OCTOBER 1977

- syllabic vox system 29
- 10-GHz mixer 34
- 20-meter receiver 48
- low-cost power supply 74
- microprocessors 79
- and much more . . .
TEMPO VHF/ONE PLUS

MORE POWER / 25 OR 5 *WATTS OUTPUT SELECTABLE
REMOTE TUNING / ON MICROPHONE
NEW LOWER PRICE / NOW ONLY $399.00

SIDEBAND OPERATION WITH SSB/ONE ADAPTER / MARS
OPERATION CAPABILITY / 5 KHz NUMERICAL LED

The Tempo VHF/One Plus is a VHF/FM transceiver for dependable communication on the 2 meter amateur band ● Full 2 meter coverage, 144 to 148 MHz for both transmit and receive ● Full phase lock synthesized (PLL) ● Automatic repeater split—selectable up or down ● Two built-in programmable channels ● All solid state ● 800 selectable receive frequencies with simplex and +600 KHz transmit frequencies for each receive channel.

*Adjustable internally 3 to 15 watts

TEMPO FMH-2, FMH-5 & FMH-42 (UHF)
6 channel capability ● selectable 1 or 2 - 1 or 5 Watts output ● Solid-state ● Battery level meter ● Earphone jack ● Built-in charging terminals and separate charging jack for Ni-cad batteries ● Flex antenna ● Carrying case standard ● Excellent frequency stability allows use with booster amplifier for high power output over 100 Watts ● 8 AA batteries or 10 AA Ni-cad* ● Not furnished. FCC Type accepted models available.

TEMPO VHF & UHF AMPLIFIERS
VHF (136 to 175 MHz)
Drive Power Output Model No. Price
2W 130W 130A02 $199
10W 130W 130A10 $179
30W 130W 130A30 $189
2W 80W 80A02 $169
10W 80W 80A10 $149
30W 80W 80A30 $159
UHF (400 to 512 MHz)
Drive Power Output Model No. Price
2W 70W 70D02 $270
10W 70W 70D10 $250
30W 70W 70D30 $210
2W 40W 40D02 $180
10W 40W 40D10 $145
2W 10W 10D02 $125

FCC Type accepted models available.

TEMPO POCKET RECEIVERS
MS-2, 4 channel scanning receiver for VHF high band, smallest unit on the market. MR-3, miniature 2-channel VHF high band monitor or paging receiver. MR-3U, single channel on the 400 to 512 UHF band. All are low priced and dependable.

Sold at Tempo dealers throughout the U.S. and abroad. Please call or write for further information.

Prices subject to change without notice

11240 W. Olympic Blvd., Los Angeles, Calif. 90064
931 N. Euclid, Anaheim, Calif. 92801
Butler, Missouri 64730

213/477-6701
714/772-9200
816/679-3127

Henry Radio
RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mw, depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz. Cat. No. 035104
Specify when ordering. $4.75 ea.

OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101
Specify when ordering. $3.95 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106
Specify when ordering. $4.50 ea.

PAX-1 TRANSISTOR RF POWER AMP
Specify when ordering. $4.75 ea.

OF-1 OSCILLATOR
Resistor/capacitor circuit provides osc. over a range of freq. with the desired crystal. 2 to 22 MHz, OF-1 Lo, Cat. No. 035108. 18 to 60 MHz, OF-1 Hi, Cat. No. 035109
Specify when ordering. $3.25 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103
Specify when ordering. $4.50 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat No. 035107
Specify when ordering $4.75 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

.02% Calibration Tolerance
EXPERIMENTER CRYSTALS
(HC 8/U Holder)
Cat. No. Specifications $ ea.
031080 3 to 20 MHz — for use in OX OSC Lo Specify when ordering $4.95 ea.
031081 20 to 60 MHz — For use in OX OSC Hi Specify when ordering $4.95 ea.
031300 3 to 20 MHz — For use in OF-1L OSC Specify when ordering $4.25 ea.
031310 20 to 60 MHz — For use in OF-1H OSC Specify when ordering $4.25 ea.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102

to 1977
MFJ Enterprises Catalogue

Call toll-free 800-647-8660 for products by MFJ ENTERPRISES

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFJ-16010 ST Super Antenna Tuner</td>
<td>$69.95</td>
</tr>
<tr>
<td>MFJ-16010 Antenna Tuner</td>
<td>$39.95</td>
</tr>
<tr>
<td>CWF-2BX Super CW Filter</td>
<td>$29.95</td>
</tr>
<tr>
<td>MFJ-8043 IC Deluxe Electronic Keyer</td>
<td>$69.95</td>
</tr>
<tr>
<td>CMOS-8043 Electronic Keyer</td>
<td>$54.95</td>
</tr>
<tr>
<td>LSP-5208 II Log Speech Processor</td>
<td>$59.95</td>
</tr>
<tr>
<td>SBF-2BX SSB Filter</td>
<td>$29.95</td>
</tr>
<tr>
<td>MFJ-200BX Frequency Standard</td>
<td>$49.95</td>
</tr>
<tr>
<td>MFJ-1030BX Receiver Preselector</td>
<td>$19.95</td>
</tr>
<tr>
<td>MFJ-40T ORP Transmitter</td>
<td>$29.95</td>
</tr>
<tr>
<td>CPO-555 Code Oscillator</td>
<td>$17.95</td>
</tr>
<tr>
<td>C-500 Digital Alarm Clock</td>
<td>$29.95</td>
</tr>
</tbody>
</table>

MFJ Enterprises' Guarantee:
- One year unconditional guarantee.
- If not delighted, return within 30 days for a prompt refund (less shipping).

Order today. Money back if not delighted. One year unconditional guarantee. Add $2.00 shipping/handling.

Order by Mail or Call TOLL FREE 800-647-8660 and Charge It On

In Europe contact: ING I. STERN, Lohkoppelstrasse 27, 2000 Hamburg 76, West Germany. Tel.: (040) 299-6110, Telefax: 2161808 STEX D
October 1977

Volume, 10, number 10

T. H. Tenney, Jr., W1NLB
Publisher

James R. Fisk, W1HR
Editor-in-Chief

Editorial Staff
Charles J. Carroll, K1XX
Alfred Wilson, W1NHF
Assistant Editors

Patricia A. Hawes, WA1WPM
Thomas F. McMullen, Jr., W15L
Joseph J. Schroeder, W8IUQ
Associate Editors

Wayne T. Pierce, K2SUK
Cover

Publishing Staff
Harold P. Kent, WA1WPP
Assistant Publisher

Fred D. Miller, Jr., WA1USO
Advertising Manager

James H. Gray, W1XU
Assistant Advertising Manager

Theresa L. Burgault
Circulation Manager

Ham Radio Magazine
Published bimonthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048
Telephone: 603-679-1441

Subscription Rates
U.S. and Canada: one year, $12.00
Two years, $24.00
Three years, $36.00
Europe, Japan, Africa:
Via Air Forwards Samivel:
One year, $25.00
Two years, $48.00
North America, South America, Australia
And Asia (except Japan):
Via Surface Mail:
One year, $18.00
Two years, $34.00

Foreign Subscription Agents

Foreign Subscription Agents are listed on page 99

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles
from Ham Radio are available to the
blind and physically handicapped
from Recorded Periodicals
919 Walnut Street, 8th Floor
Philadelphia, Pennsylvania 19107
Copyright 1977 by
Communications Technology, Inc
Title registered at U.S. Patent Office
Second-class postage paid at Greenville, N. H., 03048
And at additional mailing offices.
Publication number 23340

Ham Radio

October 1977

Contents

10 Two-Meter Stripline Kilowatt
Frederick J. Merry, W2GN

26 Improving the Accuracy of Your Frequency Counter
Clifford A. Harvey, W1RF

29 S-Line Syllabic Vox System
H. Rommel Hildreth, W8IP

34 10-GHz Hybrid-Tee Mixer
R. J. Harry, G3NRT

38 Calculator Aided Circuit Analysis
Leonard H. Anderson

48 High Performance 20-Meter Receiver
M. A. Chapman, K6SDX

70 Repeater Kerchunk Eliminator
Robert K. Morrow, W88GTM

74 Low-Cost Power Supply
Budd M. Meyer, K2PMA

79 Microprocessors: Data Converters
Perry Pollins, WAlWMP

86 Ham Notebook

128 Advertisers Index

99 Flea Market

110 Ham Mart

90 New Products

6 Presstop
In the last few months there has been an increase in the number of inquiries and complaints received by the FCC concerning state and local laws which deal with radio and television. Most of the calls and letters are related to CB, and ask whether a particular ordinance is constitutional, or complain about the enforcement of a state statute that is thought to be in conflict with the FCC regulations. To answer these questions, the FCC recently released Public Notice 87276 which provides information to amateurs, CBers, and other FCC licensees who feel they have run into improper local regulation of radio communications.

As the Public Notice points out, as early as 1912 the Congress recognized that radio communications was inherently interstate in nature, was a form of commerce, and was uniquely adaptable to uniform regulation by the federal government. The Radio Act of 1927 increased the federal government’s authority to regulate this area, and the passage of the Communication Act of 1934 substantially completed the trend toward comprehensive federal regulation of interstate and foreign communications by wire and radio. To execute and enforce its provisions, the Act also provided for the establishment of the FCC.

It was the primary goal of the Communications Act to make available, “to all people of the United States a rapid, efficient, nation-wide, and world-wide wire and radio communication service . . .” The Act proposed to execute this policy by “centralizing authority” and by “granting additional authority with respect to interstate and foreign commerce in radio communication . . .” Furthermore, the Act claims complete jurisdiction over radio energy for the federal government, as stated in Section 301:

It is the purpose of this Act, among other things, to maintain the control of the United States over all the channels of interstate and foreign radio transmission; and to provide for the use of such channels . . . under licenses granted by Federal authority . . . No person shall use or operate any apparatus for the transmission of energy or communications or signals by radio . . . except under and in accordance with this Act and with a license in that behalf granted under the vision of this act, 47 U.S.C. §301.

In addition, Congress granted the Commission the authority to establish a pervasive system of regulation in the various radio services. Section 303 of the Act gives such numerous powers to the FCC as to leave no doubt as to the extent of this regulatory scheme. These and other sections of the Act indicate the clear intention of Congress that radio be regulated by the federal government.

Under the Supremacy Clause of the United States Constitution, state and local statutes may be pre-empted when (1) a local law conflicts with a law enacted by Congress, or (2) when Congress has adopted pervasive legislation in a particular field with the intent that regulation in the area will be conducted exclusively by the federal government. Furthermore, local ordinances which unreasonably burden interstate commerce may be invalidated under the authority granted to the federal government by the Commerce Clause of the United States Constitution.

Whether or not a particular local statute has been pre-empted by federal legislation is a question of law, and when a conflict between federal and state law arises, the courts, both state and federal, are usually called upon to make the final decision. For proper resolution the specific local law in question must be reviewed, and each case must be carefully judged on its own facts.

In general it may be said that in matters involving purely local concerns, the courts have found that reasonable local statutes are not in conflict with the Communications Act; such things as local zoning ordinances limiting antenna heights, and the right of local courts to adjudicate property rights involving licensee’s facilities have all been upheld. On the other hand, where a local law conflicts with the FCC’s regulatory scheme for radio services, the federal law will prevail; state laws involving the censorship of material carried on broadcast stations, for example, and those requiring FCC licensees to refrain from activities required by the Communications Act have been struck down.

The FCC does not have the resources to routinely monitor state and local laws which affect radio communications, nor can the FCC intervene in every local court proceeding in which the validity of various laws is tested. However, amateurs and other FCC licensees who feel victimized by improper local laws may raise federal pre-emption in their own behalf, and local legislative bodies should consider the issue when contemplating the enactment of ordinances in areas regulated by the Communications Act. Since many of the inquiries received by the FCC directly concern CB (and indirectly, amateur radio), local lawmakers should also be aware that the FCC has issued extensive regulations governing this area. Therefore, local ordinances designed specifically to regulate CB (or amateur) transmissions could be invalid according to the legal principles discussed above.
That's all, Folks!

All you need for All Mode Mobile, that is.

All Mode Mobile is now yours in a superior ICOM radio that is a generation ahead of all others. The new, fully synthesized IC-245/SSB puts you into FM, SSB and CW operation with a very compact dash-mounted transceiver like none you've ever seen.

- **Variable offset:** Any offset from 10 KHz through 4 MHz in multiples of 10 KHz can be programmed with the LSI Synthesizer.

- **Remote programming:** The IC-245/SSB LSI chip provides for the input of programming digits from a remote key pad which can be combined with Touch Tone* circuitry to provide simultaneous remote program and tone. Computer control from a PIA interface is also possible.

* a registered trademark of AT&T.

- **FM stability on SSB and CW:** The IC-245/SSB synthesis of 100 Hz steps make mobile SSB as stable as FM. This extended range of operation is attracting many FM'ers who have been operating on the direct channels and have discovered SSB.

The IC-245/SSB is the very best and most versatile mobile radio made: that's all. For more information and your own hands-on demonstration see your ICOM dealer. When you mount your IC-245/SSB you'll have all you need for All Mode Mobile.
THE TYPE ACCEPTANCE and 10-meter amplifier ban dockets themselves — Dockets 20117 and 20116 — were not discussed at recent FCC meetings, only the ARRL’S request for oral argument on those two propositions. After considerable discussion it was decided to reserve the decision on the League’s request until later, concurrent with the Commission’s actual discussion of the dockets. At this point it seems likely that formal consideration of those two proposals should occur in early October.

MARITIME MOBILES ABOARD U.S. VESSELS gained many new frequencies effective September 12. All U.S. licensed Amateurs operating on the high seas (not in the waters of a foreign power) will be permitted to operate on any frequency that Amateurs are authorized in that ITU Region. For example, in nearby waters (ITU Region 2) maritime mobiles may use all domestic U.S. Amateur frequencies, from 160 up. In the other ITU Regions Amateurs are more limited, of course — a U.S. maritime mobile off the coast of Europe or Africa would be restricted to 7000-7100 on 40 meters, 144-146 on two, and forbidden 6 and 220.

ARMA PRESIDENT DENNIS HAD tendered his resignation to the ARMA membership in a three-page letter. The latter Denny cited the heavy burden the ARMA presidency had placed on him personally and on Dentron, a burden that — with a few notable exceptions — had not been shared by other ARMA members. Another factor in his resignation decision was criticism from a few of the ARMA members, criticism that reflected on his personal motives and integrity in his efforts to establish and maintain ARMA, while some of these same members were the ones whose catering to the illegal CB market had brought ARMA into being in the first place. Rumors Of A Possible Split in the organization have been in the air recently, with a vocal minority of ARMA members more and more openly critical of the majority’s support of the “Amateur equipment for Amateurs” concept. The problem of those members whose “unethical conduct,” Denny said, “has brought on the legal and regulatory problems we now face...” is a prime reason that he decided to resign.

STATE LICENSING OF CBers and Novice and Technician Class Amateurs has been proposed in Michigan by State Senator Basil Brown. Licensing would apply only to radios used in cars, would require a $2 yearly registration fee, a description of the rig along with details of where it was obtained, and a description of the car it is installed in. The Proposal, Senate Bill 409, exempts General and higher class Amateurs as well as visitors from out of state. It has been referred to the Senate Judicial Committee, which is chaired by Senator Brown. Michigan Amateurs wishing to comment on it can write Senator Brown or their own state senators in care of the Michigan Senate, Lansing, Michigan 48902.

CENTRAL STATES VHF CONFERENCE in Kansas City presented the John Chambers award to W6PO for his outstanding contribution to rf power amplifier design and assistance to VHF and EME oriented people. The P2PT antennas captured honors on both 144 and 432 MHz with gains that measured upwards of 1.0 dB above its nearest competitor which included such notables as KLMs and Quagis. The best 144-MHz noise figure was registered by WA6RX using a neutralized 2N5297. At 432 MHz, K2UYH’s V244 GaAs fet measured 1.25 dB while WB5LUA’s entry, an NE645 bipolar, was close behind at 1.35 dB. Next year’s plans call for the conference to be held in Rochester, Minnesota starting on August 18.

AN ASCII OK and other benefits of the FCC’s “bandwidth docket” (20777) may not be far off. Safety and Special Bureau Chief Charley Higginbotham told the audience at a session on regulatory matters at the APCO (Associated Public Service Communications Officers) Convention in Chicago that they could expect a report and order on 20777 to come out "this fall."

INTERFERENCE ON 160 and possibly the high end of 75 meters could result from the FCC’s recent approval of wide-band swept anti-theft systems. The three bands authorized for such systems were the 1.7-2.3, 4.05-4.95, and 7.4-9.0 MHz, with a maximum field strength of 100 microvolts per meter at 30 meters. Anti-Theft Systems must not interfere with radio communications, so can be shut down if they bother Amateur operations.

CW SENDING TEST is being dropped by the FCC for all Commission administered Amateur examinations, shortening and simplifying (since examiners won’t need CW qualifications) the exam. Novice Exams Administered by volunteer examiners will still require a sending test, however, to weed out really bad fists.

6 october 1977
Now there are two MLA amplifiers.

DenTron announces the NEW! MLA-1200

The MLA-1200 linear amplifier was designed to give you a choice. We know that not all amateurs want to run 2000 watts PEP, but we also feel the demand for a luxury styled amplifier. Hence the MLA-1200.

Basically it's built on success. The MLA-1200 incorporates the same sleek styling of the famous MLA-2500, but employs a single Eimac 8875 triode, yielding 1200 watts PEP SSB and 1000 watts DC CW with as little as 70 watts of drive.

There are many features common to both MLA's, like forced air cooling, and a plug-in PC board containing ALC and metering circuitry. The MLA-1200 covers 10-80 and MARS frequencies. Be assured that all DenTron amplifiers far exceed the FCC harmonic emissions standards.

It's a different kind of luxury. The MLA-1200 is a compact dynamo only 10"W x 6½"H x 10"D and weighs only 10 pounds! Twin outboard power supplies are available for AC or DC mobile operation. Picture that on your home, boat or car!

MLA-1200 $399.50. AC-1200 $159.50. DC-1200 $199.50. I'll bet you knew DenTron would give you a choice.
Sooner or later... every Ham will probably own at least one

Small size... giant performance

TWO MODELS AVAILABLE:
2.5 Watt MARK II and
4 Watt MARK IV

SPECIFICATIONS:
• Range: 144-148 MHz
• 6 Channel Operation
• Individual Trimmers on all TX and RX Xts.
• Current Drain: RX 15 mA, TX - Mark II, 500 mA.
• Mark IV 900 mA
• 12 KHz Ceramic Filter
• 10.7 MHz and 455 kHz IF
• Spurious and Harmonics: 50 dB below carrier
• BNC (Twist type) Antenna Connector
• .3 Microvolt Sensitivity for 20 dB Quieting
• Uses special rechargeable Ni-Cad Battery Pack
• New improved Rubber Duck included
• One pair Xts 52/52 included
• Weight: 16 oz (.45 Kg) inc. batteries
• Size: 6” x 1.770” x 2.440”

ACCESSORIES AVAILABLE
Include LC-4 Leather Case, WC12 AC Wall Battery Charger, BC4 Desk Type Battery Charger, SM4 Speaker Mic, Touch Tone Pad, Tone Options.

For Size Comparison, the New Mark IV is Illustrated Next to Wilson’s 1405SM Switchable 1 & 5 Watt Radio.

Wilson Hand-Held

The new arrivals to the Wilson family of quality high performing hand-held radios are the small American-made small sized MARK II and MARK IV. The ultimate hand-held for the amateur who demands quality, performance and value.

FEATURES:
- Lightweight and compact size — fits comfortably in the palm of your hand.
- Rugged Lexan® case.
- Same dependable performance as all Wilson Hand-Helds.
- Microswitch Speaker-Mic built in.
- Priced at

$199.95 MARK II
(2.5 watt)

$239.95 MARK IV
(4 watt)

Other Wilson units available are the VHF Models 1402SM, 2.5 watt, Model 1405SM Switchable 1 and 5 watt and 4502SM, 450 MHz, 2202SM, 220 MHz UHF units and Wilson’s WE900 synthesized 2 meter portable rig.

Don’t Miss Out On The Exploding Ham Market!

Attention Amateur Dealers: Wilson is accepting new dealers in many areas... contact us if you are interested.

Wilson Electronics Corp.
P.O. Box 19000 • Las Vegas, Nevada 89119 • (702) 739-1931 • TELEX 684-522

FOR SIZE COMPARISON, THE NEW MARK IV IS ILLUSTRATED NEXT TO WILSON’S 1405SM SWITCHABLE 1 & 5 WATT RADIO.
The new standard of performance for Tribanders is the Wilson System One!!! A DX'ers delight operating 20 meters on a full 26' boom with 4 elements, 4 operational elements on 20-15-10, plus separate reflector element on 10 meters for correct monoband spacing. Featured are the large diameter High-Q Traps, Beta matching system, heavy duty Taper Swaged Elements, rugged Boom to Element mounting ... and value priced at $259.95. Additional features: • 10 dB Gain • 20-25 dB Front-to-Back Ratio • SWR less than 1.5 to 1 on all bands.

MODEL SY-1 SPECIFICATIONS:
Matching Method: Beta
Band MHz: 14-21-28
Maximum Power Input: Legal Limit
Gain 10 dB
VSWR (at Resonance) 1.5 to 1
Impedance 50 ohms
F/B Ratio 20-25 dB
Boom Length 26'
No. of Elements 5
Longest Element 26' 7"
Turning Radius 18' 6"
Mast Diameter 2" O.D.
Boom Diameter 2" O.D.
Surface Area 7.3 sq. ft.
Windload Area 146 lbs.
Shipping Weight 50 lbs.

ADVANCED DESIGN LARGE DIAMETER
HIGH-Q TRAPS FOR MINIMUM LOSS AND
MAXIMUM POWER CAPACITY

HEAVY DUTY BOOM
TO ELEMENT EXTRUSION

AMATEUR PRODUCTS DEALERSHIPS
FOR MANY AREAS ARE AVAILABLE!!!
If you are interested in the profits you can make as a Wilson Dealer, contact us.

For complete specifications on the above products or a copy of our new Amateur Products Buyers Guide, write:
Consumer Products Division

Wilson Electronics Corp.
P.O. BOX 19000 • LAS VEGAS • NEVADA • 89119 • (702) 739-1931 • TELEX 684-522
The stripline rf power amplifier designed by K2RIW for 432 MHz and described in QST several years ago has gained wide acceptance and use. At the present time it's estimated that 300 to 400 of these amplifiers are in use around the world. The techniques outlined by K2RIW — using a pair of inexpensive ceramic tetrodes in a parallel stripline configuration — were used in a two-meter power amplifier designed by W90J1. A number of other single-tube stripline power amplifiers for two meters have also appeared in the amateur magazines. In this article I will try to put all this background and experience into construction information for a two-meter power amplifier packaged in the same compact box as K2RIW's original design for 432 MHz. Such a unit could possibly become as popular on 144 MHz as the K2RIW amplifier has on 432.

Several stripline power amplifiers based on the layout described in this article have already been built and thoroughly tested on the air. When operated in the class AB1 linear mode, the amplifier provides 600 watts output with 6 to 8 watts drive. The all-mode two-meter transceivers now on the market have more than ample output to drive this amplifier to full output; the sharply tuned circuits in the amplifier help to attenuate any out-of-band products from the driver.

Any of the tubes from the 4CX250 series are suitable for the amplifier. However, the cooling problem is simplified by using 8930 tubes which are similar to 4CX250Rs except that they have a 2-inch (50mm) diameter anode. The dimensions for the plate line, chimneys, and top cover will be given for both tube types, but 8930s are the recommended choice.

Referring to the schematic, fig. 1, the plate line is a quarter wavelength long, with the plate blocking capacitor in the form of a Teflon sandwich at the cold end. Plate tuning is accomplished by a combination of fixed copper plate and beryllium copper flapper capacitor mounted below and near the plate end of the line, fig. 2. The capacitive loading to the output is adjusted by a flapper capacitor above the plate line which is also at the plate end of the line.

By Fred Merry, W2GN, 35 Highland Drive, East Greenbush, New York 12061
The grid circuit consists of a 3-turn inductor tuned by a butterfly capacitor at the end away from the grids. Capacitive coupling is used for the input circuit. Eimac 620A or 630A sockets plus the construction and bypassing techniques used provide stability. Stability is further assured by loading the grid circuit down to approximately 300 ohms (derived from the grid bias resistor and two other 1000-ohm resistors mounted close to the grid socket connections of each tube, fig. 1).

Chassis construction involves the use of three standard chassis: two 8 x 12 x 3 inches (20.3x30.5x7.6cm) and one 5 x 7 x 3 inches (12.7x17.8x7.6cm), plus a top plate and a bottom cover. The chassis preparation is covered by the illustrations accompanying this article which include complete drilling, punching, and cutting details. A good starting point is the top cover which is a piece of 3/32-inch (2.5mm) thick aluminum cut and drilled as shown in fig. 3. The large holes are made with a hole saw, 2-1/4 inches (5.7cm) for 8930 tubes, or 1-3/4 inches (4.5cm) for 4CX250s. The vent plate, which is 3/16-inches (4.5mm) thick can also be drilled and hole sawed at the same time. A piece of aluminum screening is cut to the size of the vent plate; the screen is fastened between the top plate and the vent plate with 1/2-inch (12.5mm) long screws, 6-32 (M3.5) lockwashers, and nuts.

