DECEMBER 1978

- high-frequency transverter 12
- lightning protection 18
- solar-powered repeater 28
- top-loaded delta loop 57
- 1296-MHz stub tuner 72
- 1.5-GHz prescaler 84
- cumulative index 130
ICOM's superior LSI technology takes the lead in Amateur HF. The extremely compact IC-701 delivers 100 watts output from a completely solid state, no tune (broad band design) final, on all modes and all bands, from 160–10 M. With single knob frequency selection and built-in dual VFO's, the LSI controlled IC-701 is the choice in computer compatible, multi-mode Amateur HF transceivers.

The IC-701's single frequency control knob puts fully synthesized instantaneous tuning at a single finger tip. Wide bands, with 100 Hz per division and 5 KHz per turn, is instantly co-ordinated between the smooth turning knob and the synthesizer's digital read-out with positively no time lag or backlash (no waiting for counter to update: less operator fatigue). And at the push of the electronic high speed tuning button, the synthesizer flies through megacycles at 10 KHz per step (500 KHz per turn).

The computer compatible IC-701 LSI chip provides input of incremental step or digit-by-digit programming data from an external source, such as the microprocessor controlled accessory which will also provide remote band selection and other functions.

Full band coverage of all six HF bands, and continuously variable bandwidth on filter widths for SSB, RTTY, and even SSTV, help to make the IC-701 the very best HF transceiver ever made. IC-701 includes two CW widths, all of this standard at no extra cost.

Sold complete with the high quality electret condenser base mic (SM-2) and AC power supply/speaker as shown, the IC-701 is loaded with many ICOM quality standard features. Standard in every IC-701 are two independently selectable, digitally synthesized VFO's at no extra cost. Also standard are a double-balanced schottky diode 1st mixer for excellent receiver IMD, and RF speech processor, separate drop times for voice and CW VOX, optionally continuous RIT, fast/slow AGC, efficient IF noise blanker, fast break-in CW, and full metering capability.

THE BEST PLACE TO BUY THE BEST EQUIPMENT...HENRY RADIO

And if you can't come into one of Henry Radio's stores, please call or write. Let us answer your questions and then ship one of these exciting new rigs to you. Henry Radio offers the most complete selection of famous name amateur radio equipment plus easy financing. 10% down or trade-in down; no finance charge if paid in 90 days. Good reconditioned equipment, nearly all makes & models. Our reconditioned equipment carries a 15 day trial, 90 day warranty and may be traded back within 9 days for full credit toward the purchase of a new equipment. Write for bulletin. Export inquiries invited.
New HF 1030 VLF-HF Communication Receiver

- Higher Dynamic Range
 IP (3) ≥ 20dBm
- 40.455 MHz 8 pole VHF Cross Mod. Filter
- New Synthesizer Technique
 120 dB/Hz noise close to carrier
- CMOS Reliability/Low Power Consumption
- 10 kHz to 30 MHz in 10 Hz steps
- Improved selectivity thru Electronic Band Pass Tuning
- Built-in Remote Control and Programming Capabilities
- Internal spurious < 0.5 μV
- On GSA Schedule

YOU GET MORE... BUT YOU PAY LESS!

$4500

ROHDE & SCHWARZ SALES CO., (U.S.A.) INC.
14 Gloria Lane, Fairfield, N.J. 07006 • (201) 575-0750 • Telex 133310
MFJ INTRODUCES THE
GRANDMASTER
MEMORY KEYERS
At $139.95 this MFJ-484 GRANDMASTER memory keyer gives you more features per dollar than any other memory keyer available — and Here’s Why...

WEIGHT CONTROL TO PENETRATE ORM. PULL TO COMBINE MESSAGES A AND B FOR 1, 2, OR 3 FIFTY CHARACTER MESSAGES.

MESSAGE BUTTONS SELECT DESIRED 25 CHARACTER MESSAGES.

RESETS MEMORY IN USE TO BEGINNING.

MEMORY SELECT: POSITIONS 1, 2, 3 ARE EACH SPLIT INTO MEMORY SECTIONS A, B, C, D (UP TO TWELVE 25 CHARACTER MESSAGES). SWITCH COMBINES A AND B. POSITION K GIVES YOU 100, 75, 50, OR 25 CHARACTERS BY PRESSING BUTTONS A, B, C, OR D.

SPEED CONTROL, 8 TO 50 WPM. PULL TO RECORD.

LEDs (4) SHOW WHICH MEMORY IS IN USE AND WHEN IT ENDS.

NOW YOU CAN CALL CO, SEND YOUR QT, NAME, ETC., ALL AUTOMATICALLY.

And only MFJ offers you the MFJ-484 Grandmaster memory keyer with this much flexibility at this price.

Up to twelve 25 character messages plus a 100, 75, 50, or 25 character message (4096 bits total).

A switch combines 25 character messages for up to three 50 character messages.

To record, pull out the speed control, touch a message button and send. To playback, push in the speed control, select your message and touch the button. That’s all there is to it!

You can repeat any message continuously and even leave a pause between repeats (up to 2 minutes). Example: Call CO. Pause. Listen. If no answer, it repeats CO again. To answer simply start sending. LED indicates Delay Repeat Mode.

This MFJ-482 features four 25 or a 50 and two 25 character messages.

$99.95

Repeat function
Tone function
Built-in memory saver

Similar to MFJ-484 but with 1024 bits of memory, less delay repeat, single memory operating LED. Weight and tone controls adjustable from rear panel. 8x2x6 inches. 110 Vac or 12 to 15 VDC.

For Orders Call toll-free 800-647-1800

Order any product from MFJ and try it. If not delighted, return within 30 days for a prompt refund (less shipping).

Order today. Money back if not delighted. One year unconditional guarantee. Add $2.00 shipping/handling.

For technical information, order/repair status, in Mississippi, outside continental USA, call 601-323-5869.

Order By Mail or Call TOLL FREE 800-647-1800 and Charge It On

MFJ ENTERPRISES, INC.

P. O. BOX 494
MISSISSIPPI STATE, MISSISSIPPI 39762

2 december 1978

More Details? CHECK—OFF Page 150
DECEMBER 1978
volume 11, number 12

T. H. Tenney, Jr., W1NLB
publisher
James R. Fisk, W1HR
editor-in-chief

editorial staff
Marc Harff, W81CHQ
administrative editor
Charles J. Carroll, K1XX
Patrick A. Hawes, WA1WPM
Alfred Wilson, W1RNF
assistant editors
Thomas F. McKinnell, Jr., W1SL
Joseph J. Schroeder, W6LUV
associate editors
Wayne T. Pierce, K3SUK
cover
publishing staff
C. Edward Buffington, W8IAMU
assistant publisher
Fred D. Moller, Jr., WA1USO
advertising manager
James H. Gray, W1XU
assistant advertising manager
Susan Sharrock
circulation manager

ham radio magazine
is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048
Telephone: 603-878-1441

subscription rates
United States: one year, $12.00
two years, $22.00; three years, $33.00
Canada: one year, $14.00
two years, $26.00; three years, $38.00
Europe, Japan, Africa
(via Air Forwarding Service)
one year, $25.00
North America, South America, Australia
and Asia (except Japan):
(via Surface Mail)
one year, $18.00

foreign subscription agents
Foreign subscription agents are
listed on page 107

Microfilm copies
are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles
from ham radio are available to the
blind and physically handicapped
from Recorded Periodicals
919 Walnut Street, 8th Floor
Philadelphia, Pennsylvania 19107

Copyright 1978 by
Communications Technology, Inc.
Title registered at U.S. Patent Office
Second-class postage
paid at Greenville, N. H. 03048
and at additional mailing offices
Publication number 220340

contents

12 high-frequency transverter
Mark A. Oman, WA0RBR

18 lightning protection
John E. Becker, K9MM

28 solar-powered repeater
Theodore G. Handel, WB5REA
Paul K. Beauchamp, WB5RSN

34 universal digital readout
Gerd Schrick, WB8IFM

38 oscar calcu-puter
David Brown, W9CGI

46 simple video display
Roy Hartkopf, VK3AOH

50 Collins 32S-1 improvements
Paul K. Pagel, N1FB

57 top-loaded delta loop
Francis J. Witt, W1DTV

62 updated vacuum-tube receiver
Frederick W. Brown, W6HPH

72 1296-MHz double-stub tuner
George Hatherell, K6LK

84 1.5-GHz prescaler
Jerry T. Hinshaw, N6JH

4 a second look
118 ham mart

150 advertisers index
6 letters

110 coming events
90 new products

130 cumulative index
8 presstop

107 flea market
150 reader service
Small-scale integration, large-scale integration, counters on a chip, 64K memories — are the possibilities limited only by the designer's imagination? I can think of no other segment of the electronics industry which has come so far, so fast, as integrated circuits. When vacuum tubes were 20 years old they were mired down by bitter patent litigation which had slowed development work to a standstill. Marconi, the Fleming patent holder, even placed a full-page advertisement in QST warning that amateurs who even used other than Marconi-licensed tubes for radio purposes were "liable to a suit for injunction . . . and they will be prosecuted." A scare tactic, perhaps, but it was effective and held back the progress of the entire radio industry.

No such patent litigation ever developed in the transistor industry because the inventors placed the basic idea in the public domain, so the by time transistors reached their 20th birthday there were more than 2000 registered types, and the industry was thriving. Circuit development, however, was stymied by engineers schooled in vacuum-tube techniques who struggled to make solid-state devices work as well as tubes. If you used any of the early solid-state ham gear you know that they were not always successful. In fact, there are some amateurs who still believe that, in a communications receiver, a solid-state front end is inherently inferior to a vacuum tube. In truth, solid-state front ends are actually several hundred times better than their vacuum-tube counterparts — both in strong-signal handling and sensitivity — but only when properly designed.

The rapid growth of integrated-circuit technology has been hampered neither by patent squabbles nor inept circuit design — to engineers who cut their teeth on transistors. ICs were the next logical step. So in this, their 20th year, ICs have already affected every industry, every level of society, and the end is nowhere in sight.

It was during the summer and fall of 1958 that Jack Kilby built the first integrated circuit at Texas Instruments. Other semiconductor manufacturers had been working on ways to miniaturize electronic circuits, but most of them relied on miniature discrete components. Kilby was the first to use semiconductor material for both the active and passive elements (resistors and capacitors) to build a complete circuit on a single piece of germanium. (Germanium was used because germanium manufacturing techniques were well established, and those for silicon were not.) Kilby's first circuits, a phase-shift oscillator and multivibrator, demonstrated the feasibility of this approach. On top of the germanium substrate were the contacts of the diffused transistors, junction capacitors, and resistors. A gold-plated metal frame protruded from the lower surface of the wafer and thermally-bonded gold wires were used for connections between those elements not linked by the substrate itself.

The first circuits were crude by today's standards — large and irregular; the photo masks and resists necessary for precision IC manufacturing were yet to be developed, so the patterns were hand painted on the semiconductor chip with black wax. About the same time Kilby was working on the first ICs in Texas, Fairchild Semiconductor developed the Planar process; this process made semiconductors more reliable and less expensive to produce, and greatly accelerated IC progress and acceptance.

In the 20 years since those early discoveries, prices have decreased and the number of circuits per unit area has increased dramatically. In 1962, for example, a typical IC flip-flop was about 2 mm square; a similar circuit in 1968 was ten times smaller, and today an entire 8-digit frequency counter with all control functions is available on a single chip. In 1962 a decade counter required several counter chips and logic gates for a total cost of twenty or more uninflated dollars; by 1968 the cost of a one-chip decade counter had dropped to about seven dollars; today you can buy a TTL decade for fifty cents! And you must remember that 1962 counter did well to count reliably at 1 MHz; the 1978 counter is guaranteed to 30 MHz.

Progress in the field of linear ICs has been just as impressive, and the many functions which are built into modern amateur transceivers are a direct result. Some of the newer transceivers have 25 or more controls on the front panel; can you imagine how many 6-foot racks of vacuum-tube circuits it would take to do the same job? And even if you had room for the racks, you wouldn't want to pay for the electric power to run them (and cool them). If progress in the next ten years is as rapid as in the past ten, the commercial equipment that will be available to amateurs in 1988 really boggles the mind.

James Fisk, W1HR
editor-in-chief
ICOM's New IC-280

ICOM introduces its new 2 meter mobile radio with the detachable microprocessor control head, the IC-280. Bright, easy to read LED's and a new style meter grace the brushed aluminum "new look" front panel of the detachable control head, which provides memory and frequency control for the remotely mountable main section.

The IC-280 comes as one radio to be mounted in the normal manner: but, as an option, the entire front one third of the radio detaches and mounts by its optional bracket and the main body tucks neatly away out of sight. Now you can mount your 2 meter mobile radio in places that seemed really tight before.

With the microprocessor head the IC-280 can store three frequencies of your choice, which are selected by a four position front panel switch. These frequencies are retained in the IC-280's memory for as long as power is applied to the radio. Even when power is turned off at the front panel switch, the IC-280 retains its programmed memories; and when power is completely removed from the radio, the +600 KHz splits are still maintained!

Frequency coverage of the IC-280 is in excess of the 2 meter band; and the new band plan (144.5-145.5 MHz repeaters) can easily be accommodated, since it was included in the IC-280's initial planning by the ICOM design team.

The main section of the IC-280 puts you up to the minute with the latest state of the art engineering. The new IC-280 includes the latest innovations in large signal handling FET front ends for excellent intermodulation character and good sensitivity at the same time. The IF filters are crystal monolithics in the first IF and ceramic in the second, providing narrow band capacity for today and tomorrow's crowded operating conditions. Modular PA construction with broad band tuning provides full rated power across the full 2 meter band (plus a little).
transient suppression

Dear HR:

I have read the article in your June 1978, issue, “Protecting Solid State Devices From Voltage Transients,” with great interest. Mr. Prudhomme has written a very informative article that apparently was well researched, but I question his statement that varistors are excellent in suppressing transients on the line side of equipment power supplies.

The surge energy capacity of the MOV is proportional to the volume of its active material, and the breakdown voltage is proportional to the thickness of its material. Page 57 of the GE transient voltage suppression manual, referenced in Mr. Prudhomme’s article, addresses itself to (1) Overstress Near Ratings, and (2) Extreme Overstress. The varistor has its place in the proper environment, but its application must be carefully chosen. As pointed out in Prudhomme’s article, transients cover a wide range of frequencies and amplitudes. How do you select the proper component to protect against an unknown?

As a manufacturer of transient voltage suppressors, we discarded the varistor a number of years ago because it will age, and aging increases the leakage current. The higher the current, the faster the aging — a runaway condition. Also the higher the ambient temperature, the sooner this can happen. We have marketed a 110-volt plug-in unit that is extremely effective, using a Tran-zorb* as the heart of a circuit; it is cost comparable to the circuits you describe. A comparison report of Tranzorbs versus various metal oxide varistors is available from General Semiconductor Industries.

Nanosecond ranges are becoming antiquated; picosecond ranges are the ones you must be concerned with.

Stephen J. Sorger,
Vice President
W. N. Phillips, Inc.
Lake City, Michigan

English, s! Metric, no!

Dear HR:

I have subscribed to ham radio almost since its inception, and have enjoyed it more than any of the other amateur magazines. When you added the metric units after the English measurements it was annoying, but I just cussed the confusion under my breath; when you made metric primary and English secondary, however, it was more than I could put up with. I refuse to have the metric system shoved down my throat.

S. D. Brokhausen, W5VMN
Georgetown, Texas

metrics made easy

Dear HR:

By choosing metrics for your primary system of measurement, you have again set the pace for the other amateur radio magazines. It’s only through everyday usage that people will become conversant in the metric system; once they can speak metric as well as they do English, opposition to metric conversions will disappear.

David L. Campbell, W1CES
Boston, Massachusetts

*Tranzorb is a registered trademark of General Semiconductor Industries, Inc., Post Office Box 3078, Tempe, Arizona 85281.
Some people have called the Atlas RX-110 a stroke of genius. But it didn't take much genius to design it, just a lot of common sense.

Newcomers to amateur radio like to begin by monitoring amateur activity so they want an inexpensive receiver. Many old-timers like to have an extra receiver for their living room or bedroom so they don't have to stay in the shack or car waiting for band openings.

But with the recent popularity of the transceiver concept, the economical receiver simply disappeared. Now Atlas reintroduces a low price receiver: The RX-110 for $229.

DON'T LET THAT LOW PRICE DECEIVE YOU! It's really a high performance amateur band receiver. It's all solid-state and provides coverage of 80, 40, 20, and 15 meters, and 28 to 29 MHz of the 10 meter band. It's fully self-contained with its own AC supply and built-in speaker, and can operate on 12 to 14 VDC. The RX-110 is really a hot performer, with exceptionally high sensitivity, selectivity, and dynamic range.

But the RX-110 story doesn't end here. There's more!

This is where our new concept makes even more sense (and saves you thousands of "cents"). Since many stages in a receiver are also required in a transmitter (VFO, IF Systems, Crystal Filter, Carrier Oscillator, Band-Pass Filters, and Diode Ring Mixer), we provided a connection on the back of the RX-110 so the TX-110 Transmitter Module can utilize these common stages, eliminating the cost and labor of duplicating these steps. But there is absolutely no compromise on performance with this new concept.

Simply connect the TX-110 Transmitter Module to the RX-110 Receiver and you have a complete 5 band CW-SSB transceiver!

Complete 5 band CW-SSB transceiver

- Provides CW and SSB communications on 10, 15, 20, 40, and 80 meters with a choice of two power levels
- The TX-110-L runs 15 watts input on 20, 40, and 80 meters; 10 watts input on 10 and 15 meters.
- The TX-110-H runs 200 watts input on 20, 40, and 80 meters; 150 watts on 15 and 100 watts on 10 meters.
- Semi-break-in CW with sidetone monitoring is a standard feature.
- PTT (Press-to-Talk) operation on SSB. Lower sideband on 40 and 80 meters. Upper sideband on 10, 15, and 20 meters.
- TX-110-L 15 watt module runs on AC supply in RX-110, so it is completely self-contained, including speaker. Simply connect antenna, and key or mike.
- TX-110-H requires additional AC supply to supply high current for 200 watt amplifier (Model PS-110).
- 200 watt amplifier may be added to TX-110-L at a later date, thus converting it to a TX-110-H.
- The RX-110, TX-110-L, and TX-110-H will all run directly from a 12 to 14 volt DC battery supply for mobile or portable operation. When the two units are mechanically joined (brackets supplied with TX-110), the transceiver slides into a plug-in mobile mount. Model MM-110.

SUGGESTED RESALE PRICES:

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX-110</td>
<td>$229</td>
</tr>
<tr>
<td>TX-110-L</td>
<td>$159</td>
</tr>
<tr>
<td>TX-110-H</td>
<td>$249</td>
</tr>
<tr>
<td>PS-110</td>
<td>$89</td>
</tr>
</tbody>
</table>
AUTOPATCHES WEREN'T BANNED by the FCC in its action on interconnects in late October, despite a rumor to that effect circulating on both coasts. What the Commission did was to reaffirm the requirement that a control operator be on duty any time a repeater is used for autopatch, incoming or outgoing. "Automatic control" of a repeater is not permitted during autopatch operation.

A Repeater During an autopatch is not a repeater, the Commission also decided, as it is not then operating as a repeater but as a conventional Amateur station making a phone patch. As a result, the rules governing regular Amateur station operation, not the repeater rules, apply during autopatches.

PHASE II OF FCC'S NEW CALLSIGN program is going into effect January 1, providing Advanced Class licensees with the opportunity to upgrade callsigns when renewing their licenses. After January 1, an Advanced Class licensee who wishes to exchange his present callsign for a 2x2 need only check item 13a on his renewal Form 610 and send it in during the 60 days prior to expiration. NOTE: Renewals received before January 1 will be processed without callsign change, so Advanced Class operators who wish to change callsigns should hold applications until after the first.

Requests For Callsigns other than "Group B" (2x2) will not be honored under Phase II, nor will Extras be permitted any choice other than a 2x1 after January 1 — under the present rules, an Extra can specify a new callsign from any group "higher" than his present, if he so wishes.

900 MHZ WILL BE CB'S NEW HOME, if, indeed, CB is to get a new home. At an open Commission meeting in October the Commissioners heard the FCC's Personal Radio Planning Group present three options: keep CB as is on 27 MHz, keep 27-MHz CB as is but add a new CB service at 220 MHz, or keep 27-MHz CB as is but add a new CB service at 900 MHz. They made no specific recommendations to the Commissioners, but discussed the three options at some length along with the factors affecting them (which definitely favored 900 MHz for expansion).

The Need For Any CB expansion was questioned by Commissioner Margita White and others, and after some discussion the Commissioners decided not to go ahead with a Notice of Proposed Rule Making. Instead, they had the Personal Radio Division staff prepare a Notice of Inquiry on the establishment of a new personal radio service in the 900-MHz region. The FCC'S FEE REFUND PROGRAM is supposed to get under way by the first of the year, with FCC licensees who paid more than $20 for their licenses first in line for reimbursement. Details of how all this is to be done have yet to be worked out, as the amount to be repaid is to be the fee less the license's "value" to the applicant (how much is a 2-letter call worth?). A Notice of Inquiry, soliciting comments on how such values can be derived, and other aspects of the program, will come out first. About all that seems certain at this time is that Amateurs who paid $25 for a special callsign are due to receive something back, and they'll be in the first group to be repaid.

Professional Help on the property value issue is being sought by the PCF for the

AUTOPATCHES WEREN'T BANNED by the FCC in its action on interconnects in late October, despite a rumor to that effect circulating on both coasts. What the Commission did was to reaffirm the requirement that a control operator be on duty any time a repeater is used for autopatch, incoming or outgoing. "Automatic control" of a repeater is not permitted during autopatch operation.

A Repeater During an autopatch is not a repeater, the Commission also decided, as it is not then operating as a repeater but as a conventional Amateur station making a phone patch. As a result, the rules governing regular Amateur station operation, not the repeater rules, apply during autopatches.

PHASE II OF FCC'S NEW CALLSIGN program is going into effect January 1, providing Advanced Class licensees with the opportunity to upgrade callsigns when renewing their licenses. After January 1, an Advanced Class licensee who wishes to exchange his present callsign for a 2x2 need only check item 13a on his renewal Form 610 and send it in during the 60 days prior to expiration. NOTE: Renewals received before January 1 will be processed without callsign change, so Advanced Class operators who wish to change callsigns should hold applications until after the first.

Requests For Callsigns other than "Group B" (2x2) will not be honored under Phase II, nor will Extras be permitted any choice other than a 2x1 after January 1 — under the present rules, an Extra can specify a new callsign from any group "higher" than his present, if he so wishes.

900 MHZ WILL BE CB'S NEW HOME, if, indeed, CB is to get a new home. At an open Commission meeting in October the Commissioners heard the FCC's Personal Radio Planning Group present three options: keep CB as is on 27 MHz, keep 27-MHz CB as is but add a new CB service at 220 MHz, or keep 27-MHz CB as is but add a new CB service at 900 MHz. They made no specific recommendations to the Commissioners, but discussed the three options at some length along with the factors affecting them (which definitely favored 900 MHz for expansion).

The Need For Any CB expansion was questioned by Commissioner Margita White and others, and after some discussion the Commissioners decided not to go ahead with a Notice of Proposed Rule Making. Instead, they had the Personal Radio Division staff prepare a Notice of Inquiry on the establishment of a new personal radio service in the 900-MHz region. The FCC'S FEE REFUND PROGRAM is supposed to get under way by the first of the year, with FCC licensees who paid more than $20 for their licenses first in line for reimbursement. Details of how all this is to be done have yet to be worked out, as the amount to be repaid is to be the fee less the license's "value" to the applicant (how much is a 2-letter call worth?). A Notice of Inquiry, soliciting comments on how such values can be derived, and other aspects of the program, will come out first. About all that seems certain at this time is that Amateurs who paid $25 for a special callsign are due to receive something back, and they'll be in the first group to be repaid.

Professional Help on the property value issue is being sought by the PCF for the
The New GLA-1000™
Just In Time for Christmas

DenTron's newest linear, the GLA-1000 is an exciting gift for the ham in your life. It's a power packed 1200 watt PEP SSB 1KW CW amplifier that covers 15-80 meters. The GLA employs 4 D-50 A tubes in the final, (similar to 6LQ6 tubes), thus keeping the cost down. Our Great Little Amp makes a great little gift!

Great Size, Great Power, Great Price. Great Little Amp

$379.50 Suggested Retail
FCC Type Accepted
The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?
OF A NEW AGE.

TS-1 Sub-Audible Encoder-Decoder • Microminiature in size, 1.25" x 2.0" x .65" • Encodes and decodes simultaneously • $59.95 complete with K-1 element.

TS-1JR Sub-Audible Encoder-Decoder • Microminiature version of the TS-1 measuring just 1.0" x 1.25" x .65", for hand-held units • $79.95 complete with K-1 element.

ME-3 Sub-Audible Encoder • Microminiature in size, measures .45" x 1.1" x .6" • Instant start-up • $29.95 complete with K-1 element.

TE-9 Eight-Tone Sub-Audible Encoder • Measures 2.6" x 2.0" x .7" • Frequency selection made by either a pull to ground or to supply • $99.95 with 8 K-1 elements.

PE-2 Two-Tone Sequential Encoder for paging • Two call unit • Measures 1.25" x 2.0" x .65" • $49.95 with 2 K-2 elements.

SD-1 Two-Tone Sequential Decoder • Frequency range is 268.5 - 2109.4 Hz • Measures 1.2" x 1.87" x .65" • Momentary output for horn relay, latched output for call light and receiver muting built-in • $59.95 with 2 K-2 elements.

TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder • Frequency range is 67.0 - 263.0 Hz sub-audible or 1650 - 4200 Hz burst-tone • Measures 4.25" x 2.5" x 1.5" • $79.95 with 12 K-1 elements.

ST-1 Burst-Tone Encoder • Measures .95" x .5" x .5" plus K-1 measurements • Frequency range is 1650 - 4200 Hz • $29.95 with K-1 element.

COMMUNICATIONS SPECIALISTS
426 West Taft Avenue, Orange, CA 92667
(800) 854-0547, California residents use: (714) 998-3021
Low-power transceivers are becoming more popular each day on the amateur bands. Many of these rigs are single or dual band, usually for 40 and 20 meters. My home-brew 20-meter ssb transceiver fits this category. The need for 80-meter operation resulted in the transverter described here. A savings of both money and construction time can be realized if a transverter is used — rather than constructing an entire assembly for another band. The transverter eliminates the need for another ssb filter, VFO and associated components, and dial drive and indicator. The transverter can be used with any 20-meter transceiver or transmitter/receiver combination. Com-
mercial QRP transceivers, such as the HW-7 and Ten-Tec PM series, can also be used with this transverter. Both ssb and CW modes can be used.

I built the transverter for 80 meters, but other bands can also be covered. With appropriate component changes for inductors and capacitors, the same PC-board layout can be used. Table 1 lists values for these components for 160, 40, 15, and 10 meters. The transverter provides CW or ssb output of approximately 1-2 watts and needs a minimal amount of rf drive.

operation

The basic principle of this transverter is to receive a 3.5-4 MHz signal, convert it to 14 MHz, and transmit a 3.5-4 MHz signal by converting 14 MHz to 3.5 MHz. A crystal oscillator of 18 MHz provides the signal to convert these frequencies. The oscillator operates on both transmit and receive modes.

receive mode

Referring to fig. 1, Q3 operates as an 18-MHz, third-overtone crystal oscillator with output tuned by L5 and C14. Q1 is a dual-gate mosfet rf amplifier tuned to the 80-meter band. The 80-meter signals are mixed with the 18-MHz oscillator output in Q2, resulting in a 14-MHz output across L4. A 50-ohm output impedance is obtained by using a capacitive divider across L4.

transmit mode

Q1 operates as a mixer, this time mixing 18 MHz with the 14-MHz input signal to produce a 4-MHz signal at Q2 base. Q2 is a class-A amplifier with about 100 mW output to drive Q3. A “T” network matches Q2 collector impedance to Q3 base impedance. Q3 is a linear amplifier. Its bias is adjusted by R13. L4, L5, C15, C16, and C17 are a pi network to match the Q3 collector impedance to 50 ohms. (This matching network also provides good harmonic attenuation.)

The transverter matching network design was based on the excellent articles in reference 1. Design was a lot easier than anticipated and circuit debugging was fairly easy.

Attenuator Z1 is a critical part of the circuit for transmitting clean signals. Most QRP rigs will need about 20 dB attenuation, as only 10-20 mW is needed to excite Q1. Too much drive will cause distortion on...
Circuit for the transmitter section is shown in fig. 2. ssb. Drive on CW, however, is not as critical. Some experimentation with Z1 may be necessary if you use ssb; i.e., more or less attenuation may be needed with your rig. Fig. 2 gives component values for the attenuation needed. The attenuator provides the additional bonus of a 50-ohm load to the driving transmitter, a near-must with solid-state rigs.

Liberal use of bypass capacitors on the dc lines helps to prevent oscillation in both transmit and receive modes.

Construction

Transverter construction is easy because of PC-board layout and use. The receiver and transmitter sections are built onto separate boards. Circuit-board patterns for both the transmit and the receive board are shown. Double-sided, glass-epoxy board is used, with one side acting as a continuous ground plane. The copper around the component leads is drilled out using a large drill bit.

PC boards are definitely the answer to home construction. They provide clean layout, ease of construction, and, almost always, superior operation. Board layout is easy and provides a convenient way to make changes and experiment with your own ideas.

The two boards are wired together using RG-174/U cable. I mounted mine in an enclosure where
table 1. Values for transverter components for 160, 40, 15, and 10 meters.

<table>
<thead>
<tr>
<th>band</th>
<th>L1</th>
<th>L2(μH)</th>
<th>L3(μH)</th>
<th>C1, C5 (pF)</th>
<th>C2, C8 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160m</td>
<td>1</td>
<td>16</td>
<td>452</td>
<td>15-60</td>
<td>430</td>
</tr>
<tr>
<td>40m</td>
<td>4t</td>
<td>4.3</td>
<td>4.3</td>
<td>15-60</td>
<td>82</td>
</tr>
<tr>
<td>15m</td>
<td>3t</td>
<td>1.5</td>
<td>1.5</td>
<td>9-35</td>
<td>18</td>
</tr>
<tr>
<td>10m</td>
<td>3t</td>
<td>1.1</td>
<td>1.1</td>
<td>5</td>
<td>9-35</td>
</tr>
</tbody>
</table>

bypass capacitor

<table>
<thead>
<tr>
<th>band</th>
<th>C14(pF)</th>
<th>C15(pF)</th>
<th>L5(μH)</th>
<th>Y1(MHz) (μF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160m</td>
<td>15-60</td>
<td>33</td>
<td>0.2</td>
<td>16</td>
</tr>
<tr>
<td>40m</td>
<td>15-60</td>
<td>15</td>
<td>0.5</td>
<td>35.5</td>
</tr>
<tr>
<td>15m</td>
<td>15-60</td>
<td>0.5</td>
<td>1.5</td>
<td>0.0001</td>
</tr>
<tr>
<td>10m</td>
<td>9-35</td>
<td>0.5</td>
<td>1.1</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

transmitter assembly

<table>
<thead>
<tr>
<th>band</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5(μH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>16</td>
<td>44</td>
<td>8.5</td>
<td>3.6</td>
<td>4.2</td>
</tr>
<tr>
<td>40</td>
<td>4.3</td>
<td>11.8</td>
<td>2.25</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>4</td>
<td>0.8</td>
<td>0.33</td>
<td>0.37</td>
</tr>
<tr>
<td>10</td>
<td>1.1</td>
<td>3</td>
<td>0.6</td>
<td>0.25</td>
<td>0.28</td>
</tr>
</tbody>
</table>

bypass capacitors

<table>
<thead>
<tr>
<th>band</th>
<th>L6(μH)</th>
<th>L7(μH)</th>
<th>L8(μH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>4.7</td>
<td>33</td>
<td>0.1</td>
</tr>
<tr>
<td>40</td>
<td>1.5</td>
<td>8</td>
<td>0.005</td>
</tr>
<tr>
<td>15</td>
<td>0.47</td>
<td>2.7</td>
<td>0.001</td>
</tr>
<tr>
<td>10</td>
<td>0.27</td>
<td>2.2</td>
<td>0.001</td>
</tr>
</tbody>
</table>

*In parallel with 500

View of the chassis showing the bandswitch and internal wiring. The small board on the left is a WWV receiver converter.

18-MHz operation from Q3. Adjust C14 for maximum output using either an rf probe or a communications receiver. C23 can be used to adjust Y1 to exactly 18 MHz. The next step is to adjust C2, C6, and C10 for maximum signal strength while receiving an 80-meter signal.

Before applying drive on transmit, adjust R13 for minimum Q3 collector current. Next apply a low-level signal to Q1 (approximately 8V p-p at G1 of Q1). With a 50-ohm dummy load connected to the output, adjust C4 and C11 for maximum output.

Monitor the signal on a separate 80-meter receiver for best tone characteristics. For ssb adjust R13 for a collector current of 5 mA. Adjust C4 and C11 for maximum output. Monitor the ssb signal on an 80-

fig. 3. Component values for different attenuation ratings of the pi attenuator, Z1, in fig. 2.

they are grouped with boards for 40, 15, and 10 meters to make an all-band transverter. A 3PDT relay switches +12V, the 20-meter transceiver, and the antenna between transmit and receive modes. S1 allows either the transverter to be used or the main rig to be operated straight through. Heat sinks should be used at Q2 and Q3.

alignment

The first step in aligning the transverter is to obtain

fig. 3. Component values for different attenuation ratings of the pi attenuator, Z1, in fig. 2.
meter receiver and readjust drive for no distortion (see photos). Readjust C4 and C11 for the best-sounding ssb signal. This completes alignment. The transverter should now be ready for on-the-air use.

operation

Because of the transistor used and the output network, the transverter must be operated into a 50-ohm load. Any departure from 50 ohms can cause the final stage to self-oscillate. Adding a 40V zener from Q3 collector to ground would be helpful in preventing damage to Q3 should oscillations occur. A transmatch is a great help in providing a nonreactive load for the transmitter.

With the output displayed on an HP-182 100-MHz scope, no harmonic energy could be observed. The CW and ssb outputs are shown in the photos. Approximately two watts output was obtained on CW and one watt on ssb. The networks are sufficiently broadband to allow operation across the 80-meter band.

in conclusion

The transverter has provided good 80-meter coverage. Contacts have been made between the East and West Coast and into Mexico. Because QRP is my main interest, the one-watt output level is quite adequate. Under poor band conditions a linear amplifier can be added to increase output level.

reference

Grab a real HANDFUL of 2-Meter Versatility and Value!

Shown with Optional Auto-Patch Encoder Installed for access to repeaters with telephone auto-patch inputs

Optional Holster-Style Leather Case and External Microphone Let You Use the VF-2031 with maximum convenience!

The all new HEATHKIT VF-2031

Two meters is the exciting place to be in Amateur Radio today and the new Heathkit VF-2031 hand-held transceiver gets you there in real style! Like every Heathkit product, it's designed by Hams for Hams, and it gives you the value, features and performance you're looking for!

A minimum 2 watts out gives you plenty of power for local two-way communications and repeater access. Spurs are down a full 60 dB so you never worry about causing interference or accidentally keying repeaters. A separate speaker and microphone and well-designed FM circuitry bring you outstanding audio quality on both transmit and receive. Eight crystal-controlled channels and ±600 kHz offsets give you a total of 8 receive and 24 transmit channels for real versatility.

Shop and compare! At just $189.95 in kit form, we don't think you'll find a better all-around hand-held rig than the VF-2031!! And with its complete list of options - auto-patch, tone encoder, external mike and holster-style leather carrying case - it puts real 2-meter power right in your hands!

There's more for the Ham at Heath

FREE! Please send me my FREE Heathkit Catalog. I am not on your mailing list.

Name __
Address __
City ______ State ______ Zip _____

Read about the new VF-2031 and all the other exciting Amateur Radio products from Heath in the new FREE Heathkit Catalog. Send for your copy today.

Or bring this coupon to your nearest Heathkit Electronic Center (Units of Schlumberger Products Corporation) for a copy of your FREE catalog. Price is mail order net, F.O.B. Benton Harbor Michigan. Prices and specifications subject to change without notice. Available for shipment Jan. 1979, subject to FCC Approval.

There's more for the Ham at Heath
lightning protection
for the amateur station

A lightning strike can be devastating. This article provides a thorough treatment of how to avoid catastrophe in the ham shack.

Lightning protection is a subject that should be of interest to every amateur and especially to those who have high antennas. It's a subject that's had little coverage previously in amateur publications despite the fact that there are some very effective protection techniques, which are widely known and applied to professional communications installations. Many of these techniques can be applied to the typical amateur station with minimal expense and effort. Some techniques, which involve more effort and expense, might be warranted only in situations where the probability of being struck by lightning is high.

Before protection techniques are discussed, it's desirable to have an understanding of exactly what causes lightning, the magnitude of a lightning stroke, and the probability of being struck.

The Earth's atmosphere is constantly being bombarded by cosmic rays. When these rays collide with gas molecules electrons are separated from some molecules, creating positive ions. Similarly, some molecules capture a free electron and become negative ions. It's estimated that our atmosphere contains about \(4 \times 10^3\) ions per \(cm^3\) (\(6.5 \times 10^4\) per inch\(^3\)). At altitudes above 64 km (40 miles), the number of ions exceeds the number of neutral molecules; this is the region known as the ionosphere. At low altitudes, this number is insignificant compared with the number of neutral molecules. Still, the presence of these ions makes it possible for the air to conduct electricity to a small degree.\(^1\)

Atmospheric makeup. The atmosphere taken as a whole has a net positive charge of about \(10^6\) coulombs. The Earth's surface has an equal negative charge, and a potential difference of about \(3 \times 10^5\) volts exists between it and the electrosphere. The electrosphere is the region beginning at about 48 km (30 miles) up, in which the resistivity is sufficiently low so that there's no significant voltage gradient. (The ionosphere has the still lower resistivity necessary to reflect radio waves.) In fine weather, a constant flow of electrons occurs from the earth to the electrosphere, resulting in an electric field of about 100 volts per meter near ground. Lightning discharges return these electrons to earth at a rate sufficient to sustain a balanced dynamic system globally.\(^2,3\)

For lightning to occur, a localized region of the atmosphere must attain sufficient electrical charge to produce a breakdown of the air molecules. The electric field near ground level rises to 500 volts per centimeter below a developing thundercloud and much higher still when lightning is about to strike.

By John E. Becker, K9MM, 201 E. Marion Street, Prospect Heights, Illinois 60070
The inside of a thundercloud is a turmoil of water, ice, and dust particles together with strong wind currents and temperature gradients. Although the mechanism is not totally understood, the result of this turmoil is a concentration of positively charged particles rising to the top of the cloud; negatively charged particles are concentrated in the lower areas of the cloud. This negatively charged region at the base of the cloud repels free electrons on the ground, resulting in an area beneath the cloud that’s positively charged both with respect to the cloud and with respect to surrounding earth. Conditions now are correct for lightning to strike.

Evolution of a lightning strike. A lightning flash begins with a virtually invisible stepped leader, which travels down from the cloud toward the ground. Each step covers a distance of about 46 meters (150 feet) in less than one microsecond; the time between steps is about 50 microseconds. As this stepped leader progresses, it ionizes the air through which it passes, making it a good conductor. When the leader reaches within a few hundred meters of ground, ionized streamers begin to rise from the ground to meet it. Then the conductive path from cloud to ground is complete, and the visible portion of the bolt, known as the return stroke, begins.

It is the return stroke that has the destructive effects against which protection is needed. As soon as the conductive path is completed, electrons start flowing rapidly to ground. This action starts at the point of contact between the stepped leader and the rising streamer, and the greatly increased current causes the ionized path to glow brightly and get very hot — up to 2×10^4 °C (6.5×10^4 °F). The region of high current and brightness moves upward to the cloud at a speed of over 9.6×10^4 km (6×10^4 miles) per second, drawing electrons from higher and higher in the cloud. This contrasts with the speed of the stepped leader, which typically averages only 384 km (240 miles) per second. Although the region of high-current density and hence the visible flash moves upward, the actual flow of electrons is downward.

After the first return stroke usually enough charge remains in the cloud to initiate a second leader. This usually occurs within 70 milliseconds or less; because of remaining ionization, this leader usually follows the path of the previous stroke and travels directly to earth in one step of about one millisecond. For this reason it’s called a dart leader, and, like the stepped leader, it’s followed by a return stroke. Although the average bolt flashes only twice, about ten per cent will have as many as ten flashes; occasionally bolts will have up to twenty flashes over a period of about one second.

Electrical analysis. For all practical purposes a lightning bolt may be considered a constant-current source. That is to say, when it strikes an object protruding above ground, the current that flows through that object to ground will be the same, regardless of whether the object is a metal tower with a resistance of 1 ohm or a tree with a resistance of several hundred ohms. This is because the atmosphere’s resistance is so high that the series resistance added to the path by the object struck is insignificant. The resistance of the object struck becomes important when the voltage drop across the object and the power dissipated in the object are considered.

The magnitude and duration of the current in a lightning bolt will vary from stroke to stroke. The stroke-current waveform consists of a rapid rise to the peak current, followed by a more gradual decay. A waveform of this type is described with two numbers: the rise time to the peak value and the decay time to 50 per cent of the peak value. A typical lightning bolt would have a rise time of about 2 microseconds and a decay time of about 40 microseconds. The peak current in a stroke will exceed 1.7×10^4 amps in 50 per cent of all strokes. It will exceed 6×10^4 amps in 10 per cent of all strokes, 1.2×10^5 amps in 1 per cent of all strokes, and 2.4×10^5 amps in 0.01 per cent of all strokes.

The probability of lightning damage in the U.S.

The probability that any given object will be struck by lightning depends on two things: the frequency and type of thunderstorms at the location of the object, and the object’s height above average terrain. Observations made over a period of years have resulted in the compilation of an accurate map showing the average number of thunderstorm days per year in the United States. Note that this map does not take into account the possible occurrence of
of more than one thunderstorm in an area on any given day. Therefore it's somewhat conservative as an indicator of the total number of thunderstorms likely to occur in a year, particularly in areas having larger numbers of thunderstorm days.

Thunderstorms are classified either as convection storms or frontal storms. Convection storms, which account for the majority of thunderstorms, are local in extent and relatively short in duration. Frontal storms extend over greater areas and may last for several hours. Statistical data has been tabulated to predict the expected number of lightning strokes to ground per square mile (assuming flat terrain) per thunderstorm day. This number is called the stroke factor. The stroke factor for convection storms is 0.28; for frontal storms it is 0.37.6

In areas of flat terrain, the probability of lightning striking any given point is extremely low, but an object protruding above ground will attract lightning that would have otherwise struck all other points within a circular area surrounding the object. The radius of this area depends on both the height of the object and the intensity of the stroke. An object will attract a 2×10^4-amp stroke that would have struck anywhere within a radius of twice the height of the object had the object not been present. This radius increases to six times the height of the object for a 6×10^4-amp stroke and ten times the height of the object for a 1.35×10^5-amp stroke.7

fig. 2. The concentric shell concept as an aid to understanding the resistance of the earth surrounding a ground rod.

ground, but its magnetic field will induce a voltage transient into any wires it encounters, such as antennas and feedlines, rotor-control cables, power lines, or telephone lines. When a lightning bolt goes to ground, current flows through the ground in all directions away from the point of the strike to dissipate the sudden excess accumulation of charge. This ground current can cause a significant potential difference to exist between different ground points. Improperly grounded equipment can end up in the path of some of this ground current. The lightning protection techniques to be described can prevent equipment damage from all three of these effects.

protecting your gear

Lightning protection comes in increments. An unprotected station will be wiped out by any kind of strike. A partially protected station will incur less damage and may completely escape damage from a small bolt. A carefully planned and executed lightning protection system will protect against just about anything.

