FEBRUARY 1978

- using frequency counters 10
- two-IC frequency counter 22
- frequency counter front ends 30
- crystal oven temperature control 34
- high-impedance counter preamplifier 47
- and much more . . .
TEMPO
VHF/ONE PLUS

MORE POWER / 25 OR 5 WATTS OUTPUT SELECTABLE
REMOTE TUNING / ON MICROPHONE
NEW LOWER PRICE / NOW ONLY $399.00

SIDEBAND OPERATION WITH SSB/ONE ADAPTER / MARS OPERATION CAPABILITY / 5 KHz NUMERICAL LED

The Tempo VHF/One Plus is a VHF/IFM transceiver for dependable communication on the 2 meter amateur band • Full 2 meter coverage, 144 to 148 MHz for both transmit and receive • Full phase lock synthesized (PLL) • Automatic repeater split—selectable up or down • Two built-in programmable channels • All solid state • 800 selectable receive frequencies with simplex and +600 KHz transmit frequencies for each receive channel.

TEMPO FMH-2, FMH-5 & FMH-42 (UHF)
6 channel capability • selectable 1 or 2 - 1 or 5 Watts output • Solid-state • Battery level meter • Earphone jack • Built-in charging terminals and separate charging jack for Ni-cad batteries • Flex antenna • Carrying case standard • Excellent frequency stability allows use with booster amplifier for high power output over 100 Watts • 8 AA batteries or 10 AA Ni-cads.*

TEMPO VHF & UHF AMPLIFIERS
VHF (135 to 175 MHz)
Drive Power Output Model No. Price
2W 130W 130A02 $199
10W 130W 130A10 $179
30W 130W 130A30 $189
2W 80W 80A02 $169
10W 80W 80A10 $149
30W 80W 80A30 $159
UHF (400 to 512 MHz)
Drive Power Output Model No. Price
2W 70W 70D02 $270
10W 70W 70D10 $250
30W 70W 70D30 $210
2W 40W 40D02 $180
10W 40W 40D10 $145
2W 10W 10D02 $125

TEMPO POCKET RECEIVERS
MS-2, 4 channel scanning receiver for VHF high band, smallest unit on the market. MR-2 same size as MS-2 but has manual selection of 12 channels. VHF high band. MR-3, miniature 2-channel VHF high band monitor or paging receiver. MR-3U, single channel on the 400 to 512 UHF band. All are low priced and dependable.

FCC Type accepted models available.

Sold at Tempo dealers throughout the U.S. and abroad. Please call or write for further information.

Prices subject to change without notice.

11240 W. Olympic Blvd., Los Angeles, Calif. 90064
931 N. Euclid, Anaheim, Calif. 92801
Butler, Missouri 64730
213/477-6701
714/772-9200
816/678-3127
Why you should buy a digital multimeter from the leader in digital multimeters.

If you’re shopping for your first multimeter, or moving up to digital from analog, there are a few things you should know.

First, look at more than price. You’ll find, for instance, that the new Fluke 8020A DMM offers features you won’t find on other DMMs at any price. And it’s only $169.*

Second, quality pays. Fluke is recognized as the leading maker of multimeters (among other things) with a 30-year heritage of quality, excellence and value that pays off for you in the 8020A.

Third, don’t under-buy. You may think that a precision 3½-digit digital multimeter is too much instrument for you right now. But considering our rapidly changing technology, you’re going to need digital yesterday.

If you’re just beginning, go digital.

Why not analog? Because the 8020A has 0.25% dc accuracy, and that’s ten times better than most analog meters. Also, the 8020A’s digital performance means things like 26 ranges and seven functions. And the tougher your home projects get, the more you need the 8020A’s full-range versatility and accuracy. The 8020A has it; analog meters don’t.

If you’re a pro.

You already know Fluke. And you probably own a benchtop-model multimeter.

Now consider the 8020A: smaller in size, but just as big in capability. Like 2000-count resolution and high-low power ohms. Autozero and autopolarity. And the 8020A has 3-way protection against overvoltage, overcurrent and transients to 6000V!

Nanohms?

Beginner or pro, you’ll find the meter you now have can’t measure nanohms. So what? With the 8020A conductance function, you can measure the equivalent of 10,000 megohms in nanohms. Like capacitor, circuit board and insulation leakage. And, you can check transistor gain with a simple, homemade adapter. Only with the 8020A, a 13-oz. heavyweight that goes where you go, with confidence.

What price to pay.

$169.*

Of course, you can pay more. Or less. In fact, you could pay almost as much for equally compact but more simplistic meters, and get far less versatility. And, the 8020A gives you the ‘plus’ of custom CMOS LSI chip design, and a minimum number of parts (47 in all). All parts and service available at more than 100 Fluke service centers, worldwide. Guaranteed, for a full year.

Rugged. Reliable. Inexpensive to own and to operate; a simple 9V battery assures continuous use for up to 200 hours.

Where to buy.

Call (800) 426-0361 toll free. Give us your chargecard number and we’ll ship one to you the same day. Or, we’ll tell you the location of the closest Fluke office or distributor for a personal hands-on feel for the best DMM value going.

*U.S. price only

Fluke 8020A DMM for Home Electronics Experts: $169

FLUKE

More Details? CHECK — OFF Page 126
This NEW MFJ Versa Tuner II . . .

has SWR and dual range wattmeter, antenna switch, efficient airwound inductor, built in balun. Up to 300 watts RF output. Matches everything from 160 thru 10 Meters: dipoles, inverted vees, random wires, verticals, mobile whips, beams, balance lines, coax lines.

$79.95

Antenna matching capacitor. 208 pf. 1000 volt spacing.

Sets power range, 300 and 30 watts. Pull for SWR.

Meter reads SWR and RF watts in 2 ranges. Efficient airwound inductor gives more watts out and less losses.

Transmitter matching capacitor. 208 pf. 1000 volt spacing.

Only MFJ gives you this MFJ-941 Versa Tuner II with all these features at this price:

- A SWR and dual range wattmeter (300 and 30 watts full scale) lets you measure RF power output for simplified tuning.
- An antenna switch lets you select 2 coax fed antennas, random wire or balance line, and tuner bypass.
- A new efficient airwound inductor (12 positions) gives you less losses than a tapped toroid for more watts out.
- A 1.4 balun for balance lines. 1000 volt capacitor spacing. Mounting brackets for mobile installations (not shown).

With the NEW MFJ Versa Tuner II you can run your full transceiver power output — up to 300 watts RF power output — and match your one existing antenna. No need to put up separate antennas for each band.

Increase the usable bandwidth of your mobile whip by tuning out the SWR from inside your car. Works great with all solid state rigs (like the Atlas) and with all tube type rigs.

It travels well, too. Its ultra compact size 5x2x6 inches fits easily in a small corner of your suitcase.

This beautiful little tuner is housed in a deluxe eggshell white Ten-Tec enclosure with walnut grain sides.

SO-239 coax connectors are provided for transmitter input and coax fed antennas. Quality five way binding posts are used for the balance line inputs (2), random wire input (1), and ground (1).

$59.95 (**BRAND NEW**)

MFJ-901 Versa Tuner

New efficient air wound coil for more watts out.

Only MFJ uses an efficient air wound inductor (12 positions) in this class of tuners to give you more watts out and less losses than a tapped toroid. Matches everything from 160 thru 10 Meters: dipoles, inverted vees, random wires, verticals, mobile whip, beam, quad, or whatever you have.

You can even operate all bands with just one existing antenna. No need to put up separate antennas for each band.

$49.95 (**BRAND NEW**)

MFJ-900 Econo Tuner

Same as MFJ-901 Versa Tuner, but does not have built-in balun for balance lines. Uses coax lines and random lines.

$49.95 (**BRAND NEW**)

MFJ-202 RF Noise Bridge

This MFJ RF Noise Bridge lets you adjust your antenna quickly for maximum performance. Measure resonant frequency, radiation resistance and reactance. Exclusive range extends and expanded capacitance range (± 150 pf) gives much extended measuring range.

Tell your local frequency and whether to shorten or lengthen your antenna for minimum SWR. Adjust your single or multi-band dipole, inverted vee, beam, vertical, mobile whip or random system for maximum performance. 1 to 100 MHz.

SO-239 connectors, 2x3/4 inch, 9 volt battery.

For Orders Call toll-free 800-647-8660

For technical information, order and repair status, and in Mississippi, please call 601-323-5869.

Order any product from MFJ and try it. If not delighted, return within 30 days for a prompt refund (less shipping).

Order today. Money back if not delighted. One year unconditional guarantee. Add $2.00 shipping/handling.

Order By Mail or Call TOLL FREE 800-647-8660 and Charge It On

MFJ ENTERPRISES P. O. BOX 494
MISSISSIPPI STATE, MISSISSIPPI 39762

2 february 1978

More Details? CHECK — Off Page 126
10 understanding and using frequency counters
Robert S. Stein, W6NBI

22 simple frequency counter
Holton E. Harris, W1WP

26 direct counting to 100 MHz
Ian MacFarlane, WAI5NG

30 front ends for a 500-MHz frequency counter
John H. Bordelon, K4JIU

34 temperature control for crystal ovens
Frederick H. Schmidt, K4VA

40 satellite tracking calculations with pocket calculators
John A. Ball

47 high-impedance counter preamplifier
Giuseppe Beltrami, i4YAF

51 wide-range capacitance meter
P. H. Mathieson

54 solid-state vhf transmit-receive switch
Thomas J. Reddeck, W4VHH

56 digital scanner for two-meter synthesizers
Marion D. Kitchens, K4GOK

66 single-sideband reception with the Collins 51J
William I. Orr, W6SAI

70 active filters using discrete operational amplifiers
Peter A. Lovelock, K6JM

4 a second look

126 advertisers index

101 flea market

116 ham mart

76 ham notebook

80 new products

126 reader service

6 stop press
As this issue goes to press, it appears that the launch of the next amateur communications satellite, AMSAT-OSCAR D, is imminent (after it is in orbit this satellite will be known as OSCAR 8). Like its famous predecessors, OSCARs 5, 6, and 7, this new "bird" has two transponders: a two-to-ten meter unit similar to that used in OSCAR 7 called Mode A, and a two-meter, 70-centimeter transponder designated Mode J. The Mode J transponder was built by members of the Japan AMSAT Association in Tokyo; a similar combination of input/output frequencies was used in the short-lived OSCAR IV spacecraft back in 1966.

The new OSCAR will be launched from NASA's Western Test Range in California as a "piggyback" payload aboard the second stage of the two-stage Thor-Delta launch vehicle which will carry NASA's Landsat-C earth resources technology satellite into orbit. Because of scheduling at the Western Test Range, and the complex pre-launch checkout of Landsat-C, it's impossible to pinpoint the exact launch date, but late reports from AMSAT indicate it will be sometime in early March.

The new spacecraft is a 38 cm rectangular solid 33 cm high, weighs 27 kg, and is solar powered. The solar cells, combined with the 12-cell rechargeable nickel-cadmium battery, should be adequate to power the satellite in Mode A for several years. The receiving antenna for both modes is a turnstile comprised of four 48 cm lengths of 12 mm carpenter's rule. Four permanent magnets located inside the spacecraft provide stabilization; this is the same technique used in OSCARs 6 and 7. The polarity of the magnets is such that the top of the satellite always points toward the earth's magnetic north pole. Permalloy damping rods mounted behind the solar panels are designed to reduce the spin of the spacecraft; their operation is similar to a shorted transformer turn as it cuts the lines of flux of the earth's magnetic field. OSCAR 7 used the same system with good success.

The spacecraft will be automatically powered up upon ejection from the Thor-Delta launch vehicle over northern Greenland. It is designed to come on in Mode J; the Mode A transponder will not be turned on until the satellite is almost completely stabilized in orbit, which may take as long as a week. This is because the 10-meter dipole antenna cannot be deployed until the spacecraft's spin rate is less than 1 revolution per minute; otherwise the antenna may be severely damaged. The deployment process takes about 15 seconds and cannot be reversed — the elements can't be retracted once they are extended — so correct deployment is crucial.

OSCAR 8's orbit is planned to be sun-synchronous, with passes repeating at approximately the same time each day on a one-day cycle (as opposed to the two-day cycle of OSCARs 6 and 7). Since the altitude of OSCAR 8's orbit, at 900 km, is just over half the altitude of OSCARs 6 and 7, the maximum communications range will be slightly shorter. The usable time on an overhead pass will be about 18 minutes instead of the 22 minutes provided by OSCAR 7, and the horizon range will be 3220 km (down slightly from the 3940 km horizon range of OSCAR 7). In practical terms this means that transatlantic communications will still be possible with OSCAR 8, but not as often as with OSCAR 7.

One of the big advantages of the 900 km sun-synchronous orbit is that keeping track of OSCAR 8 is going to be much simpler than it was for earlier amateur satellites; it will come into range at nearly the same time every day — the overhead descending node pass is planned for 9:30 AM local time. The satellite's anticipated useful operating lifetime is three years.

Since the prime mission of the OSCAR 8 spacecraft is to use the Mode A transponder for the ARRL OSCAR educational program in schools, the spacecraft may be left in Mode A during weekdays and put into Mode J on weekends. Because of the relatively high current drain of the Mode J transponder, however, the power budget may not support the Mode J transponder for continuous full-time operation over an entire weekend. The spacecraft may also be switched to Mode J during the evening hours in the Western Hemisphere, depending on the burden to the command stations and the condition of the on-board batteries.

The Mode A transponder on the new spacecraft has the same frequency passband as OSCAR 7 (input between 145.85 and 145.95 MHz, output between 29.40 and 29.50 MHz). Approximately − 95 dBm is required at the transponder input terminals for an output of one watt; this corresponds to an effective radiated power from the ground of about 80 watts. The 250 mW telemetry beacon operates at 29.402 MHz.

The Mode J transponder operates with an input frequency passband between 145.90 and 146.00 MHz — the output is between 435.10 and 435.20 MHz. Power output is 1 to 2 watts PEP, and the output is inverted (upper-sideband uplink signals become lower-sideband downlink signals). Uplink sensitivity for 1 watt output is − 105 dBm which corresponds to an effective radiated power from the ground of about 8 watts (note the greatly improved sensitivity of this mode, and keep your power down). A 100 mW beacon at 435.095 will carry telemetry information.

Jim Fisk, W1HR
editor-in-chief
ICOM's new, fully synthesized IC-245/SSB maximizes mobile FM, SSB and CW operations with a very compact dash mounted transceiver like nothing else in the mobile world. This Maximizer's single knob dial makes the most of the mobile modes while totally minimizing manipulations. One fast moving detent knob gives the IC-245/SSB accurate tuning in all modes with positively no time lag or backlash in display stability, even when flying through steps of 100 Hz at 5 KHz per second. And just as easily, you can work the new 144.5-145.5 repeaters regardless of splits or spacing.

- Single knob frequency selection: The IC-245/SSB is synthesized with convenient single knob frequency selection over the entire band. No more fussy with two or more knobs just to check what is going on around the band. One easy spin of the 50-position detent knob does it all.

- Two VFO's built-in: The second VFO, which is a more money tack-on with most other transceivers, is a standard item with every IC-245/SSB.

- Variable offset: Any offset from 10 KHz through 4 MHz, in multiples of 10 KHz, can be programmed with the LSI synthesizer.

- Remote programming: The IC-245/SSB LSI chip provides for the input of programming digits from a remote key pad, which can be combined with Touch Tone circuitry to provide simultaneous remote program and tone. Computer control from a PIA interface is also possible.

- FM stability on SSB and CW: The IC-245/SSB synthesis of 100 Hz steps makes mobile SSB as stable as FM. This extended range of operation is attracting many FM'ers who have been operating on the direct channels and have discovered SSB.

The IC-245/SSB is the very best and most versatile mobile transceiver made: that's all. For more information and your own hands-on demonstration, see your ICOM dealer. When you mount your IC-245/SSB, you'll have the very maximum in multi-mode mobile.
ANOTHER WARC ADVISORY Committee Meeting on Amateur Radio is beginning to look likely for February, and if so it'll be an important one. The Sixth (or possibly Seventh) Notice of Inquiry on the 1979 World Administrative Radio Conference is scheduled for release in January, and it's expected that a further revised frequency table will be included. Since our previous efforts at generating strong U.S. support for both expansion of present HF bands and the creation of new ones in the LF and HF spectrums were only marginally successful (Presstop, July, 1977) — and that success, expansion of 40, 20, and 15 meters, seems threatened by the Department of Defense's expressed frequency needs — a new and determined offensive is badly needed.

Some Strong Ammunition in support of our position has been developed overseas and should help greatly. The continued increase in the U.S. Amateur population, along with the current slackening of CB enthusiasm, should also help out.

K5NY RECEIVED AN 18-MONTH JAIL sentence and was fined $500 by U.S. District Court Judge Edward J. Boyle, Jr. last November as a result of his pleading guilty to ten counts of transmitting obscene language and interfering with a New Orleans repeater this past summer. K5NY must serve 90 days of his sentence after which the remainder will be suspended; his co-defendant — WB5AWN — received a suspended sentence but must pay costs for the public defender. K5NY received a severe reprimand from the Judge, himself a CBer.

POINT-OF-SALE CONTROL for linear amplifiers has been instituted by Canada's Department of Communications. In a Canada Gazette announcement, the DOC stated that all linear buyers must sign a special form including their names, and addresses at the time of purchase. The form is then forwarded to the DOC and the buyer's name compared with lists of General Radio Service (CB) licensees to determine whether the purchase is in violation of DOC rules barring linear possession by an operator in the General Radio Service.

No-Code Canadian Amateur License is expected by next fall as a result of the November 26 Department of Communications/Canadian Amateur Radio Federation National Amateur Radio Symposium in Ottawa. More than 100 Amateurs from across Canada, representing 27 Canadian Amateur organizations, attended the jointly sponsored session, during which the suggestion for a Canadian Novice-class license was firmly turned down while a no-code "experimenter's" license for 200 MHz and up was strongly supported. Expectations are that the new license will have a tough technical exam; other details are still to be worked out.

A New Permanent Canadian Prefix may be forthcoming as Ontario Amateurs have just about used all the VE3x3 callsigns. The DOC, with the assistance of the Radio Society of Ontario, will be looking into alternatives.

1978 Could See VC7 in use by Vancouver Island Amateurs. The Victoria Short Wave Club has asked the DOC to authorize the special prefix to mark the bicentennial of Captain Cook's exploration of Vancouver Island.

A Canadian Assault on 420-430 MHz is in the wind. A recent Department of Communications study of 406-950 MHz is expected to propose 420-430 MHz for mobile services, with 430-450 MHz shared between radiolocation and Amateurs as at present. On the positive side, the same study also will propose a new 902-928 MHz Amateur band to be shared with fixed services and radiolocation.

OSCAR 7'S THIRD BIRTHDAY was Tuesday, November 15, when the satellite reached its three year design lifetime. If OSCAR 6's performance can be extrapolated, however, expect OSCAR 7 to be serving us for a long time to come. Mode jumping problems are continuing, with the combination of low battery voltage (from seasonal sun angle on the solar panels) and excessive user signals (especially from Europe) the probable culprits. Oscar 7's Mode Jumping problem isn't entirely from user abuse, W9VI (ex-W90II) found when he observed a jump on an early morning pass with no user signals audible. A high noise output, often observed before jumps, has been linked with the problem. One theory is that it's an internal malfunction, while another says it's related to an ionization buildup as it does seem seasonal.

FCC EXTENDED its working day to 5:30 PM effective January 3. The new hours (for Washington, D.C. offices only) are from 8:00 AM to 5:30 PM, with employee schedules rearranged to insure adequate staffing of Commission offices throughout the day.

REPEATER LICENSE APPLICATIONS are still arriving at the FCC despite the "deregulation" Report and Order and its subsequent stay. Until a final decision on repeater licensing is made, however, repeater applications are being returned without action. License Fees are starting to turn up again in some Amateur applications, even though fees were suspended almost a year ago. The Personal Radio Division reports about 20% of applications received now include fees, with most of them from CBers.

MICROWAVE EXPERIMENTERS should contact ZS1HS of the SARL, who is compiling information on Amateur microwave work for use in preparations for the World Administrative Radio Conference in 1979.
Look closely at the new MT-3000A.
You've never seen anything like it.

Times have changed since DenTron introduced its first tuner. With rapid growth in condominiums and housing developments, we have new problems that require new solutions.

DenTron decided to rethink the tuner and what its total capabilities should be.

The MT-3000A is a capsulized solution to many problems. It incorporates 4 unique features to give you the most versatile antenna tuner ever built.

First, as a rugged antenna tuner the MT-3000A easily handles a full 3KW pep. It is continuous tuning 1.8-30mc. It matches everything between 160 and 10 meters.

Second, the MT-3000A has built-in dual watt meters.

Third, it has a built-in 50 ohm dummy load for proper exciter adjustment.

Fourth, the antenna selector switch: (a) enables you to by-pass the tuner direct; (b) select the dummy load or 5 other antenna systems, including random wire or balanced feed.

The compact size alone of the MT-3000A (5½" x 14") makes it revolutionary. Combine that with its four built-in accessories and we're sure you'll agree that the MT-3000A is one of the most innovative and exciting instruments offered for amateur use.

At $349.50 the MT-3000A is not inexpensive. But it is less than you'd expect to pay for each of these accessories separately.

As unique as this tuner is, there are many things it shares with all DenTron products. It is built with the same meticulous attention to detail and American craftsmanship that is synonymous with DenTron.

After seeing the outstanding MT-3000A, wouldn't you rather have your problems solved by DenTron?
The Kenwood family is growing! The TL-922, a brand new linear amplifier, is now a reality. Give yourself the "big signal" that commands attention on today's crowded bands. The TL-922 runs the full legal limit on all the ham bands from 160-10 meters and is compatible with most amateur exciters. The TL-922 is a must in any Kenwood station.

Make yourself heard like you've never been heard before, with the Kenwood TL-922 linear amplifier.

TL-922

What makes one linear amplifier different than all the rest? Check out these features:

- Full amateur band coverage — includes 160 meters.
- Instant heating filament — The 2-500Z tubes require no warm up period. Just turn it on and go!
- Time delay fan circuit — Even after you turn the TL-922 off, the super quiet fan continues to work for approximately 2 minutes to greatly extend tube life.
- Adjustable ALC output voltage — lets you tailor the ALC voltage to your exciter.
- Standby position — Provides amplifier bypassing without having to turn the AC power off.
- Two independent safety interlocks — One disconnects AC line voltage and the second shorts B+ to ground when tripped.
- Varnier plate control — For smooth, easy tune-up.
- Diecast side panels — Includes functional carrying handles for easy transportation.
- Thermal protection of power transformer — Amplifier automatically switches to standby if power transformer temperature exceeds 145°F.
- Tuned Input Circuit — Means improved spurious characteristics.
- Line voltage selector — Easily switched between 120 and 240 VAC.
- Plate Current Meter — Separate meter allows continuous monitoring of plate current.

Specifications:

- **Frequency Range:** Amateur bands, 160-10 meters
- **Drive Power Required:** 80 W nom. 120 W max
- **Mode and Duty Cycle:** SSB: 30 min CW and RTTY, key-down cont for 10 min.
- **RF Input Power:** SSB: 2,000 watts PEP, CW, and RTTY 1,000 watts DC.
- **Plate Voltage:** (at idle) 3.1KV SSB, 2.2KV CW, RTTY
- **Circuit Type:** Class AB grounded grid linear amplifier.
- **Input Impedance:** 50 ohms, unbalanced at better than 1.5 SWR.
- **Output Impedance:** 50 to 75 ohms, unbalanced.
- **Harmonic Suppression:** min 40 db, depending on exciter used.
- **Fan Motor Delay Time:** 140 ± 30 seconds.

Dimensions: 390 mm (15") x 190 mm (7 1/2") x 407 mm (16")

Weight: Net 31 kg (68 lbs) Shipping 38 kg (83 lbs)

The above specifications are subject to change without notice due to developments in technology.
Kenwood developed the T-599D transmitter and R-599D receiver for the most discriminating amateur. The R-599D is the most complete receiver ever offered. It is entirely solid state, superbly reliable and compact. It covers the full amateur band, 10 through 160 meters, CW, LSB, USB, AM and FM. The T-599D is solid-state with the exception of only three tubes, has built-in power supply and full metering. It operates CW, LSB, USB and AM and, of course, is a perfect match to the R-599D receiver. If you have never considered the advantages of operating a receiver/transmitter combination, maybe you should.

Because of the larger number of controls and dual VFOs the combination offers flexibility impossible to duplicate with a transceiver. Compare the specs and prices of the R/T-599D combination with any other brand of separates. Remember, the R-599D is a solid state (and includes four filters). Your choice will obviously be the Kenwood.

Kenwood offers this handsome pair for the amateur who appreciates the advantages of operating a receiver/transmitter combination.

Discover the difference in performance, features and price of the 599D "Twins".

R-599D/T-599D

TL-922

The Kenwood family is growing! The TL-922, a brand new linear amplifier, is now a reality. Give yourself the "big signal" that commands attention on today’s crowded bands. The TL-922 runs the full legal limit on the ham bands from 160-10 meters and is compatible with most amateur exciters. The TL-922 is a must in any Kenwood station. Make yourself heard like you’ve never been heard before, with the Kenwood TL-922 linear amplifier.
Only a few short years ago, it was extremely rare to see an electronic counter outside of a laboratory or a specialized service installation. Today counters can be found in ham shacks all over the world. Of course the reason for this proliferation is obvious — the integrated circuit, and in particular, medium- and large-scale integration. In the early sixties, a typical 10-MHz counter weighed nearly 120 pounds (55kg), occupied about 5.75 cubic feet (165,000 cubic centimeters), and dissipated approximately 600 watts as heat. By way of contrast, a 520-MHz counter currently produced by the same manufacturer weighs 4.75 pounds (2.16kg), has a volume of approximately 213 cubic inches (3890 cubic centimeters), and dissipates less than 20 watts.

As size has decreased, so has cost. That antediluvian counter cost $2600 in "1966 dollars;" today you can buy a counter for under $100 if you want a bare-bones instrument, and can get a 250-MHz multifunction counter for less than $400. Because of today's relatively low costs, counters have become a versatile tool in the ham station and on the work bench. If you have one, this article may help you make better use of it. If you are planning to buy one, it may help you to decide what to look for.

You may have noticed that the title of the article uses the term electronic, rather than frequency, counter. This was not a pedantic choice; electronic describes the type of counter and is inclusive of all functions that the counter may perform, only one of which may be the measurement of frequency. We shall discuss these various functions, although emphasis will be placed on frequency measurement, which is of primary interest to the average ham.

Before discussing the applications and limitations of the frequency counter, it is important to cover the method by which frequency is measured by the counter. Regardless of the type and complexity of the instrument, all counters measure frequency by comparing the frequency of the input signal with a known frequency or time period. Fig. 1 shows the basic functional blocks of a typical counter. The main function of the signal conditioner is to convert the input signal to one whose amplitude and waveshape are compatible with the internal circuitry or logic of the counter. It generally includes an amplifier to increase the amplitude of the incoming signal, and may also contain an attenuator for input signals of high amplitude, trigger level and slope selection circuits, and so on. No matter how the signal is processed, the output of the signal conditioner is a pulse train in which each pulse corresponds to one cycle or event of the input signal.

The conditioned signal is applied to a gating circuit, which is shown symbolically as a single logic gate, but which is actually a more complex circuit. The gate is opened for a predetermined, accurate time interval, during which the signal passes through to the decade counters. These counters count the number of pulses which are gated through, and transfer the count to the display. The number of decade counters determines the number of digits which are displayed, one counter being required for each digit. The display can utilize any type of visual readout device, such as gas-discharge numeric tubes, light-emitting diode arrays, or liquid-crystal displays.

Since the decade counters count the number of pulses which pass through the gate, it follows that the accuracy of the instrument is a function of the time that the gate is open. This interval is, in turn, a function of the time-base accuracy. The time-base oscillator in the modern counter is invariably a crystal-controlled oscillator operating at a frequency between 1 and 10 MHz, although there have been counters made in the past which used crystal frequencies as low as 100 kHz, or even used the ac line frequency as a time base. Even though the oscillator frequency must be divided, crystals in the 1- to 10-MHz range are used because they are inherently more stable than those which work at lower frequencies; the optimum range for stability is between 4 and 10 MHz for most types of crystals.

The divided time-base frequency drives the gate- By Robert S. Stein, W6NBI, 1849 Middleton Avenue, Los Altos, California 94022.
A functional block diagram of the basic frequency counter is shown in the image.

Control circuit, which controls the gate-time interval in accordance with the divided time-base frequency. To explain the need for dividing the time-base frequency, we must at this time discuss resolution, or the smallest frequency increment which the counter displays.

Let us assume that the frequency of the time-base oscillator is 10 MHz, and that the gate control holds the gate open for exactly 10 clock pulses (clock being the term used to designate the time-base signal or the signal derived, through the dividers, from the time base). Since each cycle from the 10-MHz oscillator has a period of 0.1 microsecond, the gate will be open for 1 microsecond. If a 1-MHz input signal were being measured, only one pulse would be gated through, and the counter would display a 1. Frequencies below 1 MHz might or might not produce a reading at all, and those above 1 MHz could be read only to within one digit of the nearest megahertz (more about this later). Thus, the resolution would be 1 MHz at best, an obviously unsatisfactory arrangement.

Suppose, instead, that the time-base frequency were divided down to 10 Hz, or a period of 0.1 second. The gate will now be open for 1 second, and 1 million pulses from a 1-MHz input will be counted. Now the counter will display 1000000, which provides us with a resolution of 1 Hz. Thus, the resolution is the reciprocal of the gate time, and in fact, some counters with selectable gate times have the switch positions designated by the gate time.

The limiting factors governing resolution are the number of digits in the display and the tolerable gate time. Usually 0.1 Hz is the smallest resolution practical, in that it involves a 10-second gate time and a 9-digit display up to 99,999,999 MHz. The gate time can be reduced in a computing counter, but that is outside the scope of this discussion.

Of course, it is not always necessary to read frequency to a tenth of a hertz, nor is it particularly convenient to have to wait for a 10-second count. By selecting the appropriate output from the frequency-divider chain, you can reduce the gate time and resolution to values which may be more appropriate to the measurement. The normal range of gate times is typically between 1 millisecond and 10 seconds, corresponding to resolutions of 1 kHz to 0.1 Hz.

The number of digits in the display can be reduced by switching both the displays and gate times, a technique which is used in many low-priced counters having a 5-digit display. A 2-position switch is used to select gate times of 1 second (1-Hz resolution) and 1 millisecond (1-kHz resolution). When the gate time is 1 second, the five decade counters can produce a display up to 99,999 Hz; when the gate time is 1 millisecond, up to 99,999 kHz or the frequency limit of the counter can be displayed. Thus by switching the clock, the equivalent of eight digits is obtained, with overlap between the two readings. This is an economical, but oftentimes inconvenient, way of obtaining improved resolution.

It should be reiterated at this point that a counter displays a pulse count. Whether the display reads out in Hz, kHz, or MHz is simply one of convenience and the location of the display decimal point. The decimal point is either fixed, or is switch selected with the gate time, and its position is independent of the actual count.

time-base accuracy

It should be apparent from the preceding discussion that the time-base oscillator is the most critical part of the counter, in that it determines the overall accuracy of the instrument. Let us examine its effect, in terms of the specifications usually given for a counter.

The Yaesu YC-500 Frequency Counter has a frequency range of 10 Hz to over 500 MHz. Its six-digit display provides the equivalent of eight digits when the gate time is switched. A room-temperature crystal, TCXO, or ovenized crystal time base may be ordered (photo courtesy Yaesu Electronic Corporation).
First of all, the accuracy of the time base, either in per cent or parts per total, is directly translatable to the measurement of frequency, period, interval, or any other function which the counter may be capable of measuring and which utilizes the time base. This holds true, regardless of the magnitude of measurement. For example, if a 1-MHz time-base oscillator is off frequency by 2 Hz, that represents an error of 0.0002 percent. The gate interval, therefore, will also be in error by the same percentage, and the displayed count will have the same error. If the frequency being displayed is 50.000000 MHz, the error will be 100 Hz. If the time-base frequency is high, the displayed count will be low, since the higher the frequency, the shorter the gate time. If the time-base frequency is low, the opposite will hold true.

Time-base accuracy specifications should include the parameters listed in table 1, although most lower-priced instruments may omit one or more. Typical values for the various types of oscillators are included as examples. It can be seen that temperature change has the greatest effect on frequency. In the examples listed, the specification for temperature stability can be improved by one order of magnitude by using a TCXO (temperature-compensated crystal oscillator) instead of a room-temperature crystal. In the real world, however, a good room-temperature crystal may be better than a poor TCXO; you must compare the specifications.

The oscillator aging rate is not as important, since this will manifest itself as a gradual change in frequency, and is predicated on the oscillator running continuously. If the counter is designed so that the oscillator circuit is powered as long as the instrument is connected to the primary power source, the specified aging rate is valid. If the oscillator is deenergized along with the rest of the counter when the instrument is turned off, however, the aging specification means little or nothing.

Short-term stability is generally specified only for very stable, ovenized oscillators and is pertinent only to laboratory-type measurements.

Time-base errors can be corrected by recalibrating the oscillator against a known standard or against WWV. Virtually all counters incorporate an adjustment control for this purpose. The techniques used in recalibrating the oscillator will be covered later in this article.

frequency-measurement accuracy

Although the preceding discussion of time-base accuracy would appear to account for any inaccuracies in the measurement of frequency, such is not the case. The specification for the frequency-measurement accuracy of all electronic counters is invariably stated as ± time-base accuracy ± 1 digit. The last term of that statement is known as the 1-count ambiguity — but what does this mean?

Fig. 2 shows the signal under measurement and its relationship to the gate. Although the successive gate times, \(t_1 \) and \(t_2 \), are equal in duration, the gate is not synchronized with the signal.

\[\text{fig. 2. Gate time and signal pulse train, showing } \pm 1 \text{ count ambiguity.} \]

\[\text{fig. 3. Functional block diagram of an electronic counter configured for period measurement.} \]

<table>
<thead>
<tr>
<th>room oscillator</th>
<th>TXCO*</th>
<th>oven oscillator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging rate (long term stability)</td>
<td>(5 \times 10^{-7}/\text{mo})</td>
<td>(3 \times 10^{-7}/\text{mo})</td>
</tr>
<tr>
<td>Temperature, 0-50°C</td>
<td>(5 \times 10^{-6})</td>
<td>(5 \times 10^{-7})</td>
</tr>
<tr>
<td>Line voltage, ±10%</td>
<td>(1 \times 10^{-7})</td>
<td>(5 \times 10^{-8})</td>
</tr>
<tr>
<td>Short-term stability per day</td>
<td>(1 \times 10^{-10})</td>
<td></td>
</tr>
</tbody>
</table>

*Temperature-compensated crystal oscillator
†After 24-hour warm-up
‡rms/sec

The Fluke 1910-A Multi-Counter is one of a series which provides frequency, period, period-average, ratio, and totalize functions. The 1910A is rated to 125 MHz; the 1911A and 1912A are similar in appearance and will measure frequencies to 250 and 520 MHz, respectively (photo courtesy John Fluke Manufacturing Company).
Therefore it is possible, during gate time \(t_1 \), for five signal pulses (numbered 2 through 6) to be gated, while during time \(t_2 \), six signal pulses (numbered 1' through 6') may be gated. Thus there is always an irreducible \(\pm 1 \)-count ambiguity in the least significant digit of the display.

The per cent of error due to the 1-count ambiguity is reduced as the measured frequency increases, since it becomes increasingly less significant compared to the total count. The maximum error is an inverse function of the frequency being measured and the number of pulses being counted, i.e. the gate time, and is expressed as

\[
\% \text{ Error} = \pm \frac{100}{f \times t}
\]

where \(f \) is the frequency in Hz, and \(t \) is the gate time in seconds.

From the above equation, it can be seen that measuring a 10-MHz signal with a 1-second gate time will be subject to a \(\pm 0.001 \) per cent error. However, measuring a 20-Hz signal with the same gate time may result in a counter display between 19 and 21 Hz, a \(\pm 5 \) per cent error. This would not be very satisfactory if you were attempting to calibrate the low-frequency end of an audio oscillator, and must be taken into account.

Period and period-averaging measurements

One of the ways in which accurate low-frequency measurements may be made is to measure the period of the signal, rather than the frequency. Since the period of a signal is the reciprocal of its frequency, the frequency can be calculated accordingly. It might also be expected that a simple reciprocal arrangement of the functional blocks of an electronic counter would provide a measurement of period, which turns out to be true.

In fig. 3, the time-base and signal inputs have been interchanged. If the gate-control circuit is configured so that the gate is open for one period of the input signal, and the 1-MHz clock is applied to the gate input, a series of pulses having a period of 1 microsecond will be gated through to the decade counters. Therefore the counter will indicate the period of the input signal in microseconds. If the clock frequency were reduced to 1 kHz, the counter would display the signal period in milliseconds.

Let us now reconsider the frequency measurement of the aforementioned 20-Hz signal to see how we can improve the possible \(\pm 5 \) per cent error which can occur with a 1-second gate time. The 20-Hz signal period is 0.05 second, so that if the counter were configured to measure period, it would display 50,000 microseconds. Thus, the number of significant digits in the display has been increased from two to five, and the gate time reduced from 1.0 to 0.05 second. Now if you were calibrating the audio oscillator and wanted a 1 per cent dial accuracy, you could accept any reading between 49,500 and 50,500 microseconds, subject to the correction for period-measurement accuracy.

Period measurements are inherently less accurate than frequency measurements because it is the signal, rather than the time base, which controls the gate time. Noise on the input signal, regardless of the measurement mode, causes an uncertainty in the point at which the trigger circuit in the signal conditioner switches. (It is the trigger circuit which converts the input signal to a waveform which is compatible with the counter's circuitry.) If the noise is not great enough to cause false triggering which would result in more or less output pulses than correspond to the input, no significant error is introduced in a frequency measurement.

For period measurements, however, this uncertainty results in an error in the gate time, since the input signal, and the 1-MHz clock is applied to the gate input, a series of pulses having a period of 1 microsecond will be gated through to the decade counters. Therefore the counter will indicate the period of the input signal in microseconds. If the clock frequency were reduced to 1 kHz, the counter would display the signal period in milliseconds.

Let us now reconsider the frequency measurement of the aforementioned 20-Hz signal to see how we can improve the possible \(\pm 5 \) per cent error which can occur with a 1-second gate time. The 20-Hz signal period is 0.05 second, so that if the counter were configured to measure period, it would display 50,000 microseconds. Thus, the number of significant digits in the display has been increased from two to five, and the gate time reduced from 1.0 to 0.05 second. Now if you were calibrating the audio oscillator and wanted a 1 per cent dial accuracy, you could accept any reading between 49,500 and 50,500 microseconds, subject to the correction for period-measurement accuracy.

Period measurements are inherently less accurate than frequency measurements because it is the signal, rather than the time base, which controls the gate time. Noise on the input signal, regardless of the measurement mode, causes an uncertainty in the point at which the trigger circuit in the signal conditioner switches. (It is the trigger circuit which converts the input signal to a waveform which is compatible with the counter's circuitry.) If the noise is not great enough to cause false triggering which would result in more or less output pulses than correspond to the input, no significant error is introduced in a frequency measurement.

For period measurements, however, this uncertainty results in an error in the gate time, since the in-
Heath's model IM-4130 is capable of measuring period, period average, events (totalizing), and frequency over a 5-Hz to 1-GHz range. Since it has provisions for connecting an external time base, ratio measurements can also be made, as explained in the text (photo courtesy Heath Company).

put signal controls the gate time. This error is known as trigger error, and is part of the instrument specification for period measurement, usually expressed as ± time-base error ± trigger error ± 1 count. Notice that the trigger error has been added to the previously discussed expression for frequency-measurement error. For low-frequency noise on a sine-wave input, the approximate worst-case errors are ±3 per cent for a 20-dB signal-to-noise ratio, ±0.3 per cent for a 40 dB signal-to-noise ratio, and ±0.03 per cent for a 60-dB signal-to-noise ratio.

In addition to the trigger error caused by noise, the stability of the input signal may be such that successive gate times are of differing durations. Even though the differences may be minute, they will manifest themselves as a continuously changing display on the counter, especially at high resolutions. This is not to be considered a counter error, since it does not occur with a stable input signal.

