tr>
</tbody>
</table>

100 HH $ 99.95
500 HH $149.95
1 Year Limited Warranty Parts & Labor.
Factory Assembled in U.S.A.

T-500 Ant. $ 7.95
AC-9 Battery Eliminator $ 7.95
NiCad Batt Pack $24.95
Digital Frequency Control*

...a Kenwood innovation for maximum HF operating enjoyment!

Kenwood's TS-180S with DFC is an all solid-state HF transceiver designed for the DXer, the contest operator, and all other Amateurs who enjoy the 160 through 10-meter bands. The following features prove, beyond doubt, that the TS-180S is the classiest rig available!

- Digital Frequency Control (DFC), including four memories and manual scanning. Memories are usable in transmit and/or receive modes. Memory-shift paddle switches allow any of the memory frequencies to be tuned in 20 Hz steps up or down, slow or fast, with recall of the original stored frequency. It's almost like having four remote VFOs!
- All solid-state ... including the final. No dipping or loading. Just dial up the frequency, peak the drive, and operate!
- High power...200 W PEP/160 W DC input on 160-15 meters, and 160 W PEP/140 W DC on 10 meters (enteire band provided). Also covers more than 50 kHz above and below each band (MARS, WARC, etc.), and receives WWV on 10 MHz.
- Improved dynamic range.
- Adaptable to all three proposed (WARC) bands.
- Single-conversion system with highly advanced PLL circuit, using only one crystal with improved stability and spurious characteristics.
- Built-in microprocessor-controlled large digital display. Shows actual VFO frequency and difference between VFO and "M1" memory frequency. Blinking decimal points indicate "out of band." Monoscale dial, too.
- IF shift...Kenwood's famous passband tuning that reduces QRM.
- Selectable wide and narrow CW bandwidth on receive (500 Hz CW filter is optional).
- Automatic selection of upper and lower sideband (SSB NORM/SSB REV switch).
- Tunable noise blanker (adjustable noise-sampling frequency).
- RF AGC ("RGC"), which activates automatically to prevent overload from strong, local signals.
- AGC (selectable fast/slow/off).
- Dual RIT (VFO and memory/fix).
- Three operating modes...SSB, CW, and FSK
- Improved RF speech processor.
- Dual SSB filter (optional), with very steep shape factor to reduce out-of-passband noise on receive and to improve operation of RF speech processor on transmit.
- U.K. VDC operation.
- Also available is the TS-180S without DFC, which still shows VFO frequency and difference between VFO and "hold" frequencies on the digital display.
- Full line of matching accessories, including PS-30 base-station power supply, SP-180 external speaker with selectable audio filters, VFO 180 remote VFO, AT-180 antenna tuner, SWR and power meter, DF-180 digital frequency control, YK-88 CW filter, and YK-88 SSB filter.

All of these advanced features can be yours...and at an attractive price! Visit your local Authorized Kenwood Dealer and inquire about the exciting TS-180S with DFC!

Still available...Kenwood's TS-820S HF transceiver.
TS-120S... A big little rig.

It's a compact, up to 200 watts PEP input, all solid-state HF transceiver with such standard features as built-in digital readout, IF shift, new PLL technology... and requires no tuning!

Exciting and perfect for car or ham shack use! But, there's more to say about the TS-120S! This unique all solid-state HF, SSB/CW transceiver produces a hefty signal and also offers a lot of other great features in a very attractive, compact package.

FEATURES:
- All solid-state with wideband RF amplifier stages. No final dipping or loading, no transmit drive peaking, and no receive preselector tuning! Just dial your frequency and operate!
- Five bands, plus WWV. Transmits and receives on 80,75, 40, 20, 15, and all of 10 meters... and receives WWV on 15 MHz.
- 200 watts PEP (160 watts DC) input on 80, 15 meters, 160 watts PEP (140 watts DC) input on 10 meters, LSB, USB, and CW.
- Digital frequency display (standard), 100-Hz resolution. Six digits. Special green fluorescent tubes eliminate viewing fatigue. Analog subdial, too, for backup display.
- IF shift (passband tuning), to remove adjacent-frequency interference and sideband splatter.
- Advanced PLL circuit, which eliminates need for heterodyne crystal element for each band. PLL lock frequency, CAL marker signal, and counter clock circuit use single reference frequency crystal. Simplifies circuitry, improves overall stability. Also improves transmit and receive spurious characteristics.
- Attractive, compact design. Measures only 3½" high X 9¼" wide X 13½" long, and weighs only 4.9 kg (11.7 lbs). A perfect size for convenient mobile operation and rugged enough for either mobile or portable use. Also has all the desired features for optimum ham shack operation at home.
- Noise blanker. You'll wonder where the ignition noise went.

See the big little TS-120S rig and matching accessories (VFO-120 remote VFO, SP-120 external speaker, PS-30 AC power supply, MB-100 mobile mounting bracket, AT-120 antenna tuner and YK-88C CW Filter) at your nearest Authorized Kenwood Dealer!

STILL AVAILABLE... KENWOOD TS-520S
Happily, upon contacting Telesensory in Palo Alto, we found that the voice synthesizer module was available separately to hobbyists, and its numeric vocabulary was in standard TTL BCD code that already existed at the input of the 7447s in Ted's DD-1 Digital Display Unit.

Ted's purchase of the English-speaking S2A module from Telesensory Systems* represented the commitment necessary to get the project moving. Design of an interface between it and the DD-1 is the project this article describes. Much of the design should be credited to Tim Blank, W89GYU, who is more knowledgeable of digital logic design than I, and who provided the assistance in debugging the assembled unit.

interfacing considerations

Interfacing the voice with the six-digit readout involves changing the parallel (all-at-once) visual display to a serial or sequential form, so that the digits from left to right are said in order with a minimum of delay between words. It would be possible to clock across at regular time intervals if allowance for the longest word were made, but much wasted time would occur, so the clock approach was abandoned. Since each digit can be 0 to 9, or anything in between, four data lines of binary for each are required. To read the digits in sequence then requires that the first four digit data lines of the speech synthesizer module be sequentially connected to the four digit data lines coming from each digit of the visual display. This adds up to twenty-four data lines between the DD-1 and the interface board!

design

The most reasonable approach was to use four eight-position multiplexers, one for each data line. They could be stepped by a binary address of three bits, from 0 through 7. The device that provides this address to the four 74151 multiplexers is a 74193, a most remarkable MSI chip (fig. 1). The 74193 can provide a four-line address with a capability of 0 through 15, which would seem to be a problem. However, the 74193 can be reset after any given number of steps very readily. In fact, it can be told to skip a preset number of the initial steps in its output address. Its fan-out is about twenty, indicating no trouble in driving the multiplexers, so it seemed a reasonable basis for an interface. Since the 74193 could be told which addresses to provide, considerable imagination can be used in this aspect of the design.

I decided to use the eight-position capability of the

*The S2A Speech Synthesize Module is available from Telesensory Systems, Inc., P.O. Box 10099, Palo Alto, California 94304. Contact Mr. Wladimir N. Waiko, Speech Products Manager, (415) 493-2626. Unit price to hobbyists is $95.00.

During a ragchew with Ted Albrecht, W9IFJ, the subject of the talking calculator was brought up. This machine is manufactured by Telesensory Systems in Palo Alto, California, for the visually handicapped. We agreed that it would be most interesting if the talking calculator's synthesized voice were available separately. Perhaps it could be interfaced with digital-readout equipment in general and Ted's in particular.

By Ray Brandt, N9KV, 824 North Marion Avenue, Janesville, Wisconsin 53545
fig. 1. Schematic of the talking readout. The 74193 provides the address to the four 74151 multiplexers. The inputs to the 74151s come from the designated pins of the 7447s in the frequency display.

multiplexers, using the two spare positions to have the voice say POINT between megahertz and kilohertz, and between kilohertz and hertz, provided by the readout unit. Looking at the S2A vocabulary (table 1), it’s necessary for the A, B, and E data lines to be high, so the A and B data lines were hard-wired in the 2 and 6 data positions. An additional circuit was designed to bring up the E data line in these positions only.

A dual NAND gate will produce a 0 only when both inputs are a 1. Studying the address truth table (table 2) for what is unique about these two positions of address, it’s seen that B is, of course, a 1 for both 2 and 6 and adds to C for the 6 position. But looking again, B is uniquely present on only 2 and 6 if odd numbers involving an A can be ignored. This suggests the approach. Invert the A and we have a 1 only for even numbers — use it for one gate input with the B data line on the other gate input.

Now we have a 0 out of this gate on only the 2 and 6 positions. Since we needed a 1, another section of the 7400 provides the inverter between it and the E data line of the S2A.

Taming the 74193. Several conditions must be met for the 74193 to step along through its addresses in sequence, reset at the end of the sequence or sentence, and for its selected data to be presented to the speech module only:

1. When it is valid data
2. When the module is not busy saying the previous word.

Consider first the data provided by the digital display unit (see table 3). The count periods are a precise, crystal-controlled, ten milliseconds each followed by 50-millisecond periods of stored display data, alternating about seventeen times a second between the two. We must accept data only during the storage time, or the readings will appear random, having been taken on the "fly" during a count. The waveform that defines these two periods is present
Interconnection hints. The grubby details of interconnecting with the DD-1 deserve comment. The picture looking into the top of the unit shows a small terminal board mounted at front right above the 7447s. The circuit was built from a small rectangular piece of circuit board stock, cross-hatched with a hacksaw to provide rows and columns for the data lines. The ventilating holes to the front and right of the circuit board; the harness may be added after reassembly. A magnifying lamp and small iron and solder are essential. If you decide to drill any holes in the circuit board, for gosh sakes hold the board up to the light first so you won't drill through conductors that may be on the other side.

DD-1 mods

To facilitate connection to the 7447 inputs and provide the blanking output, it's necessary to remove the DD-1 from its case — not a trivial job. Take out the power transformer mounting screws, all screws mounting the circuit board, and remove the input connector, the knob, and bandswitch mounting. Push in the LEDs and the panel should lift out from the back. Make short connections to the added terminal board; the harness may be added after reassembly. A magnifying lamp and small iron and solder are essential. If you decide to drill any holes in the circuit board, for gosh sakes hold the board up to the light first so you won't drill through conductors that may be on the other side.

Modification of the DD-1 is the most miserable part of the project, but finding the patient well after all this surgery should buoy you up for the remaining pitfalls awaiting you.

interfacing the speech module

Now consider interfacing the speech synthesis module. The ROM of this unit is permanently stored with digital data which, when swept out by its internal clock (roughly 12 kHz), produces an audio waveform imitating the twenty-four words of its vocabulary. When properly filtered to reject the dominant clock frequency and amplified, acceptable speech is reproduced by the speaker. The complete program of the S2A is shown in table 1. (The unused words may come in handy when debugging the unit.) A is the least-significant bit; its pin is 7. B appears on 8, C on K, D on H, and E on pin F of its twenty-pin edge connector.

If you're eager to try the speech board before finishing the project, connect all the power leads and indicated ground leads, then tie all data leads either up or down (but don't leave them floating or you'll have problems). Pulsing the start line up with a clip lead, then back to ground, should produce the word you've coded into the speech board by the data line hookup you've chosen.

The BUSY line goes to almost 10 when saying words, then goes back to +5 on completion. An emitter follower, with its emitter returned to ground, converts this to the TTL voltage swing required by the interface.

event sequence

Two latches are used in the control loop to guarantee the proper sequence of events. The left-hand latch normally passes on the information that the last word is complete. It then steps the address into the next position. However, when the D address line goes high for address 8, the inverter opens the latch, no more steps are permitted, and the sentence is terminated. If the 100-Hz switch on the DD-1 is not depressed, the lower gate operates at address 6, cutting the sentence two words short.

Table 1. S2A Speech Synthesizer vocabulary.

<table>
<thead>
<tr>
<th>data lines up</th>
<th>speech</th>
<th>data lines up</th>
<th>speech</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>OH</td>
<td>C,D</td>
<td>PERCENT</td>
</tr>
<tr>
<td>A</td>
<td>ONE</td>
<td>B,C,D</td>
<td>LOW</td>
</tr>
<tr>
<td>B</td>
<td>TWO</td>
<td>A,B,C,D</td>
<td>OVER</td>
</tr>
<tr>
<td>A,B</td>
<td>THREE</td>
<td>E</td>
<td>ROOT</td>
</tr>
<tr>
<td>C</td>
<td>FOUR</td>
<td>A,E</td>
<td>EM</td>
</tr>
<tr>
<td>A,C</td>
<td>FIVE</td>
<td>B,E</td>
<td>TIMES</td>
</tr>
<tr>
<td>B,C</td>
<td>SIX</td>
<td>A,B,E</td>
<td>POINT</td>
</tr>
<tr>
<td>A,B,C</td>
<td>SEVEN</td>
<td>C,E</td>
<td>OVERFLOW</td>
</tr>
<tr>
<td>D</td>
<td>EIGHT</td>
<td>A,C,E</td>
<td>MINUS</td>
</tr>
<tr>
<td>A,D</td>
<td>NINE</td>
<td>B,C,E</td>
<td>PLUS</td>
</tr>
<tr>
<td>B,D</td>
<td>TIMES*MINUS</td>
<td>A,B,C,E</td>
<td>CLEAR</td>
</tr>
<tr>
<td>A,B,D</td>
<td>EQUALS</td>
<td>D,E</td>
<td>SWAP</td>
</tr>
</tbody>
</table>

Table 2. Address truth table.

<table>
<thead>
<tr>
<th>multiplexer address position</th>
<th>multiplexer address lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
The right-hand latch has a logic 0 entering it at completion of a word, after the address has been stepped, which it passes along and inverts the next time a valid read period occurs from the DD-1. The latch Q output is inverted internally and serves as a start pulse to the speech module, telling it to GO while the data is valid.

As I've indicated, the unit normally stops talking at the end of a sentence; this is its initial condition with all address lines high. The pushbutton pulls down the 74193 LOAD terminal, resetting it to the 0 address, so it runs through the permitted sequence to address 8 and stops.

Another feature of the 74151 involves the use of its preset capability. If all four preset lines are in the 0 logic state, a down pulse on the LOAD terminal will cause it to go to the 0 address. If the A preset line is tied high, the reset will go to address 1. If both A and B preset lines are tied high, while C and D are at ground, the unit will reset to address 3.

This design permitted two useful features to be incorporated. When the DD-1 is presenting 160, 80, or 40 meters, only one digit is needed to enumerate the megahertz. Spectronics connects all four data lines for the first digit high on these bands to cause the digit to blank out. But this presents an A, B, C, D to the S2A and it will say OVER in this first-digit location. Since the DD-1 reads only a 1 or 2 when it reads anything in the first-digit position, only the A and B data lines need be connected to the multiplexers. Connecting the C and/or D data lines to the A preset line will cause the program to skip that digit entirely, which will shorten the beginning of the sentence by one word. The designers of the 74193 must have had this in mind, wow!

Rather than connecting directly to the preset line, however, I ran the C and D data lines through one section of a dpdt toggle switch so that both the A and B preset lines can be tied high in the other switch position (see fig. 1). The other switch position will delete the ONE FOUR POINT from the start of the 20-meter reading when desired; call it megahertz Delete, I guess. Shortening the sentence to just the three-kilohertz numerals takes only 3/8 as long to say, permitting more rapid checking while tuning around the band with the transceiver. This can, of course, be switched in and out.

While playing around with the unit at this stage of development, I noticed that connecting a diode with its anode on the 74193 LOAD terminal and cathode on the sentence-terminator clock input of the left latch permitted the unit to AUTO-RUN, repeating however short or long a sentence were chosen, ad nauseam. It apparently provides a sufficient down pulse to the LOAD terminal to reset at the completion of each sentence. Really slick for an afterthought!

The interface unit was built on a Radio Shack project board, about 102 mm (4 inches) square with a 44-pin edge connector printed on one edge. There are three rows where up to nine device sockets can be mounted as well as printed tabs permitting two or three connections to each chip terminal. Keeping the data lines in groups of four, along side of the connector, makes tracing easier; the extra one or two can be at the end that didn't quite make it.

Make a sketch and assign each 74151 a data-line letter: A, B, C, or D. One of each four data lines for a given digit will go to the same number pin of each 74151. The first digit lines go to pin 4, second to pin 3, third to pin 1, fourth to pin 15, fifth to pin 14, and sixth to pin 12. Pins 2 and 13 of the A and B multiplexers go to +5 volts; the same pins of the C and D multiplexers go to ground as a part of the fixed decimal POINT at these address locations.

Wiring can be completed, on the device-side of the board, I recommend about no. 24 (0.5-mm) stranded

| table 3. Relationship between the address, displayed frequency, and output of speech module. |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| DD-1 display speech address position | ONE | FOUR | POINT | TWO | FIVE | OH | POINT | THREE |
| position | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

and B preset lines can be tied high in the other switch position (see fig. 1). The other switch position will delete the ONE FOUR POINT from the start of the 20-meter reading when desired; call it megahertz Delete, I guess. Shortening the sentence to just the three-kilohertz numerals takes only 3/8 as long to say, permitting more rapid checking while tuning around the band with the transceiver. This can, of course, be switched in and out.

While playing around with the unit at this stage of development, I noticed that connecting a diode with
power supply

The power supply (fig. 2) is conventional and requires little comment. The +5 volt supply uses a 6.3-volt, 1-amp transformer. I slipped in a half dozen extra turns over the existing secondary winding without tearing down the transformer so that its output is close to 7 volts, providing adequate voltage for good regulation. The total load at 5 volts is about 300 mA. A small 300-mA, 12-volt transformer from Radio Shack is adequate for the light load of the negative supply.

The case of the 7805 may be bolted to the chassis; the 7815 can be insulated with a mica or fishpaper shim. To realize a −10 volts, the positive terminal is connected to the +5 volt output; the negative common will then be 10 volts below ground. The full 15 volts of the negative supply is used by the LM380 audio amplifier, so the speaker should be returned to the −10 volt bus.

some afterthoughts

There are other ways of building this unit. Perhaps mounting the four multiplexers on a small board internal to the DD-1 would make things easier and minimize the interconnection problem. This approach should permit a unit no longer than the DD-1 for the balance of the circuit. I hope this is only the first article on the subject. Good luck on your talking second operator!

fig. 2. Power-supply schematic. Circuit is conventional. Parts are available from Radio Shack and other popular suppliers.

Oh yes — should you desire to interface a visual readout with only the seven-segment connections to the LEDs available for data, National Semiconductor makes the 86L25, which will convert seven-segment data back to the BCD mode. One would be required for each digit, of course.
Introducing—New, Low-cost, Fixed Vocabulary
Speech Synthesizers

for Computer Hobbyists or OEM use

FEATURES

- Two 64-word vocabularies available:
 - Full spoken numerics plus a variety of measurement words
 - ASCII characters: numerics, alphabet, punctuation
- Clear, highly intelligible male voice
- All MOS-LSI circuitry
- 6-bit parallel strobed input
- No external clocks required
- Inputs are TTL compatible
- Analog Speech output signal
- Custom vocabularies can be produced

$179.00

Boards with numbers & calculator functions... only... $95.00

*Plus state sales taxes where applicable

TELESENSORY SYSTEMS, INC.
3408 Hillview Ave., P.O. Box 10099, Palo Alto, CA 94304
Telephone (415) 493-2626

July 28 thru August 10, 1979

Have trouble finding time to study for Upgrading?