There are three basic protection techniques. Everything described here will contribute to one or more of them. The first technique is to send as much as possible of the lightning stroke directly down your tower and into the ground. The second technique is to make it as hard as possible for any of the energy of the strike to get to the equipment. The third and final technique is to control the path of any energy that reaches the equipment so that it finds its way harmlessly to ground.

Grounding systems. The first technique, that of sending as much of the current as possible directly to ground, requires grounding your tower. This isn't always easily accomplished. There's more to it than just driving a rod into the ground and connecting it to the tower. Any ground system has a resistance, which can be measured. This resistance determines the voltage level to which the tower will rise when struck by lightning. The magnitude of this resistance depends on certain characteristics of the soil that determine its resistivity; *i.e.*, composition, temperature, moisture content, and salt content.

A ground rod driven into soil of uniform resistivity radiates current in all directions. To understand the resistance of the soil surrounding the ground rod, think of the rod as being surrounded by an infinite number of thin concentric shells of soil all of equal thickness (fig. 2). The greatest resistance is in the shell directly next to the ground rod, because it has the smallest cross-sectional area at right angles to the current flow. Each succeeding shell is larger in cross section and therefore has less resistance. At a
small distance from the rod the area of each shell is so large that its resistance is negligible compared to the resistance of the shell directly next to the ground rod. The resistance varies inversely with the cross-sectional area. Measurements have shown that 90 per cent of the total resistance surrounding a ground rod is usually within a radius between 1.8-3 meters (6-10 feet) of the rod.

Soil considerations. The composition of the soil will depend on your location. Whatever soil you have you’ll have to live with. Clay and loam are the most desirable soils for low resistance. Sand or gravel increasing its salt content. A doughnut-shaped trench can be dug surrounding the ground rod. Alternatively, a length of drain tile can be buried next to it. The trench or tile is filled with a chemical such as magnesium sulphate, copper sulphate, or ordinary rock salt. Rain and snow will dissolve the chemicals and wash them into the soil (fig. 3).

Deep-driven grounds are becoming the most popular and economical method for obtaining low-resistance ground connections. For ease of handling and driving, sectionalized Copperweld ground rods may be used. These rods are available in several diameters and lengths. They are threaded on both ends, and special threaded couplings are used to join them. A driving bolt is attached to the top of the section being driven to protect the threads from damage (fig. 4).

Another effective method of reducing the resistance of a ground connection is to parallel several ground rods. For this technique to be effective, the rods should be between 1.5-3 meters (5-10 feet) apart. With less than 1.5-meter (5-foot) spacing, the conducting paths from adjacent rods will overlap excessively. With more than 3 meters (10 feet) of spacing, the reactance of the connecting wires becomes a detriment.

If multiple ground rods are used around the tower base, each rod should be securely fastened to the tower base, and also to a buried ring of 6.5 mm (no. 2 AWG) copper wire surrounding it. Guyed towers should have at least one ground rod at each guy anchor point; these rods should also be tied back to the ground ring at the tower base. In areas of high soil resistivity, buried radials spaced every 60 degrees and up to 46 meters (150 feet) in length, if possible, may be connected to the ground ring to lower the ground system resistance.

There’s no hard and fast rule as to how low the ground system resistance should be for good protection. A value considered acceptable by some electric power systems and protection codes is 10 ohms, so this is a good objective to shoot for. Where the soil is mostly clay or loam this value is achievable, but in areas with rocky or sandy soil it may be economically unreasonable to attain.

fig. 3. Method of reducing resistance of a ground connection by chemical means. The tile may be eliminated with little effect.

increase the resistivity in relation to their proportions, and soil that is mostly sand or gravel has fairly high resistance.

Whatever type of soil you have, a deep rather than a shallow ground is better for several reasons. Soil is seldom of uniform resistivity at different depths. The soil near the surface generally has higher resistivity than that at deeper levels because of wetting and drying out with seasonal variations. Deeper soil is more stable and less subject to such variations. Usually it has a higher moisture content than surface layers.

As the soil temperature decreases, its resistivity goes up. Frozen ground is a very poor conductor, as the negative temperature coefficient of soil resistivity increases sharply below freezing. Any ground rod should, at a minimum, extend several feet below the frost line in your area. Otherwise an early spring thunderstorm may occur while the ground is still frozen, and your ground system will be greatly reduced in effectiveness. A 2.5-meter (8-foot) ground rod is the absolute minimum that should be used.

reducing soil resistance

Soil resistivity may be reduced artificially by
Accurate measurement of ground resistance requires the use of sophisticated equipment not usually found in the amateur station. An ohmmeter is totally useless due to voltage gradients present in the soil from stray power-system currents and electrochemical effects. However a method that can be used with reasonably good success requires only equipment that many hams would have or could borrow. It involves using an isolation transformer and a Variac (autotransformer) to pass 60-Hz ac through the ground between the ground rod to be tested and a known good ground, such as the power system neutral line. The voltage and current are measured, and the resistance is computed from Ohm’s law. There’s a very definite shock hazard associated with this method, so be careful! See fig. 5.

A question is often asked as to how large a ground conductor is necessary in a lightning-protection system. Often wire much heavier than necessary is used. A lightning stroke is of very short duration, and the heat produced in the wire by the current is limited. At a minimum, the wire must be large enough so that it’s not heated to its melting point. A 2.6-mm (no. 10 AWG) copper wire can be sufficient to withstand a lightning stroke with 2.5×10^5 amps peak current and a 40-microsecond decay time. This amplitude is exceeded by only one stroke in 10^4. A 4.1-mm (no. 6 AWG) copper wire is recommended to provide an adequate safety factor in above-ground applications. For buried applications, 6.5 mm (no. 2 AWG) copper wire is recommended because of corrosion. Aluminum wire should have a cross-sectional area 1.6 times as large as the recommended copper gauges for the same current-handling capacity.

tower and rotator considerations

With the tower securely grounded at the base, the next step is to ensure that this good solid ground extends all the way to the top. Although you’d expect good continuity between sections in a fixed tower, the joints are designed for mechanical strength only, and the possibility always exists that oxidation and corrosion will cause increased resistance between sections. A good practice is to bridge each section joint on each leg with a short length of 4.1-mm (no. 6 AWG) copper wire secured with ground clamps. This is particularly important at the hinge joint of foldover towers.

Crankup towers are harder to deal with, which is unfortunate because they’re also more likely to be a less-than-ideal path to ground for lightning — unless grounding straps are added. If the tower is lowered only occasionally for antenna work, the same techniques as those for a fixed tower can be used. The obvious inconvenience is that you’ll have to climb the tower (make sure all safety stops are properly engaged first) and remove the grounding straps before the tower can be lowered. If the tower is raised and lowered frequently, about the only thing you can do is run grounding straps from the top of the top section all the way to the top of the bottom section. The straps should be pulled straight when the tower is fully raised, and of course they will hang down when it is lowered.

To protect your rotor, one or more bonding straps should be connected between the mast above the rotor and the tower legs. Leave no more slack than necessary to allow full rotation. Stranded wire, such as automotive battery cable, will stand up better to repeated flexing than will heavy solid wire.

The mast itself, or an air terminal clamped to the top of it, should extend far enough above the antenna so that its cone of protection includes the antenna and protects it from a direct hit. This mast extension should be at least half the turning radius of the antenna. The elements of an antenna are usually heavy enough to escape damage even if hit directly, and most antennas are at dc ground potential; but the path that provides this dc ground may not withstand the stroke current. Items such as ferrite baluns, traps, gamma matches, and element insulators are vulnerable and hard to protect in case of a direct hit on the antenna itself.

If the topmost point on the antenna system is the vertical element of a ground plane, make sure it is dc grounded at the base with an rf choke. This choke should have the lowest inductance possible for the frequency range of the antenna and should be made of the heaviest gauge wire practical.

If the tower is a wooden pole or other nonconduct-
ing support, it should be topped with an air terminal connected to the ground system with a 4.1-mm (No. 6 AWG) copper wire stapled to the pole on the side opposite the antenna feedline. A roof-mounted antenna system should be grounded similarly.

The shields of all coaxial feedlines should be bonded to the tower at the top and bottom, and at 15-meter (50-foot) intervals on taller towers. This is easily accomplished by using bulkhead coax connectors mounted on plates, bolted to the tower at the appropriate levels. Be sure to use waterproof connectors or take other suitable steps to keep moisture out of the coax.

residual lightning energy

All the techniques covered to this point have been concerned with shunting as much of the direct lightning energy as possible directly to ground. Now the emphasis will shift to the leftover energy that has found its way onto feedlines, rotor cables, etc., and to techniques for keeping it out of the rig. It all comes down to making these conductors look like a high impedance to the lightning. Remember that a lightning bolt is a series of pulses having rise times on the order of 2 microseconds. This makes it similar to a 500-kHz rf signal in terms of the effects of reactive elements it may encounter. Specifically, it’s desirable to introduce series inductance in any conductors leading from the tower to the rig.

Obviously it’s impractical to break the run of coax and place coils in series with the inner and outer conductors. While these might stop the lightning coming down the line, they would just as certainly also stop the flow of rf energy from the transmitter to the antenna. If the antenna is at dc ground as recommended earlier, the same potential will be impressed onto both the inner and outer coax conductors by a lightning strike. At every convenient opportunity, the coax should be bent as sharp an angle as allowed by its minimum bending radius. The lightning pulse wants to go in as straight a line as possible, so these bends appear to it as an increased impedance. As far as an rf signal is concerned, as long as the dimensional relationship between coax inner and outer conductors is maintained, it makes no difference how often it is bent. Any excess feedline should be wound into a coil before entering the building, as this further increases the impedance it presents to lightning. Rotor cables and any other lines from the tower to the station should be treated similarly.

An additional technique that may be employed is to run the feedlines and control cables through a length of metal conduit. The magnetic field generated by lightning-stroke currents will perceive the conduit as one big shorted turn, resulting in another desirable increase in series impedance. This is partic-

ularly effective if the cables are run through conduit for 6 meters (20 feet) or more.

I’d like to emphasize that the isolation techniques just described are effective only if a good ground has been established at the tower. All the current is going to go to ground somewhere, and a low-resistance tower ground, together with a high impedance from the tower to the rig, only establishes how the current is divided up between these two paths.

station grounds

At this point, the protection job is two-thirds done. With good tower grounding and rig isolation, most of the stroke current will go straight down the tower to ground. The remaining task is to control the ground path followed by the remaining current which comes into the rig so that no equipment damage results.

It would be nice if it were possible to arrange things so that no ground path at all goes through the rig. In fact it’s possible but seldom practical to do exactly that. It’s worthwhile to examine what it would take to accomplish this, if for no other reason than to help in understanding the protection techniques to be followed in the more practical alternatives.

Let’s assume that the only connection from the tower to the rig is a single feedline. Let’s also assume that you have no other connection between the rig and the rest of the world; i.e., no ac power lines, no telephone, nothing. The rig must be battery powered or have its own ac generator. The final assumption is that the entire rig, including its power source, is perfectly insulated from ground; no leakage, and sufficient clearance such that no arc-over to ground will occur.

Now if lightning strikes the tower, let’s see what happens. If it is an “average” stroke of 1.7 x 10^4 peak amps, and if the tower ground resistance is 10 ohms, the tower, feedline, and rig will all rise to 1.7 x 10^5 volts above ground. This number is conservative because it ignores the effects of inductance in the grounding path. In many cases a significant inductive reactance will occur in series with the resistance, and
the potential rise will be higher for a given stroke cur-
rent. If the assumption is good that the rig is perfect-
ly insulated from ground no current will flow, and no
damage will occur.

practical considerations

It should be obvious at this point that this kind of
situation is seldom likely to exist. In the real world,
the rig is not perfectly insulated from ground and
connections exist to power lines and to the telephone

![Graph showing voltage characteristics](image)

fig. 6. Ratings for a high-power zinc-oxide varistor. Note the
sharply rising voltage characteristic above 10 amperes on
parts rated for up to 2750 amperes peak current.

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>SELECTION AVAILABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V130PA10</td>
<td>✓</td>
</tr>
<tr>
<td>V275PA10</td>
<td>✓</td>
</tr>
</tbody>
</table>

system. This brings us back to that small portion of
the stroke current that will go to ground through
whatever path it can find at the rig. It can follow two
routes, and each requires attention if damage is to be
prevented.

The first of these routes encompasses all direct
grounding made at the rig. This grounding can in-
clude the shield of signal-carrying leads between dif-
ferent pieces of equipment, the third wire in ac line
cords, and wires connected from the ground screws
on various pieces of equipment to a main-station
ground bus. This morass of ground interconnections
may be fine in terms of signal distribution and ac
safety, but it can spell disaster when lightning
strikes.

Consider where the current is actually going to
flow. For example, it may come down the coax-feed-
line shield to the linear amplifier chassis, across this
chassis to the input connector, along the input coax
shield to the exciter, up the power cable ground wire
to the power supply, through the power supply print-
ed-circuit board to the ac line cord, and down the
third wire to the ac conduit. A long and devious route
such as this will look highly inductive to the lightning
pulse. As a result significant voltage drops will occur
along the way with a high probability of equipment
damage.

Single-point grounds. The solution to this problem
is single-point grounding of each piece of gear
together with bonding between each item. Single-
point grounding prevents ground current from flow-
ing through a piece of equipment, while bonding
prevents destructive voltage differentials from devel-
oping between different pieces of gear. The final
ingredient necessary for this technique to be effec-
tive is a good station ground.

The station ground is second in importance only to
the tower ground, and many of the techniques previ-

24 december 1978
ously covered are applicable. The objective of the station ground is to provide a ground plane at uniform potential for the entire station.

Commercial installations. In commercial installations where an entire building is devoted to the equipment installation, the recommended procedure is to install a buried ground ring around the outside perimeter of the building. This ring is supplemented with ground rods or radials. A second ground bus is run around the inside perimeter of the building. The two ground rings are interconnected at no fewer than four points and at intervals of no more than 15 meters (50 feet). This system is also connected to the power-system ground, and any extensive masses of metal such as water pipes and heating ducts. Finally, the building ground system is connected to the tower ground system. This wire must not be run through a conduit, nor should it be routed near feedlines or other cables from the tower, as it may induce transients into them.

Amateur installations. For a typical amateur station in a home, a commercial-grade station ground would usually be impractical, since all the equipment is usually in one room and near to only a small portion of the building perimeter. The commercial procedures can be modified using common sense to fit the circumstances of any particular installation. The important thing to remember is that a single ground wire to the nearest water pipe is not adequate, and every extra bit of grounding adds something to the degree of protection obtained. Whatever modifications are made, the connections between the station ground, tower ground, power system ground, and the water pipes must not be eliminated.

Interconnections and bonding. Once a suitable station ground has been provided, the equipment must be properly connected to it. The shields of all coax feedlines should be connected to the station ground at the point where they enter the building. On each piece of equipment, a ground tiepoint should be selected. This point should be connected to the station ground and also to the ground tiepoint on physically adjacent pieces of equipment. These ground connections should be as short and straight as possible, using 2.6-mm (no. 10 AWG) or heavier copper wire.

It's particularly important on any piece of equipment where a coax feedline terminates from the tower that the point where the feedline connects be used as the ground tiepoint. The requirement for multiple connections of coax and other shielded wires to some pieces of equipment may make it impossible to eliminate secondary ground paths en-

fig. 7. Ratings for a T11-16 gas-filled surge arrester.
tirely, but careful grounding and bonding will make these secondary paths relatively unattractive to lightning current. The secondary ground path provided by these shielded cables can be made to look like an even higher impedance if the cables are made longer than necessary and the excess length is wound into a coil.

Three-wire ac cords. The ground wire in three-wire ac line cords is fine for its intended purpose of preventing shocks resulting from power-line leakages, but it's detrimental as far as lightning protection is concerned. Not only is it neither short nor straight, but its proximity to the other wires in the power cord could couple unwanted surges into the equipment through the power line. When proper grounding and bonding techniques are applied, the ground wire in the three-wire power cord is a secondary ground and no longer needed for its original purpose. Therefore, it should be disconnected for optimum lightning protection.

Dielectric breakdown. The second route to ground at the rig is by dielectric breakdown to power or telephone lines. This is most likely to occur in installations where proper grounding and bonding practices have not been followed. But proper grounding and bonding practices do not completely eliminate the possibility of dielectric breakdown. This is because of the ever-present inductance in any ground wire, together with the fast rise time of the lightning pulse. As already noted, the chassis of all the equipment may rise momentarily to thousands of volts above ground when lightning strikes. The power-transformer primary in each piece of gear is connected to the ac power line, which is at a low impedance and always within a few hundred volts of ground. If the insulation between any of these primary windings and the transformer core, which presumably is chassis mounted, is insufficient to withstand this voltage, dielectric breakdown will occur and the transformer will be destroyed. The same thing can happen with the telephone lines, except that here the phone patch or telephone itself will be destroyed.

Surge suppressors. To prevent this sort of damage a form of bonding must be employed. Obviously the power and telephone lines can't be directly and permanently shorted to ground. Instead, some type of transient voltage surge suppressor must be used. This is a device that's normally an open circuit but which will momentarily break down and provide a low-impedance path across whatever it is connected to in case of a lightning strike. When the surge is over, the device opens the circuit again so that normal equipment operation is unimpaired.

Many types of transient voltage surge suppressors are on the market. They offer varying degrees of protection and range in price from a few cents to hundreds of dollars. There are two devices which, when used together, will provide a high degree of protection at relatively low cost. These are the zinc-oxide varistor and the gas-tube surge arrestor. Each has certain advantages and certain limitations; this is why it's recommended that they be used together.
capability and high “let-through” voltage under high-current conditions (fig. 6).

Gas-tube surge arrestors have a firing voltage that depends on the rise time of the transient waveform. Faster rise times result in higher firing voltages. For a lightning waveform having an 8-microsecond rise time, a gas tube can be expected to fire in about one microsecond (fig. 7). Once a gas tube has fired, the voltage drop across it is clamped to 30 volts. A gas tube can handle more peak transient current than a varistor, because the low voltage drop results in low power dissipation.

A gas tube will continue to conduct until the applied voltage drops below 30 volts. In an ac-power circuit, this means the tube will conduct for a full half cycle, 8.3 milliseconds at 60 Hz, even though the transient that caused it to fire may have lasted only a few microseconds. This may exceed the long-term power handling capability of the tube, and for this reason gas tubes should always be installed on the load side of the fuse or circuit breaker in a power circuit.

Gas-tube surge arrestors are available from TII Corp., Joslyn Electronic Systems, and others. For power-line applications, a three-electrode gas tube is used, with the end electrodes connected to the two sides of the ac supply and the center electrode connected to ground. If the potential between the grounded electrode and either supply electrode becomes sufficient to fire the tube, the entire tube ionizes and all three electrodes are effectively shorted together for the duration of the transient (fig. 8). The disadvantage of the gas tube is that it’s slower to respond than the zinc-oxide varistor and requires a higher voltage relative to the normal voltage in the circuit before it will fire.

When both a zinc-oxide varistor and a gas-tube surge arrestor are used to protect a piece of equipment, the varistor will take care of short-duration, low-energy transients such as might result from a lightning strike on the power line at a considerable distance from your location. The gas tube will come into play when lightning strikes your tower or the close-by power line. If economic considerations dictate the use of only one of these two devices, the gas tube is the one that should be chosen.

Devices are available using gas tubes that can be inserted between an appliance and the power outlet. This may seem very convenient, but these devices should not be used. The reason is that they are designed to protect against transients coming in on the power line only. We are mainly concerned with protecting against a lightning strike on the antenna or tower. This requires locating the gas tube as close as possible to the power transformer of the equipment to be protected to eliminate the inductance of the line cord from the ground path for the surge. Installation of a gas tube at this location will give maximum protection against a transient either from the power line or antenna. A set of these suppressors should be installed in each piece of equipment connected to the power line for which protection is desired (fig. 9).

If your station includes a phone patch, a three-element gas tube should also be installed at the point where the telephone line connects to the patch.

concluding remarks

Lightning protection may appear to be a very complicated subject. But the average amateur station can be well protected without an unreasonable investment of time or money. Remember first and foremost that all of these techniques are nothing more than a means of controlling the path that the lightning bolt will take in its unstoppable search for ground. Work out the required protection system for your individual station with this in mind.

references*

8. "High Speed Protection by Three Electrode Arrestors," TII Corporation, Section 3.4.3.

*A complete bibliography of material on lightning protection is available from ham radio and will be sent to interested readers upon receipt of a self-addressed, stamped envelope. Editor
solar-powered repeater design

Why use antiquated methods to power your machine? Here's a strong case for using solar power — it's inexpensive and effective.

In this article we provide the repeater-system designer with useful information about using solar power. The information is based on acceptable criteria for designing commercial solar-power systems and is supported by empirical data obtained in the actual operation of a repeater. The WR5ARO 19-79 solar-powered repeater is on Redondo Peak, New Mexico. It was built using the principles outlined below.

Solar systems to provide power for remote radio sites are not new. Recent advances in technology, and a national concern for conserving our energy resources, have brought recognition to solar power as a useful energy source. For remote sites, solar power is one of the few economically feasible power sources. As with other electronic devices, demand and popularity will reduce the price of solar-powered generators from its presently high level to one within the means of most amateurs. Based on projected technology, cost reductions of 50:1 are possible in the near future. This would put the price of a useful solar electric generator not far above the cost of a good, well-regulated bench-type power supply of equivalent capability. Solar power provides good mechanical reliability (no moving parts), good dependability (with proper array sizing), and an attractive price (considering the alternatives). First, some background.

photovoltaic cells

Silicon solar cells are P-N diodes whose photovoltaic characteristics (ability to produce electricity when exposed to light) have been optimized. Peak-current output occurs when the cell is exposed to direct, unrestricted sunlight that has an intensity of 100 mW per cm².²

The rated output current of a solar array is directly proportional to light intensity. Therefore, at 50 mW/cm² the array output current is 50 per cent of the peak rated current. The output current capability of a single solar cell is a function of the cell cross-sectional area. Solar-cell output voltage is independent of cell size. Output voltage is constant from 10 mW/cm² to 100 mW/cm². The equivalent circuit to a solar cell is a constant-current generator with voltage limiting. A typical solar array I/V curve is shown in fig. 1.

array sizing

Solar cells are connected in series to provide the required voltage and are connected in parallel to provide the required current. Array specifications are given as a peak value. Since the manufacturer has no control over the amount of sunlight available, array specifications are relative to peak sunlight (100 mW/cm²). It's the responsibility of the system designer to derate the peak specifications to an average value specific for the site.

Most solar arrays come from the manufacturer with enough cells connected in series to be optimum for charging batteries. Consequently, the system designer need be concerned only with the peak current available and the derating necessary to provide some average charging current. The amount of de-

fig. 1. Typical I/V curve of nominal 12V solar array. The curve approximates that of a constant-current power supply with voltage limiting.

rating is a function of the solar-cell insolation at the site.

solar insolation

A number of variables influence the amount of sunlight that strikes the Earth's surface. Among the most important are elevation, cloud cover, atmospheric water content, pollutant level, the sun's incident angle, and the solar-day length. All these factors affect the amount of available sunlight. The amount of sunlight striking the Earth's surface is called insolation. Solar insolation data is given in many different quantities, such as Langley's and kilojoules per square centimeter. The mentioned quantities are usually given for one year; thus the quantities are units of energy. Since solar electric generation is an integrating process, it's permissible to use the average yearly insolation figure to size the solar array. This is true if the average yearly discharge rate of the repeater is also used.

Solar insolation data for Redondo Peak, New Mexico, was found to be 750 kJ/cm² per year. This gives an average solar intensity of about 23 mW/cm². The average current available at this site is, then, about 23 per cent of the peak current available from the solar array. Fig. 2 shows average solar intensities for the continental United States.

storage devices

To make power available to the repeater during hours of darkness and foul weather, some type of storage device is used to hold energy collected during hours of daylight and good weather. A battery of some type is almost always used. The capacity of the battery must be large enough to carry the system through extended periods of poor weather and through the shorter days of winter. Battery capacity is relatively independent of array size. Generally, storage capacity is about ten days. The battery is the true power source for the repeater. It should be selected with care.

High-capacity, lead-acid automotive batteries should be avoided. This type of battery is designed to provide large amounts of current for short periods of time. To accomplish this, the battery must have a low internal impedance. High leakage currents occur

Co-author WB5RSN makes final angle adjustments to solar array that powers the 19-79 repeater on Redondo Peak, New Mexico (3433 meters, 11,254 feet). The array is mounted at 17 meters (56 feet) to prevent shading from nearby trees.
in this type of design. A good-quality, electronic-grade rechargeable battery would be a better choice. Lead-calcium and gelled-electrolyte batteries, as well as telephone-type "wet" cells, are also good choices. Nickel-cadmiums aren't recommended because of their tempermental characteristics. Remember that most of the vagaries of these cells were discovered in space satellite power systems where solar cells were used to charge them.

voltage regulation

Solar generators normally provide more charging current than a fully charged battery can safely tolerate. To prevent damage to the battery, a voltage regulator is used to limit the charge voltage to a safe level. The circuit shown in fig. 3 is a simple shunt-type regulator. The series diode prevents the array from discharging the battery during hours of darkness. The diode is also a reverse-bias switch that allows the shunt resistor to absorb the excess power generated. The regulator receives its power directly from the array and therefore does not draw power from the battery. Some battery current is used by the regulator for voltage sampling, but this current is very low.

One of the important characteristics of this type of regulator is its negative temperature characteristic. Simple zener regulators have a positive temperature coefficient, which causes the battery to overcharge in the summer and undercharge in the winter. The opposite characteristics are desirable. Failure modes have been arranged to cause an open circuit in the shunt element, thus permitting the array to charge the battery in the event of a regulator failure. Battery status can be monitored by occasional on-site check-ups or by telemetry.

array orientation

Proper array orientation is required to provide maximum power output during the year. Peak output occurs when the sun's rays are at normal incidence to the array plane. To obtain maximum output, the array is oriented true south (north in the Southern Hemisphere) and inclined from horizontal to an angle approximately equal to the latitude at which the site is located. This angle is then increased a few degrees to optimize the array for the winter months when the days are shorter and the sun is at a lower angle. Solar intensity is constant at all times of the year, but the
NOTES
1. RESISTANCE IN OHMS, K=1000, 1/2 WATT UNLESS SPECIFIED OTHERWISE.
2. R6, R4 ARE METAL FILM, 5% Tolerance.
3. CAPACITANCE IN uF.
4. R5, R5 SET FOR APPROXIMATELY 4 WATTS WITH LOAD AND BATTERY DISCONNECTED.
5. SCR IS SPECIAL LOW FORWARD DROP DEVICE.

fig. 3. Voltage regulator protects the battery from overcharging. Diode CR2 prevents the battery from discharging through the array during hours of darkness (Courtesy Solar Power Corporation).

solar day is shorter in the winter; hence, the net accumulated energy is lower. Fortunately, the solar array generates more power at lower temperatures, thus offsetting some of the loss.

A tracking array could be designed to follow the sun, but the additional power generated would probably be consumed by the tracking system. Reduced reliability would also be introduced into the system because of the mechanical components. In short, tracking systems are not a good investment at this time.

equipment selection

The cost of solar systems requires that detailed attention be given to operating power requirements and system power overhead. Ideally, the system would draw no power during standby and would convert all current consumed by the transmitter into rf power. Of course, this isn’t possible; therefore, the system designer must minimize repeater standby current and maximize transmitter efficiency. Obviously, vacuum-tube equipment can’t be used. Surprisingly, most available solid-state, base-station equipment isn’t sufficiently efficient to be considered. Solid-state mobile or portable equipment is a good choice, because it lacks many of the frills found in base-station equipment. Pilot lamps and similar amenities should be powered down or disconnected. Logic circuits should draw a minimum of power. CMOS devices can operate at high-voltage levels with amazingly low current consumption. The WR5AR0 identifier is built with CMOS and draws about 50 μA. Likewise, the COR, control circuitry, supervisor, and timers all combined draw less than 1 mA.

Reasonable numbers to achieve in equipment design or selection are idle currents (total) of 5-20 mA and transmitter efficiencies of 60 per cent. Under these circumstances, the size of the solar array will be a direct function of the transmitter output power.

If operation below 0°C is anticipated, extended temperature devices are required. It’s wise to make sure that the circuitry will operate over the expected temperature extremes.

critical parameters

The most difficult data to obtain in designing a solar-powered repeater is the time the repeater is actually on the air. The time that the repeater is used varies from location to location and is also determined, to a great extent by the number of other repeaters in the area. The transmit time and transmitter power output will directly determine the size of the solar array. A mistake made in this estimate could be very costly; over-estimation is expensive; under-estimation is embarrassing. The best estimate can be obtained by timing the repeater use. The data should be accumulated for as long a period as possible. Ideally the period measured should be one year; this measurement will average out the concentrated operating times, seasonal variations, and other factors.

If the repeater is to cover an area not presently covered by an existing repeater, an arbitrary decision should be made regarding the length of time the transmitter will be in use. When the repeater has been in service for a period of time, the amount of its use can be determined. The transmitter output power can then be adjusted upward or downward to
design procedure

Designing a solar power supply for a repeater isn’t difficult. Remember that solar energy collection is a cumulative process. Its occurrence is very regular and very predictable. Year-to-year variations are less than 10 per cent. Repeater use must be averaged to fit the collection criteria. The battery capacity is selected to be adequate to equalize the short-term variations in repeater use and local weather phenomena, which are highly unpredictable. The steps necessary for design are as follows:

1. Determine solar insolation for the proposed site. Source data can be obtained from sources listed at the end of this article. Fig. 2 may be consulted directly.

2. Determine continuous idle current, multiply by 24 hours to determine the daily idle current ampere-hours.

3. Determine the transmitter current; multiply it by the transmitter on time to determine the daily average transmitter ampere-hours.

4. Average the repeater load over a 24-hour period. Then, divide the idle ampere-hours plus the transmit ampere-hours by 24. This is the average load current. This number must be less than the average charge current as supplied by the array.

5. Determine the peak-panel output. The average solar intensity should be found (step 1) and divided into the average daily load current. Remember that if the average intensity is 22 mW/cm², then the average current available from a solar panel will be 22 per cent of the peak.

6. Calculate the “no-sun” storage requirement of the battery. Ten days of storage is an average number. Multiply the total ampere-hour load (steps 2 and 3) by ten to obtain the battery capacity.

Note that nothing has been said about battery-charging efficiency. Battery efficiency cancels, because the charging voltage is greater than the discharge voltage. The solar array provides the additional charging voltage required by design, with no sacrifice in performance. This assumption is valid if the internal leakage of the battery is not great (less than 3-5 per cent per month).

conclusions

Solar power is useful in providing adequate power to operate a radio repeater if care is used in designing the system. The designer has a wide latitude of op-
tions available. Enough considerations have been
given to demonstrate that gross overdesign of a
solar-power generator is not necessary. Attention to
details and careful consideration of all available op-
tions will produce an economical design.

The Redondo Peak repeater has been in full solar-
power operation since June 18, 1977. There has been
no down time. A system checkout on December 16,
1977, showed that the solar array was generating its
rated power output and the battery was fully charged.

The cost of the solar generator, when averaged
over its 20-year life, comes to about $35 per year.
This number compares quite favorably with the price
charged to many mountain-top customers for similar
power. As the price of solar power drops, so will the
yearly cost for power generated by this means. In to-
day’s energy-cost spiral, solar power will become
very attractive in the near future.

bibliography
1. “Solar Electric Generator Systems, Principles of Operation and Design
Concepts,” Solar Power Corporation, 5 Executive Park Drive, North
Billerica, Massachusetts 01862.
Office.
3. “Annual Solar Radiation in kJ/cm²,” map from Sensor Technology, Inc.

appendix
WR5ARO
Specifications
idle current (mA) 12.
transmit current (A) 1.07.
operation design average daily use 2.5 hours per day.
transmitter power output (W) 9.5.
effective radiated power (W) 35.
solar array source Solar Power Corporation
battery source Globe Union Gel Cel 40 A-h
(2 each GC12200).
environmental characteristics
elevation 3.43 km (11,254 feet).
temperature -34°C to 38°C
(-30°F to 100°F), solar insolation
750 kJ/cm²/year, average solar in-
tensity 23.7 mW/cm², rainfall 46
46 cm (18 inches) per year, snowfall
91 cm (36 inches) per year.

Sample Calculations Using WR5ARO Data
Step 1 Solar insolation data = 750 kJ/cm²/yr = 23.7 mW/cm².
Step 2 Continuous load = 0.012 A x 24 hrs = 0.288 A-h.
Step 3 Intermittent load = 1.07 A x 2.5 hrs = 2.675 A-h.
Step 4 Daily average load = 2.963 A-h/24 hrs = 0.123 A.
Step 5 Peak panel output = 0.123 A + 10 per cent/(23.7
mW/cm²/100) = 0.570 A peak.
Step 6 Storage Capacity = 2.963 A-h x 10 days = 29.63 A-h
battery. (Add some additional capacity to prevent freezing
in the winter).

ham radio

Dozens of Distributors offer you a selection of
YAESU products. Some might even quote
you a slightly lower price. But—no one can
serve you better than Clegg when you
choose any item from YAESSU's extensive
product line. Because:

1. We have YAESSU products in stock.
2. We know YAESSU products inside
and out.
3. We service all YAESSU products.
If you are considering upgrading your sta-
tion with a new YAESSU FT901—or an FT-
225RD—or an FT301—or merely a YAESSU
clock—call us TOLL FREE today.
YAESSU and Clegg guarantee your satisfac-
tion with the product and with the service.

To expedite our service to you, we have
departmentalized our telephone sys-
tem! Call Clegg for YAESSU or any other
requirement for your station.

ORDERS AND QUOTES:
TOLL FREE 1-800-233-0250
SERVICE DEPARTMENT:
TOLL FREE 1-800-233-0337
ENGINEERING, PURCHASING,
ADMINISTRATION AND ACCOUNTING:
1-717-299-7221

Communications Corp
1911 Old Homestead Lane
Greenfield Industrial Park East
Lancaster, PA 17601

december 1978 [p] 33
universal digital readout

A universal digital readout system featuring reduced ambiguity, high input frequency, and low power consumption.

This article describes a relatively simple design for a digital dial that evolved over several years of building and improving. For easy home duplication, it uses a minimum number of specially selected components. It is adaptable to virtually all types of short-wave equipment. Options are also described for low-power operation and reduced last-digit flicker.

The counter is connected to the vfo of the equipment and preset to the i-f, or the complement of the i-f. It is wired to count up or down depending on the internal frequency scheme of the equipment. It is even possible, without knowing these parameters, to set up the counter using only one calibration point and check whether the frequency indication moves in the right direction.

This counter has a 35-MHz capability, and thus covers the entire conventional shortwave range (3 to 30 MHz). It is therefore possible to measure the frequency that is generated by the premixing scheme in Drake equipment.

counter components

counter and readout. The basic four-digit counter consists of four low-power Schottky BCD counters, the 74LS190 (see fig. 1). The BCD outputs of the counters are connected to special LED readouts which contain an internal latch/decoder. The readouts, HP-type 7300, are somewhat expensive. However, for the home brewer they immensely simplify construction.

As mentioned, the counter reads only the four most significant digits, since the MHz digits have always been read from the band switch in the past. Plus, the complexity of added digits might make the job more than the average ham would want for a home project. The motto here is keep it simple.

time base. The time base is a very simple circuit. It consists of a single IC (CD4060) and a crystal, a trimmer capacitor, and a resistor. The IC contains the necessary amplifiers for a crystal oscillator and 14 divide-by-2 stages. At the output of the last stage, labeled Q14, the oscillator frequency has been divided by a factor of 214. Starting with a 409.6-kHz crystal, the final output is a 25-Hz squarewave. This output, plus the 50-Hz squarewave from Q13, are used to generate the necessary counter timing pulses.

counter timing. Operation of a counter generally requires various timing pulses to control the counter. In a conventional counter, the count gate provides a precisely timed interval which allows the number of counts admitted to be equal to the frequency of the signal. Since frequency is measured in terms of events per second, this gate is always a fraction of a second. Or, in this case, where we want to read to hundreds of Hz, the gate is exactly 0.01 second long. Other pulses are required for presetting the counter to a fixed starting number (frequency) and for transferring the final count to the readouts.

fig. 1. Simplified block diagram of the universal digital readout.

The count gate, the display, and the preset pulse are all derived from the two squarewaves provided by the time base (see fig. 2). The first two gates connected to the CD4060 buffer the CMOS outputs of the time base.

preamplifier. A preamplifier, though not always necessary, is a good idea. It not only increases sensi-

By Gerd Schrick, WB8IFM, 4741 Harlou Drive, Dayton, Ohio 45432
fig. 2. Schematic diagram of the three different timebase versions. In A, the count gate is actually enabled for 20 ms, but since the counters are held in the preset state for the first 10 ms, the time that the counters are allowed to be clocked is 10 ms. The low-power version, B, runs the display at a 25 per cent duty cycle. For the low-ambiguity version, C, the crystal is changed to 204.8 kHz, effectively quadrupling the count gate to 40 ms.

last digit ambiguity
The problem last-digit ambiguity arises from the fact that the count gate, as generated from the crystal oscillator, is not synchronized to the incoming frequency. The gate will sometimes accept an additional count, changing the digit, for example, from a 5 to a 6. This is the well-publicized ±1 digit ambiguity that digital counters exhibit. One way of overcoming this ambiguity is to increase the number of digits counted, yet only display a limited number. This, in effect, is the same as simply covering the blinking digit.

tivity but also acts as a buffer, reducing possible spurious responses in the receiver generated by the timing pulses. A single transistor, as shown in fig. 3, is used in common-emitter configuration. The sensitivity is better than 50 mV RMS from 100 kHz to 30 MHz. The maximum voltage is about 1 volt RMS.

power supply. The digital dial, using mainly TTL-devices, requires a 5-volt dc power source. The current, depending on the desired version, will range from 170 mA for battery-powered equipment to 500 mA for the low-ambiguity 100 per cent display version.
The conventional counter can achieve the additional counts only by lengthening the gate; if we consider another decade, the count gate would be 0.1 second, reducing the counter's final update rate to only 6-8 Hz. It is still possible, using the memory capability of the readout, to obtain a blink free and almost instantaneous update when turning the dial of the VFO.

However, it is not actually necessary to add a complete decade to the counter; any integer will do. How then is the ambiguity affected by the addition of the new counter? In reality, it never goes away. What does happen is that the probability that the \(\pm 1 \) ambiguity will occur is reduced by the reciprocal of the additional factor. For example, if you add a divide-by-two, the probability will be reduced by 1/2, or 50 per cent; for a divide-by-four it will be 1/4, or 25 per cent. However, for this reduced probability, there is a price that must be paid. The count gate will have to be lengthened by the same factor.

programming

To program the counters, the individual load lines, labeled \(D_A, D_B, D_C, D_D \) in fig. 4, are connected according to the required BCD code. To program a 5 into a particular counter, ground the data lines for \(D_B \) and \(D_D \). The other data lines may remain open or connected to +5 volts.

A simple scheme using a single-pole, double-throw switch, as shown in fig. 5, can be used to preset the counter to two different starting frequencies. For more than two positions, a multiple-deck switch would be required.

counter options

standard version. This is the simplest form of the digital dial, with no precounting to reduce ambiguity. The time base generates a 0.01-second gate, giving a readout to the nearest 100 Hz. The display is updated at the rate of 25 Hz, with a display duty cycle of 50 per cent. Power requirements are 5 volts at 300 mA.

low-power version. In this version the time base output is slowed to 0.02 second, permitting the addition of a single divide-by-two counter which reduces the last digit flicker to 50 per cent. The display duty cycle is also reduced, to 25 per cent, giving a somewhat dimmer, but still quite visible, display. The update rate is still 25 times per second. Power consumption is under 1 watt (170 mA at 5 volts).

low-ambiguity version. For a little added complexity, this version is the most useful for fixed-station use. The time base is further slowed to 0.04 second by substituting a 204.8-kHz crystal for the 409.6 crystal. With this change, a divide-by-four prescaler, which reduces the last digit ambiguity to 25 per cent, can be used.

Since the update rate is now only 12.5 Hz, an intolerable flicker would occur if the display were switched at that rate. To eliminate the flicker, the latch in the

fig. 4. Schematic diagram of the four 74LS190 counters and the HP-7300 LEDs. The \(R \) line, connected to pin 5 of the 7300s, is used to strobe the latches when used in the low-ambiguity version. Pin 5 of the counters is taken low for up counting, and can be left open to count down.
fig. 5. Example of using a single-pole double-throw switch to select different preset programming. Those lines that are always high are left open, while those that are always low are held low. The switch changes the level into the inputs depending upon the preset value.

7300s is also strobed, giving a 100 per cent display cycle. Even with the bright display power consumption is quite reasonable, 500 mA at 5 volts.

checkout and calibration

With an adequate power supply connected to the counter, checkout and calibration can be completed in a few simple steps:

1. Program the preset inputs according to the required BCD input. For a quick check, the number 7 can be programmed into the counter by grounding all pin 9s.

2. Apply a stable rf signal to the input of the preamplifier. The counter should count either up or down, depending upon the input to the control pin.

3. Next, apply a signal of known frequency (crystal calibrator, for instance). Check the displayed frequency against the input, the preset, and whether the counter was programmed to count up or down.

parts list

Plus:
Standard Version
409.6 kHz crystal
PNP tran.
6200 Res.
Low-Current Version
409.6 kHz crystal
PNP tran.
74LS109 IC
8200 Res.
Low-Ambiguity Version
204.8 kHz crystal
74LS109 IC

| 4 ea 74LS190 | 4 ea HP 7300 Numerical Indicators | 1 ea CD 4060A | 4 ea Resistors 2.2k, 15k, 22k, 33k, 1/4 W | 5 ea Ceramic Cap 2x1, 800p, 360p, 5p, 50/50V | 1 ea Trimmer Cap 35p | 1 ea Rectifier Diode 1A, 50V PIV | 1 ea LM 309 K IC | 1 ea Electrolytic Cap 250 μF 15V |
| div. HW, sockets, chassis, etc.|

If all readings are correct, the counter can then be permanently connected to the receiver.

bibliography

Ham Radio
If you are adventuresome enough to attempt automatic antenna tracking of Oscar, but don’t have the necessary bucks to tie into a computer, this article should be just what you need. Even if mathematics isn’t your strong suit, don’t get discouraged, read on. The formulas for tracking Oscar are not that tough, especially if you apply one of the inexpensive hand calculators. Unfortunately, the main disadvantage of the hand-calculator method is the need to constantly manipulate the buttons, even for information for the Oscar pass. This article will explain my method of solving this problem — automating a small hand-held calculator. I’ll even explain a few ideas for making a complete steering system. That way all you have to do is enter the equator crossing longitude, punch a button when Oscar crosses the equator, and from there on it’s automated all the way.

program explanation

The terms I’ve used in the program (see fig. 1) have been summarized in Table 1. In addition, I’ve assigned line numbers to each program step to make it easier to follow. Actually, the program is divided into six separate parts, each part solving one of the following equations:

1. \[Lat(T) = \sin^{-1}(0.9790 \cdot \sin(3.1319T)) \]
2. \[\cos^{-1}(\cos(3.1319T)/\cos(Lat(T))) + 0.25T + Lo \]
3. \[D = \cos^{-1}(\sin(B + \cos(AsinB) \cos(L))) \]
4. \[Az = \cos^{-1}((\sin(B - \sin(AsinD))/\cos(AsinD)) \]
5. \[El = 90 - \tan^{-1}(4867\sin(D)/(4867\cos(D) - 3957)) \]
6. \[M = (4867\cos(D) - 3957)/\cos(90 - El) \]

Steps 004 through 030 solve eq. 1, 031 to 058 eq. 2, 059 to 108 eq. 3, 109 to 148 eq. 4, 149 to 191 eq. 5, and steps 192 to 203 for eq. 6. Each step is actually a single key-stroke on the calculator. There are several steps that should be briefly explained. This might eliminate program questions as you follow the equations through the program.