Period errors may be minimized by averaging the readings over several periods of the input signal. If the input-signal frequency is divided to a lower frequency, the gate will remain open for a multiple of the input-signal period, so that the counter will display the number of clock pulses for 10, 100, 1000, or more periods. A typical counter configuration for the period-averaging mode appears in fig. 4. The frequency-divider chain is split so that both the time-base oscillator and/or signal frequencies are divided to obtain the desired resolution and number of periods which are to be averaged. The counter will display the period measurement, regardless of the number of periods averaged, simply by having the

fig. 5. Measurement accuracy of a counter having a 10-MHz time base with an assumed accuracy of better than 3 x 10⁻⁷.
display decimal point moved as the periods-averaged switch is changed.

Period averaging reduces the possible trigger error by a factor equal to N, the number of periods averaged, so that the error for this mode is $\pm \text{time-base error} \pm (\text{trigger error})/N \pm 1 \text{ count}$. If enough periods are averaged, the trigger error can be reduced to a value which may be of little significance. It must be remembered, however, that the gate time increases by the same factor, which may make the measurement time quite long. For example, a 20-Hz signal has a period of 0.05 second; averaging 100 cycles results in a gate time of 5 seconds; averaging 1000 cycles entails a 50-second gate time, which is normally too long for convenient measurements.

From the preceding discussion, we can deduce that there is a point below which period or period-averaging measurements provide a more accurate reading than a corresponding frequency measurement. This can be calculated, taking into account the 1-count ambiguity, time-base error, trigger error, and gate time. More conveniently, it can be plotted, as shown in fig. 5. These curves apply to a counter having a 10-MHz time base of the accuracy specified, and indicate which measurement mode should be used for the desired measurement accuracy.

From the preceding discussion, we can deduce that there is a point below which period or period-averaging measurements provide a more accurate reading than a corresponding frequency measurement. This can be calculated, taking into account the 1-count ambiguity, time-base error, trigger error, and gate time. More conveniently, it can be plotted, as shown in fig. 5. These curves apply to a counter having a 10-MHz time base of the accuracy specified, and indicate which measurement mode should be used for the desired measurement accuracy.

From the preceding discussion, we can deduce that there is a point below which period or period-averaging measurements provide a more accurate reading than a corresponding frequency measurement. This can be calculated, taking into account the 1-count ambiguity, time-base error, trigger error, and gate time. More conveniently, it can be plotted, as shown in fig. 5. These curves apply to a counter having a 10-MHz time base of the accuracy specified, and indicate which measurement mode should be used for the desired measurement accuracy.

The gate-control switch shown in fig. 6 can be either a manual switch or an internal switching circuit.

In many instances, measuring the ratio of two frequencies is a time-saving procedure. A typical case might involve designing or troubleshooting a phase-locked loop, where the output frequency is a discrete multiple of a reference oscillator. Since the output frequency may be divided by a factor of up to several thousand within the loop, an error or glitch causing a one-count error in this division may not be readily apparent unless a ratio measurement is made.

In conjunction with fig. 1, we discussed the method by which frequency is measured. Another way of defining this measurement is to state that the counter displays the ratio of the input frequency to the clock frequency. By using an internal clock whose frequency is known, the ratio can be displayed in megahertz, kilohertz, or hertz. If an external signal were used in place of the time-base oscillator, the counter would still display the ratio of the two frequencies, except that it would no longer be in hertz or a multiple thereof (unless the external frequency were the same as the time-base frequency). Counters which provide specifically for ratio measurements incorporate provisions for changing the display to a dimensionless number, and position the decimal point accordingly.

Many counters do not have an apparent capability of measuring ratio, but can actually be used in this mode. If the counter has provisions for using an external time-base oscillator, the reference signal against which ratio is to be measured can be introduced into the external time-base connector. It is necessary that the amplitude of this external reference signal be as specified for the counter being used, that its frequency be within the range that the counter will accept as an external time base, and that the internal time-base oscillator frequency be known.

The ratio of the input signal frequency to the external reference frequency is determined from the expression

$$\frac{f_{\text{input}}}{f_{\text{ref}}} = \frac{f_{\text{out}}}{f_{\text{int}}}$$

where

- f_{input} is the input frequency
- f_{ref} is the external reference frequency
- f_{out} is the frequency displayed on the counter
- f_{int} is the internal time-base oscillator frequency.

totalizing

Perhaps the simplest function of which an electronic counter is capable is that of totalizing, or accumulating, a count of input events. Because this mode does not require a time base, as indicated in fig. 6, it probably should have been covered previously as the most basic counter circuit. However, totalizing is not usually a function of low-priced counters, nor does it have major applications in amateur work; therefore I have delayed discussing it until the modes of greater interest were described.

The gate-control switch shown in fig. 6 can be
either a manual switch or an internal switching circuit actuated by the input signal. Switching the gate-control switch to on resets the decade counters to zero and allows the processed input signal to pass through the gate for the length of time that the switch is held on. When the switch is turned off, the count stops and the number of input events which has occurred is displayed on the counter.

An application which is of interest in these days of digital logic circuits is that of measuring contact bounce. Fig. 7 shows a simple circuit which permits such a measurement for either a relay or a manually actuated switch. When voltage is applied to a relay coil (or a manual switch is operated), the contacts will usually open one or more times after the initial closure because of the elasticity of the switch materials. This results in the waveform shown in the illustration, which is applied to the counter. The counter will then totalize and display the number of bounces.

time interval measurements

A counter may be used to measure the time interval between two input events, but this mode of operation requires two input-signal-conditioning circuits and a more complicated gate-control circuit; it is therefore found only in the more expensive professional instruments. As shown in fig. 8, the gate control has two inputs, one from each of the signal conditioners. The gate is opened by the processed start input, allowing the accurate clock pulses to pass through to the decade counters until the stop input closes the gate. Thus the counter will display the time interval between the two input signals.

The start and stop points are determined by the triggering levels and slopes selected by circuits in the signal conditioners. The time-interval resolution is limited by the clock frequency, and is subject to the same ±1-count ambiguity as all other measurements. As with period averaging, this ambiguity can be reduced for repetitive signals by averaging the time-interval measurements. When averaging, the ambiguity becomes \[\pm 1 \text{ count} \div \sqrt{N} \], where \(N \) is the number of time intervals averaged.

An important application of time-interval measurement is the accurate determination of pulse width. The signal under measurement is applied to both the start and stop inputs. If the start channel is set to trigger on the positive slope, and the stop channel on the negative slope (or vice versa), the counter will indicate the time interval between the leading and trailing edges of the input signal. Adjustment of the triggering levels will permit the measurement to be made between the desired points on the edges.

The upper frequency limit of the modern basic counter is dependent on the type of digital logic devices used in the signal conditioner and the first decade counter. This frequency limit may be as high as 50 MHz for conventional TTL, 120 MHz for Schottky TTL, and 250 MHz for ECL. Above those frequencies, prescaling is generally used to increase the frequency range, up to about 1300 MHz.

Prescaling simply means that the input frequency is scaled, or divided, down to one which is within the basic range of, and is measured by, the basic counter. The divisor may be any integral number. If the prescaler is external to the counter, it will usually divide by 10 or 100, so that the frequency can be read directly from the counter after you have mentally multiplied the counter reading by 10 or 100, as applicable. If the prescaler is built into the counter, it may scale by any integral factor.

The advantage of using an external prescaler is obvious — it permits extending the frequency range of an existing counter at relatively low cost. Its disadvantages become equally obvious after it has been used. First, there is the necessity of mentally moving the decimal point, since the counter is actually dis-

fig. 9. Reactance of 120 pF (typical for a high-impedance counter input with a 3-foot or 1-meter cable) plotted against frequency.
playing the divided input frequency. Second, one digit of resolution is lost for every decade of scaling. For example, a 145,600.0-kHz signal measured with a scale-by-ten prescaler will read 14560.0 kHz on a counter having a 0.01-second gate time (0.1-kHz resolution). Multiplying by ten yields a frequency of 145,600 kHz; the 0.1-kHz resolution is lost by scaling. It can be re-established only by increasing the gate time by a factor of ten, provided the counter has that capability.

Suppose that the internal prescaler divides the input frequency by four. If the gate time is increased by the same factor, there will be no change in the number of signal pulses gated through to the decade counters, and the display will read out the correct frequency. Consequently, prescaling is accomplished with only a fourfold increase in gate time, which is generally acceptable.

Switching from direct to scaled operation may be carried out in one of three ways. If a single input connector is used, the counter mode is generally switched manually. If two separate input connectors are employed, one for low-frequency signals and the other for high-frequency inputs, the counter mode may be switched manually or automatically when the input signal is present at the high-frequency input.

Input Impedance

Counters which measure frequencies below 250 MHz or so usually present a high input impedance—typically 1 megohm shunted by 30 to 40 picofarads. Above that frequency, the input impedance is generally a nominal 50 ohms, although the vswr may be as high as 2.5:1. At audio and low radio frequencies, a high input impedance is normally desirable, since it minimizes the load on the circuit under test. But just how high in frequency is this true?

Consider a counter with an input impedance of 1 megohm shunted by 32 pF, which is used with a three-foot (91 cm) cable made from RG-58C/U coax. The capacitance of RG-58C/U is 29.5 pF per foot (96.8 pF per meter), so that the total shunt capacitance presented to the circuit under test is approximately 120 pF. The reactance of this shunt capacitance, plotted against frequency, is shown in fig. 9. It can be seen that the reactance drops to approximately 1300 ohms at 1 MHz, and is only about 130 ohms at 10 MHz. So the input impedance can no longer be considered high. On the other hand, if the counter had a nominal 50-ohm input, you would know the loading effect, within the limits defined by the specified vswr.

Suppose that you had to check the frequency of a 70-MHz crystal oscillator which was designed to feed a 50-ohm load. If your counter has a 50-ohm input, all is well. However, if it has only a high impedance input, the shunt capacitance of the counter plus a cable will more than likely load down the oscillator and change the frequency, if it continues to oscillate at all. Fortunately, a relatively inexpensive accessory will solve the problem. By using a 50-ohm feed-through termination* at the counter connector, a 50-ohm interconnecting cable will be reasonably well terminated, and will present a load close to 50 ohms at the oscillator.

The same thing may be accomplished by using a 20-dB loss pad at the input connector of the counter, provided that there is enough signal to trigger the counter after having been attenuated by the pad.

Even at low frequencies, the shunt capacitance may be too high for certain applications, such as checking filters. Capacitive loading can be reduced by using a 10X oscilloscope probe. Such probes typi-
fig. 12. False counting caused by ringing is shown at (A) and (B). Proper adjustment of the reference level and/or amplitude, as shown at (C), corrects the fault.

cally present a 10-megohm resistive load shunted by 5 to 15 pF, but of course attenuate the signal by a factor of 10.

input signal levels

One of the parameters invariably specified for a counter is sensitivity, generally in millivolts, but often in dBm for 50-ohm inputs. This indicates the minimum signal needed at the counter input to ensure reliable triggering. Of equal, and possibly more importance, however, is the maximum signal which may be applied to the input without damaging the instrument.

For high-impedance inputs, the maximum signal voltage is usually specified as the sum of a dc value plus a peak ac value. The peak ac value may vary with frequency, going down as the frequency increases. The sum of ac plus dc is limited by the input blocking capacitor; the limiting ac value alone is a function of the input device in the signal conditioner. To be safe, when measuring at any point in a circuit where dc is present, always use an external blocking capacitor of the smallest value which will permit reliable triggering. And if there is any possibility of the ac signal exceeding the specified maximum for the counter, use an external attenuator or dividing probe.

For low (50-ohm) impedance inputs, the maximum signal level is limited by the input circuit of the signal conditioner. This level is generally much lower than for high-impedance inputs, and is typically between +19 and +27 dBm (2 to 5 volts rms across 50 ohms). Because of the relatively high cost of the high-frequency input device and the possibility of applying excessive power from a transmitter, the 50-ohm inputs are fuse-protected in many counters which can function at 500 MHz and higher.

Although it should be obvious, the following warning must be included: Never connect a counter directly to a transmitter or any other high-power signal source! Use a short length of unsheilded wire as an antenna at the counter input connector, an inductive coupling loop at the end of a shielded cable, and/or an attenuator of sufficient power rating. The counter you save may be your own!

If the counter is battery-powered, and there is no direct connection between it and the circuit or generator under test, the counter should be grounded. This will reduce noise pick-up, especially when using a counter with a high input impedance.

triggering

The signal-conditioning circuits in all counters include a trigger circuit which, as previously stated, provides output pulses whose amplitude and wave-shape are compatible with the counter circuitry which follows. The sensitivity of the counter depends on the threshold level of the trigger input and the amplification between it and the input of the
counter. If the amplified input signal has insufficient amplitude to reach the threshold level, the instrument will not count or will perform erratically.

All trigger circuits have a hysteresis band, through the limits of which the input signal must pass in order to result in an output pulse. Fig. 10 shows three input signals in relationship to the hysteresis band. Sine wave A crosses both the upper and lower limits of the band, and will actuate the trigger circuit; the amplitude of sine wave B is too small, so triggering will not occur; and waveform C crosses the upper threshold, but not the lower, so again no output will be produced by the trigger circuit.

It is the action of this hysteresis effect which can result in erroneous counting which is so confusing to a relatively inexperienced operator. Suppose that the input to the counter were a sine wave with considerable second-harmonic distortion, a not uncommon situation. In fig. 11A, the amplitude of the signal is such that the positive half-cycle crosses the hysteresis-band limits twice, instead of once. The trigger circuit will generate two output pulses for each input cycle, and the counter will display twice the fundamental frequency of the signal. If the counter has a level control, which adjusts the reference level at the input of the trigger circuit, it can be adjusted to eliminate the false count, as shown in fig. 11B. If there is no level control, as is the case with most low-priced counters, the problem can be eliminated by increasing the amplitude of the input signal, as depicted in fig. 11C.

A similar problem may arise when measuring the frequency or period of a signal comprised of fast pulses. If the interconnecting cable is not terminated in its characteristic impedance, or if other impedance discontinuities exist, ringing will occur on the pulses. If the ringing traverses the hysteresis band, as shown in fig. 12A and 12B for two different reference levels, a false count will result. Proper adjustment of the signal amplitude and reference level, indicated in fig. 12C, will provide the correct count.

Another way of solving the ringing problem, which is useful when the reference level and/or amplitude cannot be changed, is to use a low-value resistor (100 to 1000 ohms) between the circuit point under test and the counter cable. This resistor, in conjunction with the cable and counter input capacitance, integrates the pulse and minimizes the pulse aberrations which reach the counter.

Figs. 13 and 14 illustrate two other conditions which can result in false counts. The noise transients on the signal shown in fig. 13 will cause additional counts, while amplitude modulation may result in missing counts, as shown in fig. 14, if the amplitude of the input signal is too small. In either case, the solution is the same as previously prescribed — change the reference level and/or the signal amplitude.

In our earlier discussion of period and period-averaging measurements, it was stated that the trigger error resulting from noise on the input signal contributed to the measurement error. This is shown in fig. 15, in which a sawtooth wave is used to demonstrate the effect of slope, or slew rate, on the trigger error. It can be seen that the noise voltage on the relatively slow rise-time can cause a much greater trigger error than that which occurs on the fast fall-time. Thus we can see that the trigger error can be minimized by triggering on the steepest portion of the input signal to the counter. For a sine wave, this will be that part of the waveform at the zero axis, leading to the conclusion that a signal of the maximum possible amplitude should be used.

It should be apparent from the preceding discussion that an input attenuator on the counter can be of considerable help in establishing the correct input level to the trigger circuit. In many of the lower-priced counters an attenuator has been omitted because of cost and because it was felt that limiting diodes at the input of the signal conditioner would protect the input device. The latter reason is valid...
only where overload is considered, for even a two-position attenuator can be extremely valuable in eliminating false counting.

time-base calibration

Unless an oven oscillator or TCXO is used as the time base in a counter whose oscillator circuit is energized continuously, the oscillator frequency should be checked, and adjusted if necessary, whenever accurate measurements are to be made. Be sure, however, that the counter is fully warmed up before checking or recalibrating the oscillator.

In order to calibrate the time-base frequency, either a standard of known accuracy or a communications receiver capable of receiving WWV is required. If the standard is at least five times more accurate than the best resolution of the counter at the time-base frequency, it can be applied directly to the input of the counter. Then adjust the time-base oscillator frequency control for the correct frequency read-out on the counter.

A more accurate adjustment may be made if the counter has an output connector from which a 1-MHz time-base signal can be obtained. Connect this output to the vertical input of an oscilloscope, and connect the output of the frequency standard to the horizontal input.* The scope will display a Lissajous pattern, which will probably be moving. Adjust the time-base frequency control until a stationary pattern is obtained.

If the counter is to be calibrated against WWV, a time must be chosen during which transmissions are received with an absolute minimum of fading. Select the highest receiving frequency possible (e.g. 15 MHz) to achieve the greatest calibration accuracy. The calibration technique involves obtaining a visual beat indication on the receiver S-meter, and adjusting the time-base oscillator frequency for as close to a zero-beat as possible.

In order to obtain a good beat null, the time-base signal which is applied to the receiver must be of the correct amplitude relative to the signal level from WWV. Since we cannot control the latter, we have to be able to vary the signal level from the counter. If the counter has a 1-MHz output from the time-base circuit, make the connections shown in fig. 16. If a time-base signal is not brought out to a connector on the counter, substitute an insulated wire for the coax shown connected to the receiver antenna terminal and place it near the counter time-base oscillator or frequency-divider chain. In either case, the harmonic of the 1-MHz signal should result in a low-frequency beat with WWV. (This will not be an audible beat unless the time-base oscillator is very far off frequency; more likely it will be observed as a rhythmic variation in the S-meter reading.) Adjust the potentiometer shown in fig. 16, or change the position of the insulated wire, to obtain the deepest beat null on the receiver S-meter.

It should be possible to adjust the time-base frequency so that the beat-frequency period is several seconds, which corresponds to a remarkably accurate short-term frequency setting. To demonstrate this, assume that eight beats are observed on the S-meter in a 60-second period. The beat frequency is therefore equal to 8/60, or 0.133 Hz. If the beat is measured at 15 MHz, the error is $0.133 \times 10^6 \times 0.133$, or 8.9×10^{-9}. Of course, this degree of accuracy may hold only for a short period of time, because the stability of the counter time-base oscillator, unless it is an oven type, is nowhere near that good. Nevertheless, highly accurate measurements may be made until the counter is turned off or a temperature change affects the time-base oscillator.

*These connections are based on the assumption that both the horizontal and vertical amplifiers in the oscilloscope will pass a 1-MHz signal. If the counter has a time-base output of higher frequency, it can also be used, provided that it is within the frequency range of the scope. The lower of the two frequencies (the standard and the counter time base) should be connected to the horizontal input, since the horizontal frequency limit is usually lower than the vertical.
In choosing the SB-104A you join a pretty select fraternity of fellow Amateurs. They’re individuals whose imaginations were fired by the looks, feel, and reputation for outstanding performance that, since its inception, has become the trade mark of Heath’s entire line of famous SB series Amateur equipment. You’ve joined a group of people who want state-of-the-art perfection, still insist on building their own to insure handcrafted quality, and above all want a rig that’s good enough to measure up to their abilities, standards, and the reputations they’ve built for themselves.

Heath’s SB-104A, it’s the only choice when you’re ready for a transceiver that’s good enough to measure up...to you!

Heath Amateur Radio Gear....the quality that measures up!

FREE Heathkit Catalog

Heath Company, Dept. 122-380
Benton Harbor, Mi. 49022

Gentlemen, please send me my free Heathkit Catalog
I am not on your mailing list.

Name
Address
City State Zip
simplifying the
digital frequency counter

Some innovative ideas for high-resolution counters using CMOS — TTL devices

Radio amateurs have had a long history of pioneering in electronics. My experiments with the new IC technology resulted in the following article. I decided to find out just how much the digital frequency counter could be simplified by using some of the newer CMOS combination chips.

Today's literature shows that much can be done. Almost everyone seems to be using TTL technology; for example, the 7490/7447 combination dating from the 1960s: an 8-digit counter using 7490 devices requires 24 chips for the main counter alone, plus 12 or more (typically) for a crystal-controlled time base counter, multiplexer for the display, 7-segment decoder, digit and segment drivers, and the logic required for blanking, reset, input inhibit, and display on-off — a regular one-man band!

The 7207A is another CMOS chip that teams up with

By Holton E. Harris, W1WP, 5 Newtown Turnpike, Westport, Connecticut 06880

and pulse conditioning. Power required is 5 volts at 1.5-2 amps or more! Only one example was found using CMOS. It still used 21 chips and was limited to 4 MHz.

A number of the newer CMOS combinations are available from which to choose for simplifying the counter and decreasing power requirements; the Intersil 7208/7207A combination seemed to be the most promising, so it was chosen for this project.

The counter is shown in figs. 1 and 2. Both circuits comprise a complete frequency counter with 1-Hz resolution from below 20 Hz to above 50 MHz, and with 10-Hz resolution to above 300 MHz. Nine ICs and four transistors are used including the power supply and prescaler. Current drain is 200 mA for frequencies below 50 MHz; an additional 130 mA is required for higher frequencies.

Device description. The heart of the counter is the 7208 CMOS chip. This device contains a 7-decade

fig. 1. 300-MHz prescaler for the high-resolution counter.
with the 7208. It contains a high-stability oscillator and a frequency divider for dividing the 5.24288-MHz crystal frequency to obtain the 1-second gate required for counting. It also provides outputs to synchronize the multiplexer for the displays as well as short pulses for latching and resetting the counters.

CMOS and TTL combination. The one real deficiency of CMOS is that it is slow—i.e., low-frequency response. The 7208/7207A combination alone, with power supply, LED displays, and crystal can be used to make a complete counter (as shown later) but it won’t count above about 6-7 MHz. Almost all of the remaining circuitry in this counter is the old workhorse TTL, purely and simply to extend the frequency range.

The 74196 counter is used to get to 50 MHz. This device is similar to the 7490 but has a higher frequency range. A prescaler could have been used instead, of course, but a synchronized counter was preferred because it retains accuracy in the least-significant digit. The 9368 performs the decoder/driver functions for the least-significant digit of the LED display.

When Intersil first announced the 7208, the companion driver was the 7207. This combination gave a gate signal of 0.1 second, so the resolution was 10 Hz instead of 1 Hz. But the worst of it was that, if all seven decades of the 7208 were used, the most-significant digit was 10 MHz, which was above the frequency range of the counters in the 7208. In effect, therefore, all seven decades could never be used.

The 7207A, announced in late 1976, corrects the problem. It has a gating pulse of 1 second duration, permitting 1-Hz resolution. Unfortunately, to make room for the added counter stage, the output buffers on the reset and enable lines had to be eliminated. These signals therefore can’t be used to drive the 7432 TTL gate directly, and an extra buffer was required. The 4049 IC is a hex buffer/converter designed for this CMOS to TTL interface. The signal is passed through the buffer twice with a 4.7k pullup resistor at the interstage in an effort to make the gating pulse rise and fall times equal. Equal rise and fall times are important, since the accuracy of the entire counter depends on the time the counting gate is open. The 7432 is an OR gate, which removes the

fig. 2. Schematic of a 50-MHz counter with 1-Hz resolution. In each counter example, the resolution is decreased by a factor of ten by taking pin 11 of the 7207A to Vcc.

2. Schematic of a 50-MHz counter with 1-Hz resolution. In each counter example, the resolution is decreased by a factor of ten by taking pin 11 of the 7207A to Vcc.
level and turns off at another, much lower, level so that slowly rising signals can't cause jitter, and false triggering is avoided.

The prescaler to extend the range is likewise conventional. It was lifted from the excellent article by Kitchens2. Why argue with success?

One point may appear puzzling. If you check the Intersil 7208 data, you'll find the multiplexer input brought into pin 16. This leaves two prior CMOS gates open, which is bad practice. I couldn't get the device to work at all with that connection. Bringing
prising builder might wish to make a PC board. The only adjustments required are to tune the crystal to exact frequency using the 8-40 pF trimmer and to adjust the 5k pot in gate 2 of the 40673 prescaled transistor (fig. 1). This latter adjustment is easily made by connecting a voltmeter between the 7413 pin 1 and ground and adjusting the trimmer pot until the dc level is about 1.3 volt.

other forms of the counter

The one big disadvantage of the counter described above is that its sampling time is quite slow. Obviously, if a resolution of 1 Hz is required, the counting gate must be open for one full second. Another second is allowed for reset and latch, so that the total time to update the display is 2 seconds. Under some circumstances, this can seem like forever!

For most applications, a 1-Hz resolution isn't really necessary, and the circuit of fig. 3 can be used. Here the 7207 is used as the oscillator/timer. This device gives a counting interval of 0.1 second and a total period of 0.2 second. The counter thus updates 5 times per second instead of once every 2 seconds, and action seems much more normal. The resolution is, of course, only 10 Hz instead of 1 Hz, which is sufficient for most purposes.

The counter shown in fig. 3 includes further simplifications. The functions of the 7413 Schmitt trigger and the 7432 OR gate are combined in a single IC, the 74132. This device is a quad 2-input NAND Schmitt trigger, which does both jobs. This change could, of course, be made in the circuit of fig. 2.

Fairchild FND-503 displays are used here. The 100-ohm limiting resistors were eliminated for a brighter display, which increased total counter current from 200 to 300 mA.

A further simplification is possible if the highest frequency to be counted can be limited to 6-7 MHz. In this case the 74196, together with the 9368 and 7432, can be eliminated. The circuit is shown in fig. 4. The 7208 IC provides the counting function. Resolution is again 10 Hz, and the seventh digit in the readout is omitted, since it can never be used in this instance. However, the circuit makes a mighty simple counter.

I'd like to express my appreciation to my coworker, Josh Schwartz, without whose excellent and timely suggestions this project couldn't have been completed.

references

fig. 4. Simplified counter that operates up to 6 MHz with 10-Hz resolution.
how to modify your frequency counter for direct counting to 100 MHz

When the prices of TTL integrated circuits first dropped to the point where the average amateur could use them to build a frequency counter, the maximum operating frequency was about 25 MHz. Then came the Fairchild Semiconductor 95H90 prescaler with its 350 MHz capability. This promised reliable measurements at 220 MHz, but some of the earlier homebrew counters were frequency limited and could not use the prescaler to its full advantage. Next came the Fairchild 11C90, which was rated at 650 MHz and the 1300 MHz counter from Hewlett-Packard. It will only be a matter of time before an inexpensive 1 GHz prescaler reaches the market. It hasn’t arrived yet, but I decided to redesign my counter to adapt to such a prescaler, when it comes.

There has been a flood of second-generation TTL ICs appearing in the past few years that would both increase the speed and diminish the size of a modern frequency counter over one using the standard 7490 decade counter, 7475 latch, and 7447 LED decoder/driver. I decided that a complete rebuilding of my counter, while interesting, could not be justified. In this project described in this article a single board, containing a gate circuit and the first decade counter, is substituted for the original. This board can be used in any counter which has a positive gate-enable pulse, a positive or negative reset pulse, and enough room to sandwich in the modification.

circuit operation

The gate function is performed by one gate of a 74S00. When a positive enable pulse is applied to one NAND gate input (during the counting period), the gate will act like an inverter to a square wave ap-
fig. 1. Schematic diagram of the 100 MHz counter. If your existing counter has a positive reset pulse, jumper C to CC and D to DD as shown here; if the reset pulse is negative, jumper C to D. If the count enable pulse is negative, jumper A to AA and B to BB as shown; if positive, jumper A to B. Not shown here but included on the circuit board are two bypass capacitors from the power supply to ground, C2 and C3.

plied at the second input. As the gate enable pulse falls to a logic zero, the NAND output rises to one, and is not affected by state changes at the second input. Consequently, the gate operates as an on/off switch to control the flow of the signal to be counted into the first decade counter. If your counter uses a negative enable signal, provisions have been made on the circuit board to use an extra NAND gate to invert the count-enable pulse.

A 74S196 presettable decade counter is used to extend the guaranteed count frequency to 100 MHz. The typical frequency limit is 140 MHz. To disable the preset feature, all presettable data inputs must be held at a logic one, along with the Count/Load input. Binary-coded-decimal counting is provided by connecting out QA to Clock Input 2, and injecting the signal to be counted into Clock Input 1. Counting occurs on the negative transitions of the count pulse. The reset (clear) pulse must also be negative, unlike that used for 7490 decade counters, so one NAND gate is used as an inverter. If your counter also uses a negative reset pulse, it is possible to directly drive the clear input, so long as the fanout of your clear line is not exceeded by the 74S196 requirements. Unlike a 7490, the clear input of the Schottky chip is two standard Schottky loads (or 2.5 standard 7400 series loads). If your counter has a maximum of eight digits, you should not encounter any difficulty. However, don’t try to drive the reset line with an L or LS series device because it will not be able to supply sufficient current. The 74S196’s four binary-coded-decimal outputs (QA through Q3) are connected to the respective inputs of the latch.

Signetics Corporation manufactures a plug-in replacement for the 74S196 called the 82S90. This might be the easiest device to find for some people, but for me the difficulty of trying to locate a 74S196 was second only to finding an 82S90. Neither device is stocked by most suppliers, but I have been advised by Active Electronic Sales that they can supply SN74S196N ICs at $3.45 each.* These are Texas

*Active Electronic Sales Corporation, Box 1035, Framingham, Massachusetts 01701. They have a minimum order requirement of $10.00, plus a $1.00 postage and handling charge.

fig. 2. Full-size printed circuit board for the 100 MHz counter stage. Component layout is shown in fig. 3.
power supply lead should be a separate shielded cable (audio type is fine) connected directly at the power supply. Connect the shield to the common power supply ground point and attach the other end to common on the PC board. To prevent ground loops, do not ground the board where it is mounted.

Disc or rectangular ceramic bypass capacitors are used liberally to discourage transients but their values are not critical — the larger the better. One large tantalum or electrolytic capacitor is used to eliminate low-frequency transients. Shielded cable may also be used to bring the Gate-Enable, Reset, Q_A through Q_D, Count Pulses In, and Count Pulses Out signals into and out of the board. Shielded cable is not really needed in practice, but it will reduce the amount of rf floating around the counter, and may prevent jamming of the input circuit. If shielding is used, ground the shield at the board and trim back the braid at the other end.

modifying the input circuit

Extending the range of the input circuit to 100 MHz is not absolutely necessary because a prescaler will extend the counting range anyway. However, direct counting to 100 MHz is easy to accomplish in counters which use the two most popular input circuits.

One popular input circuit consists of a fet amplifier, often an RCA 40673, driving a Schmitt trigger; a typical circuit is shown in fig. 4.1 Almost any dual-gate mosfet will operate well above 100 MHz, so no change is required there. If the Schmitt trigger is a 7413, it can be replaced directly with a 74813. Discrete Schmitt triggers built up from 7400 or 7404 gates can usually be replaced with Schottky devices without changing any external resistors.

Another popular counter input circuit first appeared in OST² during a review of the HUA Electronics 1BC-1a frequency counter. This circuit (fig. 5) has been widely duplicated over the years with varying success. Input sensitivity estimates have been reported from 10 to 300 mV, so a few suggestions are in order for anyone having difficulty with the HUA circuit. Problems stem from two sources: the extreme sensitivity of the unit, and the substitu-
tion of one TTL sub-series for another (such as a 74LS04 for the 7404). Sensitivity can be so great that leakage from other counter circuitry jams the input, establishing a threshold that must be exceeded to trigger the counter. The solution is to shield the entire input circuit in a minibox, using coax to bring the signal in, and shielded wire, bypassed on both ends with 0.1 \(\mu \)F and 47 \(\mu \)F capacitors, for the +5 volt supply. The shield should be grounded at the power supply and connected as the common return on the circuit board.

![Figure 5](image)

The second problem concerns differing bias requirements between the standard and LS series. When substituting a 74LS04 for a 7404, it is impossible to simply interchange one for the other without changing the external resistors. This problem is not as acute when replacing the 7404 with a 74S04, because the difference in input current between the Schottky and standard series is slight. Only one resistor seems to be at all critical, and this is the 560-ohm feedback resistor across the first hex inverter. A sure way of obtaining the most performance from your particular combination of devices is to optimize this resistor. Connect a 1000-ohm potentiometer in place of the 560-ohm resistor and adjust it for maximum sensitivity. Using an ohmmeter, measure the resistance (after carefully removing the pot from the circuit) and replace it with a fixed value.

Conclusion

For a total cost of less than $20 for all materials, including printed-circuit drafting and etching supplies, this circuit can put new life into an otherwise outmoded counter. The 74S196 will typically extend counting to 125 or even 140 MHz, which should accommodate the output of prescalers for many years to come.

References

2. Gerald Hall, K1PLP, "HUA Electronics Frequency Counter Model 1BC-1a," QST, April, 1972, page 60.

Ham Radio

February 1978
simple front-ends
for a 500-MHz
frequency counter

Basic front-end design
is stressed in this adaptation
of the Intersil seven digit
CMOS frequency counter

The advent of the Intersil CMOS counter chip pair,
the ICM 7208 and 7207A, has resulted in many
designs which take advantage of the low cost and
simplicity these chips make possible. I wanted a
complete, 500-MHz counter, but with no bells and
whistles. Since most hams do not need more than
100 Hz resolution at 500 MHz, the counter was re-
stricted to seven digits. With most of the basic work
already documented in Intersil application notes, the
only real design problem was to fabricate a suitable
front-end that interfaced between the prescaler and
the CMOS integrated circuit.

As an engineer I have fought many debugging
wars, enough to know that sure things don’t always
work the way they are designed. Accordingly, I re-
searched the literature for the tried and true. As a
result, what follows is not entirely original, but it has
the redeeming virtue that it works.

50-MHz front end

The front end is composed of Q1 through Q7, with
a sensitivity of 300 mV at 30 MHz, falling to 1 volt at
50 MHz (see fig. 1). Most of the credit for the design
goes to Marvin Moss, W4UXJ, who adapted it from
several other similar designs.

As a single device, the fet used for Q1 does not
give satisfactory performance. Therefore, Q2 is used
to bootstrap the voltage at the source of Q1 to more
closely equal the voltage at the gate of Q1. This also
greatly reduces the effect of Q1’s input capacitance
at high frequencies, thus maintaining the input
impedance with increasing frequency. Capacitor C2
compensates for the small amount of rolloff that will
never-the-less occur. R5 allows quiescent point
adjustment for maximum sensitivity. Since the
remainder of the front end is dc coupled, R5 also sets
the operating point for the rest of the amplifier.

Q3 has a fixed gain of approximately 6.8, the ratio
of R7 to R8. R8 also raises the input impedance of
this stage to minimize loading on Q1-Q2. C3 tends to
raise the gain of Q3 to compensate for the rolloff in
gain brought about by the output capacitance of Q3
being in parallel with R7.

Q5 and Q6 form a high-gain amplifier with hystere-
sis. Basically, Q5 is an emitter follower driving the
common base amplifier, Q6. The base of Q6 is held at
approximately 6 volts by R12 and CR4. Because of
the high voltage gain of the common base configura-
tion, the signal alternately drives Q6 close to satuра-
tion and cutoff. However, R11 creates a small
amount of positive feedback, or about a 0.6 volt hys-
teresis. This is necessary to avoid extraneous counts
on low-frequency signals.

Transistor Q7 is used as an emitter follower to
drive the TTL counter circuitry that follows. The low
value of R14 is necessary, since TTL likes to see a low
source impedance in the low state. A common-emitter
stage might work here, but would require more
components and would draw just as much current.

By John H. Bordelon, K4JIU, 1132 Research
Drive, Marietta, Georgia 30066
fig. 1. Schematic diagram of the complete frequency counter including the low-frequency (0-50 MHz) and high-frequency (50-500 MHz) preamplifiers. The displays have been wirewrapped into a set of sockets and are shown here as a multiplexed assembly. Other displays can be used but they must be common-cathode types. The crystal frequency is 5.242880 MHz (available from International Crystal). All resistors are 1/4 watt, 10 per cent tolerance. The 5 and 12 volt regulators are MC7806 and MC7812 ICs.
The 500-MHz prescaler uses the popular and readily available Fairchild 11C90. This ECL device not only has a minimum count rate of 500 MHz, it directly drives TTL, and has built-in biasing networks to insure optimum sensitivity. It does not have the older 95H90's reputation for being picky about supply voltage.

The 2N5179 has got to be one of the most bang-for-the-buck transistors around. Reviewing articles for using it to drive 95H90s to 300 MHz led me to think it would almost certainly work well at 500 MHz, especially in view of its f_T of over 1 GHz. Such is the case, and the sensitivity at 500 MHz is 200 mV RMS, and 25 mV at 50 MHz. A 0.3m (1-foot) antenna yields solid counts on a 1-watt, 2-meter mobile. The low-input impedance is not a handicap in most cases, and a virtue in some. L1, in combination with the 2N5179's output capacitance, serves as a low-Q resonant circuit.

the complete counter

Referring again to the schematic, I chose a very common IC, the 74196, for the 50-MHz prescaler (U3). U2, a 74S00, routes the signals as directed by the range switch (S2). This also eliminates the need for any front-panel rf switching. Q9 drives the appropriate display decimal point, under command of S1 and S2, to provide a display that always reads in kHz. The CMOS counter will not count to its specified maximum frequency when driven by TTL; the output voltage swing of TTL is too low. U9 cures this problem by providing a signal that swings from nearly ground to very near the supply voltage. Observant readers may notice that the signal goes through the 50-MHz prescaler, even when the 5-MHz range is in use. I've applied the signal to the QD data input; with the count/load control (pin 1) low, the QD signal will follow the data input. When pin 1 is high, inputs on pin 8 are accepted and prescaled by 10. Taking advantage of the architecture of the 74196 in this way eliminated the need for any extra gates.

Resistors R33 through R40 are current limiting resistors for the FND359 displays which I plugged into wire-wrap sockets. R26 through R32 are recommended by Intersil to preclude digit driver leakage from causing “ghosting” on the display.

The power supply is conventional. CR17 allows use of external battery power and protects the battery pack should ac be applied to the counter power supply. It should be noted that U8 supplies U4, U5,
and U9. Otherwise, U5 may be damaged by any voltage difference between the two regulators. I designed my circuit board (fig. 2) to take care of this.

construction

A printed-circuit board seemed the only reasonable way to construct the counter.* Fig. 2 shows the layout of the board. The two front ends use good high-frequency layout practices. Although two-sided boards are generally thought to be de rigueur for such situations, they are not always necessary. My counter does not talk to itself. One reason for this is the use of broad ground planes dividing and encircling some circuits. Note especially the layout of the 500-MHz preamp and prescaler.

The chassis is homemade, black anodized aluminum. Transfer letters were used for labeling, with clear spray enamel used to protect them. Enamel does not seem to cause smearing of the letters, but caution was exercised.

There are no adjustments to the 500-MHz front end. In use, a no-count condition may just as likely be an overload as well as indication of not enough signal.

The 50-MHz front end requires R5 to be adjusted for maximum sensitivity. The best way to adjust it is with the aid of a signal generator having a variable output attenuator. This way the input signal may be reduced in small steps, touching up the adjustment of R5, until maximum sensitivity is obtained.

Adjustment is most critical at 50 MHz, so final alignment should be done there. Because my 74196 was of questionable origin, the maximum count rate was just shy of 50 MHz. If operation at 50 MHz seems impossible, drop down in frequency and come up in small steps, touching up R5 each time. Don’t forget that if the 74196 is not up to snuff, the 11C90 will be handicapped as a result. Check the former before blaming the latter.

conclusion

Two of these counters have been built and are operational. About twenty-two more are in various stages of construction around the southeastern United States. Minimum cost, exclusive of the circuit board, is about $50, with a maximum cost of about $85.

*Etched, drilled, and planed circuit boards, of G-10 epoxy fiberglass, with 7 pages of documentation, are available for $15, postpaid, from the author.

reference

ham radio

635V-1 Collins Preselector band pass Filters — They’re back! 2 to 3 MHz, 1 kHz steps, with copy of manual and rack and connector.

$275.00

RF Power Meter — identical to HP Model 430C

Read article April ‘77 HR Mag., Pg. 44 for use. Copies of article available on written request. Our special purchase is your gain at $34.95 ea. Note: This is Gen'1 Microwave.

451. Bolometer/thermistor mountable with purchase. $45.00

Audio Compressor AN/GSA-33 — Five identical plug-in compressors with power supply in 19 inch rack. All solid state, 600V in & out, great for auto phone patch and phone patch. Weight less than 30 lbs. Built like a battleship. $34.95

RECEIVERS

Collins 651F-1, 2 to 30 MHz in 100 cycle steps, digital tuning, USB/LSB/ISB. Stability: 1 part in 106. Completely remote controlled, with all racks, connectors, control head. $1400.00

R-388/51J — Collins 0.54 to 31 MHz $375.00

R-390A — 0.54 to 31 MHz, overhauled complete $595.00

SPECIAL! R-390 with CV951 SSB Converter and outboard audio amp. All in neat 19" rack. Special! $500.00

RACAL Model 6217A, 980 kHz, 32 MHz, All Solid State, takes about 3 inches of rack space, digital tuning $1600.00

LTV Model G111 Panoramic Receiver includes CRT display, 100-150 MHz with converters. Will make a fine spectrum analyzer. $150.00

TMR-5 with front end plug-ins to cover 105-140 MHz and 200-260 MHz $250.00

TEST EQUIPMENT

Frequency Counter, LTV Model G-195, all solid-state $195.00

Tektronix $545, several to choose from, $175 to $375, depending upon condition; call or write.