Do it on your vacation at the

OAK HILL ACADEMY
AMATEUR RADIO SESSION

20 years of successful teaching

Two weeks of intensive code and theory starting at your level.

Classes from Novice thru Amateur Extra

- Expert instructors
- Friendly surroundings
- Excellent Accommodations

C. L. PETERS, K4DNJ, Director
Oak Hill Academy Amateur Radio Session
Mouth of Wilson, Virginia 24363

Do you get my message??

WHY BE BUGGED BY POOR PERFORMANCE?
NOW AVAILABLE FROM
"repeaters unlimited"
a division of CREATIVE ELECTRONICS

IN STOCK FOR IMMEDIATE SHIPMENT

"HUSTLER ANTENNAS"
ALL AMATEUR ANTENNAS MOUNTS / ACCESSORIES

ALSO DEALERS FOR:
VHF ENGINEERING — HAMTRONICS
WACOM — PHELPS DODGE

JUST CALL AND ASK FOR NEIL OR JUDI
(404) 971-2122 or outside ga. 800 241-4547

We Accept

More Details? CHECK — OFF Page 110
an introduction to packet radio

An interesting idea from our Canadian colleagues: computer time sharing over vhf links on the vhf bands

If ever two hobbies were made for each other, they must be microcomputers and Amateur Radio. More and more hams seem to have taken the plunge and are starting up small computer systems. A logical outcome of this marriage of activities is that sooner or later the ham will wonder if he can’t use the radio to send his computer information to his friends on the air. It can be done, and this article describes one of the best ways of doing it.

time sharing

Most computer users have been exposed to the time-shared computer. The computer is very fast, and the users require and generate information very slowly. If each user is connected to the computer by a separate line (fig. 1) or a radio link (fig. 2), then all the computer has to do is to check each line periodically and divide the processing time among the users. Typically it might take 20 seconds to type in a line on your terminal and only a few milliseconds at most for the computer to process that data line. Time sharing permits each user to think he has the whole computer to himself. It also permits the computer to act as an intelligent clearing-house for programs in which the users interact with each other.

The next step is to look at the lines, or radio links, themselves. The line that took 20 seconds to type might contain 64 eight-bit ASCII characters, or 512 bits of information — an average rate of 512/20, or about 26 bits per second.

It’s easy to send 2400 bits per second through a normal voice channel and it’s theoretically possible to use much higher rates. So, if we were to store each line locally then send it in a short burst, it could be sent in about 0.2 second! More detailed estimates and calculations show that several hundred users could be accommodated on one voice channel.

Also, because only one frequency (or two for full duplex) is used, newcomers can join the system easily by getting onto that frequency without having to wait for new channels to be assigned at the computer. Now we have a time-shared radio link working with a time-shared computer (fig. 3). As we’ll see, the time-shared radio link is useful by itself, without the central computer. Its major advantage is a huge saving of spectrum space (not to mention knowing what frequency to look on to find your friends).

packets

Each of the short bursts mentioned above is called a packet and most contain, in addition to the data, the identification of both sending and receiving stations and some form of error checking, so that the recipient will know if the information is correct. If it is correct, the recipient sends an acknowledgment (ACK) to the sending station (a fully automatic process). Full details of the packet format appear below.

Transmission of radio packets by Amateurs is now legal on several vhf and uhf bands in Canada. U.S.

By Ian Hodgson, VE2BEN, 296 Malcolm Circle, Dorval, Quebec, Canada H9S 1T7
fig. 1. A wired time-sharing system requires separate connections for each user. It permits communications between users as well as computing functions.

Amateurs may want to apply pressure to be permitted to send packets also.

networks

Although two stations can send packets back and forth, the method doesn’t really come into its own until many users share a packet repeater (called a node). Many nodes can be linked (possibly by a geostationary satellite — this system may actually be working in a couple of years) to form a network (fig. 4). Each packet contains its own address information, so the network can automatically forward the information to its destination.

The first radio packet network in use was set up by the University of Hawaii and is called the Aloha net. It links terminals on several islands to a central computer on about 400 MHz.

the node

The repeaters in a network may take several forms. They may be simple rf repeaters used to extend range, as we now use on two meters. This scheme, however, doesn’t fully exploit the advantages of packets.

A better repeater is the store and forward repeater, which receives packets from one or more users, processes them, and forwards them to a central node, which would otherwise be too far away to access. If major cities had intelligent nodes, store and forward repeaters would make them accessible to users in outlying areas.

Major nodes would likely be computer controlled to perform error checking, acknowledging, and routing of packets between users. Ultimately, the node might be connected to a central computer with more power than the individual users could afford to have at home. You could have access to utility programs, a ham community bulletin board, repeater council data, a swap program, or even play multi-user space war instead of rag chewing.

what else can it do?

Any information that can be put into digital form can be sent through packets. This information includes RTTY, computer data, and even voice and TV pictures. Of course, data rates must be much higher for the last two modes. The packet system could be as easy, fast, and reliable for talking to hams a continent away as for talking across town on the repeater.

how about details?

Let’s take a closer look at the details of the process. The packet format hasn’t yet been finally decided upon, but here’s what we’ve been experimenting with (each byte is eight bits).

<table>
<thead>
<tr>
<th>bytes</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>packet initiation byte (hex A7)</td>
</tr>
<tr>
<td>1</td>
<td>start of header (SOH, hex 01)</td>
</tr>
<tr>
<td>6</td>
<td>destination call sign</td>
</tr>
<tr>
<td>2</td>
<td>destination node</td>
</tr>
<tr>
<td>6</td>
<td>originator’s call sign</td>
</tr>
<tr>
<td>2</td>
<td>originator’s node</td>
</tr>
<tr>
<td>1</td>
<td>service message flag byte (set to hex 41, A, for ACK)</td>
</tr>
<tr>
<td>1</td>
<td>spare</td>
</tr>
<tr>
<td>1</td>
<td>end of header (EOH, hex 04)</td>
</tr>
<tr>
<td>2</td>
<td>CRC16 (this is a type of error check) for header</td>
</tr>
</tbody>
</table>

(Everything above is the header)

<table>
<thead>
<tr>
<th>bytes</th>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>start of text (STX, hex 02)</td>
</tr>
<tr>
<td>64</td>
<td>DATA (could be ASCII, binary or EBCDIC)</td>
</tr>
<tr>
<td>1</td>
<td>end of text (ETX, hex 03)</td>
</tr>
<tr>
<td>2</td>
<td>CRC16 for data</td>
</tr>
</tbody>
</table>

91 bytes total

Note that all packets must be the same length if the system is to operate efficiently (if you don’t understand why, let’s just say that it can be shown mathematically, and, even though I can do the figures, I don’t really understand either).
fig. 3. A packet network needs only one frequency and one main transceiver. In addition to computing power, the network offers flexible communications between users, a fact that Amateurs can put to good use.

An ACK is simply the header from the received message with the originate and destination addresses interchanged and with the service byte set to indicate that it is an ACK. No data is included in an ACK.

interference and ACKs

It will undoubtedly come to pass that two users will, sooner or later, send their packets at the same time, thus causing total or partial loss of both. We can deal with this problem by using what's called a CSMA POSACK system. This acronym stands for Carrier Sense Multiple Access Positive Acknowledgment. Here's how it works:

You finish typing your line of data and hit "return," or whatever, to send the packet. Your system checks with your receiver, and if no signal is being received, the system immediately sends the packet. It then waits for a time of one packet length for the ACK. If not received, the system waits an additional, random, number of packet lengths and tries again. The process is repeated three times. If still no ACK is received, the system returns a message to the sender, telling him that the transmission was unsuccessful.

Why do we wait a random delay? If there were no random delay, and two stations sent their initial packets at the same time, then all three tries would collide. This way, they don't.

When receiving packets, your system intercepts all packets regardless of their address. The system checks the destination of every packet, and if it's for you, the error check (CRC 16) is performed. If this is OK, the system immediately sends an ACK. Note that

fig. 4. A packet network allows time-shared communications between users and a variety of nodes. Nodes in various cities may be connected together by uhf links or perhaps by satellite. Not as far out as it seems, this scheme may be in operation within two years.

ACKs have priority on the system, as all transmitters wait one packet length after each packet sent so the ACKs can get through. Also if a signal is present on the initial receiver check, the packet transmission from your station is delayed long enough so that the other station can be acknowledged.

hardware

Sounds complex? Well, it is. But don’t forget how inexpensive complexity is becoming; witness the pocket calculator, which for less than $10 is more complex than everything else in your house put together. Here’s what you really need:

* a. A vhf (220-MHz in Canada) transceiver (fm will do)
* b. A computer, Protocol Control Unit, or both (see fig. 3)

A single-board microcomputer can form the Protocol Control Unit (PCU) to implement all the above
details (these details are called the packet protocol). It would require only about 2k of memory and could probably be built for less than $100. We are working on this too. In due course, these should be available commercially, but for now let's build our own. Full details of the final protocol will be published when available.

what frequencies can I use?

In Canada certain portions of some vhf bands have been set aside for packets:

<table>
<thead>
<tr>
<th>frequency (MHz)</th>
<th>transmission mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>220.1-220.5</td>
<td>shared packet and other modes</td>
</tr>
<tr>
<td>220.5-221.0</td>
<td>shared wideband packet and other modes</td>
</tr>
<tr>
<td>221.0-223.0</td>
<td>packet only</td>
</tr>
<tr>
<td>223.0-223.5</td>
<td>shared wideband packet and other modes</td>
</tr>
<tr>
<td>433.0-434.0</td>
<td>packet only (wideband, 100 kHz, for repeater links)</td>
</tr>
<tr>
<td>24,000-24,010</td>
<td>shared packet and other modes</td>
</tr>
</tbody>
</table>

Obviously the bulk of the activity is expected to be on 220 MHz. If you've looked at the low prices on rigs for that band, it seems like an excellent idea.

how it all began

In April, 1978, the Department of Communications (DOC) in Canada announced its intention of changing the regulations to permit only “Packet Radio” (cries of, “What the devil is that?”) on 220-225 MHz. Amidst the horrified screams of many Amateurs, a few of us decided to have a closer look. We liked what we saw. With the close cooperation of the DOC, who modified their original proposal accordingly, we started experimenting with packets. The group doing most of the work is based in Montreal.

One more thing to note. The Amateur Radio community is the group that will develop this system on a low-cost, widely distributed basis. Our work will no doubt be closely watched by commercial interests, so let's earn our privileges as hams and contribute once more to the advancement of the state of the art.

acknowledgments

I'd like to thank Bob Rouleau, VE2PY, for enthusiastically supporting the packet concept and keeping the rest of us going; Paul Laflamme for his work on the protocol and programming and for helping to prepare this article. Special thanks to Dr. John de Mercado, Director General of the Telecommunications Regulations Branch of the DOC, for giving us the initial kick by changing the regulations and for his continued support and close cooperation. I wish all government departments worked this way!

ham radio
TR-7400A "KENWOOD" OWNERS: SCANNER KIT
- Installs completely inside rig. No external connections required. Simply install on the MHz switch of your rig (e.g., 440 MHz).
- Scan frequency is displayed on digital readout. Two miniature toggle switches supplied with kit. Scan on/off switch may be mounted externally or on side of bottom case. A kit must be installed to operate the TR-7400A.
- The scan maintains performance normally. In the scanner OFF mode, the scanner is in a linear mode. A kit is required for each unit and for operation.

Introductory Offer
KIT $39.95
Preassembled and Tested $59.95
Add $1.50 postage and handling

Now from
J. W. Miller
DAIWA CORPORATION
Communications Essentials

RF Speech Processor
Model RF-440
Increases talk power with splatter free operation. RF clipping assures low distortion. Simply install between microphone and transmitter.

Talk Power: Better than 6 dB
Clipping Threshold: Less than 2 mV at 1 KHz
Bandwidth: 2200 Hz at 6 dB down
Frequency Response: 300-3000 Hz at 12 dB down
Distortion: Less than 3% at 1 KHz, 20 dB clipping
Output Level: More than 50 mV at 1 KHz
Power Requirement: 115 VAC, 60 Hz, 1 W; or 13.5 VDC, 55 mA
Dimensions: 150 x 70 x 150 mm, 6 x 2.5 x 6 in.

Coaxial Switches
2 Position/Model CS-201
4 Position/Model CS-401
Professionally engineered cavity
Construction: High isolation
Power Rating: 2.5 kW PEP, 1 kW CW
Impedance: 50 Ohm
Insertion Loss: less than 2 dB
VSWR: 1:1.2
Maximum Frequency: 500 MHz
Isolation: Better than 60 dB at 300 MHz;
better than 45 dB at 450 MHz adjacent channel.
Connectors: SO-239
Exclusive USA agent for these units; inquiries invited.

Write for literature:
J. W. Miller Division
BELL INDUSTRIES
19070 REYES AVE. P.O. BOX 5825
COMPTON, CALIFORNIA 90224

TR-227 "MEMORIZER" OWNERS: SCANNER KIT
- Selectable sweep width (up to full band)! Scans ONLY the portion of band you select. Switches at the rate of 300 MHz per second.
- Switch modification on mine allows you to select past or lock on, any occupied frequency. Complete kit with detailed instructions. Installs inside rig. No external connections required. A kit must be installed to operate the TR-227.

Introductory Offer
KIT $34.95
Preassembled and Tested $54.00
Add $1.50 postage and handling

FT-227 "MEMORIZER" OWNERS: SCANNER KIT
- Selectable sweep width (up to full band)! Scans ONLY the portion of band you select. Switches at the rate of 300 MHz per second.
- Switch modification on mine allows you to select past or lock on, any occupied frequency. Complete kit with detailed instructions. Installs inside rig. No external connections required. A kit must be installed to operate the TR-227.

Introductory Offer
KIT $34.95
Preassembled and Tested $54.00
Add $1.50 postage and handling

CT-22S SCANNER KITS
also available
$54.00 Assembled
add $1.50 postage and handling

JAN CRYSTALS
HOLD THE FREQUENCY
Crytals for all Amateur Bands
CB CB standard
2 meter
Amateur Bands
Marine VHF
Micro processor crystals
Send 10c for our latest catalog. Write or phone for more details

More Details? CHECK — OFF Page 110
Stalking the Ultimate DX.

Now you can really enjoy the challenge of working that tough to work 2-meter DX. The all new Boomer 3.2-λ yagi gives 16.2 dBd forward gain. A high efficiency balanced feed system, with integral balun, gives a clear, precise pattern. The trigon reflector reinforces Boomers\' 24 dB front to back ratio. Boomer has that right combination of features which will give you long path DX capability or allow you to participate in tropo, sporadic E, meteor scatter and EME activities.

The Boomer is designed to last with a large diameter round boom for more strength with less wind load. It has a reversible truss support, high strength aluminum mounting plates and all stainless steel hardware.

When you install Boomer, you\'ll appreciate our typical attention to detail. You can throw away the hack saw and hand drill. Boomer has a detailed instruction manual, precisely cut elements, plus machined and finished components which need only pliers and screwdriver to assemble.

When you are ready to move up to even higher gain, we have complete stacking kits with everything necessary to assemble two, four and larger yagi arrays. Stalk down to your local dealer (anywhere in the world) for full details on Boomer.

Cushcraft Corporation
The Antenna Company
48 Perimeter Road, P.O. Box 4680
Manchester, NH 03108

A-3219 BOOMER
UPS SHIPPABLE
biquad bandpass filter for CW use

The biquad bandpass filter has many advantages when used as a CW filter. First, the biquad can be adjusted to control both center frequency and Q. Second, the filter is very stable and will not break out into ear-shattering oscillations. Third, the filter can be built by hams like you and me. That is to say, the components are available at Radio Shack, the tolerance of none of the components is critical, and no special test gear is needed.

Circuit description

Fig. 1A shows the traditional circuit, which requires the plus and minus supplies. The advantage of this configuration over the single-voltage circuit is the capability to couple directly to the input and output of the filter. In addition, the op amp has better gain characteristics with the higher supply voltage.

The single supply circuit is very similar (see fig. 1B). Most references recommend providing a low-impedance dc return for the input circuit. For this reason, I avoided for a long time even trying the single-voltage supply. But my experiments with the μA741 showed that the circuit does a remarkably good job. By providing half the supply voltage to the positive input of the op amp, all of the outputs are operating above ground. This is the obvious reason for needing the capacitive coupling on the output and input. The μA741s will drive headphones directly, but for general use, an amplifier speaker is recommended.

By James M. Rohler, N0DE, 1967 Bristol Drive, Bettendorf, Iowa 52722

After a short period of experimenting, you will find the adjustable features useful. The Q is especially interesting, since it can be adjusted too high, causing ringing. Under some conditions, the narrower band-
Fig. 2. Foil pattern for the active bandpass filter (above). The parts placement diagram is shown (below).

width and ringing is a fair tradeoff for eliminating the QRM.

components and construction

Fig. 2 shows the foil pattern and parts placement diagram. If potentiometers are not desired, fixed resistor values can be determined from the following equations:

\[
\begin{align*}
 f_0 &= \frac{1}{2\pi C \sqrt{R_3 R_4}} \\
 B &= \frac{1}{2\pi CR^2} \\
 G &= \frac{R_2}{R_1}
\end{align*}
\]

where \(f_0 \) is the center frequency in Hertz,

\(B \) is the bandwidth in Hertz,

\(G \) is the gain of the circuit.

The \(Q \) is the reciprocal of the bandwidth times the center frequency.

For single-supply operation, jumpers are used to connect the junction of the bias resistors to pin 3 of each IC. In addition, pin 4 of each IC is connected to ground. To use a dual supply, the pin 3s are connected to ground, and pin 4s to the minus supply. Also, in this case, the input and output capacitors and bias resistors can be eliminated.
LUNAR'S Portable Erectable Antenna Towers

- Ideal for ground or roof mounts
- One man can assemble and erect
- Lightweight
- High quality aluminum alloy

These unique antenna towers can be installed on the ground or roof. Since they’re easily transported and site erected, they’re a natural for field and portable operations.

Constructed of sturdy aluminum alloy, they’re sturdy enough to handle large size HF beams and EME arrays as well. Also available with optional stainless steel hardware for harsh environments.