The plate loading adjustment block is cut from a piece of 1/2-inch (12.5mm) square aluminum bar stock, drilled and tapped as shown in fig. 3. This block is fastened to the top plate with 3/4-inch (19mm) long 4-40 (M3) screws. The 8-32 (M4) nylon adjustment screw is cut to size and inserted in the block. This completes the top cover assembly.
fig. 2. Cross-sectional view of the two-meter kilowatt showing the location of the plate circuit components.

The upper chassis is now prepared as shown in figs. 4, 5, and 6. Chassis punches 2-1/4 inch (5.7 cm) and 1-3/4 inch (4.5 cm) in diameter are required for the socket holes and the air intake. Note also that the plate with a 1-3/4-inch (4.5 cm) hole requires the use of a hole saw to get through the 3/16 inch (4.5 mm) thickness. This screened air intake plate must be chosen for either a hose-connected blower, or a blower mounted directly on the chassis. The drawing

fig. 3. Bottom view of the top plate of the two-meter kilowatt. Top plate is made from 3/32-inch (2.5 mm) aluminum sheet; vent plate is made from 3/16-inch (4.5 mm) thick aluminum. The dashed 1-3/4-inch (4.5 cm) circle is for 4CX250R and similar tubes: the 2-1/4-inch (5.7 cm) circle is for the recommended 6380 tubes. A piece of aluminum screen is cut to the same dimensions as the vent plate and mounted between the top plate and the vent plate.

12 October 1977
for the chassis-mounted blower shows drilling and tapping for a Dayton 4CO1 blower.

Although chassis-mounted blowers have been used successfully, vibration can be a problem. The intake plate for hose-connected blowers is drilled for a Nutone plastic fitting type 366. This fitting will accept a hose with a 2-1/4-inch (5.7cm) inside diameter. For hose-connected blowers, use a blower having 100 cfm free air rating into a 2-1/4-inch (5.7cm) aperture as a minimum. If 8930 tubes are used, the direct-mounted blower may be rated as low as 60 cfm into the same aperture.

Here are a couple of tricks to assure accurate drilling: lay the work out on masking tape which has been placed on the areas to be cut or drilled, and always use a 1/16-inch (1.5mm) pilot (starter) drill to

fig. 5. Top view of the upper chassis showing the top plate mounting holes. All holes are drilled to fit 8-32 (M4) blind fasteners.

fig. 4. Top chassis for the two-meter kilowatt is made from 8 x 3 x 12-inch (20x7.6x30.5cm) aluminum chassis (Bud AC424 or equivalent). All holes not marked are 9/64 inch (3.5mm). Aluminum screening is mounted between vent cover plate and the air intake hole in the top chassis. Bottom view of the top chassis is shown in fig. 6.
center your holes. Although a drill press is convenient for all drilling operations, access to one is required only for the large holes through the 3/16-inch (4.5mm) thick material which requires the use of a hole saw.

To minimize alignment errors, one part with the 1/16-inch (1.5mm) pilot holes can be used as a drilling template for the matching parts. For example, use the top plate as a template for drilling the top of the upper chassis; use the vent plate as a template for the blower opening in the rear of the upper chassis.

Accuracy in drilling is essential, especially the socket holes, top plate vents, and plate line. These holes must line up nearly perfectly to assure alignment of the tubes, chimneys, and top vents.

It is best to use blind fasteners to secure the top plate to the upper chassis. Either 8-32 or 6-32 (M3.5 or M4) size is okay. The bottom plate may be fastened with self-tapping screws or blind fasteners with blind fasteners being the best choice. All other fastening is done with 6-32 or 4-40 (M3.5 or M3) screws, nuts, and lockwashers of suitable length.

The grid box is drilled and punched as shown in fig. 6. Bottom view of the upper chassis showing the layout of the tube cutouts and other mounting holes. All holes not marked are 9/64-inch (3.5mm) diameter.

figs. 7 and 8. To ensure alignment of the socket holes with those in the upper chassis, the grid box pilot holes, including the pilot holes for the sockets, are drilled using the upper chassis as a template.

The top of the lower chassis is cut out as shown in fig. 9. This can be done with a nibbling tool, a small hand saw, or if you are very careful, on a table saw. The meter hole in fig. 11 is for a Calectro D10912 — a 0-1 mA meter with 100 ohms resistance. Any 0-1 mA meter not more than 2-3/4 inches (7cm) high can be used; the clearance for the meter behind the front of the chassis is 1-1/4 inch (3cm).

The holes in the rear of the lower chassis may be changed to suit your choice of power connectors. The MHV high-voltage connector (Amphenol) is recommended for the B + lead.

The vent holes in both the grid box and the lower chassis can be covered with screening by using a 1-1/8 inch (2.9cm) punch to cut the center out of the pieces punched from the 2-1/4 inch (5.7cm) socket holes. This provides a ring-shaped clamp which is drilled to match the holes in the chassis.

The bottom plate shown in fig. 8 does double duty as it is fastened to both the lower chassis and the grid box. First drill the pilot holes in the bottom plate and then, using it as a template, drill the pilot holes in the bottom of the lower chassis and the grid box. This completes the chassis work operations.

plate line

Before starting assembly and wiring, do the cutting and drilling for the plate line, the grid line, and the output flapper. The plate line consists of two pieces of copper clamped together in a Teflon sandwich by clamping bars (fig. 12). The cutting and drilling dimensions are shown in fig. 13. Note that only two of the clamping bars are drilled and tapped.
The third bar is drilled only 9/64 inch (3.5mm).

The finger stock is soldered on the under side of the plate line; this requires a soldering tool in the 200-watt range. The finger stock is held in place, flush with the upper side of the line, with a Pyrex beaker or some other cylinder of heat-resistant material about 2 inches (5cm) in diameter (1-5/8 inch or 4cm for 4CX250s) which is wrapped with Teflon tape to provide a squeeze fit which will hold the finger stock in place while soldering. Note that the smaller piece of the copper plate line is equipped with self clinching nuts; as an alternative, brass nuts may be soldered to the copper plate. The Teflon support for the plate line at the tube end is made from 1/2-inch (13mm) diameter Teflon rod, drilled and tapped 1/2-inch (13mm) deep on each end.

Fig. 14 shows the various components of the plate tuning and output flapper capacitors. The plate capacitor consists of two sections: the flapper and a piece of copper on the same mounting block which provides the additional capacitance needed to resonate the line. Semi-hard beryllium copper seems to make the best flapper material; it also has the advantage of taking silver plating which, while not essential, is desirable for all of the rf parts in both the plate and grid compartments of this amplifier.

Note the details for the aluminum support block in

Fig. 7. Construction of the grid box for the two-meter kilowatt. The aluminum chassis measures 5 x 7 x 3 inches (12.7x17.8x7.6cm) (Bud AC429 or equivalent). A piece of aluminum screen 2-1/4 inches (5.7cm) in diameter is clamped inside the box with the retaining ring. All holes not marked are 9/64 inch (3.5mm) in diameter.
fig. 8. Bottom of the grid box and layout of the cover plate (Bud BPA 1519 or equivalent). The holes in the bottom of the grid box are drilled using the bottom plate as a template.

fig. 14: the flapper and fixed capacitor piece are mounted together with 8-32 (M4) hardware. The support itself is mounted to the chassis with 6-32 (M3.5) hardware. Dimensions for the bakelite shaft and bearing bracket for the plate flapper are also shown in fig. 14.

fig. 9. Top view of the lower chassis showing the large cutout made with a nibbling tool. Chassis is a Bud AC424 or equivalent. All holes are 9/64 inch (3.5mm).
fig. 10. Bottom view of the lower chassis for the two-meter kilowatt.

fig. 11. Layout of the front, rear, and right-hand side of the lower chassis (there are no holes in the left-hand side of the chassis). See fig. 7 for construction of the retaining ring for the screened vent. The meter hole in the front panel of the chassis is for a Calectro D10912 1 mA meter.
fig. 12. Construction of the plate line for the two-meter kilowatt. Material is .080 inch (1.5mm) copper (should be silver plated for best results). The shaded areas are 0.030-inch (0.8mm) Teflon sheet. Construction of the individual parts for the plate are shown in fig. 13.

A slot is sawed in the inner conductor of a type-N coaxial chassis connector to accept the output flapper (see fig. 2) which is soldered into the position shown. The two holes in the output flapper serve to mount a piece of Teflon underneath the flapper which prevents contact with the high voltage on the plate line. The dimensions of these items are shown in fig. 14.

Also prepare the short piece of 1/4-inch (6.5mm) diameter copper tubing for the rf sampling assembly and the piece of 1/4-inch (6.5mm) diameter Teflon

*Many parts and assemblies for this two-meter amplifier are available from ARCOS, Post Office Box 546, East Greenbush, New York 12061; telephone (518) 477-4990. A price list will be furnished upon receipt of a self-addressed, stamped envelope.

rod for the rf choke form (fig. 14). A copper strap for connecting the grid terminals together, and mounting details for the grid butterfly capacitors and their respective shafts are shown in fig. 15.*

assembly

Begin by mounting the parts and wiring the lower chassis. Connect all leads except the five leads from the grid box and the cable to the rf sampling assembly. Keep the wires formed into a bundle in the corner of the bottom of the chassis. Run in this manner, the wires will show only at the points of termination and can be laced into a cable with wire ties after they are all in place. Use a color scheme such as black for ground, green for filament, yellow for grid, and blue for screen.
Turning now to the upper chassis, install the rf sampling assembly as shown in fig. 17. Also install the high-voltage feedthrough capacitor at this time. Fasten the upper and lower chassis together with 6-32 (M3.5) 1/4-inch (6.5mm) long screws.

Install the bulkhead BNC input connector and the five feedthrough capacitors on the grid box. Install the grid box and the sockets, making certain that socket terminals 1 and 3 are opposite their respective feedthrough capacitors. Run the five wires from the grid box to the resistor assembly board and the RG-174/U coaxial cable to the rf sampling assembly. This completes the wiring of the lower chassis.

Mount the butterfly capacitors (see fig. 15). Note that there are two holes in the area where the grid tuning capacitor mounts. The capacitor assembly is

fig. 13. Plate line parts for the two-meter stripline kilowatt.
fig. 14. Construction of the plate line tuning and output flapper capacitors.

Installed in the hole nearest the front of the chassis. Before mounting the tuning capacitor, put a spade bolt (with top cut off) in the rear hole. Tin the spade bolt. Now mount the capacitor assembly, adjusting the upper lug of the capacitor so it has some tension against the concave top of the spade bolt. Line up the coupling shaft and tighten the nut on the spade bolt holding the capacitor. Make sure the capacitor turns smoothly.

Using a 200-watt iron, carefully solder the upper lug of the butterfly capacitor to the spade lug. This is a very important connection and becomes inacce-
fig. 16. Wiring diagram for the two-meter kilowatt. Details of the rf sampling assembly are shown in fig. 17.

fig. 15. Grid circuit details for the two-meter stripline kilowatt.
sible later, so make sure it's a good solder joint. The other butterfly capacitor (loading) is not grounded so it is just a matter of making sure it operates freely. The balance of the grid circuit may now be installed.

Now mount the shaft bearing bracket and the bearing for the plate flapper tuning control. Install the plate tuning dial and the shaft. Make sure the shaft turns freely in the dial hub; this will facilitate placing the flapper tuning in the proper range. Install the Teflon support at the plate end of the plate line.

Assemble the two parts of the plate tuning capacitor to the aluminum support block and bolt the support block to the chassis. (The fishline control should be made fast to the plate tuning flapper before mounting the flapper assembly to the chassis, and the plate flapper positioned to about 1-3/4 inch (4.5cm) above the chassis.) Assemble the plate line (see fig. 12) and mount it to the chassis. Before tightening up the Teflon sandwich make sure that the large piece of Teflon between the plates is centered in the mounting holes.

Install the rf choke and the output flapper (which should be bent up to within 1/4 inch or 6.5mm of the top of the chassis). Position the rf sampling capacitor about 1/8 inch (3mm) away from the output flapper and type-N connector. Now assemble the top plate vent and the loading adjustment block. Fasten the top plate and bottom cover to complete the assembly of the amplifier.

Power Supply

A power supply suitable for this amplifier is shown in fig. 21. The voltage-doubling circuit offers a 1000 volt source for the screen dropping resistor. Since no grid current will flow with linear operation, the bias supply can be the simple zener regulated type shown. The protective features of this supply include a high voltage fuse and a diode protective resistor in the transformer secondary lead. A delay tube maintains cutoff bias until the tubes warm up. The filament voltage is 8 volts at the transformer winding and offers ample control of the voltage at the sockets with the adjustable 1/2-ohm series resistor.

This power supply will deliver 2000 volts at 500 mA with a no-load voltage of 2200 volts. At 1 ampere the output voltage drops to 1850 volts. With a transformer weight of 30 pounds (13kg) the total weight of the unit is only 45 pounds (20kg). This is quite a relief from the 80 to 100 pound (35-45kg) power supplies of the past.

Test and Check Out

An inexpensive dummy load for a high power vhf amplifier can be set up with 100 feet or 30 meters (or more) of RG-8/U with a Heath Cantenna at the end. This will stand up on 144 MHz for about ten minutes or so at 600 watts output before the cooling oil in the dummy load starts to boil. The driver for this amplifier must have a adjustable output control unless it is capable of less than 5 watts maximum output because the amplifier is very power sensitive; it is not possible to adjust it properly if it is overdriven.

After connecting the amplifier to the power supply

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{drive} & \text{grid} & \text{screen 1} & \text{screen 2} & \text{power} & \text{power} \\
\text{power} & \text{current} & \text{current} & \text{current} & \text{input} & \text{output} \\
2 W & 0 & -6 mA & -6 mA & 800 W & 200 W \\
4 W & 0 & -8 mA & -10 mA & 1000 W & 400 W \\
8 W & -1 mA & +1 mA & +2 mA & 1300 W & 830 W \\
\hline
\end{array}
\]

Plate voltage during these tests ranged from 2100 volts at 200 mA idling current, to 1700 volts at 830 watts output.

The entire amplifier is assembled in two mated chassis.
and making the usual checks of filament voltage, bias, screen voltage, and blower operation, establish an idling current of about 150 mA for initial tests. Applying a watt or so of excitation, adjust the grid circuit controls for a rise in plate current. Then resonate the plate circuit by observing power output. If the plate circuit will not resonate, change the range of the plate tuning flapper controls until the dial is mid-range for your chosen operating frequency.

The next step is to increase drive until the amplifier is at about 400 watts or so output with the loading screw about 1/8 inch (3mm) above the top plate. Now the grid circuit controls should be set for minimum swr toward the driving source. The reverse power will drop to an unreadable value. Once grid tuning is established, adjust the load control on the top of the amplifier for a compromise between maximum output and minimum plate current at an output level of 600 watts. Keep the loading on the heavy side.

Check for blower operation each time the amplifier is turned on. If the air supply should fail, the solder on the plate line will melt and the finger stock usually springs out, grounding the plate supply and operating the breaker within about 30 seconds. The tubes survive but it is a messy job to repair the plate line.

safety

Like any other piece of radio equipment operating at high voltages, this innocent looking aluminum box can be a killer — it is absolutely unforgiving of careless moves. Just to repeat the safety rules, disconnect the B+ line before taking covers off. Don’t operate the amplifier with the covers off. If you must take a reading inside with the cover off, disconnect the power, connect the meter with well-insulated leads, stand back and take the reading after you have put the power plug back in. One hand in the pocket while you are testing is the time-tested rule for staying alive. Another precaution in dealing with this level of rf power is to stay out of the path of the rf radiated from the antenna.

operation

To adjust the amplifier for linear operation, perhaps the simplest setup is to use a directional wattmeter at both the input and the output. Set the idling current at 200 mA. Using the test values of 2, 4, and 8 watts drive, (see table 1) adjust the loading control and the plate tuning control for best linearity at the lowest value of peak plate current. When the proper adjustment is reached the power output will be approximately 200, 400, and 800 watts, respectively. These tests can be made at the bench and the adjustments will be valid for a 50-ohm antenna system with low swr.

For CW operation the bias can be set higher for an idling current of 100 mA or less, and the loading control and plate tuning optimized for best output at the least plate current. At 1 kilowatt input, 600 watts output is the objective. About 5 watts drive is required.
Voltage: no load, 2300 V; 500 mA, 2000 V; 1 A, 1900 V
Bias: -55 to -95 volts (no grid current)

fig. 21. Recommended power supply for the two-meter stripline kilowatt is rated at 1 kilowatt continuous duty, 2 kW PEP. Adjust R1 (30k, 100W) for 500 volts at the screen terminal with the zener diodes (or VR tubes) disconnected. Readings in boxes were taken at 1 kilowatt output.

The temperature of the exhaust ports can be checked by setting a candy thermometer on top of the amplifier in a nearly vertical position (put a pair of stiff wire legs on it). This does not give a reading of the temperatures at the tube seals, but is a relative indicator. Based on many hours of testing these amplifiers, a suggested limit for the exhaust air temperature read in this manner is 200°F (95°C). The tubes will not fail under continuous operation at this temperature limit. The 8930s will stay well within this level but the 4CX250s will tend to exceed it.

The filament voltage for the two-meter amplifier has been set at 6 volts on the assumption that the effects requiring 5.5 volts on the filaments at 432 MHz are not as significant at 144 MHz.

The grid current should be at zero or barely negative for AB1 operation. Screen current will go negative (read with the meter reverse switch) to 10 mA more or less. It may become barely positive on modulation peaks. The screen voltage is regulated at 350 to 400 volts.

Once you have this amplifier on the air, properly adjusted, you will find that no further attention is required except perhaps an occasional tweaking of the plate tuning to match the antenna.

references
TECHNICALLY SPEAKING, HEATH HAS THE BEST 2-METER AROUND.

$269.95
With Standard Microphone

Shown with optional MICORDER™ installed

Take our HW-2036 Frequency-Synthesized 2-Meter Transceiver for example

Our circuit designs prove it

The HW-2036 offers true digital frequency synthesis for real operating versatility. No extra crystals are needed and there are no channel limitations. Advanced digital circuitry uses a voltage-controlled oscillator (VCO) that is phase-locked to a highly stable 10 MHz crystal-controlled reference. Double-tuned stages following the VCO in the receiver and transmitter provide clean injection signals. The result is a signal that has spurious output more than 70 dB below the carrier (see spectrum analyzer photos below). Additionally, the "add 5 kHz" function is accomplished digitally in the HW-2036 so that no frequency error is introduced.

True FM

Careful attention to the transmitter audio circuitry and the use of true FM gives exceptional audio quality. A Schmitt-trigger squelch circuit with a threshold 0.3 µV or less provides positive, clearly-defined squelch action. Other design advantages include diode-protected dual-gate MOS FET's in the front end, IC IF and dual-conversion receiver.

Outstanding Specifications

The HW-2036 puts out a minimum 10 watts and operates into an infinite VSWR without failure. Receiver sensitivity is an excellent 0.5 µV for 12 dB Sinad making the HW-2036 ideal for use in crowded signal areas. We think you'd be hard-pressed to find a comparably-priced 2-meter transceiver that gives you the features and performance of the HW-2036.

An 8-pole IF filter greatly reduces adjacent channel interference.

Actual spectrum analyzer photos of the HW-2036 transmitter output operating at 144 MHz. Spur output within 25 MHz of carrier are down a full 70 dB!

There's more for the Ham at Heath

FREE HEATHKIT CATALOG

Read about other fine Ham equipment and our wide variety of outstanding electronic kits — everything from lamp dimmers to color television is in our big FREE catalog.

Send for yours today!

Heath Company, Dept. 122-340, Benton Harbor, Michigan 49022
how to improve the accuracy of your frequency counter

Circuit details for a phased-lock time base and sensitive wideband probe that will improve the accuracy and usefulness of your frequency counter

Most electronic equipment requires a warmup period to allow them to stabilize and become ready for use, and the solid-state frequency counter is no exception; many instruction manuals caution that no critical frequency measurements should be made until the counter has warmed up for 30 minutes or more. If you have an accurate frequency standard, you can use the output of this standard to eliminate any warmup drift and to greatly improve the accuracy of your frequency measurements.

Some years ago, being interested in accurate frequency measurement, I built an oven mounted, temperature controlled 100 kHz crystal oscillator, divided the frequency to 60 Hz, and used the amplified output to run a synchronous electric clock with a sweep second hand. I can set this clock to the exact time as broadcast by WWV and, with a little care, the crystal frequency can be adjusted so the clock keeps exact time. If the clock stays within one second of WWV time for a 12-day period, this means that the 100-kHz oscillator is accurate to one part in 10^6; if it can be held to one second in 4 months, this represents an accuracy of one part in 10^7, or a little more than one cycle per second in 14 million. This accuracy can be easily translated to the time-base oscillator in your frequency counter.

The construction details of the 100-kHz standard

fig. 1. Block diagram of the 100-kHz frequency standard used by W1RF to drive a clock. This same basic circuit can be used to provide excellent time-base stability when used in a frequency counter.

By Clifford A. Harvey, W1RF, Box 88, Sturbridge, Massachusetts 01566
are beyond the scope of this article, but the block diagram of fig. 1 shows the basic idea. The schematic of the crystal oscillator and associated countdown circuitry in my counter is shown in fig. 2. I used a 4-MHz crystal in the oscillator because I had a number of old 75-meter phoneband crystals on hand, and it was a simple matter, with a little careful grinding to move one up to 4 MHz. With a different division ratio, you can use a different frequency crystal.

The total capacitance in series with the crystal, necessary for setting it precisely to 4 MHz, consists of a fixed capacitor in parallel with a variable capacitor, a varicap diode, or in my case, a silicon rectifier diode. The control voltage for this diode is developed by a Motorola MC4044P phase frequency detector and associated amplifier and filter. As shown, the 4-MHz signal is divided by four in a 7473 IC, and further divided by 10 in a 7490; the output is at 100 kHz. Part of this output is taken off through a 330-ohm resistor and the main output being further divided by additional 7490s (down to 1 Hz in my counter).

The output from the 100-kHz buffer is less than 0.5 volt, so I had to provide additional gain with Q1 so U2A would saturate properly. There are hundreds of transistor types which can be used for Q1, Q2, and Q3; the ones I used came from surplus board assemblies so the type numbers are unknown.

A good way to select proper component values is to put an oscilloscope probe on pin 1 of the MC4044P and adjust C3 and R1 for a symmetrical square wave with clean leading and trailing edges. Capacitor C3 in my unit is 66 pF; R1 is 300k. These values will vary, depending on the types of NPN transistors you use. The 470-pF capacitor from the collector of Q2 to ground was required in my circuit to remove a high-frequency oscillation appearing on the leading edge of the square wave. Gates U2B, U2C, and transistor Q3 form a lock indicator circuit; when the 4-MHz crystal oscillator is locked to the 100-kHz standard,

fig. 2. Circuit diagram of the phase-locked frequency standard. The author used a 4-MHz crystal, but other frequencies are possible if the division ratio is changed accordingly. The oscillator circuit is phased locked to the output of a high-stability 100-kHz frequency standard (see fig. 1). U1 and U2 are SN7400s.
the LED will light. Don’t forget that the LED is a diode and will light only when properly connected into the circuit.

Switch S1 is helpful in initially setting up the circuit, and allows the counter to be used for normal accuracy readout anytime it is not necessary or desirable to have it phased locked to the frequency standard. With S1 in the free position and a vtvm connected to test point TP, set the 25k pot so the meter reads about 3 volts. With C2 set at about the mid-capacitance position, select a value for C1 such that the crystal oscillator is very nearly on the correct frequency. In my circuit C2 is a 5-35 pF trimmer set for about 20 pF, and C1 is 20 pF.

With the 100-kHz standard connected and S1 in the lock position, the LED should light and the vtvm should read somewhere between 1 and 5 volts. C2 should now be readjusted for a vtvm reading of about 3 volts. If the counter is now connected to read out the frequency of a stable external oscillator, note that varying C2 will not change the readout but will only vary the control voltage. If the LED does not light and no lock is obtained regardless of the setting of C2, the vtvm will probably read 5 volts; this indicates that the crystal is too far off frequency to be brought in by the varicaps, or the varicaps do not have enough range.

In my counter, running free and measuring a 5-MHz external oscillator, varying the 25k pot from zero to 5 volts changes the readout from 4 999 980 to 5 000 184 Hz. Using a silicon power diode as a varicap is somewhat questionable as some diodes have much greater capacitance range than others of the same type. If you run into trouble, a Motorola MV-series varicap should be tried (such as MV2110).