Step 000 represents the unit being turned on. In addition, other circuitry resets the external logic back to a common starting point. The one-shot multivibrator which performs the reset function also enables the clock gate. Anytime the clock gate is enabled, the sequencer is allowed to advance to the next program step. If the gate is disabled, the program will stop on that particular step. This is an important feature, as I’ll explain later on.

Steps 001 through 003 merely clear the calculator of any previous computations or stored answers. The calculations are actually done to the limit of the ICs involved, and the answers rounded. For all program steps you’ll notice a listing for type of entry. This notation is explained in Table 2.

Program steps 013 and 014 cause the time since the satellite crossed the equator to be entered into the calculator. This is entered as even minutes and results in a readout for antenna azimuth, elevation, and distance to the satellite for each minute of the pass. In theory, at least, if you provide the correct initial data and accurately enter the time, the calculator could provide information for tracking for the next pass, or even several later passes. This is limited only by the accuracy of the entries you make, and could easily be updated.

The last unusual steps are 038 and 039. In some calculations it is easier to find a denominator before

By Dave Brown, W9CGI, Route 5, Box 39, Noblesville, Indiana 46060
its associated numerator. This leads to dividing the denominator \((d)\) by the numerator \((n)\), or \(d/n\). To get the correct answer \((n/d vs d/n)\), the reciprocal key \((I/X)\) is used after the division answer has been obtained. On my calculator, I have to use the DPS key to access the \(I/X\) function. This accounts for the use of two steps.

circuit description

The heart of the automating device is a 1702A EPROM (see Fig. 2). The program, from Fig. 1, is entered into the PROM such that the outputs, when decoded, will electrically press the appropriate keys on the calculator. For general use, a RAM would be more appropriate, but I wanted to solve one specific problem: the equations necessary to track Oscar.

The 1702A PROM has 256 distinct address locations, enough to handle the 205-step program. Each step of the program represents a sequential binary address in the PROM. As seen in the schematic diagram, 74193, 4-bit binary counters are used to sequentially address the 1702A. I decided to use the

table 1. Definition of terms used in the Calcu-puter program.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Step</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>000</td>
<td>S</td>
</tr>
<tr>
<td>K</td>
<td>001</td>
<td>DPS</td>
</tr>
<tr>
<td>M</td>
<td>002</td>
<td>CLK</td>
</tr>
<tr>
<td>D</td>
<td>004</td>
<td>DPE</td>
</tr>
<tr>
<td>D</td>
<td>005</td>
<td>4</td>
</tr>
<tr>
<td>Co</td>
<td>006</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>007</td>
<td>D</td>
</tr>
<tr>
<td>Co</td>
<td>008</td>
<td>1</td>
</tr>
<tr>
<td>Co</td>
<td>009</td>
<td>3</td>
</tr>
<tr>
<td>Co</td>
<td>010</td>
<td>1</td>
</tr>
<tr>
<td>Co</td>
<td>011</td>
<td>9</td>
</tr>
<tr>
<td>M</td>
<td>012</td>
<td>ENT</td>
</tr>
<tr>
<td>Ti</td>
<td>013</td>
<td>Lat</td>
</tr>
<tr>
<td>Ti</td>
<td>014</td>
<td>3</td>
</tr>
<tr>
<td>Me</td>
<td>015</td>
<td>STO</td>
</tr>
<tr>
<td>Me</td>
<td>016</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>017</td>
<td>X</td>
</tr>
<tr>
<td>Me</td>
<td>018</td>
<td>STO</td>
</tr>
<tr>
<td>Me</td>
<td>019</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>020</td>
<td>SIN</td>
</tr>
<tr>
<td>C</td>
<td>021</td>
<td>DP</td>
</tr>
<tr>
<td>Co</td>
<td>022</td>
<td>5</td>
</tr>
<tr>
<td>Co</td>
<td>023</td>
<td>7</td>
</tr>
<tr>
<td>Co</td>
<td>024</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>026</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>027</td>
<td>INV</td>
</tr>
<tr>
<td>Me</td>
<td>028</td>
<td>SIN</td>
</tr>
<tr>
<td>Me</td>
<td>029</td>
<td>STO</td>
</tr>
<tr>
<td>Me</td>
<td>030</td>
<td>3</td>
</tr>
<tr>
<td>Me</td>
<td>031</td>
<td>COS</td>
</tr>
<tr>
<td>Me</td>
<td>032</td>
<td>STO</td>
</tr>
<tr>
<td>Me</td>
<td>033</td>
<td>4</td>
</tr>
<tr>
<td>Me</td>
<td>035</td>
<td>RCL</td>
</tr>
<tr>
<td>Me</td>
<td>037</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>036</td>
<td>COS</td>
</tr>
<tr>
<td>M</td>
<td>037</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>038</td>
<td>DPS</td>
</tr>
<tr>
<td>K</td>
<td>039</td>
<td>1/X</td>
</tr>
<tr>
<td>T</td>
<td>040</td>
<td>COS</td>
</tr>
<tr>
<td>C</td>
<td>042</td>
<td>DP</td>
</tr>
<tr>
<td>Co</td>
<td>043</td>
<td>2</td>
</tr>
<tr>
<td>Me</td>
<td>044</td>
<td>5</td>
</tr>
<tr>
<td>Me</td>
<td>045</td>
<td>RCL</td>
</tr>
<tr>
<td>Me</td>
<td>046</td>
<td>1</td>
</tr>
<tr>
<td>Me</td>
<td>047</td>
<td>X</td>
</tr>
<tr>
<td>M</td>
<td>048</td>
<td>X</td>
</tr>
<tr>
<td>S</td>
<td>049</td>
<td>EQX 100</td>
</tr>
<tr>
<td>S</td>
<td>050</td>
<td>EQX 10</td>
</tr>
</tbody>
</table>

fig. 1. Program solved by the Calcu-puter. When broken into parts, this program will solve the six equations necessary to track Oscar.
74193 instead of the 7493, taking advantage of the preset capability. This means that the program can be started at any spot by simply entering the correct starting address into the data inputs and momentarily taking load line low. If this capability is not desired, the 7493 could be used.

Eight output lines are available on the 1702A. For direct calculator control, I've only used six of the available outputs. The first four outputs, b₀ to b₃, are used as normal addresses for 74154 one-of-sixteen decoders. The outputs are simultaneously applied to all four decoders. The b₄ and b₅ outputs from the 1702A are also decoded and used to select the appropriate 75154.

The final two outputs, b₆ and b₇, are used as a program stop and program halt. When step 204 is addressed, the output from the PROM will be 01000000. The high level from the b₆ output is detected and
used to stop the program until a new "minutes" time is entered. This is one of the different means of disabling the clock gate. Output \(b_7 \) is programmed in a like manner to provide a high output at step 205. This output will stop the program, regardless of the minutes timer.

Two flip-flops are used for clock gating. As seen in fig. 3, the one-shot multivibrators receive the various start and stop commands. The pulses are then used to trigger the flip-flop into the desired states. In addition, provisions have been made to interface a real-time clock to signify the equator crossing. When you initiate the start command as Oscar crosses the equator, the first flip-flop is set, which in turn sets the second flip-flop. Having both set will enable the clock gate.

I have tried to divide the decoders into a logical order, with DEC1 using the binary codes for number 0 through 9, to directly decode the number informa-

Table 2. Type of entry notation used in the program.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Power on, reset timer (T) and program sequencer to 000, and all readouts to zero</td>
</tr>
<tr>
<td>M</td>
<td>Machine function — CLX, ENT, +, − etc.</td>
</tr>
<tr>
<td>D</td>
<td>Change of decimal point location</td>
</tr>
<tr>
<td>Co</td>
<td>Constants defined by Oscar and put into PROM</td>
</tr>
<tr>
<td>Cq</td>
<td>Constants defined by your QTH and put into your PROM</td>
</tr>
<tr>
<td>Ti</td>
<td>Entry from timer output</td>
</tr>
<tr>
<td>Me</td>
<td>Storage or Recall function to/from memory and number</td>
</tr>
<tr>
<td>T</td>
<td>Trigonometric function (and added delay trigger)</td>
</tr>
<tr>
<td>K</td>
<td>Keyboard shift function (SHIFT that is not DPS)</td>
</tr>
<tr>
<td>S</td>
<td>EQX Longitude entry by switches</td>
</tr>
<tr>
<td>C</td>
<td>Constant (decimal point entry)</td>
</tr>
<tr>
<td>R</td>
<td>Readout Sub-routine function (external to calculator)</td>
</tr>
<tr>
<td>**</td>
<td>Operational system command (Stop, End)</td>
</tr>
<tr>
<td>STOP</td>
<td>Halts calculator until next timer period enters</td>
</tr>
<tr>
<td>END</td>
<td>Detects maximum period of pass elapsed — full stop</td>
</tr>
</tbody>
</table>

Fig. 3. Schematic diagram of the clock gating logic. The actual input clock frequency will depend upon the speed at which your calculator can do the computations. For initial testing, it could be as slow as 1 pulse per second.

A complete listing of the respective decoder addresses is given in **Table 3**. Note that the first address in DEC1 does not have an associated function. This is to prevent a problem when the step 204 and step 205 commands are initiated. If the address were used, you would have a simultaneous key closure in addition to either a stop or halt command.

You'll notice that the only functions in DEC4 are the trig functions. This was done for a very specific reason. In most calculators, depending upon the IC set used, a trigonometric operation will take longer to perform than a basic math function. This was also true in the calculator I used. To overcome the problem, I needed some method of momentarily stopping the program until the calculator had completed the trig operation. Otherwise, the program might have...
advanced several steps without correct data from the trig operation. By placing these operations in DEC4, detecting any 0011xxxx number will automatically indicate that a trig function is present. After the function has been detected, a one-shot disables the clock gate long enough for the calculator to do the computation.

Instead of using this program-delay technique, the time between steps could be made long enough to allow for a trigonometric operation, but this will considerably slow down the time necessary to perform all the calculations. Using the one-shot requires a few more parts, but the tradeoff is worthwhile, considering the time saved.

The GoSub routines, listed in DEC3, are used to output the data from the calculator to external readouts and other external processing. Gating for the GoSub routines is shown in fig. 5, with a quasi-schematic diagram of the readout system shown in fig. 6.

On the subject of the GoSub routines, you'll notice a DPS 0 step just before each GoSub step in the program. This truncates the display to eliminate any numbers to the right of the decimal point, and also shifts the answer to position the units digit on the extreme right of the display.

In the multiplexed displays (as used in my calculator), the same segments of each display are tied together, with a digit strobe activating the appropriate digit. The Calcu-puter, as I've aptly named it, is interfaced to external readouts by connecting the segment information lines and the data strobe lines to external latches. Fig. 6 is not an absolute schematic diagram since the voltage levels and required interface will differ between calculators. You'll also notice the use of digital information to indicate the actual antenna position. This information, combined with the Calcu-puter information, nicely lends itself to completely automated antenna control.

In the multiplexed displays (as used in my calculator), the same segments of each display are tied together, with a digit strobe activating the appropriate digit. The Calcu-puter, as I've aptly named it, is interfaced to external readouts by connecting the segment information lines and the data strobe lines to external latches. Fig. 6 is not an absolute schematic diagram since the voltage levels and required interface will differ between calculators. You'll also notice the use of digital information to indicate the actual antenna position. This information, combined with the Calcu-puter information, nicely lends itself to completely automated antenna control.

In the multiplexed displays (as used in my calculator), the same segments of each display are tied together, with a digit strobe activating the appropriate digit. The Calcu-puter, as I've aptly named it, is interfaced to external readouts by connecting the segment information lines and the data strobe lines to external latches. Fig. 6 is not an absolute schematic diagram since the voltage levels and required interface will differ between calculators. You'll also notice the use of digital information to indicate the actual antenna position. This information, combined with the Calcu-puter information, nicely lends itself to completely automated antenna control.

In the multiplexed displays (as used in my calculator), the same segments of each display are tied together, with a digit strobe activating the appropriate digit. The Calcu-puter, as I've aptly named it, is interfaced to external readouts by connecting the segment information lines and the data strobe lines to external latches. Fig. 6 is not an absolute schematic diagram since the voltage levels and required interface will differ between calculators. You'll also notice the use of digital information to indicate the actual antenna position. This information, combined with the Calcu-puter information, nicely lends itself to completely automated antenna control.
fig. 5. Details of the GoSub routine logic. The output pulse, in conjunction with the digit strobe, is used to enter the output data into the 7475 latches.

decoder. The output from the decoder also drives reed relays connected across the calculator keys.

Fig. 6 shows digital information indicating the actual azimuth and elevation of my antennas. In addition to being applied to the 7485, 4-bit comparators, the information is applied to BCD-to-7 segment decoders and readouts. Also, fig. 7 indicates where decoders could be connected to readout the time since equator crossing. With all the information converted for readouts, I have a panel that shows displays of: azimuth (beam), azimuth (calculated), elevation (beam), elevation (calculated), distance M (calculated), distance M (for later use), time, and sequencer location. The sequencer location was included as a troubleshooting aid should the program ever stop.

Limit switches have been included in my system to stop the antenna from going beyond the prescribed limits. If you run the program only during valid pass times, the program should never produce invalid commands. But, should this ever be a problem, the limit switches will prevent major damage. You can readily see from the readouts where the problems are if they occur.

Trigonometric functions near 0 or 90 degrees, and numbers which result in zero denominators can give the program fits, but there just isn't any easy way around this. I haven't found it to be a problem, however, except on way out, very short passes. A final note on PROM programming: in steps 059-063 and

fig. 6. Quasi-schematic diagram of the readout system used with the Calcu-puter. It will be necessary to insert an interface device between the 7-segment information and the BCD format required by the 7475s. The author uses another 1702A EPROM programmed to do the necessary conversion. An alternate method would be to use the National 74C915 to convert the data. Though not shown in this diagram, the author has also connected decoders and readouts to indicate the actual antenna position. The 7404 buffers between the calculator and the latches may have to be changed depending upon the type of strobe coming from the calculator.
087-092 be sure to enter the latitude and longitude for your location. This will be retained as permanent information in the PROM.

concluding comments

The primary message of this article has been to show you that a complete computer/microprocessor is not required to do simple math problems. The PROM is in a sense a simple BASIC language like no other. It has automated a calculator, providing both for inputting and outputing of data, much in the same way as a full-scale computer.

I did write a program in algebraic notation instead of RPN, but quickly discarded it when I couldn’t find an inexpensive calculator with enough onboard memory. Lacking this capability meant dumping out the interim answers, performing more calculations, and retrieving the interim answers before the final numbers could be outputed. It generally amounted to a lot more hardware, fast approaching a full-blown computer, a mess that I wanted to avoid from the beginning. The APF 55 calculator I finally used was provided by a friend because some of the digit segments would not light. It was about as cheap, and definitely quicker, for him to buy a new calculator and give me his remains! Shop around because the price on some of the very sophisticated units is getting ridiculously low. For that matter, one of the many calculator shops around these days might part with some of their damaged returns, for the right price.

For anyone wishing additional information, a self-addressed, stamped, envelope will bring a quick reply; and any comments on improvements to the system will be welcomed.

references

ham radio
If Santa wants to know what to leave under your tree...
(circle your choice and leave it for Santa to see!)

Santa can call Jim Titus Toll Free 800-523-8998 for more information

A Division of Trevose Electronics, Inc.
4033 Brownsville Rd.
Trevose, PA 19047

FREE UPS SHIPPING ON PREPAID ORDERS

800-523-8998

More Details? CHECK — OFF Page 150
simple video display

Two projects to get you started in building a video display unit using readily available devices.

There has been much recent interest in video display units. They can be used as part of a video typewriter, for putting up displays on ATV and SSTV, and for decoding RTTY and Morse off the air. Most of the displays are complex and expensive. Even the available kits aren’t suitable for those who haven’t had much experience. For normal use you don’t need whole screens full of characters, and the simple 32-character single-line display described here is an excellent beginning for those who would like to play around with an inexpensive video display unit.

description

The heart of the unit is the Fairchild 3258 dot-matrix character generator IC. Externally it’s a 16-pin package (I hate to think what’s inside it!), which accepts ASCII inputs and produces 64 characters on a 5 x 7 dot matrix. Apart from the inputs and outputs, the only other signal connections to the chip are inputs to a clock and a master reset. The chip has an internal clock and addressing system. After the master reset input operates and goes high, the information representing the first row of the character is available after the first clock pulse. Subsequent clock pulses select the next six rows in turn; after that, the outputs are clamped high and the character generator stops until another master reset pulse appears. Thus, if the character-generator clock is pulsed at line frequency, the character will appear on the screen.

experimental system: one character 32 times

Fig. 1 shows the logic diagram of the display unit. Only nine integrated circuits, including the character generator, are required. There is no reference crystal or dividing network. I used a monitor from a non-composite camera and monitor combination and simply fed the horizontal and vertical sync pulses into the VDU. If you wish to use a regular TV set, it’s quite easy to add two 555 timers to provide horizontal and vertical sync pulses. Fig. 2 shows the connections for the monitor, which would be typical, and fig. 3 shows the circuit for the 555 timers required.

system operation

The second half of the 74123 feeds a gate, which feeds a second gate, which in turn feeds back into the 74123. This action sets up an oscillating circuit whose frequency is determined by the 5k pot in the +5-volt line. This frequency is used to step the 74195 shift registers and provides the basic video signal. The character-generator output is loaded into the 74195 shift registers then clocked out in a serial mode at the VIDEO OUT terminals. The J and K inputs of the first shift register cause highs to be entered as the data from the character generator is shifted along. Finally, when the six outputs to the 9007 gate are all high, a low is sent on the MOD 7 counter line, which reloads the shift registers and clocks the horizontal character count 7493 ICs.

By Roy Hartkopf, VK3AOH, 34, Toolangi Road, Alphington, Victoria, Australia 3078
When this action occurs 32 times, the 7493 provides an output to the HORIZONTAL STOP line, which inhibits the 5-MHz oscillator and stops the sequence. This action occupies about two-thirds of a single horizontal line. When the end of the TV line is reached, a horizontal sync pulse operates the first half of the 74123, resetting the 7493 counters, providing a clock pulse to the character generator. This pulse acts to output the information for the next line and resets the 74195 shift registers. The sequence then repeats for the next line.

The character generator automatically blanks out after a complete row of characters has been sent, and if it's required to have more than one row, the 9316 will count the rows and reset the character generator. A vertical sync pulse resets the 9316, so the information is always at the same position on successive frames.

There are no critical adjustments in this circuit. The 25k pot in the first half of the 74123 positions the first character on the left-hand side of the screen, and the 5k pot in the second half opens up or closes the 32-character-length display so it can be spaced evenly across the screen.

The logic shown in fig. 1 will produce a display of one character repeated 32 times across the screen. The character will be determined by the ASCII input to the character generator. For test purposes you can apply a combination of 5-volt and ground inputs as required. This can be treated as a project in itself, so that those who want to take a bit at a time can do this, then go on to the second half of the project.

32 different characters

The logic for the second half of the project is shown in fig. 4 and again is quite simple. Here, the main device is a Fairchild 3349 hex 32-bit static shift register. Like the character generator, the 3349 has a
deceptively simple 16-pin package; and again, there is a complex integrated circuit inside.

Only two signal controls are needed: a clock input and a load/recirculate input. The clock pulse steps the 32 bits in each of the shift registers, which recirculate until the LOAD/RECIRCULATE input goes low. Then new data is accepted and the data at the other end is lost. When the LOAD/RECIRCULATE input goes high again, the 32 bits in each of the six shift registers at that time resume recirculating. To obtain 32 different characters across the screen, the shift registers must present the six new bits to the character generator each time the Mod 7 counter operates so that the shift-register clock is fed from the Mod 7 counter. This action would produce 32 characters, but they would be random characters that happened to come up when the display was first switched on. So we must have some way of putting in the characters we want. This is done by simultaneously presenting the required ASCII code to the shift-register inputs and applying a negative key pulse to the set input of a flip-flop. This action sets the flip-flop output high and puts a high on the data input of a second flip-flop (both halves of a 7474). A pulse from the HORIZONTAL STOP line (at the end of the display of the 32 characters) clocks the second flip-flop. This allows a low to be put on the load input and also operates a gate, allowing an extra clock pulse (from the horizontal sync) to clock the new data into the shift registers. Then, at the end of the horizontal sync pulse, the flip-flops are reset and the 31 old characters and the one new one recirculate until another character is entered.

The two 74121s merely give a controlled-length
fig. 4. Video-display logic for producing 32 different on-line characters. The main device is a Fairchild 3349 hex 32-bit static shift register.

pulse and could be replaced with a resistor-capacitor combination, but they were used because the pulse length is more controllable. Apart from the shift register and flip-flops, the only other ICs are a couple of normal gates. The only other point worth mentioning is that the shift register outputs require external resistors (8.2k) from each output to the -12-volt supply.

construction

Two simple circuit boards about 3 inches (76mm) square will accommodate the entire system, or it can be built on a slightly larger board (fig. 5). It’s a good idea to use sockets for the character generator and the shift register. Sockets for the other devices are a matter of personal preference.

When testing the circuit be very careful not to let the -12-volt supply get into any of the +5 volt TTL devices — it can have disastrous results!

final remarks

This project will give a beginner in this area an insight into the principles of VDUs and provide an excellent starting point for developing something more complex. To keep the project as simple as possible no attempt has been made to eliminate additional lines, so there will be several identical lines of 32 characters across the screen. In practice, they help rather than hinder reading the characters.

ham radio
Never being satisfied with the status quo when it comes to any radio equipment I've ever owned, I eventually succumbed to the urge to modify my recently acquired Collins 32S-1 transmitter. The modifications described here include the following:

1. BFO generation of the CW carrier
2. Voltage regulation of the PTO and HFO
3. Control of the keyed wave shape
4. A spotting switch (CW CAL)
5. The ability to monitor the final-amplifier plate (cathode) currents individually
6. Alterations to the tone oscillator

The modifications were made to bring the performance of the 32S-1 up to the standards of its successor, the 32S-3, without incurring an expenditure of some $300-$400 in the process. Table 1 identifies the components involved in the modifications discussed here. Schematics and parts lists should be changed accordingly to reflect these changes, since removed components will have their identities transferred to newly installed pieces that correlate with those used in the 32S-3.

BFO CW generation

The 32S-1 generates its CW carrier with a tone fed from the tone oscillator through the mechanical filter (much like whistling into the mike or feeding AFSK into the mike jack on RTTY). The frequency of the tone used in the 32S-1 was chosen specifically so that its second harmonic falls well outside the mechanical-filter passband. However a weak residual signal still exists, and it has been heard on occasion at some distance.

The 32S-3, uses the BFO signal to generate the CW carrier, eliminating this residual signal. The resultant on-the-air signal is much cleaner and sounds much more like a true CW signal when compared with that of the 32S-1.

Installing this feature requires extra switching capabilities, which must be performed by the EMISSION switch, S8. The 32S-1 has four wafers on this switch, while the 32S-3 has five. Here are some ways in which this additional switching may be handled; a separate 4 PDT toggle switch may be used; S8 may be entirely replaced; or the existing switch may be disassembled and a new index and wafer added. Although the first possibility was initially pursued, I found it to be inconvenient. The most satisfactory arrangement was to replace the index assembly and add an additional wafer to S8.

The MIC GAIN pot and switch must also be replaced with a new unit using two pots commonly controlled and switch S14. The additional pot controls the cathode bias (CW DRIVE) on the rf amplifier, V6. Both parts are available from Collins; the switch is part no. CPN 259-1628-000 and the dual pot and switch is part no. CPN 376-2648-0000.

First, replace the existing MIC GAIN pot with the new dual unit. Note that space is at a premium, and the possibility of a shorted terminal strip lug exists next to V12. To avoid this, mount a two-lug terminal strip on the opposite side of the crystal board and secure it with the self-tapping screw that holds another two-lug strip. Remove the B+ ends of R60, L20, and the B+ feed wire (green/white) from their original location. Attach them to the new terminal strip. The now empty lug may be bent over to clear the pot and switch R8/S14.

Mount a single-lug terminal strip under the hardware securing the two ground lugs between V13 and V4. Lift C20 (0.01 µF) from ground and connect it to the strip. Route a length of RG-174/U cable from this junction to the vicinity of S8. Lift R39 (V6, pin 7) from ground and connect that end to a single-lug strip that has its ground lug straightened and soldered to the ground shield/barrier across V6. From this same point, run a wire to R8B and install a new R71 (68k/12W) between this lug and the terminal lug near V5 where R29 and R30 (4.7k/2W) connect to the +275-volt line (red/white wire).

From R8B run another wire to S8-B lugs 9 and 10, which are then connected in parallel. In the 32S-1

By Paul K. Pagel, N1FB, 4 Roberts Road, Enfield, Connecticut 06082
these two lugs are empty, as are those on the wafer to which R87 (470 ohms) is attached. Connect the empty lug of R8B to ground.

Connect a 33-ohm resistor (new R70) to V2A pin 9.

Remove the BFO input cable. At this time S8 should be modified or replaced. Assuming the index and wafer are to be replaced and added, remove the switch and thread some bare wire through the rivet holes (which secure the switch contacts on wafers 1 through 4) at two points 180 degrees apart to prevent the spacers from separating from the wafers. Then the existing index may be removed, replaced, and the 5th wafer added with little effort.

Wire the switch as shown in fig. 1. Run a wire from S8B lug 11 (presently empty) to V10 pin 1 to prevent premature VOX relay dropout on CW.

ALC modification

Unlike the 32S-1, the 32S-3 does not use ALC in the CW position. During CW, switch selection S8G-5 grounds the midpoint of ALC capacitors C83 and C142. This change may be added to the modified 32S-1 by simply adding a jumper wire from S8G-1 and -2 to S8G-5 (fig. 2). Now, during CW operation, the GRID CURRENT position (instead of ALC) is monitored, and the MIC GAIN control is adjusted to obtain a grid current reading of 1 to 2 dB on the meter while sending a series of dots.

keying circuit and CW calibrate

The 32S-3 keying circuit provides some manual control of the keyed wave shape, fig. 3. The spotting feature (CW CAL) may be installed coincidentally. The CW CAL function switch should be front-panel mounted for ease of operation. The KEY SHAPE control, R123, may be located under the lid of the 32S-1 exciter on the bracket containing the VOX controls, or a separate bracket can be made and attached to the power-amplifier cage with self-tapping screws. Most of the other components are mounted on the terminal strips from which the 32S-1 keying circuit components will be removed. The addition of a single three-lug terminal strip (center ground) between K1 and V14 ensures that all components are securely mounted.

Table 1. Component identification for the 32S-1 mods described in the text.

<table>
<thead>
<tr>
<th>32S-3</th>
<th>original 32S-1</th>
<th>modified 32S-1</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>C81</td>
<td>not used</td>
<td>C81 0.005 µF</td>
<td>second mixer</td>
</tr>
<tr>
<td>C115</td>
<td>C115 0.01 µF</td>
<td>C115 0.33 µF</td>
<td>keying circuit</td>
</tr>
<tr>
<td>R17</td>
<td>R17 33k/1W</td>
<td>R17 5k/10W</td>
<td>voltage regulator</td>
</tr>
<tr>
<td>R70</td>
<td>R70 470k/1/2W</td>
<td>R70 33 ohm/1/2W V2A</td>
<td></td>
</tr>
<tr>
<td>R71</td>
<td>R71 470k/1/2W</td>
<td>R71 68k/2W</td>
<td>B+</td>
</tr>
</tbody>
</table>

fig. 1. Schematic of the BFO generated CW showing modification of switch S8 to eliminate the weak residual signal in the 32S-1 when in the CW mode.

R70, R71, and R72 may be removed from the terminal strips at the bottom left of the chassis and R125 mounted in place of R72; R126 in place of R71; and R124 in place of R70. Remove relay K1's lead and mount it onto the newly installed terminal strip.

Instead of using the multiple-leaf switch and 250k pot arrangement of the 32S-3 for the CW CAL function, a fixed resistor and three-pole rotary switch were used (fig. 4). The rotary (or toggle) switch has a more positive action and doesn't require constant depression to activate the desired function. A value of 68k resulted in a satisfactory over-all spotting level and this resistor was secured to the two innermost lugs of a 5-lug (center-ground) terminal strip mounted with its ground lug soldered to the ground lug of the strip behind K1 and at right angles to it. (The other lugs will be used in the regulated voltage modification.)

Mount the 3PDT switch (S13) on the front panel between the FREQUENCY CONTROL and MIC GAIN shafts. Center the holes 87 mm (3-7/16 inches) from the top of the panel. If done carefully it will appear to have been factory installed.

For ease of wiring and installation I recommend that the FREQUENCY CONTROL switch be temporarily removed. Unsolder and tie back the green/white...
wire at S9E-1. Wire the remaining circuit according to fig. 4.

In operation the transmitter must be properly tuned for CW operation for the CW CAL function to be enabled; it will not work on ssb.

The KEY SHAPE control (R123) should be adjusted to eliminate key clicks created by the rapid rise of the keyed signal. The effect of this control will be fully appreciated when the transmitted signal is monitored on an oscilloscope. The control should be adjusted to round the leading edge of the waveshape slightly.

Additional shaping of the waveform on the trailing edge may be accomplished by adding capacitance in two places: between the key line to ground and between the junction of R33/R37 and ground in the freed socket V13, which was used to hold an OA2 tube to supply the regulated voltage for the oscillators. I found it simpler to use a 140-volt, 10-watt zener (1N3010A) for the regulator. They are inexpensive and eliminate the need to free V-13's socket, with the problems of rewiring the ALC circuit and finding space for more parts.

An advantage of the zener is its ease of mounting. Mount CR9 (fig. 6) on the perforated wall of the bottom side of the power-amplifier cage by enlarging one of the holes to accept the 10-32 threaded stud of CR9. Mount a dropping resistor (new R17, 5k/10W) on the terminal strip installed previously to the rear of K1. (Note: The original R17 must be removed according to the following steps.)

A convenient source of +275 volts is the terminal of C137 on the PA-cage wall; it has the 100-ohm/1/2-W resistor attached.

Modify the PTO and HFO circuit as follows. Remove the original R17 (33k/1W) and substitute

In the 32S-3, the 6AL5 ALC rectifier was deleted and solid-state devices used in the ALC circuit. This

first mixer, V5. Some experimentation should provide a wave with the desired characteristics, with values of 0.025 \(\mu F \) (C115-A) and 0.005 \(\mu F \) (C81) being a good starting point in their respective positions. See fig. 5.

A difference will be noticed between on-the-air signals when using a transistor-output keyer versus a bug or relay-output keyer; the transistor provides a softer signal and you might use considerably more key-line capacitance with a bug or relay-output keyer, depending on personal preference and speed. Too much capacitance at high speeds tends to slur the code elements.

Voltage regulation

In the 32S-3, the 6AL5 ALC rectifier was deleted and solid-state devices used in the ALC circuit. This
fig. 6. Regulated-voltage modifications. A 140-volt, 10-watt zener replaces the old OA2 regulator. This change is even simpler than that in the 32S-3 (see text).

L22 (2-mH). R17 is located close to C57 and the shield can. Run a wire from CR9 past the crystal board and up through the grommet to S9. At S9, locate the red/white/green/blue wire that connects to L22’s B+ end. Cut the black jumper connecting the two S9 wafers (+275 volts) and attach the +140-volt line to the commoned lugs 3 and 4, TRANS VFO and SYNC (fig. 6).

One of the two green/white wires on S9’s rear wafer supplies +275 volts to the HFO, V12. Locate this wire, disconnect it at S9 rear, and move it to the +140-volt line on lugs 3 and 4. Disconnect R60 (47k) completely. Install L23 (1 mH) in its place. This completes this modification.

tone-oscillator changes

Both before and after the modifications described, an unwanted high-frequency oscillation was audible. I found it necessary to add 0.1 μF of capacitance between V11 screen and ground in parallel with C107.

Since the tone oscillator no longer supplies the on-the-air CW signal, its frequency may be altered to provide a more pleasant monitoring note. This note is purely a matter of personal preference, so some experimentation may be necessary. In my case, a 100-pF mica capacitor was paralleled with C110.

separate plate-current monitoring of the power amp

Unsolder R52 (1k). (Note: This value may differ from unit to unit.) R52 is attached to the copper strap joining the cathode pins of the two 6146s. Cut and remove the strap from between the tubes. Attach a length of hookup wire to each of the pins from which the strap was removed and route them toward the perforated wall of the PA cage. Mount a 4-lug termi-
Santa knows he can get terrific package deals at Hamtronics. All the famous brand names in Transceivers, Receivers, HF, VHF-UHF, FM equipment. The latest in Antennas, Rotors, Towers and all the necessary accessories.

Santa’s so shrewd, even his own personal station could have been bought at Hamtronics.
for a lot less than he'd pay at the dealer closest to home — the North Pole! Why not take a tip from Santa, shop Hamtronics, today.

Just for openers... look at these exciting stocking deals at prices so low they won't leave you hanging after Christmas!

Package Stocking #1
Buy a TS820S for $1249.00 and receive a $200.00 credit towards another purchase.

Package Stocking #2
Buy a TS520S for $799.00 and receive a $100.00 credit towards another purchase.

Package Stocking #3
Buy a Yaesu FT901 DM for $1459.00 and receive a $200.00 credit towards another purchase.

A Division of Trevose Electronics, Inc. 4033 Brownsville Rd. Trevose, PA 19047

TOLL FREE QUOTES 800-523-8998
OMNI—THE ALL-INCLUSIVE. Because OMNI has it all. Designed to give you every advantage, every capability, whatever your operating specialty. Designed to give you new conveniences and new levels of performance. Designed to give you the world of Amateur Radio with a world of difference—the OMNI world of unique features. An unusual combination not found in any other.

FUNCTIONAL STYLING. The “look” you requested. “Clamshell” aluminum case clad in textured black vinyl. Complementary nonreflective warm dark metal front panel. Extruded satin aluminum trim bezel and tilt ball. Convenient controls. Fully shielded. And everything in a larger, easier to use size: 5 ¾” h x 14 ½” w x 14” d.

TOTALLY SOLID-STATE. Sharing the TEN-TEC heritage of solid-state design leadership with its companion transceivers, the highly successful 540/544, OMNI has all the advantages of proven solid-state technology—reliability, long life, cool performance, better stability.

8-BANDS. The world now and in the future. OMNI covers 160, 80, 40, 20, 15, and 10 meters now (crystals included for all present Amateur bands. And it has convertible 10 MHz and “AUX” band positions for the future.

BROADBAND DESIGN. Permits changing bands without tune-up, without danger of out-of-resonance damage to the final stage.

ANALOG OR DIGITAL READOUTS. OMNI-A features an analog dial with 1 kHz dial markings. OMNI-D has 0.43” LED readouts with the 5 most significant in red and the 6th in green to show 100 Hz increments.

BUILT-IN VOX AND PTT. Smooth VOX action with 3 easy-to-adjust front panel controls. PTT control is available at both front and rear panel jacks; an external microphone switch may be used.

BUILT-IN SQUELCH. Unusual in an hf rig, but handy for tuning or monitoring for a net or sked.

5-Pole CRYSTAL FILTER. 2.4 kHz bandwidth. 1.8 shape factor.

SEPARATE MODE SWITCH. Permits using all filters in any mode.

2-SPEED BREAK-IN. Switch to “fast” or “slow” receiver muting to accommodate any band condition or mobile operating.

RANGE OFFSET TUNING. Switch-select the ±5 kHz range for off-frequency DX work or the ±0.5 kHz range for fine tuning.

OPTIMIZED RECEIVER SENSITIVITY. Ranges from 2 µV on 160 m to 0.3 µV on 10 m (10 dB S+N/N) to achieve ideal balance between dynamic range and sensitivity.

GREATER DYNAMIC RANGE. Typically exceeds 90 dB to reduce possible overload from nearby stations. Also includes switchable 18 dB PIN diode attenuator for additional overload prevention.

WWW RECESSION. On the 10 MHz band switch position.

BUILT-IN PHONE PATCH JACKS. Provide interface to speaker and microphone audio signals for phone patch connection.

BUILT-IN “TIMED” CRYSTAL CALIBRATOR. In the OMNI-A a pulsed 25 kHz calibrator desensitizes the receiver and provides an automatic 5 to 10 second “on” time for easy two-hand dial skirt adjustment.

BUILT-IN ZERO BEAT SWITCH. Permits placing your transmitted signal exactly on the listening frequencies of CW stations.

BUILT-IN SWR BRIDGE. The “S” meter electronically switches to read SWR every time you transmit to provide a continuous antenna check.

FRONT PANEL MICROPHONE AND PHONE JACKS. ADJUSTABLE AUTOMATIC LEVEL CONTROL. For setting output power level from low power to full output, for retaining low distortion at desired drive power to linear amplifier.

ADJUSTABLE REceiving ANTENNA CAPABILITY. Rear panel switch and jack connect receiving section to common antenna or separate receiving antenna. Also acts as receiving antenna by-pass when used with instant break-in linear amplifiers.

BUILT-IN ADJUSTABLE SIDETONE. Variable pitch and volume.

DUAL COMPRESSION-LOADED SPEAKERS. Larger sound output, lower distortion, no external speaker needed.

POWER INPUT. 200 watts when used with 50 ohm load. Proven, conservatively-rated, solid-state final amplifier design with full warranty for first year and pro-rata warranty for 5 additional years.

100% DUTY CYCLE. Ideal for RTTY, SSTV, or sustained hard usage.

PLUG-IN CIRCUIT BOARDS. For fast, easy field service.

Power. Basic 12 VDC operation for convenient mobile use; external supply required for 117 VAC operation.

OPTIONAL ACCESSORIES. An all-inclusive as OMNI is, there are a few options. Model 645 Keyer, 243 Remote VFO, 248 Noise Blanker, 252M Power Supply.

Model 545 OMNI-A $899 Model 546 OMNI-D $1069

Experience the world of difference of OMNI, see your TEN-TEC dealer or write for details.
top-loaded
delta loop antenna

Design and construction of an efficient, low-frequency, vertically polarized antenna using wire elements

The vertically polarized full-wave loop has emerged as a popular antenna on the low-frequency bands. The most common form of this antenna is the triangular (delta) loop with one of its vertices pointing skyward. Such an antenna can be suspended from a single point located on a tower or a tree.

On the 80- and 160-meter bands, height limitations can reduce the effectiveness of the delta loop. This article describes a method for reducing this problem by means of an easily implemented loading procedure. The case of a support height of 20 meters (65 feet) for an 80-meter antenna is shown in fig. 1. An interesting aspect of this comparison is that the top-loaded delta loop fig. 1B (TLDL) has more gain than a full delta loop. Experience since the end of 1976 at W1DTV has been that the antenna performs as well as an inverted V for short-range contacts and provides one to two S units better performance for DX contacts. In this article, I discuss the evolution of the TLDL and provide detailed design information for an 80-meter TLDL.

Two kinds of vertically polarized antennas are in

The delta loop antenna is an interesting cousin of the popular inverted-V dipole. It has been around for quite a while and yet provides some pleasant surprises. For those interested in tracing its background I have provided references 1 and 2. Reference 1 is particularly informative and provides polar diagrams of the delta radiation pattern in three planes together with supporting mathematics. These references are available in most of the libraries in large cities.

By Frank J. Witt, W1DTV, 20 Chatham Road, Andover, Massachusetts 01810

Homebrew matching transformer for the top-loaded delta loop antenna.
common use on the low-frequency bands. One type is suspended above ground and fed directly; the other is erected from ground level and excitation occurs between ground or a simulated ground plane and the antenna. Both antennas would benefit from a highly conductive ground; but in the latter case, since ground resistance appears in series with the antenna at the drive point, efficiency is highly dependent on ground conditions. Therefore, the more successful monopole installations are those that use many radials. The TLDL is not fed against ground and hence ground plays only the role of a reflector. This is also true of full delta loops and sloping dipoles. Experience has shown that impressive performance may be obtained with such antennas without an elaborate system of radials.

evolution of the top-loaded delta loop

The signal at a distant point from a part of a transmitting antenna is proportional to the current in that part of the antenna. For a half-wave dipole, for instance, maximum radiation is received from the center of the dipole, where the current is greatest. The radiated contribution from the ends of the antenna is negligible.

The TLDL concept resulted from a recognition of the fact that for a conventional, vertically polarized delta loop, much of the antenna where high currents exist is horizontal and near ground. The objective of the TLDL design is to get these parts of the antenna away from ground and at least partly vertically oriented to increase antenna gain. **Fig. 2A** shows a typical vertically polarized conventional delta loop designed for 3.825 MHz. Actually, this antenna can only be said to be mostly vertically polarized because of the position of the feed point. True vertical polarization (in a direction perpendicular to the plane of the loop, i.e., the direction of maximum gain) is obtained when the feed point is one-quarter wavelength away from the peak of the triangle as shown in **fig. 2B**. You can see that the polarization is vertical by noting the current flow; the vertical components from the currents in the two upper sides of the triangle add, while the horizontal components cancel.

The objective of the loading is to "lift" the current nodes higher in the vertical space available for the antenna and to make the vertically radiating sides of the antenna more vertical. Both actions will increase

fig. 1. An 80-meter delta-loop antenna with apex at 20 meters (65 feet). **Sketch A** shows the classic delta loop for 3.825 MHz; **B** shows a top-loaded delta loop for the same resonant frequency. Loading-stub dimensions are discussed in the text.

fig. 2. **Physical dimensions of a typical corner-fed delta loop antenna (A).** True vertical polarization occurs when the feedpoint is one-quarter wavelength from the apex (B). **Sketch C** shows current distribution.
the low-angle gain for vertically polarized signals. The derivation of the TLDL from a conventional delta loop is shown in fig. 3.

The feedpoint resistance for both a conventional delta loop and a TLDL has been measured at W1DTV to be 130 ohms. From this information and from the

geometry of the two antennas (and if one assumes sinusoidal current distribution), the TLDL has a gain of 2.3 dB over a conventional delta loop. The dimensions of fig. 1 have been assumed for this calculation. See reference 3 and fig. 4 for an explanation of the methods used to arrive at this result.

The TLDL is truly vertically polarized in a direction perpendicular to the plane of the loop. It is mostly vertically polarized in other directions and exhibits an almost omnidirectional pattern.

loading stub

The loading (or matching) stub is shown in fig. 3 to be horizontal, but this is rarely possible. At W1DTV it runs to the farthest point on the property and makes about a 60-degree angle with the plane of the loop. The stub should be λ/8 or 9.8 meters (32 feet) at 3.825 MHz. However, it was necessary to lengthen it to 13 meters (43 feet) for resonance at that frequency. The probable reason for this is that the stub is severely folded back toward the loop; the consequent detuning is overcome by lengthening the stub. This effect is observed in inverted V antennas, where the length must be made longer than would be necessary for a straight dipole.

The stub could be added on both sides of the loop as shown in fig. 4. This would virtually eliminate the effect of the stub on the radiated pattern. This method hasn't been tried, and the practical effects are unknown.

The stub can be shortened considerably by means of a loading coil installed in series with the stub at the point where the stub is connected to the triangle apex. See fig. 5. The 13-meter (43 foot) stub was reduced to 4.9 meters (16 feet) by the use of a 32-μH loading coil. The loading coil reduces radiation from the stub, but it results in a reduction in antenna bandwidth. The loading coil is a B&W 3029/3905-1,* which is 63.5 mm (2 1/2 inches) diameter by 254 mm

*Barker and Williamson, Inc., Canal Street and Beaver Dam Road, Bristol, Pennsylvania 19007.
Using a loading coil to reduce stub radiation.