CALL M & M FOR PACKAGE DEAL DISCOUNT! (714) 299-9741

M&M RF DISTRIBUTORS
P.O. BOX 82183, SAN DIEGO, CA 92138

RTTY for ALL Systems

ELECTROCOM® “SERIES 400” FREQUENCY SHIFT CONVERTERS

Professionally engineered for outstanding performance, stability, and reliability, the Electrocom® Models 400 and 402 add new dimensions of compatibility between radio and teletypewriter systems. Manufactured to highest quality standards—an Electrocom tradition for nearly two decades—these units are ideal for military, government, commercial, civil defense and amateur applications. The Model 400 front panel digital knob accurately selects shifts up to 1000 Hz, while two such knobs on the Model 402 independently set the mark and space frequencies. Both models may also be preset with any tone pair between 1000 and 3000 Hz. Optimum performance with FSK or AFSK systems is assured by matched filters, precision linear detectors, baud rate selector, bias compensation, and semi-diversity circuitry. Operation is enhanced by a CRT monitor, autostart with solid-state motor switching, antispaces, markhold, EIA/MIL output voltages, and a constant current loop supply. In addition, various options are available including rack mounting and polar current output.

Write or call us for complete product details and specifications. Learn why Electrocom® “400” Converters are designed not only for today’s communication environment, but ultimately to fulfill RTTY requirements for years to come.

QUARTZ CRYSTALS "IN A HURRY" SINCE 1970

CRYSTALS AVAILABLE FOR:
- CB — Synthesizers
- Amateur - HF, VHF, UHF
- Industrial
- Scanner
- Marine — LB & VHF
- Conversion Crystals
- Special Attention to R & D.
- Micro-processor Types.

DISCOUNTS AVAILABLE TO DEALERS & MANUFACTURERS CALL “BONNIE” FOR PRICES & DELIVERY

CAL CRYSTAL LAB, INC.
1142 N. Gilbert Street
Anaheim, CA 92801
(714) 991-1580

QUARTZ CRYSTALS AVAILABLE FOR:
- CB — Synthesizers
- Amateur - HF, VHF, UHF
- Industrial
- Scanner
- Marine — LB & VHF
- Conversion Crystals
- Special Attention to R & D.
- Micro-processor Types.

DISCOUNTS AVAILABLE TO DEALERS & MANUFACTURERS CALL “BONNIE” FOR PRICES & DELIVERY

VISA & MASTER CHARGE

CAL CRYSTAL LAB, INC.
1142 N. Gilbert Street
Anaheim, CA 92801
(714) 991-1580

More Details? CHECK — OFF Page 110
2 MTR DUCKIES

Model HM-4 Has S 16-32 thread. Fits Motorola HT's. ICOM IC215 and Standard 144A........... $7.00
Model HM-5. Same as above, but with PL-259 connector $7.00
Model HM-226. Same, with TNC connector for Wilson 1405........ $18.50
Model HM-227. Same, but with BNC connector termination........ $12.00
Model HM-228. With F connector for Wilson 1402 & Tempo........ $11.50

NEW! ASP-694 1/4-Wave Magnetic Antenna
Low profile magnetic antenna with cable and connector. Tunable 108-512 MHz. Can be converted to gain antenna later. Wt.: 3 lbs. Model ASP-694........ $21.00

2M BASE ANT. PACKAGE
Here's what you get:
- Cushcraft AR2 Ringo South River
- PFM71 Rooftop mount
- A125-5P 8' alum mast
- Lag bolts
- 50' 8U foam coax
- PL-259 coax conn.

$59.95
Wt: 16 lbs.

FINCO

The most rugged 6 & 2 meter beams we've seen yet!
A-2 10 ele, 2M beam......... $44.95 d
A-2 5 ele, 2M beam, 9.5 db gain... $27.95 c
A-2 10 ele, 2M dual polarization..... $46.50 e
A62 G62M antenna on one boom... $74.95 e
A6-5 element 6M beam, 11 db gain... $46.00 d
A6-3 ele 6M beam, 7db gain...... $30.00 d
A 1/2 220 MTR 10 ele, 13 dbd... $32.95 d

HUSTLER

9$95
"BUCK-BUSTER" SF-2 ANTENNA
Fits all Hustler deluxe mobile mounts. 3/8"x24 base 5/8" wave two meters, 3.4 db gain. SWR at resonance adj. to 1.5:1 or better. Bandwidth: 6 MHz, 2:1 or better SWR, 100 watts max.

$79.95 NEW 4-BTV VERTICAL
One setting covers 10, 15, 20, 40M. Space restricted or unlimited, you get top signal reports, consistent contacts and complete coverage. Add 5th band with a 75m resonator. Use one feedline, any length. Requires no switching or matching devices. 15 lbs.

Huygain

Vertical antennas
Model 14AVQ/WB........ $57.00

FINCO

BM6 Ferrite balun for 40-10mtrs. $15.95 a
15 Center insulator for doublert. $5.95 b
56 Base insulator (pair)........ 3.95 c
18HT 5 Hytower 80-10 MTR vertical........ $239.95
18V Economy 80 tru 10 MTR vertical........ $245.95
2DAVQ 20 10mtr trap vertical........ $39.95 f
1DAVQ 40 10mtr trap vertical........ $70.00 d
2AVAT/WB 80-10mtr trap vertical........ $79.95 d
2BDQ Trap doublet for 80 & 40mtr........ $39.95 d
5BDQ Trap doublet for 80-10mtrs........... $69.95 e
TH3 KMO* * 3 element 20 10 trinder....... $179.95 e
TH6DX* 6 element 20 10mtr trinder........ $239.95 f
TH3r 3 ele trinder (750W PEP)........ $129.95 g
HY QUAD* 2 Quad 20-10 mtrs........ $189.95 g
103BA 3 element 30mtr........ $54.95 g
153BA 3 element 15mtr........ $79.95 h
204BA 4 element 20mtr........ $179.95 h
402BA 4 element 40mtr........ $169.95 h
2M antenna........ $32.95 e
720 db fiberglass 2M antenna........ $39.95 e
303 element 2 meter yagi........ $15.95 b
205 element 2 meter yagi........ $17.95 c
214 element 2 meter yagi........ $25.95 e
214A element 2 meter yagi........ $31.95 d

Mosley

TA33 3 el trinder beam 2KW PEP........ $189.95
TA33Jr 3 el trinder beam 3KW PEP........ $149.95
TA36 6 element 2KW PEP........ $269.95
CL36 6 el Classic........ $209.95
CL6 6 el Classic........ $265.95
TA40KR 40mtr adpt for TA33/36........ $92.95 e
MPK3 2KW conv kit for TA33/Jr........ $67.95 e

Estimated Weight in pounds
* Less than 1 lb. | ** 20-30 lbs. | *** 70-110 lbs. | **** 30-40 lbs. | ***** 40-50 lbs. | ****** 50-70 lbs. | ******* 70-150 lbs.

* More than 1 lb. | ** 20-30 lbs. | *** 70-110 lbs. | **** 30-40 lbs. | ***** 40-50 lbs. | ****** 50-70 lbs. | ******* 70-150 lbs.

* For special orders, these letters indicate the approximate weight of the item as follows:
** After the price of each item you will find a letter, e.g. 1.95a. To make it easier to figure shipping costs, these letters indicate:
*** the approximate weight of the item as follows:
**** Less than 1 lb. | 20-30 lbs. | 70-110 lbs. | 30-40 lbs. | 40-50 lbs. | 50-70 lbs. | 70-150 lbs.

* More than 1 lb. | 20-30 lbs. | 70-110 lbs. | 30-40 lbs. | 40-50 lbs. | 50-70 lbs. | 70-150 lbs.

* After the price of each item you will find a letter, e.g. 1.95a. To make it easier to figure shipping costs, these letters indicate:
** the approximate weight of the item as follows:
*** Less than 1 lb. | 20-30 lbs. | 70-110 lbs. | 30-40 lbs. | 40-50 lbs. | 50-70 lbs. | 70-150 lbs.

* More than 1 lb. | 20-30 lbs. | 70-110 lbs. | 30-40 lbs. | 40-50 lbs. | 50-70 lbs. | 70-150 lbs.
The required life for a test dummy load is very short; a few hundred hours in many years. Also, good cooling can be provided by mounting resistors with metal fins touching the resistor body and immersing the resistor body and fins in oil. Even after considerable testing, the resistor body temperature need not exceed 50°C (122°F).

The shorter life requirement allows the power input to be increased by a factor of 1.44 and the lower temperature by a factor of 1.4. The rating now becomes 10.6 watts continuous, or 47 watts for 5 seconds. It’s somewhat over 28.5 watts for 10 seconds and well over 20 watts for 20 seconds. (Ambient temperature isn’t a major factor for very short loads, but resistance change is.)

At high power there’s another factor to consider. The maximum voltage rating of a 2-watt resistor is 500 volts, which will affect the mounting method.

choice of design values

Since some work is done at full 2-kW input, a dummy load that could accept this power for short test periods seemed desirable. A reasonable assumption for maximum linear efficiency is 60 per cent, so the desired rating was 1200 watts for 5 seconds, which would allow 300 watts continuously.

The voltage rating must be reduced by the peak-to-average ratio of the applied signal. Also, for high frequency power use some dielectric heating of the resistor body will occur. With some allowance for this, the rf voltage across a resistor should not exceed 250 volts rms.

At this voltage the minimum resistance for a peak dissipation of 47 watts is about 1325 ohms. A total of 26 resistors in parallel would be needed for a 50-ohm load. However, since this is not a standard value, some adjustment is necessary.

The local surplus emporium had no 2-watt resistors close to the 1200-ohm value, but there was a large bin of 470-ohm units at a very good price. A quick calculation showed that eighteen of these in parallel would give a resistance of 25 ohms, with two such banks in series giving the desired 50 ohms. Alternatively, two banks of fifteen resistors each

By R. P. Haviland, W4MB, 2100 South Nova Road, Box 45, Daytona Beach, Florida 32019
would give 60 ohms, nearly the mean between 50 and 75 ohms. The last combination was chosen for construction.

dummy-load circuit

While the dummy load is usually used with a wattmeter, an independent power check is sometimes useful. A built-in rf voltmeter can give this measurement. Because of the high voltage present, a voltage divider must be included. The circuit is shown in fig. 1.

With the resistors in hand, the mounting and oil immersion problems must be worked out. For very short periods of operation, a 0.946-liter (1-quart) can would be suitable. However, the temperature rise is rapid, and more oil is desirable, so 3.8 liters (1 gallon) allows reasonable test periods.

construction

It’s easier to show the construction than to describe it. Fig. 2 shows the load assembly. Three fins provide the connections for the two banks. One outer fin soldered to the can case provides most of the assembly support and the connection to the outer coax lead. The other outer fin is drilled to fit over the center conductor of the coax receptable, providing the remainder of the support. (Note that the three fins should be the same size to keep the voltage equal across the banks.) The voltage-monitoring components are mounted on a terminal strip with tip jacks used for the output.

If possible, use hermetically sealed connectors. Transformer oil, the preferred cooling medium, tends to migrate, and unsealed connections will always be oily. Even light mineral oil will migrate. Hydraulic brake fluid, the other possible coolant, also migrates. If you must use standard connectors, be generous with silicone rubber sealant.

Performance of the unit is good. The SWR is about 1.2:1, with a 50-ohm wattmeter, to above 30 MHz. However, at higher frequencies the uncompensated reactances affect performance. The apparent resistance on 144 MHz is appreciably reduced, and the SWR is undesirably high. While the unit is usable at vhf, it’s basically a high-frequency design.

variations

Many variations of the basic design are possible. Sixty resistors would handle a kilowatt transmitter for long periods. Exact 50- or 75-ohm loads can be worked out for SWRs around 1.05:1. Special resistances are possible, such as 8 ohms for audio amplifier tests. Stray reactance can be tuned out for vhf operation.

The unit shown has been operated many times with a linear amplifier running at 1-kW input for periods of 10 minutes or so. No measurable change in resistance values was found. The unit has paid its way: the linear is now free of TVI thanks to the testing time possible.

reference

NEW - NEW - NEW from DATA SIGNAL

TOUCH TONE® MICROPHONE
DataCoder 5

$39.00

JUST LOOK AT THESE FEATURES:
- Tough "Mobile Environment" Microphone
- Positive-Action Tactile Keys
- High-impedance Ceramic or 500-ohm Dynamic Cartridge
- Adjustable Tone Balance and Output Level
- "Positive Hold - Easy Lift" Hanger
- For Vehicle or Hand-held Portable Use
- Complete ... Not a Kit ... $39.00

DATA SIGNAL, INC.
2403 COMMERCE LANE
ALBANY, GEORGIA 31707, 912-883-4703

MINIATURE ENCODERS

Price DTM - $39.00, DTM-PTT - $49.00

SUB-MINIATURE ENCODERS

MODEL SME-1: Smallest available crystal-controlled Touch-Tone encoder, only 0.2"h x 0.5"w x 1.6"d. Complete with all connecting wires, mounts inside portable. MODEL SME-2: Only 1" square, mounts directly to pins on 12- or 16-digit Digitzan keyboards. Price of this unit $29.00 with choice of keyboards. SME-1 or SME-2 encoder only (less keyboard) $24.00.

*Touch-Tone is a registered trade name of AT&T

DATA SIGNAL, INC.
2403 COMMERCE LANE
ALBANY, GEORGIA 31707, 912-883-4703

THE BIG SIGNAL
UNADILLA 'W2AU' Baluns

FULL POWER, QUALITY HAM ANTENNA PARTS

AT YOUR DEALER

- BALUNS - TRAPS - INSULATORS
- QUAD PARTS - ANTENNA KITS
- BOOM/MAST MOUNTS - WIRE
- CABLE CONNECTORS

WRITE FOR FULL CATALOG
[Enclose 34¢ Stamps]

DEALERS WANTED - OVER 300 WORLD-WIDE

Radio World

CENTRAL NEW YORK'S FASTEST GROWING HAM DEALER

Featuring Yaesu, Locom, Drake, Atlas, Ten-Tec, Swan, DenTone, Pace, Palomar, Aida, Midland, Wilson, KOK, MFJ, Microwave Module, Standard, Tempo, Astron, KLM, Hy-Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Universal and Tristap Towers. We service everything we sell! Write or call for quote. You Won't be Disappointed.

We are just a few minutes off the NYS Thruway (90) Exit 32

WARREN COUNTY AIRPORT TERMINAL BUILDING
ORISKANY, NEW YORK 13424

Bob

Call Toll Free: 1-800-448-7914
New York State Residents Call: 315-337-3262 or 315-337-8203

WARREN

Radio World

CENTRAL NEW YORK'S FASTEST GROWING HAM DEALER

Featuring Yaesu, Locom, Drake, Atlas, Ten-Tec, Swan, DenTone, Pace, Palomar, Aida, Midland, Wilson, KOK, MFJ, Microwave Module, Standard, Tempo, Astron, KLM, Hy-Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Universal and Tristap Towers. We service everything we sell! Write or call for quote. You Won't be Disappointed.

We are just a few minutes off the NYS Thruway (90) Exit 32

WARREN COUNTY AIRPORT TERMINAL BUILDING
ORISKANY, NEW YORK 13424

Bob

Call Toll Free: 1-800-448-7914
New York State Residents Call: 315-337-3262 or 315-337-8203

TDX Engineering

1060 East Walnut, Pasadena. Calif. 91106

Models Now Available
Collins 325, KWM-7, 13... $385.00 ea.
Drake TR-3, TR-5, TR-6, TR-9G T-4, TR-4, T-4X, T-4XC $125.00 ea.
Postpaid — Calif. Residents add 6% Tax

Watch for other models later!

More Details? CHECK — OFF Page 110
We are proud to introduce the newest member of our famous Thunderbird line of Tri-Band antennas. The TH5DX offers outstanding performance on 20, 15, and 10 meters. It features 5 elements on an 18 foot boom, with 3 active elements on 15 and 20 meters and 4 active elements on 10 meters. The TH5DX also features separate air-dielectric Hy-Q traps for each band. This allows the TH5DX to be set for the maximum F/B ratio and the minimum beam width possible for a Tri-Band antenna of this size. Also standard on this antenna are Hy-Gain's unique Beta-match, rugged Boom-to-mast bracket, taper-swaged elements and improved element compression clamps.

<table>
<thead>
<tr>
<th>Specification</th>
<th>10-15-20 Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom length</td>
<td>.................. 18 feet</td>
</tr>
<tr>
<td>Longest Element</td>
<td>.................. 31 feet</td>
</tr>
<tr>
<td>Turning Radius</td>
<td>.................. 18 feet</td>
</tr>
<tr>
<td>Surface Area</td>
<td>.................. 6.4 sq. feet</td>
</tr>
<tr>
<td>Wind load</td>
<td>.................. 164 lbs.</td>
</tr>
<tr>
<td>Weight</td>
<td>.................. 50 lbs.</td>
</tr>
<tr>
<td>VSWR at resonance</td>
<td>less than 1.5:1</td>
</tr>
<tr>
<td>Power Input</td>
<td>Maximum Legal Input Impedance</td>
</tr>
<tr>
<td>-3dB Beamwidth</td>
<td>..................<66° average</td>
</tr>
<tr>
<td>Lightning Protection</td>
<td>DC ground</td>
</tr>
<tr>
<td>Forward Gain</td>
<td>.................. 8.5 dB</td>
</tr>
<tr>
<td>Front-to-Back Ratio</td>
<td>.................. 25 dB</td>
</tr>
</tbody>
</table>

NOTE: These are original Polar Charts on file at Hy-Gain Electronics
multivibrators and analog input interfacing

Previous parts of this series have concentrated on only one multivibrator, the bistable, or flip-flop. This part will examine the monostable multivibrator, or one-shot, and look into ways of converting analog signals to digital levels.

A one-shot will create a single pulse of controllable width in response to a trigger. The trigger can be either a positive-going or negative-going state transition. There are two basic types: conventional and retriggerable. The latter will automatically reset and start the pulse again if a trigger arrives before the pulse is complete. Most of the former will inhibit any retriggering if the pulse has already started.

A one-shot symbol is shown in fig. 1. It has Q outputs and direct set and clear inputs as in a flip-flop.

Some devices allow a choice of positive or negative triggering. As in the flip-flop, unused control and input lines must be tied high or low depending on function.

Output pulse width depends on an RC time constant, either internal or external. The device is partly analog in operation, and a full description is found in texts. Each one-shot IC is specified in width from a simple formula or a graph showing width versus RC combinations. Most all one-shots have internal resistors and capacitors that can be changed by external components. Most confusion in RC selection comes about by the three pins marked R_{int}, C_{ext}, and $R_{\text{ext}}/C_{\text{ext}}$. Connection rules are:

- Internal C only: C_{ext} pin left open
- External C: Capacitor between C_{ext} and $R_{\text{ext}}/C_{\text{ext}}$ pins
- Internal R only: Connect R_{int} pin to V_{cc}
- External R: R_{int} pins left open, resistor between V_{cc} and $R_{\text{ext}}/C_{\text{ext}}$ pin

Internal capacitance and resistance are specified for each device. External components should be mounted as close as possible to the package; R and C pins are very susceptible to noise pickup, even with TTL.

External resistance may be variable for adjustment. The trimming potentiometer must not be wirewound for short pulses; winding inductance will change the time constant.

astable multivibrators

These are free-running oscillators with digital level outputs. Their use is generally restricted to digital VCOs (voltage-controlled oscillators). Most are of the emitter-coupled variety for stability.* Details can be found in application notes or reference 1.