With the time-base oscillator locked to a good frequency standard you can be sure that both the accuracy and the stability of your counter is greatly improved. Some years ago, after completing a similar phase-locked counter, I set up the counter to read out the frequency of my transmitter exciter. One evening I tuned in on the ARRL Frequency Measuring Test. Due to skip conditions I could hear only two of the transmitted frequencies, but it was a simple matter to zero beat W1AW with my exciter and read out the frequencies. When the actual transmitted frequencies were published a month or two later, I was pleased to note that of the two readings I submitted, one was precisely as published and the other was 1 Hz off! If you want to get to the top of the list in a Frequency Measuring Test, all you need is a phase-locked oscillator in your counter, and a little luck!

Another useful accessory to my counter is a probe based on the broadband amplifier described previously in ham radio. One trouble you run into when measuring high frequency signal in low-power circuits is the difficulty of obtaining sufficient voltage to actuate the counter. If you connect the circuit under test to the counter with coaxial cable, capacitance of two or three feet (1 meter) of cable can produce a relatively low impedance, and an unwanted load. The broadband amplifier appeared to be a solution to the problem, but I disliked hooking up the amplifier and associated power supply every time I wanted to use it so I modified it slightly and built it into a probe. The simple modification shown in fig. 3 allows the amplifier to be powered over the same coax that carries the amplified input.

If you have 15 volts at about 20 mA available in your counter to power the amplifier, the probe is very convenient to use. If you are handy with a lathe the probe can be made to look quite professional; mine is 3/4 inch (1.9cm) in diameter and 5 inches (12.7cm) long. With the probe I need only 5 millivolts at 40 MHz, 2 millivolts at 2 MHz to operate my counter. Since the center conductor of the coax connector on the counter is carrying 15 volts, be sure to use an external isolating capacitor if a direct connection is made to the circuit under test.

reference

ham radio
syllabic vox system
for the
Collins S-Line

Full break-in capability is featured with the Collins S-Line, using an array of switching transistors.

Rapid, silent switching of transmitter-receiver functions will always improve a station's "on-the-air" effectiveness. By eliminating the slow dynamic operation of mechanical relays, caused in part by conventional vox systems, the operator may then enjoy a higher quality of communications. There never will be a situation of doubling with another station because you can be interrupted at any time with the help of this high-speed switching network.

Recently Ray Hitchcock, W6RM,\(^1\) updated my earlier vox system\(^2\) by using logic circuitry which offered many advantages over the older style. This article concerns itself with the conversion of his syllabic vox for the Drake equipment to the Collins S-Line. When he and I are using ssb, the conversation is essentially the same as using the telephone. If a visiting operator were to use the station, he could use the equipment in a normal fashion and not be aware of any modifications except that he would be hearing between his transmitted syllables and code elements. There are no external devices which require adjustment nor is defacement of the equipment necessary. The 5 Vdc power supply (fig. 1), is housed in the speaker cabinet. The original vox controls (vox gain and anti-vox) perform the same basic functions as previously. The vox delay circuit is rendered inoperative by this modification.

Unless two separate antennas are used, the most critical portion of the syllabic vox system is at the antenna change-over location. W6RM has refined the diode antenna switch into a well designed, trouble-free device and suggests the appropriate name, "Diode-Biased Antenna Gate." The actual switching takes place 200 μs before the rf appears and is accomplished by forward biasing the diode with a dc voltage. No rf rectification occurs as in former T/R switches.

Directions for initial setup and the logic theory of the system are given in W6RM's paper; you are urged to consult this excellent article. One serious problem arose with the 32S-3 conversion: an intolerable audio oscillation occurred with only a moderate degree of vox gain. The vox was thrown into activation making correction of this defect mandatory.

You will note differences around the LM3900 (U1A), see fig. 2, as compared to the schematic diagram in W6RM's article. The input to the LM3900 comprises a highpass filter, and the 74122 (U2) delays vox activation for 2.1 milliseconds.

The syllabic vox amounts to a very high speed vox without the use of relays. In the original relay circuitry each set of contacts opens and closes a single circuit. In the new vox, each set of contacts has been replaced by a switching transistor. The circuits are coordinated so that each syllable or code element controls the transmitter-receiver functions. All switching is done in the proper sequence.

construction

The technique that I followed was point-to-point hand wiring with number 22 AWG (0.6mm) tinned wire. Teflon sleeving is used to cover this wire where required. To facilitate the connections to the innumerable power and ground points, the periphery of the usable portion of the board is enclosed by two wire loops, each terminating at the rear of the board. A solder lug is bolted to the board at each termination point (see photograph). Solder lugs are bolted to

By H. Rommel Hildreth, MD, W6IP, 15022 Claymoor Court, Chesterfield, Missouri 63017

october 1977
each point where interconnecting cables are attached. The 6.3 Vac jack, at the left rear, supplies the power to the 5 Vdc source (the spare jack may be used for the 5 volt input).

For the most part, the general layout follows that of the schematic diagram. The 2-mH choke is fastened to the rear of the bfo using one of the already available screws.

diode-biased antenna gate

A second circuit board was mounted at the opposite end of the chassis as shown in the photograph. It holds the high-voltage transistors and is convenient to the high-voltage chassis connections. The 100k resistor becomes so hot that it must be elevated above the board for ventilation. All other components are barely warm to the touch after a prolonged operating period.

A metal box measuring 1-1/2 x 2 x 2-3/4 inches (38x51x70mm) houses the gate. Two coax fittings are mounted at the ends and two phono jacks are on top of the box. The coax fittings are connected by RG-8/U coaxial cable cut 2 inches (51mm) longer than necessary. The vinyl is removed, leaving the center 1 inch (25mm) of the braid unexposed. The wire sheathing is skinned back over the center and the wire is cut to fit into the notches after removing a bit of the foam, center insulation. Solder the wire. At one end solder one terminal of the 50 pF capacitor after covering the wire with Teflon. Then cover both bare ends with tape so that when the shielding is brought forward it may be soldered to lugs in the screws holding the fittings and thus provide proper rf shielding. The remaining parts for the gate are easily placed within the box.

The Collins coax fitting did not lend itself well to rigid mounting, so the shortest possible length of coax was used. The entire length, including fittings, was only 4 inches (100mm).

The two gates shown by W6RM are to be used when the linear amplifier is placed at a distance from the exciter. Note that the relay in each box automatically places one or the other of the gates into the circuit. The relays play no part in the rf operation.

32S-3 modifications

Upon inspection of the chassis when placed upside down, the vox relay is at the left center. The drawing (fig. 3) will help identify the contacts of the

fig. 1. Power supply for the integrated circuits. The 6.3 Vac is obtained from the connector on the rear panel of the transmitter.
fig. 2. Schematic diagram of the control circuitry for the syllabic vox system. CR4-CR7, CR9, and CR10 are 1N4004 or equivalent diodes; all others are 1N914 or equivalent. The rf choke is a 2.5 mH, 200 mA transmitting type. All resistors are 1/2 watt, 10 per cent, unless otherwise specified.
12. Disconnect the plate lead to terminal 1 of V11.

13. Disconnect the lower end of R87 (470 ohms) from the PTT line. This resistor is near S8.

14. Disconnect the lead from the two parallel 2-watt resistors, R89 and R112. These two are also near S8, and alongside R87.

15. At S8, disconnect the lead between terminal 12 wafer D and ground. Also open the lead between terminals 12 of wafers D and C, (fig. 4B).

16. At terminal 12 of wafer D connect a circuit board extension lead labelled "+1.5 V Out".

17. At the bus wire connecting terminals 7, 8, 9 and 10, wafer D, connect a circuit board extension lead labelled "+1.5 V In".

18. Disconnect the lead to the antenna relay jack. Connect a circuit board extension lead labelled "Power Amplifier Bias" to the antenna relay jack.

19. At the vox relay, ground the several sheaths earlier mentioned. Use the ground lead already disconnected from the "Mute Contact".

20. Remove the cover of the rf section. The five screws are removed to reach the antenna relay contacts.

21. Short the antenna relay rf contacts with a short piece of wire (the rf side is near the pi network).

22. Disconnect the lead attached to the jack marked "Receive Antenna". This lead is now the rf output.

30L-1 modifications
The Collins 30L-1 linear amplifier requires a slight
modification in the grid bias stage. Referring to fig. 5, the changes in the standard wiring diagram are indicated. The only components to be added to this area are as follows: 22k, 2-watt resistor; IN4004 diode; and the 200 \(\mu \)F, 200-volt electrolytic capacitor. Be sure to observe the polarity of the diode connections. The revised circuit now uses a switching transistor to control cut-off during receive. The bias line is grounded through Q8 (2N4063) in accordance with transmitted voice syllables or code elements. The relay in the 30L-1 (K1) is now wired to be continuous-

Fig. 5. The bias circuit in the Collins 30L-1 amplifier requires changes to interface with the transistor in the control circuitry. The 200 \(\mu \)F capacitor can be epoxied to the chassis.

...ly energized; this relay is controlled with the main power switch. The large 200 \(\mu \)F capacitor is held in place with epoxy cement in the power compartment.

Some of the newer amplifiers have their grid bias lines wired in a similar fashion. The purpose of the modification is to maintain the tubes at cut-off bias during reception. The duty cycle during CW or ssb is short so the tubes operate at a much cooler level.

results

For the past nine years I have been operating with equipment using no relays, in both the CW and ssb modes. The many advantages of high-speed, silent switching are numerous and add greatly to the pleasure of operating. The Collins conversion has added to that pleasure and has been most gratifying. My sincerest thanks are extended to W6RM, for without his guidance, the conversion would never have been accomplished.

references

The famous

HAM·KEYS

The keys that are easy to put your fingers on!

JUST DIAL

1-800-325-3636

TOLL FREE

Model HK-1
- Dual-lever squeeze paddle
- Use with HK-5 or any electronic keyer
- Heavy base with non-slip rubber feet
- Paddles reversible for wide- or close-finger spacing

$29.95

Model HK-2
- Same as HK-1, less base for incorporation in own keyer

$19.95

Model HK-3
- Deluxe straight key
- Heavy base, no need to attach to desk
- Velvet smooth action

$16.95

Model HK-3A
- Same as above, less base

$9.95

Model HK-4
- Combination of HK-1 and HK-3 on same base

$44.95

Model HK-5
- Electronic Keyer
 - Laminate circuit for squeeze keying
 - Self-completing dots and dashes
 - Dot memory
 - Battery operated with provision for external power

$69.95

Same day shipment... PREPAID

We welcome the use of your

master charge
banamericarc

HAM RADIO CENTER, INC.

8340-42 Olive Blvd • P.O. Box 28271 • St. Louis, MO 63132
hybrid-tee mixer

for 10 GHz

How to use
a hybrid-T
waveguide junction
to build a
balanced mixer
for 10-GHz receivers

The majority of amateur microwave receivers use front-ends which consist of a local oscillator coupled to a mixer diode. Radio-frequency amplifiers are available for the microwave frequencies but they are usually too expensive for amateur use. Receiver performance is therefore limited by the noise figure of the mixer, and to some extent by the following i-f amplifier, so any method which can improve mixer performance is well worth it.

At present two mixer types are prevalent among amateurs working at 10 GHz. The first is the self-oscillating mixer\(^1\) (usually a Gunn device) which has the advantage of simplicity; the second is the mixer diode with a separate local oscillator. In the latter system optimum mixer performance can be obtained by adjusting local-oscillator injection and mixer impedance matching.

Some improvement in mixer performance can be achieved by using a balanced mixer. The design described in this article offers some improvement in mixer performance, and is simple to build.

design

The hybrid-T waveguide junction shown in fig. 1 has the following properties: power fed into port 3 will divide equally and in phase between ports 1 and 2; no power will appear at port 4. Power fed into port 4 will also divide equally between ports 1 and 2, but out of phase. Therefore, a balanced mixer may be constructed by placing mixer diodes at ports 1 and 2, injecting local oscillator power via port 3, and connecting the antenna to port 4. This arrangement has the advantage over the single-ended mixer in that the a-m noise sidebands associated with the local oscillator are cancelled out in the mixing process. In the single-ended mixer the local-oscillator noise sidebands are transferred to the i-f signal in the mixing process. System sensitivity is therefore limited by the quality of the local-oscillator signal. Further information on balanced mixers can be found in references 2 and 3.

The hybrid-T junction has useful properties as a power divider and isolator and may be constructed as a unit on its own. In commercial models it is usual

By R. J. Harry, G3NRT, Aldwickbury Crescent, Harpenden, Herts, AL5 5SE, England
to insert irises and matching stubs to compensate for the mismatch at the junction of the four ports. In the unit described here no attempt has been made to compensate for the inherent mismatch.

It is also necessary to match the mixer diodes to the waveguide. This is achieved by placing matching stubs (tuning screws) in front of the diode mounting. An improved match could be obtained by using a tapered diode mounting, however, the matching stub approach simplifies construction.

construction

The mixer assembly is made from three pieces of waveguide (0.4 x 0.9 inch or 1 x 2.3cm internal dimensions) as shown in fig. 2. The exact lengths are not critical but piece 1 should be at least 3 1/4 inches (8.3cm) long. Start by cutting the waveguide to length and neatly finishing off the ends. The slots in piece 1 should be scribed using the external dimensions of the waveguide for reference. The best way to remove the slots is to insert into the waveguide a piece of wood trimmed to the internal dimensions of the guide. A neat cut will be obtained by using a small hacksaw and sawing on the inside of the scribed lines. It is important not to cut too deeply — the presence of sawdust in the metal cut will assist in judging the depth of the cut. Do not cut into the adjacent waveguide wall because this will introduce discontinuities into the guide and permit solder to flow into the interior.

The slots should be filed out for a snug fit. Check that pieces 2 and 3 do not protrude into the inside of the guide by looking into the open end of piece 1. When a good fit has been achieved, drill the matching screw holes and tap to suit the thread.

The diode holes should be made by first drilling the smaller hole through both broad faces in one operation, this will ensure good alignment. The hole for the body of the diode can be entered as shown or from the opposite broad wall — this is a matter of choice.

*Following is a list of some of the common classifications used for 10-GHz waveguide. If in doubt check the internal dimensions — they should measure 0.4 x 0.9 inch (1x2.3cm).

<table>
<thead>
<tr>
<th>Classification</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG16</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>WR90</td>
<td>United States (EIA)</td>
</tr>
<tr>
<td>RG-52/U</td>
<td>United States (JAN)</td>
</tr>
<tr>
<td>R100</td>
<td>IEC</td>
</tr>
</tbody>
</table>

*Any size screw thread of about 1/16" (1.5mm) diameter may be used.
The diode mounts are very simple in construction, but a word of caution: some diodes available on the surplus market are electrically sound but are out of specification mechanically. Therefore, use the dimensions given here only as a guide and check with your favorite diodes for a good fit. The diode should be a firm sliding fit into the collar (fig. 3). The collar height should be such that the diode, when fitted in the waveguide, has its shoulder at the pin end touching the lower interior guide wall.

The insulation between the diode mount and the waveguide is ordinary cellophane tape (e.g., Scotch tape). The nylon retaining screws should be cut so they are flush with the inside wall of the waveguide when secured. When all drilling has been completed and all internal burrs are removed, soldering can be started. Pieces 1, 2, and 3 should be soldered first, followed by the waveguide flanges. A damp rag should be wrapped around the T junction to prevent the joint falling apart when soldering the flanges and end-pieces.

All soldering is best carried out with the work placed on a flat sheet of aluminum. This provides a firm base for the work, and avoids the possible embarrassment of soldering the waveguide to unwanted objects. A small gas jet should be used in preference to a soldering iron.

adjustment

When connected to a local oscillator (5-10 mW) the tuning screws should be adjusted for maximum mixer current. Ideally, this should be done with identical meters in series with each diode (fig. 4A), but if this is not possible the arrangement shown in fig. 4B can be used.

The tuning screws should be held in position with lock nuts. After the local-oscillator level has been adjusted for the recommended diode current, the metering circuit can be removed. A single meter for monitoring purposes can be placed in series with the i-f transformer center-tap (fig. 4C).

conclusion

Performance will depend on the diodes you use (preferably a matched pair). No performance figures are given because a meaningful set of measurements is beyond my present resources; the main object has been to describe the construction of a simple balanced mixer for 10 GHz which will encourage other amateurs to copy, experiment, and hopefully improve the design.

references

WOW — FREE

FROM NOW UNTIL

DECEMBER 31, 1977

**RECEIVE ABSOLUTELY FREE — A SIX-DIGIT 12- OR 24-HOUR ELECTRONIC CLOCK KIT, COMPLETE WITH POWER SUPPLY AND CASE, WITH THE PURCHASE OF ANY ONE OF THE FOLLOWING FREQUENCY COUNTER KITS, HAL-600A, HAL-300A, HAL-50A OR THE ANALOG DIGITAL. JUST MENTION THIS AD WAS FOUND IN HAM RADIO MAGAZINE.

OR RECEIVE A GIFT CERTIFICATE WORTH $15.00 ON YOUR NEXT PURCHASE OF $50.00 OR MORE.

6 GOOD REASONS FOR BUYING A HAL-TRONIX FREQUENCY COUNTER

1. **100% COMPLETE KIT.**
 - Easy assembly. (3) Components enclosed: 2-CLOCK CASE, TRANSFORMER, 3-CAPPING CABLES, 4- CAPS, 3-RESISTORS, 2-DIODES, 2- BUTTON SWITCHES, MOLDED POWER TRANSFORMER AND INSTRUCTIONS.

2. **DON'T BE FOOLER BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA.**

3. **POWER REQUIREMENTS: 117VAC. 60HZ.**
 - Time base is 1.0 SEC or .1 SEC gate with optional 10 SEC gate available. Accuracy + .001%. Utilizes 10-MHz Crystal 5 PPM.

4. **COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE.**
 - **HAL-600A** 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHz. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR .1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY + .001%. UTILIZES 10-MHz CRYSTAL 5 PPM.

5. **COMPLETE KIT $124.00**
 - **HAL-300A** 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 300 MHz. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR .1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY + .001%. UTILIZES 10-MHz CRYSTAL 5 PPM.

6. **COMPLETE KIT $149.00**
 - **HAL-50A** 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BETTER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HAL-TRONIX PRE-SCALER AND CALIBRATION COUNTERS. FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE, 1.0 SEC AND .1 SEC GATE TIMES. ACCURACY + .001%. UTILIZES 10-MHz CRYSTAL 5 PPM.

COMPLETE KIT $124.00

HAL-TRONIX BASIC COUNTER KITS STILL AVAILABLE

- THE FOLLOWING MATERIAL DOES NOT COME WITH THE BASIC KIT: THE CABINET, TRANSFORMER, SWITCHES, COAX FITTINGS, FILTER LENS, FUSE, HOLDER, T-03 SOCKET, POWER CORD AND MOUNTING HARDWARE.

HAL-600X (Same Specifications as HAL-600A) **$124.00**

HAL-300X (Same Specifications as HAL-300A) **$99.00**

HAL-50X (Same Specifications as HAL-50A) **$99.00**

PRE-SCALER KITS

HAL-0-300PRE (Pre-drilled G10 board and all components) **$19.95**

HAL-300P/A (Same as above but with preamp) **$29.95**

HAL-600P/4 (Pre-drilled G10 board and all components) **$39.95**

HAL-10GHZ (New Item - Available in December) **$124.95**

PRE-BUILT COUNTERS AVAILABLE

- (HAL-600A — $229.00) (HAL-300A — $199.00) HAL-50A — $199.00). ALLOW 4- TO 6-WEEK DELIVERY ON PRE-BUILT UNITS.

ANALOG-DIGITAL KIT $139.50

DEIGNED BY HAL-TRONIX AND MIKE GOLDEN OF R.E.T.S. ELECTRONICS SCHOOL OF DETROIT. FOR RUGGED CLASSROOM USE.

FOR THE RADIO AMATEUR, THE STUDENT, THE EXPERIMENTER OR DESIGNER.

SPECIFICATIONS: OUTPUT VOLTAGES: —5V, —12V, +12V

POWER SUPPLIES: 750mA; % Regulation at 500mA: 0.2%

SHORT-CIRCUIT CURRENT: 1.0 amp; Thermal overload protected.

Frequency: 60 - 100 Hz

Amplitude: adjustable from 1.0V to 10 Vpp. DC offset ±0.2%

Temperature Coefficient: ±0.1%

Supply: 10V, 1.2K ohm.

Price $17.00

FOR HANDLING ORDER OVER $515.00 BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REQUESTED. ON ORDERS LESS THAN $15.00 INFORMATION: PLEASE INCLUDE ADDITIONAL $1.00 FOR HANDLING AND MAILING CHARGES.

SEND SASE FOR FREE FLYER

HAL-TRONIX P.O. BOX 1101 SOUTHGATE, MICH. 48195 PHONE (313) 285-1782 SHIPMENTS ORDERS OVER $15.00 WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REQUESTED. ON ORDERS LESS THAN $15.00 INFORMATION: PLEASE INCLUDE ADDITIONAL $1.00 FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER.

October 1977 37

More Details? CHECK — OFF Page 126
calculator-aided circuit analysis

Techniques to use your programmable, hand-held calculator to analyze the operation of your own circuits — before you even pick up your soldering iron.

Circuit analysis gives the frequency response of components selected by circuit design. Design tells you what the circuit should do while analysis tells you what actually happens. Analysis can be done with a programmable pocket calculator on filters, matching networks, or other circuits with the same accuracy as big computers — and at far less cost. Programs and methods for the HP-25 programmable calculator are given here but there is enough data for conversion to other calculator types.

A programmable calculator allows accurate analysis of a circuit before it is built. Analysis takes a little time but it can literally save days otherwise spent in fiddling with marginal or unusable circuits. An advantage is that you get to know your circuits rather than just putting components together. It works with your own design or with published circuits.

The HP-25 can be purchased for less than $150 — about the average day's computer time charge — and the built-in functions are good for complex number handling. It is assumed you already know impedance and admittance, and rectangular and polar forms. All are needed to understand the methods. If these are unfamiliar, take time for a review before going on.

basic ladder model

A model for circuit analysis is a block diagram made from branches connected by nodes. The branches are component combinations having two common connection points or nodes. A branch may have one or many components and its impedance or admittance value is described by a single expression. Any circuit may be modeled in this manner.

The ladder configuration is a shunt-series-shunt branch arrangement as shown in fig. 1 for five branches. A ladder can be any odd-number branch arrangement. A model not in the ladder form can be transformed in subsections until the ladder is achieved. The simple ladder model allows only one signal source. This source is not considered a full branch.

Fig. 1 shows all branches as impedances. Actual

By Leonard H. Anderson, 10048 Lanark Street, Sun Valley, California 91352
model values have shunt branches as admittances, series branches as impedances. This convention is used for the calculator solution program and the rationale may be seen by examining the model and identities plus the solution for output voltage.

Output voltage, \(e_o \), will be a relative term and solely a function of branch values. Actual output voltage can be found by multiplying it by actual input current expressed in complex form. Most network responses are expressed in dB relative to a reference value so the current source can be unity without destroying validity.

There is one important fact about this model form: The admittance of the signal source must be a part of the input shunt branch. Excluding it will destroy the method of solving output voltage.*

Compare the terms in the final \(e_o \) expression with the model diagram and identities. Each term represents the total admittance, \(Y \), or impedance, \(Z \), at a particular point in the model, looking towards the load. The progression of identities from \(Y_{12} \) to \(Z_{45} \) show this and the arrows of the diagram locate the position. By the time \(Z_{45} \) is found, it will describe the total network impedance seen by the current source. Each successive \(Y \) and \(Z \) is both the sum of all preceding values and a term of the output voltage expression.

You can solve for both \(e_o \) and total \(Z_{in} \) by setting up the calculator to repeatedly request branch value entry, adding the entry to existing values, inverting the sum, multiply partial products by \(e_o \) by the sum (accumulating), then returning for next branch entry. This follows the identities of fig. 1 and is the main loop (repeated operations) or Program 1.

A beginner in step-programming may be a little confused when confronted by only a program. The flow chart in fig. 2 represents the ladder network calculation of Program 1.

Ladder Network Flow Chart

Flow charts are to programming what schematics are to circuits. Each chart symbol represents a component of the program. Lines with arrows indicate progression from one operation to the next. Rectangles with square sides are general operations, rounded-side boxes are program stops to display data, and slanted-side boxes are data entry stops. Diamonds represent decision points in the flow; program flow can change depending on what decision is made with particular data.

The loop is at upper left. Branch value entry uses the rectangular form while inversion and multiplication is done in polar form. Partial products of \(e_o \) accumulate in memory while successive \(Y \) and \(Z \) remains in the stack.† The loop must stop after the last entry calculation so a counter is used for control.

The counter is just a memory register. Initialization at program start sets the counter to the number of branches in the model. After each loop is complete, the counter is decremented (reduced by one) and its value tested. A positive, non-zero value causes the program to jump back to loop start. Loop iteration stops when the counter is zero and program flow changes to the lower-right group.

The program is designed to give output voltage in dB relative to a reference, \(e_{ref} \). Since the output voltage is unknown, reference to 0 dB is also unknown. The reference is automatically set if the first solution has the memory register for \(e_{ref} \) preset to zero. In this case, \(e_o \) is compared to \(e_i \) (input voltage = total

*Exclusion of signal-source admittance does not affect input impedance.