(10 inches) long (6 turns per 25 mm). This coil with the 4.9-meter (16-foot) stub allows the TLDL to resonate anywhere in the 80-meter band by changing the tap position.

matching methods

A common method for feeding delta-loop antennas is to use a quarter wavelength of 75-ohm transmission line between a 50-ohm transmission line and the feedpoint. For a feedpoint resistance of 130 ohms, the vswr at resonance would be

\[
\frac{130}{75^2/50} = 1.16:1
\]

which is quite acceptable. Since the conventional delta loop and the TLDL are essentially balanced antennas, it's desirable to use a 1:1 balun at the antenna to prevent antenna currents on the coax feedline.

At W1DTV, a transformer (shown in fig. 6 and the photo) accomplishes both impedance matching and the unbalanced-to-balanced transformation; it handles the legal power limit quite satisfactorily. The transformer has been evaluated only on 80 meters, but the design could be trimmed to work over several bands. See reference 4 for details on optimizing such designs.

voltage standing-wave ratio

The vswr using the transformer of fig. 6 and 50-ohm coax is shown in fig. 7 for the conventional delta loop, the TLDL using a wire stub only, and the TLDL with a wire stub and loading coil. Note that an excellent midband match is obtained with a 1:1 balun at the antenna to prevent antenna currents on the coax feedline.

At W1DTV, a transformer (shown in fig. 6 and the photo) accomplishes both impedance matching and the unbalanced-to-balanced transformation; it handles the legal power limit quite satisfactorily. The transformer has been evaluated only on 80 meters, but the design could be trimmed to work over several bands. See reference 4 for details on optimizing such designs.

concluding remarks

The TLDL antenna performs as well as other similar antennas requiring higher points of support. The design is based on the positioning of the high-current parts of the antenna so that they will provide a primarily vertically polarized radiated signal. The TLDL has substantially more bandwidth than its nearest low-height competitor, the 1/4 sloping dipole (loaded). Calculations indicate that the antenna should be a good performer, and on-the-air experience has substantiated these results.

A point of caution — if you try this antenna, or any new antenna, take steps to convince yourself that
other nearby antennas are not significantly influencing its behavior. A considerable amount of interaction between a TLDL, an inverted V, and a sloping dipole, all supported by the same tower, has been observed. The data in this article were taken with the inverted V and sloping dipole removed from the tower.

references

5. G. Hall, "Off-Center Loaded Dipole Antennas," QST, September 1974, pages 28-34, 58. (The antenna shown in fig. 5 of the referenced article is the one referred to as the λ/4 dipole. It's a popular radiator for sloping-dipole installations.)
Rejuvenate that old vacuum-tube receiver by replacing the tubes with equivalent transistor stages.
a transistor stage will have to be modified when a following or preceding stage is changed over from tube to transistor.

Next to frequency drift, the greatest shortcoming of these old a-m receivers is usually their poor skirt selectivity. The old single-pole crystal filters and Q-multipliers gave good selectivity at about 6 dB down, but the skirts were very wide at 30 to 60 dB down. The rectangular passband so necessary for today's ssb communications calls for a mechanical or multipole crystal filter.

If your receiver is a single-conversion general-coverage type, you will probably have to stick with the original intermediate frequency. This means a mechanical filter if the i-f is below 1 MHz. A ham-band-only receiver, however, can be converted to practically any intermediate frequency so long as the i-f does not lie inside or near an amateur band. (It's very hard to make a superhet that will tune through its own intermediate frequency.)

Generally speaking, a high intermediate frequency is to be preferred, because it improves image rejection. Furthermore, if the local oscillator operates on the low side of the signal, a high i-f means a lower LO frequency, and this contributes to frequency stability. Today, the availability of high-frequency multipole crystal filters makes possible single conversion designs with high intermediate frequencies, thereby avoiding the spurious response, birdie, and cross-mod problems of dual-conversion designs.

modernizing the HQ110A

To start this project, I tore out all the old circuits and started with a clean slate, leaving intact only the front-end tuned circuits and bandswitch. Most of the tube sockets were left, as they make handy tie-points for the new wiring. There is something to be said for building from the ground up, but most of the work with sheet-metal and the mechanical drudgery is avoided if you rebuild a commercial receiver. Also, it is hard for the average amateur to duplicate the professional appearance and calibrated dials of a manufactured receiver.

The HQ110A is a good example of how an intermediate frequency can be radically changed. Originally, the receiver was dual conversion on all bands above 80 meters, with a first i-f of 3035 kHz and a second i-f of 455 kHz. I happened to have a McCoy Golden Guardian 9-MHz ssb filter. I wanted to move the i-f to this frequency and make the receiver single-conversion on all bands. This took some doing; it meant all the original i-f transformers had to be scrapped, and all the local oscillator coils rewound. The result was worth it. The transistorized receiver has much better selectivity, frequency stability, and image rejection than the original. And the existing dial calibration holds on every band, even better than in the tube version.

Power supply and audio. A good place to start your conversion to solid state is in the power supply; you won't be able to try out any transistor circuits without low-voltage dc. Although the old power transformer will be less than ideal for a transistor power supply, it is possible to obtain low voltages from the 5.0- and 6.3-volt filament windings. For instance, a full-wave rectifier on the 6.3-volt winding will provide 9 volts dc, and a full-wave doubler about 18 volts dc. In this receiver, however, I replaced the old power transformer with a more appropriate one having a 16-volt center-tapped secondary.

Both positive and negative supplies were needed, since dual-gate MOSFETs, like vacuum tubes, normally require a negative AGC voltage. Although it is possible to use FETs with positive-only voltages, the AGC system is simplified if a negative supply is available.

The positive supply (see fig. 1) is filtered by a conventional L-C filter which uses an 80-mH toroid for a filter choke. The resulting unregulated 19 volts is used for the audio output stage and diode bias. A conventional emitter-follower regulator, Q1 and CR5, is used to regulate the positive supply to +12 volts dc for the remainder of the receiver.

Most designers would use a class B integrated circuit for the audio output, but I prefer the class A arrangement shown in fig. 1. This circuit has proven reliable in many different applications. It has excellent dc stability due to the negative-feedback biasing arrangement, and low distortion because of the negative-audio feedback around the output transformer.
Detector, i-f, and AGC systems. The 9-MHz i-f signal from the McCoy filter is applied to the first i-f stage, Q5. This common emitter stage is R-C coupled to the dual-gate MOSFET second i-f stage. R-C coupling is used for simplicity and to avoid the need for neutralization. The added gain that could be obtained from transformer coupling was not needed.

The i-f transformers, T3, T4, and T5, are ordinary fm transistor radio transformers which are shunted with sufficient capacity to resonate at 9 rather than 10.7 MHz. The different resonating capacitors are due to the use of different brands of transformers.

The third i-f stage is an emitter-coupled pair, Q7 and Q8. The emitter of Q7 also drives the AGC amplifier, Q9 and Q10. It was not possible to derive the AGC signal from the collector circuit of Q8 because the BFO signal is too strong at this point and would swamp the AGC. An audio-derived AGC system would have been easier, but in this receiver I wanted AGC that would work on a-m carriers.

The AGC signal is rectified by CR9, with the resulting dc applied to Q11. An emitter follower is used because its low output impedance allows C1 to quickly charge through CR10. In any single-sideband AGC system it is important to have a short attack time to avoid "popping" at the beginning of a word. One inherent limitation on attack time is the delay caused by the crystal filter. Envelope delay time in a bandpass filter is determined by the skirt steepness ratio: the steeper the skirts, the longer the delay. The McCoy filter, having exceptionally steep skirts, has an inordinately long delay time, and for this reason it was not possible to use as much AGC feedback around the filter as would have been desirable. The AGC control voltage to the r-f and mixer stages (AGC 2) is attenuated by the voltage divider, R4-R5. In addition, AGC 2 also controls the S-meter driver through the S9 adjustment pot R4.

The product detector, CR7-CR8, requires push-pull BFO drive which is provided by the center-tapped secondary of T6. The BFO is switched by means of diode switches for upper or lower sideband.

Local oscillator. In the interest of best frequency stability, the local oscillator operates on the low frequency side of the signal on the 20-, 15-, 10-, and 6-meter bands. On 160, 80, and 40 meters, the oscillator is 9 MHz higher than the signal frequency. This arrangement automatically takes care of sideband switching; upper sideband is received on 20 meters.
fig. 2. Diagram of the i-f amplifier, detector, BFO, AGC, and S-meter circuits. FL1 is a McCoy Golden Guardian 9-MHz ssb filter. T3, T4, and T5 are 10.7 MHz i-f transformers from fm-style radios. In the case of T3 and T5, where only one winding is shown, the primary and secondary have been connected in series so as to provide maximum inductance. T8 is wound on a T-50-2 core with 33 turns of no. 30 (0.25mm) AWG on the primary and 9 turns of no. 30 (0.25mm) AWG on each side of the center tap for the secondary. Normally, R4 is used to set the S-meter for an S9 indication with 100 μV applied to the receiver.
and the higher bands and lower sideband on 40 meters and lower, as is the accepted standard. The BFO switch can therefore be labeled NORMAL and REVERSE without any reference to the bandswitch position.

Table 1 gives the required oscillator tuning range of each amateur band. On three bands — 20, 15, and 10 meters — the HQ110A dial calibration is wider than the amateur band limits. Table 1 also gives the LO tuning range as a percentage of the lowest oscillator frequency on that band. Notice that the percentage tuning range varies from a maximum of 10.53 per cent on 10 meters to a minimum of 1.85 per cent on 160 meters. The oscillator percentage tuning range is determined by the amount of fixed capacity which shunts the tuning capacitor; the smaller this capacity, the greater the range.

To make the dial calibration come out right, both the inductance and shunt capacitance of the LO tank must be correctly chosen. In the HQ110A, the oscillator tuning capacitor (only one of two sections is used) has a minimum capacitance of 8 pF and a maximum of 13 pF, or a range of only 5 pF. This capacitor must be shunted with a total of about 134 pF to provide the 1.85 per cent tuning range for the 160-meter band (10.8 to 11.0 MHz). On ten meters, however, the tuning range expands to 10.53 per cent, and the total shunting capacitance must be reduced to a mere 23 pF. This 23 pF includes the 8 pF minimum of the tuning capacitor, and a few pF of stray and coil-distributed capacitance, and a few pF for the trimmer. When all this is added up, the shunting capacitance left for the remainder of the circuit will have to be limited to a maximum of about 12 pF in order not to exceed the 23-pF total. This is one restriction on the oscillator circuit. In addition, the oscillator is called upon to operate over a wide frequency range (5 to 45 MHz) and also tolerate a wide range of L to C ratios.

Many different oscillator circuits were tried in search for one that would meet these stringent requirements and would also be stable in frequency. The circuit shown in fig. 3 worked best. It is an fet version of the Seiler oscillator, followed by a two-stage buffer amplifier. Table 1 shows the excellent frequency stability of this oscillator for supply voltage changes of one volt (from 11.0 to 12.0 volts). Since the 12-volt supply is fairly well regulated, it’s possible to vary the line voltage from 80 to 130 volts ac with no noticeable change in beat note. Try to do that with your tube receiver!

Theoretically, this circuit will oscillate with any L to C ratio in the tuned circuit. The only limitation on L-to-C ratio is Q; the lower the ratio, the higher the tank circuit Q must be to sustain oscillation. The lowest L-to-C ratios occur on those bands with the smallest percentage tuning range, 160 and 40 meters. On 40 meters, it was not possible to get enough
Q with the original 6.5-mm (0.25-inch) slug-tuned coil form. Therefore, a toroidal coil was used for this band. Since toroids are not adjustable, the circuit arrangement shown in the schematic was adopted. The capacitor in series with the coil (C2) effectively trims the inductance.

On 160 meters, it was possible to wind the coil on the original coil form and still get enough Q, but just barely. All the other coils, except 6 meters, are wound on the original forms and mounted in the original shield cans.

Notice in fig. 3 that the 10-meter coil is shorted by S6F when the bandswitch is in the 6-meter position. This is because the ten-meter coil happened to resonate near 42 MHz, which, unfortunately, was within the oscillator tuning range on the 6-meter band and caused a back "suck-out" as the oscillator was tuned past this resonant frequency. Also, unfortunately, there was no unused contact on the bandswitch in the 6-meter position, so one had to be added to do this shorting job. This, however, was the only modification that was necessary to the original bandswitch.

The untuned buffer amplifier is made up of a common-emitter stage (Q15), for amplification, directly coupled to an emitter follower (Q16) for low output impedance. As with any amplifier, there is an upper-frequency limit where gain begins to fall off. In this case, output is down about 3 dB at 19 MHz (10 meters), but on 41 MHz (6 meters), it is down about 12 dB. For this reason, a compensating coil (L8) is placed in series with the output. This inductance forms an L network in conjunction with the mixer input capacitance, thereby boosting the 41-MHz LO voltage at the mixer gate. On the lower bands it has little effect.

The 82-ohm resistor in series with the emitter resistor of Q16 delivers a local oscillator signal to a phone jack located on the rear apron of the chassis. By plugging a frequency counter into this jack, you can have a poor-man's digital readout. Of course, it is necessary to add or subtract 9 MHz from the counter reading, but in practice it is easier to simply ignore the digits to the left of the decimal point and mentally substitute the appropriate digits for the band being received. For example, the receiver is on forty meters and the counter reads 16.238. Obviously, this means 7.238 MHz. Remember also, that the counter reading corresponds to the center of the passband, which is typically 1500 Hz higher or lower than the carrier frequency, depending on which sideband is being received.

The tuning rate of the HQ110A was a bit fast for ssb, especially on 10 and 6 meters. For this reason, a clarifier, or ultra-fine tuning control (C4 in fig. 3) was added to the LO circuit. This variable capacitor is mounted in the hole formerly occupied by the function switch and is turned by the large, function-switch knob, which is ideal for the purpose.

A very small capacitance range is needed for the clarifier capacitor. It could have been made from a small variable by removing all but two plates, but in my case it was fabricated from the remains of an old wire-wound pot. The resistance element and wiper arm were removed and a semi-circular plate was soldered to the rotor shaft. Another semi-circular plate was fastened to the Bakelite case to form the stator. The resulting capacitor has a range of only 1 pF and produced the frequency ranges given in the fifth column of Table 1.

Table 1.

<table>
<thead>
<tr>
<th>band MHz</th>
<th>oscillator range MHz</th>
<th>oscillator percentage range</th>
<th>oscillator stability Hz/volt</th>
<th>clarifier range Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 - 2.0</td>
<td>10.8 - 11.0</td>
<td>1.852</td>
<td>169</td>
<td>420</td>
</tr>
<tr>
<td>3.5 - 4.0</td>
<td>12.5 - 13.0</td>
<td>4.0</td>
<td>225</td>
<td>870</td>
</tr>
<tr>
<td>7.0 - 7.3</td>
<td>16.0 - 16.3</td>
<td>1.875</td>
<td>165</td>
<td>510</td>
</tr>
<tr>
<td>14.0 - 14.4</td>
<td>5.0 - 5.4</td>
<td>8.0</td>
<td>340</td>
<td>1100</td>
</tr>
<tr>
<td>21.0 - 21.6</td>
<td>12.0 - 12.6</td>
<td>5.0</td>
<td>257</td>
<td>1000</td>
</tr>
<tr>
<td>28.0 - 30.0</td>
<td>19.0 - 21.0</td>
<td>10.53</td>
<td>400</td>
<td>3200</td>
</tr>
<tr>
<td>50.0 - 54.0</td>
<td>41.0 - 45.0</td>
<td>9.76</td>
<td>280</td>
<td>7300</td>
</tr>
</tbody>
</table>

rf and mixer stages. Because dual-gate MOSFETs make such ideal replacements for pentode vacuum tubes, no radical changes were necessary in the receiver rf and mixer stages shown in fig. 4. None of the antenna or rf stage coils were changed, with the exception of the tap on the six-meter antenna coil: it was moved up to three turns above ground. Both rf and mixer stages, Q17 and Q18, are RCA40673 dual-gate MOSFETs. For simplicity, coils for only the 6-, 10-, 15-, and 20-meter bands are shown in fig. 4. Experimentally, it was found that receiver sensitivity on these four bands could be optimized for a 50-ohm antenna by placing a proper size capacitor in series with the antenna input.

When the receiver is tuned to 28.0 MHz, the image frequency happens to be 10.0 MHz, a fact that is exploited with a minimal increase in complexity to provide 10-MHz reception of WWV. For WWV, S5 in fig. 4 shunts the 10-meter rf stage coil with trimmer C5. This capacitor resonates the 28-MHz coil down to 10 MHz, with the WWV signal from the antenna coupled into the mixer through the series-tuned circuit, L9-C6. The rf stage is not used in this mode; WWV is normally so strong that an rf stage is not really needed.
fig. 4. Schematic diagram of the rf, mixer, noise limiter, and crystal calibrator circuits. The antenna and rf stage coils and trimmers are unchanged from the original receiver. For simplicity, only four bands are shown. L9 is 7 μH, made by close winding 30 turns of no. 24 (0.5mm) AWG wire on a 4-mm (5/32 inch) diameter ferrite rod.

Noise limiter and crystal calibrator. I wanted some kind of first-line defense against impulse noise without resorting to all the complexity of a noise blanker. Thus, the simple noise limiter in fig. 4 was included. In order to be effective, the limiter should clip the noise pulses before they become stretched out by the crystal filter.

The limiter was placed between the mixer and sideband filter and has the option of being switched in or out. The common-emitter stage, Q19, amplifies the noise pulses up to a level where they can be clipped by the shunt limiter, CR19-CR20. These silicon diodes are biased by R6 to a point where they are just beginning to conduct. After being clipped, the signal is brought back down to its original level by means of the capacitive voltage divider, C7-C8.

I make no claim that this limiter can compete with a good noise blanker, but it can make the difference between copy and no-copy. Only high-amplitude noise pulses are clipped. It takes about 50 microvolts at the antenna before clipping begins to occur. This means weak noise pulses are unaffected, but the weak pulses are not normally a problem because they are reduced in amplitude after being stretched out by the i-f filter. For best results, the AGC should be turned off when using the noise limiter.

Of course, the greatest shortcoming of this type of limiter is that it is highly susceptible to cross-mod from strong in-band signals. If you have both high noise and strong signals at the same time, you must choose between cross-mod and impulse noise, depending on which is worse.

The 100-kHz crystal calibrator, Q19 and Q20, uses the original 100-kHz crystal and trimmer capacitor. The circuit is patterned after one in the Atlas 210X; it provides plenty of harmonic strength right up through 54 MHz.

references
UPGRADE TO AN EXTRA CLASS SIGNAL

ATB-34

THE COMPLETE 3 BAND ANTENNA

BY

cushcraft

IN STOCK WITH YOUR LOCAL DEALER

IN CANADA:
SCOTCOMM RADIO LTD. - 4643 Levesque Blvd. - Chomedey, Laval, Quebec

WORLDWIDE:
MAGNUS - 5715 North Lincoln Ave. - Chicago, Ill., U.S.A. 60659

P.O. BOX 4680, MANCHESTER, N.H. 03108
YOU ASKED FOR IT
YOU GOT IT
DSI QUIK-KIT®
550 MHZ COUNTER KIT
Performance You Can Count On

DSI OFFERS THE BEST OF TWO WORLDS...
An unprecedented DSI VALUE...in a high quality, LSI Design, 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes any competitive makes, both in price & performance. The basic 550 MHZ counter & time base are factory assembled, tested and burned-in. The problems of bad LEDs, IC's, capacitors, are a thing of the past with DSI QUIK-KIT®. But you can take pride in assembling the power supply, PC mounted selector switch, input connectors, and the final mechanical assembly of your 550 MHZ counter, into its' handsome cabinet. GO WITH THE LEADER...BUY A DSI FREQUENCY COUNTER KIT. SAVE TIME & MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

OPERATES ON
• Batt 6-C Size
• DC 8.2 To 14.5 VDC
• AC Batt. Eliminator

$99.95
MODEL 3550 KIT

SPECIFICATIONS
Time Base TCXO 1PPM 65° to 85°F
Frequency Range 50HZ to 550MHZ
Resolution 1HZ to 55MHz, 10Hz to 550MHZ
Gate Time 1 second - 1/10 second
Sensitivity 25MV 150 & 250MHZ 75MV 550MHZ
Display Eight 1/2-inch LEDs
Input Two SO239 Connectors
Power 6C-Size Batt., 15HR, or 8.2VDC to 14.5VDC
Current 150 Ma standby 300 Ma operational

3550 KIT INCLUDES
• Pre-assembled, tested counter board
• Case, power supply, connectors, hardware
• Built-in prescaler & preamp
• Gate Light-Automatic Zero Blanking
• Automatic Decimal Point
• One to two hours assembly time
• One Year Warranty on all parts
• All new parts - not factory seconds or surplus

3550 Kit $99.95
T-101 Telescopic Antenna 3.95
AC-9 Battery Eliminator 7.95
Cigarette Lighter DC Adapter ... 2.95

TERMS: Orders to U.S. and Canada, add 5% to maximum of $10.00 per order for shipping, handling and insurance. To all other countries, add 15% of total order. California Residents add 6% State Sales Tax.

SEE YOUR LOCAL DEALER
OR
CALL TOLL FREE (800) 854-2049
California Residents, Call Collect (714) 565-8402
DSI INSTRUMENTS, INC.
7914 Ronson Road No. G, San Diego, CA 92111
ARE YOU ON FREQUENCY?

BE ON FREQUENCY WITH DSI

MODEL 3600A .5 PPM 17° - 37°C
$199.95
- AUTO ZERO BLANKING
- AUTO DECIMAL POINT
- INCLUDES ANTENNA

SAVE SHOP COSTS WHEN ADJUSTING XTALS
MEET YOUR QSO ON FREQUENCY EVERY TIME

The 3600A and 3550W Frequency Counters represent a significant new advancement, utilizing the latest LSI Design - which reflects DSI's ongoing dedication to excellence in instrumentation, for the professional service technician and amateur radio operator. Before you buy a DSI instrument you know what the specifications are. We publish complete and meaningful specifications which state accuracy over temperature and sensitivity at frequencies you need. And we guarantee those specifications in writing.

MODEL 3550W TCXO
$149.95
- INCLUDES INTERNAL BATTERY HOLDER
- SAME AS 3600A LESS OVEN
- SEE SPECIFICATIONS BELOW

MODEL 3700 .2 PPM 0° - 40°C
$269.95
- AUTO ZERO BLANKING
- AUTO DECIMAL POINT
- INCLUDES ANTENNA

PORTABLE! TAKE IT TO THE MOUNTAINS OR USE IT MOBILE—TAKE IT WITH YOU ON FIELD DAY

ALL NEW! ALL UNPARALLELED DSI QUALITY! The model 3700 700MHz frequency counter features2 PPM 0° to 40°C proportional oven time base Built in battery trickle charger less batteries Combined in a rugged (.125" thick) aluminum cabinet makes the 3700 ideal for the communications industry, professional service technicians, and sophisticated amateur radio operators.

3600A OWNERS: Update your 3600A frequency counter to a 3700 includes2 PPM proportional oven, rugged .125" thick aluminum cabinet, order 3600-A - 3700. Unit must be returned to DSI factory for modification.

DSI — GUARANTEED SPECIFICATIONS — MADE IN USA

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>@ 166MHz</th>
<th>@ 220MHz</th>
<th>@ 450MHz</th>
<th>Number of Readouts</th>
<th>Size of Readouts</th>
<th>Power Requirements</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700</td>
<td>50Hz - 700MHz</td>
<td>Proportional Oven, .2 PPM 0° - 40°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 inch</td>
<td>115 VAC or 8.2 - 14.5 VDC</td>
<td>3"H x 8"W x 6"D</td>
</tr>
<tr>
<td>3600A</td>
<td>50Hz - 600MHz</td>
<td>Oven, .5 PPM 17° - 37°C</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>.5 inch</td>
<td>115 VAC or 8.2 - 14.5 VDC</td>
<td>2½"H x 8"W x 5"D</td>
</tr>
<tr>
<td>3550W</td>
<td>50Hz - 550MHz</td>
<td>1 PPM 65° - 85°F</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>.5 inch</td>
<td>115 VAC or 8.2 - 14.5 VDC</td>
<td>2½"H x 8"W x 5"D</td>
</tr>
</tbody>
</table>

ALL UNITS ARE FACTORY ASSEMBLED, TESTED AND CARRY A FULL 1 YEAR WARRANTY

- NO EXTRA COSTS
- FREE Shipping anywhere in U.S.A. and Canada.
 All other countries, add 10%.

Strongest warranty in the counter field. Satisfaction Guaranteed.

See Your Dealer or Call Toll Free: (800) 854-2049
DSI INSTRUMENTS, INC.
California Residents, Call Collect: (714) 565-8402
VISA • MC • AMERICAN EXPRESS • CHECK • MONEY ORDER • COD
7914 RONSON ROAD, #G, SAN DIEGO, CA 92111

Model 3700 .. $269.95

3600A - 3700 Factory Update (3600A Only)
Includes Labor & Re-Calibration $99.95

Model 3600A .. $199.95

Model 3550W .. $149.95

Option 03 20-Hr. Rechargeable Battery Pack $29.95
double-stub tuner
for 1296 MHz

Feedline and matching problems at 1296 MHz are easily overcome by using this simple but effective double-stub tuner.

Shortly after the military APX-6 became available on the surplus market in the 1950s, a number of magazine articles were published which described conversion of the unit to the 1215-1300 MHz amateur band. For a time there was considerable interest in this band; here in the San Fernando Valley there were about seven stations active for a year or more. Eventually interest declined, until there were only two of us left — K6BV and myself. We had 85 MHz of amateur frequency spectrum with almost no takers. That’s too bad, because this band is ideal for repeaters, wide-band television, satellite communications, and amateur experimentation.

Why is the use of this band so meager? Probably the main reason is that there is no equipment available for the band. Also, it requires the application of techniques quite different from those used on the lower frequencies; of necessity, striplines and cavities must be used. These take some getting used to by newcomers to the amateur bands above 1000 MHz.

Another aspect that has not received too much attention is transmission lines. Losses in coaxial cable are tremendous at this frequency. Standing waves are a disaster if they appear on the line. The best RG-8/U coax has a loss of 8 dB per 30 meters (100 feet) at 1296 MHz. Any reflection at the antenna is power lost in all but the shortest lines, and putting a radiator at the top of a tower does not promote a short feedline. On the low-frequency amateur bands a reasonable reflection of power at the antenna does not represent any appreciable loss in radiated power; if nothing gets hot, and the transmitter loads, the power has to radiate. Reflected power makes a round trip at low frequencies. At 1296 MHz, the reflected power suffers the 8-dB loss on the trip back to the transmitter and again on the second trip to the antenna. The net result is that reflected power is power lost, and power is hard to come by at 1296 MHz.

Measurement of power and standing waves on the feedline was a serious problem at my station for several years. A field-strength meter is easy to make for 1296 MHz, and setting it up in front of the antenna gives a good indication of relative power levels, but it usually turned out that a slotted line was still showing a considerable standing wave on the feedline, even after everything was tweaked for hours on end. Just taking the slotted line out of the line was apt to be a disaster if only because of the change in length of the line. In addition to this problem, the field-strength meter didn’t give a true reading of the actual power being radiated. It was strictly a relative measurement, and I could not tell whether the transmitter was running at 5 per cent efficiency or the hoped for 30 to 40 per cent.

Uncertainty over the power output of the transmitter and the unhappy situation with standing waves on the feedline led to several not-so-cheap purchases and also a rather close-tolerance construction project. The first purchase was a Bird model 43 wattmeter with a plug-in covering 1.1 to 1.8 GHz. The second purchase was a Sierra Model 1608-300 dummy load (I couldn’t build a suitable dummy load and gave up after a number of attempts). The way to rationalize these purchases is to say that the test gear will not wear out and with much cheaper plug-in elements the Bird 43 wattmeter will work on other amateur bands.

With the wattmeter and the dummy load I could read transmitter power output and pick up reflected

By George Hatherell, K6LK, 10160 Maude Avenue, Sunland, California 91040
power when the feedline was moved from the dummy load to the antenna radiator. Things began to fall into place. It became possible to trim the driving dipole for a reasonable match to the line. Single-helix antennas were stubborn, and responded only half-heartedly to matching devices; a twin-helix antenna was much better; a quad helix never seemed to work just right, regardless of the matching scheme I tried.

A nasty development surfaced when the dipole in front of my 2.5-meter (8-foot) dish was moved for field-strength tests and beamwidth measurements. Any change of antenna configuration forced me to retune the driver. The answer, of course, was to find some kind of impedance-matching device that could be put into the line at the antenna and at the transmitter. The double-stub impedance transformer was the logical solution. But, where to find one? The surplus houses I trade with never had a single one that could possibly have worked at 1296 MHz. I had to build one; in fact, I had to make four of them. (Anyone working 1296 is bound to have more than one antenna.)

The impedance-matching range of the double-stub impedance-matching transformer is astonishing. For example, it is no problem at all to bring the feedlines from two dipole antennas together at a T and match the resulting 25-ohm impedance to a 50-ohm line.

tuner construction

The stubs of a double-stub tuner are normally 3/8 wavelength apart and mounted at right angles to a 50-ohm line section. Insertion loss is not readable on a 0- to 25-watt rf power meter running at half scale. There is just one problem with the tuners: they are hard to make because mechanical tolerances must be held tightly so that the tuning plungers do not bind when they are adjusted. It is not necessary to have a mill to build a double-stub tuner, although there is one minor place where it produces a more professional job. A lathe should be available.

construction

Referring to the cross-sectional sketch (see fig. 1), tubing sections used for the stubs can be sawed to length; remember that they must be long enough to reach halfway around the mainline section. Cut and file one end of each stub tube to fit snugly around the main section line. Scribe the outside contour of one of the stub tubes onto the main line, 43 mm (1.7 inches) from the center of the main line; scribe a similar contour 43 mm (1.7 inches) from the center toward the other end. These outlines must be parallel along the main line tube. Remember, these scribed contours are the outside of the stub tubes. Cut and file openings in the main line tube to match the inside diameter of the stub sections. Final fit must be made with the file strokes at right angles to the line tube and parallel to the axis of the stub tubes, as they will solder in place. This may sound difficult, but it's not, just a bit tedious.

Assembly of the two stubs to the main line must be done accurately. I found the simplest way was to lay the three parts on a piece of 1.9-cm (3/4-inch) plywood and drive nails on both sides of all three tubes to hold them in place. A square will indicate

fig. 1. Mechanical diagram of the double-stub tuner. As mentioned in the text, the length of the center conductor of the main line is determined by the type of N connector which is used. Matching is accomplished by the two stubs with sliding shorts which provide adjustable amounts of reactance.
when the stubs are at right angles to the main line. The plywood will keep all three parts in the same plane. Put something heavy on each of the tubes to keep it from shifting during the soldering operation. The assembly is then turned over in the jig to complete the second half of the soldering job. If the half-soldered assembly, when flipped over, does not drop into the nail jig without binding, the right-angle alignment of the jig is faulty. If this happens, it is best to start over.

In fig. 1, the dimension of the inner conductor of the main line has not been shown. This is because flanged N connectors vary somewhat in design, and the builder must determine this length to match the available fittings. For final assembly, the outer face of both N flanges must be recessed into the main line tube approximately 1.5 mm (1/16 inch). The normally square flanges are turned on a lathe to a diameter allowing a slip fit into the copper tube. The center-conductor's length is set to fit snugly up against the boss at the base of the conductor extension of each N fitting. This is not critical, but recessing of the N connector flanges is necessary to permit a substantial solder bead for maximum strength under torque load from connected equipment.

Once the inner conductor length is established, the ends of the rod are tapered and an 11 mm (7/16 inch) deep hole is drilled in each end. The diameter of the hole is selected to provide a slip fit on the center pin of the connector. With a jeweler's saw, three longitudinal cuts are made on each end of the center-conductor rod, giving six segments at each end. The segments are given a set toward the center to establish a press fit over the center pin of the N conductor (no soldering is possible at final assembly). The longitudinal cuts are 9.5 mm (3/8 inch) deep. If the N conductor pins are more than 6.5 mm (1/4 inch) long, cut them back to 6.5 mm (1/4 inch).

There is one very critical dimension in the inner conductor assembly, the spacing between the points at which the stubs connect. This spacing must match, as closely as possible, the center spacing between the outer tubes already assembled. Measure the distance between the stub centers accurately and transfer this measurement to the center conductor of the main line. (Center-to-center measurement is most easily done by measuring from the left-hand side of one tube to the left-hand side of the other tube, or conversely, from the right-hand side of one tube to the right-hand side of the other tube.) This measurement is transferred to the center conductor of the main line so that the distance from one end of the line to the first stub is equal to the distance from the other end of the line to the second stub.

Clamp the rod in a vise and file flat spots 6.5 mm (1/4 inch) wide over the stub locations. These should be filed one-third of the way through the rod. The faces must be flat and parallel to each other since they affect final alignment of the stubs. Drill and tap each flat for a 4-40 (M3) machine screw, ensuring that the distance between the drilled holes is exactly the same as the distance between the centers of the two stub tubes already assembled. Insert brass 4-40 (M3) machine screws from the bottom so that the threaded end of the screws extends 9.5 mm (3/8 inch) above the face of the flats. The above procedure is for those who don't have access to a mill. (With a mill, sink a 6.5-mm [1/4-inch] end mill 3 mm [1/8 inch] deep, then drill and tap for the screws.)

The center-stub conductors are squared in the lathe, drilled and tapped for the screws already in place in the main line. Screw the stubs onto the 4-40 (M3) studs and check for perpendicular projection from the line and for parallel alignment. If alignment is correct, the screws can be soldered to the main line, after which the excess should be sawed off and smoothed to maintain the shape of the line. The stubs must be removed from the mounting studs for final assembly.

The plungers are made from 6.5-mm (1/4-inch) ID brass hobby tubing, which is a slip fit on the center conductor stubs. The tubing is also split with a jewel-er's saw as indicated in fig. 2. The segments are pressed inward to give a good sliding fit on the center
conductor. The brass ring which supports the fingerstock is bored, turned and soldered in place. The indicated fingerstock is ideal for the job, but brass shim stock may be substituted if the fingerstock is not available. When using shim stock, wrap it around the ring, slit in segments, and solder in place. Give the segments an outward bias and contour the tips to slide rather than dig into the outer conductor.

The guesswork disappears in checking cavity or stripline efficiency, antenna match, and line reflections. Comparing one antenna to another becomes routine, rather than the long, drawn-out process of trying to match power into an antenna system in the face of all the line and feed problems that constantly disturb the results.

Different tuner configurations are illustrated in fig. 3. As a simple indication of what can be accomplished with one of these tuners, a test set-up was arranged on the bench. Eight watts of power was fed into a dipole that had been trimmed to give a good match to a 50-ohm line when used to drive a 2.5-meter (8-foot) parabolic dish. The wattmeter showed that two watts were being reflected. With a double-stub tuner into the line at the dipole, it took less than ten seconds to wipe out the reflected power by adjusting the stub plungers. This was a 25 per cent increase in radiated power without having to touch the antenna. If aggravation has a price tag, these three pieces of gear are a bargain.

Ham Radio
The AT-200 is an antenna tuner, but it's also much more. It's an antenna switch, an SWR bridge and an in-line wattmeter. The AT-200 reduces the clutter and increases the operating efficiency of your station... and at a surprisingly moderate price.

The SP-520 matching speaker offers improved sound in a handsome cabinet. The DG-5 option gives you your exact frequency, while transmitting and receiving, in large easy to read digits by mixing the carrier, VFO, and heterodyne frequencies.

The VFO-520 remote VFO is a perfect match for your TS-520S and provides maximum operating flexibility. The TV-502S 2-meter transverter produces 8 watts on SSB and CW. It easily hooks up to the TS-520 and TS-820 series transceivers, providing an inexpensive method of get-
THE TS-520S SERIES LITERALLY TOOK THE AMATEUR WORLD BY STORM. NO OTHER RADIO EVER CAUGHT ON SO FAST AND THE REASONS ARE OBVIOUS...EXCELLENT PERFORMANCE CHARACTERISTICS, DEPENDABILITY, FLEXIBILITY, AND A VERY SOLID VALUE FOR THE PRICE. AND NOW THE TS-520S SERIES OFFERS THE MOST COMPLETE LINE OF ACCESSORIES AVAILABLE.

FULL COVERAGE TRANSCEIVER
The TS-520S provides full coverage on all amateur bands from 1.8 to 29.7 MHz. Kenwood gives you 160 meter capability, WWV on 15.000 MHz., and an auxiliary band position. And with the addition of the TV-506 transverter, your TS-520S can cover 160 meters to 6 meters on SSB and CW.

OUTSTANDING RECEIVER SENSITIVITY AND MINIMUM CROSS MODULATION
The TS-520S incorporates a 3SK35 dual gate MOSFET for outstanding cross modulation and spurious response characteristics. The 3SK35 has a low noise figure (3.5 dB typ.) and high gain (18 dB typ.) for excellent sensitivity.

NEW IMPROVED SPEECH PROCESSOR
An audio compression amplifier gives you extra punch in the pile ups and when the going gets rough.

VERNIER TUNING FOR FINAL PLATE CONTROL
A vernier tuning mechanism allows easy and accurate adjustment of the plate control during tune-up.

FINAL AMPLIFIER
The TS-520S is completely solid state except for the driver and the final tubes. Kenwood has employed two husky S-2001A (equivalent to 6146B) tubes. These rugged, time-proven tubes are known for their long life and superb linearity.

HIGHLY EFFECTIVE NOISE BLANKER
An effective noise blanking circuit developed by Kenwood that virtually eliminates ignition noise is built into the TS-520S.

RF ATTENUATOR
The TS-520S has a built-in 20 dB attenuator that can be activated by a push button switch conveniently located on the front panel.

PROVISION FOR EXTERNAL RECEIVER
A special jack on the rear panel of the TS-520S provides receiver signals to an external receiver for increased station versatility. A switch on the rear panel determines the signal path from the receiver in the TS-820 or any external receiver.

CW-520 — CW FILTER (OPTION)
The CW-520 500-Hz filter can be easily installed and will provide improved operation on CW.

AMPLIFIED TYPE AGC CIRCUIT
The AGC circuit has three positions (OFF, FAST, SLOW) for optimum operation on CW.

AC POWER SUPPLY
The TS-520S is completely self-contained with a rugged AC power supply built-in. The addition of the DS-1A DC-DC converter (optional) allows for mobile operation of the TS-520S.

EASY PHONE PATCH CONNECTOR
The TS-520S has two convenient RCA phono jacks on the rear panel for PHONE PATCH IN and PHONE PATCH OUT.

The TS-520S retains all of the features of the original TS-520 that made it tops in its class: RIT control • B-pole crystal filter • Built-in 25 kHz calibrator • Front panel carrier level control • Semi-break-in CW with sidetone • VOX/PTT/MOX • TUNE position for low power tune up • Built-in speaker • Built-in cooling fan • Provisions for four fixed frequency channels • Heater switch.

VFO-520S TV-502S TV-506 SM-220

*With BS-5 or BS-8 pan display option.
The TS-820S... known worldwide as the Pacesetter. Amateur Radio Operators universally respect its superb quality, proven through thousands of hours of operating time under all environmental conditions. The TS-820S has every feature any Amateur could desire for operating enjoyment, on any band from 160 through all of 10 meters.

You can always tell who's running a TS-820S. Its superb quality stands out from all the other rigs on the band... and when the QRM gets heavy, the TS-820S's adjustable RF speech processor, utilizing a 455-kHz circuit to provide quick-time-constant compression, will get the message through. RF negative feedback is applied from the final to the driver to improve linearity, and third-order products are at least -35 dB. Harmonic spurious emissions are less than -40 dB and other spurs are less than -60 dB. RF input power is 200 W PEP on SSB, 160 W DC on CW, and 100 W DC on FSK. Receiver sensitivity is better than 0.25 µV for 10 dB S/N. The TS-820S is known for its superb receiver selectivity, and its famous IF shift easily eliminates heavy QRM. That's why the TS-820S is the DXer's choice. See your local Authorized Kenwood Dealer today.

The TS-820S is known for its superb receiver selectivity, and its famous IF shift easily eliminates heavy QRM. That's why the TS-820S is the DXer's choice. See your local Authorized Kenwood Dealer today.
Your station isn't complete if it doesn't include the R-820

R-820

Introducing the ultimate in receiver design... the Kenwood R-820.

With more features than ever before available in a ham-band receiver, this triple-conversion (8.33 MHz, 455 kHz, and 50 kHz IFs) receiver, covering all Amateur bands from 160 through 10 meters, as well as several shortwave broadcast bands, features digital as well as analog frequency readouts, notch filter, IF shift, variable bandwidth tuning, sharp IF filters, noise blanker, stepped RF attenuator, 25 kHz calibrator, and many other features, providing more operating conveniences than any other ham-band receiver. The R-820 may be used in conjunction with the Kenwood TS-820 series transceiver, providing full transceive frequency control.

Additional features include: A monitor switch which allows the user to hear his own voice when using associated transmitter. Either VFO control or crystal control on four selectable frequencies. Digital hold... locks counter and display while VFO is tuned to another frequency... facilitates return to "hold" frequency. RIT/notch control... RIT allows receiver to be tuned off frequency, while not affecting transmit frequency when in transceive mode with TS-820S. Notch control tunes notch within IF passband for eliminating interference. Interfering signal remains notched even when IF shift is utilized. Built-in crystal calibrator, settable to WWV, provides signal every 25 kHz. Noise blanker/level control... for maximum reduction of noise interference. A transceive/separate switch enables receive VFO to control the receiver and TS-820 (or TS-820S) frequency (or the TS-820 VFO to control both), or, of course, both can function independently.

TL-922A

the most versatile pair on the air

If you have never considered the advantages of operating a receiver/transmitter combination... maybe you should. Because of the larger number of controls and dual VFOs the combination offers flexibility impossible to duplicate with a transceiver.

Compare the specs of the R-599D and the T-599D with any other brand. Remember, the R-599D is all solid-state (and includes four filters). Your choice will obviously be the Kenwood.
KENWOOD OFFERS A CHOICE

NEW

TR-7600

...THE RADIO THAT REMEMBERS

Every feature you could possibly want in a 2-meter FM rig is available now in the Kenwood TR-7600 and RM-76 Microprocessor Control Unit.

The new TR-7600 gives you...
- Full 4-MHz coverage (144.000-147.995 MHz) on 2 meters • 800 channels • Dual concentric knobs for fast frequency change (100-kHz and 10-kHz steps) • 5-kHz offset switch • MHz selector switch ...designed for desired band (144, 145, 146, or 147 MHz) • Mode switch for operating simplex or for switching the transmitter frequency up or down 600 kHz for repeater operation ...or for switching the transmitter to the frequency you have stored in the TR-7600’s memory (while the receiver remains on the frequency you have selected with the dual knobs) • Memory channel ...with simplex or repeater (plus or minus 600 kHz transmitter offset) operation • Digital frequency display (large, bright, orange LEDs) • UNLOCK indicator ...an LED that indicates transceiver protection when the frequency selector switches are improperly positioned, or the PLL has malfunctioned • 10 watts RF output (switchable to 1 watt low power)
- Noise-cancelling microphone • Compact size (only 6-7/16 inches wide, 2-7/16 inches high, and 9-3/16 inches deep)

The RM-76 Microprocessor Control Unit provides more operating features to the TR-7600 2-meter FM transceiver than found in any other rig!
- Select any 2-meter frequency • Store frequencies in six memories • Scan all memory channels • Automatically scan up all frequencies in 5-kHz steps • Manually scan up or down in 5-kHz steps • Set lower and upper scan frequency limits • Reset scan to 144 MHz • Stop scan (with HOLD button) • Cancel scan (for transmitting) • Automatically stop scan on first busy or open channel • Operate on MARS (143.95 MHz simplex only) • Select repeater mode (simplex, plus transmit frequency offset, minus offset, or any of six memory transmit offsets) • Select transmit offset (1 MHz/600 kHz)
- Select Transmit offset (1 MHz/600 kHz)
- The Microprocessor Control Unit’s display indicates frequency (even while scanning) and functions (such as autoscan, lower scan frequency limit, upper scan limit, error, and call channel).