Most of today’s timing is obtained from quartz crystal or LC oscillators, with or without dividers for lower frequencies. Such oscillators don’t have the fast rise and fall times required for digital circuits. TTL

*Not to be confused with ECL, or emitter-coupled-logic.
devices will not work properly with transition times of about 5 microseconds or more; internal circuitry will actually oscillate while a transition is made from logic 0 maximum to logic 1 minimum. CMOS is a bit more tolerant. There are two solutions.

the Schmitt trigger

A Schmitt trigger is a high-gain amplifier with feedback to give hysteresis. Hysteresis is a nonlinearity between input and output and, in digital form, helps to discriminate signal and noise when feeding digital inputs.

Some gates and inverters incorporate Schmitt trigger circuits at each input. So do a few one-shots. Typical input versus output is shown in fig. 2 for a TTL gate. The hysteresis symbol is used in gates and inverters having Schmitt inputs.

A rising input voltage will cause the output to "snap" from high to low when it crosses the 1.6-volt threshold. Internal feedback allows a very slow threshold crossing to change the output very rapidly. Schmitt inverters and gates are very good for interfacing an analog signal within input maximum voltage swing to conventional digital circuitry.

Other uses are given in fig. 3. Circuits of figs. 3A and 3B are useful for automatically resetting a digital circuit during power-on. Fig. 3C may be used to debounce a single-throw switch, but with some caution. Values are for TTL, and closure time constant is much shorter than opening time constant. It will work well with CMOS, where resistor values can be equal and much higher.

comparators

Comparators are high-gain, wideband operational amplifiers with output clamps to restrict output voltage swings to digital levels. A typical application is shown in fig. 4.

Comparators usually need two more supply voltages. This requirement is offset by the ability to threshold signals with a dc baseline way off digital voltage limits. Input voltage thresholds and baseline shifting are the same as for lower-frequency operational amplifiers.

The main characteristic in choosing comparators is slew rate, or response time. Slew rate is rate of change of output voltage per unit time compared with input voltage. Slew rate should be as high as possible. The newer rating is response time and is found on data sheets as time-related graphs of output voltage change for different overdrives.

Overdrive occurs when the input voltage exceeds threshold voltage. Most high-speed comparators have nearly the same output voltage transition with any overdrive; the major change is a slight delay with small overdrives.

Packages such as the Motorola MC3430 have four separate comparators. The MC3430 needs only two voltages, +5 volts and -5 volts, and also has a common strobe control line. All four outputs are TTL-compatible and are three-state. When the strobe is high all outputs are in a high-impedance state, which allows wiring several outputs in parallel. Feedback may also be added for hysteresis.

The Harris HA-4905 is also a quad comparator with an interesting supply connection. Two package pins are used for the comparator section and two more are used for the output circuits. One or two supplies can be used for the comparator with a differential of 5-15 volts. The output-circuit supply may be set to equal the digital-circuit supply for signal compatibility.

references

ham radio

june 1979
STEP UP TO TELREX

WITH A TELREX "BALUN" FED-"INVERTED-VEE" KIT

THE IDEAL HI-PERFORMANCE

INEXPENSIVE AND PRACTICAL TO INSTALL LOW-FREQUENCY MONO OR MULTIPLE BAND, 52 OHM ANTENNA SYSTEM

Telrex "Monarch" (Trapped) L.V. Kit

Trio-Band/4 KWP L.V. Kit $68.50

Post Paid Continental U.S.

Optimum, full-size doublet performance, independent of ground conditions! "Balanced-Pattern", low radiation angle, high signal to noise, and signal to performance ratio! Minimal support costs, (existing tower, house, tree). A technician can resonate a Telrex "Inverted-Vee" to frequency within the hour! Minimal S/W/R is possible if installed and resonated to frequency as directed! Pattern primarily low-angle, Omnidirectional, approx. 6 DB null at ends! Costly, lossy, antenna tuners not required! Complete simplified installation and resonating to frequency instructions supplied with each kit.

For technical data and prices on complete Telrex line, write for Catalog PL 7 (HRH)
"HOT" NEW BOOKS FOR MICRO-COMPUTER PROS!
The latest in micro-computer books that people waited in line to buy!

TV Typewriter Cookbook
By D. Lancaster
Covers tv terms, principles, configurations, memories, system design, cursor & update circuitry & techniques, hard copy, color graphics, keyboards & encoders. 256 pgs. #21373... $9.95

8080/8085 Software Design
By C. Titus, P. Roney, D. Larsen & J. Titus
Offers basic & advanced instructions for assembly language programming. Covers mathematical manipulations, number-base conversions, decoders, arrays, etc. 336 pgs. #21541... $9.95

Getting Acquainted with Microcomputers
By L. Frenzel
Explains basic concepts, definitions, organization, architecture, operation, software, programming & personal computing. With experiments for self-education. 288 pgs. #21486... $8.95

Z-80 Microcomputer Handbook
By W. Barden, Jr.
All about the Zilog Z-80, a very sophisticated microprocessor. Its hardware, software, and microcomputers built around it. 304 pgs. #21500... $8.95

Design of OP-AMP Circuits, with Experiments
By H. Berlin
The fundamentals of the op-amp device: differentiators, filters & nonlinear circuits. 35 experiments. 224 pgs. #21337... $7.95

Design of Phase Locked Loop Circuits, with Experiments
By H. Berlin
Details the design of the basic PLL circuits, detector, phase comparator & voltage-controlled oscillator circuits. 15 experiments. 256 pgs. #21545... $8.95

The Cheap Video Cookbook
By D. Lancaster
A complete guide to super-low-cost alphanumeric & graphic microprocessor-based video displays, with construction details on a seven IC circuit... & much more! 256 pgs. #21524... $5.95

555 Timer Applications Sourcebook, with Experiments
By H. Berlin
Deals with the many uses of the 555 timer "chip" for timing, signal generation, voltage regulation, control, sequencing, 15 experiments. 160 pgs. #21538... $5.95

CMOS Cookbook
By D. Lancaster
What CMOS is, how it works, & how to power, use, test & interface it, etc. With minicatalog of over 100 devices. 416 pgs. #21398... $10.50

Zigzag

CMOS Cookbook

AVAILABLE FOR THE FIRST TIME BY MAIL!

NO RISK OFFER!
YOURS TO EXAMINE AT NO RISK FOR 15 DAYS

Clip Out—Mail Today!
YES—Please send me the book(s) indicated below. If I'm not completely satisfied, I may return any or all within 15 days of receipt for full credit or refund. Add sales tax where applicable.

Name (Please Print)
Address
City State Zip Code

□ 21313 □ 21539 □ 21538
□ 21486 □ 21541 □ 21035
□ 21500 □ 21537 □ 21398
□ 21524 □ 21545

□ I have checked 3 or more titles and deducted my 10% savings.

Exp. Date
Account No.

Interbank No.: (Master Charge only) MN54

Signature

Minimum credit card purchase $10.00

MAIL TO:
Howard W. Sams & Co., Inc.
4300 W. 62nd St.
Indianapolis, IN 46206

June 1979

Prices subject to change 6 months after issue date.

More Details? CHECK — OFF Page 110
CRYSTAL FILTERS
The Heart of your Set — Get the BEST for Less!

Yaesu — Kenwood — Heath — Drake — Collins

FOX-TANGO continues to expand its quality line of 8-pole filters, made up entirely of specially treated, high Q crystals. Custom made for each set with ultimate rejection of over 80 dB and superior shape factors, these filters are invaluable from other sources. Only FOX-TANGO can offer this to ya at prices so low that when you consider the amount of money you can save, you will find that the investment is well worth it.

FOX-TANGO's 8-pole filters are the result of years of research and development. They are designed to give you the best possible performance in your equipment. Whether you are a professional, a club member, or just a hobbyist, you will find that these filters will improve the overall quality of your equipment.

These filters are available in a variety of models to meet the needs of all amateur operators. They are easy to install and come with complete instructions and specifications.

Whether you are interested in DXing, contesting, or just improving your signal-to-noise ratio, these FOX-TANGO filters are the perfect choice.

Inquire at your local Amateur Radio dealer for more information. Or, you can order direct from FOX-TANGO at the address below.

142 FLORIDA AVENUE
NEW YORK, N.Y. 10012

Fax: (212) 925-7000

FOX-TANGO CRISTAL FILTER SPECIFICATIONS

<table>
<thead>
<tr>
<th>FILTER</th>
<th>CENTER FREQUENCY</th>
<th>BANDWIDTH — MHz</th>
<th>INSERTION LOSS (IN-O-U T)</th>
<th>CAS I 1 SIZE</th>
<th>SEE NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-101</td>
<td>318-00</td>
<td>3179.3</td>
<td>250 ± 50</td>
<td><9</td>
<td>5000</td>
</tr>
<tr>
<td>FT-200</td>
<td>318-00</td>
<td>3180</td>
<td>350 ± 100</td>
<td><19</td>
<td>5000</td>
</tr>
<tr>
<td>FT-200</td>
<td>318-00</td>
<td>3187</td>
<td>350 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-301</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-200</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-302</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-400</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-500</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-600</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-700</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-800</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-900</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1000</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1100</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1200</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1300</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1400</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1500</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1600</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1700</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1800</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-1900</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
<tr>
<td>FT-2000</td>
<td>318-00</td>
<td>3187</td>
<td>400 ± 100</td>
<td><20</td>
<td>5000</td>
</tr>
</tbody>
</table>

FOXTANGO CORPORATION
Box 15944, W. Palm Beach, FL 33406

82 June 1979

More Details? CHECK — OFF Page 110

Dealers Inquired Welcome Florida residents add 4% sales tax
Get a great 2-meter value

$189.95 includes:
- Battery charger
- Battery pack
- Antenna
- Earphone
- 8 Channel capability

A minimum 2 watts out gives you plenty of power for local two-way communications and repeater access. Spurs are down a full 60 dB so you never worry about causing interference or accidentally keying repeaters. A separate speaker and microphone and well-designed FM circuitry bring you outstanding audio quality on both transmit and receive. Eight crystal-controlled channels and ±600 kHz offsets give you a total of 8 receive and 24 transmit channels for real versatility.

Shop and compare! At just $189.95 in kit form, we don't think you'll find a better all-around hand-held rig than the VF-2031! And with its complete list of options - auto-patch, tone encoder, external mike and holster-style carrying case - it puts real 2-meter power right in your hands.

Like every Heathkit product, it's designed by Hams for Hams, and it gives you the value, features and performance you're looking for!

There's more for the Ham at Heath

If coupon is missing, write Heath Company, Dept. 122-540, Benton Harbor, MI 49022

The HEATHKIT® VF-2031

A minimum 2 watts out gives you plenty of power for local two-way communications and repeater access. Spurs are down a full 60 dB so you never worry about causing interference or accidentally keying repeaters. A separate speaker and microphone and well-designed FM circuitry bring you outstanding audio quality on both transmit and receive. Eight crystal-controlled channels and ±600 kHz offsets give you a total of 8 receive and 24 transmit channels for real versatility.

Shop and compare! At just $189.95 in kit form, we don't think you'll find a better all-around hand-held rig than the VF-2031! And with its complete list of options - auto-patch, tone encoder, external mike and holster-style carrying case - it puts real 2-meter power right in your hands.

Like every Heathkit product, it's designed by Hams for Hams, and it gives you the value, features and performance you're looking for!

There's more for the Ham at Heath

If coupon is missing, write Heath Company, Dept. 122-540, Benton Harbor, MI 49022

A minimum 2 watts out gives you plenty of power for local two-way communications and repeater access. Spurs are down a full 60 dB so you never worry about causing interference or accidentally keying repeaters. A separate speaker and microphone and well-designed FM circuitry bring you outstanding audio quality on both transmit and receive. Eight crystal-controlled channels and ±600 kHz offsets give you a total of 8 receive and 24 transmit channels for real versatility.

Shop and compare! At just $189.95 in kit form, we don't think you'll find a better all-around hand-held rig than the VF-2031! And with its complete list of options - auto-patch, tone encoder, external mike and holster-style carrying case - it puts real 2-meter power right in your hands.

Like every Heathkit product, it's designed by Hams for Hams, and it gives you the value, features and performance you're looking for!

There's more for the Ham at Heath

If coupon is missing, write Heath Company, Dept. 122-540, Benton Harbor, MI 49022

A minimum 2 watts out gives you plenty of power for local two-way communications and repeater access. Spurs are down a full 60 dB so you never worry about causing interference or accidentally keying repeaters. A separate speaker and microphone and well-designed FM circuitry bring you outstanding audio quality on both transmit and receive. Eight crystal-controlled channels and ±600 kHz offsets give you a total of 8 receive and 24 transmit channels for real versatility.

Shop and compare! At just $189.95 in kit form, we don't think you'll find a better all-around hand-held rig than the VF-2031! And with its complete list of options - auto-patch, tone encoder, external mike and holster-style carrying case - it puts real 2-meter power right in your hands.

Like every Heathkit product, it's designed by Hams for Hams, and it gives you the value, features and performance you're looking for!

There's more for the Ham at Heath

If coupon is missing, write Heath Company, Dept. 122-540, Benton Harbor, MI 49022
increased break-in delay range for the Heathkit HW-8

The Heathkit HW-8 transceiver break-in delay time constant is such that, even with relatively fast keying and maximum time delay set in, the rig returns to the receive mode after every word. This is fine for rapid break-in, but most CW operation is not rapid break-in, and all that’s accomplished is unnecessary relay wear and operator fatigue. The fix is simple: Change C92 from 10 µF to 50 µF, from 10 µF to 50 µF, the transmitter and sidetone monitor oscillator keying develop tails because of the coupling back through the solid-state devices. This side effect may be eliminated in the transmitter keying circuit by lifting the end of R64 nearest the back of the printed circuit board, where wire “W” connects, soldering the anode lead of a 1N4148 silicon diode (Radio Shack 276-1122) in the transmitter and sidetone monitor oscillator keying circuit.

In addition, receiver muting is delayed excessively by the increased size of C92. This may be corrected by placing a 4700-ohm resistor in parallel with C43. Remove C43 from the circuit board, solder it across a 4700-ohm resistor, and place the pair where C43 was originally installed. (Refer to fig. 1.)

After making the modifications, 25 volts; R72 from 3.3 megohms to 1.0 megohms; R73 from 10 megohms to 22 megohms; parallel C43 with 4700 ohms; and add a diode in series with R64 (see fig. 1).

The time constant is controlled by C92. However, when C92 is increased empty hole, and soldering the cathode lead of the diode to the unconnected end of R64. Reconnect wire “W” to the junction of the diode and R64, above the board. In the sidetone oscillator circuit change R72 and R73 as indicated above.

In addition, receiver muting is delayed excessively by the increased size of C92. This may be corrected by placing a 4700-ohm resistor in parallel with C43. Remove C43 from the circuit board, solder it across a 4700-ohm resistor, and place the pair where C43 was originally installed. (Refer to fig. 1.) All resistors are ¼ watt.

After making the modifications,

John Abbott, K6YB
Collins 516F-2 high-voltage regulation

Shortly after acquiring my Collins S-line equipment, I became aware that the CW waveform as viewed on the SB-610 monitor scope left something to be desired. A definite trough appeared in the waveform, which is characteristic of a high-voltage power supply with insufficient regulation (fig. 2). The as-built, 10-μF filter is sufficient for SSB operation. However, during key-down CW operation, with the amplifiers running full-bore and exhibiting a widely varying load, there’s a need for increased capacitance in the filter section. I found that a minimum of 25-μF of filter capacitance provided the smooth waveform shown in fig. 3.

fig. 2. Monitor scope display of Collins S-Line CW waveform showing insufficient high voltage supply regulation.

With under-chassis space being at a premium, three 80-μF caps (Sprague TVA 1716) were used to replace the originals. These capacitors will provide over 2½ times the former capacitance and will fit into the chassis-mounted clamps without protruding below the chassis bottom. If other types or sizes are used, be sure sufficient chassis clearance remains.

Before removing the original caps, observe the physical wiring arrangement. Place the new capacitors in the same direction as those to be removed. The original capacitors are manufactured with terminals instead of wire leads, but no difficulty should be encountered if the full-length leads of the new units are used and only the negative lead of the ground-end capacitor (C4) and positive lead of the high-voltage bus capacitor (C2) are trimmed after the connections have been made. Be sure to insulate the negative/positive interconnecting leads of the three capacitors. They are not at ground potential, and they pass near the capacitor mounting brackets. See fig. 4.

![Diagram](image)

fig. 4. Modified Collins 516-F2 supply. High-voltage filter caps C2, C3, and C4 are replaced with 80-μF caps.

After installation, make certain that no short circuits exist. When the supply is reconnected to the 32-S (), ensure that the bias pot adjustment is correct.

Paul Pagel, N1FB

loss of torque in HAM-M rotators

Several years after I purchased my first HAM-M rotator, it started to slow down. At first I thought the slowdown was because of the extra antennas I’d added, so I increased the voltage with another transformer in series with the internal transformer. This helped for a while, but the rotator gradually slowed down again until it took five minutes to rotate 360 degrees!

After several inquiries and investigations, I found the cause. It seems that the electrolyte in the motor capacitor, C2, a 120-140 μF, 50-Vac capacitor, dries out in time. I installed a substitute capacitor, and the antennas almost took off. I removed the extra transformer. Even then, with a heavy antenna load, the 1-rpm speed was fully restored.

The motor-start capacitor is easily changed. It’s conveniently located in the control box. The as-built Cornell Dubilier capacitor part number is 51172-10, priced at $2.50. A higher quality (but possibly larger in size) replacement is probably available from your local electrical or motor supply house. The capacitance should be at least 120 μF.

I’ve experienced this problem several times. In one case, it happened after only one year on a new HAM-M-II.

Joe Reisert, W1JR

phono plug wiring

Soldering the braid of coaxial cable, such as RG-58/U, to the shell of a phono plug can be a messy and sometimes frustrating job. Excessive heat may be applied, resulting in the center-conductor insulation’s being damaged, causing either a shorted plug or the possibility of future intermittent trouble.

A neat and virtually short-proof connection may be made using heat-shrink tubing. Instead of soldering the coaxial braid to the shell of the plug, a 2.5-cm (1-inch) length of 9.5-mm (3/8-inch) diameter heat-shrink tubing is slipped down the coax and over the braid until even with the end of the shell. The heat of a match finishes the job quickly, neatly, and permanently.

Paul Pagel, N1FB
For literature on any of the new products, use our Check-Off service on page 110.

IC-280 mobile transceiver

The versatility of a microprocessor is exemplified in the introduction of the ICOM IC-280 FM mobile radio for 2 meters. Referred to as the “remotable” radio, the IC-280 actually comes assembled for immediate operation as one box. However, the same radio may be operated as separate units by removing the head and connecting the optional remote cable to each unit. You can then mount the central head in a small place where almost no other radio will fit.