†An algebraic-type calculator requires different storages so the program must be written from the original formulas of fig. 1.
fig. 2. Flow chart for Program 1, ladder network analysis.
is at steps 14 and 19. The intermix of steps may be confusing at first glance but is required to reduce the program size.

The pause at step 26 is optional but useful when becoming acquainted with the program. The one-second display will show the branch number to be entered next. This assumes the first shunt branch is 1, the next series branch is 2, and so on. A zero display indicates that entries are complete and \(e_{\text{mag}} \) display is next.

The first decision point is at steps 27 and 28 on the new state of the counter contained in \(X \). Program flow can be stated as, "If the contents of \(X \) is less than zero (negative), then go to step 49; otherwise continue with statement in step 29." The next decision point follows directly and is interpreted, "If the contents of \(X \) is not zero, then go to step 07; otherwise continue with step 31."

Many functions on the HP-25 require the \(g \) or \(f \) key prefix so make certain you use the correct one when entering the program steps. Strange results could happen from steps 27 and 29 if the \(f \) key was mistakenly used.

Steps 31 and 32 set up the \(e_{\text{rref}} \) test actually performed in steps 33 and 34. The 0 shown in \(Y \) and \(Z \) stack registers is the counter state; the program would not have reached step 31 unless the counter was zero. Reference test is done on polar form magnitudes only. The content of \(R2 \) is now equal to total \(Z_{\text{in}} \) or equal to \(e_{r} \), Step 37 and the register roll-down of step 35 are equivalent to replacing \(e_{\text{rref}} \) by \(e_{r} \).

Steps 38 - 41 compute voltage ratio in dB, displayed at 42 stop. Any register may now be examined manually since the following steps order the stack contents by recall. This is also true after the phase angle display stop at step 44.

Steps 45 - 48 set up for source admittance subtraction. Phase angle in register \(R3 \) is in admittance form since the storage instruction of step 18 came before the step 19 sign change for inversion completion. \(R2 \) is an impedance since it was stored after inversion; this was a requirement of recall at step 37 to reduce size. Step 47 completes the magnitude inversion so the jump to step 08 has \(X \) and \(Y \) in admittance form. Source admittance is subtracted within the loop and the resulting impedance magnitude is displayed at step 49. Exchanging \(X \) and \(Y \) manually will display impedance phase angle. Depressing the \(R/S \) key will return to step 01 restarting for the next run.

Precalculation of all branch values is required before a solution is done. All frequency-sensitive branches must be precalculated at each solution frequency. If either real or imaginary part of the branch is zero, the particular entry may be skipped. It is important to keep entry order of real-part-first in mind; solution is invalid if these are mixed.

Example using program 1

The two-section R-C lowpass filter of fig. 3 is a simple example. Capacitors are assumed lossless. There are only five branches in the model. The first branch has an admittance of \(0.01 + j0 \, \text{mho} \) due to the source resistance of 100 ohms. Load admittance of 10 micromho is constant in branch 5 but the susceptance of the 0.005 \(\mu F \) is in parallel. Branches 2 and 4 are purely resistive while branch 3 (0.05 \(\mu F \)) is purely susceptive. To reiterate, all shunt branches are entered as admittances while series branches enter as impedances.

Fig. 3 shows a tabulation of capacitor susceptance

Table 1. Keyboard operations and displays using HP-25 Program 1 to analyze the R-C lowpass filter shown in fig. 3.

<table>
<thead>
<tr>
<th>keyboard</th>
<th>display</th>
</tr>
</thead>
<tbody>
<tr>
<td>enter load G</td>
<td>0.0000 (first stop after restart)</td>
</tr>
<tr>
<td>add</td>
<td>1.0000</td>
</tr>
<tr>
<td>R/S</td>
<td>0.0000</td>
</tr>
<tr>
<td>enter 0.005 (\mu)F B</td>
<td>0.000062832</td>
</tr>
<tr>
<td>add</td>
<td>0.0001</td>
</tr>
<tr>
<td>R/S</td>
<td>4.0000</td>
</tr>
<tr>
<td>enter 10k res.</td>
<td>0.05</td>
</tr>
<tr>
<td>add</td>
<td>12470.4410</td>
</tr>
<tr>
<td>R/S</td>
<td>-15522.2751</td>
</tr>
<tr>
<td>(skip entry, (X = 0))</td>
<td>3.0000 (pause display for 1 second)</td>
</tr>
<tr>
<td>R/S</td>
<td>3.1459306-05</td>
</tr>
<tr>
<td>(skip entry, (G = 0))</td>
<td>3.9152883-05</td>
</tr>
<tr>
<td>R/S</td>
<td>0.00628319</td>
</tr>
<tr>
<td>enter 0.05 (\mu)F B</td>
<td>0.0007</td>
</tr>
<tr>
<td>R/S</td>
<td>2.0000</td>
</tr>
<tr>
<td>R/S</td>
<td>-70.4467</td>
</tr>
<tr>
<td>enter 1k res.</td>
<td>-0.03</td>
</tr>
<tr>
<td>add</td>
<td>1070.4467</td>
</tr>
<tr>
<td>(skip entry, (X = 0))</td>
<td>-1494.8706 (pause display for 1 second)</td>
</tr>
<tr>
<td>R/S</td>
<td>1.0000</td>
</tr>
<tr>
<td>enter source G</td>
<td>0.01</td>
</tr>
<tr>
<td>add</td>
<td>0.0103</td>
</tr>
<tr>
<td>R/S</td>
<td>0.0004</td>
</tr>
<tr>
<td>(skip entry, (B = 0))</td>
<td>0.0000 (pause display for 1 second)</td>
</tr>
<tr>
<td>R/S</td>
<td>-3.2067</td>
</tr>
<tr>
<td>R/S</td>
<td>-65.0970</td>
</tr>
<tr>
<td>R/S</td>
<td>0.0103</td>
</tr>
<tr>
<td>enter source G</td>
<td>0.01</td>
</tr>
<tr>
<td>subtract</td>
<td>0.0003</td>
</tr>
<tr>
<td>R/S</td>
<td>0.0004</td>
</tr>
<tr>
<td>(skip entry, (B = 0))</td>
<td>total input conductance</td>
</tr>
<tr>
<td>R/S</td>
<td>-1.0000</td>
</tr>
<tr>
<td>x = y</td>
<td>1838.6121</td>
</tr>
<tr>
<td>RCL 5</td>
<td>-54.3943</td>
</tr>
<tr>
<td>add</td>
<td>90.0090</td>
</tr>
<tr>
<td>R/S</td>
<td>-15522.2751</td>
</tr>
<tr>
<td>(pause display for 1 second)</td>
<td>3.0000 (pause display for 1 second)</td>
</tr>
<tr>
<td>RIS</td>
<td>3.9152883-05</td>
</tr>
<tr>
<td>R/S</td>
<td>0.00628319</td>
</tr>
<tr>
<td>enter 0.05 (\mu)F B</td>
<td>total input susceptance</td>
</tr>
<tr>
<td>R/S</td>
<td>-70.4467</td>
</tr>
<tr>
<td>enter 1k res.</td>
<td>-0.03</td>
</tr>
<tr>
<td>add</td>
<td>1070.4467</td>
</tr>
<tr>
<td>(skip entry, (X = 0))</td>
<td>-1494.8706 (pause display for 1 second)</td>
</tr>
<tr>
<td>R/S</td>
<td>1.0000</td>
</tr>
<tr>
<td>enter source G</td>
<td>0.01</td>
</tr>
<tr>
<td>add</td>
<td>0.0103</td>
</tr>
<tr>
<td>R/S</td>
<td>0.0004</td>
</tr>
<tr>
<td>(skip entry, (B = 0))</td>
<td>total input conductance</td>
</tr>
<tr>
<td>R/S</td>
<td>-1.0000</td>
</tr>
<tr>
<td>x = y</td>
<td>1838.6121</td>
</tr>
<tr>
<td>RCL 5</td>
<td>15522.2751</td>
</tr>
<tr>
<td>add</td>
<td>0.0000</td>
</tr>
<tr>
<td>R/S</td>
<td>-3.2067</td>
</tr>
<tr>
<td>R/S</td>
<td>-65.0970</td>
</tr>
<tr>
<td>R/S</td>
<td>0.0103</td>
</tr>
<tr>
<td>enter source G</td>
<td>0.01</td>
</tr>
<tr>
<td>subtract</td>
<td>0.0003</td>
</tr>
<tr>
<td>R/S</td>
<td>0.0004</td>
</tr>
<tr>
<td>(skip entry, (B = 0))</td>
<td>total input susceptance</td>
</tr>
<tr>
<td>R/S</td>
<td>-1.0000</td>
</tr>
<tr>
<td>x = y</td>
<td>1838.6121</td>
</tr>
<tr>
<td>RCL 5</td>
<td>90.0090</td>
</tr>
</tbody>
</table>

october 1977
as well as solved output voltage and filter input impedance. Susceptance is zero at dc, the reference frequency, so the reference solution required only resistive or conductive values entries. Insertion loss will display negative but some circuits have voltage gain; a voltage gain displays positive at the reference frequency.

Memory register 6 is set at 5 for the number of branches and R5 is set at zero for the reference run at dc. A tabulation of keyboard operations and resulting displays are shown in Table 1. Display is set fixed at 4-decimals and the run is at 2 kHz.

![Diagram](source-filter-load)

<table>
<thead>
<tr>
<th>frequency (kHz)</th>
<th>susceptance (mho)</th>
<th>output voltage dB</th>
<th>phase angle</th>
<th>input impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.000314159</td>
<td>0.00031416</td>
<td>111000</td>
<td>0.000000</td>
</tr>
<tr>
<td>10</td>
<td>0.000628319</td>
<td>-36.0202°</td>
<td>3162.94</td>
<td>-66.8897°</td>
</tr>
<tr>
<td>5</td>
<td>0.000942478</td>
<td>-86.4955°</td>
<td>1456.26</td>
<td>-43.9354°</td>
</tr>
<tr>
<td>4</td>
<td>0.001256637</td>
<td>-102.1197°</td>
<td>1288.50</td>
<td>-36.5079°</td>
</tr>
<tr>
<td>5</td>
<td>0.001570796</td>
<td>-113.7452°</td>
<td>1198.50</td>
<td>-31.0653°</td>
</tr>
<tr>
<td>10</td>
<td>0.003141593</td>
<td>-143.2080°</td>
<td>1057.05</td>
<td>-17.3493°</td>
</tr>
<tr>
<td>20</td>
<td>0.006283186</td>
<td>-160.0919°</td>
<td>1014.94</td>
<td>-8.9974°</td>
</tr>
</tbody>
</table>

*Reference frequency, insertion loss = 0.09065 dB

fig. 3. Susceptance, output voltage, and filter input impedance for an R-C lowpass filter, calculated with a programmable, hand-held calculator.

The tabulation looks formidable but operation takes less time than reading the listing. The RCL 5 at the end is not required; it was included only to show the internal e_{ref} value in memory.

For simple circuits such as this one, 5 significant digits of entry value should be sufficient. At least 6 digits should be used for larger models or those having reactance and susceptance in each branch. Most big computer analysis programs have only 7 significant digits for all calculation while the HP-25 uses ten — the program can actually be more accurate than computer results!

Analysis of L-C networks, especially filters, can be tiring when R or G is absent or a constant value. Program 2 was designed for filter analysis when the source and load resistance is equal and the shunt branch conductance is always the same value. Top-coupled bandpass filters can be analyzed by this program. In this case the shunt conductance is calculated by B_L/Q at center frequency and Q is the mean value of parallel inductor and capacitor.

modified ladder network program

Program 2 is a rewritten version of Program 1 and requires only the imaginary part of branch value be entered. Series branches are assumed nearly lossless; common shunt conductance is also added to the series branches by the program so solutions are valid only when series reactance is high compared to parallel reactance. It does serve to show how the basic program can be changed to achieve the same results.

Initialization, loop, and output voltage calculation in dB are the same as Program 1 with a few exceptions. There is no temporary storage since this is occupied by constants I/R_L and G_s, the common shunt conductance. This leaves no room for finding Z_m by the program or automatically setting an e_{ref} value. Each of these can be set manually on the first run. The loop of Program 1 starts and ends in polar form. Program 2’s loop starts and ends in rectangular form so that shunt conductance and end conductance may be added by the program.

A notable exception is that the number of branches stored in R6 is one less than the model. This is a requirement of steering program flow and requires that end conductance can also be added via steps 32 - 34. Load-end conductance is added by the GTO32 at step 07 while source-end conductance addition results from decision steering.

A negative count at loop ending steers the program to output voltage calculation. The initial value of e_{ref} should be some number like one to prevent an error stop at step 38 from division by zero. The first e_v display will be meaningless.

Total input impedance has been carried in the stack in rectangular form. This is converted to polar form after output voltage phase angle display. Manual register operations should be avoided until the stop at step 48 since stack data could disappear.
Program 3. Precalculation Example.

Network input Z must be calculated manually in this program.

Insertion loss at the reference frequency can be found as follows: Store total Z magnitude in register R7 after the stop at step 48. Continue to step 49 and record total Z phase. Depress RCL 0, STO 7 to set e_{ref} in memory, then RCL 7 and DIVIDE to find e_o/e_i ratio. Using R7 at this point will not disturb the program since a restart will initialize the counter, destroying any previous data there.

Program 2 is convenient for branch entry but inconvenient for reference and network input impedance. Tradeoffs must be made due to program size. The last steps of both programs can be altered to suit the reader's application.

precalkulation techniques

Branch values at each solution frequency must be known before applying either Program 1 or Program 2. This can be done by another calculator program and tabulation of values. Precalculation should begin at the last branch and work forward. Tabulation will then have the same order of entry as either solution program.

Fig. 4 shows a simple bandpass filter to be analyzed. The model will have only three branches. Source and load resistances are equal and capacitor Q is assumed much higher than inductor Q. Equivalent shunt conductance due to Q is calculated from inductive susceptance only.
reminders that the real part of the series branch is zero; these can be deleted.

Steps 23-28 are duplicates of 09-14 since both inductors are the same value. The program can be written to hold end conductance in the stack after step 14, then bring it back for display. A better alternative is to set register R2 hold the constant $1/(LQ_1)$ and add two register arithmetic steps. This would delete four steps from the program shown. It is always better to hold constants in memory so the program needs fewer steps to compute the desired value.

The original frequency entry will be displayed when the run is finished and jumps back to stop at step 01. This is a good reminder for tabulation. If you hit the R/S key at step 01 without entering a new frequency, all displays will repeat the previous run.

fig. 4. Bandpass filter for the precalculation example discussed in the text.

Run through all displays when this occurs so that memory is restored. A mid-program change requires reloading memory.

Many variations of the precalculation program are possible. They are written to fit the particular circuit to be modeled. Adopting the style of Program 3 has these advantages:

1. Only one entry for frequency, all other stops are displays.
2. Component storage in memory with inversions and signs as necessary will reduce program steps.
3. Register arithmetic forms reactance and susceptance directly in memory with the fewest steps.
4. Calculation is simple and direct.

More than one program may be required. It is suggested that the load-end values are all calculated first. This fits the back-to-front ordering of the solution programs.

Scaling to megahertz, microhenries, and microfarads is useful for rf work. Results will still be in ohms and mhos. Other scaling can be used but should only be done if you’re very familiar with impedance and admittance.

the branch jumping adjacent nodes problem

This situation normally defeats the ladder configuration. The remedy is to use a transformation pro-

gram on precalculated values until the ladder is formed. Fig. 5 illustrates the method using a delta-to-tee transformation on a subsection. Circled numbers are nodes above ground. Nodes 1 and 3 will carry over but the original node 2 is reformed.

Program 4 follows the formulas given in fig. 5 with rectangular form entry and polar form solutions. Available program size requires more manual steps. Both parts of each delta branch must be entered in the sequence: Input real part, press ENTER, input imaginary part, press R/S to continue. A manual conversion to rectangular is required at each tee branch solution.

The program accumulates the common denominator of the transformation using the rectangular form with storage in registers R6 and R7. Numerators require multiplication so the polar form is used to reduce program size. The memory register block may seem confusing but the memory contents change as the program progresses.

After Z_A is entered, a direct store is used to begin accumulation. Registers RO, R1 and R2, R3 both hold the polar form of Z_A while R6, and R7 holds the rectangular form. Entering Z_B will make R6, R7 equal to $Z_A + Z_B$ and R0, R1 equal to $Z_A \times Z_B$ via register arithmetic. A direct store places Z_B in R4, R5. The numerator of Z_I has been formed in memory. Entry of Z_C will complete accumulation of the denominator and remaining numerators by register arithmetic.

Steps 31-40 recall the denominator, convert it to polar form and place the solutions in memory. Memory registers R0-R5 are then recalled in order

<table>
<thead>
<tr>
<th>STEP</th>
<th>KEY</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>T</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>12x</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ENTER XA</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>20D</td>
<td>7</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>RESIST DENSITY</td>
</tr>
<tr>
<td>03</td>
<td>20D</td>
<td>6</td>
<td>ETA</td>
<td>REAL A</td>
<td>RELA B</td>
<td>POLAR CONVERT</td>
</tr>
<tr>
<td>04</td>
<td>20D</td>
<td>5</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ACCUM-DENOMINATOR</td>
</tr>
<tr>
<td>05</td>
<td>20D</td>
<td>4</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>POLAR CONVERT</td>
</tr>
<tr>
<td>06</td>
<td>20D</td>
<td>3</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>L/LQ1</td>
</tr>
<tr>
<td>07</td>
<td>20D</td>
<td>2</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>R/LQ1</td>
</tr>
<tr>
<td>08</td>
<td>20D</td>
<td>1</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>09</td>
<td>20D</td>
<td>0</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>10</td>
<td>20D</td>
<td>1</td>
<td>ETA</td>
<td>REAL A</td>
<td>RELD B</td>
<td>ENTER XB</td>
</tr>
<tr>
<td>11</td>
<td>20D</td>
<td>0</td>
<td>ETA</td>
<td>REAL A</td>
<td>RELA B</td>
<td>POLAR CONVERT</td>
</tr>
<tr>
<td>12</td>
<td>20D</td>
<td>9</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ACCUM-DENOMINATOR</td>
</tr>
<tr>
<td>13</td>
<td>20D</td>
<td>8</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>POLAR CONVERT</td>
</tr>
<tr>
<td>14</td>
<td>20D</td>
<td>7</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>15</td>
<td>20D</td>
<td>6</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>16</td>
<td>20D</td>
<td>5</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>17</td>
<td>20D</td>
<td>4</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>18</td>
<td>20D</td>
<td>3</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>19</td>
<td>20D</td>
<td>2</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>20</td>
<td>20D</td>
<td>1</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>21</td>
<td>20D</td>
<td>0</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/C</td>
</tr>
<tr>
<td>22</td>
<td>20D</td>
<td>9</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>23</td>
<td>20D</td>
<td>8</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>24</td>
<td>20D</td>
<td>7</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>25</td>
<td>20D</td>
<td>6</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>26</td>
<td>20D</td>
<td>5</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>27</td>
<td>20D</td>
<td>4</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>28</td>
<td>20D</td>
<td>3</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>29</td>
<td>20D</td>
<td>2</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>30</td>
<td>20D</td>
<td>1</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>31</td>
<td>20D</td>
<td>0</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>32</td>
<td>20D</td>
<td>9</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>33</td>
<td>20D</td>
<td>8</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>34</td>
<td>20D</td>
<td>7</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>35</td>
<td>20D</td>
<td>6</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>36</td>
<td>20D</td>
<td>5</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>37</td>
<td>20D</td>
<td>4</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>38</td>
<td>20D</td>
<td>3</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>39</td>
<td>20D</td>
<td>2</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
<tr>
<td>40</td>
<td>20D</td>
<td>1</td>
<td>ETA</td>
<td>REAL A</td>
<td>REAL A</td>
<td>ETA/B</td>
</tr>
</tbody>
</table>

and the stops display each tee branch magnitude. Tee branch phase angle is in the Y register at each stop. The stop for \(Z_3 \) is at step 01. This not only reduces steps but permits an automatic return to start for transforming the next set of delta values.

Program 4 will work with either impedance or admittance. The only change is from rectangular form to polar form. As an example, enter

\[
Z_A = 3 - j4 \\
Z_B = 4 + j5 \\
Z_C = 5 + j3
\]

The solutions (converted to rectangular) are

\[
Z_1 = 2.375 - j0.875 \\
Z_2 = 1.750 - j1.500 \\
Z_3 = 1.300 + j2.650
\]

Note the difference in signs for the imaginary part.

transforming the other way

A prime example is the parallel-T circuit. To form the basic ladder a tee-to-delta transformation is required. This places each transformed delta branch in parallel with the other. Transformation formulas are as follows using the branch designations shown in fig. 5

\[
Z_N = Z_1Z_2 + Z_1Z_3 + Z_2Z_3 \\
Z_A = Z_N / Z_3 \\
Z_B = Z_N / Z_2 \\
Z_C = Z_N / Z_1
\]

Program 5 performs conversion using the above relations.

A difficulty in programming is the common numerator expression. **Program 4** is needed only to form a sum of three quantities for the common denominator. **Program 5** must form the common numerator from the sum of three products. This eats up program steps so **Program 5** is a bit harder to work with.

All entries must be in polar form. This can be done by entering rectangular values and converting manually. Attention must be paid to the magnitude and angle location in the stack. This is especially true at \(Z_2 \) entry since the Z and T stack registers cannot be disturbed from locations shown.

Registers RO through R5 store only the individual impedances. The numerator product terms are formed in the stack, converted to rectangular, then accumulated in registers R6-R7. The \(Z_1Z_2 \) term is formed when step 12 is reached. \(Z_1Z_3 \) is complete by step 25. **Program 5** requires stack register manipulation and more steps as a result of the common numerator expression.

Limitation of HP-25 program size results in solutions stored inverted in memory. Input impedance and the direct solution is in admittance but both are in polar form — the input/output is opposite that of **Program 4**. Solutions are manually recalled after the forced stop at step 49

- \(Y_A \) magnitude in R0, angle in R1
- \(Y_B \) magnitude in R2, angle in R3
- \(Y_C \) magnitude in R4, angle in R5

The admittance form is not a disadvantage. Recalling the parallel-T, the transformations have all delta branches in parallel. Admittance addition is the easiest calculation of parallels.

other transformations

Lattice networks and similar circuits can be programmed to tee or delta sections and the formulas are available in most textbooks. In most cases a circuit can be divided into relatively simple subsections represented by a single branch; a precalculation program can be used instead of transformation. The circuit to be analyzed should be carefully studied and divided into branches that minimize pre-solution work.

A key indicator of the necessity for transformation is the model's signal path or current flow. The parallel-T has two separate signal paths so transformation is unavoidable. Branch \(Z_B \) of fig. 5 represents a second signal path vs flow from node 1 through node 2 to 3.

Schematics can sometimes be misleading. Often they are drawn to fit available space and parallel components may appear widely separated. Copying the schematic on scratch paper is useful; branches
Remember to order branch values from back to front. It is probably easier to group values by frequency, making little blocks of values on the tabulation sheet. Calculate at more frequencies than you think you need. Network solutions will tell you which ones to skip over.

Five or six significant digits will give you good accuracy. A minimum is four digits, but only for simple circuits.

group delay

Any circuit with inductance and/or capacitance has time delay and such delay is frequency sensitive. Group delay is the average time delay over a small increment or group of frequencies. It is a function of frequency increment and the differential phase angle within the increment. The formula is:

\[td = \frac{(\Delta \text{phase angle})}{(360 \cdot \Delta \text{Frequency})} \]

where:
- \(\Delta \text{phase angle} = \) positive differential angle in degrees within the frequency increment
- \(\Delta \text{Frequency} = \) differential frequency over a small increment

Scaling can be seconds and Hz, milliseconds and kHz, or microseconds and MHz.

Frequency increments should be constant and small. For a bandpass filter, at least ten frequencies within the passband should give an accurate picture of group delay. Since the frequency increment is constant, the denominator of \(td \) is also constant.

Linear group delay in ssb filters will improve audio quality since all sideband components have the same amount of delay. Knowledge of rf to i-f to detector signal delay in receivers is useful when applying noise blankers of the Lamb or Collins type because the blanking signal must arrive before the noise reaches the blanking gate.

is it worth the trouble?

Only if you do your own circuit designs or want to know what happens inside that collection of components. Programming is not difficult with the HP-25. Hewlett-Packard supplies a good applications manual free and the examples can give a quick insight to the various functions. The same is true for machines made by Texas Instruments.

Computer aided design is used extensively in industry for design analysis. Calculator aided design should be equally useful to the amateur. A few extra hours of testing on paper will let you know how the circuit works before cutting metal or etching boards. You can spot errors that would otherwise cost money and time.

fig. 5. Model transformation. The delta subsection of the original model is first transformed to an equivalent tee network, then added to the original to form the transformed model.

preparation

Practice with the calculator so you know what happens when you inadvertently key in a wrong instruction. Treat it like a piece of test equipment. In this application that is just what it is.