Subject to FCC approval

TS-700SP

Still the same fine, time proven rig. But now with the simple addition of a plug-in crystal, the TS-700SP will be able to utilize the new repeater sub-band (144.5 to 145.5 MHz). Still features all of the fine attributes of the TS-700S: A digital frequency display, receiver pre-amp, VOX, semi-break in, and CW sidetone. Of course, it’s all mode, 144-148 MHz, VFO controlled ...and Kenwood quality throughout.

Features: 4 MHz band coverage (144 to 148 MHz) • Automatic repeater offset capability on all FCC authorized repeater subbands including 144.5-145.5 MHz • Simply dial receive frequency and radio does the rest ...simplex, repeater, or reverse. Same features on any of 11 crystal positions • Transmit/Receive capability on 44 channels with 11 crystals • Operates all modes: SSB (upper and lower), FM, AM and CW • Digital readout with "Kenwood Blue" digits • Receiver pre-amp • Built-in VOX • Semi break-in on CW • CW sidetone • All solid-state • AC and DC capability • 10 watts RF output on SSB, FM, CW • 3 watts on AM • 1 watt FM low-power switch • 0.25 \(\mu \text{V} \) for 10 dB (S+N)/N SSB/CW sensitivity • 0.4 \(\mu \text{V} \) for 20 dB quieting FM sensitivity.
The fully-synthesized TR-7400A 2-meter FM transceiver operates on 800 channels and features repeater offset over the entire 144-148-MHz range, dual frequency readout, six-digit display, and subaudible tone encoder and decoder. RF output is at least 25 watts!

The TR-7400A 2-meter FM transceiver provides fully synthesized operation, including 600-kHz repeater offsets, over the entire 144-148-MHz range. It can operate on any of 800 channels, spaced 5 kHz apart. RF output is at least 25 W, and typically 30 W. A low-power position produces 5-15 W (adjustable). Included is a dual frequency readout with large six-digit LED display plus a dial readout. The subaudible CTCSS signaling feature may be used on transmit and receive, or transmit only. Optional tone-burst modules are available. Receiver sensitivity is better than 0.4 µV for 20 dB quieting. Large, high Q, helical resonators minimize interference from outside the band. A two-pole 10.7-MHz monolithic crystal filter provides excellent selectivity. Intermodulation distortion is down more than 66 dB, spurious rejection is better than —60 dB, and image rejection is better than —70 dB.

See your local Authorized Kenwood Dealer today, for a demonstration of the fantastic TR-7400A.

Experience the excitement of 6 meters. The TS-600 all mode transceiver lets you experience the fun of 6 meter band openings. This 10 watt, solid state rig covers 50.0-54.0 MHz. The VFO tunes the band in 1 MHz segments. It also has provisions for fixed frequency operation on NETS or to listen for beacons. State of the art features such as an effective noise blanker and the RIT (Receiver Incremental Tuning) circuit make the TS-600 another Kenwood "Pacesetter".

TRIO-KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT/COMPTON, CALIFORNIA
The Kenwood name has grown to represent the finest Amateur Radio equipment available. The TL-922A linear amplifier carries on that tradition. As a linear it gets your signal through today's crowded bands and provides the power to reach those far away places with ease. And because it's Kenwood you can count on its dependability. The TL-922A is FCC type accepted. It runs the full legal limit on all ham bands from 50-15 meters and is compatible with most amateur exciters. Contact your nearest Authorized Kenwood Dealer for complete specifications and the best deal.

WHY SHOULD THE TL-922A BE PART OF YOUR STATION? COMPARE THESE FEATURES AND SPECS . . . THE ANSWER WILL BE OBVIOUS.

- Instant heating filaments — The 3-500Z tubes require no warm up period. Just turn it on and go!
- Time delay fan circuit — Even after you turn the TL-922A off, the super quiet fan continues to work for approximately 2 minutes to greatly extend tube life.
- Adjustable ALC output voltage — Lets you tailor the ALC voltage to your exciter.
- Standby position — Provides amplifier bypassing without having to turn the AC power off.
- Two independent safety interlocks — One disconnects AC line voltage and the second shorts B+ to ground when tripped.
- Vernier plate control — For smooth, easy tune-up.
- Diecast side panels — Includes functional carrying handles for easy transportation.
- Thermal protection of power transformer — Amplifier automatically switches to standby if power transformer temperature exceeds 145°F.
- Tuned Input Circuit — Means improved spurious characteristics.
- Line voltage selector — Easily switched between 120 and 240 VAC.
- Multimeter — Reads high voltage, relative output or grid current (selectable).
- Plate Current Meter — Separate meter allows continuous monitoring of plate current.

For the best in world listening

R-300

Dependable operation, superior specifications and excellent features make the R-300 an unexcelled value for the shortwave listener. It offers full band coverage with a frequency range of 170 kHz to 30.0 MHz • Receives AM, SSB and CW • Features large, easy to read drum dials with fast smooth dial action • Band spread is calibrated for the 10 foreign broadcast bands, easily tuned with the use of a built-in 500 kHz calibrator • Automatic noise limiter • 3-way power supply system (AC/Batteries/External DC) . . . take it anywhere • Automatically switches to battery power in the event of AC power failure.
TR-8300

How would you like to work an uncrowded frequency... hear signals with less noise... or use a sophisticated repeater or remote base with better coverage? 440 MHz is the answer. It will surprise you. It will penetrate buildings where 2 meters won't, and often you can even work out from underground garages... where 2 meters is dead.

Best of all, it's easy to get on 440 MHz (70 cm) with a Kenwood TR-8300 transceiver. High quality is critically important on VHF bands, and the TR-8300 is just what you need to meet all technical requirements.

HF LINES

820 Series
- TS-820... TS-820 with Digital Installed
- TS-820... 160-10 m Deluxe Transceiver
- YG-888... 5-kHz AM filter for R-820
- YG-455C... 500-kHz CW filter for R-820
- YG-455CN... 250-kHz CW filter for R-820
- DG-1... Digital Frequency Display for TS-820
- VFO-820... Deluxe Remote VFO for TS-820/820S
- SP-820... External speaker with audio filters
- CW-820... 500-kHz CW Filter for TS-820/820S

520 Series
- TS-520S... 160-10 m Transceiver
- DG-5... Digital Frequency Display for TS-520 Series
- VFO-520... Remote VFO for TS-520 and TS-520S
- SP-520... External Speaker for TS-520 Series
- CW-520... 500-kHz CW Filter for TS-520S
- DK-520... Digital Adaptor Kit for TS-520

599D Series
- R-599D... 160-10 m Solid State Receiver
- T-599D... 80-10 m Matching Transmitter
- S-599... External Speaker for 599D Series
- CC-28A... 2-meter Converter for R-599D
- CC-69A... 6-meter Converter for R-599D
- FM-599A... FM Filter for R-599D

HF ACCESSORIES

- TL-992A... 160-15 m kilowatt linear amplifier
- SM-220... Station monitor, 10-MHz scope

SHORT WAVE LISTENING

- 820 Series
- AT-220... 200-W antenna tuner, SWR/power meter, switch
- DS-1A... DC-DC Converter for 520/820 Series

VHF LINES

- TS-700SP... 2 m All Mode Transceiver
- VFO-700S... Remote VFO for TS-700S
- SP-70... Matching Speaker for TS-600/700 Series
- VOX-3... VOX for TS-600/700A
- TR-7400A... 2 m Synthesizer Deluxe FM Transceiver
- TR-7800... 2 m Transceiver with 800 channels

MORE ACCESSORIES:

- Repeater Subband Kit
- Rubber Helical Antenna
- Telescoping Whip Antenna
- Ni-Cad Battery Pack (set)
- 4 Pin Mic. Connector
- Active Filter Elements
- Tone Burst Modules
- AC Cables
- DC Cables

艽 ACCESSORIES

- RM-76... Remote Controller for TR-7800 with six memories, scanning
- TR-8300... 70 CM FM Transceiver (450 MHz)
- TV-506... 6-m Transceiver for 520/820/599 Series
- TV-502S... 2 m Transceiver for 520/820/599 Series

POPULAR STATION ACCESSORIES

- HS-4... Headphone Set
- MC-305... Low-impedance mobile noise-cancelling microphone
- MC-350... High-impedance mobile noise-cancelling microphone
- MC-60... Desk Microphone
- FS-6... Power Supply for TR-8300
- PS-8... Power Supply for TR-7400A

Trio-Kenwood stocks a complete line of replacement parts, accessories, and manuals for all Kenwood models.

MORE ACCESSORIES:

- RSK-7
- RA-1
- T90-0082-05
- PB-15
- E07-0403-06
- See Service Manual
- See Service Manual
- Specify Model
- Specify Model

FOR USE WITH

- TR-700A/S
- TR-2020A
- TR-2020A
- All Models
- TR-7400A
- TR-700A/14
- TR-6500
- All Models

The MC-50 dynamic microphone has been designed expressly for amateur radio operation as a splendid addition to any Kenwood shack. Complete with PTT and LOCK switches, and a microphone plug for instant hook-up to any Kenwood rig. Easily converted to high or low impedance. (600 or 50 ohm).

TRIO-KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT/COMPTON, CA 90220

The Kenwood HS-4 headphone set adds versatility to any Kenwood station. For extended periods of wear, the HS-4 is comfortably padded and is completely adjustable. The frequency response of the HS-4 is tailored specifically for amateur communication use. (300 to 3000 Hz, 8 ohms).
1.5 GHz divide-by-four prescaler

Extending the range of your counter is made easy by this simple divide-by-four 1500-MHz prescaler

In the last few years frequency counters have developed from bulky, slow, costly units affordable only by well-heeled laboratories, into small, high-frequency instruments at a price easily within the reach of the average ham. Quite a few manufacturers now offer counters with 1-Hertz resolution to 50 or 60 MHz, low power drain, and a price in the neighborhood of $100. In addition, many articles have appeared in the amateur magazines describing the construction of frequency counters and prescalers; recently, an entire issue (February 1978) of *ham radio* was devoted to the subject of frequency counters.

The upper frequency limit of every counter is set by the maximum operating speed of the input divider stage. This first divider is usually a fast prescaler — a fixed, asynchronous divider operating with the main divider chain. The most popular low-cost prescalers use the 11C90 digital divider, which has a typical maximum operating frequency of about 600 MHz. IC prescalers with higher operating speeds are available, but their high prices have kept them from finding much amateur use.

However, it is now possible to inexpensively extend a counter’s operating frequency range to well beyond 1 GHz, with a recently introduced ECL (emitter-coupled logic) divide-by-four prescaler. This device is the Motorola MC1697, a very fast ECL prescaler which has a typical operating frequency of 1600 MHz. Thus, a prescaler using this circuit will extend the range of a 400-MHz counter to above 1.5 GHz. It will operate with signals as low as 1 mW, requires only a single dc supply, and will drive 50-ohm loads. The MC1697 is a low-cost, plastic-packaged device that sells for less than $18.

fig. 1. Schematic diagram of the divide-by-four prescaler using the Motorola MC1697. Chip capacitors are preferred for the input and output coupling capacitors, though silver micas may be used if the other types cannot be obtained. If the IC should free-run, the oscillations can be stopped by connecting a 10k resistor across pins 4 and 5.

By Jerry Hinshaw, N6JH, 2500 Medallion #193, Union City, California 94587
circuit description

The schematic diagram of the prescaler’s circuit is shown in fig. 1. The signal to be counted is fed through C1 to the MC1697, which contains two divide-by-two stages in cascade. The input to the first counter is internally biased to accept zero-mean signals so that no external set-up bias is needed. The second flip-flop has complementary outputs. One of these is fed to the output connector through C2, the other is terminated in a 51-ohm resistor. The 200-ohm resistor terminates the open emitter of the output emitter follower.

A single dc power supply is required to provide −7 volts at approximately 60 mA. A simple power supply for this prescaler module can be built using an adjustable voltage regulator. The design of power supplies using this type of regulator has been discussed by K5VKO.

construction

The prescaler is built on the small printed circuit board shown in fig. 2. Double-clad, 1.6-mm (1/16-inch) glass-epoxy board is used. One side forms a ground plane, which provides for low-impedance grounding and permits the use of microstrip lines for the input and output.

All components, with the exception of C1 and C2, are mounted on the ground plane side of the board. If chip capacitors are used for C1 and C2, they should be soldered directly across the gaps in the microstrip lines. If silver mica capacitors are to be used, they may be mounted on the ground plane side of the board with the rest of the components. The use of chip capacitors is preferable, as they will provide lower loss and less inductance than capacitors with wire leads.

Be sure to leave enough clearance under the bodies of the two 1000-pF bypass capacitors so that the lead can be soldered to the ground plane at the points indicated by Xs on fig. 2C. One end of the 51-ohm resistor is connected to the top side of the board.

If a socket is used to mount the MC1697, it must be the type that can be soldered to both sides of the board so that pins 1 and 8 can be properly grounded. Molex or swage-in pins will work here, or the IC can be soldered in the circuit board. Soldering the IC is the best choice in terms of electrical and thermal performance, but it does make changing the device difficult. If you are going to purchase only one IC (rather than buy several to select the fastest), you may as well solder it directly to the board.

The board was designed to fit into a Bud CU124 cast aluminum box, although it will also fit into a 5.1 × 7.6 × 10.2-cm (2 × 3 × 4-inch) sheet-metal box. The cast box provides better grounding and rf shielding. The board fits into the box as shown in fig. 3. The component side is mounted facing down; this is done so that the BNC input and output connectors can be directly soldered to the microstrip lines after the board has been installed in the box.

The board itself is mounted in the box with four 9.5-mm (3/8-inch) standoffs located at the four mounting pads near the corners of the board. The standoffs should be soldered to the ground plane and then securely clamped to the box with screws.

If an external power supply is used, the lead may

fig. 2. The top and bottom sides of the printed circuit board are shown in A and B respectively. In the parts placement diagram, C, C1, and C2 are installed on the top of the board if glass or mica capacitors are used; if chip ceramics are used, they are mounted on the foil side. The leads marked with an X are to be soldered on the ground plane side.
be brought into the box with a feedthrough bypass-type capacitor. Alternatively, a small power supply can be built in the box containing the prescaler.

operation

This prescaler module has no adjustable components and should work, Murphy willing, when it is first turned on. However, if it does not, there are several points to check. First, see that the —7 volts is present at pin 5 on the MC1697. If you have an oscilloscope, check to see that the IC is not oscillating. (A cure for oscillations is to connect a 10k-ohm resistor from pin 4 to Vee.) Also check the grounds on the two bypass capacitors, pins 1 and 8 on the MC1697, and on the 51-ohm resistor. All of these ground points must be soldered to the top of the printed circuit board.

Once the prescaler is built and operating you will naturally want to check it to find the maximum operating frequency. One way of doing this involves finding a signal generator or source that covers the 1- to 2-GHz range. Attach the prescaler and counter to the generator. Start with the generator set near 1 GHz and verify that the counter reads approximately 250 MHz.

Slowly increase the frequency of the signal generator and watch the counter display. Somewhere between 1500 and 1700 MHz (about 375 to 425 MHz on the display) the indicated frequency will suddenly jump downward. This shows that the divider is no longer able to operate normally. The point at which the display jumps to a radically different value indicates the maximum input frequency at which your prescaler will operate.

There is another test that will help locate the critical upper frequency. While slowly increasing the input signal frequency, watch the least significant digits on the display of the counter. As the maximum operating frequency is approached these digits will become erratic, indicating that the phase noise on the prescaler's output is becoming significant. This flickering occurs a few megahertz below the cutoff frequency.

If you wish to vary the power supply voltage slightly, you may be able to find a point at which the maximum operating frequency is increased. However, I found that presetting the supply to —7 volts is nearly optimal, and that adjusting the voltage never raised the upper frequency limit by more than a small amount.

Another good test of the prescaler is to count a signal whose frequency is near the maximum limit for the counter itself, note the frequency displayed, and then count the same signal using the prescaler. If the counts (after multiplying by four) are very nearly the same, the prescaler is probably operating correctly.

The most serious shortcoming of this prescaler module is its limited dynamic range. Typically, the input signal must be in the range of 200 to 1600 mV p-p for proper operation. The dynamic range could be extended by the use of an input stage of amplification and limiting. The problem with this approach is that the amplifier stage must be broadband, covering at least 600 to 1500 MHz; such amplifiers are not easily built. Avantek has published an application note which covers the construction of a 40-dB dynamic range preamplifier covering 25 to 1000 MHz. Using thin-film hybrid amplifier modules to achieve its performance, its principal shortcoming lies in the cost — more than $120.

The simple prescaler described here, even without a preamplifier, is a useful test instrument. If the input signal's amplitude is outside the operating range, the prescaler does not produce spurious outputs — it simply stops operating. As long as the input signal source can provide at least 1 mW, some attenuator level can be found which will permit operation of the scaler. Several versions of this prescaler module have been built. All functioned without problems and all had a maximum operating frequency of at least 1500 MHz.

references

Hy-Gain 3750
An Exclusive State of the Art

Hy-Gain's 3750 covers all amateur bands from 1.8 through 30 MHz. It utilizes advanced Phase-Lock-Loop circuitry, dual gate Mos Fet's at all critical RF amplifier and mixer stages, a narrow band SSB crystal filter and a 50 kHz T-notch filter.

The 3750 also incorporates audio and microphone compression circuits, ALC and specially developed S-2002 tubes.

Hy-Gain's optional 3855 VFO provides stable operation with less than 100 Hz of drift (after a 30 minute warm-up). Up to seven crystal-controlled frequencies may be selected on any band. The frequency of the 3855 is displayed on the digital display of the main unit. Incremental tuning controls allow independent tuning of both the receive and transmit frequencies simultaneously.

Hy-Gain also offers the 3854 matching speaker unit. This 5-inch PM Dynamic Speaker features a full four watts of input power to perfect the ultimate amateur radio communications system.
In this Christmas season, when our thoughts and desires are turned toward material possessions, we offer, for your consideration, one possession of lasting value which will truly satisfy an inner hunger.

There is an area of human desire that can only be satisfied by our Heavenly Father. We can attempt to satisfy this area in our life with material possessions, but it will not be successful.

The Bible tells us in Psalms 37:4, 5: "Delight thyself also in the Lord, and He shall give thee the desires of thine heart. Commit thy way unto the Lord; trust also in Him, and He shall bring it to pass". (KJV)

Jesus tells us in the Gospel of John that He is the way, the truth and the life. If we believe this, follow His teachings and obey His commands, we may ask any request of Him and it will be granted. He has told us this so we will be filled with His joy.

His way for our life will fulfill our desires and solve the complex and confusing problems of this life. Jesus said, "I am come that they might have life, and that they might have it more abundantly". John 10:10b (KJV)

God's plan for our life makes us a complete person through Jesus Christ. Please accept His love and have a blessed Christ-centered holiday season.

"73" from the gang

MONROE ELECTRONICS, INC.
410 Housel Ave., Lyndonville, N.Y. 14098
Full Features and Superior Performance
ST-6000 RTTY DEMODULATOR

Select Rx & Tx Shifts
Accurately Tuned Rx Filters
Crystal Controlled Tx Tones
True Transceive Operation

Data Status Indicators
Loop 1
Post-Autostart
Pre-Autostart

Invert Both Rx Demod,
and Tx Tones

Correct for
Multi-Path Distortion
Local Loop Operation

Autostart with:
- Motor Control
- Mark Hold
- Antispace

Automatic Tx/Rx Station
Control with Keyboard
Operated Switch [KOS]

Hard-Limiting [FM]
or Non-Limiting [AM]
Reception

Correct for
Bias Distortion

Tuning Oscilloscope
[Front Panel Controls]
Meter Indicator Option
Also Available

Why not have the best?
The HAL ST-6000 Demodulator offers outstanding performance, versatility, and ease of
operation. The Receive Demodulator features multiple-pole active filters available for “high” or “low” tones.
These filters are frequency-matched to the transmit tone crystals for true transceive operation. Input
bandpass filters, discriminator filters, and post-detection filters are carefully designed and tested for optimum
weak-signal recovery. The ST-6000 has an internal loop power supply, 2 loop keyers, RS-232, MIL-188C, and CMOS
data I/O, and rear panel connections to data and control circuits for connection to UART and computer devices.
Use it with the HAL DS-3000 KSR for the best in RTTY performance.

$595.00

Write today for HAL’s latest RTTY catalog.

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

For our Overseas customers:
see HAL equipment at:
Richter & Co.; Hannover
I.E.C. Interelco; Bissone
Vicom Imports; Auburn, Vic., Australia
NEW products

For literature on any of the new products, use our Check-Off service on page 150.

vlf-hf communications receiver

The new HF1030 communications receiver introduced by Communications Product Corporation is a fully synthesized, tunable, solid-state receiver that covers the frequency range from 10 kHz to 30 MHz in 10-kHz steps. Designed by Dr. Ulrich L. Rohde, DJ2LR, well known to ham radio readers for his many contributions to modern high-frequency receiver design, the HF1030 has many unusual features not previously available. Included are frequency preset, remote control, and remote programmability — features which permit the receiver to be used in computer-based communications systems. Communications Product Corporation is presently working with Tektronix on a system for military applications which allows a Tektronix 4051 computer to store and decipher Morse code and RTTY transmissions. The Tektronix 4051 computer is also capable of remotely controlling and programming the HF1030 via an inter-

phase card and IEEE bus, allowing simultaneous control of up to 30 separate HF1030 receivers.

Other features of the HF1030 include provision for all reception modes (a-m, ssb, and CW), 455-kHz output for FSK demodulation (FSK filter built in), selectable i-f bandwidths, electronic bandpass tuning, and excellent immunity to strong-signal overload. The two selectable tuning speeds of the optical shaft encoder (1800 Hz and 180 Hz per 360° dial revolution) give the feel and smoothness of an analog VFO in quasi-continuous tuning with absolutely backlash-free performance while retaining the accuracy and stability of the internal or external frequency standard. No separate MHz control is required — the frequency may be preset with the thumbwheel switches, then returned to VFO control; the fast-switching synthesizer permits frequency jumps of 30 MHz in less than 10 milliseconds.

All internal frequency control, including the BFO, is derived from a master crystal standard; worst case frequency stability for the oscillator is 1 Hz/C°. For more demanding stability requirements, there is provision for an external rubidium or cesium standard. The fully synthesized BFO provides a ±5 kHz tuning range. Almost all frequency synthesizer circuitry is based on CMOS circuits; this reduces power consumption to less than 2 watts and enhances reliability because of heat reduction. Spectral purity of the synthesizer is improved because of the great reduction of digital noise. The CMOS memories and standby battery provide storage of frequency data for at least one year in the event of power failures; upon restoration of power, the receiver will return to the previously tuned frequency.

The HF1030 receiver uses a specially developed, high-level double-balanced mixer with monolithic hotcarrier diodes, which is terminated in a low-noise amplifier with heavy feedback for excellent sensitivity without any requirement for an rf amplifier. Sensitivity on CW, FSK, and ssb is typically 0.5 µV for 10 dB signal-to-noise ratio; a-m sensitivity is 2.6 µV typical for 10 dB S/N. The noise figure is less than 10 dB from 1-30 MHz. The third-order input intercept point is +20 dBm (signals separated 30 kHz); second-order IMD is −80 dB.

The first i-f of the HF1030 is at 40.455 MHz; the second i-f is at 455 kHz. To improve input selectivity the 8-pole 40.455-MHz crystal filter has a bandwidth of ±4 kHz with a 1:2 shape factor; this filter was designed specifically for low intermodulation distortion products. The five built-in 455-kHz i-f filters have been specially selected for optimum performance on ssb (2.7 kHz), CW (375 Hz), FSK (1.9 kHz), and a-m (5.8 kHz). The built-in bandpass tuning feature (controlled by the main tuning knob) is accomplished by electronically shifting the frequencies of the LO and BFO.

The very effective AGC system used in the HF1030 receiver has a minimum range of 120 dB with a threshold at 0.2 µV; there is less than 6 dB audio change with rf inputs from 1 µV to 100 mV. On ssb, the AGC attack time is 100 ms; hold time is 1.6 seconds and release time is 50 ms (typical). For a-m reception, AGC attack time is 10 ms; release time is 35 ms.

Other features of the HF1030 include a very effective squelch system which discriminates between man-made noise or electrical noise and voice or other wanted transmissions. Editor-in-chief W1HR had an opportunity to compare the performance of the HF1030 against several other high-frequency receivers and reported that “It’s probably the best communications receiver I’ve ever used; weak signals that were completely covered by noise and internal IMD in other receivers were solid copy on the HF1030. It’s amazing how much of the splatter hams complain about is actually being generated right in their own receivers!!”

The receiver uses modular construction with easy access to all assemblies; its compact size allows two
HF1030 receivers to be mounted side by side in a single rack panel. The set measures 8.24 inches wide, 5.22 inches high, and 14.48 inches deep (21 x 13.3 x 36.8 cm); weight is 18 pounds (8.2 kg). Total power consumption (all LED displays on) is less than 15 watts. Power requirement is 110/220 Vac, 47-400 Hz at 25 watts, or 15 to 25 Vdc at 1 amp. Further information on the HF1030 Communications Receiver can be obtained from Rohde & Schwarz Sales Company, (U.S.A.) Inc., 14 Gloria Lane, Fairfield, New Jersey 07006.

bencher keyer paddle

Bencher, Inc., of Chicago, is producing a dual-lever, iambic keyer paddle that has a lot of features you'll find helpful for ease and reliability in CW operation. Some of these features are dual adjustment of spring tension on the paddles to match the "feel" to your fist; precision contact adjustments with a set-screw locking feature so the adjustment stays where you want it; and a heavy steel base, equipped with nonskid feet so you don't have to chase the paddle around the desk top.

The contact points are solid silver, for a lifetime of flawless keying. Nylon bearings are used on the keying shafts, and the bearings float on machined brass fittings for a self-aligning action. Spring tension prevents play and sloppiness, eliminating contact bounce and backlash.

The Bencher Ultimate Paddle looks good and works well. The frame, posts, and bearing ring are all precision machined from solid brass stock, polished and plated for durability and first-rate appearance.

You can obtain the model BY-1 (standard black-finish base) for
Hand Holding? . . . Let DATA SIGNAL put rings on your fingers . . .
with our SUB-MINIATURE ENCODERS

The world's smallest hand-held goes hand-in-hand with the world's smallest, lightest and least expensive T-T Pads.

MODEL SME — Smallest available Touch Tone Encoder. Thin, only .05" thick, keyboard mounts directly to front of hand-held portable, while sub-miniature tone module fits inside. This keyboard allows use of battery chargers. Price $29.00, with your choice of keyboards. SME (less keyboard) $24.00

DTM or, SME

...And Bells on Your Toes with our AUTOPATCH — Ready to go!

A Complete Autopatch facility that requires only a repeater and a telephone line. Features include single-digit access/disconnect, direct dialing from mobile or hand-held radios, adjustable amplifiers for transmitter and telephone audio, and tone-burst encoder for acknowledgement of patrol phone.

RSP-200 P. C. Card $199.50
RSP-200R Rack Mount $249.50

Be sure to ask about our new keys and CW memory for CW buffs.

DATA SIGNAL, INC.
2403 COMMERCE LANE ALBANY, GEORGIA 31707
912-883-4703

Palomar synthesized transceiver

The Palomar PTR-130K is the first completely multi-functional transceiver ever made available to the public. It incorporates some of the most advanced features of logic technology. The PTR-130K is a miniaturized mobile transceiver capable of operating with 100-Hz resolution from 100 kHz to 30 MHz, in all modes of transmission and reception (SSB, CW, FM and AM). Instant frequency selection is available at the touch of a finger.

The transceiver has a built-in rf compressor to increase effective transmitter output by 12 dB (16 times). Two cascaded Collins mechanical filters in the receiver provide superior selectivity, with a typical shape factor of 1:1.25 (3 dB/60 dB). These, and many other features, are packed into a small, 16.5 x 6.3 x 20 cm (6-1/2 x 2-1/2 x 8-inch) package. Power output is 5 watts on a-m, 12 watts on other modes.

The PTK-130K is the latest in a long line of innovative electronics products from Palomar Electronics Corporation, 665 Upper Street, Escondido, California 92025.

"Band-Aids" Handbook

James Dersch, W6D0AJE, has just published Band-Aids, which he calls the "Radio Amateur Operator’s Handiest Handbook." If you’ve ever
found to frantically search for some bit of information in the midst of a QSO or contest, you will agree with that description. Band-Aids is a spiral-bound booklet full of handy information in a multitude of categories. It contains many operating aids that the amateur will find useful — perhaps essential — during the many activities he pursues. It has maps and lists for such things as the Worked All States award (WAS), time-zone information, abbreviations, IACO word list (phonetic alphabet), OSCAR frequencies, U.S. 160-meter allocations, international prefix lists, and many other bits and pieces that are always needed at your fingertips but manage to get lost at the wrong time.

In the nonoperating category, Band-Aids contains useful material on metric conversions, resistor (and other component) color coding, schematic-diagram symbols, telephone touch-tone frequencies, VSWR nomograph, some useful formulas, and much more. Band-Aids contains 110 pages, and measures 14 x 21 cm (5-1/2 x 8-1/2 inches). The spiral binding allows it to lie flat, and the compact size allows it to fit comfortably on even the smallest of operating positions. You can obtain one from Ham

The complete receiver audio active filter YOU CAN DO IT SIMULTANEOUSLY with both NOTCH and BANDPASS filters.

<table>
<thead>
<tr>
<th>NOTCH FILTER</th>
<th>CONTINUOUSLY VARIABLE 500 - 10000 Hz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO TH DPH FEXED AT NO LESS THAN 50 DB.</td>
<td></td>
</tr>
<tr>
<td>INDEPENDENT OF BANDPASS CONTROLS.</td>
<td></td>
</tr>
<tr>
<td>MAY BE CENTERED FROM 200 - 14000 Hz.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BANDPASS FILTER</th>
<th>CONTINUOUSLY VARIABLE 500 - 10000 Hz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTER FREQUENCY CONTINUOUSLY VARIABLE FROM 200 - 14000 Hz.</td>
<td></td>
</tr>
<tr>
<td>CHANNEL WIDTH CONTINUOUSLY VARIABLE FROM 100 TO MORE THAN 1400 Hz.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SL-55 Audio Active Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both filters are cascaded with a fixed lowpass filter (18 dB/octave roll-off) above 1400 Hz for optimum 5SB filtering. (3.5x5.5x7.5 inches)</td>
</tr>
<tr>
<td>CONTAINS 115 VAC SUPPLY POWER, Requires LOW IMPEDANCE (4-16 OHM) AUDIO DRIVE FROM ANY RECEIVER, CONNECTS IN SERIES WITH AUDIO OUTPUT LINE AND WILL DRIVE SPEAKERS OR HEADPHONES. AUDIO OUTPUT POWER ONE WATT. WE WILL MODIFY TO 240 VAC FOR FOREIGN USE FOR $1.00 ADDITIONAL. FRONT PANEL BYPASS SWITCH RESTORES AUDIO PATH TO ITS ORIGINAL CONFIGURATION.</td>
</tr>
<tr>
<td>NET: $72.50 Collins gray cabinet and dark gray wrinkled panel</td>
</tr>
</tbody>
</table>

ERC INTRODUCES A BRAND NEW CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD

REQUIRES 115 VAC AT LESS THAN 1/16 AMP.

COLLINS GRAY CABINET, WRINKLE PANEL - BRIGHT RED LED DIGITS (.33") DECIMAL POINT IS THE PILOT LIGHT.

ANTENNA PROJECTS 18-30 MHz

THE MODEL SL-65 CA (20 - 2000 WATTS) AND THE MODEL SL-65A (8.2 - 20 WATTS) DIGITAL VSWR AND NET POWER INDICATORS PROVIDE INSTANTANEOUS AND CONTINUOUS DISPLAYS OF VSWR AND NET POWER ACTUALLY ACCEPTED BY THE ANTENNA. THERE ARE NO BUTTONS TO PUSH OR CALIBRATION SETTINGS. ELECTRICITY IS DISPLAYED WITHOUT DIGITAL READOUT FLICKER THE INSTANT RF HITS THE COAX FOR VIRTUALLY ANY TYPE OF MODULATION. -- EVEN 5CB AND CW GREATER THAN 10 WPM, THERE IS NOTHING LIKE IT AVAILABLE ANYWHERE ELSE. CHECK THE PERFORMANCE SPECIFICATIONS BELOW.

WARRANTY ONE YEAR

SL-65

VSWR INDICATOR

- TWO-DIGIT DISPLAY SHOWS VSWR TO AN ACCURACY OF .1 FOR VALUES FROM 1.0 AND 2.2, ACCURACY IS TO .2 FOR VALUES FROM 2.3 TO 3.4 AND TO .3 FROM 3.4 TO 4.0. FROM 4.1 TO 6.2 THE INDICATION MEANS THAT VSWR IS VERY HIGH.
- FOR VSWR VALUES NEAR 1.0, THE POWER RANGE FOR A VALID READING IS 20 - 2000 WATTS OUTPUT, FOR HIGHER VALUES THE UPPER POWER LIMIT FOR A FLICKER FREE VALID READING IS SOMEWHAT LESS (35 - 1000 WATTS FOR VSWR AT 2.0).
- DIVIDE THE ABOVE POWER LEVELS BY 100 TO OBTAIN THE PERFORMANCE OF THE SL-65A QRP MODEL.

SL-65A GREAT FOR QRP & CB

 TWO 50-239 COAX CONNECTORS ARE AT THE REAR PANEL.
 DIMENSIONS 3.5 x 5.5 x 7.5 INCHES.
 WEIGHT IS 2 POUNDS.

SL-65 NET POWER INDICATOR

- THE POWER DISPLAYED IS THE DETECTED PEAK OF THE PEP FOR ANY MODULATION. THIS IS THE POWER THAT THE TRANSMITTER I"S TALKING" UP TO DISPLAY DECAY TIME IS ABOUT ONE SECOND.
- THE POWER DISPLAYED IS THAT WHICH IS ACCEPTED BY THE ANTENNA (FORWARD LESS REFLECTED).
- POWER IS DISPLAYED ON THE SAME TWO DIGITS AS VSWR IN TWO AUTO-RANGING SCALES, 20 TO 500 WATTS AND 500 TO 2000 WATTS. TRIPower POWER AT THE 500 WATT LEVEL IS AUTOMATIC EX: A READING OF 1.5 COULD MEAN 150 OR 1500 WATTS. YOU MUST KNOW WHICH RANGE YOU ARE IN.
- ACCURACY IS TO 10 WATTS IN THE LOWER RANGE AND 100 WATTS IN THE UPPER RANGE. DIVIDE POWER SPECS BY 100 FOR SL-65A.

Surface postpaid in US & Canada. Price: $189.50. Virginia residents add 4% sales tax. Tel. (800) 463-2669

ELECTRONIC RESEARCH CORP. OF VIRGINIA P.O. BOX 2394 VIRGINIA BEACH, VIRGINIA 23452
MODEL CTR-2A SERIES Counters are designed and built to the highest standards to fulfill the needs of commercial communications, engineering labs and serious experimenters. With an accuracy of +0.00005% (oven option) the CTR-2A can handle the most critical measurements and is about half the cost of other commercial counters. If you need a reliable counter at an affordable price, the CTR-2A is the answer.

- Built-in Pre-Amp 10 mv @ 150 MHz
- 8 Digit .3" LED Display
- High Stability TCXO Time Base
- Built-in VHIF-UHF Prescaler
- Automatic Dp Placement
- TCXO Std. ± 2 ppm
- Selectable Gate Times - 1 & 1 sec.

500 MHz Kit CTR-2A-500K $249.95
500 MHz Assembled CTR-2A-500A $399.95
1GHz Kit CTR-2A-1000K $499.95
1GHz Assembled CTR-2A-1000A $549.95

OPTIONS
- Oven Crystal $49.95
- 10 mv @ 150 MHz $3.50
- 1 sec. Period $15.00
- 1.2 V DC $15.00

MERRY XMAS

Radio's Communications Bookstore, Greenville, New Hampshire 03048, for $7.95, plus 40 cents shipping and handling. Order CC-BA.

tunable sub-audible tone encoder

Vega introduces its new subminiatu re, subaudible tone encoder for hand-held as well as routine mobile radio applications. The Model 188 is ideal for one-way, tone-protected applications where all mobiles are equipped to transmit, but not to receive, tone. The tone frequency is continuously field tunable and no modifications or elements are required to establish the tone frequency. Extremely stable, the Model 188 maintains frequency and level accuracy over the temperature and voltage variations found in mobile radio environments. The unit measures 2 x 2 x 1.3 cm (0.8 x 0.85 x 0.52 inch) and is backed by a three-year warranty. It is available for quick delivery.

For further information, contact VEGA, 9900 Baldwin Place, El Monte, California 91731.

amateur antenna catalog

A new catalog covering their comprehensive line of mobile and base station antennas for amateur radio applications has just been issued by Antenna Incorporated, Cleveland, Ohio. The 8-page catalog provides detailed descriptions and complete electrical and mechanical specifications on some 4 dozen ham antennas, including 10 meter, 6 meter, 2 meter, 3/4 meter, and 1-1/4 meter types.
Thirteen types of mountings are available, according to Randall J. Friedberg, vice president and sales manager. The antennas are designed for 100, 150, and 200-watt power ranges. The mobile units are designed for temporary or permanent installation on all types of vehicles, Friedberg said.

All of the antennas and accessories described in the 8-page booklet are manufactured in the United States and of highest quality materials to assure dependable performance.

Copies of the catalog are available free on request from Antenna Incorporated, 26301 Richmond Road, Cleveland, Ohio 44146.

CW/ssb active filter

MFJ Enterprises has introduced two new CW and ssb active filters. The top-of-the-line model is called the MFJ-721 Super Selector CW/ssb Filter. It has a 2-watt audio amplifier, switchable noise limiting, and an input selector switch for two rigs.

The CW filter is an 8-pole active filter (4 cascaded stages) centered nominally at 750 Hz. It has four selectable bandwidths, 180, 150, 110, and 80 Hz. In the 80-Hz position, the response is at least 60 dB down one octave from the center frequency. It drastically reduces noise and provides up to 15 dB improvement in signal-to-noise ratio.

With a pair of stereo headphones, simulated stereo reception directs the narrow, filtered signal to one ear and the unfiltered signal to the other. The ears and brain then reject the interference, but allow off-frequency calls to be heard.

The ssb filter dramatically improves
NEW CoaxProbe*..... NEW Coaxial RF Probe for Frequency Counters and Oscilloscopes That Lets You Monitor Your Transmitted Signal Directly From the Coax Line.

Only $9.95 plus .50 postage

FINALLY! A RF PROBE that lets you connect into your coax cable for frequency measurements and modulation waveform checks directly from the transmitter.

JUST CONNECT the CoaxProbe* into your transmission line and plug the output into the frequency counter or oscilloscope. Insertion loss is less than .2db so you can leave it in while you operate.

A NECESSITY in any well-organized Ham Shack, the CoaxProbe* eliminates "jerry-rigging" and hassles when tapping into the coax line is desired.

A SPECIAL METHOD of SAMPLING keeps output relatively constant with a wide variation of power. Power output of 8 watts gives .31v out, while 800 watts will give 1.8v out. (rms 3-30 mhz). 2000 watts PEP rating too!

USE IT on 2 METER RIGS to adjust frequency. The CoaxProbe* has a range of 1.8 to 150 mhz.

MONITOR your MODULATION WAVEFORM. With an oscilloscope of proper bandwidth, you can check your modulation for flat-topping, etc. Ideal for adjusting the speech processor.

NOW YOU CAN MONITOR SIGNALS when connected to the dummy load, eliminating unnecessary on-the-air radiation.

AVAILABLE FOR THE FIRST TIME TO AMATEURS. Try it for 10 days. If not satisfied, return it for a full refund (less shipping).

A STRONG OFFER for the first time is the MFJ-720 Deluxe Super CW Filter. The MFJ-720 Deluxe Super CW Filter is available from MFJ Enterprises; they both have a 30-day, money-back trial period. If you are not satisfied, you may return the filters within 30 days for a full refund (less shipping). MFJ also provides a one-year unconditional warranty.

To order, call toll free 800-647-8660, or mail your order to MFJ Enterprises, Post Office Box 494, Mississippi State, Mississippi 39762. Include $.20 for shipping and handling.

Chemtronics desoldering tool

Chemtronics Inc., of Hauppauge, New York, recently announced the latest addition to its popular line of solder and industrial-chemical prod-
ucts: the D5 Desoldering Tool. This unique new product, which features Chemtronics’ highly effective desoldering wick in a specially engineered, refillable dispenser tool, helps technicians remove solder more efficiently while economizing on wick use. D5 may be used alone, or as an integral part of Chemtronics’ new SD5 Solder/Desolder System.

The D5 Desoldering Tool consists of a 25-mm (1-inch) clear-plastic cylinder which contains a visible supply of 152 cm (5 feet) of the company’s specially formulated desoldering wick. Braid is fed to the wick through a Teflon* probe that extends from one end of the wick supply. The heat-resistant Teflon probe allows users to desolder with pinpoint accuracy and without burnt fingers, even in high-density circuitry. In addition, the D5 Tool’s exclusive probe permits the user to shape or “web” the wick, providing maximum absorbency and further economizing on wick use. When the wick supply is exhausted, the user simply snaps the tool’s probe into the D5 Desoldering Tool Wick Refill.

Chemtronics’ D5 Desoldering Tool uses the highest-quality braid in natural copper color, which permits the user to see the absorption of solder. The braid, which meets all MIL-specs and NASA publications requirements, is treated with a pure, water-white rosin flux which is nonactivated and free from halogens and corrosive chlorides. This assures complete solder absorption without leaving harmful residue.

The pocket-sized D5 Desoldering Tool is available alone or as part of the SD5 Solder/Desolder System, where it telescopes or snaps in and out of a pound or half-pound spool of Chemtronics’ solder. D5 wick refills are also available, in two diameters, allowing the D5 Tool to be economically reused for years. More information is available at Chemtronics distributors or directly from Chemtronics Inc., Solder Products Division, 45 Hoffman Avenue, Hauppauge, New York 11787.

* Teflon is a registered DuPont trademark.
OLD TESTAMENT

"Therefore the Lord himself shall give you a sign; Behold, a virgin shall conceive, and bear a son, and shall call his name Immanuel (which means God with us)."

Isaiah 7:14 740-687 BC

NEW TESTAMENT

"...the angel Gabriel was sent from God to a city of Galilee, to a virgin betrothed to Joseph, of the house of David; and the virgin's name was Mary... The angel said to her "Do not be afraid Mary, for you have found favor with God. And behold, you will conceive in your womb and bear a son, and you shall call his name Jesus."

Luke 1:26-31 70-90 AD

But thou Bethlehem, though thou be little among the thousands of Judah, from you shall come forth one who is to be ruler in Israel, whose origin is from old, from ancient days.