ANOTHER MICROWAVE GOODIE: 2.2 to 3 MHz, good condition. $285.00

CEI Model 415, 60-250 MHz, all solid state, modular constructor, 4 channels. Incredible value. $45.00

SR-13A, 2 to 30 MHz, good condition. $285.00

TRANSMITTERS

PAL-1K, one kilowatt output linear amplifier, 2-32 MHz continuous, with all power supplies and manual; unit requires only 100-W drive, uses 8295 final, vacuum-variable tuning, complete metering. A real buy... $550.00

GPT-750 Transmitter mfd. by the Technical Material Corp., 2 to 32 MHz, CW/USB/LSB/ISB, one KW to the antenna, 24 hrs. a day if you’re so inclined — with documentation, fair condition, built like a battleship. $375.00

Standard T/T pad mounted in a sturdy steel case incl. 2 volume pots & 1 push button labeled “Stereo”. Also has 2 phone jacks for headphones, microphone, etc. Will make a fine control head. $24.95

T/T Decoder Board — This board was removed from a language lab remote control system. You draw the schematic (because there wasn’t one with the board). $34.95

Inductors, mfd by Mallory, 6 turn, 4 stage, P/N 446T001, Brand New. $25.00 ea.

Disc-Cap, 19075 Braemore Rd.

Northridge, CA 91326 213-360-3387

Cal. Residents - add State Sales Tax. Unfortunately, Disc-Cap can only service U.S. customers.
Crystal ovens fall into two categories: on-off (or bang-bang) and proportional control. In the former, a bimetallic strip makes and breaks the heater circuit. Most inexpensive ovens used by amateurs are of this type. Temperature variations frequently exceed 9°F (5°C). These ovens are somewhat erratic in operation, especially the older units that have worn and pitted strip contacts. With proportional control, the heater current is continuously and automatically varied to maintain constant temperature.

This article shows how the National Semiconductor LM3911N temperature controller IC can be used for precision temperature measurement and control. This marvelous little device, selling for under $2.00, makes it possible to maintain oven temperatures to better than 0.18°F (0.1°C). The LM3911N can be used to replace the thermostat in an existing oven or

By Fred Schmidt, K4VA, 3848 Parkcrest Drive, N.E., Atlanta, Georgia 30319
can be incorporated into an easily and inexpensively built oven.

The LM3911N* consists of an operational amplifier, zener, and a temperature sensor in an 8-pin plastic DIP. The block diagram, taken from the data booklet is shown in fig. 1. The sensor develops 10 millivolts per degree Kelvin between the positive supply terminal on the op amp chip and its non-inverting input.

on-off and proportional control

Figs. 2 and 3, also from the device instruction booklet, show how the LM3911N can be used for simple on-off and proportional control respectively. In on-off control, the operational amplifier is used as a comparator. When the sensor temperature increases to the value at which the noninverting input voltage is equal to the inverting input voltage, the output switches from about 6 volts to a fraction of a volt. The output can be used to control oven heater current by means of a suitable power transistor. The voltage at the inverting input terminal determines the temperature at which the output switches.

The proportional-control circuit (fig. 3) generates a square wave at the output terminal. The duty cycle

\[
\text{duty cycle} = \frac{T_{\text{OFF}}}{T_{\text{ON}} + T_{\text{OFF}}}
\]

(ratio of OFF to ON time) is determined by the sensor temperature and the voltage at the inverting input terminal. Any departure of temperature from the desired value causes the duty cycle to change. This action is used to change the average heater current in such a way as to bring the temperature back toward the desired value. Proportioning bandwidth refers to the temperature range over which the output is a square wave. When the temperature is above the bandwidth the output will remain low, and when the temperature is below the bandwidth output will remain high. The square-wave frequency is determined by the time constant $R4C1$. The frequency varies somewhat over the bandwidth and is maximum at the center.

The complete circuit for proportional control of an oven is shown in fig. 4. The 4N30 is a 6-pin dual in-line IC containing a light-emitting diode, which is optically coupled to a photo-sensitive darlington transistor. It drives a power transistor. The oven heater is in the power-transistor collector circuit. During the ON intervals of the square wave, the power transistor is driven to saturation. During the OFF intervals it is cut off.

The photo shows how the LM3911N is installed in an oven of the ON-OFF variety. The oven is a Bliley

*Available from Tri-Tek, Inc., 6522 North 43 Avenue, Glendale, Arizona 85301, Specifications and Applications Booklet, $.80 (also, Radio Shack RS3911, Catalog 276-1706, $2.19).
TCO-1A surplus unit with a 6.3-volt, 0.85-A heater element. The thermostat was unsoldered and discarded.

The LM3911N was cemented to the inverted-U copper strip, which is used to conduct heat from the heating element to the crystal. The LM3911N die is on the base of the package. Therefore, it's important that the base be coupled as closely as possible to the heat source.

Pins 4-8 are not used electrically and should be bent in such a way as to make contact with the copper strip to help conduct heat into the package. Pins 1-4 are connected to pins in the oven socket.

testing

Performance can be checked by connecting a voltmeter across the heating element. When first turned on, the heater voltage will nearly equal the supply voltage. As the oven heats up, the heater voltage will go through several damped oscillations about a final value of about three volts. (The damped oscillation is caused by the thermal lag between the heating element and the copper heat conducting strip.)

The maximum temperature overshoot is about 1 degree C. Bandwidth control R9 should be set about two-thirds of the way down from the end connected to the supply line. R1 and R3 should be wirewound or metal-film resistors. (Composition resistors have a large temperature coefficient and would cause the oven temperature to change somewhat with changes in ambient temperature.)

R1 and R3 values can be changed if it's desired to operate the oven at a temperature other than 75°C. The maximum operating temperature of the LM3911N is 85°C.

Temperature calibration can be performed by drilling a small hole in the metal cover just above the crystal socket and inserting a thermometer into the oven. The thermometer will take a minute or more to reach final temperature.

homebrew oven

If a surplus oven isn't available you can make one easily and inexpensively. A homebrew oven offers several advantages:

1. It can be made large enough to include the complete oscillator circuit for enhanced stability.

2. There is room for an additional LM3911N for temperature measurement.

3. It can be constructed with very close thermal coupling between the heating element and the controller to avoid temperature oscillations (hunting).

The photo shows how an oven can be made with a surplus i-f transformer can. The unit measures 1-1/2 by 2 by 3-1/2 inches (38x51x89mm).

The heating element consists of no. 28 (0.3mm) enamelled copper wire wound directly onto the aluminum can. The wire should be close wound over a length of about 2-1/2 inches (64mm). After winding, check for short circuits to the can then paint with Red X Corona Dope (General Cement Catalog no. 50-2), or with Dipping Varnish (General Cement Catalog no. 56-2).

Connections are brought out to two screws,
which are insulated from the can by fiber shoulder washers. The oscillator circuit is built onto a PC board, which is held in place by two metal brackets. At the top of the board is a ceramic trimmer capacitor for frequency adjustment. A hole in the top of the can allows screwdriver adjustment for frequency trimming.

Two LM3911N chips are cemented to the inner surface of the can as shown in the photo. The second chip is used as an electronic thermometer. After assembly, the oven is insulated with two layers of styrofoam. A convenient source of this material is the 16-ounce (472ml) styrofoam drinking cup.

In the unit shown, the cold resistance of the heater winding is about 6 ohms. The regulated supply for the heater should deliver between 9 and 12 volts. For a smaller-size can it may be necessary to use smaller wire for the heater. A cold resistance of 6 to 8 ohms is about right.

thermometer circuit

The thermometer circuit is shown in fig. 5. Resistance values are for a 0-1 mA meter and a temperature range of 70°C - 80°C (158°F - 176°F). Other temperature and meter ranges can be obtained by changing the resistance values according to the equations in the appendix. It's not necessary to install a milliammeter permanently in the unit: a pair of terminal posts can be installed to allow temperature to be monitored with your multimeter.

Many AT cut crystals exhibit a turning point in the neighborhood of 60°C (140°F). Advantage should be taken of this by operating the oven at that temperature. The turning point can be found by observing the crystal frequency as the oven warms up. If the frequency initially drops then starts to rise, adjust the oven temperature to obtain the minimum frequency. The oven temperature should be at least 5°C above maximum ambient in the equipment in which it will be installed.

The performance of either oven leaves little to be desired. Temperature stability is reached in about 5 minutes. Temperature variation is too small to be detected on the thermometer calibrated from 70°C - 80°C (158°F - 176°F).

acknowledgement

I wish to thank Jim Bell, K4FUP, for suggesting the use of the LM3911N in this project.

appendix

The resistances for the thermometer circuit are calculated by the following equations:

\[R_1 = \frac{(6.85)(0.01)}{I_m (I_m - 0.01T_0)} \]
(1)

\[R_2 = \frac{0.01T_0 - I_1R_1}{I_0} \]
(2)

\[R_3 = \frac{6.85}{I_0} - \frac{R_1 - R_2}{I_0} \]
(3)

\[R_4 = \frac{V_n - 6.85}{0.001 + I_m + I_0} \]
(4)

\[R_5 = 50K \]
(5)

\[R_6 = 6k \]
(6)

\[R_7 = 500 \text{ ohms} \]
(7)

where

\[\Delta T \] = Meter temperature span (degrees C)

\[I_m \] = Meter full scale current (amperes)

\[T_0 \] = 5 + meter zero temperature (degrees K)

\[I_0 \] = Current through \(R_1 \), \(R_2 \), and \(R_3 \) at zero meter current (use 0.0001 amperes)

Notes:
1. \(^\circ K = ^\circ C + 273 \).
2. Resistors should be metal film.
3. If no thermometer is available for calibration set potentiometer to its midpoint.

The assembled oven in its styrofoam jacket.
Cushcraft engineers have incorporated more than 30 years of design experience into the best 3 band HF beam available today. ATB-34 has superb performance with three active elements on each band, the convenience of easy assembly and modest dimensions. Value through heavy duty all aluminum construction and a price complete with 1-1 balun.

Enjoy a new world of DX communications with ATB-34!

SPECIFICATIONS

- **Forward Gain**: 7.5 dBi
- **F/B Ratio**: 30 dB
- **VS/WR**: 1.5:1
- **Power Handling**: 2000 Watts PEP
- **Boom Length/Dia.**: 18' x 2 1/8''
- **Longest Element**: 32' 8"
- **Turning Radius**: 18' 9"
- **Wind SFC**: 5.4 Sq.Ft.
- **Weight**: 42 Lbs.
- **Wind Survival**: 90 MPH.
- **Complete UPS Shippable**: No Extras to Buy

In Stock with Distributors Worldwide

CUSHCRAFT CORPORATION

BOX 4680, MANCHESTER, N.H. 03108

FM

Enjoy the thrill of dependable long distance contacts on simplex or thru remote repeaters. The 20 element co-linear DX-Array offers a precise pattern with large capture area. This vertically polarized, horizontally stacked array provides a narrow beamwidth for the discriminating FM user. Wide impedance and gain bandwidths make the DX-Array a natural choice for the serious FM'er. A vertical polarization bracket, model DX-VPB, is required (support boom and mast not supplied). Seek out new horizons with DX-Array!

SSB/CW

Discover reliability in long-haul communications with VHF SSB and CW. The Cush Craft DX-Array also gives low angle, high gain performance for many exotic propagation modes — tropo, aurora, sporadic-E, and meteor scatter. Horizontally polarized DX-Arrays may be used singly or combined in pairs (twice Effective Radiated Power) or quads (4 x ERP). Each DXK stacking kit is complete with stacking frame and phasing harness (vertical mast not supplied). This year has seen some spectacular VHF band openings — Don’t miss the next one!

EME

Many VHF experimenters have found excitement in conquering the formidable Earth-Moon-Earth (EME) path. 2-meter moonbouncers have achieved outstanding success using eight stacked DX-Arrays. Impedance and gain characteristics of this antenna permit stacking without the critical detuning problems inherent in large arrays of Yagis. Enlarging system size will yield a more uniform gain increase with DX-Arrays than with many other large antennas. The physical configuration alleviates mounting and phasing/tuning problems. EME enthusiasts are setting new records — So can you!

DX-ARRAY LEADS THE WAY!

- **20 Element DX-Array**
 - 144 MHz: Model DX-120 $42.95
 - 220 MHz: Model DX-220 $37.95
 - 432 MHz: Model DX-420 $32.95

- **Frame & Harness (40 El.)**
 - 144 MHz: Model DXK-140 $59.95
 - 220 MHz: Model DXK-240 $54.95
 - 432 MHz: Model DXK-440 $39.95

- **Frame & Harness (60 El.)**
 - 144 MHz: Model DXK-180 $109.95
 - 220 MHz: Model DXK-280 $89.95
 - 432 MHz: Model DXK-480 $79.95

- **1-152-ohm Balun**
 - 144 MHz: Model DX-18N $12.95
 - 220 MHz: Model DX-28N $12.95
 - 432 MHz: Model DX-48N $12.95

- **Vert. Pol. Bracket (20 El.)**
 - DX-VPB $9.95

More Details? CHECK — OFF Page 126

Dave Olean, K1WHS, with his 160 Element DX-Array and Polar Mount EME System
satellite tracking —
pointing and range
with a pocket calculator

How to use a pocket calculator
to calculate antenna pointing angles
and range
for an earth-bound or satellite station

A frequent question in long-distance radio communications is where to point the beam. This article contains algorithms for RPN pocket calculators to calculate distances and headings between stations on the earth, and pointing angles and slant ranges to an earth satellite or the moon.

earth stations

Given the longitude \(\lambda_1 \) (west longitudes are +) and latitude \(\phi_1 \) (north latitudes are +) of station 1 (home) and the longitude \(\lambda_2 \) and latitude \(\phi_2 \) of station 2; the algorithm below* calculates \(\mathcal{A} \), the initial heading or pointing angle (north reference clockwise azimuth) from station 1 toward station 2, and \(D \), the great-circle distance between stations.

Alternatively, if \(\lambda_2 \) and \(\phi_2 \) are the coordinates of the sub-satellite point and \(h \) is the height of a satellite over the surface of the earth, then the algorithm also gives \(E \), the elevation look angle and \(r \), the slant range or straight-line distance from station 1 to the satellite. If \(E \) comes out negative, then the satellite is invisible below the horizon.

On an HP-45 calculator, the longitudes and latitudes can be keyed in the format DD.MMSS (degrees, minutes, and seconds of arc):

\[
\begin{align*}
(\phi_2) & : \text{DD.MMSS} [G] \{D.MS-} \{G \} \{-R} \\
(\lambda_1) & : \text{DD.MMSS} [G] \{D.MS-} \\
(\lambda_2) & : \text{DD.MMSS} [G] \{D.MS-} \{-} [x-y] [G] \{-R} [x-y] [1] [R][R][R][-P] \{x-y} \\
(\phi_1) & : \text{DD.MMSS} [G] \{D.MS-} \{-} [x-y] [G] \{-R} [R][x-y] [R][R][-P][x-y] \{x-y} \\
& \text{(if negative: 360 } [+]; \text{ see } \mathcal{A} \text{ in degrees)} \{R][x-y] [-P][x-y] \\
\end{align*}
\]

At this point choose one of the following two options:

A. \(69.1 \) [x] (see \(D \) in miles).

B. \((h, \) miles) \{1 \} 3958 \{+} [G] \{-R} 3958 \{-} [x-y] [-P] \{x-y} \{E \) in degrees).

For an HP-21 calculator, the longitudes and latitudes should first be converted to decimal degrees. Select DEG mode, then:

\[
\begin{align*}
(\phi_2, \text{ degrees}) & \{1 \} 1 [B] \{-R} \\
(\lambda_1, \text{ degrees}) & \{1 \} \\
(\lambda_2, \text{ degrees}) & [-] [x-y] [B] \{-R} [x-y] [1] [R][R][B][-P] [x-y] \\
(\phi_1, \text{ degrees}) & [-] [x-y] [B] \{-R} [R][x-y] [R][B] \{-P} [x-y] \{x-y} \{R][1][x-y] [x-y] \{x-y} \{x-y} \\
& \text{(if negative: 360 } [+]; \text{ see } \mathcal{A} \text{ in degrees)} \{R][1][x-y] \\
\end{align*}
\]

By John A. Ball, Oak Hill Road, Harvard, Massachusetts 01451 (Mr. Ball is a radio astronomer at the Center for Astrophysics in Cambridge, Massachusetts)
At this point choose one of the following two options:

A. \(69.1 \times \) (see \(D \) in miles).

B. \((h, \text{~miles}) | [1]| 3958 \text{ ISTO} | [+ | [B] (| | \{- \text{R} \}
\{RCL \}| [\{- [x-y] | [B] (| \{- \text{P} \}\) (see \(r \) in miles) \{x-y\} (see \(E \) in degrees).

For a Corvus-500 calculator:

\((\phi_2, \text{~degrees}) | \text{ENT} | [\text{SIN}] | [y-x] | [\text{COS}] \)

\((\lambda_1, \text{~degrees}) | \text{ENT} \)

\((\lambda_2, \text{~degrees}) [-1 | [y-x] | \text{INV} | \text{G} \{ |- \text{POL} \}
\{y-x\} | \text{ENT} | \{R|\} | \{R|\} | \text{G} \{ |- \text{POL} \}
\{y-x\} \)

\((\phi_1, \text{~degrees}) [-1 | [y-x] | \text{INV} | \text{G} \{ |- \text{POL} \}
\{R|\} | [y-x] | \{R|\} | \text{G} \{ |- \text{POL} \} \{y-x\} \)

At this point choose one of the following two options:

A. \(69.1 \times \) (see \(D \) in miles).

B. \((h, \text{~miles}) | \text{ENT} | 3958 \text{ ISTO} | [+ | [B] \{- \text{R} \}
\{RCL \}| [- | [x-y] | [B] \{- \text{P} \}\) (see \(r \) in miles) \{x-y\} (see \(E \) in degrees).

On some Corvus-500 calculators, \([R|\) is just \([1] \), and \([y-x] \) is \([x-y] \).

If you prefer to work in kilometers (km), change the constant 69.1 miles/° to 111.2 km/° (this is the length of 1° on the earth’s surface) and change 3958 miles to 6370 km in two places (this is the radius of the earth). Also change the units of \(D, h, \) and \(r \). To work in decimal degrees on the HP-45, replace the first two appearances of \([\text{G}] \{D, \text{~MS} \} \) by \([1] \), and drop the last two \([\text{G}] \{D, \text{~MS} \} \). On an HP-25 calculator, use the HP-45 algorithm but change \(\text{G} \{D, \text{~MS} \} \) to \([\text{G}] \{D, \text{~MS} \} \) or \([\text{G}] \{D, \text{~MS} \} \) to \([\text{G}] \{D, \text{~MS} \} \). This algorithm is approximate because it uses a spherical earth and \(E \) is not corrected for refraction (which can be as much as \(\frac{1}{2} \)°).

Example. \(\lambda_1 = 71°03' = 71.056, \phi_1 = 42°22' = 42°36' \) (Boston), \(\lambda_2 = 74°, \phi_2 = 40°42' = 40°7' \) (New York City); get \(A = 234° \) (southwest by west), \(D = 191 \) miles away. If a satellite is 900 miles directly over New York City, then \(r = 925 \) miles and \(E = 75° \) as seen from Boston. If \(\lambda_2 = 70°40' = 70°6′, \quad \phi_2 = -33°25' = -33.417° \) (Santiago de Chile on the west coast of South America); get \(A = 179°27' \) (slightly east of south) and \(D = 5237 \) miles from Boston.

As an exercise, compare the distance from Los Angeles to London with the distance from Los Angeles to Rio de Janeiro.

The Moon and Other Celestial Objects

This algorithm, slightly modified, also gives pointing angles for the moon. Substitute the local sidereal time \(T \) for \(\lambda_2 \), the moon’s right ascension \(\alpha \) for \(\lambda_1 \), and the moon’s declination \(\delta \) for \(\phi_2 \). Multiply by 15 to change the units of \(\alpha \) and \(T \) from hours to degrees. For the moon, \(h \) should be about 235,000 miles, but an error of less than 1° in \(E \) comes from taking \(h = \infty \). With these changes, the HP-45 algorithm becomes:

\[
(\delta: \quad \text{DD.MMSS} | \text{G} \{D, \text{~MS} -} \} 1 \{ \text{G} \{ |- \text{R} \}
(\alpha: \quad \text{HH.MMSS} | \text{G} \{D, \text{~MS} \}
(\lambda: \quad \text{HH.MMSS} | \text{G} \{D, \text{~MS} \} [+ | [\text{I}] 15 | [x] | [x-y] | \text{G} \{ |- \text{R} \} | [x-y] | \text{G} \{ [1] | \text{G} \}
(\phi_2, \text{~degrees} | [- | [x-y] | \text{G} \{ |- \text{P} \} | [x-y] | \{R|\} | [x-y] | \{R|\} | \text{G} \{ |- \text{P} \} | [x-y] \}

For an HP-21, \(\alpha \) and \(T \) should first be converted to decimal hours, and \(\delta \) and \(\phi_2 \) to decimal degrees, then:

\[
(\delta, \text{~degrees}) | [1] | [B] \{- \text{R} \}
(\alpha, \text{~hours}) | [1] \}
(\lambda, \text{~hours}) [+ | [15 | [x] | [x-y] | [B] \{- \text{R} \} | [x-y] | [1] | \{R|\} | \{R|\} | [B] \{- \text{P} \} | [x-y] \}
(\phi_1, \text{~degrees} | [- | [x-y] | [B] \{- \text{R} \} | [x-y] | [R|\] | [x-y] | [R|\] | [B] \{- \text{P} \} | [x-y] \}

For a Corvus 500:

\[
(\delta, \text{~degrees}) | \text{ENT} | [\text{SIN}] | [y-x] | [\text{COS}] \)
(\alpha, \text{~hours}) | \text{ENT} \)
(\lambda, \text{~hours}) [+ | [15 | [x] | [y-x] | \text{INV} | \text{G} \{ |- \text{P} \} | [y-x] | [R|\] | [R|\] | [B] \{- \text{P} \} | [y-x] \})
(\phi_1, \text{~degrees} | [- | [x-y] | [B] \{- \text{P} \} | [x-y] | [R|\] | [R|\] | [B] \{- \text{P} \} | [y-x] \}

Note on Notation

Keystroke symbols in brackets (e.g., [+] [I]) are printed on the top of the key, those in braces (e.g., \{ -R \} on the side of the key or on the land area above or below the key. [G] represents an unlabelled gold-colored key, [B] an unlabelled blue key, and [1] stands for [ENTER1]. The symbol \{\} is analogous to a musical repeat symbol and means loop back to the last preceding colon \{\} not in parentheses. Parameters to be keyed or read and comments or optional sequences are in parentheses.

The symbol DD.MMSS means degrees, minutes, and seconds of arc, with two digit locations for each. The decimal point after DD must be keyed. Any digits following SS will be taken for a decimal fraction of a second. Similarly, HH.MMSS means hours, minutes, and seconds of time. Use [CHS] for negative numbers. For example - 5.4202 would mean - 5°42'02"with DD.MMSS or - 5°42m 02s with HH.MMSS. For details, see the instruction booklet with the calculator.
negative: 360 (+); see A in degrees) [R1] [G] {−POL} [y→x] (see E in degrees).

This is a general pointing algorithm for any distant celestial object. The α and δ of the moon and other objects are in The American Ephemeris and Nautical Almanac or AENA.¹

sidereal time

If your shack is not equipped with a sidereal clock, the AENA shows how to calculate T, or on an HP-45:

\[
\frac{(\text{Day-Number}) \times (\text{GMT})}{\text{STOI} 1} \times \text{STOI} 3 \times \text{STOI} 5 \times \text{STOI} 6
\]

S is the Greenwich sidereal time on January 0.0 of the indicated year, and is in the AENA. For an HP-21, key GMT in decimal hours and delete the following: [G] [D.MS−]; key λ_1 in decimal degrees and replace the following: [G] [D.MS−]; and delete the final [G] {−D.MS} and see T in decimal hours. For a Corvus 500, follow the HP-21 scheme but replace

Example. On 1976 December 25 (Day-Number = 360) at GMT = 21h, the moon was at $\alpha = 22^h 25^m \ 37^s 564$, $\delta = -5^\circ 21' 33.33'$ (from the 1976 AENA, page 187). The local sidereal time at Boston was $T = 22^h 33^m 46^s$, and the moon was visible at $A = 182^\circ 7$ (almost south), and approximately $E = 42^\circ$ (just under halfway from horizon to zenith). The program in fig. 1 combines the celestial pointing and sidereal-time algorithms for the HP-25.

Key in the program, then initialize:

\[
\begin{align*}
\alpha & : \quad \text{HH.MMSS} [g] \{-H\} [15] [x] \text{STO} 1 \quad \text{STO} 1 \\
(D\alpha, \text{seconds/hour}) & : [12] \text{STO} 2 \\
(\delta) & : \quad \text{DD.MMSS} [g] \{-H\} \text{STO} 3 \\
(\Delta\delta, \text{arcseconds/hour}) & : [15] [x] \text{STO} 4 \\
(\phi, \text{degrees}) & : \quad \text{DD.MMSS} [g] \{-H\} \text{STO} 5 \\
(S, \text{hours}) & : [15] [x] \text{STO} 6 \\
(\lambda_1) & : \quad \text{DD.MMSS} [g] \{-H\} [15] [x] \text{STO} 7
\end{align*}
\]
Calculate: (GMT: HH.MMSS) [R/S] (see E in degrees) [x→y] (see A in degrees) [-].

If \(A \) is negative, you may want to add 360\(^o\). For this program, \(\alpha \) is the right ascension on the hour, \(\Delta \alpha \) is the change in \(\alpha \) in one hour, \(\delta \) is the declination on the hour, and \(\Delta \delta \) is the change in \(\delta \) in one hour. Don’t forget minus signs (CHS) where needed. The rates \(\Delta \alpha \) and \(\Delta \delta \) are called first differences and are tabulated for the moon in the \(\text{AENA} \).

This program interpolates linearly through the hour; \(\alpha \) and \(\delta \) should be for the preceding hour. For a planet such as Jupiter, tabulated daily rather than hourly in the \(\text{AENA} \), change the [g] {FRAC} in lines 03 and 15 both to [g] {NOP} and key \(\alpha \) and \(\delta \) for \(0h \). The tabulated first differences in this case need to be divided by 24 to get the right units (per hour rather than per day). Jupiter is an interesting object for amateur radio astronomy. For a star with constant \(\alpha \) and \(\delta \), set \(\Delta \alpha \) and \(\Delta \delta \) to zero.

Example. Repeat the preceding test case on the moon but for GMT = 21\(^h\)20\(^m\).

From the 1976 \(\text{AENA} \), \(\Delta \alpha = 122\, 767 \) and \(\Delta \delta = 615\, 44 \). Get \(A = 189.2^\circ \) (\(A = -170.78 + 360 = 189.2^\circ \) and \(E = 41.9^\circ \)).

satellites

Given \(g \), a satellite’s period in minutes of time; \(i \), the inclination in degrees of the satellite’s orbit to the equator; \(\tau \), the time since an ascending node (northbound equator crossing) in minutes; and \(\lambda_0 \), the longitude of the ascending node \((\tau = 0) \) in degrees; the HP-45 algorithm below\(^2,3 \) calculates \(\lambda_2 \) and \(\phi_2 \) for the satellite:

\[
\begin{align*}
(\tau, \text{ minutes}) & \{1\} & (g, \text{ minutes}) & \{-\} & 360 & \{x\} \\
(i, \text{ degrees}) & \{x→y\} & [G] & \{-R\} & \{x→y\} & [G] \\
(\sin^{-1}) & \{\text{see } \phi_2 \text{ in degrees}\} & \{R+i\} & \{x→y\} & [\cos] & \{-P\} \{R+i\} & \{x→y\} & 4 & \{-\} \\
(\lambda_0, \text{ degrees}) & \{x→y\} & \{-\} & \{\text{see } \lambda_2 \text{ in degrees}\}.
\end{align*}
\]

This algorithm is approximate because it uses a circular orbit; \(h \) is taken to be constant.

summary of symbols

Station 1 is normally home; station 2 is sometimes a subsatellite point.

A heading (north reference clockwise azimuth) from station 1 toward station 2 or toward a celestial object. \(\dot{A} = 0 \) is north, \(\dot{A} = 90^\circ \) is east, \(\dot{A} = 180^\circ \) is south, and \(\dot{A} = 270^\circ \) is west. Negative A means counterclockwise, so \(\dot{A} = 90^\circ \) is also west.

c speed of light; \(c = 11,177,000 \) miles/minute.

d great-circle distance from station 1 to station 2.

E elevation look angle from station 1 toward a satellite or celestial object. \(E = 90^\circ \) is straight up toward the zenith, \(E = 0^\circ \) is the horizon, and negative \(E \) means that the object is invisible below the horizon.

e eccentricity of a satellite’s orbit; \(e = 0 \) is a circle.

f frequency.

GMT Greenwich mean time or universal time (UT or UTC). Ephemeris time differs from GMT by about 48 seconds.

h height of a satellite over the surface of the earth.

ha the average \(h \) over an orbit.

i inclination angle of a satellite’s orbit to the equator.

r slant range or straight-line distance from station 1 to a satellite.

National Semiconductor 4640, APF Mark 55, and Omron 12-SR calculators. Converting for non-RPN calculators is more difficult.

The program shown in fig. 3 combines the satellite and pointing algorithms for the HP-25. Key the program, then initialize:

\[
\begin{align*}
\lambda_0 & \text{ (degrees) } [1] \lambda_1, \text{ degrees } [- 1] \hfill [1] \text{ [STO] } 1 \\
\phi_1 & \text{ (degrees) } [\text{STO}] 2 \hfill (q, \text{ minutes}) [1] 1440 \hfill [-] \\
& \text{ [STO] } 3 \hfill 180 \hfill [1] \hfill \text{(i, degrees) } [- 1] \hfill [\text{STO}] 4 \hfill 3958 \hfill [\text{STO}] 5 \hfill (\lambda_a, \text{ miles}) \hfill [1] \hfill [\text{STO}] 6 \hfill \text{[PRGM]} \\

\text{Calculate:} & \text{ (r, minutes) [R/S]} \text{ (see } A \text{ in degrees)} \\
& \text{ [R1]} \text{ (see } r \text{ in miles)} \hfill [\text{R1}] \text{ (see } E \text{ in degrees)} : .
\end{align*}
\]

If \(A \) is negative, you may want to add 360°. The constant 1440 is the number of minutes in a day.

Example. Oscar-7 orbit 10590 on March 10, 1977, \(\tau = 14^m \) (which corresponds to GMT = 00°08’m + 14m = 00°22’m), \(q = 114°945 \), \(i = 101.7^\circ \), \(\lambda_0 = 54°25’ \), \(h = 908 \) miles; get \(\phi_2 = 42°71’ \), \(\lambda_2 = 69°02’ \), \(A = 76° \), \(r = 916 \) miles, and \(E = 82° \), almost overhead as seen from Boston.

Fig. 2 shows \(A, r, \) and \(E \) as a function of \(\tau \) for this orbit over Boston. For a pass almost overhead such as this, \(A \) is nearly constant except for a couple minutes around closest approach. The slope \(v \) of the \(r \) curve is the Doppler velocity (in miles per minute) and can be calculated by subtracting two \(y \)-s a minute apart. The largest possible \(v \) is \(2\tau h + 3958 \) miles/minute or about 266 miles/minute for Oscar 7. Convert \(v \) to a Doppler frequency shift using \(\Delta f = -\frac{fv}{c} \), where \(f \) is the frequency, \(\Delta f \) is the shift in frequency, and \(c \) is the speed of light (\(c = 11,177,000 \) miles/minute). The Oscar-7 beacon at 145.975 MHz, for example, shifts, as shown, by 3958 MHz and so appears somewhere between 145.972 and 145.978 MHz.

When the satellite is approaching, \(v \) is negative, \(\Delta f \) is positive, and the beacon appears at a higher frequency; when the satellite is receding, \(v \) is positive, \(\Delta f \) is negative, and the beacon appears at a lower frequency on the dial. If you are working through a repeater on a satellite, then two different Doppler shifts need to be calculated and added.

Kepler’s third law relates \(q \) and \(h_a \), the average \(h \), to the period \(\tau \) of the orbit:

\[
(\frac{q}{\text{minutes}}) [1] \times 8720351 \times 3 \times [1/\tau] \times [G] \times [y^r] \times 3958 \times [-] \times \text{(see } h_a \text{ in miles)}.
\]

The first number is Kepler’s constant for the earth, 8,720,351 miles²/minute². With a circular orbit, \(h_a \) and \(h \) are the same. For Oscar 7 with \(q = 114°945 \), get \(h_a = 908 \) miles.

accuracy

These algorithms employ several approximations that cause inaccuracies in the answers. The earth’s eccentricity causes an error up to 0.2 per cent (2 miles in 1000 miles) in \(D \). The eccentricity of a satellite orbit has two effects: first, \(h \) is not constant. The maximum variation in \(h \) is \(e(3958 \text{ miles} + h_a) \) where \(e \) is the eccentricity and \(h_a \) is the average \(h \). So if \(e = 0.01 \) and \(h_a = 925 \) miles, then the variation in \(h \) is 49 miles and \(h \) varies from 876 to 974 miles.

Another effect of \(e \) is on the speed of the satellite, which can be as much as about \(eR/\pi \) ahead or behind in the orbit compared to a circular orbit. If \(e = 0.01 \) and \(q = 115 \) minutes, then the satellite can be up to 0.37 minutes early or late. Also the “4” in the orbital algorithm, which converts \(\tau \) from minutes of time to degrees, should be 4/(1.0027379 = 3.9890783 because the earth’s rotation speed is one degree per 4 sidereal minutes. The error due to using 4 is noticeable only for large \(\tau \).

Finally, the orbital elements of earth satellites change slowly due to influences such as the sun and
moon, air resistance, and the uneven distribution of mass in the earth. For Oscar 7, the orbit regresses just about enough to cancel the error caused by using 4 minutes per degree; such orbits are called sun-synchronous.

I wish to thank George Rybicki for showing me the spherical-trigonometry trick used in these algorithms; Dick Ellis, WSYCK, for helping research articles on Oscar satellites; Tom Bates and Fritz Mansvelt-Beck for loaning me their calculators; and R.C. Vanderburgh for sending me copies of his programs.

references

appendix
RPN portable calculators

The table below lists all the available or recently available RPN portable calculators. The algorithms in this article can be easily converted to work on any calculator that has "yes" in the R-P column in this table. Non-RPN calculators are not listed; they are awkward for this type of problem.

The Corvus 500, the APF Mark 55, and the Omron 12-SR are internally identical, but the Corvus 500 has a better keyboard and case. The instruction booklet with the Corvus 500 is very poor; if you have this calculator, you should also get the book Everything You’ve Always Wanted to Know About RPN but were Afraid to Pursue — Comprehensive Manual for Scientific Calculators available for $7.50 plus postage from T.K. Enterprises, 16611 Hawthorne Boulevard, Lawndale, California 90260. This book does not live up to its name and does not as good as the instruction books with HP calculators, but is the best book available for the Corvus 500, APF Mark 55, and Omron 12 SR.

For an HP calculator, you should get the appropriate HP applications book. Some dealers will throw these in with the calculator; otherwise they are about $10 from Hewlett-Packard, 19310 Pruneridge Avenue, Cupertino, California 95014. Some HP calculators have several such books.

Generally speaking, HP calculators are better made and will probably last longer than the others in this table. Don’t overlook the possibility of finding a used or surplus calculator of a model listed as no longer available.

"Start extravagant, and you’ll never finish. Get the cheap tool first, see if it feeds your life. If it does, then get a better one. Once you use it all the time, get the best. You can only grow into quality. You can’t buy it."

— from The Last Whole Earth Catalog

Table 1. List of portable calculators which use RPN architecture.

<table>
<thead>
<tr>
<th>manufacturer</th>
<th>model</th>
<th>stack of</th>
<th>scientific notation</th>
<th>number of storage registers</th>
<th>number of program steps</th>
<th>R-P</th>
<th>D-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewlett-Packard</td>
<td>HP-19C</td>
<td>4</td>
<td>yes</td>
<td>30</td>
<td>98</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-21</td>
<td>4</td>
<td>yes</td>
<td>1</td>
<td>0</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-22</td>
<td>4</td>
<td>yes</td>
<td>10 + 5</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-25</td>
<td>4</td>
<td>yes</td>
<td>8</td>
<td>49</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-25C</td>
<td>4</td>
<td>yes</td>
<td>8</td>
<td>49</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-27</td>
<td>4</td>
<td>yes</td>
<td>10 + 5</td>
<td>0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-29C</td>
<td>4</td>
<td>yes</td>
<td>30</td>
<td>98</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-35*</td>
<td>4</td>
<td>yes</td>
<td>1</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-45*</td>
<td>4</td>
<td>yes</td>
<td>9</td>
<td>0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-55*</td>
<td>4</td>
<td>yes</td>
<td>20</td>
<td>49</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-65*</td>
<td>4</td>
<td>yes</td>
<td>9</td>
<td>100</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-67</td>
<td>4</td>
<td>yes</td>
<td>26</td>
<td>224</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-70*</td>
<td>4</td>
<td>yes</td>
<td>2 + 5</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-80</td>
<td>4</td>
<td>yes</td>
<td>1</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-91</td>
<td>4</td>
<td>yes</td>
<td>16</td>
<td>0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-92</td>
<td>4</td>
<td>yes</td>
<td>30</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
<td>HP-97</td>
<td>4</td>
<td>yes</td>
<td>26</td>
<td>224</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>Novus 4510</td>
<td>3</td>
<td>no</td>
<td>1</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>Novus PR4515/4615</td>
<td>3</td>
<td>no</td>
<td>1</td>
<td>100</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>Novus 4520</td>
<td>4</td>
<td>yes</td>
<td>1</td>
<td>0</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>Novus PR4525</td>
<td>4</td>
<td>yes</td>
<td>1</td>
<td>100</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>National Semiconductor</td>
<td>NS 4640</td>
<td>4</td>
<td>yes</td>
<td>3</td>
<td>0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Corvus</td>
<td>500</td>
<td>4</td>
<td>yes</td>
<td>9</td>
<td>0</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>APF</td>
<td>Mark 55</td>
<td>4</td>
<td>yes</td>
<td>9</td>
<td>0</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Omron</td>
<td>12-SR</td>
<td>4</td>
<td>yes</td>
<td>9</td>
<td>0</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

*No longer available
A FINE MATCH

The New DRAKE

MN-4C

Antenna Matching Network

A FINE MATCH for your Drake 4-Line, both operationally and in appearance.

A FINE MATCH for your beam, long wire, or balanced line antenna.

A FINE MATCH for a wide range of ham bands — 160 thru 10 meters — with generous out-of-band coverage for future expansions.

A FINE MATCH for your operating convenience. Front panel switch selection of various antennas, either with tuner in-circuit or by-passed. Any of the antenna positions can be switch-by-passed, not just the coax feed as in some other tuners. RF wattmeter/VSWR bridge for quick tune-up.

And a fine match for your wallet —
Drake MN-4C Matching Network — suggested am. net...

$165.00

Drake B-1000 Balun — suggested am. net...