Use a separate pad of paper for branch value tabulation. When transformation is required, precalculate only the sub-sections and write down the solutions on the tabulation sheet first. The ordinary branches can be calculated later.
THE ALL SOLID STATE

ATLAS 350-XL

Its face has many interesting features:

- **350 WATTS SOLID STATE POWER**
 - P.E.P. and CW input.

- **SSB/CW TRANSCEIVER**
 - SSB with PTT or VOX operation and full break-in CW operation.

- **CW-LSB-USB FILTER**
 - Selection of upper or lower sideband with 2700 Hz bandwidth.
 - 1.6 to 1 shape factor, or 500 Hz CW bandwidth with 2.5 to 1 shape factor.

- **AF NOTCH FILTER**
 - Provides better than 40 dB rejection of an audio frequency, adjustable from 300 to 3000 Hz.

- **ANALOG DIAL SCALE**
 - 0 to 500 kHz dial scale in 5 kHz increments. Velvet smooth dual speed tuning, with 18 kHz per revolution of fine tuning control.

- **ANL AND NOISE BLANKER**
 - Automatic Noise Limiter reduces hash type noise interference which is not intermittent pulse type.
 - Blaneker effectively reduces or eliminates pulse type noises.

- **RECEIVER INCREMENTAL TUNING**
 - Permits receiving up to 5 kHz above or below your transmitting frequency. Especially useful for CW operation or in a net of SSB stations that are on different frequencies.

- **PLUG-IN AUXILIARY VFO (Optional)**
 - Can be either a tunable VFO with the same 500 kHz tuning range as primary VFO or a crystal controlled fixed channel oscillator with choice of up to 11 crystal controlled channels.

- **10-160 METERS COVERAGE**
 - Provides a full coverage of all amateur bands in 500 kHz segments.

- **AUXILIARY RANGES**
 - Up to 10 additional 500 kHz ranges between 2 and 23 MHz can be added by plugging in auxiliary crystals. (Will not operate between 23 and 28 MHz.)

ATLAS 350-XL (less options) $995.
Model DD6-XL Digital Dial Readout $229.
Model 305 Plug-in Auxiliary VFO $155.
Model 311 Plug-in Auxiliary Crystal Oscillator $135.
Model 350-PS Matching Power Supply $229.
Plug-in Mobile Mounting Bracket $65.

ATLAS RADIO INC.
417 Via Del Monte, Oceanside, CA 92054
Phone (714) 433-1983
Special Customer Service Direct Line (714) 433-9591
Design and construction of a dual-conversion receiver featuring varactor tuning in the front end and digital display of the received signal frequency.

Described in this article is an all-solid-state dual-conversion receiver for 20 meters. It features varactor tuning in the rf, mixer, and high-frequency oscillator and a digital display of the received-signal frequency.

Although the design is for the amateur 20-meter band, it may be easily adapted for a single-band receiver operating in any amateur or shortwave band between 3 — 30 MHz.

Various LC networks and voltage combinations are used with the high-frequency oscillator, which allows limiting bandspread to the CW or ssb portions of a band or expanding bandspread to full amateur-band or shortwave-band segments in the order of 1 MHz.

The receiver portion uses a combination of dual-gate mosfets, fets, bipolar transistors, and ICs. The counter portion uses TTL, low-power TTL, and Schottky TTL logic devices. With suitable selection of HFO and LO frequencies within the capabilities of the Schottky logic upper-frequency limit, the counter may be used up to the 6-meter amateur band with no design changes.

the **receiver**

Fig. 1 is a block diagram of the receiver. It uses the straightforward dual-conversion design approach. Voltage-controlled varactor diodes are used for frequency selection in the HFO and tuning of the rf and mixer input stages. Local and BFO oscillator frequencies are established with crystal control for stability of the i-f. Intermediate frequency amplification and selectivity are obtained with a single integrated circuit in combination with a Collins narrow bandpass mechanical filter (2.1 kHz nominal).

By M. A. Chapman, K6SDX, 935 Elmview Drive, Encinitas, California 92024
A simple 5-digit, 7-segment LED display system provides ±1 kHz accuracy for the receiver frequency display. It uses input signals from all receiver oscillator sections rather than just the HFO.

A nominal position is provided in the BFO selector switch to provide for interpolating the received signal resting carrier frequency. Incorporated into the audio system is an active lowpass filter, which minimizes spurious noise and i-f heterodyne signals, thus optimizing the receiver signal-to-noise ratio.

Frontend. Fig. 2 illustrates the frontend design. Moderately high Q coils are used in the rf and first mixer input. High Q coils in the rf section provide excellent signal-to-noise ratios, good selectivity, and high initial gain. Back-to-back varactor diodes are used for tuning the rf LC circuits by front-panel potentiometer control of the varactor diode bias voltage.

From fig. 2 we see that the first i-f is 1500 kHz, and the second conversion i-f is 455 kHz. As shown in fig. 2, the gates of the second mixer stage incorporate bias adjustment to optimize both device gain and signal-to-noise ratios. Gate biasing for rf and mixer may not be immediately apparent from fig. 2. Fig. 3 shows how the mosfets in the rf and mixer biased and the method used to compensate for tolerances in the LC circuits to permit gang tuning of both stages.

The upper section of fig. 3 is a simplified ac model illustrating the tuned-circuit relationships. It’s important to note that, from an rf standpoint, the cold end of the LC circuits is at ground potential as are the source and control gates of both devices. The lower section of fig. 3 includes the varactor diode and source-swamping-resistor relationship to the device. Here again, we see that the cold ends of the LC circuits are at ac ground and that the source swamping resistor is shunted to ground.

Since the rf amplifier and mixer are depletion mode devices, you can adjust the input voltage to the gates of Q1 and Q2 so that the gate-to-source bias is approximately −0.5 volt. Tuning the varactor diode is accomplished by applying a positive voltage greater than that required for bias of the gate source

![Bottom view of the receiver. A portion of the power supply board can be seen on the left.](image)

Author Chapman has provided much detail in his description of the design and construction of this receiver. The article is in two parts. Part one describes the basic rf and i-f circuits, and part two deals with the digital readout system. The digital readout system may be readily adapted to almost any receiver design. If you’re interested in duplicating the receiver without the digital readout, you’ll find the information you’ll need in the following material. Part two, to be published in a subsequent issue of *Ham Radio*, wraps up the entire project and provides much useful information on calibration and alignment.

To minimize alignment difficulties, Q1 and Q2 should be matched for nominal IdSS values, so that bias voltages 1 and 2 will require a minimum amount of adjustment to compensate for varactor diode and shunt-capacitance tolerance. Much variation exists between varactor nominal capacitance and capacitance change, with respect to voltage change when tuning the rf circuits. Compounding the problem is the nonlinearity that exists with the diode elements themselves. Since the Q of the rf input and mixer input circuits is quite high (≈75), any differences be-
Side view of the receiver showing the rugged mechanical construction.

...the diode-versus-voltage capacitance will result in circuit detuning.

Referring to fig. 2, the mixer gain control gate (G2) is at a fixed-voltage point and the rf stage uses a variable resistor to control the rf gain. One disadvantage of this scheme is that, as we vary the voltage between the diode-versus-voltage capacitance will result in circuit detuning.

I-f amplifier. I-f amplifier gain and bandpass filtering is accomplished with an LM373H IC and a narrow bandpass Collins mechanical filter (fig. 4). The LM373H (U1), in addition to providing high i-f gain, also acts as the detector for both CW and ssb. Incorporated in its design is the ability to use agc or external manual i-f gain. An agc-level sensitivity control is included.

The voltage value indicated for initial adjustment of U1 represents an agc threshold setting of approximately 300 microvolts. To provide isolation of the detected audio output to the S meter and audio filter stages, a simple fet amplifier stage is incorporated (Q4). Almost any depletion-type device may be used in this stage by adjusting the source and drain resistors to obtain a voltage gain of approximately 5, as indicated. The minimum source bypass capacitance should be in the order of 10 pF.

The voltage value indicated for initial adjustment of Q4 output coupling capacitor should provide a low reactive impedance to the S meter and audio filter input to minimize signal loss at the low (150 Hz) signal levels. However, scaling of the S-meter input of Q1 gate 2, causing a change in the varactor diode bias and its capacitance, a slight detuning occurs in the LC circuits.

When the gain level is adjusted to any appreciable extent, then the TUNE control must be repeaked to maintain overall-receiver gain. When operating over limited segments of a band (for example, the CW section), then very little rf TUNE adjustment is required. However, if a number of changes are made to the mixer gain, a corresponding adjustment to the TUNE control is necessary.

fig. 1. Block diagram of the 20-meter high-performance receiver.
depending upon panel layout preference, and availability of meters.

High-frequency oscillator. An extremely high stability HFO is illustrated in fig. 5. This is an adaptation of the design discussed in reference 2 using a Goral buffering scheme. I've used this oscillator technique from 1 to 50 MHz with various LC combinations, changing only the source and emitter load inductors. An alternative device providing equal or better output voltages is the Motorola MPS-A09 bipolar transistor. Since the mixer-stage gate and counter input circuitry are high impedances, very little signal loss occurs, and you should expect to see the output levels indicated on the diagram.

Substitution of alternative inductive loads can affect the output voltage levels. Use care to obtain the peak-to-peak values indicated in all oscillator stages.

Tuning of the varactor (VVC, MV1654) is accomplished using a positive voltage of approximately 6 to 7.5 Vdc. Since the first i-f is 1500 kHz, and down conversion is used, the HFO output, then, is between 12.5 MHz - 12.85 MHz to cover the 20-meter band (14 - 14.35 MHz). Considering that 1.5 volts of differential bias on the varactor is necessary, the fre-
fig. 3. RF amplifier tuning and bias schematics. Sketch A is a simplified ac model illustrating the tuned-circuit relationships. Sketch B includes the varactor diode and source-sweeping resistor relationships.

Frequency stability is more sensitive to power-supply ripple variations than the oscillator described in reference 3; therefore, a high-performance voltage reference supply is necessary to maintain a stable voltage on the varactor to minimize frequency drift. Presuming that the power-supply scheme illustrated later is used, and that good packaging and component selection is followed, you can expect a frequency drift of less than ± 100 Hz/hour after thermal equilibrium.

Local and beat-frequency oscillators. The local and beat oscillators are described in figs. 6 and 7 respectively. Simple fet oscillators are used. Many fet substitutes will perform equally as well. The output voltages are as indicated on the schematic. Good-quality parallel-resonant crystals should be used, with only the nominal 455-kHz crystal requiring careful selection of the shunting capacitor, since this will determine your transmit-frequency reference in the counter display.

Any errors introduced into the local-oscillator center frequency can be compensated by shifting the HFO frequency and tweaking the 1.5-MHz i-f transformer (fig. 2).

Caution note: the LM373H (U1) of the i-f detector stage is sensitive to excessive BFO injection voltages. The nominal input voltage to U1 for BFO detection is 60 millivolts rms. Slightly higher levels will increase the detected audio levels. A too-high injection level will result in audio motorboating and distortion; too low an injection level will result in poor or weak audio detection. To minimize generation of spurious and harmonic frequencies from feeding into other parts of the receiver, generous use is made of RC decoupling and bypass capacitors. Feel free to substitute capacitor values in these circuits with

fig. 4. I-f amplifier, detector, and audio buffer schematic.
whatever is available, so long as the dc input is kept reasonably clean of the oscillator-frequency components.

The LSB and USB crystal frequencies may be determined by either measuring the Collins 455-kHz mechanical filter for the 20-dB passband points or by ordering a filter that has been measured by the manufacturer for the L20 and H20 dB points. An additional description is given in reference 4 and in the alignment and calibration sections of the article.

Audio filter and amplifier. The detected audio from Q4 is passed through an active lowpass filter-operational amplifier arrangement and further amplified in a one-stage 2-watt audio amplifier U3 (fig. 8). The U1 and U2 lowpass filter design is discussed in considerable detail in references 4 and 5. Normally, U1 and U2 operate from a plus and minus voltage source; however, a simple voltage-divider circuit on pin 3 of U2 establishes an artificial ground for both U1 and U2. The lowpass rolloff starts at 2500...
Hz, and a 15-20 dB attenuation of all higher audio frequencies is achieved. The normal i-f heterodyne hiss is greatly attenuated, and the receiver overall signal-to-noise ratio is enhanced. An additional high-frequency audio rolloff is achieved by the selection of the 680 pF mica feedback compensating capacitor of U3.

Audio and rf have many common grounding and feedback problems. To minimize circulating ground loops and achieve low-noise performance, a single-point ground system should be used with the audio circuit. As an aid, those items of special significance are indicated as notes in fig. 8.

Notes 1 and 2 are self-explanatory; note 3 deserves some additional comment. A 1-meg level-set pot is shown between U2 pins 2 and 7. As the name implies, it establishes U1 and U2 output gain in combination. Ideally the gain is unity; however, since we're operating these devices ±6 volts dc the overall gain will be in the order of 0.8-0.9. To obtain the best

fig. 8. Audio filter and amplifier schematic.
setting for the level set, a low-level 50-100 millivolt audio signal should be coupled to U1 input through a 0.01 μF capacitor while monitoring U2 and U3 output with a high-impedance scope. The level-set pot should be adjusted where the gain is about 90 per cent of maximum over the frequency range 150 Hz-2500 Hz. Then the pot may be removed and a fixed resistor installed with a value closest to that measured on the pot. The value of this resistor will be approximately 100k.

As in the other low-level audio-signal processing circuits, this is not the place to use an inexpensive, exposed wiper-type volume control. The added cost of a sealed, 2-watt type component with the case securely grounded to the chassis and panel will minimize wiper contact noise and ground problems. Use of 1/2-watt resistors in the low-level audio stages has been included in the PC design layout for additional noise control.

Power supply. The power supply and high-frequency oscillator varactor control system are illustrated in fig. 9. Three-terminal 7800-series voltage regulators are used for the +12 and +5 Vdc requirements. To minimize power dissipation and provide for a constantly changing current demand from the LED displays, a preregulator/derippler circuit is used ahead of the +5 Vdc regulator. A small amount of series resistance isolates the display voltage from the +5 volt logic voltage.

To establish a stiff reference voltage for the HFO varactor diode (VVF), a precision voltage regulator is used (U2). Ripple rejection is in the order of 80 dB, and voltage stability is in the order of a few millivolts per degree F. Two small 10-turn trimpots allow fine tuning of the high and low end of the 10-turn VVF voltage pot. A similar voltage control system is described in reference 3. Additional capacitive filtering will aid in the reduction of VVF ripple content and may be added at your discretion.

Filtering across the VVF 10-turn pot should not be added, because such filtering will increase the HFO control-voltage time constant. Any added filtering should be used ahead of the trimpot or preferably U2.

Construction

Modular PC board construction is used, with each major function individually packaged on a separate board and isolated in an rf-tight housing. The photos clearly illustrate the relative board positions and techniques for interfacing the rf and audio circuits, as well as the method for isolating and developing the +12 source voltage between the receiver stages. Each functional section has its own +12 volt input
terminal, which is filtered at the board termination point.

Front end and i-f amplifier/detector. The rf, mixer, i-f and detector functions are located on one inline PC board (fig. 10). Heavy, well grounded shields are used between the rf, mixer, and i-f/detector sections, which also provide convenient mounts for the large coils of the rf circuits. Two standard, readily available i-f transformers are used in the drain circuits of Q2 and Q3, which are shielded with their own housings. Many 455-kHz i-f transformers having the same or similar geometry as the 2051 unit used here are available. If necessary, the board could be cut open and the alternative unit mounted in piggyback style.

If you'd like to operate the receiver at frequencies above 15 MHz, the 12-W1 transformer may be opened and the internal padding capacitors changed to allow for a higher first i-f more consistent with a good 10:1 rf mixer frequency ratio. If you elect to use an unprotected dual-gate mosfet device in the rf stage, provisions exist for the installation of back-to-back 1N914 gate-protection diodes; however, at higher frequencies this additional shunt capacitance could materially affect the signal level.

The Collins mechanical filter mounts directly to the board. However, several foreign-made filters of comparable performance are available, which will mount in this area of the board. Short jumper wires can be installed to interface with the input-output pins of the LM373H. Provisions are included on the board for an impedance-matching resistor to be installed in place of the jumper wire input to U1 and the i-f detector from the filter.

Inexpensive 0.1-inch (2.6mm) center trim pots were used; however, after measuring the desired resistance values required for the S-meter, agc, and bias circuitry, fixed carbon composition resistors mounted vertically to the board could be used.

High-frequency oscillator. The high-frequency oscillator PC component layout is shown in fig. 11; fig. 12 shows the winding and coil data. As discussed in reference 3, a variety of LC, varactor-diode combinations are possible for this construction. Provisions exist for mounting two varacaps back-to-back on the board, and space is available for the addition of an extra shunt capacitor. The HFO output signal to the mixer should have the shield terminated on the HFO board and should be unterminated at the mixer input. Note that the board should be well-grounded to the chassis. Since the V_{HF} voltage is at a dc level, there should be no need to use shielded wiring unless an alternative packaging technique required different routing of this wire.

Local oscillator. The local oscillator is mounted on an independent PC board, as shown in fig. 13. Wiring and installation is straightforward. Many crystal sizes can be accommodated on this board. Provisions are included for an optional ceramic or air type trimmer capacitor. However, an error of 2 or 3 kHz is not harmful since this error can be compensated for in the final HFO trimming and adjustment. Crystals with low ESR (sluggish) will not operate well in this circuit and may have a slight tendency to drift; so purchase good-quality crystals or use an alternative circuit similar to the oscillator circuit described in reference 4.

Beat-frequency oscillator. The beat-frequency oscillator is also mounted on an independent PC board assembly. A complete set of circuit board layouts is available by sending a self-addressed, stamped envelope to ham radio, Greenville, New Hampshire 03048.
fig. 11. HFO PC board layout. Printed circuit boards for the rf portion of the receiver are available from the author for $11.25, ppd.

board (fig. 14). The board assembly mounts directly to the switch mounting hardware behind the switch deck. The switch is a Centralab PA-3 with a PA-2 nonshorting 2-6-position deck. Wiring from the PC board to the switch terminals is illustrated in the figure.

As in the local-oscillator board, the crystals are soldered directly to the board; either standard or wire-type crystals may be used. I recommend that all crystals be of the same type to minimize any temperature variations and to provide equal output levels to the counter and mixer input circuits.

As previously mentioned, the USB and LSB crystals depend on the filter 20-dB passband points. With foreign mechanical filters, my experience has been that the filter center frequency may not be at the nominal 455-kHz resting point, but may vary as much as ±5 kHz from this point. If an alternative i-f filter is used, the center-frequency response and that at 20-dB points should be measured as accurately as possible for optimum receiver performance. The CW crystal is normally ±800-1000 Hz from the center i-f filter frequency. It should be selected according to your preference. Use an audio oscillator to determine the preferred beat oscillator note, when ordering a corresponding BFO CW crystal.

A unique calibration scheme is described in part 2 of this article, which uses the CW and BFO frequency. During tests of the BFO, an accurate measurement of the CW BFO oscillator frequency should be...
made if the crystal frequency is other than ±1000 Hz from the filter center frequency. This will allow you to adjust the clock frequency accurately in the counter for the correct display. Both the local oscillator and BFO oscillator PC assemblies should be hard mounted to the chassis, using short aluminum standoffs for good grounding.

Audio filter and amplifier. The audio filter and amplifier are included on one PC board assembly, fig. 15. Terminals from U1 and U2 must be removed from the integrated circuits before installation. The FX-60 device may be mounted to a 14-pin DIP socket or soldered directly to the board. Grounding within the audio section is important, so a single-point grounding scheme illustrated in the component layout of fig. 15 is recommended. The PC board should be isolated from the chassis using nylon hardware. The audio input shielded lead should be grounded at the PC board input and left floating at the detector output. Because of the large size of the audio output capacitor, I recommend that this component be located externally, near the speaker or speaker output terminal.

Power supply. The power supply component layout is shown in fig. 16. Heatsinking of Q1, U1 and U3 is mandatory because of the power dissipation of the regulator devices. The power supply photograph illustrates the technique I used, wherein a small piece of aluminum sheet was bent up, with holes drilled in the side and bottom. Since Q1 collector is not operating at ground potential, its case must be insulated from the heatsink. However, the common terminals of U1 and U3 are at ground potential, and their cases may be tied directly to the heatsink. A small amount of silicone grease under the mounting surfaces of these components will aid in thermal conduction. The peak power dissipation values are indicated on the schematic (fig. 9), as a reference for the builder to size the heatsink.

A small aluminum angle bracket is mounted on the end of the PC board assembly to support the HFO trimming resistors; however, these parts can be located at any convenient point on the chassis or next to the 10-turn HFO control on the front panel. The precision voltage regulator, U2, may be mounted to a standard 14-pin DIP socket or soldered directly to the board. Do not forget to add the short jumper wire shown on the back side of the PC board layout of fig. 16.
A variety of bridge rectifier units are available that match the Varo part number 7244 unit; it is important to have adequate surge current capability (approximately 5 amps) in using substitute units. Four independent rectifiers may be mounted vertical to the PC board face and jumper wired into a bridge arrangement if desired.

alignment and testing

The BFO i-f bandpass frequency relationship is illustrated in fig. 17. This receiver uses a high-grade mechanical filter having a 2.1 kHz bandpass at 60 dB down. Because of this sharp filter action, the location of the ssb beat oscillator frequencies is quite critical. As illustrated, the upper and lower BFO ssb frequencies are precisely located at the 20 dB points. Those ordering the Collins filter part specified in the schematic will receive the unit with the 20-dB points measured at the factory, from which the approximate crystal can be ordered. Since a variety of Collins 455-kHz mechanical filters are available from surplus markets a stable single generator, scope, and frequency counter should be used to measure accurately the beat frequency points and resting center frequency for determining the appropriate BFO crystals.

A complete description of the S-meter circuit, construction and implementation, is described in reference 1. The photographs illustrate the method of S-meter, and S-meter amplifier mounting. In this application I am using an 0-5 mA S-meter movement.

Preliminary procedures. The following steps for alignment of the basic receiver section will assist you in obtaining maximum performance. Before alignment, each oscillator and audio module should be tested and verified for proper operation, as discussed in the text. The modules should be installed in their final form on the chassis with appropriate interconnect wiring. If possible, two separate external 0-15-volt power supplies should be used.

Alignment. The following steps have been verified in practice.

1. Temporarily install one end of a 0.01-µF capacitor to Q3 gate on the foil side of the rf and mixer PC board. With an external signal generator, inject an unmodulated 455 kHz 1 millivolt signal to the other side of the 0.01-µF capacitor. Put the agc switch in the OFF position and adjust the i-f gain control for maximum. Verify that the BFO injection signal is in the order of 60 millivolts rms in the CW position.

Adjust the volume control for maximum and install a scope monitoring probe at the audio output, without an external speaker installed. Use caution to ensure that the audio is not grounded, since this may destroy the audio amplifier chip!

With power applied (+ 12 V), adjust the 455 kHz i-f transformer in Q3 drain circuit for maximum while monitoring the audio output signal. With the indicated 1 millivolt 455-kHz signal applied to G2 of Q3, a 2.5-volt peak-to-peak audio output signal should be observed.

With the agc set at the level shown (+3.75 V), switch the agc control from OFF to ON. Very little change in the detected audio should be apparent.
Remove the temporary 0.01-µF capacitor from G2 of Q3.

2. Temporarily install a 0.01-µF capacitor to Q2 gate 1 on the foil side of the board, as in step 1. With external controls set in the positions as previously indicated, apply a 1.5 MHz CW signal of 1 millivolt to the 0.01 µF capacitor.

Adjust the mixer bias controls for Q2 and Q3 and the 1.5 MHz interstage transformer in the drain circuit of Q2, with power applied. Monitor the audio output as in step 1. With the signal level indicated, a minimum detected audio output of 6 volts peak-to-peak should be observed. Remove the 0.01-µF capacitor from Q2 gate 2.

3. Temporarily install a 0.01-µF capacitor to the drain terminal of Q1, foil side. With the front panel controls set as previously described, apply +12 V power and approximately +6.5 volts on the VVC Vf voltage point of the HFO module. Apply a 1 millivolt signal of 14.125 MHz to the temporarily installed capacitor and adjust the rf gain and rf tune controls for maximum detected output. Adjust the rf bias pot on G1 of Q1 so that reverse biasing of the tuning diodes is ensured. With a CW signal applied as described, and all bias adjustments optimized, a 4.5-volt minimum peak-to-peak signal should be obtained at the audio monitoring point.

Remove the 0.01-µF capacitor from the Q1 drain.

Note that some minor adjustment of the +6.5-volt Vf voltage will be necessary to obtain conversion of the injected signal but should be somewhat less than 8.0 Vdc if the HFO oscillator slug is properly positioned.