Micah 5:2 740 AD

Historical evidence clearly points to Jesus as the man God, who fulfills the literal prophecies of Isaiah and Micah within 800 years. The same God who chose the Virgin Mary to bear Jesus and who chose Bethlehem for the birthplace reveals himself in holy scripture today. We thank him for the birth of Christ this Christmas, 1978.
FEATURES

- High efficiency means low current drain.
- Broad band design (no tuning).
- Direct 12 volt DC operation.
- Indicator lamps for On/Off and FM/SSB.
- Relay switching (allows you to put amplifier in or out of circuit at the flip of a switch).
- Insertion loss of less than 1 dB.
- 90 day limited warranty on parts and labor.

DIVISION OF BROWNIAN ELECTRONICS CORP.

320 WATER STREET / BINGHAMTON, N.Y. 13901 / Phone 607-723-9574
WE CARRY OCEANS
OF MANUFACTURERS
Call the Communications Leader in the Northwest for Price
Quotes on your Amateur and other Communications Needs.
TOLL FREE

From Alaska in the Northwest to Florida in the Southeast
From Maine in the Northeast to Hawaii in the Southwest
Call TOLL FREE on . . .
800-426-6937
Residents of the State of Washington call TOLL FREE on 800-562-7625

SPECIAL
FE43JA5 (Late Model)
Front Mount 132-150
MHz, 12 volt, 12 watts,
fully solid state re-
ceiver, 3 tubes in trans-
mitter, fully narrow
band, with accessories.

bench tested $58.00

GREGORY ELECTRONICS
The FM Used
Equipment People.

G.E. T.P.L.
SPECIAL

FE43JA5 (Late Model)
Front Mount 132-150
MHz, 12 volt, 12 watts,
fully solid state re-
ceiver, 3 tubes in trans-
mitter, fully narrow
band, with accessories.

bench tested $58.00

GREGORY ELECTRONICS CORP.
245 Rt. 46, Saddle Brook, N.J. 07662
Phone: (201) 489-9000

More Details? CHECK — OFF Page 150
The revolutionary Swan 100 MX: 100% new, 100% solid state, 100% portable from home station to mobile!

Introducing a superb “get up and go” transceiver, superbly designed for 100% mobility and control, as only new Swan space-age technology could do it!

100% solid state 100 MX: the compact HF unit you can take seriously — anywhere you choose to operate.

At home, set into Swan’s unique new style-coordinated station, with matching antenna tuner and power supply.

Or on the road — it’s easy to relocate 100 MX. Instantly. Just two simple connections on the back panel: snap out, snap in... and run!

100% improved audio quality: home or mobile, transmit or receive. 100 MX electronics cut through SSB sound barriers — producing a natural clarity reported comparable to AM!

Your most-wanted extras, 100% built-in: like noise blanker and VOX. Like a preselector to optimize signals. Like a real RF GAIN control, and CW sidetone.

Swan includes the RIT control (+1.5 kHz) you’d like too. Plus, for stability, a permability tuned oscillator with 1Kc readout.

A powerful package, delivering a minimum 100 watts PEP output on all bands, 10-80 meters.

Setting a 100% new state of art: 100 MX and our matched-station units. Ready for check out today at your Swan dealer, the first major breakthrough in Swan’s new program dedicated to changing the face — and performance — of ham equipment 100%...inside and out!

Swan 100 MX: $849.95
Matching Power Supply PSU-5: $179.95
Matching Antenna Tuner ST-3: $169.95

Available only through authorized Swan dealers.

☐ Please rush full specs on Swan’s all-new 100 MX home/mobile transceiver.

Name__
Address_____________________________________
City__
State__________________________Zip_________

Swan ELECTRONICS

305 Airport Road, Oceanside, CA 92054
(714) 757-7525

Swan’s continuing commitment to product improvement may affect specifications and prices without notice.
An ancient amateur proverb has it that: “If you can’t hear them, you can’t work them.”

That’s one reason why our linearized amplifier/preamplifier combinations are the fastest selling amps in the amateur radio market. Not only do they provide you with 9 dB (almost 2 "S" units) of increased signal at the other guy’s receiver, but they also provide you with a greatly improved capability to read his signal. Our transmitting amp/preamplifier combos don’t just give more output power; they also provide you with the increased sensitivity needed to make those contacts that you’ve never made before. Remember, the other guy may not have a Lunar amp/preamplifier yet. Our better than 2 dB noise figure indicates that Lunar has achieved the practical limit at 2 meters for any local noise conditions you might have. Whether you’re bouncing signals off the moon or trying to pick up a noisy signal in your car, Lunar’s preamp in our bi-linear amplifier is the best “hearing aid” you can have.

LINEARIZED AMPLIFIERS

Accepts all modes. Power ranges from 50 to 250 watts, frequencies from 50 MHz to 220 MHz. From $199.95

RECEIVING PREAMPS

For the most demanding needs where low noise figure is important. Medium and high gain models now available for frequencies 26 to 450 MHz. From $34.95

OUR MARK II & MARK IV HEADQUARTERS!

MARK II MARK IV
2.5-WATT 4-WATT $299.95 $259.95
Plus Shipping Plus Shipping

IN STOCK

THEY WORK AS GOOD AS THEY LOOK!

SHOWN WITH OPTIONAL TT MU (U)

SPECTRONICS, INC.
(312)848-6777

1000 GARPFIELD ST.

DAM PAK, ILL. 60064

Lunar would like to hear from you as to what products you think we ought to be providing for you. Drop us a line with your ideas. Lunar Amateur • WB8NMT

TEST EQUIPMENT

All equipment listed is operational and unconditionally guaranteed. Money back if it doesn’t satisfy. Prices listed are FOB Monroe.

HF 1200 450kHz pur scope.......... $215
HF 1700 (USM140) 30MHz scope with reg horiz, dual trace vert. plug.. .475
Meas Mod 80 Stand sig gen 2-400 MHz, with calib. attn... 225
Quantech 303 Wave Analyze... 445
Tek555 Dual beam 10MHz scope less plug ins (3 series)....... 625
Tek585 80MHz pur scope less plug... 645
ILMS5 Stand Sig Gen 10kHz-50MHz calib attn... 225
For complete list of all test equipment send stamped, self-addressed envelope.

GRAY Electronics
P.O. Box 941, Monroe, Mich. 48161
Specializing in used test equipment.

NEW!

600 MHz Mini Counter

NOW!
• Completely PORTABLE
• With NiCad Batteries
• Crystal Oscillator

General Purpose Low Cost Counter Without the Sacrifice of Basic Performance
"Check the features we have that some other low cost counters don’t have."
• All Metal Cabinet
• Sensitivity 10MV at 60MHz
• 48 Digit A/D LED Display
• 15V of 12V Operation
• Input Cable Included
• Gate Light
• 12V Input Jack

7206K 600MHz Kit $149.95
7208A Assembled $199.95

OPTIONS
(01) Portable with NiCad Battery (Built-in Charger).......... $30.95
(02) Crystal Oven (1 ppm to 60°C) $39.95
(03) Handie $5.00
(04) Built-in Preamp 10 MHz @ 150 MHz $10.00

DAVIS ELECTRONICS
636 Sheridan Dr., Tonawanda, NY 14150 716/874-5848

DAVIS

DAVIS

DAVIS

DAVIS

GREAT LAKES

For Great Buys

aldo 103

• All solid state
• Super compact
• 250 watts SSB/CW
• Super stable
• Totally broadbanded
• 80-75, 40, 20
• 31/4" H x 9" W x 12½" D
8½ pounds light!

& only $495

ACCESSORIES:

Microphone.. $14.95
Mobile Mount.. $3.95
Noise Blanker.. $39.95
Calibrator... $19.95
Portable AC... $84.95
Heavy Duty AC... $149.95

3993 Lorenson Rd. (616) 766-3868
Muskegon, MI 49445
Amateur Supply Company

More Details? CHECK — OFF Page 150
ALDA 103, the trim little powerhouse with incredible performance for the price! ALDA 103 provides a full 250 watts PEP input for SSB operation, and 250 watts DC input for CW. And when it comes to performance, ALDA 103 is the hottest little transceiver going — all solid state, totally broadbanded and super-stable VFO.

Ideal first transceiver for brand new novices! You'll want a full-capability CV/USB/LSB unit with all the power and performance you can use. ALDA 103 gives you 250 watts DC input for CW, the maximum allowable power for your novice license. When you upgrade to technician, you've got 2 bands for CW operation. And with your general license, just plug in your mic and use the ALDA 103's full 250 watts PEP on SSB!

Perfect second or mobile unit for seasoned hams! If you're looking for a super-compact, compact unit to use in your car or boat, ALDA 103 will live up to your expectations. Absolutely worst case sensitivity 0.5 uV for 10 dB S+N/N — a must for mobile operation. Receiver audio output of 3 watts minimum — another must. Also, very low receiver power drain of only 5.5 watts — that's 0.4 amps at nominal 13.8 VDC including power for dial and meter lamps!

Attention novices and fifteen meter fans: Now introducing the ALDA 103A — operating 80-40-15 meters. Contact your local dealer or the factory for details — prices shown below.

GENERAL SPECIFICATIONS
- **Semiconductors:** 39 diodes, 23 transistors, 11 integrated circuits
- **Power Requirements:** Nominal 13.8 VDC input at 15 amps. negative ground only
- **Consumption:** Receive — 5.5 watts includes dial and meter lamps, Transmit — 260 watts
- **Dimensions:** 3 1/4" x 9" x 12 1/2" deep
- **Weight:** 8 1/4 lbs (3.66 kg)

PERFORMANCE SPECIFICATIONS
- **Frequency Range:**
 - 80 meter band — 3.5 to 4.0 MHz
 - 40 meter band — 7.0 to 7.5 MHz
 - 20 meter band — 14.0 to 14.5 MHz
- **Modes:** CW, USB, LSB
- **RF Input Power:** SSB — 250 watts PEP nominal, CW — 250 watts DC maximum (adjustable)
- **Transmitter:**
 - **Antenna Impedance:** 50 ohm, unbalanced
 - **Carrier Suppression:** Better than — 45 dB
 - **Side Band Suppression:** Better than — 55 dB at 1000 Hz
- **Distortion Products:** Better than — 26 dB
- **AF Response:** 500 to 2500 Hz
- **I.F. Rejection:** Better than — 70 dB (typical with respect to 0.5 uV input)
- **I.F. Rejection:** Better than — 10 dB (typical with respect to 0.5 uV input)
- **Image Ratio:** Better than — 60 dB
- **Intermodulation:** Less than — 3 dB

OPTIONS & ACCESSORIES
- **Microphone** — $14.95
- **Mobile Mount** — $3.95
- **Noise Blanker** — Model No. PC 701 — $39.95
- **100 kHz and 25 kHz Dual Crystal Calibrator** — Model No. PC 801 — $19.95
- **Portable Power Supply** — Model ALDA PS 115: output — regulated 30 amp at 13.8 VDC, input — 115 or 230 VAC, 50/60 Hz, output — 13.8 V nominal at 15 amps — $84.95
- **Heavy Duty Power Supply** — Model ALDA PS 130 output — regulated 30 amp at 13.8 VDC, input — 115 or 230 VAC, 50/60 Hz — $149.95
The only thing you need to know about Quartz Crystals is:

1-405-224-6780

- Best Delivery plus Emergency Service with Guaranteed Delivery
- Highest Quality with gold MIL-C-3098 Process
- Ask for Sentry Technology Manual

And, order Toll Free 1-800-654-8850

Sentry®
CRYSTAL PARK
CHICKASHA, OKLAHOMA 73018

NEW - IMPROVED*

Model 1500 - Binocular Synthesizer-Filter with Tone-Tag
Uses 8 "D" Cells - Less Batteries
$86.00 pdl. U.S.

Model 1501 - Requires your 12 to 15 volt DC input, 100 ma., max. (Internal regulation)
$89.00 pdl. U.S.

Wall Transformer 15V AC supply rated at 12 volts, 350 ma.
for use with Model 1501 or...
$4.95

* A new balanced bipolar Tone-Tag modulator system replaces diode modulators of Models 1100 and 700

Get better than 100 Hz Effective Selectivity on CW, a selectable Noise Bandwidth of less than 150 Hz plus peripheral hearing in binaural sound... all without listening through the tinnyling roar of a Narrow-Band filter or fussing with Selective Squeel systems... experience the binaural function on side band voice... just connect to your receiver's headphone or speaker jack and plug in... and other speakers arranged stereo fashion... additional jack provided at lower power to protect your stereo headder.

See HR magazine articles on Nov.'75 and Nov.'76... Ask for our note on listening with binaural and Tone-Tag systems.
FREQUENCY COUNTER KIT

Outstanding Performance

CT-50

Incredible Price $89.95

SPECIFICATIONS

- Response Time: 10 to 65 ms, 600 Hz max with CT-500 option
- Resolution: 2 Hz, 0.1% accuracy
- Measurement Range: 1 Hz to 10 Hz
- Accuracy: 0.1% at 0 Hz
- Resolution: 1 Hz
- Accuracy: 0.1% max at 0 Hz
- Power Supply: 115 VAC 5 Watts or 12 VDC to 100 volt range

Car CLOCK

- 12/24 hour clock with a beautiful plastic case features 6 jumbo LEDS, LCD high contrast dial. Good for display, display, display, display, display, display.
- Alarm clock, display, display, display, display, display.
- Complete kit includes all parts and instructions.
- Complete kit includes all parts and instructions.

FM MINI MIKE KIT

A super high performance FM wireless mike kit. Transmits a stable signal up to 150 yards with exceptional audio quality by means of a built-in high power mike. Includes case, mike on-off switch, antenna, battery and superelectonics. This is the finest unit available.

FM MINI MIKE KIT

- 1 kHz to 10 kHz, 600 Hz max with CT-500 option
- Resolution: 2 Hz, 0.1% accuracy
- Measurement Range: 1 Hz to 10 Hz
- Accuracy: 0.1% at 0 Hz
- Resolution: 1 Hz
- Accuracy: 0.1% max at 0 Hz
- Power Supply: 115 VAC 5 Watts or 12 VDC to 100 volt range

Car CLOCK

- 12/24 hour clock with a beautiful plastic case features 6 jumbo LEDS, LCD high contrast dial. Good for display, display, display, display, display, display.
- Alarm clock, display, display, display, display, display.
- Complete kit includes all parts and instructions.
- Complete kit includes all parts and instructions.

CALCULATOR ALARM CLOCK

- The clock that's got it all! 6 LED, 12/24 hour, snooze 24 hour alarm. 4 year battery life, calendar battery, and more. The special 700 chip is used.
- Complete kit includes all parts and instructions.

30 Watt 2 mtr PWR AMP

- Simple Class C power amp features 6 mosfets, w/ 1500 watt output, 1500 watt output.
- Complete kit includes all parts and instructions.

RAMSEY'S FAMOUS MINI-KITS

- FM wireless mike kit
- Transmits up to 300 yards with any type of antenna.
- Runs on 1000 Watts max with CT-500 option

COLOR ORGAN/MUSIC LIGHTS

- See music come alive, 3 different lights, flicker with music. Light changes for 6 channels for the midrange and high end lights. Each channel individually adjustable, and drives up to 3000 Watts max with CT-500 option.

LED BLINKY

- A great way to put on a show, each channel of music alternately flashes 2 jumbo LEDs, use for name boards, party lighting, jukebox lighting. Runs on 1000 Watts max with CT-500 option.

PHONE ORDERS CALL (716) 271-8487

More Details? CHECK — OFF Page 150
CRYSTAL FILTERS and DISCRIMINATORS

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Frequency</th>
<th>Bandwidth</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XFD-A</td>
<td>2.5 kHz</td>
<td>SSB TX</td>
<td>$40.65</td>
</tr>
<tr>
<td>XFD-B</td>
<td>2.4 kHz</td>
<td>SSB RX/TX</td>
<td>$55.10</td>
</tr>
<tr>
<td>XFD-C</td>
<td>3.7 kHz</td>
<td>AM</td>
<td>$59.30</td>
</tr>
<tr>
<td>XFD-D</td>
<td>5.0 kHz</td>
<td>AM</td>
<td>$59.30</td>
</tr>
<tr>
<td>XFD-E</td>
<td>12.0 kHz</td>
<td>NBFM</td>
<td>$59.30</td>
</tr>
<tr>
<td>XFD-F</td>
<td>5.0 kHz</td>
<td>CW (8 pole)</td>
<td>$41.50</td>
</tr>
<tr>
<td>XFD-NB</td>
<td>0.5 kHz</td>
<td>CW (8 pole)</td>
<td>$73.45</td>
</tr>
</tbody>
</table>

VHF and UHF FILTERS

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Bandwidth</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>$4.75</td>
<td></td>
</tr>
<tr>
<td>USB</td>
<td>$4.75</td>
<td></td>
</tr>
<tr>
<td>LSB</td>
<td>$4.75</td>
<td></td>
</tr>
<tr>
<td>BFO</td>
<td>$4.75</td>
<td></td>
</tr>
<tr>
<td>Socket</td>
<td>$5.00</td>
<td></td>
</tr>
</tbody>
</table>

OSCAR-J FILTERS

- Suppress 2m Tx Third Harmonics, Low 2m loss (0.5 dB typ.). High loss at 435 MHz (30/40dB).
- MM1200-5: 30 dB min. attn. $29.95
- MM1200-7: 40 dB min. attn. $39.95

RECEIVE CONVERTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>IF Band</th>
<th>Options</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMc50</td>
<td>N, F</td>
<td>2.5 dB typ.</td>
<td>$39.95</td>
</tr>
<tr>
<td>MMc144</td>
<td>N, F</td>
<td>2.8 dB typ.</td>
<td>$39.95</td>
</tr>
<tr>
<td>MMc220</td>
<td>N, F</td>
<td>3.0 dB typ.</td>
<td>$39.95</td>
</tr>
<tr>
<td>MMc432</td>
<td>N, F</td>
<td>3.8 dB typ.</td>
<td>$49.95</td>
</tr>
<tr>
<td>MMc452 S</td>
<td>N, F</td>
<td>3.0 dB typ.</td>
<td>$59.95</td>
</tr>
<tr>
<td>MMc438/ATV</td>
<td>Ch2 or Ch3</td>
<td>$79.95</td>
<td></td>
</tr>
<tr>
<td>MMc2906-1296</td>
<td>N, F</td>
<td>8.5 dB typ.</td>
<td>$89.95</td>
</tr>
</tbody>
</table>

ANTENNAS

- For Concord, Via UPS
- 144-148 MHz J-SLOTS
- 8 Over B HORIZONTAL POL. -12.3 dB DB/2M $48.25
- 8 BY VERTICAL POL. DB/2M-VERT. $56.65
- 8 + B TWIST DRY/2M $49.95

UHF LOOP YAGIS

- 26 LOOPS GAIN +420 dB $24.25
- 1200-1340 MHz 1296-1691 $56.95
- 1650-1750 MHz 1691 $59.95

Specials of the Month

- IC-280: A new IC-280 with $480.00 and receive an $80.00 credit toward another purchase! Sorry, no trades.
- TR-7400A: A new TR-7400A at $449.00 and receive a 1525 EM Drake encoder microphone at no charge ($50.00 value).
WILSON WE-800 with 16-button touch tone pad. Mint. Includes batteries, charger, manual and two extra pro- gramming boots for $435.00. Also Western Electric touch tone pad in housing, $20.00. Two Gel-cells, 6V, SAH, with charger, $15.00. Radio Shack 6 to 12V voltage inverter, $10.00. KBCG, 1420 South Central Ave., Visalia, CA 93277. (209) 733-4715.

EZ deals are the best! Try me and see for yourself. Drake, KLM, Swift, Cushcraft, Denison, VHF Eng., ICOM, CDE, Hustler. Wilson and more. Call, see or write WBE2, Bob Smith Electronics, RD2 3, Hwy 169 S 7, Fort Dodge, IA 50501. (515) 576-3666.

THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices; catalog: 2 West 22nd St., Baltimore, MD 21218.

CERTIFICATE for proven two-way radio contacts with Amateurs in all ten USA call areas. Award suitable to frame and prove achievements on request. SASE brings TAD data sheet from WBLU, 2814 Empire, Burbank, CA 91504.

AUTHORIZED DISTRIBUTOR F9 FT Antennas, Microwave Modules, RFW Products' new tandem reflector, 19 elements, $25.00. Two-Way Radio Clinic — N2 MB (formerly WABZ82). $35.00.

TEST EQUIPMENT CATALOG listing used Tektronix, HP and GR equipment at bargain prices. PTL, Box 8669, White Bear Lake, MN 55110. Price $1.00 refundable with first order.

STOP LOOKING for a good deal on amateur radio equipment? You’ve found it here! You are at your amateur radio headquarters in the heart of the Midwest. We may not have a toll free number but we will save you more in the long run! We are factory distributors direct!

KENDWOOD TS-820 transceiver, remote VFO, speaker, PDC wattmeter for sale. Make an offer, I will consider trade for computer, terminal, printer, etc. Write to Pete, P.O. Box 399, Sunnyvale, CA 94088.

WANTED — Radio transcription discs. Any size or speed. Larry, W7FIZ, Box 724, Redmond, Washington 98052.

SOLAR CELLS 4" Dia. x 0.5" thick. 10 for $65.00 plus shipping. WBLQ, 1742 Dowd Drive, St. Louis, MO 63136. (314) 522-8667.

OLD QST MAGAZINES N. C. Malpass, W4N2Z, 1504 Boyette Dr., Goldsboro, N.C. 27530.

ELECTRONIC EQUIPMENT HOTLINE is a classified advertising newsletter for professional, industrial, and surplus electronic equipment. Subscriptions $5.00 a year. A.D. Box 748, Dept HH, Panorama City, CA 91401.

FREE CATALOGS: P.C. boards from your artwork or favorite magazine. Also parts kits. Hauck Electronics, 1928 Fairview Rd., 7th Fl., PA 15216.

LAB TEST EQUIPMENT, bargain prices. SASE for flyer. TOL Electronics, Box 9674, Kansas City, MO 64134.

PHOTOS wanted for rare or unusual U.S.-manufactured long-range communication receivers (or permission to photograph same) for use in communication receiver history covering 1918-1978. H.L. Chadbourne, 530 Midway Street, La Jolla, CA 92037.

SELL Boonton 2020 Signal Generator, Recounted, $50 plus transp. WBLQG, 34 Laurel Ave., Palauma, CA 94952.

BE GOOD TO YOURSELF through R-UN. Reward yourself with a new accessory or antenna or a new band or a second rig or new first-string replacement rig. Here’s R-UN’s partial reward-yourself list. Accessory: keyer, (tuner, (amplifier, (mobile, (fixed vertical, (low, (other, (other). A second rig: mobile, (gr), (erp), (era special, (a new band: 2 meters, (high), (to dual mode for your $100. (We can help you select from top amateur equipment brands. And even will mail through a “Thank You” card from us to you. Or anyone else.) Don’t just leave on North Pole Nick (or the Bunny) again. R-UN in or jingle the telephone bell now to Radios Unlimited, 1780 East Avenue, P.O. Box 347, Somerset, New Jersey 08673. (201) 469-4590.

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $89.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output. Unsurpassed audio quality and built-in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95.

Now available in KIT FORM GLB Model 200 MINI-SIZER. Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95 Send for FREE 16 page catalog. We welcome Mastercharge or VISA.

GBL ELECTRONICS
1952 Clinton St., Buffalo, N. Y. 14206

QUARTZ CRYSTALS
"IN A HURRY" SINCE 1970

CRYSTALS AVAILABLE FOR:
- CB — Synthizers
- Amateur - HF, VHF, UHF
- Industrial
- Scanner
- Marine — LB & VHF
- Conversion Crystals
- Special Attention to R & D.
- Micro-processor Types.

DISCOUNTS AVAILABLE TO DEALERS & MANUFACTURERS

CALL "BONNIE" FOR PRICES & DELIVERY

VISA & MASTERCHARGE
credit cards accepted.

CAL CRYSTAL LAB, INC.
1142 N. Gilbert Street
Anaheim, CA 92801
(714) 991-1580
NEW! EXCITING! BREAKTHROUGH!
YAESU FRG-7000 Shortwave Receiver

$655.00
The Most Exciting Shortwave Receiver Since the HRO!
(Call for Quotes)

palomar engineers
NEW ALL BAND PREAMPLIFIER
- Continuously Tuneable
- Covers All Amateur Bands from 160-6 m.
- Provides 20 db of gain
- Dual Gate FET for low noise figure
- An RF sensing circuit allows use with transceivers
- Built-in 117 volt AC Power Supply
- Connecting Coaxial cable for transceiver included

$89.50

ETO — ALPHA
Buy The Best First!
Full Power + C.C.S. Ratings.

$1,395.00
76A
76PA
374A
78

$1,695.00
1,795.00
2,395.00

THIS MONTH'S SPECIAL
ICOM IC-280 $395.00

16 ELEMENTS — F9FT — 144 MHz

The 'Tonna' You've been hearing about

144/146 MHz SWR 1.2:1
50 ohms Wt. 4.4 kg.
length 6.4 m. Horiz./Vert.
Horizontal aperture 2 x 16° (- 3 dB)
Vertical aperture 2 x 17° (- 3 dB)

$79.95

9 Element 144-146 $39.95
4 Element 144-146 $32.95

omni-j antennas
Model OJA-146
TWO METER AMATEUR BAND 146-148MHz
- NO GROUND PLANE REQUIRED
- USE FIXED, MOBILE, OR PORTABLE
- 50 dB GAIN OVER ISOTROPIC IN MOST MOBILE
APPLICATIONS
- OVERALL LENGTH LESS THAN 64 INCHES
- COLLAPSIBLE TO 22 INCHES MAY BE PACKED IN SUITCASE FOR THOSE OUT OF TOWN TRIPS
- STEEL WHIP AND ADAPTER INCLUDED FOR MOBILE AND FIXED APPLICATIONS
- VSWR LESS THAN 1:2:1

PRICE $39.95 UPS Prepaid
220 MHz — $37.95 450 MHz — $37.95

CALL FOR FAST QUOTES
SPECIAL ORDERS WELCOME

terms: All prices FOB Houston. Prices subject to change without notice. All items guaranteed. Some items subject to prior sale. Send letterhead for Amateur dealers list. Texas residents add 6% tax. Please add postage estimate.

W5GJ, W5MSB, K5AD, NSJU, W5IMJ, AGSK, WD5EDE, K5ZD, WD5ABR, W5GJM, WD5BDA, WB5AYF, K5RC, K5GBB.
Have A Nice Day!
DLA

madison electronics supply, inc.
1508-D McKinney Houston, Texas 77002
713/858-0268
Nites 713/497-5683

madison electronics supply, inc.
WHERE RELIABILITY AND ACCURACY COUNT

INTERNATIONAL CRYSTALS 70 KHz to 160 MHz

CRYSTAL TYPES
(GP) for "General Purpose" applications
(CS) for "Commercial" equipment
(HA) for "High Accuracy" close temperature tolerance requirements

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders.

WRITE FOR INFORMATION

HOLDER TYPES

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 North Lee / Oklahoma City, Okla. 73102
SYNTHEISERS

We have the world's largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our 1/3 page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS
196-23 JAMAICA AVENUE
HOLLIS, N. Y. 11423

NEW!

RADIO ANGELS

HR-RA $4.50

Softbound

Jump into the exciting world of Amateur serving mankind. In emergency situations around the world, hams are there to help with vital communications. This new book from The Ham Radio Publishing Group brings to life the heroic, glorious efforts of those Amateurs during daring rescues, life-saving attempts, and times of real personal need. This is a new book you'll read and then read again! Another great Christmas gift from HRCB. 160 pages. ©1978.

Send check, money order or credit card information plus $1.00 shipping to: Greenville, NH 03048

IN STOCK FOR IMMEDIATE DELIVERY!

BRAD LINE OF BIRD PRODUCTS STOCKED IN DEPTH AUTHORIZED DEALER/DISTRIBUTOR

SPECTRANICS INC.
(312)848-6777

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201-440-8781

SPACE ELECTRONICS Co. div. of Military Electronics Corp. 35 Ruta Court, S. Hackensack, N.J. 07606

FOR YOUR NEAREST DEALER SEE THIS ISSUE'S HAM MART

FACSIMILE

COPY SATELLITE, PHOTOS, WEATHER MAPS, PRESS!

The Fax Are Clear — on our full size (10-1/2" wide) recorders. These commercial-military units now available at surplus prices. Learn how to copy with our FREE Fax Guide.

Atlantic Supply Co.
3730 Nautilus
Brooklyn, N. Y. 11224

DIPLO HEADQUARTERS

Famous "W2AU" Balun

MODEL 3-1 $14.95
MODEL 3-1 $14.95
MODEL 3-4 $14.95
MODEL 3-4 $14.95
MODEL 3-5 $14.95
MODEL 3-5 $14.95
MODEL 3-6 $14.95
MODEL 3-6 $14.95

MINIMUM ORDER $10.00

CABLE
CABLE W2AU, 50 MCM, 100 ft.

INSULATORS
INSULATORS
INSULATORS
INSULATORS
INSULATORS
INSULATORS
INSULATORS
INSULATORS

CONNECTORS and ADAPTORS

SPECTRANICS, INC.
1099 Central Ave. Oak Park Village 00304
(312) 848-6777

Dipoles ANTENNA CONNECTOR

100W, 1MHz Dipoles connector has two 50-219 sockets molded into glass. Both sockets are shielded for maximum protection. Will fit any type of connector including: RCA: $1.95 postpaid. Companion insulators $1.95 postpaid.
SST T-1 RANDOM WIRE ANTENNA TUNER

All band operation (160-10 meters) with any random length of wire. 200 watt output power capability—will work with virtually any transceiver. Ideal for portable or home operation. Great for apartments and hotel rooms—simply run a wire inside, out a window, or anyplace available. Efficient toroid inductor for small size: 4-1/4" x 2-3/8" x 3", and negligible loss. Built-in neon tune-up indicator. SO-239 connector. Attractive bronze finished enclosure.

only $29.95

The Original Random Wire Antenna Tuner... in use by amateurs for 7 years.

SST T-2 ULTRA TUNER

Tunes out SWR on any coax fed antenna as well as random wires. Works great on all bands (80-10 meters) with any transceiver running up to 200 watts power output.

Increases usable bandwidth of any antenna. Tunes out SWR on mobile whips from inside your car.

Uses efficient tapped inductor and specially made capacitors for small size: 5-1/4" x 2-1/4" x 2-1/2". Rugged, yet compact. Negligible line loss. Attractive bronze finished enclosure. SO-239 coax connectors are used for transmitter input and coax fed antennas. Convenient binding posts are provided for random wire and ground connections.

only $39.95

SST T-3

Mobile Impedance Transformer

Matches 52 ohm coax to the lower impedance of a mobile whip or vertical. 12 position switch with taps spread between 3 and 52 ohms. Broadband from 1-30 Mhz. Will work with virtually any transceiver—300 watt output power capability. SO-239 connectors. Toroid inductor for small size: 2-3/4" x 2" x 2-1/4". Attractive bronze finish.

only $19.95

ELECTRONICS

P.O.BOX 1 LAWNDALE, CALIF. 90260 (213) 376-5887
december 1978
Your Most Called Numbers with a Single Key Punch!

Now you can dial up to 16 complete 7 or 8-digit phone numbers by punching only one (or two) keys on your pad. The AD-1 Auto Dialer's 10 number capacity RAM can be completely programmed from its own pad in less than a minute. The optional field - installable factory-programmed PROM adds 8 more numbers for $4.95. The AD-1 is ideal for mobile autpatches, home or business use. It features a unique MOS microprocessor which permits both tone duration and spacing to be programmed along with the numbers, adding versatility for repeater or similar control functions. Its crystal controlled tone generator assures high stability over a wide temperature range. The AD-1 is fully automatic and foolproof in operation and installs factory programmed. It is available at the finest amateur radio dealers and distributors everywhere.

The AD-1 Auto Dialer is available at the finest amateur radio dealers and distributors everywhere.

Advanced Electronic Applications, Inc. P.O. Box 2160, Lynwood, Washington 98036

TPL proudly presents the first true power 1/4KW SSB/AM, FM or CW solid state 2 meter linear amplifier. A remote control plug allows you to operate with the amplifier ON or OFF, or in SSB/AM, FM or CW from the dashboard.

The 2002 utilizes the latest state of the art engineering including microstrip circuitry and modular construction. The three final transistors combine to produce 250W when driven by 15W or more at 13.8VDC.

POWER INPUT:
5-20W Carrier FM or CW
20W PEP maximum SSB or AM

POWER OUTPUT:
200-250W carrier FM or CW
300W PEP SSB or AM

FREQUENCY RANGE:
144 to 146 MHz
* will operate with slight degradation at 142-150 MHz.

HARMONIC ATTENUATION:
All Harmonics Attenuated 60 dB or Greater

CURRENT DRAIN:
FM-40 Amps @ 250W
SSB-30 Amps @ 300W PEP

DUTY CYCLE:
FM 50% @ 150W 33% @ 250W
SSB 60% @ 150W 50% @ 250W

Model 2002 $479.00

can be ordered for repeater application for additional information contact TPL COMMUNICATIONS INC. 1324 W. 135TH ST., GARDENA, CA 90247 (213) 538-9814

Canada: Lenbrook Industries, Ltd., 1145 Bellamy Rd., Scarborough, Ontario M1L 1H5 Export: EMEC Inc., 2356 South 30th Avenue, Hallandale, Florida 33009

January 27-28, 1979

ARRL Convention & 19th Annual TROPICAL HAMBOREE

Flagler Dog Track

Miami, Florida

Pre-Registration

$3.00 P.O. Box 350045, Riverside Sta.

Miami, Fla. 33135

More Details? CHECK — OFF Page 150
The World's Greatest Sending Device
Adjustable to Any Desired Speed
Now available from Palomar Engineers — the new Electronic IC KEYER. Highly prized by professional operators because it is EASIER, QUICKER, and MORE ACCURATE.

It transmits with amazing ease CLEAR, CLEAN-CUT signals at any desired speed. Saves the arm. Prevents cramp, and enables anyone to send with the skill of an expert.

SPECIAL RADIO MODEL

Every amateur and licensed operator should know how to send with the IC KEYER. EASY TO LEARN. Sent anywhere on receipt of price. Free brochure sent on request.

Send check or money order, IC KEYER $97.50 in U.S. and Canada. Add $3.00 shipping/handling. Add sales tax in California.

Fully guaranteed by the world's oldest manufacturer of electronic keys.

ORDER YOURS NOW!

NEAR CHICAGO? COME IN AND SEE US!

Tim WB8SBL and Mike WN9ANF serving you!

ERICKSON’S MOVED!

Come in and see our new, bigger, and better store. Just a few blocks south of our old location.

YOU’LL FIND the best from

- AEA • Ameco • ASP • Atlas
- Belden • Bencher • Bird
- CDE • CIR • CES • Cushcraft
- DenTron • Drake • Hy-Gain
- Icom • KLM • Kenwood
- Larsen • MFJ • Midland
- Mosley • NPC • Newtronics
- Nye • Palomar • Regency
- Shure • Swan • Standard
- Tempo • Ten-Tec • Tonna
- Transcom • Wilson • Yaesu

It all points one way — HAM RADIO Magazine will cost more January 1, 1979.

Start, Extend or Renew NOW AT THE OLD, LOWER RATES

1 year . . . Just $12.00
2 years . . . Just $22.00
3 years . . . Just $30.00

For payment enclose check, money order or charge card information (acct. #, expire date, bank # for Master Charge).

Name ___________________________ Call ___________________________
Address __________________________ State ______ Zip ______

Call our new toll-free numbers for the Erickson price.
Illinois, outside 312: (800) 972-5841
Outside Illinois: (800) 972-5841

More Details? CHECK—OFF Page 150
Regulated Power Supply
- Uses LM 309K
- Heat sink provided
- P.C. board construction
- Provides a solid 1 amp to P.C.
- Includes components, hardware and instructions
- Sizes: 3.1/2" x 5" x 2" high

JE200 $14.95

Function Generator
- Provides 3 basic wave forms: sine, triangle & square wave
- Frequency range from 1 Hz to 100KHz
- Output amplitude from 0-volts to over 6 volts (peak to peak)
- Uses a 15V supply or a 6V split supply
- Includes chip, P.C. board, components and instructions

JE2206B $19.95

Digital Stopwatch Kit
- Use Intersil 7275 Chip
- Packed thru double-sided
- LED display (red)
- Times to 59 min. 59.99 sec. with
- Quartz crystal controlled
- Pressure switches for hours, minutes and stop mode
- Includes 3 pieces batteries
- Size: 4.5" x 2.15" x 90"

JE900 $39.95

4-Digit Clock Kit
- Bright .55" red display
- LED display (red)
- Times to 59 min. 59.99 sec. with
- Quartz crystal controlled
- Pressure switches for hours, minutes and stop mode
- Includes all components, case and wall transformer
- Size: 3.1/4" x 1.3/4" x 1.3/4"

JE730 $14.95

6-Digit Clock Kit
- Bright .50" light common cathode display
- Uses MM514 clock chip
- Switches for hours, minutes and stop functions
- Hours easily viewable to 20 feet
- Simulated walnut case
- 115 VAC operation
- 12 or 24 hour operation
- Includes all components, case and wall transformer
- Size: 6.3/4" x 3.1/8" x 1.3/4"

JE701 $19.95

XMAS SPECIAL - Get your PDM-35 PLUS the 117 volt AC Adapter and Padded carrying case for only $64.50 (Retail Value $73.85)

$64.50 100 MHz 8-Channel Frequency Counter

XMAS SPECIAL

Jumbo 6-Digit Clock Kit
- Four .500" light common cathode displays
- Uses MM514 clock chip
- Switches for hours, minutes and stop functions
- Hours easily viewable to 20 feet
- Simulated walnut case
- 115 VAC operation
- 12 or 24 hour operation
- Includes all components, case and wall transformer
- Size: 6.3/4" x 3.1/8" x 1.3/4"

JE747 $29.95
Ham Radio’s guide to help you find your local

Alabama

LONG'S ELECTRONICS
2808 7TH AVENUE SOUTH
BIRMINGHAM, AL 35202
800-633-3410
Call us Toll Free to place your order.

RELIABLE ELECTRONICS
3306 COPE STREET
ANCHORAGE, AK 99503
907-279-5100
Kenwood, Yaesu, DenTron, Wilson, Atlas, ICOM, Rohn, Tri-Ex.

Arizona

HAM SHACK
4506 A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert.

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR.
PHOENIX, AZ 85013
602-249-3739
Your Complete Amateur Radio Store.

POWER COMMUNICATIONS
6012 NORTH 27th AVE.
PHOENIX, AZ 85017
602-242-6030
Arizona’s #1 Ham Store. Kenwood, Drake, ICOM & more.

QSA 599 AMATEUR RADIO CENTER
11 SOUTH MORRIS STREET
MESA, AZ 85202
602-833-8051
Eimac Distributor. New & Used Equipment, Parts - Surplus too!

California

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232
CARSON, CA 90745
213-834-5868
Not the Biggest, but the Best — since 1962.

HAM RADIO OUTLET
999 HOWARD AVENUE
BURLINGAME, CA 94010
415-342-5757
Visit our stores in Van Nuys and Anaheim.

Colorado

MILE-HI COMMUNICATIONS, INC.
1970 SOUTH NAVAO
DENVER, CO 80223
303-936-7108
Rocky Mountain’s newest ham store. Lee Tingle K6LT.

Connecticut

AUDIOTRONICS INC.
18 ISAAC STREET
NORWALK, CT 06850
203-838-4877
The Northeast’s fastest growing Ham Dept. dedicated to service.

Florida

AGL ELECTRONICS, INC.
1800-B BREW ST.
CLEARWATER, FL 33755
813-461-HAMS
West Coast’s only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

MARCE'S
CENTRAL EQUIPMENT CO., INC.
18451 W. DIXIE HIGHWAY
NORTH MIAMI BEACH, FL 33160
305-932-1818
See Marc, WDAAS, for complete Amateur Sales & Service.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
24001 ALICIA PARKWAY
MISSION VIEJO, CA 92675
714-768-8900
Authorized Yaesu Sales & Service. Mail orders welcome.

Indiana

HOOSIER ELECTRONICS, INC.
P.O. BOX 2001
TERRE HAUTE, IN 47802
312-238-1456
Ham Headquarters of the Midwest. Store in Meadows Shopping Center.

POWER COMMUNICATIONS
6012 NORTH 27th AVE.
PHOENIX, AZ 85017
602-242-6030
Arizona’s #1 Ham Store.

Iowa

BOB SMITH ELECTRONICS
RFD #3, HIGHWAY 169 and 7 FT.
DODGE, IA 50501
515-576-3886
For an EZ deal.

Kansas

ASSOCIATED RADIO
8012 CONSER P. O. B. 4327
OVERLAND PARK, KS 66204
913-381-5901

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
<table>
<thead>
<tr>
<th>State</th>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky</td>
<td>COHOON AMATEUR SUPPLY</td>
<td>HIGHWAY 475, TRENTON, KY 42286</td>
<td>502-886-4535</td>
<td>Yaesu, Ten-Tec, Tempo, DenTron. Our service is the BEST.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE COMM CENTER, INC.</td>
<td>9624 FT. MEADE ROAD, LAUREL, MD 20810</td>
<td>301-792-0600</td>
<td>R.L. Drake, Ten-Tec, Icom, Wilson, Tempo, DenTron, Mosley, Cushcraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A professional place for amateurs. Service-sales-design.</td>
</tr>
<tr>
<td></td>
<td>PROFESSIONAL ELECTRONICS CO., INC.</td>
<td>1710 JOAN AVENUE, BALTIMORE, MD 21234</td>
<td>301-661-2123</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC MODULE</td>
<td>601 N. TURNER, HOBBS, MA 01460</td>
<td>617-486-3040</td>
<td>The Ham Store of New England you can rely on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EVANS RADIO, INC.</td>
<td>BOX 893, RT. 3A BOW JUNCTION, ND 58001</td>
<td>605-224-9961</td>
<td>Yaesu dealer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>We service what we sell.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC DISTRIBUTORS</td>
<td>1960 PECK STREET, MUSKEGON, MI 49441</td>
<td>616-726-3196</td>
<td>Dealer for all major amateur radio product lines.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RADIO SUPPLY & ENGINEERING</td>
<td>1207 WEST 14 MILE ROAD, CLAWSON, MI 48017</td>
<td>313-371-9050</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>METUCHEN RADIO</td>
<td>216 MAIN STREET, METUCHEN, NJ 08840</td>
<td>201-494-8350</td>
<td>New and Used Ham Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WA2AET 'T' Bruno</td>
</tr>
<tr>
<td></td>
<td>RADIOS UNLIMITED</td>
<td>1760 EASTON AVENUE, SOMERSET, NJ 08873</td>
<td>201-469-4599</td>
<td>New Jersey's newest complete Amateur Radio center</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THE BARGAIN BROTHERS</td>
<td>216 SCOTCH ROAD, WEST TRENTON, NJ 06828</td>
<td>609-883-2050</td>
<td>A million parts - lowest prices anywhere. Call us!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC MODULE</td>
<td>BOX 989, RT. 3A BOW JUNCTION, ND 58001</td>
<td>605-224-9961</td>
<td>Yaesu, Kenwood, Swan, DenTron, Tempo, Atlas, Wilson, Cushcraft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADIRONDACK RADIO SUPPLY, INC.</td>
<td>185 W. MAIN STREET, AMSTERDAM, NY 12010</td>
<td>518-842-8350</td>
<td>Yaesu dealer for the Northeast.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AM-COM ELECTRONICS INC.</td>
<td>RT. 5, NORTH UTICA SHOPPING CTR., UTICA, NY</td>
<td>315-792-3656</td>
<td>The Mohawk Valley's Newest & Largest Electronics Supermarket.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRAND CENTRAL RADIO</td>
<td>124 EAST 44 STREET, NEW YORK, NY 10017</td>
<td>212-682-3869</td>
<td>Drake, Atlas, Ten-Tec, Midland, Hy-Gain, Mosley in stock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAM-BONE RADIO</td>
<td>3206 ERIE BLVD. EAST, SYRACUSE, NY 13214</td>
<td>315-446-2266</td>
<td>We deal, we trade, all major brands!</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RADIO WORLD</td>
<td>ONEIDA COUNTY AIRPORT TERMINAL BLDG., ORISKANY, NY</td>
<td>315-337-2622</td>
<td>New & Used Ham equipment. See Warren K21XN or Bob WA2MSH.</td>
</tr>
</tbody>
</table>
Ohio

AMATEUR RADIO SALES & SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas for all services.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG, (COLUMBUS) OH 43068
614-866-HAMS
Drake, Yaesu, Ten-Tec, KDK, Wilson, DenTron, Tempo, Sigma.