“Remotability” is not the only reason to have an IC-280. The microprocessor covers all 4 MHz of the 2-meter band, plus some at both ends, in 15- or 5-kHz steps which are selected by the user or the microprocessor. In addition, there are three memory channels to store any frequency which can be programmed on the dial.

The modular 10-watt output stage has plenty of power to drive the most popular amplifiers to full output. The continuous display of frequency in transmit, receive, or memory position makes the IC-280 the easiest-to-use FM radio, and the best-performing FM radio that ICOM has designed to date. All ICOM dealers should have them in stock and on display now. See one today at your authorized ICOM dealer, or contact ICOM East, Inc., 3331 Towerwood Drive, Dallas, Texas 75234; or ICOM West, Inc., 13256 Northrup Way, Suite 3, Bellevue, Washington 98005.

multiple-output lab power supply

A new lab power supply, capable of functioning as three separate power supplies and featuring an exclusive automatic tracking circuit, has been introduced by the B&K Precision product group of Dynascan Corporation.

The new Model 1650 offers a 5-volt dc, 5-amp output, and two separate 25-volt dc outputs at 0.5 amp. The exclusive automatic tracking circuit allows the B output to “track” voltage changes of the A supply.

Designed for use with solid-state equipment where both linear and digital circuits may be encountered, the unit’s three outputs are completely isolated, offering the user full versatility to connect the outputs in series or parallel.

The valuable tracking circuit allows proportional control of the B supply when the A supply output is varied. When the TRACK mode is selected, if the B control is set at 100 per cent, the voltage level selected with the A control will appear at both the A and B outputs. If the B control is set to a 50 per cent position, the B output will be 50 per cent of the voltage at the A output. Tracking is controlled by means of a pulse-width-modulated control signal, which is coupled through an opto-isolator. This unique B&K Precision design permits complete electrical isolation of both supplies in the tracking mode.

The tracking feature of the 1650 allows it to be used as a substitute power source for breadboard and prototype circuits and other equipment. For test purposes it can provide single or simultaneously varying voltages to observe operating effects on the circuit under test. The tracking feature can also provide positive and negative voltages for operational amplifier circuits and offers a convenient means of evaluating the performance of differential amplifiers with voltage changes.

The 1650 features automatic current limiting and short-circuit protection on all ranges and outputs. IC control circuits maintain the highest reliability and stability. All power outputs use color-coded, heavy-duty, six-way binding posts.

The B&K Precision Model 1650 multiple output power supply is a money-saving alternative to separate supplies. It’s available for immediate delivery at local B&K Precision distributors for $275.00. For additional information, contact B&K Precision Sales Department, 6460 West Cortland Street, Chicago, Illinois 60635.

DE-130 electronic keyer

The new DE-130 Digital Electronic Keyer, by Dynamic Electronics, Inc., is designed to provide all the features required of a high-quality keyer at a minimum cost without additional accessories. For example, an ac power supply is included, eliminating the need for batteries or an add-on supply. The cost of an external paddle assembly is not necessary since an electronic paddle called a “touch key” is included. The electronic
touch key works on skin resistance, and plugs into the front of the keyer. This electronic key prevents the keyer from "walking," since no mechanical motion is required to operate it. A keying relay is included to allow the DE-130 to directly key any transmitter, regardless of the type of circuit used. For code practice or actual on-the-air monitoring, an audio circuit drives a speaker mounted in the top of the enclosure.

An additional feature is a TUNE position on the volume control, which allows the transmitter to be continuously keyed for adjustment purposes. Because the circuits are digitally generated, the dot-to-dash ratio is exactly 1 to 3, eliminating the need for weight adjustments. Both dot and dash memories are included and no new characters will be accepted until the memories are cleared.

An accessory socket is provided which completely interfaces the DE-130 Keyer with the DE-131 Message Storage Unit. With the optional DE-131, the DE-130 Keyer is converted into a large, 6000-bit memory keyer with six memories which store about eighty characters in each.

The price of the DE-130 Keyer and the DE-131 Message Storage Unit is $79.95 each. The units carry a one-year warranty and may be returned for a refund during a fifteen-day trial period. For more information, write to Dynamic Electronics, Inc., P.O. Box 896, Hartselle, Alabama 35640.

DS3100 RTTY terminal
HAL Communications Corporation is proud to announce a new standard of comparison in electronic RTTY terminals — the DS3100 ASR. The new terminal features full buffering of both received and transmitted data, thus permitting preparation of transmit text while receiving, as well as storage of up to 150 lines of received text and 50 lines of text to be transmitted. The terminal also features a new screen format with twenty-four characters per line.

Cushcraft manufactures a full range of high-frequency antennas which are performance engineered for the most discriminating amateur. For the amateur who demands top performance in a multiband Yagi beam there's the incomparable ATB-34 three-band beam for broadband, high-gain coverage on 10, 15 and 20 meters.

And for the Amateur with limited antenna space and budget who wants reliable, multiband radio communications there are three Cushcraft multiband verticals to choose from: the three-band ATV-3 for 10, 15 and 20; the four-band ATV-4 for 10, 15, 20 and 40 meters; and the ATV-5 for low VSWR five-band performance from 80 through 10 meters.

Cushcraft high-frequency antennas are quality engineered for top performance; they are often imitated, but never duplicated.
E RC PROMISES UP TO THE MINUTE STATE-OF-THE-ART DESIGN AND PERFORMANCE. WE'VE DONE IT FOR 1979
FOUR SIMULTANEOUS FILTERS IN ONE FOR UNPARALLELED QRM FREE RECEPTION (SSB & CW) PLUS A SPECIAL PATENTED CW PROCESSOR

THE MODEL QUIRE0 OUT YOUR ENTIRE TRANSMISSION. REVERSING THE POSITION OF A FRONT PANEL TOGGLE SPEAKING NORMALLY INTO A SSB TRANSMITTER CIRCUITS.

LETS YOU KNOW THE STATE OF YOUR ANTENNAS PLAY INDICATES THE NET THAT VSWR IS VERY HIGH.

AND TO 1/16 AMP. ARE AT THE REAR PANEL.

LIKE FROM 1.0 AND 2.2. ACCURACY IS TO LIMIT HIGHER VALUES THE UPPER POWER PWR IS DISPLAYED.

RED LED DIGITS DECIMAL POINT IS THE

ANY SPEAKER OR HEADPHONES REQUIRE 115 VAC AT LESS

RE~~IVE~ WARD PURCHASE.

TO 100 WATTS IN THE UPPER RANGE.

WEIGHT IS 2 POUNDS.

TWO 50-239 COAX CONNECTORS ARE AT THE REAR PANEL.

VSWR POWER ACCEPTED BY THE LOAD

REQUIRES 115 VAC AT LESS THAN 1/16 AMP.

COLLINS GRAY CABINET, WRINKLE PANEL - BRIGHT RED LED DIGITS (.33")

DECIMAL POINT IS THE PILOT LIGHT.

THE MODEL SL-65* (20-200 WATTS) AND THE ORP MODEL SL-65A* (.0.2-20 WATTS) DIGITALLY INDICATE ANTENNA VSWR UNDER ANY TRANSMISSION MODE -- SSB, CW, RTTY, AM etc. THERE IS NO CALIBRATION REQUIRED AND NO CROSSED METER NEEDLES TO INTERPRET. SIMPLY LOOK AT THE READOUT AND THAT IS THE VSWR.

SPEAKING NORMALLY INTO A SSB TRANSMITTER MIC, INSTANTLY CAUSES THE VSWR TO BE DISPLAYED THROUGHOUT YOUR ENTIRE TRANSMISSION, REVERSER THE POSITION OF A FRONT PANEL TOGGLE SWITCH AND THE DISPLAY INDICATES THE NET POWER (FORWARD LESS REFLECTED) THAT IS ACCEPTED BY THE ANTENNA. THE PEAK OF THE NET PEP IS DETECTED AND DISPLAYED WITHOUT FLICKER FOR ANY MODULATION TYPE. DISPLAY UPDATE IS CONSTANT YET FLICKER FREE AS YOU MIGHT ROCK THE POWER ACROSS THE POSITION. THERE IS NOTHING LIKE THIS QUALITY INSTRUMENT AVAILABLE ANYWHERE ELSE. IT IS THE ONLY ONE AVAILABLE TODAY THAT LETS YOU KNOW THE STATE OF YOUR ANTENNAS AND TRANSMITTED POWER AT ALL TIMES WHILE TRANSMITTING. EICHER MODEL IS A SOPHISTICATED DEVICE CONTAINING FOUR CIRCUIT BOARDS AND THIRTEEN INTEGRATED CIRCUITS.

SL-65

VSWR INDICATOR

- TWO DIGIT DISPLAY SHOWS VSWR TO AN ACCURACY OF .1 FOR VALUES FROM 1.0 AND 2.2. ACCURACY IS TO .2 FOR VALUES FROM 2.3 TO 3.4 AND TO 3 FROM 3.4 TO 4.0, R.F. POWER IS CONSTANT YET FLICKER FREE AS YOU MAY ROCK THE POWER ACROSS THE POSITION. THERE IS NOTHING LIKE THIS QUALITY INSTRUMENT AVAILABLE ANYWHERE ELSE. IT IS THE ONLY ONE AVAILABLE TODAY THAT LETS YOU KNOW THE STATE OF YOUR ANTENNAS AND TRANSMITTED POWER AT ALL TIMES WHILE TRANSMITTING. EICHER MODEL IS A SOPHISTICATED DEVICE CONTAINING FOUR CIRCUIT BOARDS AND THIRTEEN INTEGRATED CIRCUITS.

- FOR VSWR VALUES NEAR 1.0, THE POWER RANGE FOR A VALID READING IS 20 - 2000 WATTS OUTPUT, FOR HIGHER VALUES THE UPPER POWER LIMIT FOR A FLICKER FREE VALID READING IS SOMewhat LESS (.15 - 1000 WATTS FOR VSWR AT 2.0),

- DIVIDE THE ABOVE POWER LEVELS BY 100 TO OBTAIN THE PERFORMANCE OF THE SL-65A ORP MODEL.

WARRANTY ONE YEAR FULLY RFI PROOF FULLY WIRED AND TESTED AVAILABLE NOW

$75.00 POSTPAID IN THE USA AND CANADA.

ATTN SL-55 OWNERS: THE CIRCUIT BOARD OF THE SL-56 IS COMPLETELY COMPATIBLE WITH THE SL-55 CHASSIS. OUR RETROFIT KIT IS AVAILABLE AT $35.00 POSTPAID.

E RC INTRODUCES A BRAND NEW CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD

PRICE: $189.50 POSTPAID IN USA & CANADA. VA. RESIDENTS ADD 4% SALES TAX.

BOOKLET AVAILABLE AT $2.00 RETURNABLE TO PAR PURCHASE.

* PATENT PENDING.

ELECTRONIC RESEARCH CORP. OF VIRGINIA P.O. BOX 2394 VIRGINIA BEACH, VIRGINIA 23452

TELEPHONE (804) 463-2669

72-character lines split to show both receive and transmit buffers, line numbering for each buffer area, on-screen status indicators to show terminal code, rate, mode, etc., and a new high-contrast green P31 phosphor screen for easier viewing. The screen also uses bright/dim intensity changes to differentiate between keyboard and received data.

A total of ten "HERE IS:" programmable identifier messages are available, two of which can be saved even while power is removed from the terminal. An IDENT feature allows Morse identification, regardless of the terminal's selected data code. Other features include a real-time clock, programmable answer-back (WBU), upper and lower ASCII, ASCII speeds from 110 to 9600 baud, four keyboard-operated output switches to control accessories, and a full 25-pin modem connector, for ASCII computer connections.

As in the previous DS3000 KSR V3 terminal, the new DS3100 ARS will send and receive all three data modes (ASCII, Baudot, and Morse), allows use of continuous, line, or word transmitting modes, and has synchronous idle, unshift on space, and word wrap-around. Both the electrical and mechanical features of the terminal have been completely redesigned to use a 280 microprocessor, plug-in circuit boards, and allow easy service. A front-face legend has been added to the keytops to fully label all control functions of the terminal and simplify operation.

The keyboard and new streamlined cabinet are color coordinated in a new two-tone castle tan and chocolate brown finish. The terminal weighs 45 lbs. (20.4 kg) net (55 lbs/25 kg shipping) and can be connected for use with 120 or 240 Vac, 50 or 60 Hz power mains. The cost is $1995.00 including shipping within the United States and deliveries of the first units will start by May 1, 1979. Contact HAL Communications Corp., Box 563, Urbana, Illinois 61801 (phone 217-367-7373) for further information.
THE TOWER OF THE YEAR.
WE GOT IT.

Tower Master's new self-supporting, crank-up TMZ-471 is the tower of the year.
It's taller.
It's bigger.
It's stronger.
It's one of an all new line of hot-dipped galvanized steel towers made expressly for HAM Operators now available from Tower Master. Made to meet the demanding requirements of today's modern equipment. And if you're a HAM, you know what we mean.

Like Tower Master's TMZ-HD-554 and -571, with top section OD's of 15 inches to easily accommodate the new "Tail Twister" CDE rotor.

Or try the TMM-HD-554 and -571 series from Tower Master, with top section OD's of 14-3/4 inches. These freestanding crank-ups will also hold the "Tail Twister."

THE MAN BEHIND THE TOWER
His name is folklore in the tower industry. One of the giants of tower design. Maybe you recognize him. He's Lou Tristao. We asked him to design the TMZ-471 for Tower Master. We like what he's come up with. You will, too.

That's why we call the increasingly popular TMZ-471 the tower of the year! We are convinced it really is. You will be, too. Just write — or call — Tower Master today. Lou may answer the phone. Do it now.

Or, see your dealer today.

WOODLAKE INDUSTRIAL PARK
353 SOUTH ACACIA STREET
P.O. BOX 566, WOODLAKE, CALIFORNIA 93286
209/564-2483 Day 209/733-2438 Night

THE MAN BEHIND THE TOWER
His name is folklore in the tower industry. One of the giants of tower design. Maybe you recognize him. He's Lou Tristao. We asked him to design the TMZ-471 for Tower Master. We like what he's come up with. You will, too.

That's why we call the increasingly popular TMZ-471 the tower of the year! We are convinced it really is. You will be, too. Just write — or call — Tower Master today. Lou may answer the phone. Do it now.

Or, see your dealer today.

WOODLAKE INDUSTRIAL PARK
353 SOUTH ACACIA STREET
P.O. BOX 566, WOODLAKE, CALIFORNIA 93286
209/564-2483 Day 209/733-2438 Night
PERFORMANCE SPECIFICATIONS

- INPUT VOLTAGE: 10.5 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
- CURRENT: 12 Amps
- 4½" (H) x 8" (W) x 9" (D)
- Shipping Weight: 13 lbs.

Other power supplies also available:

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (amps)</th>
<th>ICS* (amps)</th>
<th>Size (in.)</th>
<th>Shipping Wt. (lbs.)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>29</td>
<td>$136.95</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>26</td>
<td>5 x 9 x 10½</td>
<td>20</td>
<td>$94.95</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3½ x 6½ x 9</td>
<td>8</td>
<td>$49.95</td>
</tr>
<tr>
<td>RS-4A</td>
<td>5</td>
<td>4</td>
<td>3½ x 6 x 7½</td>
<td>5</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

*ICS = Intermittent Communication Service (50% Duty Cycle)

If not available at your local dealer, please contact us directly.

1971 South Ritchley Street
Santa Ana, CA 92705
(714) 835-0682

MILITARY SURPLUS WANTED
Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201 440-8787

SPACE ELECTRONICS CO.
35 Ruta Court, S. Hackensack, N. J. 07606

TRUeLE FREE TOUCH TONE ENCODER

- tracer key depression
- mobile
- handheld positive mount
- no rfi
- no potted parts (serviceable)
- mil-spec components
- self contained
- xtal controlled
- level adjustment from front
- 45 - 80 v.d.c.

Supplied with: Instructions, schematic, template, hardware, PP-1A designed for Standard Communications Handhelds. (California orders add 6% sales tax.)

NEW PRICES

- PP-1 = $48.00
- PP-2 = $55.00
- PP-1K = $55.00
- PP-2K = $59.00

K-series = Self Contained Delay Relay
M-series = Detached Frame for irregular installations

Available at: Ham Radio Center
3750 Washington Blvd.
Los Angeles, CA 90068
(213) 744-4900

Send for Complete Dealers List & Catalog

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver.

- 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals.

- Priced from $69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95.

Now available in KIT FORM - GLB Model 200 MINI-SIZER.

Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95

Send for FREE 16 page catalog.

We welcome Mastercharge or VISA

GLB ELECTRONICS

952 Clinton St., Buffalo, N. Y. 14206

DIPOLE ANTENNA CONNECTOR

KNE-EQUE (HQ-1) dipole connector has 100% gold plated contacts and pure brass dipole plastic body to accept coax, RG-316 plug on front. Dipole keeps coax fittings dry. Instructions on how to use are included. All prices include shipping.

BUDWIG MFG. CO.
PO Box 829, Ramona, CA 92065
CA Res. add 6% Sales Tax

TEST EQUIPMENT

All equipment listed is operational and unconditionally guaranteed. Money back if not satisfied. Prices listed are for FOB Monrovia.

Boonton 190A Q mtr 20:260 uHz
Q 1200...395
GR-1001A Stand sig gen 5kHz
50MHz calib affin...255
HP-170A (USM140) 30MHz scope with reg horiz, dual trace vert plugs...475
Tek-665 Dual beam 30MHz scope less plug ins (3 series)...625
ULM11 Stand Sig Gen 10kHz 50MHz
calib affin...225
Weinschel 70 Prec RF affin DC, 1GHz 60db, Ido steps on...
Lists outdated Write specifying test equipment needs. Quick response assured.

GRAY ELECTRONICS

P.O. Box 941, Monroe, Mich. 48161
Specializing in used test equipment.

Piope Communications

Emphasis is on Quality & Reliability

P.O. Box 3435
Hollywood, California 90028
213/852-1515

More Details? CHECK — OFF Page 110
Tri-Ex®

Puts the World at Your Fingertips

Get your antenna high enough with a TRI-EX tower and bring the world to you.

Receive signals which you have never heard before.

Send your call to other HAMS who have never heard you.

A TRI-EX tower will give you listening power... calling power... and stay-up power that means durability.

Durability comes from TRI-EX's 25 years of building quality towers. These years of experience combined with the latest engineering knowledge and materials are used to design and build towers which stay up under the antenna loads and wind speeds specified. After manufacture our steel towers are hot dipped in molten zinc (galvanizing). All exposed steel is covered inside and out - including the inside of tubing.

Our aluminum towers are self-resistant to corrosion. TRI-EX TOWERS makes them all: GUYED TOWERS, CRANK-UP TOWERS, FREE STANDING TOWERS, STACKED TOWERS.

And we will install a tower on your site, upon request.

Call, or write TRI-EX now for information on the right TRI-EX tower for you. We will send you our complete list of prices, delivery dates, installation information and the name of your nearest dealer. Call TOLL FREE.