4. Install a 0.01-µF capacitor on the antenna input link of the rf input tuned circuit. Position all controls as previously indicated, apply power and VVC Vf control voltage. Inject a 30-µV signal at 14.125 MHz, unmodulated, to the input capacitor. Adjust the Vf voltage for obvious beat-detected audio output. Peak the rf tuning and bias adjustments along with the first and second i-f transformers. Repeaking of these controls should be done several times to optimize the detected audio signal.

With a 30-µV signal applied as indicated, a clear detected audio output of approximately 7 volts peak-to-peak should be observed. Reduce the input signal to 0.5 µV. A 1.0-p-p signal should be observed at the audio output.

Temporarily ground the input to the receiver and observe the audio output, which should be in the order of 0.25 volt peak-to-peak while varying the Vf voltage from +4 to +12 volts. There should be no observable birdies or spurious audio output spikes over this frequency translation of the HFO. Using these values, the noise figure under test conditions is given by:

\[
\frac{\text{signal} + \text{noise}}{\text{noise}} = 20 \log \frac{V_1}{V_2}
\]

\[
\frac{\text{signal} + \text{noise}}{\text{noise}} = 20 \log \frac{1.0}{0.25} = 12 \text{ dB}
\]

Additional reduction of the input signal should indicate observable detected signals with input levels of 0.1 µV or less.

5. Measure the Vf voltage required by the HFO varactor diode to produce the differential frequency

fig. 16. Power supply PC-board layout.
range desired; i.e., 12.5-12.85 MHz for standard 20-meter-band use. This voltage should be approximately 6-7.5 Vdc.

Apply ac line voltage to the power supply and adjust the trim pots for the V_FV voltage to correspond to the measured values determined above.

6. Mount the power supply and interconnect the wiring. Using an external signal generator, introduce a 10-μV signal of 14.0 MHz and adjust the low end V_FV voltage for detected audio. Do the same at 14.35 MHz, while adjusting the high-end trimpot to correspond to the measured values determined above.

In part two of this article, a simple voltage-divider circuit is discussed, which will allow you to extend the tuning resolution of the HFO. At this point you should be familiar enough with the receiver operation to incorporate any special features desired. In part two, I will present the companion digital display circuit, and offer some useful suggestions.

references

T/T Decoder Board — This board was removed from a language lab remote control system. You draw the schematic (because there wasn't one with the board). $34.95

Line Filters — 20 A or better at 115/230 VAC. Made by Filtron. $8.95

TRANSCIEVER — RF Commum. Inc. Model RF301, 2 to 15 MHz, 1 kHz steps, synthesized. $475.00. Write for complete brochure.

Computer Freakies Take Note! Astrodna Universal Time Code Translator Model 6225 plus Astrodna tape search and control model 6225 and a relay program control Model 6530. All for $225.00

Telonic 2003 Sweep Generator System — plug-ins to cover 0.1 to 300 MHz — Physically excellent — Needs work — with documentation. $175.00. Wanted: Cables, Accessories, Test Set, etc. for RT400/AR655, Radio Ready Set Control, C-451A/ARC-21.

DISC-CAP, 19075 BRAEMORE RD.

NORTHRIDGE, CA. 91326 213-360-3387

Cal. Residents — add State Sales Tax. Unfortunately, Disc-Cap can only service U.S. customers.
The TS-520S combines all of the fine, field-proven characteristics of the original TS-520 together with many of the ideas and suggestions for improvement from amateurs worldwide.

FULL COVERAGE TRANSCEIVER
The TS-520S provides full coverage on all amateur bands from 1.8 to 29.7 MHz. Kenwood gives you 160 meter capability, WWV on 15,000 MHz, and an auxiliary band position for maximum flexibility. And with the addition of the TV-506 transverter, your TS-520S can cover 160 meters to 6 meters on SSB and CW.

DIGITAL DISPLAY DG-5 (option)
The Kenwood DG-5 provides easy, accurate readout of your operating frequency while transmitting and receiving.

OUTSTANDING RECEIVER SENSITIVITY AND MINIMUM CROSS MODULATION
The TS-520S incorporates a 3SK35 dual gate MOSFET for outstanding cross modulation and spurious response characteristics. The 3SK35 has a low noise figure (3.5 dB typ.) and high gain (18 dB typ.) for excellent sensitivity.

NEW IMPROVED SPEECH PROCESSOR
An audio compression amplifier gives you extra punch in the pile ups and when the going gets rough.

VERNIER TUNING FOR FINAL PLATE CONTROL
A vernier tuning mechanism allows easy and accurate adjustment of the plate control during tune-up.

FINAL AMPLIFIER
The TS-520S is completely solid state except for the driver (12B-Y7A) and the final tubes. Rather than substitute TV sweep tubes as final amplifier tubes in a state of the art amateur transceiver.
Kenwood has employed two husky S-2001A (equivalent to 6146B) tubes. These rugged, time-proven tubes are known for their long life and superb linearity.

HIGHLY EFFECTIVE NOISE BLANKER

An effective noise blanking circuit developed by Kenwood that virtually eliminates ignition noise is built into the TS-520S.

RI ATTENUATOR

The TS-520S has a built-in 20 dB attenuator that can be activated by a push button switch conveniently located on the front panel.

PROVISION FOR EXTERNAL RECEIVER

A special jack on the rear panel of the TS-520S provides receiver signals to an external receiver for increased station versatility. A switch on the rear panel determines the signal path...the receiver in the TS-820 or any external receiver.

VFO-520—NEW REMOTE VFO

The VFO-520 remote VFO matches the styling of the TS-520S and provides maximum operating flexibility on the band selected on your TS-520S.

AC POWER SUPPLY

The TS-520S is completely self-contained with a rugged AC power supply built-in. The addition of the DS-1A DC-DC converter (optional) allows for mobile operation of the TS-520S.

EASY PHONE PATCH CONNECTION

The TS-520S has 2 convenient RCA phono jacks on the rear panel for PHONE PATCH IN and PHONE PATCH OUT.

CW-520—CW FILTER (OPTIONAL)

The CW-520-500 Hz filter can be easily installed and will provide improved operation on CW.

AMPLIFIED TYPE AGC CIRCUIT

The AGC circuit has 3 positions (OFF, FAST, SLOW) to enable the TS-520S to be operated in the optimum condition at all times whether operating CW or SSB.

The TS-520S retains all of the features of the original TS-520 that made it tops in its class: RIT control • 8-pole crystal filter • Built-in 25 KHz calibrator • Front panel carrier level control • Semi-break-in CW with sidetone • VOX/PTT/MOX • TUNE position for low power tune up • Built-in speaker • Built-in Cooling Fan • Provisions for 4 fixed frequency channels • Heater switch.

TS-520 SPECIFICATIONS

Amateur Bands: 160-10 meters plus WWV (receive only)

Modes: USB, LSB, CW

Antenna Impedance: 50-75 Ohms

Frequency Stability: Within ±0.1 kHz during one hour after one minute of warm up, and within 0.001 kHz during any 30 minute period thereafter.

Tubes & Semiconductors

- Tubes: 2(2500A x 2, 25V/V7A)
- Transistors: 52
- FETs: 19
- Diodes: 101

Power Requirements

- Transmit: 120/220 V AC, 50/60 Hz, 13.8 V DC (with optional 252A)
- Power Consumption: Transmit: 280 Watts Receive: 26 Watts

Dimensions

- 330 x 153 x 268 mm (13 x 6.1/16 x 10.9/16) (inch)
- **Weight**: 16.0 kg (35.2 lbs)

AF Output Power

- 1.0 Watt (with heater)

AF Output Impedance

- 4 to 16 Ohms

DG-5 SPECIFICATIONS

Measuring Range: 100 Hz to 40 MHz

Input Impedance: 5 k Ohms

Gate Time: 0.1 Sec.

Input Sensitivity: 100 Hz to 40 MHz...200 mV rms or over, 10 kHz to 10 MHz...50 mV or over

Measuring Accuracy: Internal time base accuracy ±0.1 count

Time Base: 10 MHz

Operating Temperature: -10° C/14° F

Power Requirement: Supplied from TS-520 or 12 to 16 VDC (nominal 13.8 VDC)

Dimensions: 167 x 50 x 167 x 268 (6.5/16 x 2.0 x 6.5/16) mm (inch)

Weight: 1.3 kg (2.9 lbs)

DG-5

The history of digital reading is available on the TS-520. By connecting the DG-5 readout (optional), more than just the frequency number shown, this counter mires the entire VFO and heterodyne frequency memory into your head. CAUTION: Always use this feature with the tone which is said on the display during mobile use for safety and convenience. The hold button allows you to store the frequency number through the use of a timer. (Input cable provided.)
Following are a few of the TS-820S’ many exciting features.

PLL - The TS-820S employs the latest phase lock loop circuitry. The single conversion receiver section performance offers superb protection against unwanted cross-modulation. And now PLL allows the frequency to remain the same when switching sidebands (USB, LSB, CW) and eliminates having to recalibrate each time.

DIGITAL READOUT - The digital counter display is employed as an integral part of the VFO readout system. Counter mixes the carrier VFO, and first heterodyne frequencies to give exact frequency. Figures the frequency down to 10 Hz and digital display reads out to 100 Hz. Both receive and transmit frequencies are displayed in easy to read, Kenwood Blue digits.

SPEECH PROCESSOR - An RF circuit provides quick time constant compression using a true RF compressor as opposed to an AF clipper. Amount of compression is adjustable to the desired level by a convenient front panel control.

IF SHIFT - The IF SHIFT control varies the IF passband without changing the receive frequency. Enables the operator to eliminate unwanted signals by moving them out of the passband of the receiver. This feature alone makes the TS-820S a pacesetter.

The TS-820 and DG-1 are still available separately.
TS-600

Experience the excitement of 6 meters. The TS-600 all mode transceiver lets you experience the fun of 6 meter band openings. This 10 watt, solid state rig covers 50.0-54.0 MHz. The VFO tunes the band in 1 MHz segments. It also has provisions for fixed frequency operation on NETS or to listen for beacons. State of the art features such as an effective noise blanker and the RIT (Receiver Incremental Tuning) circuit make the TS-600 another Kenwood “Pacesetter”.

TR-8300

Experience the luxury of 450 MHz at an economical price. The TR-8300 offers high quality and superb performance as a result of many years of improving VHF/UHF design techniques. The transmitter is capable of F3 emission on 23 crystal-controlled channels (3 supplied). The transmitter output is 10 watts. The TR-8300 incorporates a 5 section helical resonator and a two-pole crystal filter in the IF section of the receiver for improved intermodulation characteristics. Receiver sensitivity, spurious response, and temperature characteristics are excellent.
Check out the new "built-ins": digital readout, receiver pre-amp, VOX, semi-break in, and CW sidetone! Of course, it's still all mode, 144-148 MHz and VFO controlled.

Features: Digital readout with "Kenwood Blue" digits • High gain receiver pre-amp • 1 watt lower power switch • Built in VOX • Semi-break in on CW • CW sidetone • Operates all modes: SSB (upper & lower), FM, AM and CW • Completely solid state circuitry provides stable, long lasting, trouble-free operation • AC and DC capability (operate from your car, boat, or as a base station through its built-in power supply) • 4 MHz band coverage (144 to 148 MHz) • Automatically switches transmit frequency 600 KHz for repeater operation. Simply dial in your receive frequency and the radio does the rest… simplex, repeater, reverse • Or accomplish the same by plugging a single crystal into one of the 11 crystal positions for your favorite channel • Transmit/Receive capability on 44 channels with 11 crystals.

VFO-700S

Handsomely styled and a perfect companion to the TS-700S. This unit provides you with the extra versatility and the luxury of having a second VFO in your shack. Great for split frequency operation and for tuning off frequency to check the band. The function switch on the VFO-700S selects the VFO in use and the appropriate frequency is displayed on the digital readout in the TS-700S. In addition a momentary contact "frequency check" switch allows you to spot check the frequency of the VFO not in use.
Features Kenwood's unique Continuous Tone Coded Squelch system, 4 MHz band coverage, 25 watt output and fully synthesized 800 channel operation. This compact package gives you the kind of performance specifications you've always wanted in a 2-meter amateur rig. Outstanding sensitivity, large-sized helical resonators with High Q to minimize undesirable out-of-band interference, and give a 2-pole 10.7 MHz monolithic crystal filter combine to give your TR-7400A outstanding receiver performance. Intermodulation characteristics (Better than 66dB), spurious (Better than -60dB), image rejection (Better than -70dB), and a versatile squelch system make the TR-7400A tops in its class.

Shown with the PS-8 power supply
(Active filters and Tone Burst Modules optional)

TR-7500

This 100 channel PLL synthesized 146-148 MHz transceiver comes with 88 pre-programmed channels for use on all standard repeater frequencies (as per ARRL Band Plan) and most simplex channels. For added flexibility, there are 6 diode-programmable switch positions. The 15 KHz shift function makes these 6 positions into 12 channels. 10 watt output, ±600 KHz offset and LED digital frequency display are just a few of the many fine features of the TR-7500. The PS-6 is the handsomely styled, matching power supply for the TR-7500. Its 3.5 amp current capacity and built-in speaker make it the perfect companion for home use of the TR-7500.

TR-2200A

The high performance portable 2-meter FM transceiver. 146-148 MHz, 12 channels (6 supplied), 2 watts or 400 mW RF output. Everything you need is included: Ni-Cad battery pack, charger, carrying case and microphone.
Kenwood developed the T-599D transmitter and R-599D receiver for the most discriminating amateur.

The R-599D is the most complete receiver ever offered. It is entirely solid-state, superbly reliable and compact. It covers the full amateur band, 10 through 160 meters, CW, LSB, USB, AM and FM.

The T-599D is solid-state with the exception of only three tubes, has built-in power supply and full metering. It operates CW, LSB, USB and AM and, of course, is a perfect match to the R-599D receiver.

If you have never considered the advantages of operating a receiver/transmitter combination...maybe you should. Because of the larger number of controls and dual VFOs the combination offers flexibility impossible to duplicate with a transceiver.

Compare the specs of the R-599D and the T-599D with any other brand. Remember, the R-599D is all solid state (and includes four filters). Your choice will obviously be the Kenwood.

R-599D

Dependable operation, superior specifications and excellent features make the R-300 an unexcelled value for the shortwave listener. It offers full band coverage with a frequency range of 170 KHz to 30.0 MHz. Receives AM, SSB and CW. Features large, easy to read drum dials with fast smooth dial action. Band spread is calibrated for the 10 foreign broadcast bands, easily tuned with the use of a built-in 500 KHz calibrator. Automatic noise limiter. 3-way power supply system (AC/Batteries/External DC) ... take it anywhere. Automatically switches to battery power in the event of AC power failure.
Fine equipment that belongs in every well equipped station

HF LINES
820 Series
TS-820S...TS-820 with Digital Installed
TS-820...10-160 M Deluxe Transceiver
DG-1...Digital Frequency Display for TS-820
VFO-820...Deluxe Remote VFO for for TS-820/820S
CW-820...500 Hz CW Filter for TS-820/820S
DS-1A...DC-DC Converter for 520/820 Series
520 Series
TS-520S...160-10 M Transceiver
DG-5...Digital Frequency Display for TS-520 Series
VFO-520...Remote VFO for TS-520 and TS-520S
SP-520...External Speaker for 520/820 Series
CW-520...500 Hz CW Filter for TS-520/520S
DK-520...Digital Adaptor Kit for TS-520
599D Series
R-599D...160-10 M Solid State Receiver
T-599D...80-10 M Matching Transmitter
S-599...External Speaker for 599D Series

VHF LINES
TS-600...6 M All Mode Transceiver
TS-700S...2 M All Mode Digital Transceiver
VFO-700S...Remote VFO for TS-700S
SP-70...Matching Speaker for TS-600/700 Series
TR-2200A...2 M Portable FM Transceiver
TR-7400A...2 M Synthesized Deluxe FM Transceiver
TR-7500...100 Channel Synthesized
TR-8300...100 CM FM Transceiver
TV-506...6 M Transverter for 520/820/599 Series

SHORT WAVE LISTENING
R-300 General Coverage SW Receiver

MORE ACCESSORIES:

Description
Rubber Helical Antenna
Telescoping Whip Antenna
Ni-Cad Battery Pack (set)
4 Pin Mic Connector
Active Filter Elements
Tone Burst Modules
AC Cables
DC Cables

Model #
RA-1
T90-0082-05
PB-15
E07-0404-05
See Service Manual
See Service Manual
Specify Model
Specify Model

For use with
TR-2200A
TR-2200A
All Models
TR-2200A
All Models
TR-7400A
TR-7400A

The Kenwood HS-4 headphone set adds versatility to any Kenwood station. For extended periods of wear, the HS-4 is comfortably padded and is completely adjustable. The frequency response of the HS-4 is tailored specifically for amateur communication use (100 to 3000 Hz, 8 ohms).

The MC-50 dynamic microphone has been designed expressly for amateur radio operation as a splendid addition to any Kenwood shack. Complete with PTT and LOCK switches, and a microphone plug for instant hook-up to any Kenwood rig. Easily converted to high or low impedance (600 or 50k ohms).

TRIO-KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT/COMPTON, CA 90220

KENWOOD
The ubiquitous 555 timer IC surfaces again — this time in a circuit that eliminates repeater noise in your receiver.

Many repeaters, especially those on common channels, appear to be susceptible to endless testing and kerchunking by some mobile operators, usually to see if they are either getting into the machine, or if there is a repeater on a particular channel. Most of the time this is harmless, but quite often I've become irritated by so much noise and shut off the rig, thus missing an important call later.

The circuit shown here will eliminate most of these repeater squelch tails from just about any receiver employing its own squelch, but will allow normal communications to pass through. This is accomplished by placing the circuit between the receiver squelch gate and the point where the squelch acts on the audio amplifier. When a signal is received, and the receiver squelch gate is tripped, the kerchunk eliminator counts approximately 3 seconds before turning on the audio amplifier. If the received signal is gone before the 3 seconds is up, the radio remains silent, and the circuit resets itself. In this manner, the typical kerchunk will not be heard.

On the other hand, if the received signal lasts for longer than 3 seconds, which usually occurs if the repeater is interrogated, the receiver begins operating normally, squelch and all. Normal operation continues until the rig is turned off, then on again, which resets the kerchunk eliminator to give another 3-second squelch delay in the manner described.

The receiver also begins operating normally, without the 3-second squelch delay, if the operator uses the transmitter in the rig. In this way, a call may be made, and a reply received, without losing part of the message.

Circuit description

This circuit (fig. 1) is designed to work with receivers using a low voltage level to squelch the audio amplifier. If the input and output are inverted using switching stages similar to Q1, the circuit will then work with receivers using a high voltage level to squelch.

The NE-555 timer is wired for use as a monostable multivibrator (one-shot), and is triggered through inverting transistor Q1 and capacitor C1 each time the receiver squelch is tripped, provided that the scr is in the off mode. The output of the NE-555 goes

By Robert K. Morrow, Jr., WB6GTM, 9792 Oma Place, Garden Grove, California 92641
high for about 3 seconds, which is determined by the R1, C2 time constant, and is applied to Q2 base. Transistor Q2, which now acts as the squelch gate, also receives the output of inverting transistor Q1, and remains saturated as long as Q1 is cut off (no incoming received signal) and/or the output of the NE-555 is high (3-second timer delay is activated). When Q2 is in the cutoff state, the receiver audio amplifier is turned on, and incoming signals are heard. In addition, the scr is triggered, which eliminates the NE-555 from the circuit, so the squelch may now operate normally through Q1 and Q2. This same result is also accomplished whenever the transmit power bus is activated for any length of time. The entire system is reset when power is temporarily removed from the rig.

You may have noticed by now that the NE-555 is grounded through a diode. This is required because the forward voltage drop of the triggered scr is too high (about 0.7 volt) to reset the NE-555. By floating the ground of the NE-555 slightly above that of the scr cathode, this problem is eliminated.

construction and installation

The printed circuit board diagram and parts placement are shown in fig. 2. Before beginning construction, make sure that your rig has a place to mount a circuit board of this size and shape. Parts placement is not critical, of course. Mount the PC board some-

![fig. 1. Schematic of the repeater kerchunk eliminator. If the printed circuit shown in fig. 2 is used, resistors should be 1/4 watt, and the 15 µF capacitors either tantalums or vertical-mount electrolytics. Although a Radio Shack part number is given for the SCR, just about any type that will fit on the PC board will work. Likewise, any npn silicon switching transistor will work for Q1 and Q2. The input is routed from the squelch gate in the receiver, and the output connects to the squelch control point on the receiver audio amplifier.](image)

where in the rig, and connect wires from Vcc, ground, and the transmit power bus from the TR switch to their appropriate places on the circuit board.

Now find the place where the squelch gate controls the audio amplifier in the rig, break the connection here, and run wires from these two points to the circuit board.

testing

The system may be tested without an incoming signal by turning the squelch control fully counterclockwise. The characteristic background noise should become audible after about 3 seconds have elapsed. Turn the rig off, then on again, to reset the system with the squelch control set to eliminate background noise. Transmit briefly, and turn off the squelch again. Background noise should be audible with no delay encountered.

results

After installing this kerchunk eliminator, I find that my rig is used much more often than before. An added advantage was discovered the next time I took a long trip: Distant repeaters that drifted noisily in and out of squelch did not activate the kerchunk eliminator until I was close enough to get a reasonably good signal. The kerchunk eliminator should prove to be a valuable addition to any mobile rig.
SIGMA FM 2000 SWR & POWER METER

Introductory Price $29

Calibrated Watt Meter 200W Sub Input
Freq Range 3.5 - 150 MHz
AM: 0/100% Size: 5.5 (w) x 10.0 (h) x 2.0 (d)
Weight 7 lbs. Frequency 1.8Mhz-250Mhz

-- Model AF 251 LW
-- Model AF 251 LW

--- Model AF 251 LW
--- Model AF 251 LW

NEW AM/FM ANALYZER

SIGMA AF-250L

Introductory Price $199

Deviation/Modulation
FM: 0-20 KHz
AM: 0-100% Size: 5.5 (w) x 10.0 (h) x 2.0 (d)
Weight 7 lbs. Frequency 1.8Mhz-250Mhz

--- Model AF 251 LW
--- Model AF 251 LW

NEW! FMSC-2 Scanner

For KDK FM-144

Introductory Price $109

--- Model AF 251 LW
--- Model AF 251 LW

NEW! FMSC-1 Scanner

For Kenwood TR-7400A

Introductory Price $109

--- Model AF 251 LW
--- Model AF 251 LW

NEW! NYE VIKING MODEL MB-II

3000 WATTS

Price $285

--- Model AF 251 LW
--- Model AF 251 LW

AMATEUR-WHOLESALE ELECTRONICS

8817 S.W. 129th Terrace, Miami, Florida 33176

COURTEOUS PERSONAL SERVICE - SAME DAY SHIPMENT

TELEPHONE: (305) 233-3631 • TELEX 51-5628 • STORE HOURS: 10:00 AM - 5:00 PM

OUR CREW: S.I. GREGORY, W4KGU, J.R. MAGGIO, W8CXL, S.E. GLICKMAN, WB4HFJ

--- Model AF 251 LW
--- Model AF 251 LW
NEW!
FM144-10SXRII

All Solid State-PLL digital synthesized — No Crystals to buy! 5KHz steps — 144-149 MHz-LED digital readout PLUS MARS-CAP.*

- 5MHz Band Coverage — 1000 Channels (instead of the usual 2MHz to 4MHz — 400 to 800 Channels) • Priority Channel • Audio Output 4 Watts • 15 Watts Output
- Unequaled Receiver Sensitivity and Selectivity — 15 POLE FILTER, MARS-CAP *FILTER AND AUTOMATIC TUNED RECEIVER FRONT END — COMPARE!!
- Superb Engineering and Superior Commercial Avionics Grade Quality and Construction Second to None at ANY PRICE.