$24.95

DRAKE MN-4C SPECIFICATIONS

- Frequency Coverage — All amateur bands 160-10 meters with generous out-of-band coverage for future expansions
- Power Capability — 250 watts continuous
- Input Impedance — 50 ohms (resistive)
- Load Impedance — 50 ohm coax with VSWR of 5:1 or less (3:1 on 10 meters) — 75 ohm coax at lower VSWR can be used — Long wire at low impedance, high impedance may be matched with optional Drake B-1000 Balun (switch selected) — Balanced feeders with optional Drake B-1000 Balun may be accommodated (switch selected) — MN-4C may be switch-by-passed regardless of feedline in use.
- Meter — Reads rf watts or VSWR (switch selected) — High accuracy
- Dimensions — 4½”H x 13” W x 8½”D (11.5 x 33.25 x 21.6 cm)
- Shipping Weight — 10 lbs. (4.55 kg)

R.L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017

Western Sales and Service Center, 2020 Western Street, Las Vegas, Nevada 89102 • 702/382-9470
high-impedance preamp
and pulse shaper
for frequency counters

Simple circuit for
improving your counter
from dc to
over 60 MHz using
readily available devices

Many of the inexpensive frequency counters on
today's market, as well as some of those built by
homebrew enthusiasts, could use some improve-
ment in the preamp and pulse-shaper circuit
(sometimes called the trigger circuit). This is the cir-
cuit that brings the input signal waveform to TTL
level (3.5 volts peak-to-peak). Often counters poten-
tially capable of counting to 40-50 MHz don't pro-
duce best results because of an inefficient input cir-
cuit. On the other hand, if the trigger works fine at
high frequencies, it shows some limitation in squar-
ing low-frequency signals. Kritter solved this prob-
lem by using two pulse shapers in his frequency
counter. Although this approach is quite satisfac-
tory, it can be impractical and expensive.

The circuit we're going to examine can process
any frequency between dc to over 60 MHz, providing
at the output a perfect square wave at TTL level.
Furthermore, it's not very expensive, because it uses
transistors and ICs available at most discount outlets.

circuit description

The input circuit (fig. 1) is a balanced amplifier
using two field-effect transistors. For dc stability,
the stages are dc coupled. These fets must be
selected for the same ID.² The absolute ID.² value
isn't critical but must be nearly equal for the two
devices.

The first stages are source followers, so the input
impedance is extremely high. At low-input signal
levels, when the two back-to-back protective diodes
don't conduct, overload protection is provided only
by the 2.2-meg polarization resistor. It would be
possible to increase the input impedance even more
by increasing this resistor value or by using bootstrap
polarization. However, I felt that this value was more
than adequate for amateur purposes.

The input stage drives a 733 IC which, according
to reference 3, is a differential video amplifier with a
bandwidth of over 100 MHz. The gain of this ampli-
plier is selectable by proper connection of pins 3, 4,
11, and 12 (the DIP package).

Three different gain values are possible without
adding external components: x10, x100, and x400.
The last has been chosen for this application. Even if,
in this case, the amplifier bandwidth is reduced

By Giuseppe Beltrami, I4YAF, Via Meloni 39,
I-41012, Carpi, Italy
slightly, it remains well over 50 MHz — more than sufficient for our use.

A 2N709 switching transistor follows the preamplifier and squares the signal. If you want to reach the maximum frequency that the pulse shaper can handle, this transistor is highly recommended. It’s fast. Some attempts that have been made to use other types of transistors (for example, 2N914, 2N2368) for processing 60-MHz signals haven’t been very satisfactory. So I highly recommend the 2N709 if you don’t want problems. Of course, I haven’t tried all the available switching transistors, so there are many substitution possibilities if you like to experiment. If you have some computer transistors, try them; you might obtain even better results.

The last stage is quite conventional. It is a TTL translator using two sections of a high-speed quadruple NAND gate (type 74H00). For this application I’ve tried several ICs made by different manufacturers. Those that gave the best results were a Texas Instruments SN74H00 and a National Semiconductor DM74H00. I also tried some Schottky devices (74S00). All performed well, even at higher frequencies.

The circuit requires a supply that delivers plus and minus 5 volts. Without an input signal, the input transistor drain current is 18 mA from the negative side and 45 mA from the positive side, which increases to 63 mA with a strong input signal. Tests showed that the circuit was not too sensitive to an unregulated supply, so the filtering doesn’t have to be elaborate. Of course devices such as the 320- and 340-series voltage regulator ICs can be used to solve a power-supply problem at a reasonable price. The only recommendation is to avoid any possibility of false counting by bypassing the positive supply as closely as possible to pin 14 of the TTL IC.

construction and alignment

The prototype was constructed on a 3 x 1.5-inch (8.2x4cm) board (fig. 2). The component layout shown in fig. 2B is slightly different from that in the photo because of some improvements made after the photo was taken. The second trimmer resistor on the PC board was a former polarization control for the level translator, which was disconnected after some tests.

The only alignment required for the circuit is the regulation of the trimmer pot, R1. With the counter connected at the output and a signal source (grid-dip meter or signal generator) at the input, adjust R1 for maximum sensitivity at the highest measurable frequency. With proper alignment, the input sensitivity must be better than 100 mV in the range from a few
MHz to at least 40 MHz, decreasing to about 150 mV at the lower (DC) and upper limit (66 MHz in the prototype).

counter improvements

Some counters using 7400-series ICs may not cover frequencies higher than 30 MHz. It's now time to update them using faster ICs provided by modern technology. Substitute the input gate of the counter (it may be a 7400 or a 7410, perhaps a 7420) with the Schottky TTL equivalent: 74S00, 74S10, or 74S20. The substitution was direct and required no wiring change. Then substitute the first decade divider (7490) with the faster type 74196 or 74S196. Here the connections are different, so you must have a little patience and, following the schematic of fig. 3, make the modifications needed on the PC board. The 74196 IC requires a reset pulse inverted with respect to that required by the 7490. If you have an unused NAND or inverter circuit in one of the other ICs, use it to invert the reset pulse; otherwise use one of the two NAND gates not used in the pulse-shaper circuit. With these simple modifications, your frequency counter can now display at least 50 or 60 MHz. Don’t forget that some ICs are now available that permit scalers for GHz frequencies. With a pair of these ICs

and your improved counter, it will be possible to make precise measurements well into the microwave region.

references

ham radio

April 28, 29, 30.
At Hara Arena, Dayton, Ohio
This year's Dayton Hamvention promises to be the biggest and best yet!

Start with more exhibit and flea market space than before. Then: informative programs • new products • technical sessions • ARRL and FCC forums • special and group meetings • ladies' programs • transmitter hunts • total value of prizes exceeds $15,000.

Top it all off with the Grand Banquet, Saturday evening April 29.

If you have registered within the last 3 years you will receive a program and information brochure in March.

Admission $3 in advance, $4 at the door. Saturday night banquet $8 per person. Flea Market space $5 to $8 per space depending on number of spaces. At door only. Make check payable to: Dayton Hamvention, F.O. Box 44, Dayton, Ohio 45401.

For special hotel/motel rates and reservations information write to above address. Inquiries: call 513-854-4126.

See you at the world's largest Ham Convention!
So You Agree

the answer is MAXI

The only No-Compromise Antenna Tuner on the market

Where else can you find all these features?

- Presents 50-75 ohm resistive load to your transmitter using virtually any antenna system
- Improved ultimate transmatch circuit
- Continuous coverage 1.7-30 MHz, including MARS plus much more
- Rotary inductor (28 UH)
- Dual 500 pF capacitors, 6000 volts peak to peak
- Handles 3 kw PEP
- Heavy duty custom balun transformer
- Matches unbalanced coax lines, balanced open-wire or twin-lead lines, and random length end-fed wires

Cast aluminum counter dial on rotary inductor, 0-99.9 turns
- 6 to 1 ratio vernier drives on both capacitors for velvet-smooth tuning
- 0-100 logging scale on verniers for accurate resetability
- Monimatch SWR metering
- Available in kit form or assembled
- One year warranty!
- 14½ inches wide, 6½ inches high, 13½ inches deep, 15 pounds
- Custom vacuum variable designs and individual components available

Maxi Tuner is available with or without SWR meter, wired or in kit form and is competitively priced — all options are under $300. Send for descriptive brochure today!

Export inquiries invited — Ideal for Military, Industrial, Scientific and Coastal off-shore users —

Communications Technology Group®
Post Office Box 103, Rockville Centre, N.Y. 11570 — Phone (516) 536-5724

See Our Booth at all the popular Hamfests
Wide-range capacitance meter

A portable test instrument that combines three modes of capacitance testing using just a few components.

Here's an instrument for the experimenter that combines three modes of capacitor testing into a portable unit, which uses readily available devices: two 555 timer ICs, a 2N5484 fet, and a CA3140 operational amplifier.

Features

With the instrument described you can apply a polarized voltage of a few volts to the capacitor under test, one side of which is grounded. A single unregulated 9-volt power supply is used. Capacitance readout is linear.

Three testing modes are available: low capacitance (to 1 μF), high capacitance (to 2500 μF), and a logarithmic indication of the test-capacitor leakage current with up to 8 volts applied. Let's take a look at the circuit (fig. 1).

Low-capacitance measurement mode (to 1 μF)

U1, an NE555, operates as a clock, which provides negative-going pulses at about 350 per second to trigger U2, also an NE555. This action unclamps the test capacitor, allowing it to charge through a switch-selected resistor, until it reaches half the supply voltage. At this point U2 resets, discharging the capacitor through pin 7. During the charging period, U2 pin 3 is high (about 8 volts), and the duration of this high state is directly proportional to the test capacitance.

The resulting rectangular waveform can be used to drive a 1-mA meter directly through a 5k trimpot for a simplified circuit. In this instrument, the high signal is attenuated to 0.6 volt across silicon diode CR1 at the noninverting input of U3, a CA3140 op amp with mos input. U3 operates as a unity-gain buffer, which feeds the meter through calibrating trimpot R6. Meter deflection is proportional to the average value of the rectangular waveform output from U3 and is therefore proportional to the capacitance.

Supply voltage is noncritical because:

1. U1 clock frequency is, for practical purposes, independent of voltage.
2. The reset level of U2 pin 6 is at one-half the supply voltage, which compensates for voltage-change effects on the charge rate of the test capacitor through the switched resistors.
3. CR1 operates as a simple regulator, limiting the high signal input to U3 to 0.6 volt.

With no test capacitor applied to the circuit, about 30 pF of internal capacitance exists at U2 pins 6 and 7 (plus strays). To prevent this capacitance from causing a substantial residual reading on the lower ranges, a negative capacitance is used to cancel the internal capacitance. This unlikely device is simulated by C3, a 100-pF capacitor, which is connected not to

By P. H. Mathieson, M.I.E. Australia, JAARS, Box 248, Waxhaw, North Carolina 28173

February 1978
ground but to Q1/Q2 output, which has a small positive voltage gain and a low output impedance. The current through C2 is equal and opposite to that through the residual 30-pF capacitance.

To calibrate, use a known accurate capacitor giving a high deflection on the 0.01 or 0.1 μF ranges. First adjust negative-capacitance trimpot R1 so that the source of Q1 is at the top end of R1. Then calibrate by adjusting R6. There may be a small residual zero error caused by the minimum pulse width from U2, which can be offset by the addition of R7, a 470 k in my instrument. Now switch to the 100-pF range with a known capacitor of 10-20 pF connected and adjust negative cap trimpot R1 until the meter reads the correct value, showing that the strays have been cancelled. The readings are then accurate to a few pF.

high-capacitance measurement mode (to 2500 μF)

This mode uses a single-shot method. U1 is not required. When +9 volts is switched on, U2 is triggered by the momentary low on pins 2 and 4 caused by the uncharged capacitor, C2. As in the previous mode, a high of 0.6 volts is applied to the noninverting input of U3 until the capacitor under test is charged to half the supply voltage. During this period, U3 behaves as an accurate integrator using low-leakage capacitor C4 in the feedback loop. At the end of the high input period, U3 output voltage will be proportional to the duration of that period and therefore to the test capacitance.

Accurate high-value capacitors are difficult to find, so calibration using trimpot R5 is best done with values around 1 μF. Leakage resistance of the test capacitor extends the charging time, causing a false high reading.

After the integrating period the meter should remain stationary while the reading is taken. If drift is a problem (assuming feedback capacitor C4 is not leaky) it may be minimized by correcting the offset in the U3 input stage. Try a 10k resistor R3 from U3 pin 1 or 5 to ground and adjust for minimum drift.

leakage mode

This mode produces a logarithmic indication of the test capacitor leakage current with up to 8 volts applied. The lower end of the capacitor is disconnected from the supply minus, and the leakage current now flows through limiting resistor R8 and diode CR1. The voltage across CR1 bears an approximately logarithmic relationship to the current flowing through it. U3 is again used as a unity-gain buffer, and trimpot R4 is set to produce full-scale deflection with a short circuit across the test terminals. U1, U2, and the negative capacitance amplifier are disconnected from the negative supply line.

Electrolytic capacitors that have remained unused for some time can be reformed in the leakage test mode before their capacitance is measured. The logarithmic readout can be interpreted by observing the readings obtained with known resistors across the test terminals, ranging from a few kilohms to hundreds of megohms.

![Circuit Diagram](image-url)

fig. 1. The three-mode capacitor tester. Circuit features linear readout and common devices. Author's original was built on perf board but with a little ingenuity an etched board could be used. See table 1 for switch configurations and positions.
Switch arrangement for the portable capacitance meter.

<table>
<thead>
<tr>
<th>switch</th>
<th>configuration</th>
<th>position</th>
</tr>
</thead>
</table>
| S1 | 3-pole, 3-position, 2 section | A (low-capacitance mode)
B (high-capacitance mode)
C (leakage mode) |
| S2 | 1-pole, 5-position | mode A
mode B
mode C
μF
μF | A 0.0001 0.25 | B 0.001 2.5 | C 0.01 25.0 | D 0.1 250.0 | E 1.0 2500.0 |
| S3 | SPST (test)
ltestl |

The capacitance ranges are in steps of 1:10. Intermediate ranges are most economically obtained as follows. In mode A, switching to a larger clock timing capacitor, C1, will permit larger capacitances to be read on scale. In mode B, switch resistor R2 to a higher value, which slows the integrating rate and thus allows a greater full-scale capacitance reading. Ten-thousand μF is probably a practical limit because of leakage.

Use accurately scaled values for the switched range resistors connected to S2 for best accuracy.

construction notes

The CA3140 op amp was chosen because of its very high input impedance and because both inputs and the output can be swung down to the negative supply line, eliminating the need for a separate negative supply. The positive supply may be varied from +6 to +12 volts with little effect on calibration. Current drain is 20-30 mA for capacitance measurements and a few mA for leakage measurements.

The original circuit was built on matrix board with the layout approximately following this schematic. Because fast rise times are involved, several 0.01 μF bypass capacitors are included on the board, and leads should be kept short and neat. The op amp is zener protected — keep a shorting ring around the pins while soldering! If a shorting-type wafer switch is used for S1, insert a 470-ohm current-limiting resistor in series with U2 pin 3.

The test points can be alligator clips on short flexible leads fed through grommets in the front panel. Take care to minimize stray capacitance to ground from the plus test point.

Finally, never apply reversed power-supply voltage to the circuit unless you want to buy three new ICs. A reverse-biased 1-amp diode across the 9-volt supply will provide protection.
solid-state vhf-uhv transmit/receive switch

New PIN diode device provides good isolation and low VSWR at frequencies up to 1000 MHz

Microwave Associates recently introduced a solid-state T/R switch for vhf-uhf applications. The device, designated the MA8334, makes use of PIN diodes in a hybrid rf circuit which is small and easy to use. This single-pole double-throw switch is rated at 50 watts CW and has a nominal 50-ohm impedance. Frequency of operation is from 20 to 1000 MHz. Specifications list typical insertion loss at 0.2 dB with 1.2:1 VSWR from 20 to 500 MHz.

After evaluating the MA8334 on the test bench, I decided to replace the conventional relays in a solid-state 2-meter transverter I had recently built. The circuit of fig. 1 was used. To operate a switch path, approximately 50 mA forward bias is applied; removal of the bias releases the switch path. Capacitors C1 and C2 provide isolation of the dc bias and the rf source feeding the switch. These capacitors should have low rf loss and be able to handle the power used. I used button micas in my design. The inductance of the rf choke is not critical, and anything around 3 μH should work satisfactorily. Capacitors C3 and C4 are feedthrough bypass types. The 220-ohm resistors provide the correct bias current when using a 12-volt power supply; their values will have to be adjusted accordingly if another supply voltage is used.

Operation of the MA8334 has been completely satisfactory. With the circuit of fig. 1, the measured insertion loss was 0.25 dB, and the VSWR is 1.23:1 when operated at 50 ohms. Isolation between ports has not been measured, but from observation I would judge it to be at least the 37 dB specified by the manufacturer.

To conclude, this device provides interesting possibilities for vhf-uhf switching at power levels up to 50 watts CW. With proper component selection, the switch should perform well on 432 MHz. When compared with conventional switches, the MA8334’s compact size, rugged construction, and reliability give it a definite advantage. The present single-quantity cost is $19.00, but with increased production the price is expected to drop significantly. It may be purchased through any dealer handling Microwave Associates products.

fig. 1. Circuit diagram of a solid-state T/R switch for 144 MHz. The MA8334 can be used at other frequencies up to 1000 MHz by proper choice of circuit constants. The lead marked with an asterisk is identified by a diagonally cut end; the other two leads may be used interchangeably for either transmitter or receiver.

50 watts CW. With proper component selection, the switch should perform well on 432 MHz. When compared with conventional switches, the MA8334’s compact size, rugged construction, and reliability give it a definite advantage. The present single-quantity cost is $19.00, but with increased production the price is expected to drop significantly. It may be purchased through any dealer handling Microwave Associates products.

ham radio

By Tom Reddeck, W4NHH, Route 9, Box 515, Greensboro, North Carolina 27409
For SSB and CW...10, 15, 20, 40, 80, and 160 meters, full coverage... Plus WWV, 5, 10, 15 MHz... Up to 10 additional 500 kHz ranges by adding crystals... 350 watts P.E.P. and CW input power... Broadband design, preselector tuning only... Digital frequency readout (optional), and standard analog dial... High receiver sensitivity... Super selectivity... Exceptional Dynamic Range... CW Filter... QSK Full Break-In CW... Sidetone... RIT... AF Notcher... Noise Blanker... ANL... VOX... Operates directly from a 12 to 14 volt DC supply, ideal for mobile and portable work... Optional mobile mount provides quick plug-in for going mobile.

MADE IN U.S.A. Every Atlas transceiver is designed and manufactured in the U.S.A. BUY THE BEST... BUY AMERICAN.

CUSTOMER SERVICE... SECOND TO NONE... That is our motto. When you buy an Atlas product... you inherit the best service policy there is. Ask the ham who owns one!

Model 350-XL (less options) $995.
Model DD6-XL Digital Dial $229.
Model 305 Auxiliary VFO $155.
Model 305PS AC Power Supply $229.
digital scanner for 2-meter synthesizers

Complete construction details plus other unusual ideas for integrating a digital scanner with a 2-meter synthesizer.

After operating a synthesizer, you begin to realize the number of 2-meter repeater channels that exist and also how long it takes to turn the switches through all channels. The digital scanner presented in this article was designed to permit easy, hands-off, monitoring of the 2-meter fm band. It can also serve as a good indicator of 2-meter band conditions by listening for repeaters outside your local area.

The features incorporated in the scanner were based on several months of on-the-air operation of a prototype in an area heavily populated with repeaters. It scans all 2-meter repeater input and output frequencies between 146.01 MHz and 147.99 MHz, in 30 kHz steps; all 67 frequencies are scanned in about 6 to 8 seconds. The frequency is also read out directly by five, 7-segment LED displays.

Operating features include three modes of scanning, A, B, and C. Mode A scans until a signal is received, at which time the scanner stops, listens for about 3 seconds, and then continues. This mode allows rapid scanning of all channels to determine activity. Mode B scans until a signal is received and waits until the signal is gone before continuing the scan. Mode C is the same as Mode B except that a 3-second delay occurs before continuing the scan. Mode C allows monitoring of repeaters that require the repeater carrier to drop between transmissions. To prevent the scanner from locking-up on a very active repeater, a timer is incorporated to ensure that the scanner does not stay on any frequency more than 3 minutes.

A latch function is provided to permit locking a synthesizer receiver to the scanner’s receive frequency by command. If the synthesizer has automatic transmit offset capability, this feature can be used to good advantage. In my case, I’ve wired the function to a momentary type toggle switch but it’s readily adaptable to a push-to-talk (PTT) mike switch. Wire

By Marion D. Kitchens, K4GOK, 7100 Mercury Avenue, Haymarket, Virginia 22069

fig. 1. Functional block diagram of the digital scanner.
the latch function to the PTT line and when a QSO is to be joined, just push the mike button and the synthesizer is on frequency. The scanner is latched or locked on this receive/transmit frequency, even when the PTT is released. Scanning will continue when manually commanded; the continue command will cause the scanner to run continuously, even though a signal may be present, until the command is removed. If the scanner has stopped on an undesired frequency, a quick tap of the continue switch will move the scanner one or two channels up frequency to where it will resume scanning.

circuit description

The circuit diagram of the scanner is shown in fig. 1. A 555 timer is used as an oscillator to drive three 7490 decade counters. The BCD outputs of the counters are applied to three 7475 latches. The oscillator output is also applied to another 7490, connected as a divide-by-three circuit, which provides a strobe to the latches on every third count. A time delay is provided by a 74121 one-shot multivibrator to insure that the inputs to the latches have settled.

The basic timing diagram is shown in fig. 2 that indicates the signal relationship between the oscillator, the first decade counter, the divide-by-three counter, and the one-shot delay circuit. The output from the 7475s is a BCD output occurring in steps of three: 1, 4, 7, 10, 13, etc. The latch outputs are also applied to 7446 BCD to seven-segment decoders that drive the displays, and to the synthesizer inputs in place of the frequency control switches. This section of the scanner is standard for TTL counting and display circuits.

Two things are sufficiently different, however, that

fig. 2. Timing diagram of the scanner. The divide-by-three circuit sets the channel spacing at 30 kHz.

fig. 3. Functional diagram of the 3-minute and 3-second timers. They control the time that the oscillator runs and when it is inhibited.
they should be explained. First, the GLB type synthesizers do not utilize a complete BCD signal from the frequency switch; a portion of the BCD signal is hard wired within the synthesizer while the remaining signal lines are controlled by the frequency switches. Table 1 shows the BCD inputs required at the synthesizer divider chain to produce the frequencies indicated. Examination of the table shows that some of the data does not change for frequencies between 146 and 147.99 MHz. For example, to scan from 146.01 MHz to 147.99 MHz requires only the appropriate change between BCD 6 and BCD 7. The 7490 decade counter supplying the MHz data then has to supply the 0 and 1 count data of column d for the MHz BCD data as shown in Table 1. The 2 count of this decade counter then represents 148.00 MHz and is used to reset all three 7490 decade counters and the 7490 divide-by-three circuit.

The second major difference is the manner in which the divide-by-three counter is reset and its resulting operation. Outputs B and D of U6 are OR-wired via the two diodes to the input of the 74121. The A and B outputs of U6 are used to reset this counter. The resulting circuit then functions according to Table 2. The 148-MHz reset signal from the third decade counter (U8) presets the divide-by-three circuit to count nine. Upon receipt of the first pulse from the oscillator, the circuit goes to count 10, or zero since no carry circuit is used. At count zero the output goes low and the 74121 sends a signal to latch the 7475s. The correct BCD data for 146.01 MHz is now stored in the latches.

The fourth pulse from the oscillator causes outputs
A and B of U6 to be high and the 7490 resets itself to zero. At this point, the output from the diode OR circuit goes low and strobes the latches. The 7475s now have BCD data for 146.04 MHz stored in them.

Three more pulses from the oscillator will again trigger the 74121 and the 7475s, providing BCD data for 146.07 MHz. The sequence continues for frequencies in 0.03 MHz steps until 148.00 MHz is reached, whereupon the divide-by-three circuit is reset to nine and the sequence starts over.

Two timing circuits are used to provide the three operating modes described earlier. One 555 timer provides a 3-second delay and another timer provides about 3-minutes delay. A receiver squelch circuit is sensed by the 339 voltage comparator whose output controls the 3-second timer. Both true and inverted outputs are obtained from the 339. Fig. 3 shows a partial schematic of the timer circuitry. With the dpdt switch in position A, pins 2 and 4 of U2 are connected to the voltage comparator. An output pulse will be generated if the pins receive a positive going signal from the comparator. The duration of the pulse from U2 is determined by the values of \(R_t \) and \(C_t \). The output pulse will terminate after this time even though the input is still present. If the input signal is less than the \(R_t C_t \) determined pulse duration.

| Table 2. Outputs from the 7490 showing the divide-by-three operation. |
|-----------------------------|---------------------|------------------------|
| **inputs** | **7490 outputs** | **circuit output** |
| | d | c | b | a | |
| Reset to 9 | 1 | 0 | 0 | 1 | 1 |
| Oscillator input count | 1 | 0 | 0 | 0 | 0 |
| | 2 | 0 | 0 | 1 | 0 |
| | 3 | 0 | 0 | 1 | 1 |
| | 4 | 0 | 0 | 0 | 0 |
| | 5 | 0 | 0 | 1 | 0 |
| | 6 | 0 | 0 | 1 | 0 |
| | 7 | 0 | 0 | 0 | 0 |

February 1978
tion, the output will terminate with the input. The output from the timer is used to inhibit the oscillator; this causes the scanner to stop on the frequency that opened the transceiver squelch. In this mode the scanner stops only for a duration determined by R_t and C_{in} in this case 3 seconds (or less if the signal is present for less than 3 seconds).

With the dpdt switch in position B, the inverted squelch signal is applied through the 1-meg resistor to only pin 2 of the 555. In this mode, the 555 output follows the squelch signal, without delays, as long as the squelch signal is longer than 3 seconds. The 555 output exists for at least 3 seconds even though the squelch input may be shorter. This is the mode used when it is not desired to wait for a return call after a repeater drops.

One section of the 339 voltage comparator is used as an amplifier and connected across the timing capacitor of U2. When the dpdt switch is in position C, the amplifier has an input and becomes active. A signal from the squelch drives the amplifier output to ground potential, thereby maintaining C_t in a discharged state until the squelch is present, and for a period afterwards that is determined by C_t and R_t. The receiver listens as long as the squelch is open and then for an additional period, 3 seconds in this case, waiting for a return call. This mode is used with repeaters that require a repeater carrier drop between transmissions. The timing circuits used in the scanner were based on reference1 and the data in the Signetics data books.2

The 3-minute timer is used to prevent the scanner from locking up indefinitely on very active repeaters. The 3-minute 555 timer (U3) senses the output from the 3-second timer, as shown in fig. 4. It operates just as the 3-second timer does when in mode A.

Close-up view of the scanner portion of the synthesizer showing the operating controls.
The main circuit board has been split into two separate portions with the display board connected by the 180-ohm current-limiting resistors.

A positive-going signal at its input (pins 2 and 4 tied together) causes initiation of its 3-minute output pulse. The 3-minute timer's output is terminated when the input is removed or after 3 minutes, whichever is less. The output of the 3-minute timer is applied to one input of a 2-input NAND (U4B) gate to control passing or inhabiting of the 3-second timer output, which is connected to the second input of the NAND gate. The output from the NAND gate (pin 6) controls the scanner oscillator. The squelch input to the amplifiers is inhibited by a second NAND gate (U4A) when the 3-minute timer has expired and the 3-second timer's output still exists, thereby resetting both timers.

construction

Construction of the scanner is rather straightforward with use of the printed circuit board. A full-size circuit-board layout and parts placement diagram are shown in figs. 5 and 6, respectively. The circuit board can be built as a single unit, or can be cut and assembled into a compact unit as shown in the photographs. Since IC sockets usually cost more than the ICs themselves, soldering directly to the circuit board is recommended.

The circuit board should be built and tested in sections. The recommended sequence is to install the squelch amplifier, timers, and latch/continue chain, and then follow with the 555 oscillator, divide-by-three counter, and one-shot chain. A 1-meg pot should be temporarily installed in place of R₁. This pot will later be adjusted to suit the builder's transceiver and then replaced with a fixed-value resistor.
resistor. At this point in construction, a 30-Hz signal should be observed at the oscillator (U5, pin 3) and a 10-Hz signal at the output from the one shot (U7, pin 6). The oscillator should also respond to squelch input signals. The 7490 counters and the 7475 latches can now be installed. Pin 14 of the 7475s must be removed from the package. The pin was removed to facilitate circuit board layout; jumpers or, the foil side of the board connect pins 4 and 13 of the latches and between pins 3 and 9 of U10. Check that the 7490s are counting down and data is being transmitted through the latches. Install the decoders and verify the correct information exists at the outputs.

The seven-segment LED displays are mounted on a small, separate printed-circuit board. Note that the 10-MHz display (the number 4) is mounted inverted. The display circuit board will accommodate most of the SLA-1, MAN-7, or 707 displays with a common anode. Be sure to install the jumper wires on the foil side of this circuit board. The displays should first be mounted to the circuit board, then make the connections between the display circuit board and the main circuit board. The main circuit board can be cut near the 7476s and the 180-ohm resistors used to mount the display board to the main circuit board. Make these connections to suit your particular installation.

The control switches should now be wired and the completed scanner checked out before connection to the synthesizer. Use a regulated 5-volt power supply capable of providing about 750 mA. An independent LM309K or similar regulator, supplying power only to the scanner, is recommended.

The scanner outputs from the 7475s are wired to the synthesizer as shown in fig. 7. The synthesizer BCD transmit, BCD receive, and scanner outputs are OR wired through the diodes to the synthesizer programmable divider. When the scanner is in use, neither the synthesizer BCD transmit or receive diodes can have voltage applied; their anodes must be either open or grounded. Fig. 8 shows the circuit used in my homebrew 2-meter TTL synthesizer.

Another method is to replace the synthesizer...
receive select switch (used for selecting between the two sets of BCD switches) with a double-throw, center-off switch. This switch must be in the off position when the scanner is in use. An alternative to both of the above methods is to set the BCD switches for all zero outputs, usually 144.00 MHz. The squelch input to the 339 comparator (U1) should be connected, with shielded cable, to a point in the transceiver where the voltage goes high when the squelch opens.

Power can be applied to all portions of the scanner and correct operation of the control switches, display, etc. should be verified. The 1-meg pot temporarily installed in place of R, should initially be set at its maximum resistance. It should then be adjusted for the maximum scan rate, as dictated by the lockup time of the external synthesizer. After satisfactory operation is obtained, the pot should be replaced by the next largest, fixed value resistor. A 470k resistor can be used for R, with most transceivers and synthesizers if maximum scan rate is not of particular importance.

circuit variations and additions

A number of practical and interesting circuit and functional variations are possible. This section will present several variations and additions that have occurred to me. Some have been tried, while others are only ideas that you may want to develop to suit your own particular needs.

One variation is to have the digital display indicate both the scanner frequency and the synthesizer BCD switch frequency. This can be accomplished by taking the BCD inputs to the 7446 seven-segment decoders from the synthesizer at the programmable divider inputs. The display will indicate the scan frequency when the scanner is in operation; when off, the display will indicate the synthesizer receive frequency when receiving and the transmit frequency when transmitting. Pull-down resistors may have to be added at the 7446 inputs; the 7446s and displays must, of course, have power when the scanner is off.

Scanning in 10-kHz steps can be obtained by inhibiting or bypassing the divide-by-three circuit. This feature will provide nearly continuous coverage of the 2-meter band.

Fig. 9 shows simple circuit changes that will eliminate scanning of the 147-MHz repeater input frequencies. This change will reduce the scan time by about 2 seconds. No comparably simple way was found to eliminate scanning of the 146-MHz repeater input frequencies.

Other variations include elimination of the scan mode control switch and the latch/continue switch. The scanner will be in mode B (does not wait for a return call) if the mode switch is simply omitted. Connecting a jumper between points 102 and 105 results in mode C operation (wait for a return call). The latch/continue function is useful and its elimination is not recommended unless minimization of panel space is desired.

Those builders needing the absolute minimum panel space could eliminate the control switches and use 0.1-inch (2.5mm) high displays. Only the 100 kHz and 10 kHz digits need displays. A discrete LED could be used to indicate 147 MHz. The synthesizer

![Circuit diagram](image)

fig. 9. Circuit changes to prevent the counters from covering the 147-MHz repeater receive frequencies.

ON/OFF switch could be a center-off dpdt switch supplying power only to the synthesizer when in one on position, and power to the synthesizer and scanner when in the other on position.

Another addition that could lead to some interesting possibilities is an automatic transmit frequency offset feature. Digital subtraction of 600 kHz could be provided for 146 MHz repeater frequencies and 600 kHz addition provided for 147 MHz repeater frequencies. A center-off, double-throw switch, marked REPEAT-SIMPLEX-INVERT could be used. The latch/continue control could then be used to place the synthesizer on frequency and latch it there. The bulky BCD transmit and receive switches could be eliminated, and a very compact, highly functional synthesizer/scanner could be built.

These variations and additions are presented to encourage building and experimenting among amateurs. I hope that others will build upon and add to these efforts, and eventually present the results for the benefit of all amateurs.

references

ham radio
The TS-520S... still the most popular transceiver in the world, is a solid foundation for an expanding series designed to please any ham... from Novice to Extra.

FULL COVERAGE TRANSCEIVER
The TS-520S provides full coverage on all amateur bands from 1.8 to 29.7 MHz. Kenwood gives you 160 meter capability, WWV on 15,000 MHz., and an auxiliary band position for maximum flexibility. And with the addition of the TV-506 transverter, your TS-520S can cover 160 meters to 6 meters on SSB and CW.

OUTSTANDING RECEIVER SENSITIVITY AND MINIMUM CROSS MODULATION
The TS-520S incorporates a 3SK35 dual gate MOSFET for outstanding cross modulation and spurious response characteristics. The 3SK35 has a low noise figure (3.5 dB typ.) and high gain (18 dB typ.) for excellent sensitivity.

NEW IMPROVED SPEECH PROCESSOR
An audio compression amplifier gives you extra punch in the pile ups and when the going gets rough.

FINAL AMPLIFIER
The TS-520S is completely solid state except for the driver (12B Y7A) and the final tubes. Rather than substitute TV sweep tubes as final amplifier tubes in a state of the art amateur transceiver. Kenwood has employed two husky 5-2001A (equivalent to 6146B) tubes. These rugged, time proven tubes are known for their long life and superb linearity.

The Kenwood family is growing! The TL-922, a brand new linear amplifier, is now a reality.

Give yourself the "big signal" that commands attention on today's crowded bands. The TL-922 runs the full legal limit on the ham bands from 160-10 meters and is compatible with most amateur excitors. The TL-922 is a must in any Kenwood station.

Make yourself heard like you've never been heard before, with the Kenwood TL-922 linear amplifier.
HIGHLY EFFECTIVE NOISE BLANKER
An effective noise blanking circuit developed by Kenwood that virtually eliminates ignition noise is built into the TS-520S.

VERNIER TUNING FOR FINAL PLATE CONTROL
A vernier tuning mechanism allows easy and accurate adjustment of the plate control during tune-up.

RF ATTENUATOR
The TS-520S has a built-in 20 dB attenuator that can be activated by a push button switch conveniently located on the front panel.

PROVISION FOR EXTERNAL RECEIVER
A special jack on the rear panel of the TS-520S provides receiver signals to an external receiver for increased station versatility. A switch on the rear panel determines the signal path. The receiver in the TS-520S is any external receiver.

AC POWER SUPPLY
The TS-520S is completely self-contained with a rugged AC power supply built-in. The addition of the DS-1A DC-DC converter (optional) allows for mobile operation of the TS-520S.

EASY PHONE PATCH CONNECTION
The TS-520S has 2 convenient RCA phono jacks on the rear panel for PHONE PATCH IN and PHONE PATCH OUT.

CW FILTER (OPTION) - CW-520
The CW-520 filter can be easily installed and will provide improved operation on CW.

AMPLIFIED TYPE AGC CIRCUIT
The AGC circuit has 3 positions (OFF, FAST, SLOW) to enable the TS-520S to be operated in the optimum condition at all times whether operating CW or SSB.

DG-5 (Digital Display)
The Kenwood DG-5 provides easy, accurate readout of your operating frequency while transmitting and receiving.

VFO-520S
The VFO-520S is a solid state remote VFO designed to match the TS-520S. It allows VFO controlled cross channel operation when connected to the transceiver. A built-in RIT circuit, with an LED indicator, permits receiver incremental tuning.

SP-520
The SP-520 is an external speaker designed for use with the TS-520S in place of the transceiver's built-in speaker for added clarity.

AT-200
Here's a new and versatile accessory from Kenwood that belongs in every station. The AT-200 is an antenna tuner, but it's also much more. It's an antenna switch, an SWR bridge and an in-line wattmeter. The AT-200 reduces the clutter and increases the operating efficiency of your station... and at a surprisingly moderate price.

TV-506
An easy way to get on the 6 meter band with your TS-520/TS-820/T-5990 series and most other exciters. Simply plug it in and you're on... full band coverage with 10 watts output on SSB and CW.
modifying the
Collins 51J receiver
for ssb reception

If you’re lucky enough
to have one of the
51J-series receivers,
here’s an easy way
to update it
for single-sideband reception

One of the most popular surplus receivers is the Collins 51J series, available in limited quantities through MARS and some surplus stores. Designed in the mid 1950s, the stability, readout accuracy, and general excellence of this receiver literally revolutionized receiver design, setting the trend for most of the modern ssb receivers and transceivers. The immediate fallout from the 51J design was the well-known Collins 75A series of amateur-band-only receivers, followed by the present S-line.

The many virtues of the 51J series receivers do not include good ssb reception. An important modification is the inclusion of a product detector and alteration of the automatic gain-control loop to accommodate ssb signals. This article covers these modifications as well as other minor changes that make the 51J into a first-class receiver suitable for amateur service, including general-coverage operation.

Five models of the 51J receiver are available. The 51J-1 is quite rare; probably the quantity made was small. The 51J-2 and 51J-3 are fairly common on the surplus market; differences between the receivers are minor. The military R-388/URR is similar to the 51J-3. The 51J-4 was the latest production model and incorporates mechanical filters in the i-f system. A choice of three filters may be made with a panel switch.

At one time Collins made an adapter (Collins part number 354A-1) for the 51J-2 and 51J-3 that would modify the receivers for inclusion of crystal filters. The adapter is no longer in production.

The first job for the owner of a 51J is to align it correctly and test all the tubes. Complete alignment information is included in the Collins receiver manual and also in the military technical manual, Radio Receiver R-388/URR, TM-11-854, sometimes obtainable through MARS or surplus dealers.

receiver sensitivity

A common fault in most 51J receivers I’ve inspected is that overall gain is low and the receiver seems dead above about 15 MHz. Investigation has shown that receiver gain is reduced because of an uncommonly high bias voltage applied to the rf tubes. Bias is obtained from a voltage divider in the negative side of the high-voltage power supply (fig. 1). Normal bias voltage is -1.4 volts and, in the receivers tested, has usually run from -1.6 to -3.0 volts. This high

By William I. Orr, W6SAI, EIMAC, 301 Industrial Way, San Carlos, California 94070

66 february 1978
negative voltage lowers the gain of the rf stages, leaving the receiver lifeless. Bias voltage is developed across resistor R149, which is 820 ohms, 1/2 watt. In many receivers, this resistor looks to be overheated or measures abnormally high in resistance. The cure is to remove R149 (which is located on a terminal strip on the inside wall of the receiver, near the line cord) and replace it with a 2-watt resistor of the proper resistance, which will develop a voltage drop of 1.4 volts across it. You'll find the value will run between 700 and 1000 ohms, depending upon your receiver.

receiver PTO

On occasion a 51J may be picked up for a song because the PTO (permeability tuned oscillator) "doesn't work." The usual cause of malfunction is a collection of matchstick capacitors in the PTO (C005, C006 and C008), which tend to short circuit after a few years of service. These are 0.01-µF, 400-volt capacitors of a design no longer made. Replacing these capacitors with 0.01-µF, 600-volt disc ceramic capacitors will usually restore the PTO to operation.\(^1\)

the new product detector

Once the 51J has been aligned and is operational, the ssb modification may be added. The circuitry to

![Circuit diagram](image)

fig. 1. Agc and bias control portion of the 51J receiver. R149 establishes control-bias level. For a negative control voltage V109B and V111A operate below ground. Agc time constant is determined by R144 and C250B. External cathode-to-grid circuit (V111A) should be below 2 megohms after modification to prevent stray "gas current" in the 12AU7 from blocking the agc action. Audio amplifier bias is obtained from the negative source across R166.

![Circuit diagram](image)

fig. 2. Original 51J BFO circuit. A 6BE6 tube is substituted for the original 6BA6 (V114) to provide a product detector. Tube is turned off by switch S112, which short circuits the screen voltage to ground. (See reference 2 for more details on the tube substitution.)

be modified is shown in figs. 2, 3, and 4. The major alteration is in the beat-frequency oscillator (fig. 2), which is changed to perform as a product detector. To make this change, the receiver panel may have to be removed, as a new beat oscillator switch (S112) may be required. A 6BE6* is substituted for the 6BA6 BFO tube, and various circuit changes are made beneath the chassis. The final circuitry, after modification, is shown in fig. 4.