Call our New Number
1-800-528-6050, Extension 1025

In Arizona, dial:
1-800-352-0458, Extension 1025

Tri-Ex®
TOWER CORPORATION
7182 Rasmussen Avenue, Visalia, California 93277
TRANSISTOR CHECKER

- Completely Assembled - Battery Operated

The ASI Transistor Checker is ideal for checking a wide range of transistors, whether they’re installed or removed from a circuit. It's perfect for use in the field, in the electronics lab, or for hobbyists. It scans the transistor's characteristics, including beta, current gain, and other important parameters.

- **Part NO:** IN-CC
- **Price:** $3.49 each

MICROPROCESSOR COMPONENTS

- **NEW!**
- **Connectors**
 - 25 Pin D Subminiature
 - Printed Circuit Edge Card

SOLAR CELLS

- **2x2cm**
- **0.4 volts**
- **100mA**
- **$1.99 ea. or $3.50 each**

THE 3RD HAND

Makes circuit assembly a breeze!

Let's you work with both hands.

Sturdy Aluminum Construction

- **JE701**
- **Remote Control Transmitter & Receiver**

6-Digit Clock Kit

- **$19.95**

REGULATED POWER SUPPLY

- **JE200**

- **5V 1 AMP POWER SUPPLY**

JE205

- **Adapter Board**
 - **$19.50**
- **DC/DC converter w/ 5V**
- **Power undervolt detector**
- **$19.50**

INSTRUMENT/CLOCK CASE

This case is an injection molded unit that is ideal for use as a DM, DUNTER, or CLOCK cases. It has dimensions of 4" x 4" with 11/16" in height. It comes complete with a red bezel.

Part NO: IN-CC

Price: $3.49 each
Foreign Subscription Agents for Ham Radio Magazine

- **Ham Radio Austria**
 - grains.430
- **Ham Radio Belgium**
 - D:104/708/Neussadat
- **Ham Radio Italy**
 - D:104/708/Neussadat
- **Ham Radio Holland**
 - D:104/708/Neussadat
- **Ham Radio Switzerland**
 - D:104/708/Neussadat
- **Ham Radio Sweden**
 - D:104/708/Neussadat
- **Ham Radio France**
 - D:104/708/Neussadat
- **Ham Radio Germany**
 - D:104/708/Neussadat

PUBLISHED WANTED

- **Passband tuning unit** from R-44 or R-4B, or complete junked receiver with tuner still intact. K1XX, ham radio, Greenville, N.H. 03048.

BULL-SELL TRADE

- Send $1.00 for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned used for all major radio equipment. Price given for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, B-012 Conover, Solana Beach, CA 92075.

TELETEP COURSES FOR BEGINNERS

COMPUTER SALE

- SWTP 860 with 16 memory. Real memory, multi-processing OS. Extra interference and memory board. Available from software, 3616 W. Congress Parkway, Chicago, IL 60637.

ALL ITEMS PPD USA SEND STAMP FOR LIST OF BARGAINS

- PA Residents add 6% SALES TAX FONE 412-863-7006.
CLUB CALL PINS 3 lines 11/4 x 3/4 $1.55 each. Call, first name and club. Colors Blue, Black or Red with White letters. (Catalog). Arnold Linzner, 2411 Linden Street, Ridgewood, N. Y. 7-1227.

WWW RECEIVER. The Elekem Model LXX receiver receives the 60 kHz WWV signal and provides the following outputs: 60 kHz and 100 kHz, phase locked to WWVB carrier, and the demodulated WWVB time code. Send for brochure describing the receiver to Elekem, Inc., Dept H, 6500 Joy Rd., East Syracuse, N. Y. 13057.

FREQUENCY ALLOCATION CHART. See how the entire radio spectrum is used. 2 kHz to 200 MHz. Send $3.00 Collins Chart Co., Box 935, Coronado, Ca. 92118.

WANTED: Hilltop property near Pollock Pines, California. WACCOA, 4 Ajax Place, Berkeley, Ca. 94708.

MICROWAVE MODULES TRANSVERTER MT 432/42S, Never used, original sealed carton. $230 C&G or $225 US. Hans Peters, VE3CRU (416) 423-9466, Box 6286, Station A, Toronto, Ontario, Canada M5W 1P3.

LICENSED AMATEURS ONLY - ATV builders etc... here is your chance for brand new video equipment at dealer Cost. Retailing and closing out with such brands as Vicon, RCA and Hitachi. Write W9WVH, check call book.

ATTENTION: UHF and Microwave Amateurs, at last a single source for your state-of-the-art Preampifier and coaxial components. Send for free catalog. Cascade Microwave Labs, 1801, Box 25, Jefferson, Or. 97732.

PC BOARDS Deluxe Memory Keyer, April HR. Glass, plated, drilled, $19.95. RTX Electronics, Box 2514, Lincoln, Nebraska 68502.

RTTY AF SK Modulator PC board. See Feb. 79 Ham Radio. Drilled $5.00 F. E. Hinkel, 12412 Moxby Bass, Austin, Tx. 78750.

EZ deals are the best! Try me and see for Yaesu, Drake, KLM, Swan, Cushcraft, DenTen, VHF Eng., ICOM, COE, Hustler, Wilson and more. Call, see or write WBEZ. Bob Smith Electronics, RDF 3, Hwy 169 & 7, Fort Dodge, Ia. 50501, (515) 576-3886.

EPOXY CIRCUIT BOARD $3.00 square foot. Fifty cents for price list refunded first order. Hinchen Enterprises, P.O. Box 2466, Stockton, Ca. 95201.

WANTED: Motorola XN 1024 and XN 1052 channel elements. WACCOA, 4 Ajax Place, Berkeley, Ca. 94708.

30 AMP POWER SUPPLY. 13.8 vdc (115 Vac input). Five year limited warranty. Hammond metal case $124.95. All ratings continuous duty. Other models: 20 amp, $99.95, 16 amp, $79.95, 10 amp, $69.95, 6 amp, $59.95, 4 amp, $44.95. Add shipping, COD accepted. S.A.S.E. for info. JR Electronics, P.O. Box 893-A, Cincinnati, Ohio 45201.

STOP LOOKING for a good deal on amateur radio equip-ment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. Now more than ever, where you buy is as important as what you buy! We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, Atlas, ICOM, DenTen, MFJ, Tempo, Regency, HyGain, Mosley, Alpha, CushCraft, Swan, and many more. Write or call us today for our low quote and try our personal and friendly Hoosier service. HOOSIER ELECTRONICS, P.O. Box 2003, Terre Haute, Indiana 47802. (812) 235-1456.

DESKTOP TOP CONSOLES, ultimate operating convenience. Free brochure. Thompson Electronics, P.O. Box 363, Westfield, Ind. 46074.

DAMES COMMUNICATION SYSTEMS

Ham Gear
Collins 511-A, general coverage receiver $495
Collins 516 FZ power supply, new, in box $275
Collins KWM32A transmitter, exc... $1375
Collins 754A ham receiver, vy good $425
Collins 312B4, Sta Conv. 10, exc $250
Collins 755SCC, Vy exc, exc $325
Collins 18051, antenna tuner $250
Collins 30L1, 1-wp $285
Collins 516F2, power supply $185
Collins A-390IA cvrs, overhauled exc cond $100

Test Gear
Harrison 0-20 watt 1.5 amp lab pwr supplies, each $39.50
HP-302A wave analyzer $375
Boonton Radio 225A sig gen, 10-500 MHz $495
HP-2032A wide-range oscilloscope $150
Measurements Model 80 2-400 MHz $250
Measurements Model 858 signal generator $295
HP-279A 5-216 MHz AM/FM sig gen $250
HP-4600B 1-420 MHz sig gen $550
Tek 545 50-100 MHz scope $250
Tek 531A scope, exc $350
Tek 551 digital tester new, w/access $250

We stock Amateur and Professional equipment from manufacturers such as Collins, Heathwell-Packard, etc.

All equipment sold checked and realigned
Write for free catalog.

201-998-4256
10 SCHUYLER AVENUE
NORTH ARLINGTON, N. J. 07032

Regency Scanner
BRINGS YOU THE NEWS WHILE ITS HAPPENING

10 channels covering all 5 bands. AC/DC operation.

SAVE $40 to $895
LIST $129.95

1,000's OF CRYSTALS
-H25C Case Scanner Monitor
-10.7 Amateur Ham
-2 Meter, CB, Standard

1 to 9 $3.70
10 to 49 $3.00
50 and UP $2.50

CRYSTAL BANKING SERVICE
P.O. BOX 683
LYNNFIELD, MASS. 01940

More Details? CHECK -- Off Page 110
Accept no substitutes!

Before you make the choice of a new hand-held, ask about these important features:
1. Is the case fiberglass reinforced Lexan®?
2. Are the batteries convenient for carrying extras?
3. Is the capacity sufficient for a day’s operation?
4. Is there a method for conserving battery life when high power is not required?
5. Does it fit your hand comfortably?
6. Do you have a choice of charging methods?
7. Do you have an ample choice of accessories to back up your radio?

If you can answer ‘yes’ to all of the above, then you’ve made the obvious choice.

You want a Wilson Mark IV hand-held . . . and accept no substitute for it!

Wilson hand-helds have been known world-wide for exceptional quality and durable performance. That’s why they have been the best selling units for years.

The Mark Series of miniature sized 2-meter hand-helds continues the tradition of dependability and operation, but in an easier to use, more comfortable to carry size.

The small compact size battery pack makes it possible to carry one or more extra packs in your pocket for super extended operation time. No more worry about loose cells shorting out in your pocket, and the economical price makes the extra packs a must.

MARK IV: ~ 1 & 4.0 watts

SPECIFICATIONS:
- Range: 144-148 MHz
- 6 Channel Operation
- LED Battery Condition Indicator
- Individual Trimmers on TX and RX X-tals
 - Rugged Lexan® outer case
 - Switchable Hi-Lo Power
 - Current Drain: RX 15 mA
- TX - Mark IV: 900 mA Hi, 400 mA Low
 - 12 KHz Ceramic Filter and 10.7 Monolithic Filter included.
 - 10.7 MHz and 455 KHz IF
 - Spurious and Harmonics: more than 50 dB below carrier
 - BNC Antenna Connector
 - .3 Microvolt Sensitivity for 20 dB Quieting
 - Uses special rechargeable Ni-Cad Battery Pack
 - Rubber Duck and one pair X-tals 52/52 included
- Weight: 19 oz., including batteries
- Size: 6” x 1.770” x 2.440”
- Popular accessories available:
 Wall Charger, Mobile Charger,
 Desk Charger, Leather Case,
 Speaker Mike, Battery Packs,
 and Touch Tone™ Pad.

To obtain complete specifications on the Mark IV, along with Wilson’s other fine products, see your local dealer or write for our Free Amateur Buyer’s Guide.

Prices and specifications subject to change without notice.
WANTED: GE MASTR ER-41C receiver, ET-56 transmitter. Fred Findling, P.O. Box 125, Littleton, N. H. 03651.

REPEATERS — Factory Built VHF Engineering, 4 uhf, 1 with PL. Two in unopened boxes. 1 220 MHz, 2K Takes all. WABCOA, 4 Ajax, Berkeley, Ca 94708.

THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices; catalog, 2 West 22nd St., Baltimore, MD 21218.

WANTED — Instructor Ham Radio, N.Y.S. Co-ed Children's Sleep-Away Camp, Write: Camp Kinder Ring, 45 East 33rd Street, New York, N. Y. 10016.

100 PLUS BB403 NICAD BATTERIES unused, individ. packed with vent cap 4 Amp hr 1.2V per cell requires electrolyte. Also 126 New SO 259 Conn. Will sell either separate or in quantities. Open to offers. E. L. Petrik, P.O. Box 1255, Oak Lawn, Ill 60454.

PORTA PAK — Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $67.50, 9 amp hr $88.00. Charge included, shipping extra. P.O. Box 67, Somers, WI 53171.

WANTED — Radio transcription discs. Any size or speed. Larry, W7FIZ, Box 724, Redmond, Washington 98052.

TEST EQUIPMENT CATALOG listing used Tektronix, HP and OR equipment at bargain prices. PTI, Box 9099, White Bear Lake, MN 55110. Price $1.00 refundable with first order.

Coming Events

MASSACHUSETTS: NoBARC Hamfest July 21, 22 at Cummington Fairgrounds. Tech talks, demonstrations and dealers. Flea market, $1.00 advance registration $3.00 single, with spouse $5.00 Tom Hamilton, W1AVPX, 206 California Avenue, Pittsfield, Massachusetts 01201 or 413 238 0500 at gate. Mobile talk-in on 146.319/1. Gates open at 5:00 PM on Friday for further camping.

OHIO: Sandusky Valley Radio Club’s Hamfest, Sunday, June 10, Sandusky County Fairgrounds, Fremont. For info: John Dickey, WB4DQR, Sec., 545 N. Jackson St., Fremont, OH 43420.

OHIO: The Tusco Radio Club and the Canton Amateur Radio Club present the 5th annual Hall of Fame-ARRL Hamfest, Sunday, July 15, Stark County Fairgrounds, Canton. For info: Hall of Fame Hamfest, 10877 Hazleview Ave., Alliance, OH 44601.

PENNSYLVANIA: Milton ARC Hamfest, June 3, 1979 at the Allenwood Fireman's Firegrounds. U.S. Route 15, four miles north of Interstate 80. Doors open 8 AM $2.50 advanced, $3 gate, children and spouses FREE. Flea market, auction, contests, portable FM clinic, prizes, food & beverages. Talk-in on 146.37/97, 146.34/94 repeaters and 146.52 simplex. Details from Kenneth Hering, W3ASU, R.D. 1, Box 381, Allenwood, Pennsylvania 17810; Telephone (717) 538-9168.

PENNSYLVANIA: The Tri-Club Hamfest (W3OK, WA3GYE and W3DI) July 15, 8 AM to 4 PM, Allentown Police Academy pistol range, Lehighton Parkway South, Allentown. Admission: $2.00 lookers, $4.00 sellers. Talk-in on 34/94 and 52.
RF FREQUENCY COUNTER

FREQUENCY COUNTER

The CT-50 is a versatile and practical frequency counter which measures frequencies from 60 Hz up to 600 MHz with the CT-600 option. It is equipped with a large, easy-to-read digital display. The CT-50 is ideal for industrial, educational, and research applications. It has a built-in battery backup and is ruggedly constructed for long-term use.

SPECS:
- Frequency range: 60 Hz to 600 MHz
- Resolution: 1 Hz
- Accuracy: ±1 ppm
- Stability: ±0.01 ppm
- Power supply: 120 VAC
- Dimensions: 19" x 19" x 6"
- Weight: 50 lbs

MTS-50 MHz counter kit
MTS-100 MHz counter kit
MTS-200 MHz counter kit
MTS-300 MHz counter kit
MTS-500 MHz counter kit
MTS-600 MHz counter kit

FREQUENCY COUNTER

CT-50

Incredible Price

$89.95

OP-AMP SPECIAL

741 BJT or FET

$12.95

FAN MI MIKE KIT

A super high performance FM wireless microphone kit. Transmits a stable signal to 200 feet with exceptional audio quality by means of its built in electret microphone. Kit includes: microphone, on-off switch, battery, and super instructions. This is the finest unit available.

FM-3 KIT

$12.95

CLOCK KITS

Our Best Seller

Your hand at building the finest looking clock on the market. Its satin finished aluminum case looks great anywhere. A 4" LED display provides a highly readable display. This is a complete kit. Includes: 12V clock, 24 hour, DC-9, AC-10, alarm clock, 12 hour, 12V DC car clock. For wired and tested kits add $10 to kit price.

Clocks

OP-AMP SPECIAL

741 BJT or FET

$12.95

FAN MI MIKE KIT

A super high performance FM wireless microphone kit. Transmits a stable signal to 200 feet with exceptional audio quality by means of its built in electret microphone. Kit includes: microphone, on-off switch, battery, and super instructions. This is the finest unit available.

FM-3 KIT

$12.95

CLOCK KITS

Our Best Seller

Your hand at building the finest looking clock on the market. Its satin finished aluminum case looks great anywhere. A 4" LED display provides a highly readable display. This is a complete kit. Includes: 12V clock, 24 hour, DC-9, AC-10, alarm clock, 12 hour, 12V DC car clock. For wired and tested kits add $10 to kit price.

Clocks

OP-AMP SPECIAL

741 BJT or FET

$12.95

CLOCK KITS

Our Best Seller

Your hand at building the finest looking clock on the market. Its satin finished aluminum case looks great anywhere. A 4" LED display provides a highly readable display. This is a complete kit. Includes: 12V clock, 24 hour, DC-9, AC-10, alarm clock, 12 hour, 12V DC car clock. For wired and tested kits add $10 to kit price.

Clocks

OP-AMP SPECIAL

741 BJT or FET

$12.95

CLOCK KITS

Our Best Seller

Your hand at building the finest looking clock on the market. Its satin finished aluminum case looks great anywhere. A 4" LED display provides a highly readable display. This is a complete kit. Includes: 12V clock, 24 hour, DC-9, AC-10, alarm clock, 12 hour, 12V DC car clock. For wired and tested kits add $10 to kit price.

Clocks

OP-AMP SPECIAL

741 BJT or FET

$12.95

CLOCK KITS

Our Best Seller

Your hand at building the finest looking clock on the market. Its satin finished aluminum case looks great anywhere. A 4" LED display provides a highly readable display. This is a complete kit. Includes: 12V clock, 24 hour, DC-9, AC-10, alarm clock, 12 hour, 12V DC car clock. For wired and tested kits add $10 to kit price.

Clocks

OP-AMP SPECIAL

741 BJT or FET

$12.95

CLOCK KITS

Our Best Seller

Your hand at building the finest looking clock on the market. Its satin finished aluminum case looks great anywhere. A 4" LED display provides a highly readable display. This is a complete kit. Includes: 12V clock, 24 hour, DC-9, AC-10, alarm clock, 12 hour, 12V DC car clock. For wired and tested kits add $10 to kit price.
TOROMAR ENGINEERS

Box 455, Escondido, CA 92025
Phone: (714) 747-3343

FAST SCAN ATV
All you need in one box

Show the shock, home movies, computer games, etc. Connect to the ant. terminals of any TV set, add a good 450 antenna, a camera, and you are there...

- 10 Watts peak RF output, Specify 4.5 or 4.99.25 MHz
- UHF carrier sound with plenty of mix, gain for distance pick-up
- 8 MHz bandwidth, high resolution necessary for computer alphanumerics and color.
- Tunable converter covers 450 to 4500 (Covers CH 12, 13)
- Contains AC to 12VDC regulated 1 AMP power supply.
- Only $199.00 direct mail. Check, Money Order VISA, Send SASE for catalog of ATV Modules and PC Boards.

HITACHI MV-42U TV CAMERA
$329 ppd.
- Better than 500 fine resolution. 7 watts on 117VAC
- Small 4x2x5 inches. Can run on 12vdc @ 7.8ma
- 0.01uS automatic high compensation. Lens included.
Send SASE for catalog of ATV and UHF products VISA or MC orders call 213-442-4165.