- FREQUENCY RANGE: Receive: 144.00 to 148.995 MHz, 5 KHz steps (1000 channels). Transmit 144.00 to 148.995 MHz, 5 KHz steps (1000 channels) + MARS-CAP*
- FULL DIGITAL READOUT: Six easy to read LED digits provide direct frequency readout assuring accurate and simple selection of operating frequency.
- AIRCRAFT TYPE FREQUENCY SELECTOR: Large and small coaxially mounted knobs select 100KHz and 10KHz steps respectively. Switches click-stopped with a home position facilitate frequency changing without need to view LED’S while driving and provides the sightless amateur with full Braille dial as standard equipment.
- FULL AUTOMATIC TUNING OF RECEIVER FRONT END: DC output of PLL fed to varactor diodes in all front end RF tuned circuits provides full sensitivity and optimum intermodulation rejection over the entire band. No other amateur unit at any price has this feature which is found in only the most sophisticated and expensive aircraft and commercial transceivers.
- TRUE FM: Not phase modulation — for superb emphasized hi-fi audio quality second to none.
- FULLY REGULATED INTEGRAL POWER SUPPLIES: Operating voltages for all circuits, i.e., 12v, 9v and 5v have independently regulated supplies. 12v regulator effective in keeping engine alternator noises out and protects final transistor from overload.
- MONITOR LAMPS: 2 LED’S on front panel indicate (1) incoming signal-channel busy, and (2) un-lock condition of phase locked loop.
- DUPLEX FREQUENCY OFFSET: 600KHz plus or minus, 5KHz steps. Plus simplex, any frequency.
- MODULAR COMMERCIAL GRADE CONSTRUCTION: 6 unitized modules eliminate stray coupling and facilitate ease of maintenance.
- ACCESSORY SOCKET: Fully wired for touch tone, phone patch, and other accessories.
- RECEIVE: .25 uv sensitivity. 15 pole filter as well as monolithic crystal filter and automatic tuned LC circuits provide superior skirt selectivity.
- AUDIO OUTPUT: 4 WATTS. Built-in speaker.
- HIGH/LOW POWER OUTPUT: 15 watts and 1 watt, switch selected. Low power may be adjusted anywhere between 1 watt and 15 watts, fully protected — short or open SWR.
-_PRIORITY CHANNEL: Instant selection by front panel switch. Diode matrix may be owner programmed to any frequency (146.52 provided).
- DUAL METER: Provides “S” reading on receive and power out on transmit.
- OTHER FEATURES:
 - Dynamic microphone, mobile mount, external speaker jack, and much, much more. Size: 2¼ x 6½ x 7½. All cords, plugs, fuses, mobile mount, microphone hanger, etc., included. Weight 5 lbs.

NEW! 6 METER FM50-10SXRII

Same specifications as above except transmit/receive: 51.00 to 53.995 MHz, 600 channels
Introductory Price $389.00

SUMMER SPECIAL
FM144-10SXRII
$389.00
VALUE $599.00
Regulated AC/PS
Model FMPS-4R...$49.00

Manufactured by one of the world’s most distinguished Avionics manufacturers, Kyokuto Denshi Kaisha, Ltd.
First in the world with an all solid state 2 meter FM transceiver.

AMATEUR-WHOLESALE ELECTRONICS
8817 S.W. 129th Terrace, Miami, Florida 33176
Telephone (305) 233-3631 • Telex: 51-5628
U.S. DISTRIBUTOR

PLEASE ORDER FROM YOUR LOCAL DEALER OR DIRECT IF UNAVAILABLE.
DEALER INQUIRIES INVITED.

More Details? CHECK — OFF Page 126

KDK

Regional Sales & Service Centers:
Northeast: Buzzards Bay Electronics Buzzards Bay, Mass.
East: Sanford Communications, Inc.
Canada, N.J.
West: Consumer Communications, Inc.
Seattle, Wash.

october 1977
low-cost
all-mode-protected
power supply

Here’s a power supply
that is ideal
for vhf transceivers
and other equipment
using solid-state devices

It seems that vhf repeater activity is the only game in town nowadays. However, with the many transceivers in use, many of which were probably purchased for mobile work, many amateurs have opted to use the rig in the house powered by ac line voltage. Now comes the hitch: a good power supply at reasonable cost.

The power supply described here, which I call the "gutless wonder," surely answers this need. Take a look at the schematic and you’ll understand why I call it the gutless wonder: parts count is very low, but specifications are very high. Output is rock steady at 13.7 ± 0.7 volts dc using line voltage between 98 and 128 Vac. Regulation is within tenths of a volt, from zero to 5 amperes. The design includes short-circuit, overcurrent, and overvoltage protection. Because of the small parts count, a PC board isn’t needed. A couple of small 6-lug terminal strips do the job for mounting most components, and a 4-lug strip is used for ac-line wiring. Simple, but effective!

regulator

The heart of the supply is one of the 3-terminal regulator ICs currently available. Not long ago, I spent many hours working out empirical formulas to determine a circuit that would most efficiently provide proper output voltage with protective circuitry. Invariably problems occurred with tolerances and temperatures, which made trimming controls mandatory. Today, all you have to do is choose a voltage and current and, lo and behold! You can buy a small piece of plastic containing three leads that will do the job — the overall size is about 1 inch by 0.4 inch (25 by 10mm) including leads.

Included in this little device are overcurrent and thermal-protection circuits as well as tight regulation characteristics. The family is known as the 7800 series IC, made by Motorola, Fairchild, Signetics, and others. Many variations are available based on fixed output voltage, maximum allowable current, and packaging. Table 1 shows some of the devices

By Budd Meyer, K2PMA, 6505 Yellowstone Boulevard, Forest Hills, New York 11375
presently available. In most cases, the chip must be mounted on a heat sink. The basic circuit using such a chip is shown in fig. 1. What could be simpler?

the power supply

I wanted a minimum of 5 amperes at 13.6 volts for my power supply. No regulator chip is available that will handle this requirement, therefore it was necessary to add an external pass transistor to handle the required current. Also, no chips were available that provide exactly 13.6 volts (the resolution of this problem is discussed later).

The type 109-series regulators, familiar to most amateurs, uses a series-pass npn transistor to increase current-carrying capability. The circuit described here uses a pnp type MJ2955, which is the complement of the ubiquitous 2N3055. Any npn transistor with a minimum h_{fe} of 20 or more at 4 or 5 amperes, and a rated dissipation of more than 150 watts, will be adequate for Q2. The limiting factor will be temperature rise of the transistor when mounted in your heat sink.

The gutless wonder schematic is shown in fig. 2. No chips were available for the required voltage, so the regulator IC was put on a voltage pedestal, which is the secret of success in this supply. I used an 8-volt regulator chip arbitrarily; alternative values of resistance for R3, R4 are given should you wish to use a 12-volt regulator chip. Including all tolerances, the resulting output voltage was exactly as required.

The regulator chip specifications include a 5% tolerance. My output measured 7.8 volts, which is the average from the meter readings I used. If your supply output is off a couple millivolts, so be it.

pedestal voltage

The pedestal voltage, E_p, is the voltage added to the rated chip voltage. It is approximately

$$E_p \approx I_p R4 + I_q R4$$

where

$$I_p \approx \left[\frac{E_o}{R3 + R4} \right]$$

$$E_o \approx E_{chip} + E_p$$

$$I_q = \text{typical chip quiescent current (4.3 mA)}.$$

Considering the interdependent parameters involved, it’s best to use 40 mA for I_p. Operating the pedestal current at this value eliminated temperature and I_q variations prevalent among the various regulator chips.

circuit protection

As mentioned above, the 7800-series regulators are overcurrent protected, but the external pass transistor is not, hence the reason for adding one more pnp transistor, Q1, a 2N6049. This transistor should have a current rating of 2 amperes because, when turned on, it must carry the “short-circuit” current of the regulator chip, which is about 250 mA. R2 turns on Q1 at a specified current. R2 consists of ten 1.2-ohm 1/2-watt resistors in parallel to provide 0.12 ohm. When the load current reaches 5.4 amperes, Q1 turns on and its collector removes drive to Q2, causing the output voltage to decrease to zero.
Another feature of building the supply overcurrent protection in this manner is that, by adding another 1-ohm resistor in parallel with R2, the current limit can be increased to 6 amperes. Adding two 1.5-ohm resistors instead will increase the limit to 6.25 amperes; adding two 1-ohm resistors to R2 increases the current limit to 6.7 amperes. If you must go above 8 amperes, however, change the regulator chip to a 7808.

heat sink

Transistor Q1 is a 40-watt device in a TO66 case, with an hfe of 20 at 1.5 ampere. Transistors Q1 and Q2 are mounted on a heat sink. The heat sink specified is ideal for this application, because the mounting holes are predrilled for both transistors. The bad news is that the heat sink isn’t anodized; therefore both devices must be insulated from the heat sink. Be sure to use oxide-filled silicone grease (type DC 340) on both sides of the mica insulator. Use shoulder washers to insulate the transistor-mounting screws. Remember that the transistor cases are above ground, so avoid contact with external objects that may cause them to short circuit to ground.

operating mode

This power supply operates in the so-called constant-voltage, current-limited mode. Let’s be sure we understand what these fancy words mean.

The current through the pass transistor is limited by the value of R2; however, when the load is a low value of resistance or dead short circuit, a path to ground through the transistor causes the current to continue to flow, although it is limited. A voltage across Q2 exists, depending on the transformer secondary voltage, the electrolytic capacitor value, the transformer secondary resistance, and the impedance of the diodes in the bridge. In my supply this voltage turned out to be 16 volts. Multiply this voltage by the current, which is 5.4 amperes, and you’ll find that the transistor is dissipating close to 90 watts.

C1 10k µF, 35V electrolytic
C2 1 µF, 35V tantalum
C3 0.1 µF discap
C4 0.01 µF discap
C5 0.001 µF, 2kV discap
CR1 bridge rectifier, 10A at 50 PIV
CR2 16V, 5% Zener
CR3, CR4 10A, 100 PIV
R1 3 ohms, 1 watt
R2 0.12 ohm, 5 watt (ten 1.2-ohm 1/2 watt resistors in parallel)
R3 220 ohms, 1 watt (alternative for 12V chip, 300 ohms)
R4 150 ohms, 1/2 watt (alternative for 12V chip, 39 ohms)
R5 1k, 1/2 watt
R6 680 ohms, 1/2 watt
R7 1k, 1/2 watt
T1 multitap transformer. (For 6 amperes, Allied 6K66 or Stancor RT206; for 4 amperes, Allied 6K65 or Stancor RT204)
U1 MC78M08CP (8V); 78M12 (12V)

Notes:
1. Q1, Q2 are mounted on Radio Shack part no. 276-1361 heat sink. Mounting hardware: Radio Shack 276-1370, 276-1371.
2. U1, Q3 must be insulated from chassis.
3. Open jumper across R7 for checking crowbar circuit (see text).
4. LED short-circuit indicator must be a gallium-arsenide phosphide (GaAsP) device; Vf approximately 1.8 volts.
5. T1 can be 18 Vac at 4 amperes for full-wave bridge rectifier. For a full-wave center-tapped circuit use Stancor P8673 or equivalent (see alternative circuit).

fig. 2. Power-supply schematic. The voltage-pedestal method is used to obtain desired output voltage.

76 october 1977
watts! You'd better believe that the transistor gets damn hot, so the addition of the LED overcurrent indicator (described below) becomes more meaningful. If you need a higher capacity, at the very least mount the power devices on a larger heat sink!

transient response

C2, C3 improve chip transient response. I've also found that C2 is a must to prevent oscillation under certain conditions. C2 can be anything from 0.33 µF and higher. Tantalum capacitors are recommended for their high-frequency bypass characteristics. If you can't find a tantalum capacitor, use a minimum of a 10-µF electrolytic with a 0.01-µF discap in parallel.

overvoltage protection

A means of cutting off the power supply if an overvoltage condition occurs is the most important protective device I could add. Some transceivers have this protection built in — others don't. The thought of zapping a string of hard-to-find transistors in the transceiver for lack of a simple protective circuit is scary. The overvoltage-protection circuit shown is simple but effective — I know, because I tried it under dynamic operating conditions, and both primary and secondary fuses blew when 18 volts was applied to the meter end of zener CR2. The scr, Q3, is an 8-ampere rms device and I saw it do a job on the fuses! The scr turn-on time is 1 microsecond.

Capacitor C1 should be 10k µF at 35 volts. It can be made up of several caps in parallel if necessary. I've used capacitance as low as 3k µF, but the ripple voltage increased to a value higher than I cared to under high-current load conditions.

Transformer T1 was obtained from Allied Radio. A transformer with a secondary voltage of about 18 V at rated current is ideal but hard to come by. We must pay dearly for the multiple taps on the transformer, but I have the utmost confidence in the scavenging abilities of my fellow hams. Because of the intermittent nature of transmitter operation, a 3- or 4-ampere current rating should suffice for T1.

construction

Photographs show the method of construction. Most of the wiring is no. 18 (1mm) wire to eliminate voltage drops. A separate terminal strip is used to mount the ten 1/2-watt resistors. As mentioned earlier, only two 6-lug terminal strips are required for mounting all the other components. A separate 4-lug strip is used for the 117-V wiring.

Both the regulator chip and the crowbar circuit scr are mounted on the bottom of the cabinet. Both must be insulated from the chassis using the mica washer supplied with the device. Use silicone grease here also. The regulator chip will handle up to 500 mA; however, above 200 mA the MJ2955 handles the output current. The MJ2955 and 2N6049 are both mounted on, but isolated from the heat sink with the wiring between the two made at the heat sink. Only four wires are needed from the terminal strip on the back cover through a hole in the cover to the power transistors. If you'd like to add a luxurious touch to your supply, install a 25 Vdc volt-meter and a 5-10 amp ammeter.

checkout

Testing is done before connecting the supply to your rig. Turn on the supply and check the output voltage. If it doesn't come out right, note the voltages indicated in fig. 2. With so few parts involved, problems are usually caused by defective transistors. If you have power resistors, hook them up and check regulation. The output voltage shouldn't drop until you draw somewhat higher than 5 amperes, depending on the value of R1.

If you wish to check out the crowbar-circuit operation for the exact trip point, set up an external supply as shown in fig. 3. Disconnect CR2 from the output bus and remove the jumper from across R7. Connect a voltmeter between the scr anode and cathode. Turn on the supplies and rotate the arm of the pot toward the high-voltage end of the pot. Watch the voltage across the scr. When the test voltage fires the scr, the voltage across the scr will drop to about 1 volt. Measure the voltage between the pot arm and ground (E1); this is the trip voltage. Remember to reconnect the zener and reinstall the jumper across R7.

The LED overcurrent indicator is turned on by the voltage across R1. It serves as a warning that something is wrong. If it lights up, turn off the supply and check the equipment connected as a load. Be sure you are using a GaAsP LED — not a GaP; the voltage drops across the two are different. Fairchild, 'Monsanto, Litronix, and Hewlett-Packard devices are GaAsP; Opcoa LEDs are GaP.

So now you have it. An excellent piece of equipment that will perform flawlessly under all conditions without jeopardizing your expensive transceiver.

ham radio
The DRAKE TR-33C

Amateur VHF FM Transceiver

$229.95

- Hand Held Convenience, 12 Channel Capability
- SCPC (Single Crystal Per Channel) Frequency Control
- Lower Receiver Battery Drain
- Expanded Portable Antenna Choice

DRAKE TR-33C SPECIFICATIONS

GENERAL: * Frequency Coverage: 146-148 MHz, 12 channels (2 supplied: 146.52 and 146.94). Crystal determines receive frequency. * Transmit frequency offset for repeater operation determined by 5-position switch: simplex, +600 kHz, and -600 kHz supplied; any two additional offsets available with accessory crystals. * Power requirements: 13.0 volts DC ±15% external supply OR internal battery supply. * Current Drain (Batteries): Squelched receive: 30 mA, Transmit: 400 mA. External supply: above plus 45 mA for channel switch indicator lamp. * Antenna: 50 ohm external antenna through SO-239 connector OR screw-on telescoping whip antenna supplied, may be replaced with rubber helix antenna. * Dimensions: 5.5" x 2.8" x 8.5" (13.8 x 5.8 x 21.6 cm). * Weight: 4.4 lbs (2 kg).

RECEIVER: * Sensitivity: less than 5 µV for 20 dB noise quieting. * Selectivity: ±30 kHz adjacent channel rejection greater than 75 dB. * Modulation acceptance: at least ±7 kHz. * Intermodulation Rejection: 70 dB referenced to sensitivity level. * First IF: 10.7 MHz with monolithic crystal filter. * Second IF: 455 kHz with ceramic filter. * Audio Output: nominal 1 watt at less than 10% distortion into 8 ohm built-in speaker or external speaker.

TRANSMITTER: * RI Output Power: 1.5 watts minimum with 13.0 volts DC supply. * Frequency Deviation: Direct frequency modulation adjustable to at least ±7 kHz deviation, factory set at ±5 kHz. * Separate microphone gain and deviation adjustments. * Drake 1525EM Push Button Encoding Mike can be used direct with no modification.

DRAKE TR-33C ACCESSORIES

Drake AA-10 Power Amplifier
10 DB power increase greatly adds to the transmitting distance covered by any 2-meter FM transceiver running up to 1.8 watts output. Small size: 2"H x 2.1"W x 5.5"D (51 x 52 x 140 mm)

Drake AC-10 Power Supply

- Model AA-10 Power Amplifier $49.95 ea.
- Model AC-10 Power Supply 49.95 ea.
- Accessory Crystals 6.30 ea.
- Model MMK-33 Mobile Mount 12.95 ea.
- Model 7079 Vinyl Carrying Case 9.95 ea.

To receive a FREE Drake Full Line Catalog, please send name and date of this publication to:

R. L. DRAKE COMPANY

540 Richard St., Miami, Ohio 45342
Phone: 513 866-2421 Telex: 288-017

Western Sales and Service Center, 2020 Western Street, Las Vegas, Nevada 89102 702/382-9470

More Details? CHECK – OFF Page 126

78 October 1977
data converters: the microprocessor and the amateur

In the future, the microprocessor will be faced with many new and unique amateur radio applications. Unfortunately, though, a large problem exists when trying to interface the digital world of the microprocessor to the analog world of amateur radio. Of the numerous articles written on the microprocessor, many assume interfacing a foregone conclusion, being contained within the microprocessor. Nothing could be further from the truth! This article will provide the necessary guidance to fill this void by demonstrating how data converters perform this valuable interface.

Two types of data converters will be discussed; one changes voltage to a digital code and the other performs the opposite function, transforming a digital code to an analog voltage or current. The former is an analog-to-digital converter (ADC), while the latter is a digital-to-analog (DAC). The digital code is in the format necessary for processing by the microprocessor. In effect, the two devices provide a means by which the microprocessor can acquire analog information, massage it, and deliver an output, in analog form, to an external source or terminal capable of controlling or displaying a function of the original analog input.

It may appear that a number of circuits or black boxes other than a microprocessor can do this. Certainly, but remember, this type of circuit is a fixed design, its cost is high, and extremely costly if hardware changes are required to change functions. The microprocessor/data converter combination is superior due to its low initial cost (by comparison) and the flexibility of being able to handle a multitude of assignments with no change in hardware. The microprocessor/data converter system is used in industry to control such variables as temperature, flow, pH, viscosity, and weight of a liquified processed chemical. Furthermore, if the process formula is ever changed the hardware is left intact while the program is altered. It is this feature that makes the microprocessor/data converter system attractive.

Choosing the correct ADC or DAC is based to a great extent on the type of analog input and output to be associated with the respective data converters.

There are many types of data converters that provide an assortment of functions, but those most applicable to amateur radio are the integrating and successive approximation ADC, and the voltage/current and multiplying DAC. A description of the functional peculiarities of each type is necessary to fully understand their application.

digital-to-analog converter

Fig. 1 illustrates a simple n-bit binary DAC. The digital input is applied to the terminals labeled LSB to MSB. Each digital input drives an fet switch that connects the binary weighted summing resistors to the reference or to ground depending on the individual state of each of the digital inputs. Note that by virtue of the R-2R resistor configuration, binary weighting is achieved as the current flowing through each resistor is divided by a factor of two at each junction. With this scheme, the impedance as seen by the op
amp is constant and only two resistor values are required.

The output voltage \(E_o \) is directly related to the number of switches which are connected to the reference by the 1 applied to the digital input. On the other hand, a zero applied to the digital input grounds the R-2R resistors, resulting in zero voltage at the output of the DAC. Thus, all 1s would give a maximum voltage at the \(E_o \) and all 0s, of course, is a binary code which produces an output voltage directly proportional to the digital code. This type of DAC delivers output voltage by virtue of the op amp inserted at the summing point and will, in most cases, fill the need of most amateurs. A current DAC does not contain an output op amp and delivers a current to its load.

The current DAC, due to its fast settling time and small glitches, is ideal when the interface is with a CRT display. They are particularly large at the major transitions, i.e., going from all 1s to all 0s and vice versa. One method of reducing the spikes is to insert a lowpass filter before the display; another is to use a de-glitcher after a current DAC. This is essentially a sample-and-hold type circuit, usually built from discrete components.

There may be times when it's necessary to multiply a digital word by a range of analog voltages to produce an output voltage or current representing their product. This is accomplished through the use of a multiplying DAC (MDAC) in which the internal reference is supplemented by an analog input. Of course, it's possible to use the MDAC as a conventional voltage or current DAC by applying an external reference voltage to the analog input terminals. This becomes particularly advantageous when more than one DAC is used in a system. A number of MDACs can share the same reference source, thus saving money on the cost of a conventional DAC and at the same time making the stability characteristic of each MDAC identical to one another by virtue of the common reference voltage.

analog-to-digital converter

The successive approximation ADC is shown in fig. 2 and functions as follows. First, the most significant bit (MSB) of the DAC is turned on by the control logic, and the output is compared to the analog input voltage. If the comparator determines that the input is less than the DAC output, the bit (MSB) is turned off. If it is greater than the DAC output, it is left on. The next MSB is then turned on and the same sequence of events repeated adding to the previous bits whether left on or turned off. This process is continued until a digital code (binary, 2's complement, offset binary, etc.) is formed, producing a voltage output from the DAC that in turn produces zero output from the comparator. In short, the output voltage from the DAC equals the analog input voltage to the ADC.

The state of the code present at the output registers is now a digital representation of the input analog voltage. Actually, this digital output does not cover each finite voltage applied to the input but a quantized incremental voltage step, the number of which is determined by the resolution of the ADC. An ADC with a resolution of 12 bits, for example, would have 4096 discrete quantized voltage levels or digital states. A 10-bit unit would have 1024, an 8-bit, 256.

The integrating ADC has a much slower conversion speed than the successive approximation type, but is a less complicated device and therefore, less expensive. It is used primarily with a slowly changing analog input as from a thermistor, thermocouple, or strain gauge input. An additional advantage of most integrating ADCs is their ability to convert in 16.67 microseconds, giving them exceedingly high common mode rejection to 60 Hz.

This type ADC, as shown in fig. 3, integrates the
An integrator type ADC is used for slowly varying analog inputs.

The resulting integrated voltage is returned to zero by integrating a reference voltage of the opposite polarity. The resultant time of the integrator to return to zero as measured by the counter is proportional to the average value of the analog input over the integration period. Pulses from the counter are loaded into a register and deliver a specific output code to the microprocessor. ADCs of this type frequently have other options such as polarity indication, over-range output, ratiometric measurement capability, and auto zero. They are the basic ingredients of a digital panel meter and the digital voltmeter.

choosing the right converter

Speed is a major consideration; this is known as settling time for DACs and conversion time for ADCs. In the former case, the time it takes a DAC to reach its rated output voltage/current after strobing is of prime concern when considering the response of the circuit it feeds.

The DAC, of course, does not respond coincidentally with its command to convert. It takes time for the fet switches to close and the op amp to reach its proper output magnitude. ADC conversion time is selected as a function of how rapidly the input analog voltage varies. A general rule of thumb requires the conversion time to be at least twice that of the input frequency in order to digitally reproduce the input analog voltage.

If a thermal input representing rf power were applied to an ADC, for example, its slowly varying nature would dictate the use of an integrating ADC. On the other hand, digitizing voice frequencies would require the use of successive approximation type.

Assuming the maximum voice frequency to be digitized is 5 kHz, a conversion time of no more than 100 microseconds would be required to produce an accurate digital representation of the input (a faster conversion speed would more precisely duplicate the input voltage).

When the rate of the signal being digitized also
it becomes necessary to retain the original signal for a period of time sufficient to perform the digital conversion. Simply feeding this signal to the ADC will not guarantee an accurate conversion. However, this can readily be achieved by inserting a sample-and-hold circuit between the analog input and the input to the ADC. The sample-and-hold will track the input signal, acquire it on command, and hold it while the ADC performs the conversion. At the completion of conversion the ADC generates a reset pulse and puts the sample-and-hold back into the sample or track mode. This sequence is repeated successively as determined by the nature of the measurement or control function desired.

Resolution, or the number of bits, of either the DAC or ADC determines the incremental accuracy and the linearity. In effect, it determines the number of increments the analog input or output has been divided into. A high resolution converter naturally yields a more accurate representation of its input over the complete range of its input than would a lower resolution device.

There are many specifications that are related to the converter’s temperature environment. Close examination of each manufacturer’s specification is necessary to understand a converter’s parameters when subject to changes in temperature. Reference is made to the bibliography at the end of this article for those readers who wish more detailed knowledge on data converters. Many of the manufacturers listed in table 1 have applications notes and technical papers available which discuss the various details of data converter products.

interfacing

The ADC and the DAC in fig. 4 represent memory locations for the microprocessor similar to those occupied by RAMs and ROMs that are normally associated with microprocessor/microcomputer systems. Access to the converters is gained by the assignment of an address code similar to those allotted to conventional peripherals such as displays, Teletype machines, and printers. This arrangement provides direct access to the converters without the necessity of using the microprocessor memory.

Although fig. 4 does not show it, a programmable or peripheral interface element can be inserted between the ADC and the microprocessor. This IC handles addressing and decoding generation of instructions, interrupt, and bus access signals.