The first step is to start work on the BFO tube socket (XV114). Most Collins 51Js are wired with high-quality wire having a thin plastic coating, which can be easily damaged by a soldering iron. I suggest, therefore, that you use a small iron with a long, narrow point and proceed carefully so that you don't inadvertently burn any insulation on adjacent wires. Referring to fig. 2, remove the following components: R161 (33k), R160 (100k), R162 (2.2k), C218 (0.01 µF) and C219 (0.01 µF).

Next, capacitor C206 (5 pF) must be carefully disconnected from XV114 pin 5 and reconnected to pin 7. A 10k, 1/2-watt resistor is then connected between pin 7 and the adjacent ground lug. XV114 pin 2 is ungrounded and reconnected to the BFO transformer pin 5 (center pin) through the 220-ohm resistor and 0.01 µF combination.

The next step is to solder the 0.05-µF disc ceramic capacitors in place. One capacitor connects between pin 6 and the nearby socket ground post. The other, in the plate circuit, is attached to an existing terminal stud, which is screwed to the bolt holding the main filter capacitor socket. The 10k, 1-watt resistor is connected between the high-voltage terminal (pin 5 of C217B socket) and the terminal stud. The 47k, 1/2-watt resistor is placed between the stud and pin 5 of socket XV114.

*For additional information on the use of the 6BE6 product detector, see reference 2.
The final modifications at this point are to place the 0.1 \(\mu \text{F} \) filament bypass capacitor on the socket and revise the audio and agc circuitry.

audio-stage mods

The remainder of the modified circuitry is shown in fig. 4. The plate circuit filter components (two 470-pF capacitors and a 47k, 1/2-watt resistor) are mounted on a two-terminal strip placed under one bolt of coaxial socket J104 (marked if output). The 0.05 \(\mu \text{F} \) coupling capacitor is connected between this assembly and XV114 pin 5.

The 51J panel must now be removed to get at selector switch S112 (BFO OFF-ON) (fig. 5). If not, the switch will have to be replaced with the proper type (dpdt). The A section shorts the 6BE6 screen supply for am service. The B section switches the audio section of the receiver from the product detector to the diode detector, through limiter tube V112A. The audio takeoff point is XV112A pin 3.

To make the interconnections, three coax cables must be run from switch S112 to the rear of the receiver. For ease of wiring, the small-diameter RG-179/U is suggested. The outer braids of the three cables are grounded to the switch assembly on the panel. The cables are dressed into position and run to the respective termination points, at which place the shields are again grounded.

agc mods

To complete this step, capacitor C205A-B-C should be temporarily unbolted from the chassis and moved out of the way.

The agc loop in the receiver is designed to adjust the rf and i-f gain automatically for a-m signals. It must be modified for ssb reception. Pappenfus et al\(^2\) recommends an attack time of about 0.002 second and a release time of 0.2 to 2 seconds. This time constant can be closely approximated within the limita-

\[\text{fig. 4. Revised product detector and agc circuit. Caps are ceramic except for the time-constant cap, which is Mylar (see text). BFO injection, measured at pin 1 XV114 socket, should not be more than 10V rms. Oscillator voltage can be set by varying the 22k, 2W screen resistor. Signal injection level is set by the value of the resistance between XV114 pin 7 to ground.} \]

\[\text{fig. 3. Detector and i-f output amplifier schematic. V110A is connected as a diode detector. Audio is recovered across R151.} \]

\[\text{68 february 1978} \]
of the Edison effect and the migration of oxide from the cathode to the grid as the tube ages can lead to grid emission. An electron flow caused by grid emission (even if only a microampere or so) can seriously disrupt the bias level when the grid resistor is an unreasonably high value. One microampere, for example, flowing through a 2-megohm resistor produces a 2-volt drop, enough to alter the operating characteristics of the 12AU7 agc amplifier tube. The flow of grid current can block the agc line, rendering the receiver inoperative. W6PO recommended that not more than 2 megohms, and preferably less, be used in the agc time constant circuit.

To achieve the desired results capacitor C205B (0.1 μF), which is part of the timing circuit, must be increased to at least 1 μF. The use of a low leakage, Mylar capacitor at this point is recommended. The capacitor can be placed directly from the center terminal of C205B to an adjacent ground lug. The resistive portion of the timing circuit is made up of a germanium diode and two resistors. The attack time is set by the 2.2k, 1/2-watt resistor and the release time by the 1 megohm, 1/2-watt resistor. The 1N270 diode disconnects the attack resistor during the discharge portion of the agc cycle. This tiny network is made up and then placed between pin 3 of socket XV110B and the adjacent terminal of capacitor C205B (fig. 4).

testing

After the wiring is checked, the receiver should be tested on a-m to make sure that all original circuits are working. When the BFO switch is turned on, the BFO may be adjusted for good ssb reception. Once satisfied the receiver is working properly, you can check out ssb operation.

The first step is to check for BFO harmonics. With the antenna off, tune the receiver to 1 MHz, 1.5 MHz, and 2 MHz. The BFO harmonics should be heard weakly at the lower frequency and should be in the receiver noise level above 3 MHz. If the harmonics are loud enough to be troublesome, the BFO level should be reduced by increasing the value of the 22k, 2-watt screen resistor on the 6BE6. Once the BFO harmonics have been reduced to your satisfaction (about 2 or less divisions on the S meter at 2 MHz), you can check the product detector for signal overload.

With the constants shown, the signal from the product detector will be somewhat less than that from the a-m detector. The receiver has ample audio gain, so this presents no difficulty. You should be able to tune in a needle-banging ssb signal and receive it crisp and clean. If audio distortion shows up as a growl on speech, this indicates that the product detector is being driven too hard by the i-f signal. The remedy is to reduce the value of the 10k, 1/2-watt resistor in the rf input leg of the 6BE6 XV114 pin 7. In some cases, this resistor value will be as low as 1.2k for low intermodulation distortion.

The 51J receivers vary a bit from one production run to another, and changes in harness layout affect the oscillator level injection, oscillator harmonics, and intermodulation distortion. However, the values given in the schematic are representative and are a good place to start from.

parting thoughts

One baffling 51J receiver, after modification, overloaded on even the weakest ssb signal. A painstaking check revealed that some previous owner, anxious of wringing every decibel of gain out of the receiver, had changed the detector tap on transformer T105 from pin 6 to pin 4 (fig. 3). This upset the gain level of the receiver so that overload was inevitable. Changing the modification back to the original circuitry cured the trouble.

The modified 51J, especially if equipped with mechanical filters and a reduction tuning knob, is the equal of the best of today's ssb receivers. How many items of equipment, designed in the mid-1950s can equal that?

References

Ham Radio

February 1978
The functions of the hybrid active filter can be replaced by using individual operational amplifiers — the quad op amp now permits a package-by-package replacement.

Two recent excellent articles have described the construction of active filter circuits for CW and ssb receiving applications, using the Kinetic Technology type FX-60 hybrid, integrated circuit. As mentioned in K6SDX’s article, the KT1 FX-60 “Universal Active Filter” is a basic building block, incorporating three micro-power op-amps with internal chip resistors and capacitors forming multi-loop negative feedback transfer functions. By the addition of external resistors and/or capacitors, the nominal center frequency may be changed, and the outputs modified to simulate a variety of classic filter characteristics.

However, the FX-60 is not always easy to come by since it is a “cull” or production reject of the commercial series FS-60. The FS-60 rejects have one or more tolerances out of limits, but are perfectly acceptable for experimental and amateur applications; they carry the designation FX-60. The FX-60 is only available directly from the manufacturer, the supply is limited due to a small rejection rate, and the commercial grade FS-60, at a five times higher price, is proportionately less attractive for amateur projects.

Fortunately, there are now a number of inexpensive, multiple op amp ICs which can be used to adequately simulate the basic functions of the FX-60. The multiple op amps can be substituted in most of the circuits for which the FX-60 is specified. A partial list of suitable ICs for this purpose is shown in table 1.

Single supply voltage types require only a positive supply in the range of 5 to 25 volts, and have a built-in center-signal reference. Dual supply types more commonly require both a positive and negative voltage with respect to ground. Some may be found at bargain prices at surplus supply houses.

While all of the ICs listed in table 1 are suitable for active filter applications, I chose the LM324 for further consideration. Though not classified as “micropower,” it has relatively low power drain (approximately 700 μA/amp), low internal noise (allowing use in low-level signal circuits), incorporates four independent op amps, and requires only a single positive supply voltage.

basic universal active filter

Fig. 1 illustrates the basic circuit of the FX-60 with its internal negative feedback loops, and connections for the DIP configuration (viewed from the bottom). The internal resistor and capacitors (R1A/R2A and C1A/C2A) set the nominal bandpass output center frequency of 230 Hz and also the cutoff frequency \(f_c \) of the lowpass and highpass outputs. This frequency (230 Hz) can be increased by connecting external shunt resistors, R1B/R2B, across pins 1 and 2, and pins 10 and 12. The external resistors are always of equal value for a specific frequency above 230 Hz, and can be calculated from the formula

\[
R = \frac{455 \times 10^3}{f_c}
\]

where \(f_c \) is the desired frequency above 230 Hz. If

table 1. Comparison of multiple op amp integrated circuits.

<table>
<thead>
<tr>
<th>manufacturer</th>
<th>type</th>
<th>number of op amps</th>
<th>supply voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA</td>
<td>CA3401E</td>
<td>four</td>
<td>single (+)</td>
</tr>
<tr>
<td>Motorola</td>
<td>MC3301P</td>
<td>four</td>
<td>single (+)</td>
</tr>
<tr>
<td>National</td>
<td>LM3900N</td>
<td>four</td>
<td>single (+)</td>
</tr>
<tr>
<td>National</td>
<td>LM-324</td>
<td>four</td>
<td>single (+)</td>
</tr>
<tr>
<td>RCA</td>
<td>CA3060E</td>
<td>three</td>
<td>dual (+ & -)</td>
</tr>
<tr>
<td>National</td>
<td>LM148</td>
<td>four</td>
<td>dual (+ & -)</td>
</tr>
</tbody>
</table>

Note: The CA3401E, MC3301P, and LM3900N are pin-for-pin compatible.

By Peter A. Lovelock, K6JM, 1330 California Avenue, Santa Monica, California 90403
R1B/R2B are ganged variable units, the filter outputs can be made tunable.

For nominal center frequencies below 230 Hz, external capacitors C1B/C2B are connected across pins 2 and 12, and pins 7 and 10. These capacitors should also be of equal value to establish the desired center frequency below 230 Hz. In addition, the external resistors can be used, in conjunction with the external capacitors, to tune the filter outputs above the reduced nominal frequency.

External resistor R4, either fixed or variable, is connected between pin 8 and ground to trim the nominal Q and gain of the FX-60, in conjunction with R3, the external input resistor. Pin 14 is normally the signal input, with pin 6 used for special applications.

The basic circuit of the FX-60, which is called the "Bi-Quad Active Filter," can be adequately duplicated, for amateur applications, with an LM324 as shown in fig. 2. Since the LM324 has pin connections to each of the four independent internal op amps, the frequency-determining resistors and capacitors are combined into single components, R1, R2, and C1/C2. The Q is varied by appropriate values of a single resistor R3; increasing the value of R3 increases Q and vice versa. Since width of the bandpass output is related to Q, R3 can be adjusted experimentally for the desired bandpass characteristic.

Comparison of figs. 1 and 2 show how the latter circuit, using the LM324, can be substituted for the FX-60 in previous articles. If the same resistance/capacitance (100k and 0.001 μF) are used in the LM324 circuit, the same approximate nominal center frequency of the FX-60 (230 Hz) will result. For direct substitution, the user may want to configure R3 in fig. 2 into the three resistor combination used in fig. 1.

In the Bi-Quad duplicated circuit, only three of the four available op amps are used. The fourth op amp may be used as an output amplifier in place of the 741 device required in some circuits, or for summing the highpass and lowpass outputs.

Fig. 3 shows the complete circuit of an active filter using the LM324, with appropriate biasing for a single supply voltage of +5 to +25 Vdc. The R1/R2 value (150k) establishes f_c at 1000 Hz, and the value of R3 (10 meg) for a Q of 50. Values of R1/R2 for other bandpass center and f_c frequencies can be calculated from the formula

\[R = 15 \times 10^7 \frac{1}{f_c} \]

The resistors should have a 1 per cent tolerance, but 5 or 10 per cent tolerance may be used, with some variation in resultant f_c. Variations of R1/R2, for values of C1/C2 other than 0.001 μF, are beyond the scope of this article; in general, the bandpass and f_c can be determined for values of R/C when \(R = X_c \).
fig. 4. Schematic diagram of a tunable active filter. The highpass and lowpass outputs have been summed in the fourth op amp to provide a notch output. The potentiometers must have a reverse log taper.

A fully tunable active filter, covering the range of 300 Hz to 3000 Hz is shown in fig. 4. In addition to the previous highpass, bandpass, and lowpass outputs, the fourth op amp (U4) is used to sum the highpass/lowpass outputs which, being 180 degrees out of phase, result in a tunable notch at the output of U4. The tuning potentiometers are ganged, reverse log taper, 500k carbon, 2 watt units. Although exact tracking between the potentiometers is not critical, high quality components are recommended to minimize noise and frequency jumps. A notch of -35 dB can be attained using fixed components with 5 per cent tolerance. This circuit is similar to that used for audio notching in the new Atlas 350-XL transceiver, and is most useful for nulling out unwanted CW signals or broadcast heterodynes in the 3.8 and 7 MHz bands. The low internal noise of the LM324 permits inserting this circuit between the product detector and first audio amplifier stages of a receiver.

Resistor R3 establishes the Q for a notch width of 200 Hz at the -3 dB points. While the notch may be narrowed by increasing the value of R3, tuning for maximum notch depth becomes increasingly difficult; 200 Hz is about optimum, for ease of adjustment. The notch output has unity gain with respect to the input signal, and any variations due to component tolerances can be adjusted for by trimming the value of the 100k resistor between pins 13 and 14 of U4.

This tunable active filter is generally useful for amateur receiver applications since the choice of high, low, bandpass, or notch outputs may be switched. It should be noted, however, that the highpass, lowpass, and bandpass outputs have gain with respect to the input. A resistive attenuator (minimum 1 megohm) coupled through a 0.1 μF capacitor to each of these outputs, is required to adjust the levels for unity gain.

An alternate, fixed-frequency notch filter, using only three op amps, is shown in fig. 5. Other than reduction of components, this circuit has no inherent advantage, but lends itself to triple op amp ICs. Not easily adaptable to tuning, this circuit is useful for discrete frequency notching.

general considerations

Reasonable care must be taken when laying out any circuit that uses multiple outputs and feedback loops. The LM324 is particularly well suited to minimizing stray coupling, since the output terminal of each op amp is located at the four corners of the DIP IC. Stray coupling between the input and output of the separate op amps must be avoided to prevent instability or performance degradation. This is particularly important in the notch filter circuits where stray coupling may limit the attainable notch depth.

If you wish to use one of the suggested devices other than the LM324, for a filter, I recommend that
fig. 5. A fixed frequency notch circuit can be formed by using three sections of an LM324. This arrangement does not lend itself well to adjustable notch frequencies. The center frequency for this circuit is 3 kHz.

you consult the manufacturer’s specifications regarding supply voltages. For single-supply voltage types, the biasing requirements can be uniquely different. As an example, fig. 6 shows a fixed frequency filter using the compatible CA3401E, MC3301P, or LM3900N. The center frequency is 1 kHz. The 1 megohm resistor in the non-inverting lead is used to limit the input current.

fig. 6. A basic fixed frequency active filter that uses the compatible CA3401E, MC3301P, and LM3900N. The center frequency is 1 kHz. The 1 megohm resistor in the non-inverting lead is used to limit the input current.

references
Brand New releases from Ham Radio's Bookstore

SAQA OF THE VACUUM TUBE
by Gerald E. J. Tyne

This fascinating history of the vacuum tube is a must for anyone interested in the history of electronics. This study not only traces the history of the tube in the United States but also presents little-known information gathered from French, English, Dutch and German pioneers. In 494 pages this book covers electrical developments prior to 1880 and concludes with broadcasting's early days in the 1920's and 30's. A ten-page index of tube types, historical photographs, and diagrams are also included. A new book every hobbyist or collector will thoroughly enjoy!

Order 21470 Only $9.95

BEGINNER'S GUIDE TO MICROPROCESSORS
by Charles M. Gilmore, WBIAI

Just released! Written especially for the beginner — or just anyone who wants to know more about computers. Along with the microprocessor basics, this guide explains the programming of TV Games, calculators, turntables, micro-wave ovens, automotive systems controllers and small computers. A great introduction to microprocessors.

Order T-995 Only $5.95

THE BEGINNER'S BOOK
(Introduction to Microcomputers — Volume O)

A brand new book written especially for the beginner. "Know nothings" can gain a basic understanding, ask questions and then decide intelligently where to go next. "The Beginners Book" simply breaks down the specifics of a system, its options and purpose. There's also a fine introduction to microcomputer logic. Written in a clear, easy to understand style. At last! This is your chance to know what's going on with microcomputers.

Order AO-6001 Just $7.50

OR MAIL ORDER TO:
HAM RADIO'S
COMMUNICATIONS BOOKSTORE
GREENVILLE, NH 03048

1978 HAM'S ALMANAC
Look ahead in 1978. Propagation forecasts, complete DXing facts, frequency allocations, NOAA Weather Radio Stations, OSCAR facts and much, much more. Information applicable to virtually all the contiguous 48 states. Full of fun and great information this year's Almanac is one of the greatest ever.

Order ALK-ALM $3.30
Your transceiver just met its match!
For both balanced and unbalanced output, Swan's new ST-I and ST-2 Antenna Timers put a reliable 50 Ohm source between your 160-10 meter transmitter... and virtually any type antenna system.

Keeps them going steady. And puts something over on the transceiver in the bargain: Swan's advanced electronics make 10' of feeder line look like 50' to your equipment, with the impedance now leveled out.

You can pull a few wires in transmission line options too. Feed coaxial cable only into the tuner; run twin-lead out to your antenna... with no power penalties.

Match Swan specs against any similar capability:
- Antenna input connections for unbalanced coaxial SO239 random wire or balanced line tuned feeders, with ceramic feedthrough.
- Built-in heavy duty 4:1 balun, to transform load impedance to 50-70 Ohms.
- Power-handling: 3 KW PEP.
- 1.7 MHz through 30 MHz continuous frequency coverage tuning.
- Dimensions: 5½" H x 13" W x 14½" D.
- Weight: 11.5 lbs.

Two on a match, comfortably priced. Snap in the ST-1 Antenna Tuner if your rig now has a wattmeter or VSWR bridge in place. **$189.95.**

Our second matchmaker, the ST-2 has two built-in meters added for monitoring your output. One reads forward power to 2,000 watts, while the other reads reflected power to 200 watts. Simultaneously. **$249.95.**

Now available at your Swan dealer, or factory-direct—both honor your Swan Credit Card (or can supply you with an application without delay.)

Your transceiver just met its match!
high voltage fuses in linear amplifiers

The addition of two short pieces of wire to many linear amplifiers will protect expensive components from damage in case of an arc-over or short in the high voltage circuit. Most high-voltage power supplies are fused in the primary circuit only, and a failure in the amplifier can destroy the rectifier string, grid, and plate current meters long before the primary fuse can open.

The partial circuit shown in fig. 1 is a typical grounded-grid amplifier with the plate meter in the negative lead of the power supply. Note that the negative side of the power supply is not directly grounded. The ground path goes through both the grid and plate meters. If capacitor C2 shorts out, the short circuit current will go through both meters and, if the filter capacitor, C1, is large, this current can have an instantaneous peak of hundreds of amperes. Such a failure will surely destroy the meters and will very likely destroy the rectifier string. The meter coils will be vaporized and, if the meters are sealed, the glass faceplates may blow out.

The solution is to add high voltage fuses F1 and F2. Each fuse consists of a short piece of no. 40 AWG (0.08mm) copper wire. This wire has a fusing current of 1.75 amperes, high enough that it should never open up under normal circumstances, but low enough that it will blow in a hurry should a short or arc-over occur. Low voltage glass fuses must not be substituted in this application; they will explode when the internal element vaporizes. They'll also take longer to open up fully as the vaporized element will sustain an arc until the glass breaks and allows it to dissipate. This delay, while probably no more than a few milliseconds, may be long enough to damage the meters.

If resistors R1 and R2 are not present, they should also be added. Their purpose is to keep the negative lead of the power supply from going to a high negative potential with respect to ground should either of the meters or F2 open. They have no effect on normal circuit operation since they are in parallel with the meters, whose resistance is a fraction of an ohm.

In my homebrew 4-1000A linear, these fuse wires have blown twice due to arc-overs in the amplifier. On both occasions, they prevented damage to the power supply and meters, responding fast enough that the primary fuses did not blow at all. In seven years of heavy use, they have never failed during normal operation. I call that cheap insurance.

John Becker, K9MM
fig. 2. Schematic diagram of the source follower connecting the NE567 decoder and the transmitter. The tone is available, for the transmitter, when the CALL button is pushed.

dual-function integrated circuit

The article “private-call system for vhf fm,” *ham radio*, September, 1977, required a separate tone oscillator be used by the initiating station. In reality, the NE567 tone decoder is actually already oscillating at the required frequency. Fig. 2 shows a method of using this IC for both originating the tone, and decoding it upon reception.

Cal Sondgeroth, W9ZTK

integrated-circuit oscillator

Many keyer circuits have appeared in *amateur radio publications* (W7BBX, *ham radio*, April, 1976; WA5KPG, *QST*, January, 1976). Most use transistors for the oscillator or clock. When using ICs for the keyer, why not go all the way? A keyed IC oscillator is shown in fig. 3. The clock will start when the key is closed and can be held until the dot, dash, or space is completed. The trick is to use a 74L04. If you use a regular TTL IC, you will get microsecond pulses, instead of millisecond. Diodes CR1 and CR2 prevent the first pulse from being different than the next; the 250pF capacitor on the output is necessary to prevent noise spikes from falsely triggering the keyer circuits.

J. T. Miller, WB6VZW

wire-wound potentiometer repair

Exact replacement units for those expensive wire-wound pots are often difficult to find. This factor makes repair of the defective control attractive.

The winding is repaired by bridging the opening with a small strip of thin-sheet metal as shown in fig. 4. One possible material is the metal from a tin can. Cut the strip slightly shorter than the element width, and wider than the break in the winding. Curve the metal strip to conform with the shape of the resistance element.

With power off, remove the rear cover to expose the wire resistance element. The opening in the winding is often evident by discoloration from overheating. Otherwise, it may be located by activating the equipment and adjusting the control knob to the setting where abnormal noise or other faulty performance occurs. The defect is now located directly under the movable wiper contact. Near the break, gently pry the resistance element away from the outer insulation using a thin screwdriver or knife point. This will permit starting the bridging strip into the opening. Now, press the strip behind the resistance element so that it does not interfere with free operation of the slider, or cover replacement.

Gene Brizendine, W4ATE

fig. 3. Schematic diagram of the keyer oscillator. U1 is an SN7400, while U2 is an SN74L04. The diodes on the input of U2A form an OR gate that controls the oscillator. These inputs can be used to keep the oscillator running, providing the self-completing feature. The time constant, as determined by C1 and R1, is 4 ms; this is the width of the clock pulse. The values for C2, R2, and R3 give a pulse repetition time of 50 to 95 ms, which equates to approximately 12 to 24 words per minute. For higher speeds, C2 and R2 can be reduced.
The New Sigma XR3000D
Linear Amplifier
Compare!

INTRODUCTORY SALE
$699
2 Day Air Shipment
Anywhere in U.S.
In stock at our Miami, Florida location.

Features:
- Full band coverage 160-10 meters including mas.
- 2000 watts P.E.P. SSB input. 1000 watts input continuous.
- CW, RTTY & SSTV.
- Two Eimac 3-500Z conservatively rated finals.
- All major HV and other circuit components mounted on single G-10 glass plug in board. Have a service problem? (Very unlikely). Just unplug board and send to us.
- Heavy duty commercial grade quality and construction second to no other unit at any price!
- Weight: 90 lbs. Size: 9 1/2" (h) x 16" (w) x 15 1/4" (d).

HOLIDAY INTRODUCTORY SPECIAL!
New! Sigma Model AF250L
Deviation/Modulation Meter

INTRODUCTORY SALE
$169

Features:
- Extremely stable local oscillator for easy measurement of HF, VHF, and UHF bands employing negative feedback to insure extremely high stability.
- Easy to read, accurate linear scale.
- Direct off-the-air signal measurement capability.

Specifications:
- Frequency: 1.8MHz-520MHz/3 range select (A, B, C, EXT). A range: 26.5 MHz-40MHz, B range: 48MHz-60MHz, C range: 140MHz-156MHz, EXT range: 18MHz-520MHz.
- Analyzer: 100kHz-2OKHZ. Accuracy: +1%, -3% of full scale.
- Power Source: AC 17V.
- Dimensions: H-5", W-10 1/1\" (260mm), D-7 1/4" (184mm). Weight: 7 lbs.

NEW! Sigma Model AF250L
Deviation/Modulation Meter

Fully Certifiable for Commercial Use

Features:
- Extremely stable local oscillator for easy measurement of HF, VHF, and UHF bands employing negative feedback to insure extremely high stability.
- Easy to read, accurate linear scale.
- Direct off-the-air signal measurement capability.

Specifications:
- Frequency: 1.8MHz-520MHz/3 range select (A, B, C, EXT). A range: 26.5 MHz-40MHz, B range: 48MHz-60MHz, C range: 140MHz-156MHz, EXT range: 18MHz-520MHz.
- Analyzer: 100kHz-2OKHZ. Accuracy: +1%, -3% of full scale.
- Power Source: AC 17V.
- Dimensions: H-5", W-10 1/1\" (260mm), D-7 1/4" (184mm). Weight: 7 lbs.

SIGMA RF-2000 SWR & POWER METER

GO PRIVATE! on 2 meters with the FMTD-1.*

SPECIAL INTRODUCTORY PRICE $289

AMATEUR-WHOLESALE ELECTRONICS
8817 S.W. 129th Terrace, Miami, Florida 33176
COURTESY PERSONAL SERVICE—SAME DAY SHIPMENT—Prices subject to change without notice.
Telephone: (305) 233-3831 • Telex 51-5626 • Store Hours: 10-5 Mon.-Fri.

More Details? CHECK—OFF Page 126
NEW!
THE FUTURE NOW!
FM2015R

All Solid State-CMOS PL digital synthesized - No Crystals to Buy! 5KHz steps - 144-149 MHz-LED digital readout PLUS MARS-CAP and MULTIPLE OFFSET.*
• 5 MHz Band Coverage - 1000 Channels (instead of the usual 2MHz to 4MHz-400 to 800 Channels) • 4 CHANNEL RAM IC MEMORY WITH SCANNING • MULTIPLE FREQUENCY OFFSETS • ELECTRONIC AUTO TUNING - TRANSMIT AND RECEIVE • INTERNAL MULTIPURPOSE TONE OSCILLATOR • RIT • DISCRIMINATOR METER - 15 Watts Output - Unequaled Receiver Sensitivity and Selectivity - 15 POLE FILTER, MONOLITHIC CRYSTAL FILTER AND AUTOMATIC TUNED RECEIVER FRONT END, COMPARE! • Superb Engineering and Superior Commercial Avionics Grade Quality and Construction Second to None at ANY PRICE.

INTRODUCTORY PRICE
$399.00
Regulated AC/PS
Model FMPS-4R ... $49.00

- FREQUENCY RANGE: Receive and Transmit: 144.00 to 148.995 MHz, 5KHz steps (1000 channels) INCLUDING NEW BAND 144.5-145.5MHz + MARS-CAP and MULTIPLE OFFSET.*
- LED DIGITAL READOUT.
- 4 CHANNEL RAM SCANNER WITH IC MEMORY: Program any 4 frequencies and reprogram at any time using the front panel controls—search for occupied (closed) channel or vacant (open) channels. Internal Ni-Cad included to retain memory (no diode matrix to wire or change).
- MULTIPLE FREQUENCY OFFSETS: Three positions A, B, C, provided for installation of optional crystals EXAMPLE - 1 MHz offset. Duplex Frequency Offset Built in - 600 Khz PLUS or MINUS 5 KHz steps, plus simple, any frequency.
- INTERNAL MULTIPURPOSE TONE OSCILLATOR BUILT IN: 1750Hz tone burst for “whistle on operation” and sub-audible tone operation possible by simply adding a capacitor across the terminals provided. Internal 2 position switch for automatic and manual operation, tone burst or sub-audible tone PL. adjustable 60-2030Hz (100 Hz provided).
- AIRCRAFT TYPE FREQUENCY SELECTOR: Large and small coaxially mounted knobs select 100KHz and 10KHz steps respectively. Switches click-stopped with a home position facilitate frequency changing without need to view LED’s while driving and provides the sightsee amateur with full Braille dial as standard equipment.
- FULL AUTOMATIC TUNING OF RECEIVER FRONT END AND TRANSMITTER CIRCUITS: DC output of PLL fed to varactor diodes in all front end RF tuned circuits provides full sensitivity and optimum intermodulation rejection over the entire band. APC(AUTO POWER CONTROL) - Keeps RF output constant from band edge to band edge. NO OTHER AMATEUR UNIT AT ANY PRICE has these features which are found in only the most sophisticated and expensive aircraft and commercial transceivers.
- TRUE FM: True phase modulation - for superb emphasized hi-fi audio quality second to none.
- RIT CONTROL: Used to improve clarity when contacting stations with off frequency carrier.
- MONITOR LAMPS: 2 LED’s on front panel indicate (1) incoming signal-channel busy, and (2) Transmit.
- MODULAR COMMERCIAL GRADE CONSTRUCTION: 6 Untized modules eliminate stray coupling and facilitate ease of maintenance.
- ACCESSORY SOCKET: Fully wired for touch tone, phone patch, and other accessories. Internal switch connects receiver output to internal speaker when connector is not in use.
- MULTI-PURPOSE METER: Triple Function Meter Provides Discriminator Meter, "S" Reading on receive and Power Out on Transmit.
- RECEIVE: Better than 25usv sensitivity, 15 POLE FILTER as well as multiohmic crystal filter and AUTOMATIC TUNED LC circuit provides superior signal selectivity - COMPARE!
- HIGH/LOW POWER OUTPUT: 15 watts and 1 watt, switch selected. Low power may be adjusted anywhere between 1 and 15 watts. Fully protected-short or open SWR.
- OTHER FEATURES: Dynamic Microphone built in speaker, mobile mount, external 5 pin accessory jack, speaker jack, and much, much more. Size 2 1/2 x 7 x 7 1/4. All cords, plugs, fuses, microphone hanger, etc. included. Weight 5 lbs.

Manufactured by one of the world’s most distinguished Avionics manufacturers, Kyokuto Denshi Kaisha, Ltd.
First in the world with an all solid state 2 meter FM transceiver.

AMATEUR-WHOLESALE ELECTRONICS
8817 S.W. 129th Terrace, Miami, Florida 33176
Telephone (305) 233-3631 • Telex: 51-5628
U.S. DISTRIBUTOR

DEALER INQUIRIES INVITED.
PLEASE ORDER FROM YOUR LOCAL DEALER OR DIRECT IF UNAVAILABLE.

Regional Sales & Service Centers:
West: The Radio Shop
Riverside, CA
(909) 747-9631

Midwest: Universal Service
Columbus, Ohio
(614) 221-2338

New York: Whitmore Electro-Service
125 12th Avenue
New York, NY 10011
(212) 627-8730

NOTICE TO REPRINTERS: Permission is hereby granted to reproduce any portion of this ad providing credit to the dealer nearest you.
For literature on any of the new products, use our Check-Off service on page 126.

Heath Self-Instruction Microprocessor course

Heath Company has introduced its ET-3400 microprocessor learning system. The ET-3400 trainer features the popular 6800 microprocessor, 256 bytes of RAM (expandable to 512 bytes), a 1k ROM monitor, and 6-digit hexadecimal display and keyboard. Breadboarding sockets permit fast construction of experiments and special prototype circuits.

For further information on the EE-3401 microprocessor course and ET-3400 microprocessor trainer, mail-order priced at $89.95 and $189.95 respectively, write for a free catalog to Heath Company, Department 350-460, Benton Harbor, Michigan 49022.

multi-family high-speed logic probe

Continental Specialties Corporation has announced the addition of the multi-family, high-speed Logic Probe 3 to its expanding, popular line of prototyping and test equipment. A more advanced version of the company's popular Logic Probe 1, the LP-3 provides precise indications of static and dynamic circuit conditions.

Drawing power from the circuit under test, the LP-3 offers pulse detection, pulse stretching and latching (memory) capabilities, for an instant readout of logic levels; positive and negative transitions or pulse symmetry. The LP-3 also provides positive indication of one-shot and low-repetitive levels present in the circuit. At high frequencies, the LP-3 will also indicate whether signals are symmetrical. Pulse trains with duty cycles of less than 30 per cent will activate the LO LED and PULSE LED, while duty cycles of 70 per cent or more will activate the HI LED, in addition to the PULSE LED. The LP-3's high input impedance (500k), which is constant in all logic states, prevents circuit loading problems in both TTL/DTL and CMOS ranges.

The LP-3 also features a plug-in connector system for additional versatility. The plastic housing is equipped with phone jack connector, which accepts the unit's standard 1/4 inch (91cm) clip-leads. The front of the LP-3 accommodates plug-in, interchangeable tips, including a straight needle probe, alligator clip, quick-attaching insulated clip, as well as a ground lead. At $69.95, it also represents a major cost breakthrough in high-speed digital testing. The versatile LP-3 is a compact, 5.8 x 1.0 x 0.7 inch (147x25x19mm), portable, easy-to-use instrument for all types of design, testing, and troubleshooting applications.

For more information, contact Continental Specialties Corporation, 44 Kendall Street, Box 1942, New Haven, Connecticut 06609.

quartz technology manual

A new Quartz Technology Manual has just been released by Sentry Manufacturing Company, a leader in quartz-crystal frequency control for quality communications and time-base standards. The 150-page man-
ual takes the mystery out of understanding and using quartz crystals. It also includes the most complete military-specification summary ever published, to simplify military-equipment design.

This handy Sentry reference helps you specify what you need for your commercial two-way, Marine, aircraft, public service, ham-radio, and monitor equipment. For those CB enthusiasts who want a 40-channel set, the manual includes a comprehensive compilation of frequency charts for 23-channel rigs so you can tell what crystals you need to convert it to 40-channel use. Also, the manual includes a section on how to understand and use quartz digital clocks.

The first printing is only 20,000 copies. Send a check or money order today for $2.95 (includes postage and handling) to be sure of receiving a first-edition copy. Write to Sentry Manufacturing Company, Jim Bennett, Sales Manager, Crystal Park, Chickasha, Oklahoma 73018.

morse to video converter

DGM Electronics has recently introduced the MVD-1000 Morse Video Display. The MVD-1000 connects between your station receiver and video monitor, or slightly modified television receiver to provide a complete 6-60 wpm morse code receiving system. The Morse code audio signal from the speaker terminals or phone jack is converted to a standard composite video signal which can be used to drive a video monitor or the video amplifier of a television receiver.

The unit displays 16 lines of 32 characters per page with two pages...
of displays. When the screen is full, automatic scrolling shifts all lines up one line causing the top line to be stored on the second page, allowing new characters to be written on the bottom line. The recall feature allows you to look at the second page while still copying incoming code on the first page. The unit will copy letters, numbers, punctuations, and five special characters for a total of 51 decoded Morse characters.

Automatic and manual speed tracking are provided to accommodate wide variations in the Morse code signal. A 4-pole active filter provides a 200-Hz bandwidth for excellent QRM rejection. A practice input is also provided, for a straight key or keyer output, to allow the user to practice sending while displaying what is sent on the display. This feature is very helpful in learning the Morse code and increasing your sending and receiving speed.

The unit is housed in an attractive 3 x 10 x 10 inch (7.6x25x25cm) case with a gray wrinkle finish cover and a brushed aluminum front panel. The MVD-1000 Morse Video Display is priced at only $350.00 postpaid, from DGM Electronics, 787 Briar Lane, Beloit, Wisconsin 53511.

electronic equipment and kits catalog

A new 36-page factory mail-order catalog of electronic equipment and kits is now available from Caringella Electronics, Incorporated. Many hard-to-find products, all manufactured by Caringella Electronics, are listed in the catalog. Among the many unique items found in the catalog are a WWV standard-time receiver, panel-mount digital clocks with and without BCD outputs and day-of-year calendar, giant digital wall clock, audio compressors, and electronic security alarms.

More than just an ordinary catalog, the format has been designed to take the guesswork out of buying! Each
product is completely described with all technical specifications, a photograph, application information, schematic diagram, and a complete description of how each unit works.

The new free 36-page factory mail-order catalog may be obtained from the factory by writing to Carlingella Electronics, Incorporated, Post Office Box 727, Upland, California 91786.

Kenwood TS-520S Transceiver

Trio-Kenwood has recently introduced the new TS-520S hf transceiver. It retains the field-proven characteristics of the popular TS-520, and incorporates many of the ideas, comments, and suggestions for improvement from amateurs worldwide.

The first major difference to be seen in the TS-520S is its full-band coverage, including 160 meters. Of course, transverters for 6 and 2 meters can also be used with the TS-520S. Provisions for attaching a digital display (model DG-5) have been included on the back panel. The DG-5 contains 6 digits which display your operating frequency while you transmit and receive.

Other new features of the TS-520S include an rf attenuator; new, improved speech processor; vernier tuning for final plate control; and a new monoscale analog dial. The TS-520S is completely self-contained with a built-in ac power supply. The addition of the DS-1A dc to dc converter (optional) permits mobile operation of the TS-520S. The transceiver also has two convenient RCA-type phono jacks on the rear panel,
Finally! Superior 8-Pole CW Selectivity for Drake TR-4, TR-4C, TR-4G

\[\text{800 Hz (175 kHz at 60 Hz), 600 Hz, and 200 Hz.} \] 860 Hz GMR. More selective than Bausch & Lomb filter in new DR-4G, which is 900 Hz at 60 Hz. 860 Hz GMR. Improved upon the various filters in this price range. For exactly what you want a filter to do... a low pass & high pass filter with the response of the Honeycomb filter. Two in one, for only $114.00.

At Last! Superior 8-Pole CW Selectivity for Kenwood TS-920

600 Hz B-Pole First-IF Filter for Drake R-4C

The frequencies below the 160-meter amateur band were the cradle of amateur radio until hams were exiled to the “useless” short waves. A number of experimenters are probing the world between 10 kHz and 1600 kHz. Here, through a little-known provision of FCC regulations, experimenters are permitted to operate unlicensed transmitters. Operation is presently limited to a power of only one watt and antennas smaller than ten feet in U.S.A. This brand new mobile transceiver (TR-7400A) with the astonishing price tag is causing quite a commotion. Two meters with 25W or 10W output (selectable), digital read-out, 144 through 148 MHz and 800 channels are some of the features that make this such a great buy at $399.00 ppd. in U.S.A.

This rig has made transoceanic DX a pipe dream, for CW buffs, the CW-520 500-Hz filter can be easily installed and will provide improved selectivity on CW.

In addition to the DG-5 and CW-520, other accessories such as an external vfo (VFO-520S) and external speaker (SP-520r) are also available to make a complete station which any amateur would be proud to own. These and other Kenwood Products are available from authorized Trio-Kenwood dealers throughout the United States. For a list of authorized dealers and more information on the TS-520S, write Trio-Kenwood Communications, Inc., 1111 West Walnut Street, Compton, California 90220.

The Low and Medium Frequency Radio Scrapbook

The frequencies below the 160-meter amateur band were the cradle of amateur radio until hams were exiled to the “useless” short waves. A number of experimenters are probing the world between 10 kHz and 1600 kHz. Here, through a little-known provision of FCC regulations, experimenters are permitted to operate unlicensed transmitters. Operation is presently limited to a power of only one watt and antennas smaller than ten feet in U.S.A. This brand new mobile transceiver (TR-7400A) with the astonishing price tag is causing quite a commotion. Two meters with 25W or 10W output (selectable), digital read-out, 144 through 148 MHz and 800 channels are some of the features that make this such a great buy at $399.00 ppd. in U.S.A.

The transmitting restrictions only increase the challenge and fascination of these all-but-ignored frequencies. Low-frequency experimenters have rediscovered the thrill of the earliest days of our hobby when transoceanic DX was a pipe dream, and real-life DX records were well under 100 miles.

Ken Cornell, W21MB, has put a time machine between two covers. His book describes loose couplers, honeycomb coils, absorption wave-
meters, and classic loop designs — all of which were mainstays of the wireless pioneers and still serve effectively today. On the other hand, Cornell includes IC and modern filter technologies in the endless quest for transmitter efficiency and the conquest of the plague of all low-frequencies — man-made noise.