Tennessee

GERMANTOWN AMATEUR SUPPLY
3203 SUMMER AVE.
MEMPHIS, TN 38112
800-238-6168
No monkey business. Call Toll Free.

Texas

AGL ELECTRONICS
3068 FOREST LANE, SUITE 309
DALLAS, TX 75234
214-241-6414 (within Texas)
Out-of-State, Call our toll-free number 800-527-7418.

HARDIN ELECTRONICS
5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461-9761
Your Full Line Authorized Yaesu Dealer.

Wisconsin

AMATEUR ELECTRONIC SUPPLY, INC.
4828 WEST FOND du LAC AVENUE
MILWAUKEE, WI 53216
414-442-4200
Open Mon, Tu, Wed, Thur, 9:00-5:30; Fri, 9:00-9:00; Sat, 9:00-3:00

Washington

AMATEUR RADIO SUPPLY CO.
6213 13TH AVENUE SOUTH
SEATTLE, WA 98108
206-767-3222
First in Ham Radio in Washington
Northwest Bird Distributor
It's Thomas Communications For Top Quality Equipment and Service

FREE
- Call Toll-Free 1-800-243-7765
- Retail Price Catalog
- Monthly Used Equipment List

OVER 50 BRANDS IN STOCK

- KENWOOD • SWAN • KDK • DENTRON •
- MOSLEY • WILSON • YAESU • DRAKE •
- LARSEN • BENCHER • KLM • BEARCAT •
- B & W • DATONG • ICOM • PANASONIC •
- ARRL PUBLICATIONS • ALLIANCE • BIRD •
- CUSHCRAFT • TRAC • MICROLOG • CDE •
- HAM KEY • MFJ • DAYBURN INSULATORS •
- DSI • SAXTON • TEN TEC • REGENCY •
- HUSTLER • STATIC • PIPO • AMCOMM •
- AMECO • CALL BOOK • FINCO • TEMPO •

★ OUR FINE REPUTATION SPEAKS FOR ITSELF ★

Call or write for your super quote today!

Connecticut Residents Call:
203-667-0811

95 Kitts Lane
Newington, Conn. 06111
"Near ARRL Headquarters"

OPEN MON.-FRI. 10-6 • THURS. 10-8 P.M. • SAT. 10-4
EASY DIRECTIONS: Rt. 15 South — 2 blocks past McDonald's (Berlin Turnpike)

More Details? CHECK — OFF Page 150
december 1978 121
Professionally engineered for outstanding performance, stability, and reliability, the Electrocom® Models 400 and 402 add new dimensions of compatibility between radio and teletypewriter systems. Manufactured to highest quality standards—an Electrocom tradition for nearly two decades—these units are ideal for military, government, commercial, civil defense and amateur applications. The Model 400 front panel digital knob accurately selects shifts up to 1000 Hz, while two such knobs on the Model 402 independently set the mark and space frequencies. Both models may also be preset with any tone pair between 1000 and 3200 Hz. Optimum performance with FSK or AFSK systems is assured by matched filters, precision linear detectors, baud rate selector, bias compensation, and semi-diversity circuitry. Operation is enhanced by a CRT monitor, autostart with solid-state motor switching, antispase, markhold, EIA/MIL output voltages, and a constant current loop supply. In addition, various options are available including rack mounting and polar current output.

Write or call us for complete product details and specifications. Learn why Electrocom® “400” Converters are designed not only for today’s communication environment, but ultimately to fulfill RTTY requirements for years to come.

WHERE THE HAM IS KING

DEALERS WANTED

Hamtronics, Inc. is a stocking distributor for all major lines of Radio Communications Equipment, parts and accessories. If you are presently in the electronics sales and service business, and have experienced difficulty in maintaining proper inventory to serve your customers or if you are contemplating going into your own business, we may be able to solve your problem with our large inventory.

For more information fill in coupon below and mail today with your letterhead or Tax Exempt Number.

Ham Gear
Collins 31264, Sta. Ctrl., rd., exc. $250
Collins 31265, Vfo Console, exc. $550
Collins 32S3, Transmitter, rnd., exc. $850
Collins 75S3B, Ham receiver, vy gd $725
Collins 75A4, Ham receiver, vy gd $425
Collins 51S1, 2-30 MHz rcrv Special
Collins R-386A/113J receiver, vy gd $425
Hammarlund SP-600XJ, rcrv $1795
Collins CP-1 Crystal Pack $195
Racal 6217E, 5-30 MHz receiver $1350
New R930A rcrv avail. Call for quote.
Collins 3061 Linear, wing, excellent $1895
Johnson 2W Matchbox w/swr meter $225
Collins 32S3 ham transmitter, vy gd $650
Yaesu FTDX-570 transceiver, vy gd $475

Test Gear
HP-200CD wide-range oscillator $175
HP-202H 54-216 MHz AM/FM sig. gen. $685
HP-6080 10-420 MHz sig. gen. $650
Tek 564 storage ‘scope, w/plug ins $695
Tek 545 30-MHz ‘scope $395
Tek 531A ‘scope, exc. $350
Tek 453 portable ‘scope, exc. $1295

All equipment sold checked and realigned
Write for free catalog.

Merry Christmas and Happy New Year!

201-996-4256
10 SCHUYLER AVENUE
NORTH ARLINGTON, N. J. 07032
THE SWITCH IS ON!

Not only is the big move to switch to the Wilson Mark Series of Mini-Hand-Held Radios, but now the switch is on the Mark!

Wilson Electronics, known for setting the pace in 2m FM Hand-Helds, goes one step beyond!

AT NO EXTRA CHARGE: all Mark Series Radios now will include a switch for you to control the power of operation. This will enable you to use the high power when needed, then later switch to low power to conserve battery drain for extended operation.

IN ADDITION: all Mark Series Radios now have an LED Battery Condition Indicator conveniently mounted on the top plate. A quick peek will reassure you of a charged battery in the radio.

Wilson hand-helds have been known world-wide for exceptional quality and durable performance. That's why they have been the best selling units for years.

Now the Mark Series of miniature sized 2-meter hand-helds offers the same dependability and operation, but in an easier to use, more comfortable to carry size... fits conveniently in the palm of your hand.

The small compact size battery pack makes it possible to carry one or more extra packs in your pocket for super extended operation time. No more worry about loose cells shorting out in your pocket, and the economical price makes the extra packs a must.

NOW SWITCHABLE
MARK II: ≈ 1 & 2.5 watts
MARK IV: ≈ 1 & 4.0 watts

SPECIFICATIONS
- Range: 144-148 MHz
- 6 Channel Operation
- Individual Trimmers on TX and RX X-tals
- Rugged Lexan® outer case
- Current Drain: RX 15 mA

TX - Mark II: 500 mA
TX - Mark IV: 900 mA
- 12 KHz Ceramic Filter and 10.7 Monolithic Filter included.
- 10.7 MHz and 455 KHz IF
- Spurious and Harmonics: more than 50 dB below carrier
- BNC Antenna Connector
- .3 Microvolt Sensitivity for 20 dB Quieting
- Uses special rechargeable Ni-Cad Battery Pack
- Rubber Duck and one pair X-tals 52/52 included
- Weight: 19 oz. including batteries
- Size: 6'' x 1.770'' x 2.440''
- Popular accessories available: Wall Charger, Mobile Charger, Desk Charger, Leather Case, Speaker Mike, Battery Packs, and Touch Tone™ Pad.

To obtain complete specifications on the Mark II and Mark IV, along with Wilson's other fine products, see your local dealer or write for our Free Amateur Buyer's Guide.

Optional Touch Tone™ Pad available.

Illustrated is Wilson's BC-2 Desk Top Battery Charger shown charging the Mark Series Unit or the BC-4 Battery Pack only.

Consumer Products Division
Wilson Electronics Corp.
4288 South Polaris Avenue • P. O. Box 19000 • Las Vegas, Nevada 89119
Telephone (702) 739-1931 • TELEX 684-522

Prices and specifications subject to change without notice.
The U. S. Callbook has nearly 350,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you’re looking for the Foreign Callbook with almost 285,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook $15.95
Foreign Callbook $14.95

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.75 for shipping. Illinois residents add 5% Sales Tax.

Marlin P Jones & Assoc.
PO Box 9023
Riviera Beach, Florida 33404

*Fla. residents add 4% sales tax.
*NC & VA WEA accepted, please include expiration date and signature on card.
*Add $1.00 for order under $10.00.
*Canada & foreign orders please add sufficient postage.
*USA orders please add 5% postage.

Radio Amateur Callbooks Inc.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

Start, Extend or Renew
NOW AT THE OLD, LOWER RATES

□ 1 year Just $12.00
 (35 after January 1)
□ 2 years Just $22.00
 (35 after January 1)
□ 3 years Just $30.00
 (35 after January 1)

For payment enclose check, money order or charge card information (acct. #, expire date, bank # for Master Charge)
You're just a few digits away from name brand radio equipment - AT DISCOUNT PRICES!

CALL TOLL FREE
1-800-228-4097
Communications Center
443 N 48th Street
Lincoln, Nebraska 68504
In Nebraska Call (402) 466-8402

1-800-634-6227
Communications Center West
1072 N. Rancho Drive
Las Vegas, Nevada 89106
In Nevada Call (702) 647-3114

YAESU
KENWOOD
DRAKE
ICOM
STANDARD
EDGECOM
KDK

DENTRON
HY-GAIN
MOSLEY
CUSHCRAFT
WILSON
HUSTLER
LARSEN

TAYLOR
SWAN
TEMPO
TEN-TEC
MIDLAND
CDE
AUTEK
E.T.O. ALPHA
VHF ENGINEERING
BERK-TEK CABLE
CONSOLIDATED TOWER
SAY
SHURE
TELEX

plus many more
We carry all major lines of Antennas at Discount Prices

OUR NEW HOURS
at Lincoln store only

PACIFIC
M-F 6 am - 10 pm
Sat 6 am - 4 pm
Sun 10 am - 6 pm

MOUNTAIN
M-F 7 am - 11 pm
Sat 7 am - 5 pm
Sun 11 am - 7 pm

CST
M-F 8 am - Midnight
Sat 8 am - 6 pm
Sun Noon - 8 pm

EASTERN
M-F 9 am - 1 am
Sat 9 am - 7 pm
Sun Noon - 8 pm

SAME DAY SHIPPING ON MOST ITEMS

1-800-228-4097
Communications Center
443 N. 48th, Lincoln, Nebraska 68504
In Nebraska Call (402) 466-8402

More Details? CHECK-OFF Page 150
december 1978
J.W. Miller Presents...

RF Speech Processor/Model RF-440

From DAIWA CORPORATION

- Increases talk power with splatter free operation.
- RF clipping assures low distortion. Simply install between microphone and transmitter.
- **Talk Power**: Better than 6 dB
- **Clipping Threshold**: Less than 2 mV at 1 KHz
- **Bandwidth**: 2200 Hz at 6 dB down
- **Frequency Response**: 300-3000 Hz at 12 dB down
- **Distortion**: Less than 3% at 1 KHz, 20 dB clipping
- **Output Level**: More than 50 mV at 1 KHz
- **Power Requirement**: 115 VAC, 60 Hz, 1.4 W, or 13.5 VDC, 55 mA
- **Dimensions**: 150 x 70 x 150 mm, 5 x 2.5 x 5 in.

Write for literature.

Exclusive USA agent for this unit.

Coaxial Switches

From DAIWA CORPORATION

- **2 Position/Model CS-201**
- **4 Position/Model CS-401**
- Professionally engineered cavity
- **Construction**: High isolation
- **Power Rating**: 2.5 kW PEP, 1 kW CW
- **Impedance**: 50 Ohm
- **Insertion Loss**: Less than 2 dB
- **VSWR**: 1.1:1
- **Maximum Frequency**: 500 MHz
- **Isolation**: Better than 60 dB at 300 MHz; better than 45 dB at 450 MHz adjacent.
- **Connectors**: 50-239

Write for literature.

Exclusive USA agent for this unit.

Pyramid Data Systems

6 Terrace Ave., New Egypt, NJ 08236
Phone: 609-758-7487

More Details? CHECK — OFF Page 150
your HAM RADIO
Then complete your new address
and we'll take care of the rest.

NOT A KIT

the microcomputer controlled
appointment clock

A NEW SOLUTION FOR SOME
OLD PROBLEMS
Your spouse will never be upset with you for
missing a birthday.
Your business associates will be pleased
when you're never late for appointments.
Your doctor will be confident that you are
taking your medication at the time pre-
scribed.

FOR THE BUSY EXECUTIVE
Controls length of business meetings.
Reminds you 10 minutes ahead of time to
prepare for meeting and gives you time to
clear your desk. Reminder at wife's birth-
day. Reminder to catch plane for important
business trip.

FOR THE HOMEMAKER
Reminder to take meat out of freezer for din-
er. Kitchen timer. Reminder of tenants duties
and hair dresser appointments.

FOR THE MOTHER
Time children's phone calls, homework,
music practice. Wake children for school.

FOR THE SENIOR CITIZEN
Medication reminder. Reminder of grand-
children's birthdays, doctor appointments.
Easy-to-read large display. A wonderful gift
for Mom and Dad.

FOR THE STUDENT
Timer for chemistry lab, bio lab. Timer for
solving problems or preparation for exams.

FOR THE GOURMET COOK
Alarms to tell you when to start next step in
meal preparation. By programming the timer
alarm, you'll know just when each course of
an elaborate meal must be prepared so
everything will be ready at the same time.
Helps you keep track of recipe timing.

FOR THE SALESMAN
Gives up to 30 future appointments — easy
to see at the touch of a key when next
appointment is scheduled.

FOR THE PHOTOGRAPHER
Timer for photographic development chain.
Can insert red digital display filter to avoid
damaging film.

FOR THE ATTORNEY
Records client's time charges, meetings,
phone calls, research. Timer with built-in
pause capability provides accurate way of
timing speech presentations.

FOR THE SECRETARY
The secretary's best friend. Remembers to
remind the boss of any appointments. Times
length of phone calls.

THE ONLY CLOCK OF ITS KIND —
NONE CAN COMPARE!

HAL-TRONIX
P. O. BOX 1101
SOUTHGATE, MICH. 48195

Regular Price $79.95
Introductory Offer
By Hal-Tronix
only $69.95

The secretary's best friend.

SWR & Power Meters
Models CN-720 and CN-620
From
DAIWA CORPORATION

Simultaneous direct reading SWR, Forward Power and Reflected Power

Frequency Range: 1.8-150 MHz
SWR Detection Sensitivity: 10 W Min.
Power: 3 Ranges FWD 20/200/1000 w) (REF 4/40/200 w.)
Input/Output Impedance: 50 Ohm

Write for literature.

More Details? CHECK — OFF Page 150

J.W. Miller Presents...

MOVING?
KEEP HAM RADIO COMING...

If possible let us know four to six weeks before you move and we will make sure
your HAM RADIO Magazine arrives on schedule. Just remove the mailing label
from this magazine and affix below. Then complete your new address (or any
other corrections) in the space provided
and we'll take care of the rest.

Allow 4-6 weeks for correction.

Affix

Label

Here

Here's my new address:

Call

State. Zip

Name

Address

City

exclusive radio manufacturer's association

J.W. Miller Division
BELL INDUSTRIES
19070 REYES AVE. • P.O. BOX 5825
COMPTON. CALIFORNIA 90224

december 1978
Don’t be caught without the correct toroid right in the middle of your next project... get this convenient assortment from Whitehouse. 42 of the most popular toroids packaged in a sturdy, plastic storage case:

- 3 each: T50-2, T50-3, T50-6, T68-2, T68-3, T68-6
- 2 each: T25-2, T256, T37-2, T37-6, T37-10, T37-12, T50-10, T50-12, T68-10, T80-2, T80-6, T94-2

plus application notes.

Ferrite Bead Asst.

One dozen each: FB43-101, FB43-801, FB64-101, FB64-801, FB73-101 and FB73-801. Two sizes and three materials to fill all your needs.

$7.50 Value Just $6.95

VISA and MASTER CHARGE Orders Welcome

(603) 673-7724

Please include $2.00 shipping and handling with each order.

TUBES FOR YAESU RIGS

These excellent Japanese-made Fox-Tango brand tubes match Yaesu rigs so perfectly that neutralization adjustment is rarely required. Our tubes are noted for their high output and long life. Quantities limited. Get a selected set while they last. Satisfaction guaranteed.

SET A

- 26JC6C’s $25
- 1-12BY7A’s for FT-101/277 series
- FL-101, FT-200/250

(Tempo I)

SET B

- 26KD6C’s $30
- 1-6GK6A’s for FT-DX400, 560, 570.
- FT-400, 401 series; FT-501

'Tis best to gift as well as receive.

(especially before our January price increase!)

One Year/12 issues

$12 First Gift

$9.97 Each Additional Gift

*One-year subscriptions will be $15.00 after January 1, 1979.

Giving Ham Radio is both fun and thoughtful.

And at the receiving end of a Ham Radio gift subscription, it's remembered all year long as a token of your friendship. We have a super busy year planned for 1979, just take a look at a sampling of what your special Amateur friend(s) will see in their 12 big gift issues next year:

- Learn How to Digitize Your Ham Shack
- Antenna Measurements From Celestial Sources
- New Approach for Measuring HF SWR
- 10 GHz Gunnplexer Transceiver by HR Editor W1HR
- PLUS HR's giant annual Antenna & Receiver issues

There's never been a better time to give than right now with the price increase set for January 1. Give now and SAVE!

Please use handy bind-in card.

Greenville, NH 03048
Antennas and transmission lines

General
- Antenna control, automatic azimuth/elevation for satellite communications
 - *WSJL* p. 26, Jan 75
 - *IEEE* p. 56, Dec 75
- Antenna dimension (HN)
 - *W4FQ* p. 66, Jun 70
- Antennas and capture area
 - *K6MO* p. 42, Nov 69
- Antenna and control link calculations for repeater licensing
 - *W6PG* p. 58, Nov 73
- Short circuit
 - *K6EU* p. 59, Dec 73
- Antenna and feedline facts and fallacies
 - *W4J* p. 24, May 73
- Antenna design, programmable calculator simplifies (HN)
 - *W7D* p. 70, May 74
- Antenna gain (letter)
 - *W6Q* p. 62, May 76
- Antenna gain, measuring
 - *W4JK* p. 26, Jul 69
- *W3Q* wire, low-cost copper (HN)
 - *W7UQ* p. 73, Feb 77
- ***Anti-QRM methods***
 - *W3FQ* p. 50, May 71
 - *W7D* bridge for antenna measurements, simple
 - *W3Y* p. 34, Sep 70
- Cubical quadrilateral measurements
 - *W4Y* p. 42, Jan 69
- Dipole radiator insulator (HN)
 - *W1ABP* p. 69, May 69
- Diversity receiving system
 - *W7D* p. 12, Dec 71
- Dummy load and rf wattmeter, low-power
 - *W6UQ* p. 56, Apr 70
- Dummy load, low-power vhf
 - *W9D* p. 40, Sep 73
- Effective radiated power (HN)
 - *W3C* p. 72, May 73
- Feedpoint impedance characteristics of practical antennas
 - *W5J* p. 50, Dec 73
- Low-loss, for 10 and 15
 - *WEE* p. 42, Jan 72
- Gain calculations, simplified
 - *W7D* p. 78, May 78
- Gain vs antenna height, calculating
 - *W9B* p. 54, Nov 73
- Gin pole, simple lever for raising masts
 - *W3AUN* p. 72, May 77
- Ground screen, alternative to radials
 - *W7SGP* p. 22, May 77
- Grounding, safe (letter)
 - *W3K* p. 59, May 72
- Ground rods (letter)
 - *W7FS* p. 66, May 71
- Ground systems, vertical antenna
 - *W7L* p. 30, May 74
- Headings, beam antenna
 - *W6F* p. 64, Apr 71
- Horizontal or vertical (HN)
 - *W7V* p. 62, Jun 72
- Impedance measurements, nonresonant antenna
 - *W4G* p. 46, Apr 74
- Insulators, homemade antenna (HN)
 - *W2* p. 70, May 73
- Isotropic source and practical antennas
 - *W3F* p. 32, May 70
- Lightning protection (C&T)
 - *W7D* p. 20, May 74
- Line-of-sight distance, calculating
 - *W65Q* p. 56, Nov 76
- Measurement techniques for antennas and transmission lines
 - *W4Q* p. 36, May 74
- Measuring antenna gain
 - *W4JO* p. 26, Jul 69
- Mobile mount, rigid (HN)
 - *V7ABK* p. 69, Jan 73
- Power in reflected waves
 - *W3Q* p. 49, Oct 71
- Reflected power, some reflections on
 - *V7MAZ* p. 44, May 70
- Reflectometers
 - *KL2W* p. 65, Dec 69

High-frequency antennas

- All band antenna portable (HN)
 - *W3IN* p. 68, Jun 70
- All-band phased vertical
 - *W7AO* p. 32, May 72
- Antenna, 3.5 MHz, for a small lot
 - *W3GQ* p. 28, May 73
- Antenna polsoumari
 - *W3F* p. 54, May 72
- Antenna systems for 80 and 40 meters
 - *W6Q* p. 59, May 72
- Army loop antenna — revisited
 - *W3F* p. 59, Sep 71
- Beam antenna, improved triangular shaped
 - *W6L* p. 20, May 70
- Beam for few meters, economical
 - *W7P* p. 54, May 70
- Beverage antenna
 - *W3F* p. 67, Dec 71
- Bobtail curtain array
 - *W8YB* p. 81, May 77
- Combination, forty-meter
 - *W7T* p. 58, Jul 69
- Coaxial dipole antenna, analysis of
 - *W7D* p. 46, Aug 76
- Coaxial dipole, multiband (HN)
 - *W4BD* p. 71, May 73
- Collinear, six-element, for
 - *W7B* p. 22, May 76
- Compact antennas for 20 meters
 - *W4ROS* p. 38, May 71
- Converted dipoles, 80 and 40 meter
 - *W6R* p. 18, Dec 69
- Corner-fed loop, low frequency
 - *W3B* p. 30, Apr 76
- Installation modified
 - *W3T* p. 41, Feb 77
- Cubical quad antenna design parameters
 - *W3F* p. 55, Aug 70
- Cubical quad antennas, mechanical design of
 - *W3T* p. 44, Oct 74
- Cubical quad antennas, unusual
 - *W7D* p. 6, May 70
- Cubical quad, improved low-profile, three band
 - *W7H* p. 25, May 76
- Cubical quad, three-band
 - *W1H* p. 22, Jul 75
- Curtain antenna (HN)
 - *W4T* p. 66, May 72
- Delta loop, top-loaded
 - *W7D* p. 57, Dec 78
- Dipole, all-band tuned
 - *W2B* p. 22, Jul 72
- Dipole antennas on non-harmonic frequencies (HN)
 - *W2C* p. 72, Mar 69
- Dipole beam
 - *W3FQ* p. 56, Jun 74
- Dipole pairs, low SWR
 - *W6F* p. 42, Oct 72
- Dipole sloping inverted-vee
 - *W6N* p. 48, Feb 69
- Double balun array
 - *W6F* p. 32, May 72
- Dual-band antennas, compact
 - *W8M* p. 18, Mar 70
- DX antenna, single-element
 - *W8H* p. 52, Dec 72
- Performance (letter)
 - *W8* p. 65, Oct 73
- Four-band wire antenna
 - *W3FQ* p. 53, Aug 75
Tailoring your antenna, how to
Sloping dipoles
Triangle beams
Triangle antennas
Small-loop antennas
Vertical antenna, low-band
Unidirectional
Suitcase antenna, high-frequency
Vertical antenna, three-band
Vertcal
Windom
Vertical antennas, performance
Vertical, toploaded 80-meter
Zepp
7-MHz short vertical antenna
vhf antennas
7-MHz rotary beam
7-MHz vertical antenna
14-MHz delta-loop array
160-meter loop, receiving
160-meter vertical, shortened (HN)
160-meters with 40-meter vertical
vhf antennas
50, Nov 69
90, May 77
24, Nov 71
70, Oct 78
56, Nov 78
52, Sep 77
71, May 73
8, Jul 69
68, Feb 70
50, Jul 76
50, Jul 76
52, Nov 69
49, May 70
74, Jul 78
67, May 76
50, May 78
12, May 74
70, May 77
50, Jul 75
11, Jul 70
38, May 76
70, May 77
52, Jul 70
74, Jul 78
67, May 76
70, May 78
12, May 74
48, Jun 78
70, Jul 72
14, Jul 75
61, Jan 70
50, Apr 70
25670T
p. 58, Jan 74
p. 24, Nov 71
p. 17, May 76
p. 46, May 73
p. 46, May 75
p. 70, Aug 71
p. 72, Nov 71
p. 70, Dec 71
p. 40, May 70
p. 47, May 70

Coaxial, six-meter KIERO
Converting low-band mobile antenna to
Corner reflector antenna, 432 MHz
Cubical quad, economy six-meter
WDGDR
Feed horn, cylindrical, for parabolic reflectors
WAXUV
Ground plane, 2-meter, 0.7 wavelength
W3GWA
Ground plane, vsfh (HN)
K9HDH
Log-periodic, yagi beam
K6RIL, W6LAI
Correction
Magnet-mounted antenna, portable (HN)
W2BY7U
Magnetic mount for mobile antennas
W6PN
Matching techniques for vhf/uhf antennas
W1JAA
Micro-wave antenna, Low-cost
K6HJ
Mobile antenna, magnet-mount
W6JHE
Mobile antenna, six-meter (HN)
W4PSJ
Mobile antennas, vsfh, comprehension on
W4MNW
Moonbounce antenna, practical 144-MHz
K6HCQ
Multiband J antenna
W6BY7J
Oscar antenna, mobile (HN)
W6DAL
Oscar satellite antenna system
W1AXPS
Parabolic reflector antennas
VX3ATN
Parabolic reflector element spacing
WAXUV
Parabolic reflector gain
W2TQK
Parabolic reflectors, finding the local length (HN)
W4AW7D
Parabolic reflector, 16-foot homebrew
W6BO7M
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
Quad-yagi arrays, 432- and 1296-MHz
W3AED
Short circuit
K9DQK
Simple antennas.
features and fiction

Alarm, burglar-proof (HN)
Eisenbrandt

Binding 1970 issues of ham radio (HN)
W3FQ

Brass pounding on wheels
W3KQD

Catalina wireless, 1902
W38Q

Fire protection in the ham shack
Darr

First wireless in Alaska
WQ2IZ

Ham Radio sweepstakes winners, 1973
W7WMB

Ham Radio sweepstakes winners, 1974
W7FMW

Ham Radio sweepstakes winners, 1975
W7F8U

Nostalgia with a vengeance
W3WMN

Photographic illustrations
W4GMW

Reminiscences of old-time radio
KANW

Ten commandments for technicians
W3MYK

Use your old magazines
W3MYK

Wireless Point Loma
W3MYK

1929-1941, the Golden years of amateur radio
WASAI

1979 world administrative radio conference
W6APW

IC-230 modification (HN)
W686P

Identifiers, programmable repeater
WEAYZ

I.f. system, multimode
W2DKL

Indicators, sensitive rf
W2BDN

Interference, scanning receiver (HN)
W2AYX

Logic oscillator for multi-channel
W2GPI

Magnet mount antenna, portable (HN)
W2BYU2

Mobile antenna, magnet-mount
W1HC1

Motorola antennas, vhf, comparison of
W4MW

Mobile operation with the Touch-tone pad
W2VQP

Correction
W2D8F

Modulation standards for vhf fm
W326E

Motorola receivers, two-meter fm
W326M1

Motorola channel elements
W344NE

Mobile fm receiver mods (HN)
W4ERE

Ham Radio sweepstakes winners. 1975
W3KQD

Ham Radio sweepstakes winners, 1973
W7WMB

Ham Radio sweepstakes winners, 1974
W7FMW

Ham Radio sweepstakes winners, 1975
W7F8U

Nostalgia with a vengeance
W3WMN

Photographic illustrations
W4GMW

Reminiscences of old-time radio
KANW

Ten commandments for technicians
W3MYK

Use your old magazines
W3MYK

Wireless Point Loma
W3MYK

1929-1941, the Golden years of amateur radio
WASAI

1979 world administrative radio conference
W6APW

IC-230 modification (HN)
W686P

Identifiers, programmable repeater
WEAYZ

I.f. system, multimode
W2DKL

Indicators, sensitive rf
W2BDN

Interference, scanning receiver (HN)
W2AYX

Logic oscillator for multi-channel
W2GPI

Magnet mount antenna, portable (HN)
W2BYU2

Mobile antenna, magnet-mount
W1HC1

Motorola antennas, vhf, comparison of
W4MW

Mobile operation with the Touch-tone pad
W2VQP

Correction
W2D8F

Modulation standards for vhf fm
W326E

Motorola receivers, two-meter fm
W326M1

Motorola channel elements
W344NE

Mobile fm receiver mods (HN)
W4ERE
keying and control

Accu-Mill, keyboard interface for the Accu-Keyer W5XSTV
ASCII-to-Morse code translator W4BO
Binary switch for station control W4SVNJ
Break-in circuit, CW WBSYK
Break-in control system, IC (HN) WBYZT
Bug, solid-state KQFV
Carrier-operated relay KOHPH, W4U20ZU
Clock, keying circuits (HN) WB2DFA
Constant pitch monitor for cathode or grid-block key transmitters (HN) KGMR
Contact key (HN) KB2UC
Contest key, programmable WA7ZTV
CW reception, enhancing through a simulatd-stereo technique WA7W3MK
CW regenerator for interference-free communications WBAEX

measurements and test equipment

Absorption measurements, using your signal generator W2DUX
Ac current monitor (letter) W8DSR
Ac power-line monitor W6ULJ
AFSK generator, crystal-controlled K78VT
AFSK, phase-locked loop K7ZOF
Am modulation monitor, vhf (HN) K6QML
Antenna bridge calculations Anderson, Leonard H. W3MFI
Antenna bridge calculations (letter) W6ZYB
Antenna gain, measuring K6YO
Antenna matcher W4SO
Antenna and transmission line measurement techniques W4QQ
Automatic noise-figure measurements Repair Bench W4WM
Bridge, noise, for impedance measurements Y10UM
Bridge, added note (letter) W6MRU
Calibrating ac scales on the vtm, icvm and fet voltmeter W7KQ
Calibrator, plug-in IC W28C
Capacitance meter Mathieson, P. H. W28D
Capacitance meter, digital K4DVC
Capacitance meter, direct-reading ZL2AUE
Capacitance meter, direct-reading W6MUR
Counter, direct-reading K78VT
Counter, direct-reading, programmable W4ZVL
Counter, added note (letter) W6MRU
Counter, added note (letter) W6MRU
Counter, added note (letter) W6MRU
Counter, a solution to the readout problem W4SO
Counter, added note (letter) W6MRU
Counter, added note (letter) W6MRU
Counters: a solution to the readout problem W4SO
Doppler meter for RTTY K4ZNA
K4VFP
Crystal checker W4XN
Crystal test oscillator and signal generator K4EUE
Crystal-controlled frequency markers (HN) W4DFK
Cubical quad measurements W4ZSL
Decade standards, economical (HN) W4ATE
Digital counters (letter) W4GNN
W4GNN
microprocessors, computers and calculators

Accumulator I/O versus memory I/O WB4HJY, Rony, Titus p. 64, Jul 76
CW keyboard, Microprocessor controlled WB2DFA p. 81, Jan 78
Data converters WA1MOP p. 79, Oct 77
Decision, how does a microcomputer make a WB4HJY, Rony, Titus p. 74, Aug 76
Device select pulses, generating input/output WB4HJY, Rony, Titus p. 44, Apr 76
Digital hearing aid entry system NZYK/NZGW p. 92, Sep 78
How microprocessors fit into scheme of computers and controllers WB4HJY, Rony, Titus p. 36, Jan 76
IC testing using the KIM-1 WB7UL p. 74, Nov 78
Input/output device, what is it? ZS5UL p. 50, Feb 76
Interfacing a digital multimeter with a WB8O8-based microcomputer WB4HJY, Rony, Titus p. 66, Sep 77
Interfacing a 10-bit DAC (Microprocessors) Rony, Titus, WB4HJY p. 66, Apr 78
Internal registers, 8080 Rony, Titus, WB4HJY p. 63, Feb 77
Interrupts, microcomputer WB4HJY, Rony, Titus p. 66, May 76
Introduction to microprocessors WB4HJY, Rony, Titus p. 32, Dec 75
Comments, WB4FAR Logical instructions Titus p. 83, Jul 77
MOV and MVI 8080 instructions Titus, WB4HJY p. 74, Mar 77
Register pair instruction Rony, Titus, WB4HJY p. 76, Jun 77
Software UAR/T, interfacing a WB4HJY, Rony, Titus p. 60, Nov 76
Substitution of software for hardware WB4HJY, Rony, Titus p. 76, Jul 77
UAR/T, how it works Titus p. 58, Feb 76
Vectored interrupts WB4HJY, Rony, Titus p. 74, Jan 77
Video display, simple VK3AOH p. 46, Dec 77
8080 logical instructions WB4HJY, Rony, Titus p. 89, Sep 77
8080 microcomputer output instructions WB4HJY, Rony, Titus p. 54, Mar 76
operating

Beam antenna headings

WGFC
Code practice stations (letter)
W4LXJ
Code practice, (HN)
W0UQX
Computers and ham radio
W3GOM
CW monitor
W3EYE
CW monitor, simple
W5QHR
CW transceiver operation with transmit/receive offset
W1DAX
DZCQK list, simple
W2CQNZ
Fluorescent light, portable (HN)
K4BYO
Great-circle charts (HN)
K5GA
Identification timer (HN)
K4UQN
Magazines, use your old
W6NF
Morse code, speed standards for
VE7ZK
Added note (letter)
W9ZNW
Protective material, plastic (HN)
W8BH
Replays, instant (HN)
W3GNS
Sideway location (HN)
K8KA
Sporadic signals (HN)
K6N4
Tuning with ssb gear
W2ECK
Zulu time (HN)
K6GA
oscillators

Audio oscillator, NE556 IC
W4EZT
Blocking oscillators
W0N8N
Clock oscillator, TTL (HN)
W3STK
Colpitts oscillator design techniques
W8BPJ
Crystal oscillator, frequency adjustment of
W8T1K
Crystal oscillator, high stability
W5TNS
Crystal oscillators
W5G0N
Crystal oscillators, small (HN)
W2UQX
Crystal oscillators, stable
D2JLR
Correction
W3STK
Crystal oscillators, survey of
VK2T8
IC crystal controlled oscillators (letter)
W9TEC
Crystal oven, simple (HN)
K6UQ
Crystal oven, precision temperature control
K4A

IC crystal controlled oscillators
VK2T8
Crystal switching (HN)
K6LEZ
Crystal test oscillator and signal generator
KA1EU
Crystals, overtone (HN)
K4GSR
Drift-correction circuit for free running oscillators
PA1OB
Oscillator notes (HN)
K70N
Hex inverter vco circuit
W2TJ
Local oscillator, phase locked
V5FP
Monitoring oscillator
W2J10
Multiple band master-frequency oscillator
K5DSX
Multiplier, crystal-controlled
WN2MQY
None stable performance of vfo, evaluating
D2JLR
Oscillator, audio, IC
W6GKN
Oscillator, electronic keyer
W6JN
Oscillator, Franklin (HN)
W71J
Oscillator, frequency measuring
V56EM
Added notes
W8YBE
Oscillator, gated (HN)
W1QK
Oscillator-monitor, audio
W1JSM
Phase-locked
V5FP
Oscillator, two-tone, for ssb testing
W5GKN
Oscillators (HN)
W6YTD
Oscillators, cure for cranky (HN)
W8YFB
Oscillators, repairing
Allen
Oscillators, resistance-capacitance
W5GKN
Overtone crystal oscillators without inductors
W41OJX check
Quadrature-phase local oscillator (letter)
K5K
Quartz crystals (letter)
W5EQZ
Stable vfo (C&T)
W6YTD
TTL crystal oscillators (HN)
W3JVA
TTL oscillator (HN)
W83VW
Vco, crystal-controlled
W5G0M
Versatile audio oscillator (HN)
W7B8X
Vfo buffer amplifier (HN)
W9QBO
Vfo design, stable
W5CER
Vfo design using characteristic curves
12BVZ
Regulated power supplies, designing
KOVKO
Vfo, digital readout
W8BFM
Vfo for solid-state transmitters
W5QBO
Vfo, high stability
W8YFB
Vfo, high-stability, vhf
OH0CD
Vfo, multiband fet
K8EG
Vfo, stable
K4GFB
Vfo transmitters (HN)
W1OOP
Vfo design, practical
K5BG
5 ampere power supply, adjustable
N1NJ

power supplies

Ac current monitor (letter)
W58MAP
Ac power supply, regulated, for mobile fm equipment
W5G0M
All-mode-protected power supply
K2MA
Arc suppression networks (HN)
W5WST
Batteries, selecting for portable equipment
W6EWA

Battery drain, auxiliary, guard for (HN)
W5WST
Battery power
W5G0M
Charger, fet-controlled, for nicad batteries
W5YJ
Current constant battery charger for portable operation
K5PA
Converter, 12 to 6 volt (C&T)
W5YJ
Current limiting (HN)
W5WST
Current limiting (letter)
K5M4
DC-dc converter, low-power
W5WST
DC power supply, regulated (C&T)
W5WST
Dipole antenna protection (HN)
W6ULU
Added note
D41K
Dipole keying
W5YJ
Dual-voltage power supply (HN)
W5G0M
Dual-voltage power supply (HN)
W5G0M
Filament transformers, miniature
W6YTA
IC power (HN)
W5G0M
IC power supply, adjustable (HN)
W5H8
IC regulated power supply
W5FB
IC regulated power supply
W5F5
Instantaneous-shutdown high-current regulated supply
W5G0M
Klystrons, reflex power for (HN)
W5G0M
Line-voltage monitor (HN)
W5YJ
Current monitor mod (letter)
W5G0M
Load protection, scr (HN)
W5G0M
Low-voltage power source (HN)
W5EWA
Low voltage, variable bench power supply (weekender)
W6NB
Mobile battery supplies, troubleshooting
W5G0M
Mobile power supply (HN)
W5G0M
Mobile supply, low-cost (HN)
W5G0M
Motorola Dispatcher, converting to 12 volts
W8BHW
Nicad battery care (HN)
W5NHZ
Operational power supply
W5ZKL
Overvoltage protection (HN)
W5G0M
Pi-tap lamp life (HN)
W5G0M
Polarity inverter, medium current
W5G0M
Power supplies for single sideband
W5G0M
Power supply for
W5G0M
Power supply, improved (HN)
W5G0M
Power supply, precision
W5G0M
Power supply protection for your solid-state circuits
W5G0M
Power supply troubleshooting (repair bench)
K4IPV
Precision voltage supply for phase-locked terminal unit (HN)
W5G0M
Protection for solid-state power supplies (HN)
W5J0
Rectifier, half-wave, improved
W5G0M
Regulated power supplies, how to design
KOVKO
Regulated power supplies, designing
KOVKO
Regulated power supply, 500 watt
W5G0M
Regulated solid-state high-voltage power supply
W5G0M
Short circuit
W5G0M
Regulated 5 volt supply (HN)
W5G0M
SCR-regulated power supplies
W5G0M
Selenium rectifiers, replacing
W5YJ

140

140
receivers and converters
general

Antenna impedance transformer for receivers (HN)
W6NIF
p. 70, Jan 70

Antenna tuner, miniature receiver
WA7XKP
p. 72, Mar 69

Anti-QRM methods
W6QF
p. 50, May 71

Attenuation pads, receiving (letter)
K1HQ
p. 69, Jan 74

Audio, age, amplifier
WASNSZ
p. 32, Dec 73

Audio filter and principles and practice of receiving
WASNSZ
p. 28, Jun 71

Audio filter for CW, tunable
WA1LSM
p. 34, Aug 70

Audio filter-frequency translator for CW reception
W2EYE
p. 46, Jun 70

Audio filter mod (HN)
K6NHU
p. 60, Jan 72

Audio filter, simple
W4NK
p. 44, Oct 70

Audio filters, CW (letter)
6Y5R
p. 56, Oct 75

Audio filters for ssb and CW reception
K6SDX
p. 18, Nov 76

Audio-filters, inexpensive
W8YF
p. 74, Aug 72

Audio filter, tunable peak-notch
W8EEY
p. 22, Mar 70

Audio filter, variable bandpass
W3AEK
p. 36, Apr 70

Audio, improved for receivers
K7GCO
p. 74, Apr 77

Audio module, complete
K6DHC
p. 18, Jun 73

Bandspreading techniques for resonant circuits
Anderson, Leonard H.
P. 46, Feb 77

Bandspreading techniques for resonant circuits
K6SCL
p. 69, Dec 77

Bandspreading techniques for resonant circuits (letter)
W2EJC
p. 6, Aug 77

Batteries, how to select for portable equipment
W2AJSK
p. 40, Aug 73

Bfo multiplexer for a multimode detector
W5AYG
p. 52, Oct 75

Calibrator crystals (HN)
K6KA
p. 66, Nov 71

Calibrator, plug-in frequency
K6KA
p. 22, Mar 69

Calibrator, simple frequencydivider using mos ICs
W6GDN
p. 30, Apr 69

Communications receivers, design ideas for
W7TJ
p. 12, Jun 74

Communications receivers, designing for strong-signal performance
Moore, Thomas
p. 6, Feb 73

Converting a vacuum-tube receiver to solid-state
W1DOP
p. 26, Feb 69

Counter diodes, electronic
K7K
p. 44, Sep 70

Crystal-filter design, practical
P2YPEC
p. 34, Nov 76

CW filter, adding (HN)
W2DUX
p. 66, Sep 73

CW monitor, simple
W5AHR
p. 65, Jan 71

CW processor for communications receivers
W6NRW
p. 17, Oct 71

CW reception, enhanced through a simulated-stereo technique
W1AKMP
p. 61, Oct 74

CW reception, noise reduction for
W2ELV
p. 52, Sep 72

CW regenerator for interference-free communications
Lewand, Libenshek
p. 54, Apr 77