P.C. ELECTRONICS
Maryann 2522 Paxson Tom
WB8FSS Arcadia, CA 91006 W6ORG

WANTED FOR CASH

4CX150 4CX1000 4-65 4-250
4CX250 4CX1500 4-125A 4-400
4CX300A 4CX3000 4-1000
4CX350A 4CX5000 304TL

4CX10,000 5CX1500
Call Ted - W6ORI
Other tubes and kitstrons also wanted.

DCO, Inc.
10 Schuyler Avenue
No. Arlington, N. J. 07032
(201) 986-4246

(201) 986-6475

GROTH-Type

COUNTS & DISPLAYS YOUR TURNS
- 99.99 Turns
- One Hole
- Panel Mount
- Handy Logging Area
- Spinner Handle Available

Case: 2x4"; shaft 3/4"x3" b
Model TC2: Skirt 2-18": Knob 1-5/8" x 8
Model TC3: Skirt 2-7/8" Knob 2-3/8" x 8

R. H. BAUMAN SALES
P.O. Box 122, Itasca, Ill. 60143
CALL TOLL FREE
1-800-228-4097

Hy-Gain 3806
2-Meter Hand-Held Amateur Transceiver
SPECIALY PRICED ONLY $119.95

- Low cost, 6-channel hand-held provides superb voice transmission over short to medium distances
- Sharply tuned on-frequency selectivity in the RF amplifier stages plus FET's in the 1st and 2nd mixers for virtual immunity to out-of-band signals
- Intermodulation distortion and cross-modulation
- Separate microphone and speaker elements for enhanced audio
- Internally adjustable mic preamp—a Hy-Gain exclusive
- Specially gasketed case seals out water, dirt and corrosive salt air
- Watertight, high-impact ABS plastic case—ribbed for non-slip grip
- Top-mounted controls for instant access

Accessories:

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3807</td>
<td>Nicad Battery Pack</td>
<td>$31.95</td>
</tr>
<tr>
<td>1104</td>
<td>Touch Tone Pad</td>
<td>$44.95</td>
</tr>
<tr>
<td>1106</td>
<td>AC Battery Charger</td>
<td>$9.95</td>
</tr>
<tr>
<td>1107</td>
<td>Cigarette Lighter Adapter Cord</td>
<td>$9.95</td>
</tr>
<tr>
<td>1108</td>
<td>Antenna Adapter Cord</td>
<td>$9.95</td>
</tr>
<tr>
<td>1110</td>
<td>Carrying Case (Leather)</td>
<td>$17.85</td>
</tr>
<tr>
<td>1111</td>
<td>Carrying Case (Vinyl)</td>
<td>$9.95</td>
</tr>
<tr>
<td>269</td>
<td>Rubber Duck Antenna</td>
<td>$5.95</td>
</tr>
<tr>
<td></td>
<td>Crystal Certificates</td>
<td>$3.95</td>
</tr>
</tbody>
</table>

PLEASE ENCLOSE $2.50 FOR SHIPPING AND HANDLING PER UNIT

CALL TOLL FREE
1-800-228-4097
for Quality Ham Radio Products at Discount Prices

Communications Center
443 N. 48th, Lincoln, Nebraska 68504

In Nebraska Call (402) 466-8402

June 1979

More Details? CHECK—OFF Page 110
Introducing Kantronics' Field Day
Morse Code/teletype reader and code speed display:

Kantronics' Field Day Morse Code/teletype reader and code-speed display reads code signals right off the air. Its powerful microcomputer system picks out signals, computes their speed, and reads even sloppy copy up to 80 words per minute!

1. Flies through the air with the greatest of ease.

Field Day is simple to use. You plug it into your station receiver just as you would a set of headphones.

Code and teletype conversations are converted from dots and dashes to standard alphanumeric text. The text advances across 10 big half-inch displays, and lab tests show that even the fastest CW is easily readable.

Field Day displays incoming or outgoing code speeds for you at the touch of a button. An accurate code speed-sampling program shows the speed right on the front panel. Everything is enclosed in a single, lightweight package that's small enough to fit in with the rest of your station.

2. Pay a little, get a lot.

In addition to a highly superior code-reading program and unique "on-board" speed display, Field Day has the specifications that make it a truly great code reader:

- **Modes**: CW, RTTY and speed display. **Speed Range**: 3-80 WPM. **RTTY Speeds**: 60, 67, 75 and 100 baud.
- **Display**: 10 alphanumeric displays. Special Characters: AS, AR, SK, BT, . , () , comma, period, colon, semicolon, "understood", "attention", and "error".
- **Filtering**: Active, 750 Hz center, 200 Hz bandwidth. **Input Impedance**: 1,000 ohms. **Power Requirements**: 117 Vac, 20 watts.
- **Dimensions**: HWD 3.64" by 8.50" by 9.25". **Warranty**: Limited, one year parts and labor. **Price**: $449.95 shipments after 3/1/79.

3. C'mon, take a test drive.

Check with these Authorized Kantronics dealers for more information on the Field Day Morse Code/teletype reader and code-speed display:

- Associated Radio/Kansas City
- Barry/New York
- Bill's/Carbondale, IL
- Brodie/Moore, OK
- Burghardt/Watertown, SD
- Burstein-Applebee/Kansas City
- Cohoon/Trenton, KY and Austintown, OH
- Fontana Electronics/Fontana, CA
- H-E-P/Aurora, CO
- Hinch/Williams & Hinch, NY Long's Birmingham
- Madison/Houston/Midcom/St. Louis, Omar/Durand, MI
- Omaha Radio Center/Omaha, Queen City/Cincinnati
- Radio World/Otskany, NY, Spectronics/Oak Park, IL
- Tracy/Fort Worth

KANTRONICS
The Lightweight Champs.

(913) 842-7745
1202 East 23rd Street
Lawrence, Kansas 66044

Our Smart Machine reads sloppy copy.

COMPACT ENCLOSURE.
In inches, FIELD DAY is only
3.44 high by 8.50 wide by 9.25 deep

SPEED DISPLAY.
Special program computes received and transmitted code speeds.

RTTY COPY
Control functions in back for copying all the standard baudot speeds.

ON-BOARD CODE DISPLAY
No need to tote around a TV set to copy code.

MOVABLE SUPPORT ARM.
Tilts to different viewing angles.

SMART CODE-EDITOR.
Copy sent by sloppy lists is edited before display.
Reads good code too.
TUNE in with DAVIS

FREQUENCY COUNTERS

NOW . . . for the FIRST TIME RECEIVED FREQUENCY ADAPTER

ONLY 49$5

7208 10 Hz to 600 MHz MINI COUNTER
- All New Circuitry
- 3 Digit 4 LED Readout
- 115v or 12v Operation
- 1 & 1 Sec Gate Times
- Automatic Off
- Stable Crystal Timebase ± 1 ppm ± C

7208 Kit

149$5

7208A Assembled

299$5

Options:
- Prop Crystals Oven (OKCO') ± 1 ppm 10° to 50°C $39.95
- N.C. Battery Built-in with charger $39.95
- Handle $5.00
- VHF-UHF Preamp $10.50
- 740V Receiver Frequency Adapter $49.95

*OKCO achieve superior frequency stability through the use of proportional control oven which maintains the crystal at a stable temperature.

CALL FACTORY DIRECT

1-716-874-5848

TERMS: Add $3.00 shipping to U.S. & Canada. Other countries add 10% to total price. NY State residents add 7% sales tax. C.O.D. Fee $1.00. P.O. accepted from rated companies.

DAVIS ELECTRONICS
636 Sheridan Drive
Tonawanda, New York 14150

WANTED FOR CASH

496-T Ant. Tuning Unit
(Also known as CU1658 and CU1669)

618-T Transceiver
(Also known as MRC95, ARC94, ARC102, or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112 and some aircraft units also required.

We stand on our long term offer to pay more than any other bonafide offer.

DCO, INC.

10 Schuyler Avenue
Concord, Mass. 01742, USA

(201) 998-4246

(201) 998-6475

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112 and some aircraft units also required.

We stand on our long term offer to pay more than any other bonafide offer.

DCO, INC.

10 Schuyler Avenue
No. Arlington, N.J. 07032

Earnings (201) 998-6475

More Details? CHECK — OFF Page 110
OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100.
20 to 60 MHz, OX-Hi, Cat. No. 035101.
Specify when ordering.
$5.22 ea.

POLY-1 OSCILLATOR
Resistor/capacitor circuit provides an oscillator over a range of frequencies with the desired crystal. 2 to 22 MHz, OF-1 LO, Cat. No. 035108.
18 to 60 MHz, OF-1 Hi, Cat. No. 035109.
Specify when ordering.
$4.48 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 170 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106.
Specify when ordering.
$5.80 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mw, depending on frequency and voltage. Amplifier can be amplitude modulated 3 to 30 MHz, Cat. No. 035104.
Specify when ordering.
$6.06 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 03512.
20 to 170 MHz, Hi Kit, Cat. No. 035103.
Specify when ordering.
$5.80 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107.
Specify when ordering.
$6.06 ea.

EXPERIMENTER CRYSTALS
(HC 6/U Holder)
Cat. No. Specifications
031080 3 to 20 MHz — for use in OX OSC Lo
Specify when ordering.
$6.25 ea.
031081 20 to 60 MHz — for use in OX OSC Hi
Specify when ordering.
$6.25 ea.
031300 3 to 20 MHz — for use in OF-1L OSC
Specify when ordering.
$5.22 ea.
031310 20 to 60 MHz — for use in OF-1H OSC
Specify when ordering.
$5.22 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to:
M/S Dept., P.O. Box 32497,
Oklahoma City, Oklahoma 73132
Ham Radio's guide to help you find your local

Arizona

HAM SHACK
4506-A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert. Classes, sales & service.

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR.
PHOENIX, AZ 85013
602-249-3739
Your Complete Amateur Radio Store.

POWER COMMUNICATIONS
6012 N. 27 AVE.
PHOENIX, ARIZONA 85017
602-242-6030
Arizona's #1 "Ham" Store. Kenwood, Yaeus, Drake, Icom and more.

HAM SHACK
4506-A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert. Classes, sales & service.

California

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232
CARSON, CA 90745
800-421-2258
213-834-3739
Your Complete Amateur Radio Store.

QUEM ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1953.

SHAPER RADlO
3550 LOCHINVAR AVE.
SANTA CLARA, CA 95051
408-247-4220
Atlas, Kenwood, Yaeus, KDK, Icom, Tempo, Wilson, Ten-Tec.

Connecticut

THOMAS COMMUNICATIONS
95 FITTS LANE
NEWINGTON, CT 06111
800-243-7765
203-667-0811
Call us toll free - See our full page ad in this issue.

Delaware

DELWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Delaware's largest stock of amateur radio equipment & accessories.

Florida

AGL ELECTRONICS, INC.
1800-B DREW ST.
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAYS AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-531-1916

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Illinois - 800-972-5841
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed & Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312-848-6777
One of America's Largest Amateur & SWL Stores.

Indiana

KRYDER ELECTRONICS
GEORGETOWN NORTH SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
Your Complete Amateur Radio Store.
10-9 T, TH, F; 10-5 W, SAT.

Iowa

BOB SMITH ELECTRONICS
RFD #3, HIGHWAY 169 & 7
FORT DODGE, IA 50501
515-576-3886
800-247-2476, 1793
Iowa: 800-362-2371
For an EZ deal.

Kansas

ASSOCIATED RADlO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5901
America's No. 1 Real Amateur Radio Store. Trade - Sell - Buy.

REVCOW ELECTRONICS
6247 N. HYDRAULIC
WICHITA, KS 67219
316-744-1083
New - Used HF, VHF, & Microwave Gear. Manufacturing & Sales.

Maryland

THE COMM CENTER, INC.
9524 FT. MEADE ROAD
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486

Massachusetts

TEL-COM, INC.
675 GREAT RD. RT. 119
LITTLETON, MA 01440
617-486-3040
The Ham Store of New England you can rely on.

TUFTS RADIO ELECTRONICS
209 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

AMATEUR RADlO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADlO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416

Oklahoma

KRYDER ELECTRONICS
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Delaware's largest stock of amateur radio equipment & accessories.

POWER COMMUNICATIONS
6012 N. 27 AVE.
PHOENIX, ARIZONA 85017
602-242-6030
Arizona's #1 "Ham" Store. Kenwood, Yaeus, Drake, Icom and more.

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232
CARSON, CA 90745
800-421-2258
213-834-3739
Your Complete Amateur Radio Store.

QUEM ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1953.

SHAPER RADlO
3550 LOCHINVAR AVE.
SANTA CLARA, CA 95051
408-247-4220
Atlas, Kenwood, Yaeus, KDK, Icom, Tempo, Wilson, Ten-Tec.

Connecticut

THOMAS COMMUNICATIONS
95 FITTS LANE
NEWINGTON, CT 06111
800-243-7765
203-667-0811
Call us toll free - See our full page ad in this issue.

Ham Radio
YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
<table>
<thead>
<tr>
<th>State</th>
<th>Amateur Radio Dealer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>RSE HAM SHACK</td>
</tr>
<tr>
<td></td>
<td>1207 W. 14 MILE. CLAWSON, MI 48017</td>
</tr>
<tr>
<td></td>
<td>313-435-5660</td>
</tr>
<tr>
<td></td>
<td>Complete Amateur Supplies.</td>
</tr>
<tr>
<td></td>
<td>Michigan</td>
</tr>
<tr>
<td></td>
<td>BARGAIN BROTHERS ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td>216 SCOTCH ROAD. WEST TRENTON, NJ 08828</td>
</tr>
<tr>
<td></td>
<td>609-883-2050</td>
</tr>
<tr>
<td></td>
<td>A million parts - lowest prices anywhere. Call us!</td>
</tr>
<tr>
<td></td>
<td>METUCHEN RADIO</td>
</tr>
<tr>
<td></td>
<td>216 MAIN STREET. METUCHEN, NJ 08840</td>
</tr>
<tr>
<td></td>
<td>201-494-8350</td>
</tr>
<tr>
<td></td>
<td>New and Used Ham Equipment WA2AET ‘T’ Bruno</td>
</tr>
<tr>
<td></td>
<td>RADIOS UNLIMITED</td>
</tr>
<tr>
<td></td>
<td>P. O. BOX 347. 1760 EASTON AVENUE. SOMERSET, NJ 08873</td>
</tr>
<tr>
<td></td>
<td>201-469-4599</td>
</tr>
<tr>
<td></td>
<td>New Jersey's Fastest Growing Ham Radio store.</td>
</tr>
<tr>
<td></td>
<td>AMATEUR RADIO SALES & SERVICE INC.</td>
</tr>
<tr>
<td></td>
<td>2187 E. LIVINGSTON AVE. COLUMBUS, OH 43209</td>
</tr>
<tr>
<td></td>
<td>614-236-1625</td>
</tr>
<tr>
<td></td>
<td>Antennas and Towers for All Services.</td>
</tr>
<tr>
<td></td>
<td>OHIO</td>
</tr>
<tr>
<td></td>
<td>KRYDER ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td>5826 N.W. 50TH MACARTHUR SQ. SHOPPING CTR. OKLAHOMA CITY, OK 73122</td>
</tr>
<tr>
<td></td>
<td>405-789-1951</td>
</tr>
<tr>
<td></td>
<td>Your Complete Amateur Radio Store</td>
</tr>
<tr>
<td></td>
<td>Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC EXCHANGE</td>
</tr>
<tr>
<td></td>
<td>136 N. MAIN STREET. SOUDERTON, PA 18964</td>
</tr>
<tr>
<td></td>
<td>215-723-1200</td>
</tr>
<tr>
<td></td>
<td>Demonstrations, Sales, Service New/Used Amateur Radio Equip.</td>
</tr>
<tr>
<td></td>
<td>HAMTRONICS, DIV. OF TREVOSE ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td>4033 BROWNSVILLE ROAD. TREVOSE, PA 19047</td>
</tr>
<tr>
<td></td>
<td>215-357-1400</td>
</tr>
<tr>
<td></td>
<td>Same Location for 30 Years.</td>
</tr>
<tr>
<td></td>
<td>LaRUE ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td>405-789-1951</td>
</tr>
<tr>
<td></td>
<td>Your Complete Amateur Radio Store</td>
</tr>
<tr>
<td></td>
<td>South Dakota</td>
</tr>
<tr>
<td></td>
<td>BURGHAARDT AMATEUR RADIO CENTER, INC.</td>
</tr>
<tr>
<td></td>
<td>P. O. BOX 73. WATERTOWN, SD 57201</td>
</tr>
<tr>
<td></td>
<td>605-886-7314</td>
</tr>
<tr>
<td></td>
<td>“America’s Most Reliable Amateur Radio Dealer”.</td>
</tr>
<tr>
<td></td>
<td>Texas</td>
</tr>
<tr>
<td></td>
<td>HARDIN ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td>5635 E. ROSEDALE. FT. WORTH, TX 76112</td>
</tr>
<tr>
<td></td>
<td>817-461-9761</td>
</tr>
<tr>
<td></td>
<td>Your Full Line Authorized Yaesu Dealer.</td>
</tr>
<tr>
<td></td>
<td>New Jersey</td>
</tr>
<tr>
<td></td>
<td>ATKINSON & SMITH, INC.</td>
</tr>
<tr>
<td></td>
<td>17 LEWIS ST. EATONTOWN, NJ 07724</td>
</tr>
<tr>
<td></td>
<td>201-542-2447</td>
</tr>
<tr>
<td></td>
<td>Ham supplies since “55”.</td>
</tr>
<tr>
<td></td>
<td>RADIOS UNLIMITED</td>
</tr>
<tr>
<td></td>
<td>P. O. BOX 347. 1760 EASTON AVENUE. SOMERSET, NJ 08873</td>
</tr>
<tr>
<td></td>
<td>201-469-4599</td>
</tr>
<tr>
<td></td>
<td>New Jersey's Fastest Growing Ham Radio store.</td>
</tr>
</tbody>
</table>

July 1979
COAXPROBE®

ONLY $9.95

COAXIAL RF PROBE FOR FREQUENCY COUNTERS AND OSCILLOSCOPES

- **MONITOR YOUR SIGNAL DIRECTLY FROM THE COAX LINE**
- **5-2000 WATTS PEP**
- **OUTPUT: .31v-1.8v RMS 8-600 WATTS**
- **INSERTION LOSS LESS THAN .2db (3-30 Mhz.)**
- **USEFUL RANGE: .5 to 150 Mhz.**

Eliminate jerry-rigging when you need to monitor your signal. The CoaxProbe® will work on both frequency counters and oscilloscopes (of proper bandwidth). Just connect the probe into your coax line and hook up your test equipment. Because of its low loss, you can leave it in while you operate!

LYTL-LOAD®

ONLY $8.95

30 WATT DUMMY LOAD FOR QRP AND 2-METERS

Now! A dummy load that's just the right size for low power work. Rated at 30 watts for 30 seconds, the Lytl-Load® is perfect for Qrp work, 2-meters or any application where low power and small size are required. The Lytl-Load® has a range to 150 Mhz with SWR of 1.4:1 at 150 Mhz and 1.1:1 at 30 Mhz.