The book includes dozens of simple circuits and diagrams for electronic and mechanical station components — most using readily available parts. Indeed, some experimenters might label W2IMB’s vacuum tube circuits as technological dinosaurs, but they are time-tested, flexible, forgiving, amateur favorites. An objective look also reveals that efficient low-frequency vacuum tubes are plentiful and inexpensive. In an age of black boxes and IC chips, who can deny the nitty-gritty, hands-on learning opportunities of basic, discrete-component construction? Cornell does include many solid-state circuits, but the emphasis is clearly on proven tube techniques.

This is an informal experimenter’s scrapbook with a unique format. It is pre-punched so you can conveniently keep it in a standard three-ring binder along with your own collection of notes, catalogs, and article clippings. The book has no fancy printing or polished professional prose; but it is a straightforward collection of one man’s views, tips, experiences, and suggestions gleaned from years of actual on-the-air experimentation.

Of particular interest are the author’s chapters on converting low-cost military surplus equipment; construction of receiver converters for the most popular 160- to 190-kHz band, excerpts from the relevant FCC regulations, and perhaps most useful of all, comprehensive details on the design and winding of low-frequency coils.

Soft cover, 110 pages, $6.95 postpaid from Ham Radio’s Communications Bookstore, Greenville, New Hampshire 03048. Order catalog number HR-LF.
WHERE RELIABILITY & ACCURACY COUNT

INTERNATIONAL CRYSTALS
70 KHz to 160 MHz

HOLDER TYPES

International Crystal Manufacturing Co., Inc. guarantees every crystal against defective materials and workmanship for an unlimited time, when used in equipment for which they were specifically made.

CRYSTAL TYPES

(GP) for "General Purpose" applications
(CS) for "Commercial" equipment
(HA) for "High Accuracy" close temperature tolerance requirements

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders.

WRITE FOR INFORMATION

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 North Lee, Oklahoma City, Oklahoma 73102
405/236-3741
TEN-TEC CENTURY 21 GOES DIGITAL!

Century 21, the exciting 70-watt, 5-band CW transceiver that surprised everyone with its super performance and low cost, has another surprise for you. A second model with digital readout (and a mod kit for those who would like to convert their dial model). Both Models 570 and 574 have the same unique circuitry that has won raves from everyone — both have the same fine features:

- **Direct Frequency Readout (Model 574):** 5 red LED digits, 0.3" high, accurate to nearest 1 kHz. Model 570: marked in 5 kHz increments from 0-500 kHz. MHz markings for each band displayed, tuning rate typically 17 kHz per tuning knob turn.
- **Full Break-In**
- **Solid-State**
- **SSB and CW**
- **Receiver Sensitivity 1 pV**
- **Instant Band Change. No Tune-up**
- **Offset Receiver Tuning**
- **3-Position Selectivity**
- **Adjustable Sidetone Level**
- **Linear Crystal-Mixed VFO**
- **Overload Protection**
- **AC Power Supply**
- **Black & Gray Styling**
- **HWD: 6" x 12" x 12.15" Ibs.**

THE RECEIVER. Double-Direct-Conversion. Easy tuning. Just select the frequency and set the audio level. Excellent cross-modulation characteristics. Offset tuning so you can tune either side of zero beat to reduce QRM. Front panel control selects one of 3 selectivity curves: 2.5 kHz for SSB reception, 1 kHz for normal CW, and 500 Hz for when the QRM gets rough. Plus separate AF and RF controls, headphone jack, and built-in speaker.

THE TRANSMITTER. Total solid-state. Push-pull Class C final amplifier. Individual low-pass filters are switched into the antenna line to reduce unwanted radiations, minimize TVI. No tune-up needed when changing frequencies or bands. And full break-in allows incoming signals to be heard between transmitted characters. Now CW is real conversation!

THE VFO. Common to receiver and transmitter. Permeability tuned. Linear scale on model 570: 5-5.5 MHz basic frequency is crystal-mixed to the desired frequency so bandspread and stability are the same on all bands (crystals included for 3.5, 7, 14, 21, and 28-28.5 MHz segment of the 10 meter band).

THE POWER SUPPLY. Built-in, AC operated, and regulated. Monitors current demand, shuts down automatically when necessary for protection. Lighted input current meter shows proper Drive setting.

MATCHING ACCESSORIES. Model 277 Antenna Tuner/SWR Meter. Model 670 Electronic Keyer, 6-50 wpm, self-completing characters. Model 276 Calibrator for markers at every 25 and 100 kHz. Model 273 Crystal for 28.5-29 MHz. Model 1170 DC Circuit Breaker for mobile operation of models 574 and 570.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>574 Century 21 Digital Transceiver</td>
<td>$399.00</td>
<td></td>
</tr>
<tr>
<td>570 Century 21 Non-Digital Transceiver</td>
<td>$299.00</td>
<td></td>
</tr>
<tr>
<td>277 Antenna Tuner/SWR Meter</td>
<td>$85.00</td>
<td></td>
</tr>
<tr>
<td>670 Century 21 Keyer</td>
<td>$29.00</td>
<td></td>
</tr>
<tr>
<td>276 Century 21 Calibrator</td>
<td>$29.00</td>
<td></td>
</tr>
<tr>
<td>273 Crystal for 28.5-29 MHz</td>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>274 Digital Mod. Kit for Model 570</td>
<td>$90.00</td>
<td></td>
</tr>
<tr>
<td>1170 DC Circuit Breaker</td>
<td>$8.75</td>
<td></td>
</tr>
</tbody>
</table>

See both Century 21 surprises at your TEN-TEC dealer — or write for full details.

THE SECOND SURPRISE OF THE CENTURY: DIGITAL
Watts Cookin'?—It could be the final amplifier in your xmtr if you're not adjusting to peak performance with a... Drake Directional RF Wattmeter

Here's why: • Quick, accurate adjustment of antenna resonance and impedance match • Easily adjusts matching network • Directional, through line, highly accurate • Continuous monitoring of antenna performance and either forward or reflected power • Indirectly measures radiated power (forward minus reflected) and VSWR using nomogram included • Removable coupler for remote operation.

Specifications

<table>
<thead>
<tr>
<th>Drake W-4</th>
<th>Drake WV-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Coverage</td>
<td>1.8-54 MHz</td>
</tr>
<tr>
<td>Power Capability (cont. duty)</td>
<td>Hi Range 2000 W</td>
</tr>
<tr>
<td></td>
<td>Lo Range 200 W</td>
</tr>
<tr>
<td>Accuracy of Reading</td>
<td>(5% + 1% of full scale)</td>
</tr>
<tr>
<td>Line Impedance</td>
<td>50 Ohm resistive</td>
</tr>
<tr>
<td>VSWR Insertion</td>
<td>no more than 1.05:1</td>
</tr>
<tr>
<td>Size</td>
<td>14.0 x 9.5 x 10.2 cm</td>
</tr>
</tbody>
</table>

$79.00 $89.00

And the price is not too hot to handle...

R. L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017

Western Sales and Service Center, 2020 Western Street, Las Vegas, Nevada 89102 • 702/382-9470

GEM-QUAD FIBRE-GLASS ANTENNA FOR 10, 15, and 20 METERS

Two Elements $139.00
Extra Elements $99.00
Price is F.O.B. Transcona INCLUDES U.S. Customs Duty
KIT COMPLETE WITH ★ SPIDER ★ ARMS ★ WIRE ★ BALUN KIT ★ BOOM WHERE NEEDED

WINNER OF MANITOBA DESIGN INSTITUTE AWARD OF EXCELLENCE

Buy two elements now—a third and fourth may be added later with little effort.
Enjoy up to 8 db forward gain on DX, with a 25 db back to front ratio and excellent side discrimination.
Get maximum structural strength with low weight, using our "Tridetic" arms.

GEM QUAD PRODUCTS

Box 53
Transcona, Manitoba
Canada R2C 2Z5
Tel: (204) 866-3338

JAN CRYSTALS HOLD THE FREQUENCY

- CB
- CB standard
- 2 meter
- Scanners
- Amateur Bands
- General Communication Industry Marine UHF Micro processor crystals

Send 10¢ for our latest catalog
Write or phone for more details
2400 Crystal Drive
Ft. Myers, Florida 33901
all phones (813) 936-2397

GEM QUAD PRODUCTS

Box 53
Transcona, Manitoba
Canada R2C 2Z5
Tel: (204) 866-3338

88 in february 1978

More Details? CHECK - OFF Page 126
DEAR OM:

Please read our "fine" print.

Sure, we know you can buy many of the same, identical brand-name products (that we offer for sale) from other suppliers. And, if you shop around, you CAN buy them for considerably LESS than the manufacturer’s recommended selling price.

BUT . . . WHAT do you actually get for your money other than a "FACTORY-SEALED" carton of complicated electronic components, a few fancy knobs and "GREAT EXPECTATIONS"? And, WHAT do you get if this expensive assortment of printed circuit boards fails to operate the very first time you put it on the air, or goes up in a big cloud of smoke during your second QSO?

Quite frankly, YOU USUALLY GET WHAT YOU PAY FOR — NO MORE! And, when PRICE is your only consideration, you may even get LESS!

WANT MORE FOR YOUR MONEY? We can’t really blame you for wanting to save a few dollars. BUT . . . whoever said the "LOWEST" price is the SAME as the "BEST" price? Granted, there may well be circumstances under which this axiom will hold water . . . BUT, we’re not talking about peanuts and crackers here.

HAM RADIO equipment is complex in both nature and design. And, whether it carries a foreign or domestic label, it is NOT produced for a song. So, when you think about it, no matter how "LITTLE" you pay, you’re still making a sizeable investment of your hard-earned dollars in a "HOBBY!" And, you EXPECT a certain amount of thrills, enjoyment and SATISFACTION in return — NOT grief, worry and hassles!

LET’S FACE IT! We COULD just as easily offer liberal discounts or cash-and-carry incentives in order to attract more customers. BUT . . . if there’s one lesson we’ve learned in our 40-PLUS YEARS of serving the nation’s ham operators . . . it’s that THERE IS NO SUBSTITUTE FOR "GOOD" S-E-R-V-I-C-E! Long after the price you pay has been forgotten, WHAT really sticks in your mind is the kind of S-E-R-V-I-C-E you got — both BEFORE and AFTER the sale.

Therefore, our prices on new and used gear are "down-to-earth" in the sense that they FAIRLY reflect the "REALISTIC" VALUE of the merchandise — WHEN you take into account that WE STAND FIRMLY BEHIND WHAT WE SELL! And, we make every reasonable effort to insure your FULL and COMPLETE SATISFACTION with every purchase. S-E-R-V-I-C-E is not a problem with us — IT’S OUR POLICY!

Furthermore, you’ll find our ATTITUDE in serving you MORE than REFRESHING. We don’t follow the "Hard-Sell" approach and, in fact, we will lean over backwards NOT to sell you a particular item when we feel it’s not RIGHT FOR YOU! And, we’re MORE than happy to offer whatever practical or technical advice you need in setting up or operating your station.

Finally, when you deal with us, you ALWAYS receive our PROMPT, PERSONAL ATTENTION and INDIVIDUAL CONCERN. Each and every letter or phone call puts you in INSTANT TOUCH with a licensed ham who is READY, WILLING and ABLE to give your order or inquiry their undivided attention — NOT put you on "HOLD!"

In conclusion, HAM RADIO is our ONLY business. And, as such, we don’t pretend to be "Big Operators" or "Wheeler-Dealers" but choose instead to offer FRIENDSHIP and PERSONAL S-E-R-V-I-C-E plus RELIABILITY to those who realize that there is MORE to a "GOOD DEAL" than just the lowest price available. In the final analysis, the true VALUE of the PRODUCT you select and your ultimate SATISFACTION with it depend on the REPUTATION of the DEALER standing behind it!

And, when it comes to FAST DELIVERY, HONEST DEALING and FULL/DEPENDABLE S-E-R-V-I-C-E, we don’t just advertise it — WE GIVE IT!

73’s

STAN BURGHARDT W8BWB
BILL BURGHARDT WBBNO
JIM SMITH WB9MJJY
ERV HEINBUCK K#ON

STORE HOURS:
TUESDAY thru SATURDAY
9:00 A.M. to 5:00 P.M.
Closed Sunday & Monday

124 First Avenue Northwest
P.O. Box 73
Watertown, South Dakota 57201
Phone 605-886-7314

Write today for our latest Bulletin/Used Equipment list.

"America’s Most Reliable Amateur Radio Dealer"
30 VARACCTOR band without Antennas Oscillator receiver T/R line. The low AM, FM. It contains BOTH the Decade Pre-Selector. The send MMv1296H MMv432H MMv432M
MMv432C MMv432-8 MMv432-A MMv432-AV MMv432-ATV
9.0 MHz CRYSTALS (He25/u) Shipping $1.25 per filter
F-06 He25/u Socket Chassis .50
F-06 He25/u Socket P.C. Board .50
50 MHZ FREQUENCY METER MMD 050
Measure frequencies to 50 MHz
6 digit digital display Internal crystal reference
High sensitivity 50 mV RMS Size 4 3/4" x 2 1/4" x 1 1/4"
Power 12 VDC
LIMITED QUANTITIES
50 MHZ FREQUENCY METER MMD 050
SPECIAL!
NEW PRICE: $129.95 Shipping $2.50 each
432 MHZ SSB TRANSVERTERS
Use your HF Transceiver on the 432 MHz band with the addition of the MMD432 linear Transverter. The MMD432 operates on all modes: SSB, CW, AM, FM. It contains BOTH the linear transmit up-converter and the receive down-converter. An internal PIN diode T/R connects to your Transceiver T/R line. The MMD432 is FT101 and similar HF rig compatible. Add the 70/MM48 MULTIBAND and operate direct into OSCAR 7 mode B.
Specifications:
Output Power: 10 W PEP
Drive, 10 meters 1/4 W max
Receiver N.F. 3.0 db typ
Receiver gain 30 db typ
Bandwidth 2 MHz
Prime Power 12 V D.C.
Shipping: $3.50
MMD432-28 MK4 $219.95
MMD432-50 $249.95
MMD432-ATV $239.95
MMD432-ATV $219.95
MMD432-144 $199.95
MMD432-144-28 $199.95
MMD432-144 $199.95
MMD432-144-28 $199.95
VARIATOR TRIPPLERS
The law cost, easy way to operate on the 432 MHz and 1226 MHz bands. For OSCAR 7, mode C, drive the MMD432 family varactor trimp with your 2 meter transmitter. The wideband varactor trimp cover the full 2M/432 band without returning.
No power supply required for varactor trimples; efficiency approximately 50%.
Three models available at 432, two at 1226.
Model Max Drive
MMD432 30 W $65.95
MMD432M 50 W $83.95
MMD432H 70 W $125.95
MMD432M 50 W $83.95
MMD432H 70 W $125.95
MMD432G 20 W $81.50
MMD432MH 35 W $99.95
Send 24c (2 stamps) for full line catalogue of KVG crystal products and all your VHF & UHF equipment requirements.
Pre-Selector Filters Varactor Triplers Decade Pre-Scalers Antennas
Crystal Filters Frequency Filters Oscillators Crystals
SSB Transverters FM Transverters VHF Converters UHF Converters
P.0. Box 1084 Concord, Mass. 01742, USA

Spectrum International, Inc.
90 February 1978

ham radio publishes great books too!

You want the best when you put down good money for a book. The Ham Radio Publishing Group knows what Radio Amateurs like and we're positive you'll enjoy any one of our great books. Try one, or two, or ... 80 METER DXing. By John Devoldere, ON4UN. Absolutely the most thorough book ever published on the challenge of 80 meters. ON4UN, a foremost authority on 80 meter DXing, has expertly presented his DXing knowledge on Grey-line propagation, antennas, and station configuration, plus much, much more. Acclaimed by DXers everywhere.
Order HR-80M. $4.50

HIRAM PERCY MAXIM. By Alice Clink Schumacher. "Hiram Percy Maxim" is the life-saga of the fascinating American who has contributed more to Amateur Radio than any other individual. This unique story documents Maxim's accomplishments as an inventor, author and pioneer in many fields during an exciting era of unprecedented technological progress. An historical, change-of-pace book any Ham would enjoy.
Order HR-HPM. $4.50

AMATEUR SINGLE SIDEBAND. Originally by the Collins Radio Company. Ham Radio in cooperation with the Collins Radio Group has reprinted what many consider the "bible on Amateur single sideband." Collins S-line and KWM-1 owners especially will find this book truly fascinating and a great library addition. This soft-bound edition features an introduction to SSB, nature of SSB signals, exciters, RF linear amplifiers, SSB receivers, tests and measurements, and what comprises an Amateur SSB station. A thorough, definitive publication. Get yours today.
Order HR-SSB. $4.95

LOW & MEDIUM FREQUENCY RADIO SCRAPBOOK (3rd Edition). By Ken Cornell, W2IMB. Get on the air legally without a license in the 160-190 kHz range! Explore the enticing world of the low frequencies. Complete details on assembling homebrew to work these frequencies plus full info on FCC rules and regulations.
Order HR-LF. $6.95

ADDENDUM '77/78 for the LOW & MEDIUM FREQUENCY SCRAPBOOK. By Ken Cornell, W2IMB. Designed to complement its predecessor, "Addendum '77" provides you with even more information, applications and techniques for those exciting low frequencies.
Order HR-LFA. $3.95

Enclose payment for books checked below.

☐ HR-SSB $4.95 ☐ HR-HPM $4.50 ☐ HR-80M $4.50
☐ HR-LF $6.95 ☐ HR-LFA $3.95

Name ____________________________
Address _______________________________________
City __________________ State ______ Zip ______
Order toll free 800-258-5353 OR

Ham Radio's Communications Bookstore
GREENVILLE, NH 03048

More Details? CHECK — OFF Page 126
Be the one who's on FREQUENCY!!

With your DSI Counter...save the shop cost of tweaking xtabs...know your frequency...from 160 meters through 450 MHz. Now DSI offers the most counter for your dollar. Latest state-of-the-art technology...DSI advanced LSI design far exceeds outdated TTL. Go with the leader...buy a DSI FREQUENCY counter and SAVE TIME & MONEY!!

NOT A KIT

MODEL 3500 $139.95

500 MHz Frequency Counter

- Includes 500 MHz Prescaler — Not an addon
- 7 Large bright — ½ inch LED Readouts
- Temperature compensated crystal timebase
- Accuracy 1 PPM Typ
- Sensitivity 50 MvRms 150 & 250 MHz 150 MvRms 450 MHz
- Gate time light
- No direct RF connection Required
- AC or DC operation
- 50 Hz to 500 MHz typ
- Comprehensive owners manual with complete accurate schematics
- Factory assembled & tested

MODEL 3600A $189.95

600 MHz Frequency Counter

- Includes oven compensated crystal timebase
- Includes built-in 600MHz Prescaler-Not and addon
- 8 Large bright — ½ inch LED Readouts
- Two timebases 0.1 sec & 1. sec
- Resolution 1 Hz Direct 10 Hz Prescaled
- Sensitivity 20 MvRms @ 150 & 220 MHz 100 MvRms 450 MHz
- Accuracy .5 PPM over temperature
- Oven light & Gate time light
- Automatic Decimal point placement
- NO DIRECT RF CONNECTION Required.
- Comprehensive owners manual with complete accurate schematics
- AC or DC operation
- 50 Hz to 600 MHz Typ.
- Factory assembled & tested

Use it in the car or on the bench...take it to the repeater site...high-impact case...light weight—but rugged...Designed with the latest readily available LSI, CMOS, Schottky, MeCl-integrated circuits.

NEW PRODUCTS

- 250 MHz 7 Digit Battery operated hand held counter $109.95 available mid-January.
- 3½ Digit Bench Digital Multi-meter AC or Battery operated $99.95 available mid-February.

Visit us at ORLANDO, FLA. ARC ARRL Convention Feb. 17, 18, 19
Booths 37, 39, 40 (Sheraton Towers)

Strongest Warranty in the Counter Field. ONE Year Parts and Labor we pay the return shipping plus...if not satisfied, return in ten days for full refund...Dennis Romack...WA6OYI.

VP-Marketing, DSI

TO ORDER CALL COLLECT (714) 565-8402

7914 Ronson Road No. G, San Diego, CA 92111

More Details? CHECK — OFF Page 126
MICROMINIATURE ENCODER-DECODER

- Available in all EIA standard tones 67.0Hz-203.5Hz
- Microminiature in size, 125x2.0x.65" high
- Hi-pass tone rejection filter on board
- Powered by 6-16vdc, unregulated, at 3.9mA.
- Decode sensitivity better than 10mVRMS, bandwidth, ±2Hz max., limited
- Low distortion adjustable sinewave output
- Frequency accuracy, ±25Hz, frequency stability ±1Hz.
- Encodes continuously and simultaneously during decode, independent of mike hang-up
- Totally immune to RF

Wired and tested, complete with K-1 element
$59.95

K-1 field replaceable, plug-in, frequency determining elements
$3.00 each

COMMUNICATIONS SPECIALISTS
P.O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

YAESU and KENWOOD

FT-101, FR-101, FT-301
TS-520, TS-820

WIN THE BATTLE AGAINST QRM!

Since all CW Filters are optional, why not get the best? This new sharp filter is ideal for DX and Contest work, yet not too narrow for regular operation. Superior to audio filters, yet works well with them to improve Receiver performance even more, if desired.

Mounts easily on circuit boards pre-drilled for the purpose by manufacturer of your rig. See your Manual for installation instructions. A built-in component, not a hang-on. No alignment required. Satisfaction Guaranteed! Tested and Recommended by International Fox Tango Club.

Special for FT-101 Series Only: Miniature diode-switching board permitting use of BOTH the standard 600Hz and the new 250Hz filters, switch-selectable. With complete instructions. DBS-1 $10

Allow up to three weeks for delivery.
A one watt exciter using four RF transistors, two diodes, and one integrated circuit. The RF transistors are operating well below their ratings allowing long keying periods without damage. • Nominal output 1.0 watts ± 10%. • Deviation adjusted to 10kHz ± 1kHz with clipping and active filter. • All spurious outputs down 30db or more. • Temperature compensation crystal trimmer. • Zener regulated oscillator. • Trim readily adjustable 12 to 18 MHz. • crystals (18MHz for 220) • All tuning coils prewound. • Predrilled and tinned C-10 circuit board.

SC-3 Scanner
$19.95

Capable of scanning up to 10 channels. Scan delay allows both sides of a conversation to be monitored without the scan starting each time the earphone drops. The priority feature allows the user to program the scanner to return to his favorite channel whenever it is active. A ten channel receiver crystal deck which utilizes diode switching to select the crystal position required.

CD-1 Crystal Deck
$7.95

A ten channel receiver crystal deck which utilizes diode switching to select the crystal position required.

CD-2 Crystal Deck
$15.95

Designed to provide multi-channel operation for the TX-series transmitters. It features an extra set of contacts that may be wired to the CD-1 crystal deck for 10 channel transceive. The extra contacts may also be used to switch L.E.D. indicators. The switch has 11 positions.

PA220-15 - 15 Watt Power Amplifier

POWER GAIN: 12 db nominal, INPUT POWER: 2 W to 3 W, VHF, dual output: 6.3 to 14 volts DC, negative ground. INPUT CURRENT: 4 amps max., STANDBY CURRENT: virtually insignificant, INSERTION LOSS: less than 1 db on receiver, DUTY CYCLE: 50% or less. Consists of drilled glass PCB, heat sink and all components.

$44.95

Add our synthesizer 220 to your present rig.

The Synthesizer 220 is a 1/4 meter frequency synthesizer. Frequency is adjustable in 5 kHz steps from 220.00 MHz to 225.00 MHz with its digital readout thumb wheel switching. Transmit offsets are digitally programmed on a single ceramic diode matrix, and can range from 100 MHz to 10 MHz. No additional components are necessary!

FEATURES
- **T2** Logic
- Maximum offset versatility — easily programmed to any IF and transmitter offset between 100 kHz and 30 MHz in even 100 kHz increments.
- Simple jumper wire changes enable use on rigs with 18, 9, 6 MHz transmit crystals.
- All frequencies locked to one master crystal oscillator.
- 2 pole output filter on receiver line.
- Virtually no measurable difference in spurious output between crystal or SYN 220.
- Lookup time typically 150 milliseconds.
- Easily interfaced to most rigs.
- Also available for 2 meters.

SPECIFICATIONS
- Frequency: 220 - 225 MHz.
- Transmit offsets: Simplex, 11.6 MHz, 1.6 MHz plus 3 additional field programmable offsets.
- Output: 3 watts to 50° load.
- Input voltage: 11 - 18 VDC at 800 amps.
- Size: 8" long x 5½" wide x 2½" high.
- Complete kit including all electronics, crystal, thumb wheel switch, cabinet, etc.
- Shipping weight 2 lb. 4 oz.

Similar units available for 6 meters, 2 meters, and 432 MHz.

or add any of the above modules to your existing equipment.

IF YOU NEED MORE POWER, DON'T FORGET OUR BLUE LINE!

FEATURES
- High efficiency means low current drain.
- Broad band design (no tuning).
- Direct 12 volt DC operation.
- Indicator lamps for on/off and FM/SSB.
- Relay switching (allows you to put amplifier in or out of circuit at the flip of a switch).
- Insertion loss of less than 1 dB.
- One year limited warranty on parts and labor.

F.O.B. Binghamton / Prices subject to change / Export prices are slightly higher.

POPULAR PRODUCTS

ECONORAM II
This 8K x 8 static memory board has been the choice of thousands of computerists who use the 8-100 bus. Two independent 4x blocks, buffers, tri-state outs, handles DMA devices...and lots more. **$135.00**. Assembled, tested, 1 year warranty. **$155.00**. Special: 3 kits (24K of memory) **$375.00**.

ECONORAM III
Finally...an 8K x 5 dynamic that really works, no matter what 8-100 bus machine you use. Exclusive timing process eliminates the traditional timing problems associated with dynamics. Zero wait states, configured as two separate blocks for versatility. Not a kit—asssembled, tested, 1 year warranty. **$149.00**.

ECONORAM IV
Now you can give your Heath Company 88 something to remember...12K of reliable static memory, for the same price as Heath's 8K board. Same kind of features, and performance, you've come to expect from products carrying the ECONORAM name. Kit form **$235.00**. SPECIAL #1—1/4" phone SPECIAL #2—Cable time jacks. Mono, closed. Can accommodate bundles circuit. Switchcraft of wire or cable from at least the price 1/16" to 3/4" in dia. of imports!!! 10/ $5.00 meter. 100/$2.95.

TERIIS
Cablecard orders accepted with street address for UPS. For VISA or Mastercharge orders ($15 min) call our 24 hr. desk at (415) 562-0636. Prices good through cover month of magazine.

FREE FLYER: Send for it, be surprised.
Get all this transceiver

for under $500.

Available Options Include 100 kHz/10 kHz Dual Crystal Calibrator, Noise Blanker and Portable or Heavy Duty Power Supply

Microphone and mobile mount included.

ALDA 103 is completely manufactured in the U.S.A

ALDA Communications Inc., 214 Via El Centro, Oceanside, CA 92054 • (714) 433-6123
This MFJ RF Noise Bridge . . . lets you adjust your antenna quickly for maximum performance. Measure resonant frequency, radiation resistance and reactance. Exclusive range extender and expanded capacitance range gives you much extended measuring range.

$49.95

MFJ ENTERPRISES
P. O. BOX 494
MISSISSIPPI STATE, MS. 39762
CALL TOLL FREE 800-647-8660
For technical information, order and repair status, in Mississippi, call 601-323-5669.

Send For Free New Catalog
DATA SIGNAL, INC.
2403 COMMERCES LANE
ALBANY, GA. 31707, 912-883-4703
SPECSCAN-S Programmable Scanner

... The ONLY Digital Scanner made for the IC-22S. It adds a whole new dimension to 2M FM. If any other accessory can make your IC-22S as versatile as the SPECSCAN-S does, Buy It!

- Scans the entire 146-147 MHz Band in 15 kHz steps, automatically, or manually
- Automatically reads out your other 21 channels when they are used.
- Can be used as a remote programming unit with the radio hidden under the seat, etc.
- Exclusive VARI-SCAN™ control allows full control of scan rate in either direction!
- Full compatibility with the duplex mode.
- Uses state of the art CMOS logic.
- Low current drain. Less than 500 mA.
- RF immune. Unaffected by nearby equipment and in high RF areas.
- Large LED display lets you see every channel at a glance.
- Manual mode features lets you scan past any portion of the band and manually select a desired channel.
- Easy installation. Uses only one matrix position leaving the other 21 usable for manual programming.
- Plugs into 9 pin accessory socket.
- Adjustable scan delay feature.
- 90 day limited warranty.

ONLY 149.95

Amateur Net

220 MHz SYNTHESIZED
Midland 13-513

AVAILABLE NOW!
- 220-224.995 MHz coverage
- Three power levels
 - 2 watts, 10 watts, 20 watts
- Large LED readout
- Simplex and repeater capability

$449.95
plus shipping
no-trade special

TEN-TEC CENTURY 21

An ideal CW transceiver for the beginner or for a second rig. This is not a toy, but a quality, solid-state transceiver. 70 watts input; 80, 40, 20 meter coverage (15 and 10, too, with accessory crystals). Full break-in and built-in CW filters. With features like this and a low, low price, what are you waiting for?

$289
plus shipping

CRYSTALLESS SCANNING WITH THE BEARCAT 210

The scanner for everyone and just about any use. Simple entry and large LED readout. With its search feature, you can even find those "secret channels." Five-band coverage: 32-50 MHz, 146-148 MHz, 148-174 MHz, 450-470 MHz, and 470-512 MHz.

$289
plus shipping

WE WANT TO MEET YOU!

We will be exhibiting at the Wheaton Hamfest February 5th at the DuPage County Fairgrounds, Wheaton, Illinois. Come by and say hello!

SPECTRONICS, INC.

1009 GARFIELD
OAK PARK, IL. 60304
312-848-6777
TELEX 72:8310

HOURS

STORE HOURS:
Mon-Thurs 9:30-6:00, Fri. 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.

More Details? CHECK-OFF Page 126
Two New Wattmeters for the radio amateur

The 4360, 4362 HAM-MATE directional Wattmeters are insertion type instruments for measuring forward or reflected power in 50-ohm coaxial transmission lines. They are direct descendants of the model 43 THRULINE® Wattmeter — the professional standard of the industry — and will accurately measure RF power flow under any load condition.

HENRY RADIO

FULLY AUTOMATIC C.W. IDENTIFIER

MODEL 12751 KIT
REGULAR $59.50 VALUE, NOW ONLY $35.85

MODEL 11764 — semi-auto. MCW IDer
- adjustable audio level
- programmable code speed, tone, and repeat interval
- 1.7" x 3" PCB. $29.95/kit*

MODEL 97710 — manual CW IDer
- programmable code speed
- ID’s upon request
- ideal for contesting or repeated messages
- 1.5" x 2.2" PCB. $24.95/kit*

MODEL 11765 — beacon CW IDer
- programmable code speed
- great for 1750-meter band
- 1.3" x 2" PCB. $19.95/kit*

*additional pre-programmed memory elements available

Include $3 stopp/hdp, $.55 foreign. CA res. add 6% tax. CODS accepted. Send check or MO, allow 3 weeks on personal checks. Write for additional information.

Securitron Co.
P.O. Box 24899
San Jose, CA 95134
A Component System for RTTY

Active amateur, short wave listener, beginner, or old-timer—you'll enjoy RTTY with the HAL component system. Shown above are our ST-5000 Demodulator, RVD-1005 Visual Display Unit, and DKB-2010 Dual-mode Keyboard. The RVD-1005 is a time-proven display generator that converts BAUDOT coded RTTY pulses into a video display. It receives the 4 standard RTTY speeds (60, 66, 75, and 100 words per minute) and generates a 25 line, 40 characters per line display. The low-bandwidth video output can drive either a TV monitor or a modified TV Set (power transformer and video connection required). The DKB-2010 will transmit these same four RTTY speeds as well as MORSE code at 8 to 60 wpm. The DKB also features N-key rollover, adjustable CW weight, HERE IS message, and internal CW side-tone oscillator. The 3-key standard buffer can be extended to 128 keys with the EMO-128 buffer option. The ST-5000 is the newest of HAL's line of RTTY equipment, offering 2-shift operation with high-performance active filter circuitry. It also has built-in AFSK oscillator and loop supply and can be factory tuned for either the "High" or "Low" frequency tone pairs. Autostart and printer control circuitry make the ST-5000 ideal for both electronic and mechanical RTTY terminals.

For a high-performance and cost-effective RTTY station, the RVD-1005/DKB-2010/ST-5000 combination is hard to beat!

ST-5000
- 170 and 850 Hz Shift
- Low or High Tones
- Integral Tone Keypad
- Active Filters
- Autostart
- Meter Tuning Indicator
- Internal Loop Supply
- Attractive, Small Cabinet
- High-gain, Wide-bandwidth Limiter
- For either HF or VHF operation
- 120/240V, 50/60 Hz Power

RVD-1005
- 4 RTTY Speeds (60, 66, 75, 100 wpm)
- Crystal Controlled
- BAUDOT RTTY Code
- Unshift-on-Space (Switch Selectable)
- Loop or RS-232 Input
- 40 Character Lines
- 25 Line Display
- Table or Rack Cabinet
- Use with modified TV Set
- 120/240V, 50/60 Hz Power

RVD-1005 $395.00
(Specify Table or Rack Cabinet)
RVD 2110 Quasar TV $150.00
(Shown above)

DKB-2010
- BAUDOT RTTY & Morse Codes
- 4 RTTY Speeds (60, 66, 75, 100 wpm)
- Crystal Controlled
- 8 to 60 wpm Morse Code
- Programmable HERE IS message
- N-Key Rollover
- 3-Key Buffer Standard
- Quick Brown Fox test message
- Automatic FIGS/LTRS for RTTY
- Internal CW Sidetone Oscillator
- 120/240V, 50/60 Hz Power

DKB-2010 $395.00
(Specify HERE IS message)
EMO-128 Buffer Option $85.00

Write for our new catalog and RTTY guide.

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

For our European customers see HAL equipment at:
- Richter & Co., Hannover
- E.C. Interko, Beusone
- Primetek Systems, Halsen, Sweden
- Radio Shack of London

february 1978 99
PS-14 12V, 15A Power Supply Kit

If it's POWER you need, than look no further. The PS-14 gives you a highly regulated power supply with features only the commercial units offer at a fraction of the cost. Compare our specs with any other unit on the market and then compare our price!

SPECS:
- **Output:** 115-14 Adjustable
- **Current:** 15A continuous; 20A int.
- **Limit:** Adjustable Foldback type
- **Regulator:** Less than 1% @ 15A
- **Input voltage range:** 200 volts rms
- **Thermal:** Adjustable thermal shut down protects series pass.

METERS:
- Quality 3½” meters for PS 14. 0–15VDC 0–25 ACD matched set. Individually packaged. **NOT SURPLUS!**

$39.95

2N602B Programmable injection super for oscillators, timers, time delay etc. 50c

SPECIAL!
- Limited Qty! LM667 Tone Decoders while they last! 99c

MC1469R
- 500mA positive regulator. 3 to 30 volts, with complete specs and applications. $1.25–$ house no.

MC1351P FM IF AMP
- 14 pin IC. Complete FM sound subsystem. Similar to LM2111. house no. $5.00

2N6111 PNP Transistors
- 40 Watt 3A TO 220 case 2/$1.00

ROCKER SWITCHES
- DIPDT Rocker Switches 5/$1.00

Multicolored 26 Conductor Ribbon Cable
- No. 28 wire with a woven binder. Suitable for Flex Circuits. 10” roll $2.95 50’ roll $9.95

WEBSHORE MICRO
- PC mount trim pots. Single turn 1K. 3/$1.00

2N3669 NPN epitaxial TO-92 case
- VCEO=60 Hfe=300 800MW power output 6/$1.00

MINI GRANDFATHER CLOCK KIT
- $39.95
- Just in case you have spent the last six months in Siberia, we will tell you one more time that Bullet has the ONLY Completely Electronic Grandfather Clock Kit in the world that has all the below listed features. The biggest problem we have is to try and describe how unique and fascinating this clock really is!
- The Swinging LED Pendulum and Matching Tick-Tock sound are available only on this clock. In addition the electronic chime notes each hour (ie: 3 times for 3 o’clock). House in the optional Solid Hardwood Case, the unit makes a beautiful addition to any room as well as a great gift.
- **3½” digit LED readout**
- **Adjustable tone & duration on chime**
- **Simulated swinging pendulum looks**
- **LED Calibrated**
- **All electronics, switches and transformer included**
- **Quality plated board cases (2)**

BULLET LUCKY NUMBER FOR FEB. IS: 35

BEAUTIFUL HARDWOOD CASE FOR MK-03 Clock. Case is cut, grooved and finished for clock. Includes ruby front changer. Easy assembly requires only 4 screws. (For MK-03) $19.95

THE LAST CHANCE!!

THAT'S RIGHT! THE LAST CHANCE TO BUY OUR SUPER POPULAR MK-05 MINI MOBILE SIX DIGIT CLOCK KIT at this super low price. The response has been great but supplies are starting to run low. So order NOW!

Features:
- Quartz crystal timebase
- Tower & timer noise & overvoltage protection.
- Magnified 15”, 6 digit LED readout.
- Complete with presettable 24 hr.
- R–14 VDC @ 40 to 50 ma.
- Readouts can be suppressed
- EASY, QUICK ASSEMBLY!
- All components included (you supply the speaker).
- Top quality drilled & plated PC Board.
- Clock board; 3½” x 3½”
- Readout board; 2 3/8” x 2 7/8”

OVERVOLTAGE PROTECTION KIT:
- $6.95
- Provide extra insurance for your expensive equipment. Trip voltage is adjustable from 3 to 30 volts. Overvoltage instantly fry’s a 25A SCR and shuts the output to the protect equipment. Should be used on units that ars not directly compatible with the PS-12 and PS-14. All electronics supplied. Drilled & plated PC board. (Order OVP-1.)

21.50

MALFUNCTION KIT
- $28.95 (Will fit standard 3 1/8” instrument case)

MK-06 Clock/Calendar Auto Home Clock Kit

We designed this to be a SUPER CLOCK with A.S.T.E. the features you want. Quality double diode, used PC board, easy. Mobile (12VDC) or home (12VAC)

- Large 3½” LED Readout
- ALLERVERS Indicator light
- Internal time display automatically or manually
- Display can be dimmed or blanked
- 24 hour or 12 hour clock
- Large clear digital numbers
- Adjustable volume control
- **25% off normal price**

SMALLER COMPACT KIT
- $19.95
- “2½” wide x 3 5/8” long x 1 ½”
- Super revised manual makes assembly easy.
- Many options available by adding switches.
- Sold less case & switches.

$28.95
PORTA PAK - the accessory that makes your mobile really portable. $67.50 and $89.00. Dealer inquiries invited. P.O. Box 67, Somers, Wis. 53171.

TRAVEL PAK QSL KIT - Send call and 25c; receive your call sample kit in return. Samco, Box 203, Wynnanskill, N. Y. 12198.

ELECTRONIC PARTS - toroids, resistors, pc board, etc. Send for free catalog. OK Electronics, Box 291, Onalaska, Wis. 54650.

DUPLICATE MAGAZINES for trade or sale. Send list of your needs & SASE for my list. Donald Erickson, 6095-R Essex, Riverside, California 92504. 714-687-0191.

QSL’s — BROWNES W3CJ — 3035B Lehigh, Allentown, Pa. 18103. Samples with cut catalog 50c.

LOWEST PRICES: Crystal Certificates, Two-Meter Certificates $2.75 each. Scanner-Monitor Certificates $2.25 each. Minimum order 10 assorted pieces. Bob Anderson WILBA. 428 Central Ave., Milson, Miss. 32186.

WANTED: Johnson Navigator. State condition, price. Shipping paid WA2QKF.

MOTOROLA HT220, HT200, and Pageboy service and modifications performed at reasonable rates. WA4FV (604) 320-4439, evenings.

AUTHORIZED DEALER for Dentron, KLM, Larsen, Bearcat, etc., Big Catalog 201-962-4695. Jarid Electronics, 61 Bellot Road, Reingen, N.J. 07456.

DIRECTWRITE PARTS WANTED: for all machines manufactured by: Klienschmidt Corp., Teletype Corp. and Mito. Any quantity, top prices paid send list for my quote. Phil Ricksen, WALNW, Rf. 6, Box 110032, Brooklyn, N.Y. 11232.