CW selectivity with crystal bandpassing
W8EY
p. 52, Jun 69

CW transmitter operating with transmit-receive offset
W1DFB
p. 56, Sep 70

Detector, reciprocating
W5ISSN
p. 32, Mar 72

Detector, single-phase sensing type
W9BCY
p. 71, Oct 76

Detector, superregenerative, optimizing
Ring
p. 32, Jul 72

Detectors, fm, survey of
W6GDK
p. 22, Jun 76

Digital frequency display
W3BNYK
p. 26, Sep 76

Digital, readout, universal
W8BIFM
p. 34, Dec 78

Digital, vfo basics
Earnerth
p. 18, Nov 78

Diode detectors
W6GDN
p. 28, Jan 76

Comments
W1DOP
p. 77, Feb 77

Direct-conversion receivers (HN)
YU2A
p. 100, Sep 78

Diversity receiving system
W2PEY
p. 12, Dec 71

Double-balanced mixer, active, high-dynamic range
DJ2LR
p. 90, Nov 77

Filter, alignment
W7UC
p. 61, Aug 75

Filter, band
WISNN
p. 62, Sep 73

Frequency calibrator, how to design
W3AEK
p. 54, Jul 71

Frequency calibrator, receiver
W5USQ
p. 28, Dec 71

Frequency-marker standard using cw
W0YB
p. 44, Aug 77

Frequency measurement of received signals
W4AAD
p. 38, Oct 73

Frequency spotter, general coverage
W5JJ
p. 36, Nov 70

Frequency standard (HN)
W7JH
p. 69, Sep 72

Frequency standard, universal
K6EUE
p. 40, Feb 74

Short circuit
W2T
p. 72, May 74

Hang age circuit for ssb and CW
W1EWN
p. 50, Sep 72

Headphone cords (HN)
W6OLU
p. 62, Nov 75

1-f amplifier design
DJ2LR
p. 10, Mar 77

Short circuit
1-f detector receiver module
K6SDX
p. 34, Aug 76

1-f system, multimoide
WA2IKL
p. 39, Sep 71

Image suppression (HN)
W6FSF
p. 68, Dec 72

Intelligibility of communications receivers, improving
W5AYG
p. 53, Aug 70

Interference, electric fence
K6KA
p. 68, Jul 72

Interference, h-f (HN)
K6KA
p. 63, Mar 75

Interference, rf
W1DIT
p. 12, Dec 70

Interference, W6NFW
p. 30, Mar 73

Interference, rf, its cause and cure
G3LL
p. 26, Jun 75

Intermodulation distortion, reducing in high-frequency receivers
W5AUV
p. 26, Sep 77

Short circuit
W2EY
p. 69, Dec 77

Local oscillator, phase-locked
W3ECP
p. 6, Mar 71

Local-oscillator waveform effects on spurious mixer responses
Robinson, Smith
p. 44, Jul 74

Mixer, crystal
W7J
p. 38, Nov 75

Monitor receiver modification (HN)
W2CNQ
p. 72, Feb 76

Noise, blanket
K6DHC
p. 38, Feb 73

Noise, blanket design
W7J
p. 26, Nov 77

Noise, blanket, hot-carrier diode
W6FA
p. 16, Oct 69

Short circuit
W7J
p. 76, Sep 70

Noise, blanket, IC
W8EYE
p. 52, May 69

Short circuit
W7J
p. 79, Jun 70

Noise effects in receiving systems
D1ZUR
p. 34, Jul 74

Noise figure, the real meaning of
K5MIO
p. 26, Mar 69

Phase-shifted D, 5-MHz bfo
W7GMB
p. 49, Nov 78

Phase-shift networks, design criteria
G3RWP
p. 34, Jun 70

Preamplifier, wideband
W8ZFP
p. 60, Oct 76

Product detector, hot-carrier diode
W3ECP
p. 12, Dec 69

Radiofrequency finder
W6JIT
p. 38, Mar 70

Radio-frequency interference
W3AHPF
p. 30, Mar 73

Radiolegraph translator and transcriber
W7CJU, K7KFA
p. 8, Nov 71

Eliminating the matrix
K6AP
p. 60, May 72

Receiver spurious response
Anderson
p. 82, Nov 77

receivers — some problems and cures
W9BUJP, K5RRH
p. 10, Dec 77

Receiving RTTY, automatic frequency control
W5SWP
p. 50, Sep 71

Reciprocating detector as fm discriminator
WISNN
p. 18, Mar 73

Reciprocating detector converter
WISNN
p. 58, Sep 74

Resurrecting old receivers
K4IPK
p. 62, Sep 76

Rf- age, amplifier, high-performance
W8FRQ
p. 64, Sep 78

Rf amplifiers for communications receivers
Moore
p. 42, Sep 74

Rf amplifiers, isolating parallel currents in
G3IPV
p. 40, Feb 77

Rf amplifier, wideband
W4KSS
p. 58, Apr 75

Selectivity and gain control, improved
W3ECP
p. 71, Nov 77

Selection, receiver (letter)
K4ZV
p. 68, Jan 74

Sensitivity, noise figure and dynamic range
W1DIT
p. 8, Oct 75

Signals, how many does a receiver see?
DJ2LR
p. 58, Jun 77

Comments
W1DIT
p. 101, Sep 77

S-meters, solid-state
K6SDX
p. 20, Mar 75

Spectrum analyzer, four channel
W6FSF
p. 6, Oct 72

Squelch, audio-activated
K4MOG
p. 52, Apr 72

Ssb signals, monitoring
W6FR
p. 36, Mar 72
Communications receiver, micropower
W7ZGI
Short circuit, tuning, electronic, in the Drake R-4C
Horner
BC-1206 for 7 MHz, converted W4F1N
Short circuit
Collins receivers, 300-Hz crystal filters for WIDTY
Collins receivers (letter)
G3UFZ
Collins 75A4 hints (HN)
W6FR
Collins 75A4 modifications (HN)
W4SD
Communications receiver, five-band KDSDX
Communications receiver for 80 meters, IC VE1EJP
Communications receiver, micropower W3EBL
Communicators, receiver, miniature design ideas for KD4HC
Communications receiver, miniaturized KD4HC
Communications receiver, optimum design for DJLIR
Communications receiver, solid-state ISTQD
Correction
Companion receiver, all-mode W3HNN
Converter, hf, solid-state VE3GPN
Converter, tuned very low-frequency OI2XT
Converter, very low-frequency receiver W2IMB
Crystal-controlled phase-locked converter W3MV
Digitally programmable high-frequency communications receiver W4HAVUW
Direct-conversion receivers W3FOJ
Direct-conversion receivers W3FOJ
Direct-conversion receivers, improved selectivity KB4JU
Direct-conversion receivers, simple active filters for W7ZGO
Double-conversion hf receiver with mechanical frequency readout Perlo
Fet converter for 10 to 40 meters, second-generation VE3GPN
Shunt circuit
Frequency synthesized local-oscillator system W7GHzM
Frequency synthesizer for the Drake R-4 W6BNI
Modification (letter)
General coverage communications receiver W6URH
General converter, solid-state modification of Schuler
Hammarlund HQ215, adding 160-MHz coverage W6GHK
High 80-500 frequency display, using with other receivers K2BYM
High dynamic range receiver input stages DJLIR
High-frequency DX receiver WB2VZU
Incremental tuning to your transceiver, adding VE3GPN
Monitoring oscillator WJ2D

high-frequency receivers
Bandpass filters for receiver preselectors W7ZGI
Bandpass, tuning, electronic, in the Drake R-4C Horner
BC-1206 for 7 MHz, converted W4F1N
Short circuit
Collins receivers, 300-Hz crystal filters for WIDTY
Collins receivers (letter)
G3UFZ
Collins 75A4 hints (HN)
W6FR
Collins 75A4 modifications (HN)
W4SD
Communications receiver, five-band KDSDX
Communications receiver for 80 meters, IC VE1EJP
Communications receiver, micropower W3EBL
Communicators, receiver, miniature design ideas for KD4HC
Communications receiver, miniaturized KD4HC
Communications receiver, optimum design for DJLIR
Communications receiver, solid-state ISTQD
Correction
Companion receiver, all-mode W3HNN
Converter, hf, solid-state VE3GPN
Converter, tuned very low-frequency OI2XT
Converter, very low-frequency receiver W2IMB
Crystal-controlled phase-locked converter W3MV
Digitally programmable high-frequency communications receiver W4HAVUW
Direct-conversion receivers W3FOJ
Direct-conversion receivers, improved selectivity KB4JU
Direct-conversion receivers, simple active filters for W7ZGO
Double-conversion hf receiver with mechanical frequency readout Perlo
Fet converter for 10 to 40 meters, second-generation VE3GPN
Shunt circuit
Frequency synthesized local-oscillator system W7GHzM
Frequency synthesizer for the Drake R-4 W6BNI
Modification (letter)
General coverage communications receiver W6URH
General converter, solid-state modification of Schuler
Hammarlund HQ215, adding 160-MHz coverage W6GHK
High 80-500 frequency display, using with other receivers K2BYM
High dynamic range receiver input stages DJLIR
High-frequency DX receiver WB2VZU
Incremental tuning to your transceiver, adding VE3GPN
Monitoring oscillator WJ2D

Multiband high-frequency converter KS6DX
Outboard receiver with the SB-100, using an (HN) KG4MR
Overload response in the Collins 75A-4 receiver, improving W7ZO
Short circuit
Phasing-type ssb receiver W4JYKJ
Short circuit
Added note (letter)
Preamplifier, emitter-tuned, 21 MHz WASSN2Z
Preamplifier, low-noise high-gain transistor W2EYV
Preselector, general-coverage (HN) W5ZOF
Qsrl, solid-state W5THP
Receiver incremental tuning for the Swan 350 (HN) K1KKA
Receiver, reciprocating detector W1SNCN
Correction (letter)
Receiver, versatile solid-state W1PNO
Reciprocating detector W1SNCN
Regenerative detectors and a wideband amplifier for fm W8YF
RTTY monitor receiver KEEU
RTTY receiver-demodulator for net operation VE7BRK
Swan 350 CW monitor (HN) K1KKA
Transceiver selectivity improved (HN) W839BDW
Tuner overload, eliminating (HN) VE3GPN
Alternators for (letter)
WWV receiver Hodur, Jr., D
WWV receiver, fixed-tuned W6GZN
WWV receiver, regenerative WASSN2Z
WWV receiver, simple (HN) W4KBNV
WWV receiver, short circuit
WWV receiver, simple (HN) W4A3JO
WWV receiver, simple (HN) W4WVWH, amateur applications for W3FOJ
20-meter receiver with digital readout, part 1 KS6DX
20-meter receiver with digital readout, part 2 KS6DX
160-meter receiver, simple W6FPD
1.9 MHz receiver W3TNO
7-MHz direct-conversion receiver W5YBF
7-MHz ssb receiver and transmitter, simple VE3GPN
Angular gain
MHz

vhf receivers and converters
Converters for six and two meters, mosfet WB2EGZ
Short circuit
Cooled preamplifier for vhf-uhf WA2RDX
Filter-preamplifiers for 50 and 144 MHz etched W5KNT
Fm channel scanner W2FFP
Fm communications receiver, modular KBAULH
Correction (letter)
Fm receiver frequency control (letter)
Fm receiver performance, comparison of VETAKM
Fm receiver, multichannel for six and two WISSN
Fm receiver, tunable vhf KBAULH
Fm receiver, uhf WA6GCF
Repeaters, receiving system degradation in K5EBA

receivers and converters, test and troubleshooting
Rf and if amplifiers, troubleshooting Allen
Weak signal source, variable-output W6JYD
Weak signal source, 144 and 432 MHz KC6C

RTTY
AFSK, digital W6PSW
Short circuit

142/december 1978
AFSK generator (HN) FIKI p. 69, Jul 76
AFSK generator and demodulator WB9ATW p. 26, Sep 77
AFSK generator, crystal-controlled K6QT p. 13, Jul 72
AFSK generator, crystal-controlled W9PCC p. 14, Dec 73
Bliss oscillator (letter) K5DQ p. 59, Dec 74
Audio-frequency keyer, simple W1WJ p. 56, Aug 75
Audio-frequency shift keyer KH6FMT p. 45, Sep 76
Audio-frequency shift keyer, simple (CST) W1QDY p. 37, Dec 72
CRT intensifier for RTTY KA1EEU p. 18, Jul 71
Coincident return, increasing to the automatic line-feed generator (HN) KA1EEU p. 71, Sep 74
Cleaning teleprinters (HN) W2CD p. 86, May 78
Coherent frequency-shift keying, need for K5KWO p. 30, Jun 74
Added notes (letter) p. 58, Nov 74
Coaxial test oscillator and signal generator KA1EEU p. 46, Mar 73
CW memory for RTTY identification K2KOT p. 6, Jan 74
Digital repeat/ST WB9ATW p. 58, Nov 78
DT-500 demodulator KH9V, K4OAH, WB4KUR p. 24, Mar 76
Short circuit DT-600 demodulator KH9V, K4OAH, WB4KUR p. 8, Feb 76
Letter, K4GZER p. 78, Sep 76
Short circuit p. 65, Oct 76
Dual demodulator terminal unit KA1EEU p. 74, Oct 78
Electronic speed conversion for RTTY teleprinters W12CAW p. 46, Dec 77
Printed circuit for K2KOT p. 54, Oct 72
Electronic teleprinter keyboard W12CAW p. 56, Aug 78
Frequency-shift meter, RTTY VK2NV p. 53, Jun 70
Line indicator, IC W1WJ p. 22, Nov 75
Line feed, automatic for RTTY KA1EEU p. 20, Jan 73
Mainline ST-5 autostart and antispace K2YAH p. 46, Dec 72
Mainline ST-5 RTTY demodulator W6FFC p. 14, Sep 70
Short circuit Mainline ST-6 RTTY demodulator W6FFC p. 6, May 71
Short circuit Mainline ST-6 RTTY demodulator, more uses for (letter) W6FFC p. 72, Apr 71
Mainline ST-6 RTTY demodulator, troubleshooting, 10 MHz W12CAW p. 50, Feb 71
Message generator, random access memory RTTY K2KOT p. 8, Jan 75
Message generator, RTTY W6OPX, WBKCO p. 30, Feb 74
Modulator-demodulator for vhf operation W2LLO p. 70, Mar 71
Monitor scope, phase-shift W3CIX p. 26, Aug 72
Monitor scope, RTTY, Heath KX40 and SB-610 as (HN) KH9V p. 70, Sep 74
Monitor scope, RTTY, solid-state WB2MPZ p. 33, Oct 71
Performance and signal-to-noise ratio of low-frequency shift RTTY KSSR p. 62, Dec 76
Phase-locked loop AFSK generator KA1EEU p. 27, Mar 73
Phase-locked loop RTTY terminal unit W4QPM p. 8, Jan 72
Correction Power supply for 300, May 72
Optimization of the phase- locked terminal unit Update, W4AYV p. 16, Aug 76
Power tuning with sub gear W1QDY p. 40, Oct 72
Printed circuit for RTTY speed converter KW1G p. 42, Feb 73
FZES p. 86, Oct 77
Receiver-demodulator for RTTY re- operation W4JFM p. 42, Feb 73
Ribbon re-inkers p. 30, Jun 72
RTTY converter, miniature IC K9ML p. 40, May 69
Short circuit W4BMI p. 80, Aug 69
RTTY distortion: causes and cures VK7RJ p. 36, Sep 72
RTTY for the blind (letter) VE2BRK p. 76, Aug 72
RTTY, introduction to K9JFJJ p. 38, Jun 69
RTTY line-length indicator (HN) W2UUF p. 62, Nov 73
RTTY reception with Heath SB receivers (HN) KH9V p. 64, Oct 71
Selcom KH9V, WB4KUR, K4EID p. 10, Jun 78
Serial converter for 8-level teleprinters VE2CTP p. 67, Aug 77
Short circuit Signal generator, RTTY WZ7TF p. 68, Dec 77
Short circuit p. 96, Dec 71
Simple circuit replaces jack patch panel K4ST p. 25, Apr 76
Speed control, electronic for RTTY WS3F p. 50, Aug 74
ST-5 keys polar relay (HN) WL1PD p. 72, May 74
Swan 350 and 400 equipment on RTTY (HN) W8BMIC p. 37, Apr 70
Synchrophase afsk oscillator W6FOO p. 38, Nov 70
Synchrophase RTTY reception W6FOO p. 38, Nov 70
Tape editor W3EAG p. 32, Jun 77
Teleprinters, new look in W6JJT p. 38, Jul 70
Terminal unit, phase-locked loop W4QPM p. 8, Jan 72
Correction p. 60, May 72
Terminal unit, variable-shift RTTY WS3F p. 16, Nov 73
Test generator, RTTY W6FOO p. 64, Jan 78
Test generator, RTTY (HN) W6SSU p. 67, Jul 73
Test generator, RTTY (HN) W3EAG p. 59, Mar 73
Test-message generator, RTTY K4GSC, K9PKQ p. 30, Nov 76
Time/date printout W16ZT p. 18, Jun 76
Short circuit W16ZT p. 68, Dec 77
Voltage supply, precision for phase-locked terminal unit (HN) W6ANL p. 60, Jul 74
Satellite tracking — pointing and range with a pocket calculator W4OPX p. 40, Feb 78
Signal polarizations, satellite W6FFC p. 6, Dec 72
Tracking the OSCAR satellites Harmon, WAG6JAP p. 18, Sep 77
28-30 MHz loop antenna for satellite reception W4JIA p. 48, Oct 75
432-MHz OSCAR antenna (HN) W4JIA p. 58, Jul 75

Semiconductors

Antenna bearings for geostationary satellites, calculating W4OPX p. 67, May 78
Antenna switch for meters, solid-state K2ZSQ p. 48, May 69
Avalanche transistor circuits W4NYK p. 22, Dec 70
OSCAR flow in semiconductors W6BPHI p. 50, Apr 71
Converting a vacuum-tube receiver to solid-state W1OOP p. 26, Feb 69
Short circuit W4OFI p. 76, Jul 69
Direct select evaluating W5JJ p. 52, Dec 71
Dynamic transistor tester (HN) VE7ABK p. 65, Oct 71
European semiconductor numbering system (C&T) W6FOO p. 42, Apr 76
Fet bias problems simplified W5KN p. 50, Mar 74
Fet bias W3FQJ p. 61, Nov 72
Fetrons, solid-state replacements for tubes W4QPM p. 4, Aug 72
Additional notes p. 66, Oct 72; p. 62, Jun 74
Frequency multipliers W6GKN p. 6, Aug 71
Full-wave multipliers, transistor W6AJF p. 49, Jun 70
GaAs field-effect transistors, introduction to W4QPM p. 74, Jan 78
Glass semiconductors W4VZ p. 54, Jul 69
Grid-oscillator, solid-state conversion of W6AJZ p. 20, Jun 70
Ham problems, how to solve transistor calculation W6MNZ p. 46, Jan 74
Impulse generator, snap diode W6GF p. 29, Oct 72
Injection lasers, high power Mims p. 28, Sep 71
Injection lasers (letter) Mims p. 64, Apr 71
Linear power amplifier, high power solid-state Chambers p. 6, Aug 74
Linear transistor amplifier W6LZT p. 59, Sep 71
Matching techniques, broadband, for transistor rf amplifiers W6LZT p. 30, Jan 77
Microwave amplifier design, solid state W6LZT p. 40, Oct 70
Mobile converter, solid-state modification of W6LZT p. 58, Sep 69
Modest circuits W3FQJ p. 50, Feb 75
Modest power amplifier, 160 - 6 meters W6KOB p. 12, Nov 78
Modest transistors (HN) W6GKF p. 72, Jun 69
Moire power fet (letter) W6QZM p. 110, Mar 78
Motion-letters (letter) W4PP p. 64, Apr 71
Moving small-signal amplifiers WA9VDW p. 40, Sep 70
Noise, zener-diode (HN) VE7ABK p. 59, Jun 75
Parasitic oscillations in high-power transistor rf amplifiers W4QPM p. 54, Sep 70
Pentode replacement (HN) W6QZM p. 70, Feb 70
Power dissipation ratings of transistors W5SGW p. 56, Jun 71
Power-flops W3FQJ p. 34, Apr 71
For resistors, paralleling (HN) W9ARE p. 62, Jan 72
Protecting solid-state devices from voltage transients W85DEP p. 74, Jun 78
Relay, transistor replaces (HN) W83N p. 72, Jan 70
Rf power detecting devices W85DEP p. 28, Jun 70
Rf power transistors, how to use W4QPM p. 8, Jan 70
Snap diode impulse generator Siegel, Turner p. 29, Oct 72
Surplus transistors, identifying W85DEP p. 38, Dec 70
high-frequency transmitters

ART-13, Modifying for noiseless CW (HN) p. 68, Aug 69
K5GDN p. 68, Aug 69
Low-pass filter for 40 and 80 meters W3NLN, K3ODJ p. 14, Jul 77
CW transmitter for 40 and 80 meters, improved W3NLN p. 18, Jul 77
CW transmitter, low-power 20-meter W31QD p. 8, Nov 74
CW transmitter, half-wave W3QI p. 69, Nov 69
Driver and final for 40 and 80 meters, solid-state W3QBO p. 20, Feb 72
Electronic bias switch for negatively biased power amplifiers W3QBO p. 27, Nov 76
Field-effect transistor transmitters K2BLA p. 30, Feb 77
Filters, low-pass for 10 and 15 meters W2EEY p. 42, Jan 72
Five-band transmitter, hf, solid-state ISTDJ p. 24, Apr 77
Frequency synthesizer, high frequency K2BLA p. 16, Oct 72
Grounded-grid 2 kW PE amplifier, high frequency W6SAI p. 6, Feb 69
Harmon-101 transmitter, using with a separate receiver (HN) W1AMKWP p. 63, Oct 73
Phase-locked loop, 28 MHz W1KNI p. 40, Jan 77
QRP fm transmitter, 80-meter W3FQJ p. 50, Aug 77
SSB transmitter, miniature 7.0 MHz W7BDX p. 16, Jul 74
SSB transmitter using LM373 IC WSBA p. 32, Nov 73
SSB transceiver, 5-MHz, IC GZ1C p. 34, Aug 74
Circuit change (letter) W6DQ p. 62, Sep 75
SSB transmitter and receiver, 40 meters VE3SQ p. 6, Aug 74
Short circuit W6DQ p. 62, Dec 74
SSB transmitter, phasing type WA1ZYK p. 8, Jun 75
Tank circuit, inductively-tuned high-frequency WS6AI p. 6, Jul 70
Transceiver, high-frequency with digital readout DJ2LR p. 12, Mar 78
Transmitter, single-band ssb W9TDY p. 8, Jun 69
Transistor, 3.5-MHz ssb W5EBX p. 73, Mar 73
Transmitter, five-band, CW and ssb W3WITZ p. 34, Jan 77
Transmitter, low-power WS6NL p. 26, Dec 70
Transmitter, universal free-power KZ7SQ p. 58, Apr 69
Transmitter, low-power, high-frequency WA1RBH p. 12, Dec 78
Wideband linear amplifier, 4 watt VE3P p. 42, Jan 76
3400Z, 3502Z filament circuits, notes on KWB5GH 7-MHz QRP CW transmitter W3AMTH p. 26, Dec 76
14-MHz vfo transmitter, solid-state W3QBD p. 6, Nov 73
160 meters, 500-watt power amplifier WS2BP p. 8, 75
Phase-locked loop, 28 MHz W1KNI p. 40, Jan 77
QRP fm transmitter, 80-meter W3FQJ p. 50, Aug 77
SSB transmitter, miniature 7.0 MHz W7BDX p. 16, Jul 74
SSB transmitter using LM373 IC WSBA p. 32, Nov 73
SSB transceiver, 5-MHz, IC GZ1C p. 34, Aug 74
Circuit change (letter) W6DQ p. 62, Sep 75
SSB transmitter and receiver, 40 meters VE3SQ p. 6, Aug 74
Short circuit W6DQ p. 62, Dec 74
SSB transmitter, phasing type WA1ZYK p. 8, Jun 75
Tank circuit, inductively-tuned high-frequency WS6AI p. 6, Jul 70
Transceiver, high-frequency with digital readout DJ2LR p. 12, Mar 78
Transmitter, single-band ssb W9TDY p. 8, Jun 69
Transistor, 3.5-MHz ssb W5EBX p. 73, Mar 73
Transmitter, five-band, CW and ssb W3WITZ p. 34, Jan 77
Transmitter, low-power WS6NL p. 26, Dec 70
Transmitter, universal free-power KZ7SQ p. 58, Apr 69
Transmitter, low-power, high-frequency WA1RBH p. 12, Dec 78
Wideband linear amplifier, 4 watt VE3P p. 42, Jan 76
3400Z, 3502Z filament circuits, notes on KWB5GH 7-MHz QRP CW transmitter W3AMTH p. 26, Dec 76
14-MHz vfo transmitter, solid-state W3QBD p. 6, Nov 73
160 meters, 500-watt power amplifier WS2BP p. 8, 75
Transmitter and power amplifiers, test and troubleshooting W1AMKWP p. 62, Nov 70
Tuning up ssb transmitters W1AMKWP p. 62, Nov 69
transmitters and power amplifiers, troubleshooting W1AMKWP p. 62, Nov 70
Amp transmitter alignment W1AMKWP p. 62, Nov 70
Troubleshooting W1AMKWP p. 62, Nov 70
Analyzing wrong dc voltages W1AMKWP p. 54, Feb 69
Troubleshooting W1AMKWP p. 42, Jul 70
Basic troubleshooting W1AMKWP p. 54, Jan 76
Dc converters, curing trouble in W1AMKWP p. 56, Jun 70
Logic circuits, troubleshooting W1AMKWP p. 56, Feb 77
Mobile power supplies, troubleshooting W1AMKWP p. 56, Nov 70
Ommeter troubleshooting W1AMKWP p. 52, Jan 69
Transistors, repairing W1AMKWP p. 69, Mar 70
Oscillator troubleshooting (repair bench) W1AMKWP p. 54, Mar 77
Oscilloscope, putting to work W1AMKWP p. 64, Sep 69
Oscilloscope, troubleshooting amateur gear with W1AMKWP p. 52, Aug 69
Allen p. 62, Aug 70
Power supply, troubleshooting W1AMKWP p. 78, Sep 77
Receiver alignment techniques, vhf fm W1AMKWP p. 14, Aug 75
 Receivers, troubleshooting the dead W1AMKWP p. 56, Jul 76
Resistance measurement, troubleshooting by James W1AMKWP p. 58, Apr 76
RF and IF amplifiers, troubleshooting W1AMKWP p. 60, Sep 70
Speech amplifiers, curing distortion W1AMKWP p. 42, Aug 70
Sub transmitter alignment W1AMKWP p. 62, Oct 70
Sweep generator, how to use W1AMKWP p. 60, Apr 70
Transistor circuits, troubleshooting W1AMKWP p. 60, Sep 76
Transistor testing W1AMKWP p. 62, Jul 70
Tuning up ssb transmitters W1AMKWP p. 62, Nov 69
Voltage troubleshooting James W1AMKWP p. 64, Feb 76
Transmitter and power amplifiers, troubleshooting W1AMKWP p. 62, Nov 70
Transmitter alignment W1AMKWP p. 62, Oct 70
Troubleshooting W1AMKWP p. 62, Nov 70
Analyzing wrong dc voltages W1AMKWP p. 54, Feb 69
Troubleshooting W1AMKWP p. 42, Jul 70
Basic troubleshooting W1AMKWP p. 54, Jan 76
Dc converters, curing trouble in W1AMKWP p. 56, Jun 70
Logic circuits, troubleshooting W1AMKWP p. 56, Feb 77
Mobile power supplies, troubleshooting W1AMKWP p. 56, Nov 70
Ommeter troubleshooting W1AMKWP p. 52, Jan 69
Transistors, repairing W1AMKWP p. 69, Mar 70
Oscillator troubleshooting (repair bench) W1AMKWP p. 54, Mar 77
Oscilloscope, putting to work W1AMKWP p. 64, Sep 69
Oscilloscope, troubleshooting amateur gear with W1AMKWP p. 52, Aug 69
Power supply, troubleshooting W1AMKWP p. 78, Sep 77
Receiver alignment techniques, vhf fm W1AMKWP p. 14, Aug 75
 Receivers, troubleshooting the dead W1AMKWP p. 56, Jul 76
Resistance measurement, troubleshooting by James W1AMKWP p. 58, Apr 76
RF and IF amplifiers, troubleshooting W1AMKWP p. 60, Sep 70
Speech amplifiers, curing distortion W1AMKWP p. 42, Aug 70
Sub transmitter alignment W1AMKWP p. 62, Oct 70
Sweep generator, how to use W1AMKWP p. 60, Apr 70
Transistor circuits, troubleshooting W1AMKWP p. 60, Sep 76
Transistor testing W1AMKWP p. 62, Jul 70
Tuning up ssb transmitters W1AMKWP p. 62, Nov 69
Voltage troubleshooting James W1AMKWP p. 64, Feb 76
vhf and microwave general

Artificial radio aurora, vhf scattering characteristics W6JW p. 18, Nov 74
A modulation monitor (HN) K7UVN p. 67, Jul 71
Band change from six to two meters, quick K6QYQ p. 64, Feb 70
Bandwidth filters, single-pole W6HAF p. 51, Sep 69
vhf and microwave general

Artificial radio aurora, vhf scattering characteristics W6JW p. 18, Nov 74
A modulation monitor (HN) K7UVN p. 67, Jul 71
Band change from six to two meters, quick K6QYQ p. 64, Feb 70
Bandwidth filters, single-pole W6HAF p. 51, Sep 69
vhf and microwave general

Artificial radio aurora, vhf scattering characteristics W6JW p. 18, Nov 74
A modulation monitor (HN) K7UVN p. 67, Jul 71
Band change from six to two meters, quick K6QYQ p. 64, Feb 70
Bandwidth filters, single-pole W6HAF p. 51, Sep 69
vhf and microwave transmitters

External anode tetodes

WS5AI

Inductively-tuned tank circuit

WS5AI

Lightwave tubes for vhf

WS6UV

Pi networks, series-tuned

WS2EGH

Sub input source for vhf, uhf transverters (HN)

FBMK

Transistors for vhf transmitters (HN)

W100GP

Vhf linear, 2 kW, design data for

WS6UV

Water-cooled 2C39 (HN)

WS8RPB

2C9, water cooling

K6MFC

50 MHz customized transverter

K1RAK

50 MHz heterodyne transmitting mixer

K2ISP

Correction

W76YJ

50 MHz kilowatt, inductivey-tuned

K1DTP

50 MHz 2 kW linear amplifier

W6GUV

50 MHz linear amplifier

K1RAK

50 MHz multimode transmitter

K2ISP

50 MHz transverter

W9AGU

144 MHz fm transceiver, compact

WS6AI

144 MHz fm transmitter

W6AGF

144 MHz fm transmitter

W6SEK

144 MHz fm transmitter, Sonobaby

WA9UZ0

Crystal deck for Sonobaby

W6AGF

144 MHz heterodyne transmitting mixers

K2ISP

Correction

W76YJ

144 MHz linear

W4KAE

144 MHz linear, 2k, design data

WS6UV

22.5-50 MHz low-power kilowatt linear

WS6HDN

144 MHz multimode transmitter

K2ISP

144 MHz phase-modulated transmitters

W6GAF

144 MHz power amplifier, high performance

WS6UV

144 MHz power amplifier, fm

WACGC

144 MHz power amplifier, 10 watt solid-state (HN)

WIDTY

144 MHz power amplifier, 80 watt, solid-state

Hatchet

144 MHz stripl ine kilowatt

W2GJ

144 MHz tripler, a-m

K1AOB

144 MHz transmitting converter, solid-state sub

WS8AI

Short circuit

W6QJ

144 MHz, transverter

K1RAK

144 MHz two-kilowatt linear

WS6UV, W7ZO, W7GC

144- and 432 MHz stripl ine amplifier/tripier

K2RIW

220 MHz exciter

WBDQJ

200 MHz power amplifier

WS6UV

220 MHz rf power mixer

K64J

432 MHz stripl ine tripier

K2RIW

220 MHz 100 watt solid-state power amplifier

W6UV

1152- to 2304 MHz power doubler

W1JW

1270 MHz video-modulated power amplifier

W9ZH

1296 MHz frequency tripier

K4LUM, W4AIP

1296 MHz power amplifier

W9QD, WZCCY, W7QJ, W1JW

1296 MHz ssb transceiver

WAGAJ

220 MHz transmitter

K4JW

2304 MHz power amplifier

W9AHU
Gift and Save!

Ham Radio Horizons

- Easy to give
- Fun to receive
- A reminder of your friendship all year long

Share your favorite hobby with special friends this holiday season and give Ham Radio HORIZONS. When you give two or more HORIZONS gift subscriptions, your savings are even greater.

Every month, for a full year, your friends will have fun reading all about Amateur Radio in Ham Radio HORIZONS — the exciting, colorful magazine designed originally for beginners, but now receiving rave reviews from experienced old-timers as well.

Make it easy on yourself by gifting HORIZONS this holiday season, and save!

$10 First Gift (save $5.00*) $7.97 Each Additional Gift (save $7.03*)

*Based on $15.00 yearly newsstand price.

The Ham Radio Publishing Group
Greenville, NH 03048

Yes! Please send my HORIZONS gift subscriptions as indicated. Also send a gift acknowledgement card . . .

☐ Start or ☐ Renew my HORIZONS subscription.

$______ is enclosed for ______ subscriptions.

☐ Master Charge ☐ VISA/BankAmericard

Account______________________________
Expires _______________ MC Bank __________

☐ Bill me after January 1, 1979.

FROM:
My Name ___________________ Call________
Address__________________________
City________________ State______ Zip______

SEND TO:
Name________________ Call________
Address__________________________
City________________ State______ Zip______

Here's my first gift subscription for one year (12 issues) at just $10.00.

Here's my second gift subscription for one year (12 issues) at just $7.97.

☐ New subscription ☐ Renewal

SEND TO:
Name________________ Call________
Address__________________________
City________________ State______ Zip______

For additional gifts give complete information on separate sheet of paper and return with above order.
JAN CRYSTALS HOLD THE FREQUENCY

- CB
- CB standard
- 2 meter
- Scanners
- Amateur Bands
- General Communication
- Industry
- Marine VHF
- Micro processor crystals
- Easy to charge

Send 10¢ for our latest catalog.
Write or phone for more details.
2400 Crystal Drive
 Ft. Myers, Florida 33901
all phones (813) 936-2397

SEMTech Bridges
Heat sink w/center hole
mtg. 10 Amp — Tested —
200 P.IV. $1.75 ea. ppd.
400 P.IV. $1.95 ea. ppd.
600 P.IV. $2.15 ppd.
800 P.IV. $2.35 ppd.
1000 P.IV. $2.55 ppd.
1100 P.IV. $2.75 ppd.
25 AMP—TESTED
200 P.IV. $2.25 ea. ppd.
400 P.IV. $2.50 ea. ppd.
600 P.IV. $2.75 ea. ppd.
800 P.IV. $3.00 ea. ppd.

UNPOTTED TOROIDS — Center tapped.
88 MHy — $2.95 9 oz. — $3.49
44 MHy — $3.95 ALL PPD.

EDGEVIEW METERS 250 $5.5 METERS NEW — $2.65 ea.

NEW SIZED VERTICAL MOUNT PCB BOARD POTentiOMETERS
American made (CRL). Gernet sizes: 250, 500, 1000, 2500, 5000, 10000, 50000. 5/$1.75 ppd.

m. weinschenker
Electronic specialties BOX 353. IRWIN. PA 15642

ALL-MODE VHF amplifiers
115V/230VAC OPERATION FOR BASE STATION & REPEATER USE

- No Power Supply Needed
- AM-FM-CW-SSB-RTTY
- 60dB Harmonics
- 60dB Spurious
- Heavy Duty Design
- Illuminated Panel Meter
- Internal TR Switch
- Fully Protected
- +13V/3A Accessory Socket
- U.S. Manufactured

FCC Type Accepted Models also available. Parts 88.91.93.

*Available after September 1, 1978

FAN KIT

RF POWER LABS, INC.
11013 118th Place N.E. • Kirkland, Washington 98033 • Telephone: (206) 822-1251 • TELEX No. 32-1042

PASS FCC EXAMS
The Original FCC Test. Answers exam manual that presents you at home for FCC 1st and 2nd class Radio operator licenses. Newly revised multiple choice exams cover all areas tested on the actual FCC exams. Phone: Self Study. Free Test Kit — Printed 50% output
Machines: Radio Shack

K-ENTERPRISES
Frequency Counters
Prescalers
Marker & Peaking
Generators
Power Supplies
Amplifiers
Frequency Standards
Write for Free Catalog
Box 410 (Pump St. Rd.) Fairland, OK 74343
Phone: 918-676-3752

Barry Electronics... Your One Source for Amateur Radio Gear

Yes, we have it! The all-new ATLAS TX-110/RX-110 Modular transmitter-receiver combination

We also have:
- ANTENNAS FOR HF & UHF
- ROTORS
- TOWERS
- REPEATERS
- MICROPHONES
- KEYS & KEYS
- TUBES and much, much more

WE STOCK THESE FAMOUS NAME BRANDS
- EMAc Tubes
- JEMAC
- CHIMNEYS
- YAESU
- ATLAS SPECIALISTS
- E-Z WAY
- ICOM
- TDK
- CUSHCRAFT
- KLM
- DENTRON
- NEWTRONICS
- YAESU

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, N. Y. 10012
(212) 925-7000

More Details? CHECK — OFF Page 150

december 1978 149
December, 1978

Please use before January 31, 1979

Tear off and mail to
HAM RADIO MAGAZINE "check-off"
Greenville, N. H. 03048

NAME ..

ADDRESS ...

STATE ZIP ...

Telemarketing

ABC Communications
ALG Electronics
Advanced Electronic Applications
ALDA Communications
Aluma Tower Co.
Amateur Radio Center
Anson Associates
Anteck, Inc.
Antenna Specialists
Atlantic Electronics
Atlantic Sales
Atlas Radio ..
Barry Electronics
B.C. Radio ..
Budweiser ..
Carr Radio ..
Carrington ..
Clegg ..
CoastCo ...
Crego ..
Coombe ...
Copley ..
Cranmore ...
Crawford ...
Crystal ...
Curtis ...
Cyber ..
Data ..
Davis ..
Davis ..
D.C. Communications
Damon ...
Delford ...
Delta ..
Dey ..
Dix
When you buy an ALPHA linear amplifier you make a long term investment in dependable power and operating pleasure.

You can take your ALPHA for granted — it will go on delivering that big, clean, maximum-legal-power signal no matter how tough the contest or how long the SSTV or RTTY QSO's.

We strive constantly to make every ALPHA even better. If we can't improve it, we don't change it. **DURABILITY?** You get TWO YEARS of factory warranty protection with your new ALPHA . . . other manufacturers give you 90 days.

CONVENIENCE? Every ALPHA is self-contained, compact, and smooth-tuning. All 76A - 374A - 78 models can be shipped via economical, door-to-door UPS.

VERSATILITY? The new ALPHA 374A delivers full legal power (in any mode) on all amateur HF bands WITHOUT TUNE-UP and with excellent efficiency. (On 160M you peak the output manually; new FCC rules permit easy owner modification to restore full 10M capability, too.)

The ALPHA 78 combines the best of everything: full instant CW break-in (QSK) and NO-TUNE-UP bandchange! And of course all ALPHAs substantially exceed every applicable FCC requirement.

For detailed literature and fast delivery of your new ALPHA, contact your dealer or ETO direct. While you're at it, ask for a free copy of our brief guide, "Everything You Always Wanted to Know About (Comparing) Linears . . . But Didn't Know Whom to Ask."

ALPHA — Sure you can buy a cheaper linear . . . But is that really what you want?
FT-901DM HF transceiver
Audio peak freq. tuning, LED w/memory, no external VFO required for split freq. operation, built in Curtis keyer, GE61468 final tubes, 160 thru 10 meter coverage.
1459.00 List. Call for quote.

FT-7 HF Transceiver
Freq. coverage, 10 thru 80 meters sensitivity: 0.5 microvolts/ s/n 20dB, emissions: LSB, USB, CW, input power: 20 watts DC, single knob tune-up, 100KHz calibrator built in, semi break-in with sidetone receiver offset tuning.
549.00 List. Call for quote.

FRG-7000 general coverage receiver
Triple conversion superhet receiver, solid state, LED display receiver 0.25 MHz- 29.9 MHz, Built in AC pow. supply.
655.00 List. Call for quote.

FT-227RA VHF Transceiver
4 memories, touch control on mic for scanning, freq. 144-148 MHz, channel memory, 800 channels.
429.00 List. Call for quote.

CPU-2500RK 2 meter FM transceiver
Keyboard mic for remote input, scanning control, 800 channels, freq. 144-146 MHz.
585.00 Call for quote.

FP-4 power supply
DC output of 13.8 volts at 4 amps, overload and short circuit protection threshold of 5 amps.
49.95 List. Call for yours today.

SP-101PB speaker/phone patch console
Response speaker 300-3000 Hz, individual gain controls, full VOX phonepatch op., input 4 or 600 ohms, output 600 ohms or high impedance.
67.00 Call for yours today.

YH-55 headphone set
Softly padded for comfort. Compatible with Yaesu equipment. 8 ohms impedance.
15.00 Call for yours today.
THE CHRISTMAS GIFT OF A LIFETIME!

AESU ANNOUNCES THEIR SENSATIONAL COMPUTER AGE CPU-2500R/K 2-METER 25 WATT TRANSCEIVER

Again, Yaesu, THE RADIO, takes a giant step forward with their computer age 4-bit Central Processor Unit controlling the Phase Locked Loop. It allows selection of 800 PLL channels with touch button station selection built into the optional keyboard mike . . . PLUS automatic scan, up or down across the entire 2 meter band . . . PLUS four memory channels . . . PLUS optional tone squelch encoding . . . PLUS tone burst . . . PLUS high SWR and reverse voltage polarity protection . . . PLUS 3/25 watts of power . . . PLUS fixed ±600 KHz offsets . . . PLUS programmable offsets . . . PLUS tone pad microphone option . . . PLUS bright 3/8" LED six digit frequency display and another LED for memory display . . . and much more.

The CPU-2500R/K is a space age radio for discriminating amateurs utilizing the latest solid state techniques and it's on your dealer's shelf today!
EIMAC's new Pyrogrid can run hotter so your transmitter can run better.

No easier way to generate 50 kW for AM, FM, and VHF-TV service.
The pyrolytic graphite grid in EIMAC's newest tough tetrode, the 4CX40,000G, has triple the screen dissipation of earlier tetrodes. Which means:
1. A previous limiting factor in tetrode design, screen dissipation, is virtually eliminated.
2. Primary grid emission is eliminated.
3. Secondary grid emission is eliminated, improving linearity.
4. Hot and cold spacing between grids remains constant, allowing closer spacing between elements and improved performance.

High gain, better reliability.
With over 20 dB power gain, EIMAC's Pyrogrid 4CX40,000G tetrode can follow a solid state driver, allowing a smaller, more efficient transmitter.

The stability of pyrolytic graphite assures better tube reliability.
Available today for tomorrow's single tube transmitters.

For complete information about the tough new EIMAC tetrode for tomorrow's AM, FM broadcast and VHF-TV linear amplifiers, contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, CA 94070. Telephone (415) 592-1221. Or any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.
Share the Heathkit experience with your kids!

Send for the big new

HEATHKIT
CATALOG

You'll find nearly 400 fun-filled kit building experiences both you and your family can enjoy. There's ham gear, color TV's, stereo components, digital clocks, test instruments, treasure finders, computers, peripherals, and MORE—all with easy, step-by-step instruction manuals. Share the Heath experience—it'll make your whole relationship...a lot more special!

FREE
HEATHKIT CATALOG

Send me my personal copy of the newest Heathkit Catalog. I am not currently on your mailing list.

Heath Company, Dept. 122-480, Benton Harbor, MI 49022

NAME
ADDRESS
CITY
STATE ZIP

Ham Radio

Start a worthwhile family hobby today!

PC-129
enjoy the world's leading electronic kit catalog...

FREE

THE ALL-NEW HEATHKIT CATALOG

Nearly 400 build-it-yourself kits that the entire family can enjoy

Send for your free copy today!