ORDER TODAY FROM:

EAGLE ELECTRONICS
Box 426 B
Portage, MI 49081

Located at 4475 W. Milham Road
New Equipment — All new equipment on display is operating for actual "on the air" QSO's. We really know our gear!

Used Equipment — We recondition and guarantee all our used equipment. We make sure it satisfies you!

Service Shop — You've probably heard of our fine service reputation — using Cushman CE4B signal generators, Hewlett Packard oscilloscopes, Bird wattmeters — we fix it right!

Inventory Warehouse — Our large volume assures you the best prices!

Call Toll Free 1-800-243-7765
FREE: Monthly Computerized Used Equipment List
FREE: Courteous, Personalized Service

AUTHORIZED DEALER . . .
FOR OVER 50 MAJOR LINES.

NEW AND USED EQUIPMENT "Get on our used equipment mailing list."
TRADES WELCOME "The best allowances anywhere"
"We buy good used SSB gear"
OUR EVERYDAY LOW PRICES "remain the same for cash or trade-ins!"
SAME DAY U.P.S. SHIPPING "Just a phone call away"
COMPLETE RADIO SERVICE SHOP "Mail Order Repair Service"
• Fast Efficient Service • Most Repairs Done and Shipped Within 7 Days
• We Repair All Brands • Amateur Extra/First Class Licenses
• All Work Guaranteed • Free Shipping Both Ways If Work Is Done
• Send Us Your Defective Equipment U.P.S. Collect

OUR FINE REPUTATION SPEAKS FOR ITSELF . . .
"YOU SHIP IT — WE FIX IT"

OPEN MON.-FRI. 10-6 • THURS. 10-8 P.M. • SAT. 10-4
EASY DIRECTIONS: Rt. 15 South — 2 blocks past McDonald's (Berlin Turnpike)

"We can match most any other quote!"

Call or Write for your super quote today!

95 Kitts Lane, Newington, Conn. 06111
"Near ARRL Headquarters"

Connecticut Residents Call: 203-667-0811

More Details? CHECK-OFF Page 110
The U. S. Callbook has nearly 350,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 285,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook $15.95
Foreign Callbook $14.95
(Plus Shipping)

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.75 for shipping. Illinois residents add 5% Sales Tax.

RADIO AMATEUR CALLBOOKS FOR 1979

RADIO AMATEUR CALLBOOK INC
Dept E 925 Sherwood Drive
Lake Bluff, Ill. 60044
YOU ASKED FOR IT
YOU GOT IT
DSI QUIK-KIT®

50 HZ – 550 MHZ COUNTER KIT

95% ASSEMBLED 100% TESTED

Performance You Can Count On

FREQUENCY COUNTER APPLICATION:
- Ham Radio — Two Way Radio — CB
- Audio Amplifier & Receiver Repair
- Computer Maintenance & Construction
- A Must for TV — PLL & VTR Repair

$99.95

includes built-in
Pre-Amp & Prescaler

DSI OFFERS THE BEST OF TWO WORLDS . . .

An unprecedented DSI VALUE… in a high quality, LSI Design, 50 HZ to 550 MHZ frequency counter kit. And, because it’s a DSI innovation, you know it obsoletes all competitive makes, both in price & performance. With 95% of the assembly completed by DSI, you are only one hour away from solving all of those difficult bench problems, from adjusting 60 HZ clock-time bases to setting the frequency of a 468 MHZ Mobile Radio. CALL TODAY TOLL FREE: (800—854-2049) Cal. Res. CALL (800—542-6253) TO ORDER OR RECEIVE MORE INFORMATION ON DSI’S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10HZ TO 1.3GHZ.

DSI — GUARANTEED SPECIFICATIONS — MADE IN USA

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Frequency Range</th>
<th>Accuracy – Over Temperature</th>
<th>Number of Readouts</th>
<th>Size of Readouts</th>
<th>Power Requirements</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700</td>
<td>$269.95</td>
<td>50Hz – 700MHz</td>
<td>Proportional Oven 2 PPM 0° – 40°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
</tr>
<tr>
<td>3600A</td>
<td>$199.95</td>
<td>50Hz – 600MHz</td>
<td>Oven .5 PPM 17° – 37°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
</tr>
<tr>
<td>3550W</td>
<td>$149.95</td>
<td>50Hz – 550MHz</td>
<td>TCXO 1 PPM 65° – 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
</tr>
<tr>
<td>3550K</td>
<td>$99.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FACT: Every 3550 QUIK-KIT® PC board is factory assembled and tested before shipment. FACT: The problems of bad LED’s, IC’s, and Capacitors are thing of the past. FACT: No manufacturer except DSI offers a 550 MHZ frequency counter with . . . 8 digits, 5 in. LED’s, TCXO, 1 HZ resolution and a one year warranty on parts for under $100.00. FACT: We do not know how long we can hold this low, low price. GO WITH THE LEADER . . . BUY A DSI FREQUENCY COUNTER KIT TODAY. SAVE TIME & MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

1 HZ Resolution to 55 MHZ • 10 HZ Resolution to 550 MHZ • .1 and 1 Sec. Gate Time • Auto Zero Blanking

550K Kit .. $99.95
-101 Ant. ... 3.95
AC-9 AC Adp. ... 7.95
Shipping, Handling, Ins. .. 10.00

DSI INSTRUMENTS, INC.
3550W Wired ... $149.95
T-101 (incl.) ... NC
3700.. NC
7924 Ronson Road, Dept. G
San Diego, California 92111

TERMS: MC — VISA — AE — Check — M.O. — CCD in U.S. Funds. Orders outside of USA and Canada, please add $20.00 additional to cover air shipment. California residents add 8% Sales Tax.
INDEX

AED — 710
Abletronics — 770
Altronics — 589
Atlantic — 734
Avanti — 775
BBK — 779
Barry — 017
Baum — 233
Cal Crystal — 709
Communications Center — 534
Comm. Spec. — 330
Creative Elec. — 751
Crystal Banking — 573
Curtis Electro — 034
Cuthroat — 002
DCO — 666
DSSI — 566
DX Eng. — 222
Daines Comm. — 561
Data Signal — 270
Davis Elec. — 332
Dynamic Elec. — 041
Eagle — 017
E.T.O. — 017
Electromotive — 663
Electronic Farm — 010
Elec. Research Virginia — 010
F & G Comm. — 754
GL Enterprises — 825
Gray — 066
Gregory — 017
Group — 701
Guil — 635
Hall-Tronics — 264
H. R. Magazine — 150
H. E. — 060
Harry — 062
Hermes — 772
Hy-Gain — 064
Int. Crystal — 066
Jameco — 333
Jan — 067

*Please contact this advertiser directly.

Limit 15 inquiries per request.

June, 1979

Please use before July 31, 1979

Teear of postmark to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME

CALL

STREET

CITY

STATE ZIP

SUMMER SPECIALS

Cush Craft "boomer" $ 79.95
KLM 144-148 - $ 95.00
OMNI-5 heavy duty magnet mount complete $ 49.95
TRIEX W-51 FT self-support tower (Reg. #911) Your cost (FOB California) 791.00
Torres F9T Antennas 144/166 el. 79.95
TR-44 100 el. 59.95
Kaitzing VHF-UHF Amplifiers 20 MW in - 100W Out 179.00
432 MW in - 50W Out 189.00
Bird 43 and Sing. UPS paid in USA ... stock Microwave Modules 432.28S 295.95
Deluxe Amp. 432.10W output 398.00
Telex TS5 5EM, in stock 415.00
New Palomar Eng. Trans. Preamp. 89.50
Bencher Paddles 39.95 Chrome 49.95
ETO 76 Amplifiers 49.95
Lunar 6M-220 In Line Preamps 49.95
Lunar 2M Amp 100w Preamp. 198.00
UPS paid USA 198.00
Janel QSA-5 41.95
CDE Ham-3 — $129.95, Ham X — $299.95
Pesc. Ham-4 157.50
VHF Engs. blue line amps stock
VHF Kirs stock
Ceton 5728 29.50
Midland 13-209 220 MHZ - 12 10W 169.00
13-513 220 MHZ synthesized 389.00
Motorola HEP 170 0.29
Malloy 2.5A 220VP Epoxy Diode 90.00
Non Linear Systems Miniscope - 35 318.00
Miniscope - 251 435.00
— 10%, accessories available
AeroVox 1000-500V Feed thru 1.95
GE51648 or 9950 7.95
Technical Books: Ameco, ARRL, Sams, Tab. Rider Radio Pub., Callbook, Cowan, etc
NEW Beetn 9405 (216*16#18) & wire rotor cable, heavy duty for long runs 8448 std & wire rotor per ft 988B double sided RG6 Foam, per f1 8214 RFG Foam 8237 RG8 8267 RG213
Amphenol Silver Plate PL259 0.59
Times 1/2 Fasc Plate Hardline $0.65/ft. — Connectors, ea 15.00
7/8” Hardline $1.50/ft. — Connectors 25.00
Berkeley RGB, 52 ohm, KW, per ft 0.16
Consolidated HD-18 GA. Galv. Tower 10 section 29.95
Robot Slow Scan Can’t in Stock 109.95
Teletowr self-sustain 55 ftw breakover 349.00
40 ftw breakover 349.00
Swan TB48a, TB38a, TB2 — 20% off list 95.00
Collins replacement parts available

Looking for antique parts?
Write specific need to WSGJ.

THIS MONTH’S SPECIALS:

Icom IC280 — $359.00
Dentron GLA 1000 Amp $319.00
Bearcat 250 — $299.00
Dentron Clipperton L — $499.00

MASTERCHARGE + VISA

All prices fob Houston except where indicated Prices subject to change without notice, all items guaranteed. Some items subject prior sale Send pre-paid check for deposit on price list Texas residents and 51/2 tax Please add postage estimate $1.00 minimum.

MADISON ELECTRONICS SUPPLY, INC.
1508 McKinney
HOUSTON, TEXAS 77002
713/658-0268

Advertise for check-off
...for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 334

Advertisers Index

AED Electronics 68
Abletronics 108
Aluma Tower Co. 96
Astron Corporation 90
Avanti Radio & DeVern Co. 48
Barry Electronics 82
R. H. Bauman Sales Co. 98
Budweiser Microwave 90
Cal Crystal Lab, Inc 72
Communicators 99
Communication Specialties 10, 11
Creative Electronics 63
Crystal Banking Service 94
Curtis Electronics.................................. 80
Cuthcart 69, 87
DCCI, Inc. 96, 102
DSI Instruments 145, 109
DX Engineering 76
Dames Communications Systems 94
Dataman, Inc. 76
Davis Electronics 102
Eagle Electronics 106
Entercom Industries 72
The Electronic Farm 106
Electronic Research Corp. of Virginia 98
Fox Tango Corp. 82
GB Communications 89, 100
GL Enterprises 70
GLB .. 90
Gray Electronics 99
Gregory Electronics 70
Group III Sales Company 90
Gulf Electronics 93
Hall Communications Corp. 49
Haifnix 43
Ham Radio Magazine 106
Hancock Associates 83
Henry Radio Stores Cover II
Hermes Research & Development Co. 40
Hy-Gain Electronics 77
Icom .. 9
International Crystal 103
Jameco 92
Jan Crystals 68
Jones, Martin & F. Assoc. 100
Kantronics 101
Trio-Kenwood Communications, Inc. 7, 56, 57
Larsen Antennas 23
Long’s Electronics 112
M & L Enterprises 2
M&BM RF Distributors 72
Medison Electronics Supply 48, 67, 68, 110
Microwave Filter, Inc. 76
J.W. Miller Division, Bell Industries 95
Oak Hill Academy Amateur Radio Session . 63
PC. E. C. 98
Palomar Engineers 96, 98
Pipo Communications 90
Radio Amateur Callbook 106
Radio Systems Technology, Inc. 106
Radio World 76
Ramsey Electronics 97
SST Electronics 107
Sams 106
Schrober Organ 81
Schober Organ 89
Sherwood Engineering 108
Space Electrics 90
Spectronics 73
Spectrum International 102
Swan Electronics 30, 31
TLP Communications 67
Telesenson, Systems, Inc. 63
Tel Laboratories 80
Ten-Tec 9
Texas RF Distributors 44, 45
The Communication Center 108
Thomas Communications 107
Tower Master 89
Tri-Ex Tower Corporation 91
Van Gordon Engineering 100
Vanguard Labs 106
Varian, Elmac Division Cover IV
Webster Associates 96
Western Electronics 108
White House, G. R. & Co. 34
Willcomp, Inc. 106
Wilson Electronics 95
Xite Corporation 80
Yaesu Electronics Corp. Cover III

110 Jun 1979
When you buy an ALPHA linear amplifier you make a long term investment in dependable power and operating pleasure.

You can take your ALPHA for granted — it will go on delivering that big, clean, maximum-legal-power signal no matter how tough the contest or how long the SSTV or RTTY QSO's.

We strive constantly to make every ALPHA even better. If we can't improve it, we don't change it.

DURABILITY? You get TWO YEARS of factory warranty protection with your new ALPHA... other manufacturers give you 90 days.

CONVENIENCE? Every ALPHA is self-contained, compact, and smooth-tuning. All 76A - 374A - 78 models can be shipped via economical, door-to-door UPS.

VERSATILITY? The new ALPHA 374A delivers full legal power (in any mode) on all amateur HF bands WITHOUT TUNE-UP and with excellent efficiency. (On 160M you peak the output manually; new FCC rules permit easy owner modification to restore full 10M capability, too.)

The ALPHA 78 combines the best of everything: full instant CW break-in (QSK) and NO-TUNE-UP bandchange! And of course all ALPHAs substantially exceed every applicable FCC requirement.

For detailed literature and fast delivery of your new ALPHA, contact your dealer or ETO direct. While you're at it, ask for a free copy of our brief guide, “Everything You Always Wanted to Know About (Comparing) Linears... But Didn't Know Whom to Ask.”

ALPHA — Sure you can buy a cheaper linear... But is that really what you want?
KENWOOD TS-180S HF Transceiver
With Digital Frequency Control with 4 memories & manual
scanning, all solid state, 200W PEP SSB/160W DC. 160-10 meters,
WWV, adaptable to 3 proposed bands, microprocessor, IF shift,
note blanker, RF AGC, Dual RIT (VFO & memory/fax), SSB, CW &
FSK. 13.8 VDC operation.
To Be Announced

KENWOOD TS-120S HF Transceiver
No tune up! With digital display, cooling fan, IF shift, protection for
the final transistor. VOX, noise blanker, 25 KHz marker, 80-10
meters, WWV, modes SSB and CW, 200W PEP SSB, power re-
quirements: R.O. 7A 13.8 VDC, T. 18A 13.8 VDC. Size: 3½"H x 9¼"W
x 13¾"L.
699.95 Call for quote.

KENWOOD AT-120 Antenna Tuner
3.5 thru 29.7 MHz, input impedance: 50
ohms, output impedance: 20-300 ohms
unbalanced (coax fed), max power: 150W, tuning range: 1.0-1.10.1, 50-239
connectors, SWR meter, insertion loss:
less than 0.5 dB at optimum match.
99.95 Call today.

KENWOOD PS-30 Power Supply
Designed to match the TS-120S, supplies regulated 13.8 VDC at 15A
continuous. 20A intermittent load with
complete ease and safety due to
generous heat sinks and auto. reset
electronic overload trip.
139.00 Call for quote.

KENWOOD MC-45 Touch Tone Mic
Dynamic mic with very good frequency
response, omnidirectional, 500 ohm
impedance, adjustable tone output
level, power requirement: 8 VDC, 20
mA. Complete with coiled cord and 5
pin mic connector.
49.00 Call today.

KENWOOD YK-88C CW Crystal Filter
This is a 500 cycle filter for use with the
TS-120S transceiver.
59.95 Call today.

Long's Electronics
MAIL ORDERS: P.O. BOX 11347 BIRMINGHAM, AL 35202 • STREET ADDRESS: 2808 7TH AVENUE SOUTH BIRMINGHAM, ALABAMA 35233

Remember, you can call TOLL FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

June 1979
ALL NEW
FT-101ZD
HIGH-PERFORMANCE HF TRANSCEIVER

Today's technology, backed by a proud tradition, is yours to enjoy in the all-new FT-101ZD transceiver from YAESU. A host of new features are teamed with the FT-101 heritage to bring you a top-dollar value. See your dealer today for a "hands on" demonstration of the performance-packed FT-101ZD.

TRANSMITTER
- PA Input Power: 180 watts DC
- Carrier Suppression: Better than 40 dB
- Unwanted Sideband Suppression: Better than 40 dB @ 1000 Hz, 14 MHz
- Spurious Radiation: Better than 40 dB below rated output
- Third Order Distortion Products: Better than -31 dB
- Transmitter Frequency Response: 300-2700 Hz (-6 dB)
- Stability: Less than 300 Hz in first 30 minutes after 10 min. warmup; less than 100 Hz after 30 minutes over any 30 min. period
- Negative Feedback: 6 dB @ 14 MHz
- Antenna Output Impedance: 50-75 ohms, unbalanced

SPECIFICATIONS

RECEIVER
- Sensitivity: 0.25 uV for S/N 10 dB
- Selectivity: 2.4 KHz at 6 dB down, 4.0 KHz at 60 dB down (1.66 shape factor); Continuously variable between 300 and 2400 Hz (-6 dB); CW (with optional CW filter installed): 600 Hz at 6 dB, 1.2 KHz at 60 dB down (2:1 shape factor)
- Image Rejection: Better than 60 dB (160-15 meters); Better than 50 dB (10 meters)
- IF Rejection: Better than 70 dB (160, 80, 20-10 m); Better than 60 dB (40 m)
- Audio Output Impedance: 4-16 ohms
- Audio Output Power: 3 watts @10% THD (into 4 ohms)
From transistor to 25kW is one easy step with EIMAC.

EIMAC high-gain tetrode and cavity combination for FM and TV.

The new EIMAC 8990 and companion CV-2200 cavity amplifier are expressly intended for single-tube 25 kW FM and TV service. This tough tetrode exhibits a power gain over 20 dB and has a rated anode dissipation of 20 kW. It's also ideally suited to VHF-TV linear service, thanks to the new low-loss internal structure.

EIMAC's 8989 is a similar tetrode, rated for 10 or 15 kW FM service in the CV 2210 cavity. The 8989 is suitable for VHF-TV service as well.

For complete information:
Get a copy of EIMAC's Quick Reference Catalog and Data Sheets on the 8989 and 8990 from Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

For more information on Varian's CTC Transistors operating in the 88 to 108 MHz range, contact Varian, CTC Division, Telephone (415) 592-9390.

Tomorrow's new generation today.
EIMAC's 8989 and 8990 new-generation tubes augment the 4CX5000A, 4CX10000A, and 4CX15000A in today's new equipments. High power gain, improved electrical stability and low internal inductance combine to provide tomorrow's power tube today.