ROHN TOWER Special limited time sale 250 — $29.00 section 11G — $19.00, section. Hill Radio, 2503 G E Rd., Bloomington, Ill. 61701.

HOMEBREWERS: Stamp brings component list. CPO Send, Box 189, Braintree, Mass. 02184.

CHANNEL ELEMENTS NEEDED KXN1024A, MOTOROLA for Micror CPOabhängig WACO4C, 4 Ajax, Berkeley, Ca. 94708 (415) 843-5253.

WANTED: Manual for Labovio LA-18MY Spectrum Analyzer — Wayne E. Eberhard KSTWX. P.O. Box 1196, Alhurais, Calif. 96101.

EZ does it best. Deals, that is, on Yaesu, ICOM, Drake, Sume, Cushcraft, Yaesu, Drake, Collins, TEL, WGN. Canada, Drake, Collins, ICOM, WGN. Drake, Collins, WGN. Canada.

STOP LOOKING for an old ham radio — you’ve found it here — at your ham radio headquarters in the midwest. We are factory-authorized dealers for Kenwood, Drake, Collins, ICOM, Ten-Tec, Atlas, Hallcrafters, KLM, Wilson, Regency, Tempo, Sume, Midland, Alabama, Standard, Denton. Put your old radio on the air with us today, and we’ll give you all the help you need to get it back up and running. We have a large selection of new and used equipment available at reasonable prices. Write today for our low quote and trying out some of our best buys.

ALL ITEMS PPD USA

LIST BARGAINS

Just arrived — thousands of ICs. Removed from sockets on new P.C. boards. All marked with standard numbers and in the 7400 series. Examples of nos. are 7486-7495-7496 etc. Chance of a lifetime. Sorry no choice of numbers. We mixed them up.

50 for $7.50 ppd.
100 for $12.50 ppd.

High-gain 8 watt audio amp. 20 mV will drive it to 8 watts out. Rectifiers and filter cap on the board. Size approx. 3" x 4" x 3" high. All you need is 24-0-24 volts ac. Of course we supply schematic. $3.25 ppd.

100 volt PIV 8 amp 3 phase bridge. Motorola no. MDA 1505-2 factory new. Will work swell on single phase. $2.75 ea. ppd.

PL55 patch cord — a full 20 feet long with a molded PL55 on both ends. A low $75 ea. ppd.

Choice: Boards with 10 to 30 sockets $12.50 ea. Boards with 30 to 55 sockets $18.00 ea. ppd.

Matching wire wrap 86 pin edge connector while supply lasts $2.50 ea. ppd.

4PDT Relay, 12VDC coil, Potter Brumfield, 5 amp contacts, factory new of course, a beauty $1.90 ea.

Jumbo LEDs, .2 inch diameter. Color-Red. Prime factory units. Not seconds or retests.

20ca. ppd $2. Square Speaker. 8 ohms. Mounting holes in the corners. Very nice unit and easy to mount.

$1.00 ea. ppd.

6 foot AC Line Cords. 2 conductor heavy duty. Color white.

40ca. ppd 1/16" Copper Clad PC Board Material 3" x 3" — 2 for 25c; 3" x 6" — 30ca.; 6" x 6" — 75ca.

18 pin Solder Tail, IC Socket for that memory chip.

28ca. ppd $2.50 ea.

2-1/4" Round Speaker, 8 ohms.

3 watts. Factory new of course.

$1.00 ea. ppd.

Resistor Assortment. All new FULL leads. Color coded. Some 1/8 - 1/4 - 1/2 watt.

100 or $3.00 ppd.

COLLINS R-392 For sale: High precision receiver for military use. Conditioned $300 with power supply. 190 Hillcrest Rd., Ridgewood, N.J. 07450 (201) 444-0245.

TEKTRONIX OSCILLOSCOPE and plug ins for manuals for $50. Send check below for model $10 each. Please stamp for list. BBNPIM. 7741 Chanahassen, Rd., #355. Chanhassen, MN 55317.

COLLINS CW Filter, 300Hz bandwidth 455KHz. For use in 75K3. 75S38 and 75A4 receivers. See Sept. 1975 H.R. for article. $60.00 postpaid. WIEGB, Gary Finkett, 40 Pilgrim Trail, Woodbury, CT 06768.

5M Sale, All MINT: Heath HK-20 Exciter AM/SSB PEP $59. Heath HA 20 Linear 125W PEP $60. Also Gonset 913 Mk 2 Linear 5 in 500W out PEP $150, or best offer. F.O.B. Vero Beach Fl. Purcell, 22 Fairlale Harbore. 350-509-0617.

THE "CADILLAC" of QSL's! New Samples. $1.00 (Refundable). MAC'S SHACK, Box #1171-D, Garland, Texas 75040.

TELETYPewriter Parts, gears, manuals, supplies, tools, toroids. SASE fast. Teletypexs. Box 8673, Ft. Lauderdale, Fl. 33310. N/A Part buyers, late machines.

EXCLUSIVELY HAM TELETYPE 24th year. RTTY Journal, articles, news, DX, V.H., classified ads. Sample $3.50 per year. 1155 Arden Drive, Encinitas, Calif. 92024.

FIGHT TVI with the RS-2 Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada M8C 3R4.

RUBBER STAMP: Nameical/IQTH $2.50 ppd (CA residents add tax). LVM Press, Box 2216, San Diego, CA 92122.

MINT SHAPE Heath SB-303 plus SB-600 Speaker both $25 or best offer. F.O.B. Vero Beach Fl. Purcell, 22 Fairlale Harbore. 350-509-0617.

145-164 MC Digital Readout Boards. Will work with any 1-4-8-4 BCD panel. Drilled, wired and complete instructions $6.00 ppd. USA: W. L. Mohr, 2187 Wapoo Drive, Charleston, S.C. 29412.

HAM RADIO HORIZONS, a super new magazine for the Beginner, the Novice and anyone interested in Amateur Radio. What's all about, how to get started, The fun of ham radio. It's all here and just $12.00 per year. HURRY HURRY! Ham Radio HORIZONS, Greenville, NH 03848.

DRAKE DC-3 $36. complete. Steven terHaar, 650 Beeck, Moorhead, MN 56560.

TELETEYPE FOR SALE: Model 28ASR's. KSR's, typing reports, and TD's. New and used parts available including cabinets, tables, mod kits, gears and gearshafts. Paper, ribbons, and supplies. Some 8-Level Model 33 and 35 equipment available. Send SASE for complete list and prices. KRWB, Lawrence R. Pfieger, 2141 N. 52nd St., Milwaukee, Wisc 53208.

BUY-SELL-TRADE. Write for free mailer. Give name, address and call letters. Complete stock of major brands new and reconditioned equipment. Call for best deals. We buy Collins, Drake, etc. SSB & FM. Associated Radio, 8012 Conser, Overland Park, Kansas 66204 (913) 381-5901.

RTTY - NS-1A PLL demodulator. Board $3.50. Parts $15.00. WIT $24.95; all postpaid. SASE for info. Nat Stetterm Electronics, Tavares, Fl. 32778.
CMOS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS40</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS42</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS43</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS45</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS47</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS48</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS49</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS410</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS411</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS412</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS413</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS414</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS415</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS416</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS417</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS418</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS419</td>
<td>$0.85</td>
</tr>
</tbody>
</table>

LED DISCRETE

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS240</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS242</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS243</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS244</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS245</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS246</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS247</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS248</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS249</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS210</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS211</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS212</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS213</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS214</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS215</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS216</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS217</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS218</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS219</td>
<td>$0.85</td>
</tr>
</tbody>
</table>

LINEAR

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS50</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS53</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS54</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS55</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS56</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS57</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS58</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS59</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS68</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS69</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS70</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS71</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS72</td>
<td>$0.85</td>
</tr>
</tbody>
</table>

TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS80</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS84</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS85</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS86</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS87</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS88</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS89</td>
<td>$0.85</td>
</tr>
<tr>
<td>74LS90</td>
<td>$0.85</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1% 500V</td>
<td>$0.85</td>
</tr>
<tr>
<td>2.2k 500V</td>
<td>$0.85</td>
</tr>
<tr>
<td>10k 500V</td>
<td>$0.85</td>
</tr>
<tr>
<td>100k 5k</td>
<td>$0.85</td>
</tr>
<tr>
<td>220k 5k</td>
<td>$0.85</td>
</tr>
<tr>
<td>1M 5k</td>
<td>$0.85</td>
</tr>
<tr>
<td>10M 5k</td>
<td>$0.85</td>
</tr>
<tr>
<td>100M 5k</td>
<td>$0.85</td>
</tr>
</tbody>
</table>

capacitor CORNER

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1uF 50V</td>
<td>$0.85</td>
</tr>
<tr>
<td>1uF 50V</td>
<td>$0.85</td>
</tr>
<tr>
<td>10uF 50V</td>
<td>$0.85</td>
</tr>
<tr>
<td>100uF 50V</td>
<td>$0.85</td>
</tr>
<tr>
<td>1000uF 50V</td>
<td>$0.85</td>
</tr>
<tr>
<td>10uF 50V</td>
<td>$0.85</td>
</tr>
<tr>
<td>100uF 50V</td>
<td>$0.85</td>
</tr>
<tr>
<td>1000uF 50V</td>
<td>$0.85</td>
</tr>
</tbody>
</table>

Hobby-Wrap Tool
- **BW-2W**
 - Price: $34.95
 - Description: Complete with built-in bit and handle

Wire-Wrap Kit
- **BW-2W**
 - Price: $11.95
 - Description: Complete with built-in bit and handle

Hobby-Wrap Tool
- **BW-2W**
 - Price: $34.95
 - Description: Complete with built-in bit and handle

Wire-Wrap Tool
- **BW-2W**
 - Price: $11.95
 - Description: Complete with built-in bit and handle

Wire-Wrap Tool
- **BW-2W**
 - Price: $34.95
 - Description: Complete with built-in bit and handle

Wire-Wrap Tool
- **BW-2W**
 - Price: $11.95
 - Description: Complete with built-in bit and handle

Wire-Wrap Tool
- **BW-2W**
 - Price: $34.95
 - Description: Complete with built-in bit and handle

Wire-Wrap Tool
- **BW-2W**
 - Price: $11.95
 - Description: Complete with built-in bit and handle
flea market

Coming Events

CUIYAHOGA FALLS AMATEUR RADIO CLUB ~ 24th Annual Electronic Equipment Auction and Flea Market, 9AM to 4PM, Sunday, February 26th at North High School, Akron, Ohio. Tickets $1.50 advance, $2.50 at door. Bring own tables; ramp available. Set up for 9AM. Refreshments, prizes ~ grand prize Triton IV. Over 32,000 square feet for buyers and sellers, easy access on Tallmadge Avenue off-ramp, North Expressway (Route 8); connected to main interstates and Ohio Turnpike. Check in on 146.52 and 223.5 simplex, or 146.0/44 and 147.8/4.24 repeater. Details from CFARC, P.O. Box 6, Cuyahoga Falls, Ohio 44222.

COLUMBUS AMATEUR RADIO CLUB Annual Hamfest April 8, 9, 1978. Columbus Municipal Auditorium fairgrounds. Spacious, air-conditioned exhibit area, rooms, fine market, Saturday night banquet, FCC exams, and a luncheon at the Hamfest site. Contact Eddie Kosobucki, K4JNL, 5525 Perry Ave., Columbus, GA 31904.

MANSFIELD MID-WINTER HAMFEST ~ Auction ~ February 5, 1978 Richland County Fairgrounds, Mansfield, Ohio. Prizes, Flea Market, Auction. Large building 225 x 150 ft, 80 ft. tall. Talk-in on 146.34/146.69, Ticket $1.50 in advance, $2.00 at the door. Contact Harry Frietzhen, KB6N (K8JFJ) 120 Homewood, Mansfield, Ohio 44906 or phone 283-3091 or 519-524-1441.

MICHIGAN ~ Livonia Amateur Radio Club's 8th annual Swap 'n Shop, Sunday, February 26th, 1978, 8:00 A.M. to 4:00 P.M., at the Stevenson High School, Livonia, Michigan. Plenty of tables, door prizes, refreshments, and free parking available. Talk-in on 146.62 Simplex. Write Neil Coffin WSGVL, P.O. Box 2111, Livonia, Michigan 48150.

STERLING-ROCK FALLS AMATEUR RADIO SOCIETY Hamfest March 5, 1978. Sterling High School Field House, 1600 4th Avenue. Sterling, Illinois. Indoor flea market restricted to radio and electronic items only. Tables obtained at door, or bring your own. (3.00 for 1/2 table, $6.00 for full table). Free parking available, including campers and trailers. Admission: $1.50 advance, $2.00 after Feb. 15th, 1978 or at the door. Write ~ Don Van Sant, W8PASB, 1104 5th Avenue, Rock Falls, Ill. 61071. Make checks payable to Sterling-Rock Falls Amateur Radio Society. Talk-in on 146.94 simplex.

NEW HAMPSHIRE OSO PARTY ~ 2000Z February 10 to 0500Z February 11, and 1400Z February 11 to 0200Z February 12. Stations may be worked once per band per mode. New Hampshire stations send RST and county; other send RST. ARRL section or country. Suggested frequencies: CW 1810, 14055, 14050, 21055, 28130 KHz; Phone 1820, 3395, 3725, 4200, 21380, 28575 KHz; Novice 3730, 7130, 21330, 28130 KHz and VHF 50, 115, 145, 155 MHz (simplex only). Slate to Concord Brassounders, Inc., 9 Via Tranquilla, Concord, New Hampshire 03301. Mailing deadline March 15, 1978.

MECKLENBURG AMATEUR RADIO SOCIETY ~ 1978 ARRL-sanctioned Hamfest, April 1st & 2nd, 1978, Charlotte Civic Center; plenty of parking available. Details from W4GBF, 2425 Park Road, Room 023, Charlotte, NC 28203.

Stolen Equipment

REGENCY HR28 Registration Number 2200-363 Engraved on the left front side and the speaker terminal strip is a plastic mini-plug, Transceiver is wired to an AR-2 Regency Amplifier. If located notify the Sandusky Police Dept., Sandusky, Ohio 44870 or Call Earl Carriner, K8WBF collected 1-419-625-1817.
Wilson Electric System One™

4 ELEMENTS
ON A 26' BOOM!!
For 20, 15 and 10 METERS

Real monoband performance
with 4 elements on 20 meters.

The new standard of performance for Tribanders is the Wilson System One!!! A DX'ers delight operating 20 meters on a full 26’ boom with 4 elements, 4 operational elements on 20-15-10, plus separate reflector element on 10 meters for correct monoband spacing. Featured are the large diameter High-Q Traps, Beta matching system, heavy duty Taper Swaged Elements, rugged Boom to Element mounting . . . and value priced at $259.95. Additional features: • 10 dB Gain • 20-25 dB Front-to-Back Ratio • SWR less than 1.5 to 1 on all bands.

SY-1 SPECIFICATIONS

Matching Method Beta
Band MHz 14-21-28
Maximum Power Input . . Legal Limit
Gain 10 dB
VSWR (at Resonance) 1.5 to 1

Impedance 50 ohms
F/B Ratio 20-25 dB
Boom Length 26’
(2’ O.D.)

No. of Elements 5

Longest Element 26’ 7”
Turning Radius 18’ 6”
Mast Diameter 2” O.D.
Boom Diameter 2” O.D.

Surface Area 8.6 sq. ft.
Windload at 78 mph . . 215 lbs.
Shipping Weight 65 lbs.
(UPS Shipment in 2 Cartons)

ADVANCED DESIGN LARGE DIAMETER
HIGH-Q TRAPS FOR MINIMUM LOSS AND
MAXIMUM POWER CAPACITY

HEAVY DUTY BOOM
TO ELEMENT EXTRUSION

INSULATED DRIVEN ELEMENT WITH PRECISION
BETA MATCH AND HEAVY DUTY ELEMENT MOUNTS

DEALERSHIPS
AVAILABLE!!!
We are looking for new Dealers for certain areas of the country.
If you are interested, contact us for details.

For complete specifications on the above products or a copy of our new Amateur Products Buyers Guide, write:
Consumer Products Division

Wilson Electronics Corp.
P.O. BOX 19000 • LAS VEGAS • NEVADA • 89119 • (702) 739-1931 • TELEX 684-522
New! Broadband antenna matching. For all verticals and mobile whip antennas. Smaller size and higher efficiency. Only 3½" diameter for full 5-Kw PEP capability.

Here is the answer to the matching problem for vertical antennas and mobile whips. A broadband transformer that matches your 50 ohm transmitter to 32, 28, 22, 18, 12, 8, or 5 ohms. Plenty of taps to match any vertical or whip. And with no tuning or other adjustment. The RF Transformer is completely broadband 1-30 MHz (1-10 MHz on three lowest taps). So when you change frequency within a band you need only retune the antenna to resonance; not fiddle with a matching network.

Also, more power goes to your antenna. The RF Transformer is more efficient than a matching network or tuner—less than 0.1 db loss.

As always, when you buy Palomar Engineers you get the best: large ferrite toroid core, teflon insulated wire, sealed epoxy-encapsulated weatherproof construction, stainless steel mounting hardware, full 2000 Watt (5-Kw PEP) capability.

Send for free brochure.

More Details? CHECK-OFF Page 126
ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.

- Powered by 6-16vdc, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Low distortion sinewave output
- Available in all EIA tone frequencies, 67.0 Hz-203.5 Hz
- Complete immunity to RF
- Reverse polarity protection built-in

$29.95 each
Wired and tested, complete with K-1 element

communications specialists
P. O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

K-1 FIELD REPLACEABLE, PLUG-IN, FREQUENCY DETERMINING ELEMENTS
$3.00 each
Clegg won't sell you a radio in a factory sealed carton!

When you purchase your YAESU, WILSON, KLM, DENTRON, HY-GAIN, ATLAS or other selected product from Clegg, please don’t expect to receive it in a factory sealed carton. When we deliver any of these fine pieces of equipment to you, we want to be certain it meets or exceeds all the manufacturer’s specs. First of all, we want to warrant that it does; secondly—you’re entitled to that extra assurance! We thoroughly test each unit before we ship it. And we furnish you with test data.

If getting a super discount on your new radio is important to you—or if you insist on a factory sealed carton, we suggest you shop elsewhere. But—if you want the positive assurance that you are receiving the value and performance you’re entitled to—then we are the guys to talk to.

For complete details and prices on any Clegg-approved product, telephone Toll Free 1-(800)-233-0250 (In Pennsylvania call Collect (717)-299-7221). Or drop a card to Clegg Communications Corp., 1911 Old Homestead Lane, Greenfield Industrial Park East, Lancaster, PA 17601.

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95. Now available in KIT FORM—GLB Model 200 MINI-SIZER. Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95

Send for FREE 16 page catalog.

We welcome Mastercharge or VISA

GLB ELECTRONICS
1952 Clinton St., Buffalo, N. Y. 14206

Oak Hill Academy
Amateur Radio Session
19th Year—July 29 thru August 11, 1978

We have moved our location just 15 miles from our previous site to the Oak Hill Academy, Mouth of Wilson, Virginia. Our accommodations are now the finest one could hope for, suites in a beautiful Dorm with bath for each four students. Lovely spacious lobby and fine recreation room in the lower level of the dorm.

Oak Hill Academy in the Appalachian Mountains of Virginia offers an intensive two week Radio Session in code and theory starting at your level.

Expert instructors, some of whom have been on the staff for the past 18 years are the same. Only the location has been changed. Close association with fellow amateurs offers an opportunity for Saturation Learning that has been very successful since its conception. Novices upgrade to General, Techs to General & Advanced, and Advanced become Extras.

Golf privileges, canoeing on the New River & many other recreation activities are offered. Make your vacation a “Vacation with a Purpose” and upgrade your license at a beautiful school in the cool mountains of Virginia.

Formerly Glade Valley School Radio Session

C. L. PETERS, K4DNJ, Director
Oak Hill Academy Amateur Radio Session
Mouth of Wilson, Virginia 24363

Name ___________________________ Call ________________
Address __
City/State/Zip __________________________

More Details? CHECK—OFF Page 126
NEW LSI TECHNOLOGY
FREQUENCY COUNTER

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MANY BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION [PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!

$119.95 COMPLETE!
KIT #FC-50 C
60 MHz COUNTER WITH CABINET & P.S.

KIT #PSL-650
650 MHz PRESCALER (NOT SHOWN)

MODEL #FSC-50T
60 MHz COUNTER W/ WIRE, TESTED & CAL.

MODEL #FSC-50/600 WT
600 MHz COUNTER W/ WIRE, TESTED & CAL.

SIZE:
3" High
6" Wide
1/2" Deep

FEATURES AND SPECIFICATIONS:
DISPLAY: 8 RED LED DIGITS, 5" CHARACTER HEIGHT.
GATE TIMES: 1 SECOND AND 1/10 SECOND.
PRESCALER WILL FIT INSIDE COUNTER CABINET.
RESOLUTION: 1 Hz AT 1 SECOND, 10 Hz AT 1/10 SECOND.
FREQUENCY RANGE: 10 Hz TO 100 MHz. (50 MHz TYPICAL).
SENSITIVITY: 10 MV RMS TO 50 MHZ, 20 MV RMS TO 60 MHZ TYP.
INPUT IMPEDANCE: 1,000 OHM AND 30 PF.
[DIODE PROTECTED INPUT FOR OVER VOLTAGE PROTECTION.]
ACCURACY: ± 1 ppm + 0.001% (AFTER CALIBRATION TYPICAL).
STABILITY, WITHIN ±1 ppm PER HOUR AFTER WARM UP (30°F X-TAL), IC PACKAGE COUNT. 8 [ALL SOCKETED].
INTERNAL POWER SUPPLY: 5 V DC REGULATED.
INPUT POWER REQUIRED: 8-12 VDC OR 115 VAC AT 50/60 HZ.
POWER CONSUMPTION: 4 WATTS.

PLEXIGLAS CABINETS
Great for Clocks or any LED Digital project. Clear-Red Chassis serves as Bezel to increase contrast of digital displays.

CABINET I
3"H, 6.8"W, 5.6"D Black, White or Clear Cover
$6.50 ea.

CABINET II
2.6"H, 5.6"W, 4.4"D
$5.85 ea.

RED OR GREY PLEXIGLAS FOR DIGITAL BEZELS
3"X6"/18" $9.50 ea.
4/33

SIX DIGIT LED CLOCK CALENDAR KIT
DATE-TIME-SNOOZE ALARM & MORE, KIT 7001
FOR THE BUILDERS THAT WANT THE BEST! FEATURING 12 OR 24 HOUR TIME - 29-30-31 DAY CALENDAR, ALARM, SNOOZE AND AUX. TIMER CIRCUITS. Will alternate time (12 seconds) and date (2 seconds) or may be wired for time or date display only, with other functions on demand. Has built-in oscillator for battery back-up. A loud 24 hour alarm with a repeatable 10 minute snooze alarm, alarm set & snooze set indicators, includes 110 VAC/60Hz power pack with cord and top quality components through-out.

KIT #7001B WITH 6 DIGITS $33.95 ea.
KIT #701C WITH 12 DIGITS $19.95 ea.
KIT #701X3 WITH 12 DIGITS $14.95 ea.

KITS ARE COMPLETE (LESS CABINET) AND ACCEPT QUARTZ CRYSTAL TIME BASE KIT #T1A.

PRINTED CIRCUIT BOARDS for CT-7001 Kits are sold separately, assembled PCBs are drilled fiberglass, solder plated and screened with component layout.

AUTO BURGLAR ALARM KIT
ALARM PROVIDING MANY FEATURES NOT NORMALLY FOUND. ALARM HAS PROVIDER FOR PCS & GROUNDING SWITCHES OR SENDS. NO PULSES ARE SENT TO THE OFFICE OR THE POLICE. PROVIDES PROGRAMMABLE TIME DELAYS FOR EXIT, ENTER & ALARM PERIOD. UNIT MOUNTS UNDER DASH. REMOTE ALARM SYSTEM RECEIVES CALLS FROM THE ALARM COMPANY AND WILL CALL THE PERSONALIZED TIME DELAY PHONE NUMBER. ALARM SENSORS ARE ULTRA DEPENDABLE; ALARM SENSORS ARE PROGRAMMABLE FOR ULTRA DEPENDABLE ALARM PERFORMANCE. COMPLETE KIT INCLUDES ALL PARTS INSTRUCTIONS OR AVAILABLE WIRING AND TESTED.

KIT #ALR-1 $9.95
#ALR-1WT WIRED & TESTED $19.95

B, Cor X + 7.95

VARIABLE REGULATED 1 AMP POWER SUPPLY KIT
VARIES FROM 4 TO 14V
SHORT CIRCUIT PROTECTION
23005 PASS TRANSISTOR
CURRENT LIMITING AT 1 AMP
KIT IS COMPLETE INCLUDING DRILLED & SOLID PLATED FIBERGLASS PC BOARD AND ALL PARTS - LESS TRANSFORMER.
KIT #PSL-1 $18.95
TRANSFORMER #249 $3.50

MOBILE LED CLOCK, INC.
MOBILE LED CLOCK
12/24 HR 4 DIGITS
MODEL #2001
12 VOLT AC OR DC POWERED

SPECIFY FOR 7001

6 JUMBO 4" RED LEDS BEHIND RED FILTER LENS WITH CHROME RIM
SET TIME FROM FRONT VIA HIDDEN SWITCHES 12/24 HR. TIME FORMAT
STYLISH CHARCOAL GRAY CASE OF MODERN HIGH TEMP. PLASTIC
BRIDGE POWER INPUT CIRCUITRY - BATTERY OR POLARITY-LOOK HOOKUP
RETURN CONNECTION TO BLANK DISPLAY USE (WHEN KEY OFF IN CAR, ETC)
TOP QUALITY PC BOARD AND COMPONENTS - INSTRUCTIONS.
MOUNTING BRACKET INCLUDED

KIT #2001 COMPLETE KIT $425.00
ASSEMBLED UNITS W/ WIRE ORDER #2001 WT (LESS 5W. BATTERY)
Wired for 12-Hour Op. if not otherwise specified.

SPECIAL PRICING!
PRIME - HIGH SPEED RAM
21L02-3 400 NS
LOW POWER - FACTORY FRESH
1-24 $1.75 ea.
25-49 $1.60 ea.
50-99 $1.45 ea.
100 AND OVER $1.29 ea.

JUMBO DIGIT CLOCK
A complete Kit (less Cabinet) featuring: six 5" digits, MM314 IC 12/24 HR time, PC Boards, Transformer, Line Cord, Switches and all Parts. Ideal Fit in Cabinet II

KIT #53145 COMPLETE KIT $19.95

JUMBO DIGIT CONVERSION KIT

$9.95 ea.

JUMBO DIGIT CLEAR CABINET

$5.95 ea.

MULTIPLEX PC BOARD & Hook up info.

KIT #JD-10C FOR COMMON CATHODE

KIT #JDC-1CA FOR COMMON ANODE

OPTOELECTRONICS, INC.
BOX 219 HOLLYWOOD, FLA. 33022
PHONE [305] 921-2056 / 921-4425

More Details? CHECK - Off Page 126

february 1978 109
An extraordinary world of DX from your mobile station with the

All Solid State Metron 1000

No tuning or adjustment whatever over 80, 40, 20, 15 and 10 meters

- For direct use with standard automobile battery/alternator
- Base station with optional 13.6 V power supply
- Fully remote controlled
- Suitable for use with any transceiver in the 100W class
- Heatsink convecto-cooled and thermostatically controlled
- 8 power transistors of latest stripline RF linear devices; rated for operation at infinite VSWR
- Meets all applicable specifications

Power input: 13.6 V DC 1000 W
Power output: 13.6 V DC 600 W PEP typical
Harmonics: 50 dB all amateur bands
Drive level: 60 W PEP 50 ohms

For further details, send for free informative brochure.

Dealer inquiries invited.

COLLINS & MORE

Collins 7553B, Ham revr $725.00
Collins 1122B4, Excell. round. $250.00
Collins 7553, very good $425.00
Collins 3253, round. excel. $999.00
Collins 7553, round. excel. $1,195.00
Collins R86/3111, v.v. ad. $405.00
Collins 312BS, VFO console $505.00
Collins 5151, 2-30 MHz receiver SPECIAL $925.00
Collins KWM-2A, round, v.v. good $925.00
ITT-Mackay Marine, 0.7-30 MHz, SSB/AM, receiver, 500 Hz filter $595.00
New R930 receivers avail. Call for quote.
We stock good, used equipment from Collins, Drake, Heath and other manufacturers. Hundreds of test items also available. Call for specific requirements, or write for free catalog.

DAMES COMMUNICATION SYSTEMS
201-998-4256
10 SCHUYLER AVENUE
NORTH ARLINGTON, N. J. 07032

All equipment sold checked and realigned

SYNTHESIZERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our 1/3 page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS
196-23 JAMAICA AVENUE
HOLLIS, N. Y. 11423
Why Waste Watts? SWR-1A $25.95

SWR-1 guards against power loss! If you're not pumping all the power you're paying for, our little SWR-1 combination power meter and SWR bridge will tell you so. You read forward and reflected power simultaneously, up to 1000 watts RF and 1:1 to infinity VSWR at 3.5 to 150 MHz. Got it all tuned up? Keep it that way with SWR-1. You can leave it right in your antenna circuit.

PipoCommunications TROUBLE FREE TOUCH-TONE ENCODER

AC Volts: 0-3-12-60-300-1,200 (5,000 Ohms per Volt).
Ohms: 0-20k-200k-2MΩ-20MΩ
200 Ohm center scale on low range.
DC Microamperes: 0-600 at 250 mV.
DC Milliamperes: 0-6-600 at 250 mV.
Accuracy: ±3% DC; ±4% AC; (full scale).
Scale Length: 2-1/8".
Meter: EMI shielded; diode overload protected; spring backed jewels.
Case: Molded, black, high impact thermoplastic with slide latch cover for access to batteries and fuse, 2-3/4" w x 1-5/16" d x 4-1/4" h.
Model 310 Cat. No. 3018 $35.00

Dealer Programs NOW Available

Master Charge American Express
Visa

Prices FOB Medford MA. MA residents add 5% sales tax. Minimum $3.00 for shipping & handling on all orders.

* Sample page from our very large mail order catalog, free for the asking! (We also have a dealer program now available.)
The Leader in the Northwest!

ATLAS ICOM KENWOOD YAESU

KENWOOD Transceiver
TS-520S 160 thru 10M $649. (less D5-5)

ICOM Transceiver 2M FM
IC 22S $299.

KENWOOD Transceiver
TS-520S 160 thru 10M $649. (less D5-5)

ICOM Transceiver 2M FM
IC 22S $299.

YAESU Transceiver
FT-301, 160 thru 10M $769.

Other locations:
(Walk-in customers only)
Bellevue - 12001 N. E. 12th
Everett - 6920 Evergreen Way

17550 15th Ave N
Seattle, WA 98155
206-364-8300

Yaesu FT-221R
2 meter FM-SSB $595.

TO PLACE ORDER
CALL TOLL FREE
IN STATE OF WASH.
1-800-562-7625

The New Model CTR-2A Series Counters are designed and built to the highest standards to fulfill the needs of commercial communications, engineering labs and serious experimenters. With an accuracy of +.00005% (oven option) the CTR-2A can handle the most critical measurements and is about half the cost of other commercial counters.

- Built-in Pre-Amp 10 mv @ 150 MHz
- 8 Digit .3" LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler
- Automatic Dp Placement
- TCXO Std. ± 2 ppm

500 MHz Kit CTR-2A-500K $249.95
500 MHz Assembled CTR-2A-500A $399.95
1GHz Kit CTR-2A-1000K $499.95
1GHz Assembled CTR-2A-1000A $549.95

OPTIONS
01) Oven Crystal $49.95
02) 43" LED 10.00
03) 12 Volts 10.00
04) 10 sec. Time Base $5.00
05) 10 sec. Time Base $5.00
06) Period 15.00
07) Handle 10.00

PROBES
Hi-Z $15.00
Low Pass $15.00

ETCH-IT-YOURSELF Printed Circuit Kit $19.95

NOW YOU CAN design and produce your own printed circuit boards.
IT'S EASY. Photo positive method. No darkroom required.
LESS THAN 2 HOURS to produce a p.c. board direct from magazine article.
KIT INCLUDES materials to make 4 p.c. boards direct from magazine article.
Add $1 for COD, S.A.S.E. for details.
DIODES/UNIVERSAL TYPES

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914</td>
<td>10v, 10mA</td>
<td>.05</td>
</tr>
<tr>
<td>1N4005</td>
<td>60v, 1A</td>
<td>.08</td>
</tr>
<tr>
<td>1N4007</td>
<td>100v, 1A</td>
<td>.15</td>
</tr>
<tr>
<td>1N4148</td>
<td>7v, 10mA</td>
<td>.06</td>
</tr>
<tr>
<td>1N533</td>
<td>6.2v</td>
<td>.25</td>
</tr>
<tr>
<td>1N758A</td>
<td>10v</td>
<td>.25</td>
</tr>
<tr>
<td>1N758A</td>
<td>12v</td>
<td>.25</td>
</tr>
<tr>
<td>1N4733</td>
<td>5.1v</td>
<td>.25</td>
</tr>
<tr>
<td>1N5243</td>
<td>13v</td>
<td>.25</td>
</tr>
<tr>
<td>1N524B</td>
<td>14v</td>
<td>.25</td>
</tr>
<tr>
<td>1N524B</td>
<td>19v</td>
<td>.25</td>
</tr>
</tbody>
</table>

SOCKETS/BRIDGES

<table>
<thead>
<tr>
<th>Type</th>
<th>PCB Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pin</td>
<td>.25</td>
<td>.45</td>
</tr>
<tr>
<td>14-pin</td>
<td>.25</td>
<td>.40</td>
</tr>
<tr>
<td>18-pin</td>
<td>.25</td>
<td>.40</td>
</tr>
<tr>
<td>22-pin</td>
<td>.35</td>
<td>1.25</td>
</tr>
<tr>
<td>28-pin</td>
<td>.35</td>
<td>1.45</td>
</tr>
<tr>
<td>40-pin</td>
<td>.50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

TRANSISTORS, ZXING, etc.

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2222</td>
<td>NPN (Plastic)</td>
<td>.15</td>
</tr>
<tr>
<td>2N907</td>
<td>PNP</td>
<td>.15</td>
</tr>
<tr>
<td>2N906</td>
<td>PNP</td>
<td>.15</td>
</tr>
<tr>
<td>2N3054</td>
<td>NPN</td>
<td>.35</td>
</tr>
<tr>
<td>2N3056</td>
<td>NPN 15A 60v</td>
<td>.50</td>
</tr>
<tr>
<td>TIP125</td>
<td>PNP Darlington</td>
<td>.35</td>
</tr>
<tr>
<td>LED Red, Green, Blue</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>D.L.747</td>
<td>7seg 5/8" high common-anode</td>
<td>1.95</td>
</tr>
<tr>
<td>Xany 7</td>
<td>7seg common-anode</td>
<td>1.50</td>
</tr>
<tr>
<td>FN359</td>
<td>Red 7seg com-cathode</td>
<td>1.25</td>
</tr>
</tbody>
</table>

C-MOS

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>4001</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>4002</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>4004</td>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td>4007</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>4008</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>4009</td>
<td>.30</td>
<td></td>
</tr>
<tr>
<td>4010</td>
<td>.45</td>
<td></td>
</tr>
<tr>
<td>4011</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>4012</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>4013</td>
<td>.40</td>
<td></td>
</tr>
<tr>
<td>4014</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>4015</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>4016</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>4017</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>4018</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>4019</td>
<td>5.90</td>
<td></td>
</tr>
<tr>
<td>4020</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>4021</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>4022</td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>4023</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>4024</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td>4025</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>4026</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>4027</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>4028</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>4030</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>4033</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>4034</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>4035</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>4040</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>4041</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>4042</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>4043</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>4051</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>4049</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>4050</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>4066</td>
<td>.95</td>
<td></td>
</tr>
<tr>
<td>4069</td>
<td>.40</td>
<td></td>
</tr>
<tr>
<td>4071</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>4082</td>
<td>.45</td>
<td></td>
</tr>
</tbody>
</table>

9000 SERIES

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>9301</td>
<td>.85</td>
<td></td>
</tr>
<tr>
<td>9309</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>9322</td>
<td>.85</td>
<td></td>
</tr>
<tr>
<td>9503</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>9601</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td>9602</td>
<td>.50</td>
<td></td>
</tr>
</tbody>
</table>

MEMORY CLOCKS

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74S181 (8223)</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>172A</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>MM5314</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>MM5316</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>2102-1</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>2102L-1</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>TR 1602B</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>TMS / TMS 808</td>
<td>6.95</td>
<td></td>
</tr>
<tr>
<td>8080AD</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>813</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>8123</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>8724</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>2107B</td>
<td>4.95</td>
<td></td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS UNLIMITED

7889 Clairemont Mesa Boulevard, San Diego, California 92111
(714) 278-4394 (Calif. Res.)

All orders shipped prepaid No minimum
Open accounts invited COD orders accepted

Discounts available at OEM Quantities California Residents add 6% Sales Tax

24 Hour Toll Free Phone 1-800-854-2211 MasterCharge / BankAmericard / AE

SPECIAL DISCOUNTS

<table>
<thead>
<tr>
<th>Total Order</th>
<th>Deduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under $500</td>
<td>$0.00</td>
</tr>
<tr>
<td>$501 - $999</td>
<td>$100.00</td>
</tr>
<tr>
<td>$1000 - $1999</td>
<td>$300.00</td>
</tr>
</tbody>
</table>

20% discount on all IC's sold individually.
January Super Deals

Deal #1
Buy a Kenwood TS-820s for $1048.00 and you can buy a HY-GAIN TH-3-MK III 3 element tri-band beam for only $19.95 or buy a HY-GAIN TH6-DXX for only $49.95

Deal #2
Buy a Kenwood TS-520s or Yaesu FT-101ee for only $649.00 and you can buy a HY-GAIN 18AVT 10-80 meter vertical for only $4.95 or buy a HY-GAIN TH 3-MK III for only $69.95

Communications Center
443 N. 48th, Lincoln, Nebraska 68504
In Nebraska Call (402) 466-8402

Handymen! Hobbyists!
Do-It-Yourselfers!

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing—a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc.—Save money—repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals.

When you Solder go "First Class"—use Kester Solder.

For valuable soldering information send self-addressed stamped envelope to Kester for a Free Copy of "Soldering Simplified".
You've requested it, and now it's here! The CT-50 frequency counter kit has more features than counters selling for twice the price. Measuring frequency is now as easy as pushing a button. The CT-50 will automatically place the decimal point in all of your readings. With the CT-50, you'll have quick, reliable readings. The CT-50 also offers professional quality at the unheard of price of $79.95. Order yours today!

CT-50, 60 MHz counter kit .. $79.95
CT-50 WT, 60 MHz counter, wired and tested 159.95
CT-600, 600 MHz prescaler option for CT-50, add 29.95

CLOCK KIT

Want a clock that looks good enough for your living room? Forget the competitor's kludges and try one of ours! Features: jumbo 4" digits, Polaroid lens filter, extruded aluminum case available in 5 colors, quality PC boards and other instructions. All parts are included, no extra to buy. Fully guaranteed. One to two hour assembly time. Colors: gold, black, bronze, blue (specify).

Clock kit, DC-5 .. $22.95
Alarm clock, DC-8, 12 hr only $29.95
Mobile clock, DC-7 .. 25.95
Clock kit with 10 min ID timer, DC-10, 25.95
Assembled and tested clocks available, add $10.00

CHEAP CLOCK KIT

DC4 Features: 12 or 24 format $12.95
DC3 includes LED Board $14.95

600 MHz PRESCALER

Extend the range of your counter to 600 MHz. Works with all counters. Less than 150 mv sensitivity. Specify 701 or 710 wired, tested, PS-18, 599.95, PS-18, 594.95.

CALCULATION ALARM CORD

Has every feature one could ever want. The alarm is controlled by pressing a button on the front panel. Kit includes everything except case. Build it into any panel, and still be on your way!

Complete Kit, PA-10 .. $22.95

LINEAR REGULATOR

For use with any equipment that requires a linear regulator. Kit includes everything except case. Build it into any panel, and still be on your way!

MRF-239 30V WHP $11.95
MRF-229 20V WHP $11.95
NPN 3N3040 type $11.95
PNP 2N3086 type $11.95
NPN Power Transistor 40W $3.00
PNP Power Transistor 40W $3.00
NPN Power Transistor 80W $3.00
PNP Power Transistor 80W $3.00

LED DISPLAYS

FND-550 .. 1.75
FND-510 .. 1.75
DL-570 ... 1.25
DL-730 ... 1.25
Red or Polarity Filter .. $2.95

FERRITE BEADS

For use with any equipment that requires a ferrite bead. Kit includes everything except case. Build it into any panel, and still be on your way!

14 PIN 5.00
16 PIN 5.00
24 PIN 5.00
32 PIN 5.00

SOCKETS

For use with any equipment that requires a socket. Kit includes everything except case. Build it into any panel, and still be on your way!

14 PIN 5.00
16 PIN 5.00
24 PIN 5.00
32 PIN 5.00

PHONE ORDERS WELCOME

Minimum Order $6.00

SIREN KIT

produces a loud, clear, and authoritative sound. Kit includes everything except case. Build it into any panel, and still be on your way!

DECADE COUNTER PARTS

Includes 4900A, 4745, 4747, 4444 and 4444C. Kit includes everything except case. Build it into any panel, and still be on your way!

MINI-KITS

TONE DECODER KIT

A simple kit designed to decode a single or multiple tones. Kit includes everything except case. Build it into any panel, and still be on your way!

SUPER-SNAP AMPLIFIER

A super-sensitive amplifier which will pick up a pin drop at 15 feet! Great for monitoring baby's room or as a general purpose test amplifier. Kit includes everything except case. Build it into any panel, and still be on your way!

COLOR ORGAN/MUSIC LIGHTS

See music come alive! Different lights flicker with music or voices. One light for low, one for the mid-range and one for the highs. Each channel individually adjustable, and drives up to 300 watts. Great for parades, band music, nite clubs and more.

LED BLINKY KIT

A great attention getter which alternates flashes 2 Jumbo LEDs. Use for name badges, buttons, or warning type panel lights. Runs on 3 to 9 volts.

POWER SUPPLY KIT

Kit includes everything except case. Build it into any panel, and still be on your way!

SIREN KIT

produces a loud, clear, and authoritative sound. Kit includes everything except case. Build it into any panel, and still be on your way!

DECADE COUNTER PARTS

Includes 4900A, 4745, 4747, 4444 and 4444C. Kit includes everything except case. Build it into any panel, and still be on your way!
Alabama

LONG'S ELECTRONICS
2808 7TH AVENUE SOUTH
BIRMINGHAM, AL 35202
800-633-3410
Call us Toll Free to place your order

HAM RADIO OUTLET
999 HOWARD AVENUE
BURLINGAME, CA 94010
415-342-5757
Visit our stores in Van Nuys
and Anaheim.

QUEMENT ELECTRONICS
1000 SQ. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs
since 1933.

TOWER ELECTRONICS CORP.
24001 ALICIA PARKWAY
MISSION VIEJO, CA 92675
714-768-8900
Authorized Yaesu Sales & Service.
Mail orders welcome.

Arizona

HAM SHACK
4506 A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from
beginner to expert.

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR.
PHOENIX, AZ 85013
602-249-3739
We service what we sell.

POWER COMMUNICATIONS
6012 NORTH 27th AVE.
PHOENIX, AZ 85017
602-242-8990
Arizona's #1 Ham Store.

QSA 599 AMATEUR RADIO CENTER
11 SOUTH MORRIS STREET
MESA, AZ 85202
602-933-8051
Eimac Distributor. New
& Used Equipment, Parts
- Surplus too!

California

C & A ELECTRONIC ENTERPRISES
2529 EAST CARSON ST.
P. O. BOX 5232
CARSON, CA 90745
213-834-5868
Not the Biggest, but the Best —
since 1962.

CARSON ELECTRONICS
12010 EAST CARSON ST.
HAWAIIAN GARDENS, CA 90716
213-421-3786
Dealing exclusively in ICOM communications equipment.

COMMUNICATIONS CENTER
705 AMADOR STREET
VALLEJO, CA 94590
707-642-7223
Who else has a Spectrum
Analyzer?

HAM RADIO OUTLET
999 HOWARD AVENUE
BURLINGAME, CA 94010
415-342-5757
Visit our stores in Van Nuys
and Anaheim.

QUEMENT ELECTRONICS
1000 SQ. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs
since 1933.

TOWER ELECTRONICS CORP.
24001 ALICIA PARKWAY
MISSION VIEJO, CA 92675
714-768-8900
Authorized Yaesu Sales & Service.
Mail orders welcome.

Colorado

C W ELECTRONIC SALES CO.
1401 BLAKE ST.
DENVER, CO 80202
303-573-1386
Rocky Mountain area's complete
ham radio distributor.

MILE-HI COMMUNICATIONS, INC.
1970 SOUTH NAVAJO
DENVER, CO 80223
303-936-7108
Rocky Mountain's newest
ham store. Lee Tingle K4LT.

Connecticut

ARCROM ELECTRONICS
2865 MAIN STREET
BRIDGEPORT, CT 06606
Come on in, Tues. thru Sat.
10:00 - 6:00

AUDIOTRONICS INC.
18 ISAAC STREET
NORWALK, CT 06850
203-838-4877
The Northeast's fastest growing
Ham Dept. dedicated to service.

Florida

AGL ELECTRONICS, INC.
1800-B DREW ST.
CLEARWATER, FL 33755
813-461-HAMS
West Coast's only full service
Amateur Radio Store.

MARCS CENTRAL EQUIPMENT CO., INC.
18451 W. DIXIE HIGHWAY
NORTH MIAMI BEACH, FL 33160
305-932-1818
See Marc, WDAAS, for complete
Amateur Sales & Service.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33756
813-535-1416
West coast's only dealer:
Drake, Icom, Cushcraft, Hustler.

Illinois

KLAUS RADIO, INC.
8400 NORTH PIONEER PARKWAY
PEORIA, IL 61614
309-691-4840
Let us quote your Amateur needs.

SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312-848-6777
Chicagoland's Amateur Radio
leader.

Indiana

HOOSIER ELECTRONICS, INC.
P. O. BOX 2001
TERRE HAUTE, IN 47802
812-238-1456
Ham Headquarters of the Midwest.
Store in Meadows Shopping Center.

KRYDER ELECTRONICS
GEORGETOWN NORTH
SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
We service what we sell. 10-9 T,
TH, F; 10-5 W, SAT.

Iowa

BOB SMITH ELECTRONICS
RFD #3, HIGHWAY 169 and 7
FT. DODGE, IA 50501
515-576-3886
For an EZ deal.

Kansas

ASSOCIATED RADIO
8012 CONSER P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5901
Amateur Radio's Top Dealer.
Buy — Sell — Trade

Kentucky

COHOON AMATEUR SUPPLY
HIGHWAY 475
TRENTON, KY 42286
602-886-4535
Yaesu, Ten-Tec, Tempo, Dentron.
Our service is the BEST.

Dealers - you should be here too! Contact Ham Radio today for complete details.
<table>
<thead>
<tr>
<th>State</th>
<th>Amateur Radio Dealer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maryland</td>
<td></td>
</tr>
<tr>
<td>COMM CENTER, INC.</td>
<td>9624 FT. MEADE ROAD LAUREL, MD 20810</td>
</tr>
<tr>
<td></td>
<td>New & Used Amateur Equipment. Wilson, Ten-Tec, R. L. Drake, Tempo</td>
</tr>
<tr>
<td>PROFESSIONAL</td>
<td></td>
</tr>
<tr>
<td>ELECTRONICS, CO.,</td>
<td></td>
</tr>
<tr>
<td>INC.</td>
<td>1710 JOAN AVENUE BALTIMORE, MD 21234</td>
</tr>
<tr>
<td></td>
<td>A professional place for amateurs. Service-sales-design.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td></td>
</tr>
<tr>
<td>TUFTS RADIO</td>
<td></td>
</tr>
<tr>
<td>ELECTRONICS</td>
<td>209 MYSTIC AVENUE MEDFORD, MA 02155</td>
</tr>
<tr>
<td></td>
<td>New England's friendliest ham store.</td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
</tr>
<tr>
<td>RADIO SUPPLY &</td>
<td></td>
</tr>
<tr>
<td>ENGINEERING</td>
<td>1207 WEST 14 MILE ROAD CLAWSON, MI 48017</td>
</tr>
<tr>
<td></td>
<td>Yaesu, Drake, Tempo, Swan, HyGain - call Toll Free</td>
</tr>
<tr>
<td>Minnesota</td>
<td></td>
</tr>
<tr>
<td>DACOM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3926 BEAU D'UE DRIVE EAGAN, MN 55122</td>
</tr>
<tr>
<td></td>
<td>New & Used Amateur Equipment.</td>
</tr>
<tr>
<td></td>
<td>Full Sales & Service. antics, Boston, MA 02115</td>
</tr>
<tr>
<td></td>
<td>Ham supplies since "55".</td>
</tr>
<tr>
<td>ELECTRONIC CENTER,</td>
<td></td>
</tr>
<tr>
<td>INC.</td>
<td>127 THIRD AVENUE NORTH MINNEAPOLIS, MN 55401</td>
</tr>
<tr>
<td></td>
<td>ECI is still your best buy.</td>
</tr>
<tr>
<td>Missouri</td>
<td></td>
</tr>
<tr>
<td>HAM RADIO CENTER,</td>
<td></td>
</tr>
<tr>
<td>INC.</td>
<td>8340-42 OLIVE BLVD. ST. LOUIS, MO 63132</td>
</tr>
<tr>
<td></td>
<td>New & Used Amateur Equipment.</td>
</tr>
<tr>
<td></td>
<td>See Our Ads In This Issue.</td>
</tr>
<tr>
<td>Nebraska</td>
<td></td>
</tr>
<tr>
<td>EVANS RADIO, INC.</td>
<td>BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301</td>
</tr>
<tr>
<td></td>
<td>Icom, Dentron & Yaesu dealer.</td>
</tr>
<tr>
<td></td>
<td>We service what we sell.</td>
</tr>
<tr>
<td>New Hampshire</td>
<td></td>
</tr>
<tr>
<td>ATKINSON & SMITH,</td>
<td></td>
</tr>
<tr>
<td>INC.</td>
<td>17 LEWIS ST. EATONTOWN, NJ 07724</td>
</tr>
<tr>
<td></td>
<td>New England's friendliest ham store.</td>
</tr>
<tr>
<td></td>
<td>Ham supplies since "55".</td>
</tr>
<tr>
<td>New Jersey</td>
<td></td>
</tr>
<tr>
<td>ELETROIC MODULE</td>
<td>601 N. TURNER HOBBS, NM 88240</td>
</tr>
<tr>
<td></td>
<td>Yaesu, Kenwood, Swan, Dentron, Tempo, Wilson, Cushcraft</td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td></td>
</tr>
<tr>
<td>ADIRONACK RADIO</td>
<td>185 W. MAIN STREET AMSTERDAM, NY 12010</td>
</tr>
<tr>
<td>SUPPLY, INC.</td>
<td>Yaesu dealer for the Northeast.</td>
</tr>
<tr>
<td></td>
<td>New & Used Amateur Radio sales and service.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>ARTCO ELECTRONICS</td>
<td>302 WYOMING AVENUE KINGSTON, PA 18704</td>
</tr>
<tr>
<td></td>
<td>The largest variety of semiconductors in Northeastern Pennsylvania</td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td>UNIVERSAL AMATEUR</td>
<td></td>
</tr>
<tr>
<td>RADIO, INC.</td>
<td>1260 AIDA DRIVE REYNOLDSBURG, (COLUMBUS) OH 43068</td>
</tr>
<tr>
<td></td>
<td>Drake, Yaesu, Ten-Tec, KDK, Wilson, Dentron, Tempo, Sigma.</td>
</tr>
<tr>
<td>Oregon</td>
<td></td>
</tr>
<tr>
<td>PORTLAND RADIO</td>
<td>1234 S.W. STARK STREET PORTLAND, OREGON 97205</td>
</tr>
<tr>
<td>SUPPLY CO.</td>
<td>503-228-8575</td>
</tr>
<tr>
<td></td>
<td>Second location, 1133 S. Riverside Avenue, Medford, OR 97501.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>ARTCO ELECTRONICS</td>
<td>302 WYOMING AVENUE KINGSTON, PA 18704</td>
</tr>
<tr>
<td></td>
<td>The largest variety of semiconductors in Northeastern Pennsylvania</td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td>UNIVERSAL AMATEUR</td>
<td></td>
</tr>
<tr>
<td>RADIO, INC.</td>
<td>1260 AIDA DRIVE REYNOLDSBURG, (COLUMBUS) OH 43068</td>
</tr>
<tr>
<td></td>
<td>Drake, Yaesu, Ten-Tec, KDK, Wilson, Dentron, Tempo, Sigma.</td>
</tr>
<tr>
<td>Oregon</td>
<td></td>
</tr>
<tr>
<td>PORTLAND RADIO</td>
<td>1234 S.W. STARK STREET PORTLAND, OREGON 97205</td>
</tr>
<tr>
<td>SUPPLY CO.</td>
<td>503-228-8575</td>
</tr>
<tr>
<td></td>
<td>Second location, 1133 S. Riverside Avenue, Medford, OR 97501.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>ARTCO ELECTRONICS</td>
<td>302 WYOMING AVENUE KINGSTON, PA 18704</td>
</tr>
<tr>
<td></td>
<td>The largest variety of semiconductors in Northeastern Pennsylvania</td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td>UNIVERSAL AMATEUR</td>
<td></td>
</tr>
<tr>
<td>RADIO, INC.</td>
<td>1260 AIDA DRIVE REYNOLDSBURG, (COLUMBUS) OH 43068</td>
</tr>
<tr>
<td></td>
<td>Drake, Yaesu, Ten-Tec, KDK, Wilson, Dentron, Tempo, Sigma.</td>
</tr>
<tr>
<td>Oregon</td>
<td></td>
</tr>
<tr>
<td>PORTLAND RADIO</td>
<td>1234 S.W. STARK STREET PORTLAND, OREGON 97205</td>
</tr>
<tr>
<td>SUPPLY CO.</td>
<td>503-228-8575</td>
</tr>
<tr>
<td></td>
<td>Second location, 1133 S. Riverside Avenue, Medford, OR 97501.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>ARTCO ELECTRONICS</td>
<td>302 WYOMING AVENUE KINGSTON, PA 18704</td>
</tr>
<tr>
<td></td>
<td>The largest variety of semiconductors in Northeastern Pennsylvania</td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td>UNIVERSAL AMATEUR</td>
<td></td>
</tr>
<tr>
<td>RADIO, INC.</td>
<td>1260 AIDA DRIVE REYNOLDSBURG, (COLUMBUS) OH 43068</td>
</tr>
<tr>
<td></td>
<td>Drake, Yaesu, Ten-Tec, KDK, Wilson, Dentron, Tempo, Sigma.</td>
</tr>
</tbody>
</table>

See Our Ads In This Issue.
Tennessee

GERMANTOWN AMATEUR SUPPLY
3203 SUMMER AVE.
MEMPHIS, TN 38112
800-238-6168
No monkey business. Call Toll Free.

Texas

J-TRON ELECTRONICS
214.241.6414 (within Texas)
505 MEMORIAL BLVD.
DALLAS, TX 75234
No monkey business. Call

Wisconsin

AMATEUR ELECTRONIC SUPPLY, INC.
4828 WEST FOND du LAC AVENUE
MILWAUKEE, WI 53216
414-442-4200
Open Mon & Fri 9-9, Tues, Wed, Thurs, 9-5:30, Sat, 9-3.

Washington

AMATEUR RADIO SUPPLY CO.
6213 13TH AVENUE SOUTH
SEATTLE, WA 98108
206-767-3222
First in Ham Radio in Washington
Northwest Bird Distributor

Wyoming

DENO COMMUNICATIONS CENTER
1728 EAST 2ND STREET
CASPER, WY 82601
307-234-9191
Sales, Service to Wyoming and the Northern Rockies.
All band operation (160-10 meters) with any random length of wire. 200 watt output power capability—will work with virtually any transceiver. Ideal for portable or home operation. Great for apartments and hotel rooms—simply run a wire inside, out a window, or anyplace available. Toroid inductor for small size: 4-1/4” X 2-3/8” X 3.” Built-in neon tune-up indicator. SO-239 connector. Attractive bronze finished enclosure.

only $29.95

Tunes out SWR on any coax fed antenna as well as random wires. Works great on all bands (160-10 meters) with any transceiver running up to 200 watts power output. Increases usable bandwidth of any antenna. Tunes out SWR on mobile whips from inside your car. Uses toroid inductor and specially made capacitors for small size: 5¾” x 2¼” x 2½.” Rugged, yet compact. Attractive bronze finished enclosure. SO-239 coax connectors are used for transmitter input and coax fed antennas. Convenient binding posts are provided for random wire and ground connections.

only $49.95

Matches 52 ohm coax to the lower impedance of a mobile whip or vertical. 12 position switch with taps spread between 3 and 52 ohms. Broadband from 1-30 MHz. Will work with virtually any transceiver—300 watt output power capability. SO-239 connectors. Toroid inductor for small size: 2-3/4” X 2” X 2-1/4.” Attractive bronze finish.

only $19.95

All SST products are guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund (less shipping) if you are not satisfied for any reason. Please add $2 for shipping and handling. Calif. residents, please add sales tax. COD orders OK by phone.
MEET THE AMATEUR POWER HOUSE GANG!

Lou Anciaux, WB6NMT; Chip Angle, N6CA; and Carla Wittmer, the people of Lunar Electronics, have linearized amplifiers, preamps, counter-generators, and mobile antennas.

Lunar is a new company, but Lou and Chip are experienced hams, and skilled electronic engineers, with new ideas for providing better products for the ham. Like Lunar’s 2M 10-80P. A 2 meter amplifier/preamplifier.

The perfect combination of Power Amplifier and Receiver Preamplifier. The SCS 2M 10-80L. Power Amp and “Anglelinear” 144 Preamp in a single, functionally designed package. Features include ten watts input—eighty watts output, harmonic reduction exceeding 60 dB, variable TR delay for CW/SSB, and Preamplifier selectable independent of power amplifier. Introductory price $185.95

LUNAR PREAMPS

Originally developed by Chip Angle, the Angle-linear receiving preamplifiers meet the most demanding needs where low noise is important.

Several models available from $34.95

NEW MODEL DX-35PP COUNTER GENERATOR with preselector.

Two vital pieces of test equipment in one. Counter has 5 digit display with 7 digit readability. 30+ MHz basic counter (220+ MHz with preselector). Generator output displayed on counter useful as accurate signal generator.

DX 272 ANTENNA

Perfected by W6DK, this is without doubt the finest antenna of its type. The rugged construction, quality components, and gold alodined aluminum radiators ensure peak efficiency under all operating conditions. Standard model $29.95. Collapsible model $34.95.

For complete description and specifications, see your Lunar dealer (listed below) or write for brochure. See the new VHF/UHF Transverter System at SAROC, Booth #82.
6 GOOD REASONS FOR BUYING A HAL-TRONIX FREQUENCY COUNTER

(1) 100% COMPLETE KIT, (2) EASY ASSEMBLY, (3) COMPLETELY ENCLOSED IN METAL CABINET, (4) IC MICROPOWER REQUIREMENTS, (5) LOW-POWER TYPICAL FOR EASY REPLACEMENT, (6) EASY ON YOUR POCKET BOOK, AND (7) NO EXPENSIVE CHIPS TO REPLACE. (EXAMINE THIS ALARM CLOCK DRIVER IN A HAL-TRONIX COUNTER, THE AVERAGE COST OF THE REPLACEMENT OF THE LOW-COST TTL IS LESS THAN $1.00 EXCLUDING THE PRESCALE CHIP. IN SOME OF THE NEWER COUNTERS NOW BEING MARKETED BY MY COMPETITION, THEY ARE USING THE EXOTIC SINGLE CHIP FOR $0.49 WHICH WOULD COST YOU CLOSE TO $30.00 TO REPLACE. THIS IS SOMETHING YOU SHOULD CONSIDER.

ANALOG-DIGITAL KIT $139.50

DESIGNED BY HAL-TRONIX AND MIKE GOLDEN OF R.E.T.S. ELECTRONICS SCHOOL OF DETROIT, FOR RUGGED CLASSROOM USE.

FOR THE RADIO AMATEUR, STUDENT, EXPERIMENTER OR DESIGNER

SPECIFICATIONS: OUTPUT VOLTAGES: +5V, +12V, -12V; USBABLE CURRENT: 250mA @ 5Vdc; Resolution: 0.01%. Square-waveform limited at 1.0V. Thermal overload protected. Power requirements: 117VAC, 60Hz, 40 Watts. Frequency Range: 0Hz to 10,000Hz in 5 bands. Amplitude adjustable from 0 to 10VPP. DC offset adjustable from 0 to ± 10V. Waveforms: Sine, square, triangular, TTL Clock. TTL Clock 0 to 4.5V Level. Frequency determined by Function Generator Output impedance 2.2K ohm.

Most of all, it's easy to construct and service. PC boards are predrilled, plated thru and soldered to folders. Over 1000 units sold to schools.

NEW FROM HAL-TRONIX 6 DIGIT FIRST TIME OFFER

6 DIGIT ALARM CLOCK KIT for home, camper, RV, or field-day use. Operates on 12-volt AC or DC, and has its own 60-Hz time base on the board. Complete with all electronic components and two-piece, pre-drilled PC boards. Board size 4" x 3". Complete with speaker and switches. If operated on DC, there is nothing more to buy.

PRICED AT $16.95 6-Twelve-volt AC line cord for those who wish to operate the clock from 120-volt AC.

$2.50 *Fits clock case advertised below.

6 DIGIT CLOCK 24/24 HOUR COMPLETE KIT CONSISTING OF 2 PC G10 PRE-DRILLED PC BOARDS, 3 CLOCK CHIP, 6 FND 359 READ-OUTS, 13 TRANSISTORS, 22 RESISTORS, 5 DIODES, 3 PUSH-BUTTON SWITCHES, MOLDED POWER TRANSFORMER, AND INSTRUCTIONS. DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA.

PRICED AT $12.95

60-Hz TIME BASE CRYSTAL TIME BASE KIT WILL ENABLE MOST ALL DIGITAL CLOCKS TO OPERATE FROM 12 VDC LOW PROFILE UNIT, EASY-WIRE HOOKUP, ACC. 2PPM, ADJUSTABLE. COST ONLY $5.95 EACH OR 2 FOR $10.00 OR ONLY $4.50 WITH CLOCK PURCHASE.

10-MHz CRYSTAL HIGH-QUALITY CRYSTAL. DESIGNED FOR FREQUENCY CONTROL AND ELECTRONIC TIME PIECES: AGING FACTOR 5PPM. MEETS OR EXCEEDS MIL-C-5098 SPECIF. MADE ESPECIALLY FOR HAL-TRONIX BY HARTLEY SENTRY.

PRICE $5.95 OR 2 FOR $10.00 WITH CLOCK PURCHASE.

FROM HAL-TRONIX 4 DIGIT FIRST TIME OFFER

DELUXE 12-BUTTON TOUCH-TONE ENCODER KIT utilizing the new ICM 7225 chip. Provides both VISUAL AND AUDIO indications! Comes with its own two-tone anodized aluminum cabinet. Measures only 2½" x 3¼" x 7½". Complete with Touch-Tone pad, board, crystal, chip, and all necessary components to finish the kit.

PRICED AT $29.95 FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT, THE BOARD MEASURES ONLY 9/16" x 1½". THIS PARTIAL KIT WITH PC BOARD, CRYSTAL, CHIP AND COMPONENTS.

DISTRIBUTOR FOR A P PRODUCTS, INCORPORATED

SUPER STRIP S-5 $2.95 329 PRICE $17.00

BY POPULAR DEMAND — we are continuing to offer

with any purchase of $99 or more from ad or

FREE Fairchild clock module FCS-8100A (suggested retail price $20).

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHz. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR .1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY ± 0.001%. UTILIZES 10-MHz CRYSTAL 5PPM.

COMPLETE KIT $149.00

HAL-300A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 300 MHz. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR .1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY ± 0.001%. UTILIZES 10-MHz CRYSTAL 5PPM.

COMPLETE KIT $124.00

HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BETTER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HAL-TRONIX PRE-SCALER. FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE. 1.0SEC AND .1SEC TIME GATES. ACCURACY ± 0.001%. UTILIZES 10-MHz CRYSTAL 5PPM.

COMPLETE KIT $124.00

HAL-TRONIX BASIC COUNTER KITS STILL AVAILABLE

THE FOLLOWING MATERIAL DOES NOT COME WITH THE BASIC KIT: THE CABINET, TRANSFORMER, SWITCHES, COAX FITTINGS, FILTER LENS, FUSE HOLDER, T-03 SOCKET, POWER CORD AND MOUNTING HARDWARE.

HAL-600X (Same Specifications as HAL-600A) $124.00

HAL-600X (Same Specifications as HAL-50A) $99.00

HAL-50X (Same Specifications as HAL-50A) $99.00

PRE-SCALER KITS

HAL-0-300PRE (Pre-drilled G10 board and all components) $19.95

HAL-0-300A (Same as above but with preamp) $29.95

HAL-0-600PRE (Pre-drilled G10 board and all components) $39.95

HAL-1GHz (New Item - Available in December) $124.95

PRE-BUILT COUNTERS AVAILABLE

(HAL-600A — $229.00) (HAL-300A — $199.00) HAL-50A — $199.00). ALLOW 4- TO 6-WEEK DELIVERY ON PRE-BUILT UNITS.

HAL-TRONIX P. O. BOX 1101 SOUTHGATE, MICH. 48195 PHONE (313) 285-1782

ORDERS OVER $15.00 WILL BE SHIPPED POSTPAID.

SHIPPING ON ORDERS LESS THAN $15.00.

INFORMATION: PLEASE INCLUDE ADDITIONAL $1.00 FOR HANDLING AND MAILING CHARGES.

SEND SASE FOR FREE FLYER.
ALL-MODE VHF amplifiers

FOR BASE STATION & REPEATER USE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V70</td>
<td>10-20W</td>
<td>60-70W</td>
<td>6298</td>
</tr>
<tr>
<td>V71</td>
<td>15W</td>
<td>60-70W</td>
<td>6329</td>
</tr>
<tr>
<td>V130</td>
<td>25-40W</td>
<td>110-130W</td>
<td>6399</td>
</tr>
<tr>
<td>V131</td>
<td>15W</td>
<td>110-130W</td>
<td>6419</td>
</tr>
<tr>
<td>V135</td>
<td>5-10W</td>
<td>110-130W</td>
<td>6419</td>
</tr>
<tr>
<td>V180</td>
<td>10-15W</td>
<td>180-200W</td>
<td>9526</td>
</tr>
</tbody>
</table>

* All units: Harmonics exceed - 60 dB specification of FCC R&O 7777

Only two things are needed to put this power house on the air with your handy-talky or mobile transceiver: a two foot piece of coaxial cable and a 115 or 230 volt AC outlet. That's all. You do not need anything else. The mobile transceiver can be powered directly from the accessory socket located in the rear panel of the RFPL amplifier. It puts out +13.5 volts at 3 amperes. This is sufficient for powering most 15 watt transceivers.

Military Telephone & Telegraph Terminal Units, Models CF-1 or CF-2.

Radio Models GRC171 or GRC106
Contact CTV at 516-536-5724
DEAD OR ALIVE!

WANTED:

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201-440-8767

SPACE ELECTRONICS CO.
35 Ruta Court, Hackensack, N.J. 07606

TRANSFORMERS

American made, 115V Primaries:
- 6.3V, 1 Amp Shielded: $1.80 ea.
- 12V, 250 mils, for P. C. Board: $1.66 ea.
- 12V, 1.2 Amp: $2.05
- 36V CT, 1A: $2.84
- 36V CT, 1A: 14V CT, 400 Ma: $4.48
- 44V CT, 1A: 6.3V, ½ amp tap: $3.47 ea.
- 44V CT, 1A: 6.3V, ½ amp tap: $3.46 ea.

NEW ITEM — PHILCO TRANSFORMER — 115V Pri, Secs 6.3V 3A, 115V 1A, 24V 2A w/6.3V TAP 2A Shilded. Wt. 7 lbs. 4" x 3 ½" x 2 ½": $7.55 p. q. Prices Available

EDGEVIEW METERS 250 ma, 5 A Meters
- NEW — $2.05 ea., 3/7.45 ppp.
- NEW — $2.50 ea., 3/11.90 ppp.
- NEW — $3.00 ea., 3/17.35 ppp.

The most complete directory of Amateur Radio Equipment ever published. The all new 1978 Edition includes specifications, pictures, and prices of transceivers, transmitters, receivers, amplifiers, power supplies, transverters, antennas, tuners, towers, meters, microphones, keyers, VFO's, preamps, test gear, etc. etc. No ham library will be complete without a copy of the 1978 Amateur Radio Equipment Directory.

$4.00 Postpaid (U.S.)
Canada $5.00, Foreign (Air) $7.00
KENGORE CORP. Dept.HR
9 James Avenue
Kendall Park, N. J. 08824
SEND FOR YOUR COPY TODAY
NEW! Synthacoder 509

Take Command of 220 MHz!

The Synthacoder 509 represents the first of a totally new generation of frequency synthesizers, based on the latest advances in CMOS-LSI techniques. "Matrix Modules", which contain programming devices, make adding new channels a click. Simply snap the leads on the diodes not needed, plug it in, and you are On The Air! Our unique interface design allows you to use your existing crystal positions even though the synthesizer has been installed. The Synthacoder is also easily adapted for Scanning and External Frequency Control. To sum it up—we are sure that you will find the new Synthacoder 509 Everything You Want in a 220 MHz synthesizer—And at a Price Comparable to Crystals!

* SIMPLE TO INTERFACE - Three wires and no holes!
* FULL COVERAGE - 220-225 MHz in 20 KHz steps
* MATRIX PROGRAMMABLE - No more crystals
* EXCLUSIVE "MATRIX MODULES" - Program in seconds
* FULL MODE CONTROL - Simplex, Repeater, Reverse
* LOW POWER CMOS - Draws only 60 ma
* FULLY ASSEMBLED AND CALIBRATED - Not a kit
* FITS MIDLAND, COBRA, and CLEGG 220 MHz transceivers

Engineering Specialties
P.O. BOX 2233
1247 COMMERCIAL AVENUE
OXNARD, CA 93030
(805) 486-0817

[Form for ordering and contact information]

More Details? CHECK — OFF Page 126
There's nothing like it!

Radio Amateur callbook

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.

The U.S. Callbook has over 300,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 300,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook $14.95

Foreign Callbook $13.95

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.50 for shipping. Illinois residents add 5% Sales Tax.

Radio Amateur callbook, INC
Dept. E, 925 Sherwood Drive
Lake Bluff, IL, 60044

All Band Trap Antenna

S Band Operation - Only One Neat Small Antenna. For Long-Range Teed for 2,000 Watts, For Use in Minimum Space. Easy Installation. Completely Assembled. Just Hang It—Use It! 12- or 24-Hour Mode. Dimensions 6 x 6 x 12. KIT: $49.95. ALP: Complete $59.95

Electronic Pendulum Clock

Swing Pendulum
7 Hour and Minutes Display
Time Set Push Buttons
Alarm Feature

KIT: $27.95. Complete $37.95

TV-Wall Clock

25 Viewing Distance
6 Hours and Minutes
3 Seconds
Complete With Wood Case

KIT: $34.95.

Economy Car Clock

LED Module
Complete With Case, Bracket and Time Set Push Buttons

KIT: $19.95.

Pendulum

Case With Bracket $3.75

MARK FOSKETS' SOLID STATE TIME
P.O. BOX 2159
DUBLIN, CALIF. 94566
ORDERS (415) 828-1923

24 HR PHONE

CALIFORNIA RESIDENTS ADD 6% SALES TAX

More Details? CHECK — OFF Page 126
An exciting new era in amateur radio is about to begin—the era of AMSAT PHASE III OSCAR satellites.

Many of you are familiar with the benefits of the AMSAT OSCAR satellites, notably OSCAR 6 and 7. These satellites, with a combined total of over 8 years in orbit, have provided communications between amateurs throughout the world. They have also provided a capability for an educational program in space sciences and many interesting experiments.

AMSAT, with members and contributing groups worldwide, and headquarters in Washington, D.C., has been responsible for our current satellite program. Many people feel that perhaps the greatest value of the amateur satellite program is the dramatic demonstration of amateur resourcefulness and technical capability to radio spectrum policy makers around the world.

The value of this aspect of amateur radio as we prepare for the 1979 World Administrative Radio Conference (WARC) is enormous.

The AMSAT PHASE III satellite program promises a continuing demonstration that amateur radio is at the forefront of modern technology. PHASE III satellites will routinely provide reliable communications over paths of up to 11,000 miles (17,600 km) for 17 hours each day. You can think of them as a resource equivalent to a new band.

The cost of these PHASE III satellites is a projected $250,000. Commercial satellites of similar performance would cost nearly $10,000,000.

Your help is needed to put these PHASE III OSCAR satellites in orbit.

Your valued, tax-deductible contribution can be as small as one of the 5000+ solar cells needed. A handsome certificate will acknowledge the numbered cells you sponsor for $10 each. Larger components of the satellites may also be sponsored with contribution acknowledgements ranging to a plaque carrying your name aboard the satellites. Call or write us for the opportunities available.

Your membership in AMSAT is important to the satellite program, and will give AMSAT a stronger voice in regulatory matters concerned with satellites. At $10 per year or $100 for life, you will be making a most significant contribution to the satellite program and the future of amateur radio. You will also receive the quarterly AMSAT newsletter.

Clip the AMSAT PHASE III coupon below and send your support today, or call 202-488-8649 and charge your contribution to your BankAmericard (VISA) or Master Charge card.

AMSAT PHASE III
Radio Amateur Satellite Corporation
Box 27 Washington, D.C. 20044
202-488-8649

YES, I want to support AMSAT PHASE III OSCAR satellites. Enclosed is:
☐ $____ in sponsorship of ____ solar cells ($10 each)
☐ $10 Annual membership
☐ $100 Life membership
☐ Send information on sponsoring larger satellite components.

Name: ________________________ Call: ________ AMSAT Member? __________
Street: _________________________
City: __________________________ State: _______ Zip: _____________

The publisher has donated this space to AMSAT in support of AMSAT and the PHASE III program.
AGL wants you to
begin with the best

As you develop your skills, increase your participation in Ham Radio activities, and add hardware for ever-increasing flexibility of operations, you'll name in VHF/UHF Amateur Radio equipment because it is simply the best. ICOM is the line you'll want to move up to for unequalled quality and features.

ICOM

AGL also takes great pride in stocking these other great lines of Amateur radio equipment.

KLM electronics

We'll see you in Orlando, February 18th and 19th.

CALL US TODAY
TOLL FREE AT
1-800-527-7418

CALL 214-241-6414 (in Texas)

LARRY WATSOW ART KRUGER GORDON NASSU MIKE WASDUB MIKE WBSACM

We service and repair all major lines of Amateur Radio equipment.
ANNOUNCING -- A New Generation of VHF/UHF FM RECEIVER KITS

More Sensitive, More Selective, Easier to Build, Smaller Than Ever Before!

CHECK THESE FEATURES:
- Lower system cost than ever before
- Better selectivity, 70-80 dB adjacent channel, 100 dB with crystal filter option
- Six channels at no extra cost
- Effective image rejection
- Latest design -- new easy-to-wind high Q coils, compartmentized shielding
- Easy to build, test circuits on board allow tune up with only sig gen & vvm

VHF MODEL R70 $69.95
- Available for 2M, 6M, 10M, 220 MHz, or conl bands
- Sensitivity 0.4uV for 20 dB
- Optiona Crystal Filter Kit $10
- Channel Crystals $5.95 ea

UHF MODEL R90 $89.95
- For any 2 MHz segment of the 380-520 MHz range
- Sensitivity 0.8uV
- Optional crystal filter kit $10
- Channel crystals $5.95 ea

These new CONVERTER KITS let you receive OSCAR signals and other exciting VHF & UHF activity on your present HF receiver.

FREE 1978 CATALOG

is yours for the asking. NEW 40 page catalog gives details on these and other kits, including scanner adapters, receiver multipliers, NFC power supplies, M-tech PA's, CES tone pads & mics, Hy-Gain HT's & IF dig, & antennas. GET YOURS TODAY!

FREE SHIPPING ON LARGE STOCK OF ANTENNAS!!! We now offer free delivery of Cushcraft, Larsen, & Hy-Gain antennas in the 48 states. Popular models such as Ringo Rangers, VHF & UHF bands, magnet mount whips, hf vert, rubber duckies, lightning arresters, Reya traps, W2AUX & Hy-Gain baluns. Call or write NOW! We'll be glad to send free catalogs.

IN CANADA:
Send order to COMTEC; 5605 Westlake Ave.; Montreal, Que H4W 2N3 or call 514-482-2640. Add 28% to prices shown above to cover customs duty, exchange rate, and federal tax.

More Details? CHECK -- OFF Page 126

February 1978
KENWOOD TS-820S transceiver
The new Kenwood TS-820S features a factory digital frequency readout, 160 thru 10 meter coverage, integral IF shift, RF speech processor, VOX, Noise blanker, PLL, Built-in 25 KHz calibrator, CW side-tone & semi-break-in, IF OUT, RTTY, & XVTR, Phone patch IN and OUT terminals, Built-in AC power supply.

1048.00 is list price. Call Toll Free for quote.

KENWOOD TS-520S SSB transceiver
The new TS-520S features: 160 thru 10 meter coverage, Optional DG-5 frequency display (on top of unit), New speech processor with audio compression amplifier, Built-in AC power supply (DC-DC converter, optional), RF attenuator, front panel activated. Provision for separate receive antenna, Provision on back for phone-patch.

649.00 is list price. Call Toll Free for quote.

SAVE NOW

KENWOOD VFO-520
The VFO-520 is designed for high stability. It has a linear dial scale, precision gears, and RIT circuit with indicator. Large knob and dial scale for smooth easy tuning. The external VFO connects to the TS-520 with a single cable, power from TS-520. Closeout priced.

98.00 Call for yours today!

NEW ITEM

KENWOOD SP-820 speaker
Now you can have a sophisticated external speaker in your shack that’s designed just for your TS-820S transceiver. Matching appearance plus, built-in selectable tone filters and two channel selectable head phone output switchable through the tone filters.

49.00 Call for yours today.

KENWOOD TR-7400A
2m FM transceiver
Features: CTCS provisions, encode & decode, 25 watt RF output, Solid-state final stage, LED readout, PLL gives 800 discrete channels, Repeater offset circuit, PLL unlock protection circuit, Low power position adjustable, 5 to 15 watts, 2-pole, 10.7 MHz monolithic crystal filter, MOS FET.

399.95 list price. Call for quote.

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.
Compare These Features And You'll Know What We Mean When We Say "Years Ahead With Yaesu"

- one knob channel selection using optical sensing to select 800 channels
- memory circuit that allows instant return to any frequency selected between 144-148 MHz
- large 4 digit LED frequency readout
- fully synthesized frequency control, using PLL techniques in 5 KHz steps
- built-in tone burst, plus optional tone squelch encoder/decoder
- spurious well below minus 60dB requirement—superior cross modulation, overload and image rejection
- standard 600 KHz offsets plus any split within the band using the memory circuit
- automatic final protection, PLL "unlock" protection and busy channel indicator
- selectable 10 watt/l watt output

See this sensational new two meter transceiver at your YAESU DEALER now!
Henry Radio chose EIMAC 3-500Z high performance power triodes for their new 2KD-5 linear amplifier.

Consider the outstanding features of this new amplifier:
- Pi-L tank circuit for maximum harmonic suppression.
- Tri-concentric tune/load/band control for ease of operation.
- Double shielded cabinet.
- Heavy duty power supply.
- And of course, reliable, proven EIMAC 3-500Z power triodes provide the "punch" that breaks through the most difficult communication circuit.

Henry's choice should be your choice. Look to EIMAC for all your needs in power tubes.

For full information on the 3-500Z or other quality EIMAC products, call Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

EIMAC 3-500Zs provide desk-top power in Henry linear amplifier.
FREE

Send for your copy of the world’s largest selection of quality electronic products in easy-to-build, money-saving kit form! Nearly 400 kits in all—all with Heath’s world-famous assembly manuals that take you step-by-step from unpacking to final plug-in.

fill in card and mail today

Please rush me my personal copy of the new Heathkit catalog.
I am not on your mailing list.

Name: ______________________________
Address: ____________________________
City: __________________ State: ________
PC-126 Zip: ________
HAM RADIO Dept. 122-390
Send for your FREE HEATHKIT CATALOG

Complete descriptions and specifications of nearly 400 electronic kits
including:
- stereo components
- auto, marine and aircraft accessories
- digital clocks and weather instruments
- Amateur Radio
- color TV
- personal computers
and lots more!

HEATH COMPANY
Benton Harbor MI 49022