Controlling a DAC is a simple process and is accomplished by performing a store operation; that is, transferring data from the microprocessor to the latches or registers associated with the DAC. The DAC now only requires an instruction to deliver its output to its load. The ADC is accessed by fetching
data from its memory location or by having the programmable or peripheral interface element perform this function under instructions from the microprocessor. Of course, if the total system involves a multichannel arrangement of DACs or multiplexed ADCs, each individual channel must be separately addressed and fetched. Systems this complex depend entirely on the programmable and peripheral interface element to perform the addressing.

This has been an overview of how the amateur can utilize the microprocessor to automatically control his equipment or perform measurements in a systematic fashion. It shows the necessity of the data converters as a means of connecting the microprocessor to a vco, a voltage-controlled attenuator, an rf power meter, or other device that performs equipment adjustments or measurements. It will hopefully provide many amateur radio enthusiasts with a tool that will provide many interesting hours of thought and experimentation.

bibliography

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing—a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc.—Save money—repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals.

When you Solder go “First Class”—use Kester Solder.

For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of “Soldering Simplified.”

Handymen! Hobbyists! DO-IT-YOURSELFERS!

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing—a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc.—Save money—repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals.

When you Solder go “First Class”—use Kester Solder.

For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of “Soldering Simplified.”
Cushcraft engineers have incorporated more than 30 years of design experience into the best 3 band HF beam available today. ATB-34 has superb performance with three active elements on each band, the convenience of easy assembly and modest dimensions. Value through heavy duty all aluminum construction and a price complete with 1-1 balun.

Enjoy a new world of DX communications with ATB-34!

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Gain</td>
<td>7.5 dBi</td>
</tr>
<tr>
<td>F/B Ratio</td>
<td>30 dB</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.5:1</td>
</tr>
<tr>
<td>Power Handling</td>
<td>2000 Watts PEP</td>
</tr>
<tr>
<td>Boom Length/Dia.</td>
<td>18' x 2 1/8"</td>
</tr>
<tr>
<td>Longest Element</td>
<td>32'8"</td>
</tr>
<tr>
<td>Turning Radius</td>
<td>18'9"</td>
</tr>
<tr>
<td>Wind SFC</td>
<td>5.4 Sq.Ft.</td>
</tr>
<tr>
<td>Weight</td>
<td>42 Lbs.</td>
</tr>
<tr>
<td>Wind Survival</td>
<td>90 MPH</td>
</tr>
</tbody>
</table>

$239.95

Complete

No Extras to Buy

In Stock with Distributors Worldwide

UPS SHIPPABLE

CORPORATION

BOX 4680, MANCHESTER, N.H. 03108
increasing the capacity of the RAM RTTY message generator

I was very interested in K4EEU's 146-character message generator and immediately built it. I am particularly impressed with its performance in conjunction with my ST-6. I recently changed the clock because the Motorola MC724P is now reserved for maintenance, and I used the double monostable 74123 which is more readily available.

From time-to-time the number of available characters was not sufficient, so after I discovered INTEL's 2102 (1024-bit RAM), I decided to multiply the original capacity of 146 characters by four. Now I can store 585 seven-bit RTTY words. The cell array of the 2102 is organized 32 rows and 32 columns; that is to say, it's necessary to have two five-bit counters instead of the two four-bit counters (7493) for correctly decoding the 1024 positions.

It is possible to add one bit to each of the four-bit counters with the state of the fifth bit changing each time output D of the 7493 falls from logic 1 to logic 0. A dual JK master-slave

(fig. 1. Schematic diagram of the improved RTTY message generator.)
flip-flop (7476) does the job nicely by connecting one flip-flop to the D output of U19 and the other to the D output of U20.

To be sure that the Q output is set to zero when beginning a message, it is necessary to apply a zero to the clear input at the same time U19, U20 and U21 are reset. In these circuits the reset level is logic 1, so it is inverted by one-sixth of a 7404. With this arrangement, the 1024 positions of each 2102 memory can be decoded correctly, the chip-select circuit being the same.

In addition to the different pin configurations of the 1101 and 2102, two other points are changed. First, the read-write levels are inverted, so I used another part of the 7404 to correctly set the levels. Second, the 2102 offers only a DATA OUT and we must have a DATA OUT, so I inverted the output of the memories with an inverter (part of the 7404). Everything is now set to enter 585 RTTY characters and recall them at will.

The new integrated circuits were mounted on wire-wrap sockets installed in a 0.1 by 0.1 inch (2.5 by 2.5 mm) grid-drilled epoxy board. The connections between these circuits have been wrapped, the 1101s removed from their sockets, and the connections between the original circuit and the additional circuit are hard-wired with 10-inch (25cm) wires.

The first test was okay and the entire system worked well with the new, added circuit. It is possible to install the new circuit on spacers in the former box, but it would be better to design a printed-circuit board that could be connected directly to the 1101 sockets. In the latter case, only seven connections would have to be made with single-contact connectors.

Jean-Claude Piat, F2ES

Heath SB-102 headphone operation

The phones jack on the SB-102 is fed from a high-impedance source and should be used with headsets of high impedance. If low-impedance headphones are used, the phone volume control must be wide open to achieve a good balance between speaker and headsets. To provide a better impedance match and control over the volume, a small imported output transformer was used as shown in fig. 2. Rather than add the circuitry externally, the transformer was mounted on the bias pot by soldering the frame to the pot body with the primary high-impedance winding facing the rear of the chassis and the phone volume pot. A two-terminal lug was attached to the chassis with one of the circuit-board mounting screws opposite the bias pot. The leads were transferred from the phone volume pot to the terminal strip, the secondary of the transformer wired to the terminal strip and the primary to the phone volume pot. Now, balance between speaker and headphones is more easily achieved and no distortion is noted.

Paul K. Pagel, K1KXA

NCX-500 modification for 15 meters

If the NCX-500 tranceiver is not carefully aligned, the fourth harmonic of its 5.2-MHz carrier oscillator, which appears at 20.8 MHz, creates a strong spurious signal in the receiver. A simple trap installed on the 15-meter mixer coil minimizes this spurious response.

The trap consists of a coil and parallel capacitor, prepared in the following manner.

Close wind 10-3/4 turns of no. 18 AWG (1.0mm) enameled wire on a 3/8-inch (9.5mm) diameter, 1-inch long (25mm) coil form. Place a 56 pF fixed capacitor in parallel with an 8-60 pF compression trimmer-type variable capacitor and place the parallel combination across the coil. Wrap approximately two turns of electrical tape around the top of L14 to obtain a tight fit and fit the trap to the top of L14 of the NCX-500. Adjust the coils so that the spacing between the two windings is about 5/8-inch (16mm).

adjustment instructions

1. Remove crystal Y3 (25.1 MHz) from the transmitter.
2. Tune the transmitter to the 20.8 MHz spurious frequency.
3. Adjust the variable capacitor on the trap for minimum transmitter output or plate current reading. (Use whichever gives the most sensitive indication).
4. Re-adjust the distance between the windings by moving the trap a little closer or further away from coil L14 and retune the trap as per step 3.
5. Replace the 25.1 MHz crystal, retune the transmitter to 21.1 MHz and re-adjust the slug in L14 for maximum transmitter power output. Note that the core in L14 should be sitting at the top end of the coil, farthest from the chassis.
6. Repeat steps 1 thru 5, because adjustment of either the trap or coil L14 will influence the other.

The trap will effect the performance of the NCX-500 receiver section at 21 MHz, hence coupling between L14 and the trap should be as loose as possible to minimize this effect. Finally, fix the trap to coil L14, using a little adhesive such as Duco cement.

Conrad J. Espinola WA1KYO
NEW LSI TECHNOLOGY

FREQUENCY COUNTER

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MANY BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION [PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND REVOLUTIONARY LOWER PRICING!

Features and Specifications:

- Display: 8 red LED digits, 4-character height
- Gate Times: 1 second and 1/10 second
- [Auto DEC. Pt. Placement]
- Resolution: 1 Hz at 1 second, 10 Hz at 1/10 second
- Frequency Range: 10 Hz to 60 MHz (65 MHz typical)
- Sensitivity: 10 mV RMS to 50 MHz, 11 mV RMS to 60 MHz TYP.
- Input Impedance: 1 Megohm and 20 pF.
- Diode Protected Input for Over Voltage Protection
- Accuracy: ± 1 ppm (±0.001%), After Calibration TYPICAL
- Stability: Within 1 ppm per hour after warm up (±0.001%), XTAL
- IC Package Count: 8 (All Socketed)
- Power Supply: Internal 5 VDC at 800 mA REGULATED
- Power Consumption: 4 watts
- Input Connector: BNC Type

Order by phone or mail COD orders welcome

Kit #FC-50C 60 MHz Counter with Cabinet & PSU $119.95
Kit #PSL-650 650 MHz Prescaler (not shown) 29.95
Model FC-50WT 60 MHz Counter Wired, Tested & Cal. 165.95
Model FC-50/600WT 600 MHz Counter Wired, Tested & Cal. 199.95

Kit #FC-50S is complete with predrilled chassis, all hardware and step-by-step instructions. Wired & tested units are calibrated and guaranteed. Prescalers will fit inside counter cabinet.

Terms: For shipping, handling & insurance to US & Canada add 5% all others 10%. Florida Res. add 4% sales tax. COD charge $1.00.

Have you had rotator damage? Removed the rotator? Been off the air? Waited for parts? No more! AUTOBRAK is a complete conversion kit, including punched and finished cabinet for all Ham-M series 1 through 5 rotator control units.

AUTOBRAK reduces the inherent problem of damaged rotator components due to instant brake engagement. AUTOBRAK allows the antenna array to come to a coasting stop before brake engagement, thereby reducing stress on rotator components.

Other features include Zener regulated meter circuitry, adjustable brake delay, and handsome up-to-date styling compatible to most Ham gear. Cabinet measures 6" x 7½" x 7½".

Price $39.95. Shipping and handling $1.75 in U.S. Illinois residents add 5% sales tax.

Kampp Electronics Inc.,
Box 43, Wheaton, IL 60187
312-665-3556

Texas Instruments
INcorporated

Electronic Calculators

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI-30-SP</td>
<td>$18.95</td>
</tr>
<tr>
<td>TI-1750</td>
<td>21.95</td>
</tr>
<tr>
<td>TI-5015</td>
<td>69.95</td>
</tr>
<tr>
<td>TI-5050M</td>
<td>84.95</td>
</tr>
<tr>
<td>TI-5040</td>
<td>99.95</td>
</tr>
<tr>
<td>TI-5100</td>
<td>44.95</td>
</tr>
<tr>
<td>Bus. Anal.</td>
<td>29.95</td>
</tr>
<tr>
<td>SR-40</td>
<td>25.95</td>
</tr>
<tr>
<td>SR-51-II</td>
<td>49.95</td>
</tr>
<tr>
<td>SR-5X</td>
<td>65.95</td>
</tr>
<tr>
<td>SR-58</td>
<td>99.95</td>
</tr>
<tr>
<td>SR-59</td>
<td>229.95</td>
</tr>
<tr>
<td>PC-100A</td>
<td>149.95</td>
</tr>
<tr>
<td>Software</td>
<td>29.95</td>
</tr>
</tbody>
</table>

Texas Instruments Microelectronic
Digital Watches from $9.95 (TI-503)

Hewlett-Packard Calculators
10% discount from list.

Add $2 per unit for shipping. CA shipments add 6% sales tax. Send cashier's check or money order for immediate delivery (personal checks must clear).

Most items shipped from stock within 48 hours.

The Calculator Shop
1160 Marsh Street
San Luis Obispo, CA 93401
(805) 544-1432

More Details? CHECK — OFF Page 126
TEN-TEC 544 DIGITAL. Another ahead-of-its-time achievement from the pioneers in solid-state HF amateur radio technology. The 544 Digital joins its successful companion, Triton IV, to chart new paths in engineering.

THE RECEIVER. Deserving of all superlatives.

Range: 3.5-30 MHz (plus "160" with option). MOSFET RF Amplifier with Resonate Control for a sensitivity of 0.3 μV for 10 dB S+N/N. And overload minimized. Noise Blanker option: remarkably effective against impulse noise, functions in the IF, controls from the front panel. Hetrodyne crystal mixed VFO: steady as a rock. 8-pole 9 MHz Crystal-Lattice IF filter for a selectivity curve straight out of the text books: steep skirts, flat top, and narrow (2.5 kHz bandwidth, 1.8 shape factor at 6/60 dB points). Offset Tuning, with LED indicator, permits independent tuning of the receiver through a 10 kHz range (approx.). As one owner put it, "it makes SSB nets a breeze." And that beautiful Digital readout: six 0.43" LED digits, 5 in red and the least significant 6th in green, reading to 100 Hz with an accuracy of ± 50 Hz, settable to WWV. (Who needs a calibrator? And, indeed, it has none). WWV reception at 10 & 15 MHz. The sound? So beautifully clean and clear, it wins raves from all. Less than 2% distortion. Built-in speaker to clear the operating position. And External Speaker/Phone jack. CW Filter option, 2-position, 150 Hz width. Zero-Beat Switch for right-on CW Whether you operate SSB or CW or both, you'll agree the 544 has a truly superior receiver section.

THE TRANSMITTER. 200 Watts Input - all bands, SSB or CW. Instant band change without tuneup! And no danger of off-resonance damage, even with the wrong antenna. 8-Pole SSB Filter. Automatic Sideband Selection, reversible. Push-Pull Output with the heat outside of the cabinet. 100% Duty Cycle so you can use it for RTTY and SSTV. Front panel ALC control with LED to show operation in the ALC region. Meter shows SWR when transmitting. VFO circuit is permeability tuned, has less than 15 Hz change per ° after 30 min. warmup, less than 10 Hz change from 105-125 VAC with accessory power supply. SSB speech quality is completely natural, CW signals clean, articulate. And full CW break-in! So right you wonder why it wasn't done before - turns monologs into conversations. Sidetone is adjustable in pitch and volume. Automatic CW offset of 750 Hz. P-TT Hi-Z mic. input. RF Output-Z 50-75 ohms, unbalanced.

THE ACCESSORIES. Model 242 Remote VFO for six-mode operation; 241 Crystal Oscillator for 6 spot freqs.; 240 Converter for 160 Meter operation at slightly reduced power level; 215P Microphone & Stand; 252G protected power supply; 262G power supply plus VOX plus 2 speakers; 207 Ammeter for supply monitoring; 249 Noise Blanker; 245 CW Filter; 212 Crystal for 29.0-29.5 MHz; 213 Crystal for 29.5-30.0 MHz. Plus various sized matching blank enclosures.

TEN-TEC 544 DIGITAL. So right, so advanced, it may well be the last rig you'll ever need to buy!

544 Digital - $869
540 Non-digital - $699

See the 544 and its companion 540 non-digital transceiver at your nearest TEN-TEC dealer, or write for full details.
The French Atlantic Affair

In the midst of so much mistaken publicity about amateur radio, wherein problems caused by CB stations are blamed on the ham by an uninformed press, it is refreshing to see a book that has amateur radio woven into the plot as one of the “good guys.” Moreover, the book is not one that would normally rate just a casual glance and then be placed back on the shelf.

The French Atlantic Affair, by Ernest Lehman, is a novel of such length that it will keep the average reader at it for several evenings, if he can force himself to put it down, or all night if he cannot. There is almost continuous action throughout the story, and the way author Lehman has brought amateur radio into focus early in the converging lives of the characters portrayed almost guarantees that it will play a significant part in the unfolding story.

Not that hams are all portrayed as knights in shining armor — their feet of clay are clearly evident so that the uninformed reader can see that they are ordinary human beings like everyone else. As such they have their hang-ups, problems, and families whose patience with this obsession wears thin at times. The attitudes and opinions about hams and their technical vices are all too familiar to many of us who have been the focal point of similar comments from friends and wives who are not completely dedicated to the hobby of chasing DX or burning the midnight hours away conversing with a stranger in a far corner of the land.

To an experienced amateur, it would seem that the author knows about ham radio from the inside — the equipment is real, the procedures are correct, the language is right, and the bands go dead at the right time; there is even the right kind of nitwit who clobbers the frequency in the middle of an important exchange. To balance the scale against the baddies, there is the good guy who provides a phone-patch across the continent to overcome the dead-band problem, and a very understanding ham on Long Island who cancels out of an important golf engagement to take part in the high drama.

The author does know about amateur radio — he is KG6DXK, and has been as busy on the air as at the typewriter. The way he tells it, the time spent at the ham rig at times overshadowed the writing, so the book was somewhat of a combination of the two important factors in his life.

However, Lehman is definitely accustomed to writing top-grade material; he has written screen plays for several well-known films such as West Side Story, The King and I, and Who’s Afraid of Virginia Woolf, and others. He has received six Writer’s Guild awards and six Academy Award nominations.

The French Atlantic Affair was not written for hams alone — you don’t pin your hopes of making a best seller on a potential audience of a few hundred thousand. The book is written to appeal to people who would be spellbound with such stories as Hotel, Airport, and Where Eagles Dare; it can be very favorable compared to these best sellers. The action is almost non-stop, and one segment builds suspense that is guaranteed to evoke interest in the next page or chapter — this reviewer suffered the consequences of lack of sleep all the next day because of the irresistible urge to see how things ended.

The book is recommended for adult reading, and, while it is unlikely that any of you hams who read it will become heroes of the level attained by the operators involved in this story, you will be comforted to know that you are not alone in being a member of a group whose hobby, ability, and dedication is misunderstood and underrated.

Amateur radio plays a vital part in The French Atlantic Affair, and the resulting publicity should be most beneficial to our hobby and image. If the story makes it into a hit movie (the screen rights have been purchased by MGM), that’s all to the better.

The French Atlantic Affair has been selected by the Literary Guild and by the Playboy Book Club, and is being published by Atheneum Publishers; it is available from Ham Radio’s Communications Bookstore, Greenville, New Hampshire 03048; $10.95 postpaid. Not recommended for young readers.
80-Meter DX handbook

To a large number of amateurs, the 80- or 75-meter band is most useful as a rag-chewing spot. Daytime coverage is strictly local, and long paths open during the dark hours. Average contacts take place across distances that reach from one coast to the other during favorable conditions.

However, in the true amateur spirit, there is a core of DXers who are constantly probing to see what can be done on this “local” band to extend the communications range to the farthest parts of the globe. John Devoldere, ON4UN, has compiled a handbook of things to do to squeeze the most out of this rag-chewer’s haven; the 80-Meter DX Handbook.

The handbook is a complete works on the art of DXing in this part of the HF spectrum, from why it happens (or does not happen), to what to build and how to use it. The book is arranged in four chapters: Propagation, Antennas, Stations, and Operating Practices. The propagation section covers magnetic disturbances, seasonal effects, twilight periods, paths, and more. As might be expected, the antenna section is the largest part of the book, with 15 distinct subjects — starting with the fundamentals and working through ZL-specials and Beverage antennas.

The section on stations contains a concise discussion of popular transmitters and receivers, and some hints as to their proper use. In Operating Practices, the author gives you information about what band segments are used in various countries, talks about procedures, types of operation, and points out some of the awards that have been won, and some that are much sought after.

The 80-Meter DX Handbook ends up with a very good Bibliography for those who would like to explore some of the reference works in greater detail.

Published by Communications Technology, Inc., the 80-Meter DX...
How You Can Convert Your Rohn 25G Tower to a FOLD-OVER

If you have a Rohn 25G Tower, you can convert it to a Fold-over by simply using a conversion kit. Or, buy an inexpensive standard Rohn 25G tower now and convert to a Fold-over later.

Rohn Fold-overs allow you to work completely on the ground when installing or servicing antennas or rotors. This eliminates the fear of climbing and working at heights. Use the tower that reduces the need to climb. When you need to “get at” your antenna... just turn the handle and there it is. Rohn Fold-overs offer unbeatable utility.

Yes! You can convert to a Fold-over. Check with your distributor for a kit now and keep your feet on the ground.

More Details? CHECK-OFF Page 126
layout will not cause holes in the eventual circuit traces. Also, the neat plastic container can be used to hold the etchant while etching a board.

From start to finish, the Excel Circuits Company has provided materials that permit the fabrication of quality circuit boards. In addition, they’ve eliminated the problems of obtaining supplies from different sources. The price of the complete kit is $19.95, postpaid. For more information write to Excel Circuits Company, 4412 Fernlee, Royal Oak, Michigan 48073.

new wire-wrapping tool does all

The new WSU-30M "Hobby Wrap" tool performs the complete wire-wrapping function. First, the tool wraps 30 AWG (0.25mm) wire onto standard 0.025-inch (0.6mm) square DIP socket posts. Also, the tool unwraps and, finally strips 30 AWG (0.25mm) wire nick-free through a unique stripping blade.

Particularly important, the WSU-30M produces the "modified" style of wrap, in which approximately 1 ½ turns of insulated wire are wrapped in addition to the bare wire for added mechanical stability.

Designed for the serious amateur, the WSU-30M features compact, all-metal construction for years of dependable service. At only $6.95, this tool is a remarkable value, performing the work of three separate tools at a fraction of their comparable prices. It’s available from your local electronics distributor or directly from O.K. Machine and Tool Corporation, 3455 Conner Street, Bronx, New York 10475.
Attention: CW Operators using Drake!

These crystal filters are for you!

All filters contain specially-treated high-Q crystals.

600 Hz 6-Pole First-IF Filter for Drake R-4C

Improve the early-stage selectivity. Eliminates those high-pitched beat notes from signals that leak around the switchable second IF filter. Minimizes the chance of strong signals overmodulating the second mixer, causing intermodulation and desensitization. Both the existing filter and our CF-6027 can be mounted in the receiver and may be switched to retain phone capabilities. CF-6027 $75.00, 6-switch kit $29.95

125 Hz 8-Pole Second-IF Filter for Drake R-4C

Improves overall selectivity. Use for DX and contact work. Unaffected under crowded band conditions. Does not add audio filter can do. More selectivity than audio filter alone needing AGC loop. Unlike audio filters, noise gain not reduced by AGC outside passband. Yet works well with audio filter to improve receiver performance. Puts directly into an accessory filter socket of the R-4C. CF-125 $125.00

QUALITY KENWOOD TRANSCEIVERS... from KLAUS RADIO

The TS-820 is the rig that is the talk of the Ham Bands. Too many built-in features to list here. What a rig and only $330.00 p.d.d. in U.S.A. Many accessories are also available to increase your operating pleasure and station versatility.

![TS-820 160-10M TRANSCIEVER](image1)

Super 2-meter operating capability is yours with this ultimate design. Operates all modes: SSB (upper & lower), FM, AM and CW. 4 MHz coverage (144 to 148 MHz). The combination of this unit's many exciting features with the quality & reliability that is inherent in Kenwood equipment is yours for only $599.00 p.d.d. in U.S.A.

![TS-700A 2M TRANSCIEVER](image2)

Guess which transceiver has made the Kenwood name near and dear to Amateur operators, probably more than any other piece of equipment? That's right, the TS-520. Reliability is the name of this rig in capital letters. 80 thru 10 meters with many, many built-in features for only $259.00 p.d.d. in U.S.A.

![TS-520 80-10M TRANSCIEVER](image3)

This brand new mobile transceiver (TR-7400M) with the astonishing price tag is causing quite a commotion. Two meters with 25W or 10W output (selectable), digital read-out. 144 through 148 MHz and 800 channels are some of the features that make this such a great buy at $399.00 p.d.d. in U.S.A.

![TR-7400A 2M MOBILE TRANSCIEVER](image4)

Send SASE NOW for detailed info on these systems as well as on many other fine lines. Or, better still, visit our store Monday thru Friday from 8:00 a.m. thru 5:00 p.m. The Amateurs at Klaus Radio are here to assist you in the selection of the optimum unit to fulfill your needs.

KLAUS RADIO Inc.

8400 N. Pioneer Parkway, Peoria, IL 61614
Jim Plack W9NWE — Phone 309-691-4840

HARM RADIO HORIZONS

That's Ham Radio HORIZONS; the monthly Amateur Radio magazine that presents this fascinating hobby in a straight forward language that enables any beginner to grasp the whole exciting story: Getting your license, putting a station on the air, communicating by OSCAR satellites, single sideband and much, much more.

One Year — 12 Issues Only $10.00

Send me a sample copy, here's $1.00 to cover postage and handling

Sign me up for One year — enclosed is $10.00 or charge it

BankAmericard

Mastercharge

Account No._

Exp. Date__

Name__

Address__

City__

State__ Zip__

More Details? CHECK — OFF Page 126
3 for the adventure of it!

The adventure of 80 METER DXing
by John Devoilider, NQUN
Unsualable knowledge for any DXer, with a special section on Grey- line propagation. Discussion of antennas, basic to advanced.
Order HR-80M $4.50

Pure adventure: FRENCH ATLANTIC AFFAIR
by Ernest Lehman, K6DXX
Intriguing adventure on the high seas where Amateur Radio is the hero! Award-winning author - as reviewed in the August issue of QST (recommended for mature readers).
Order A-FRA hardcover $10.95

The adventure of 160 to 190 kHz LOW & MEDIUM FREQUENCY RADIO SCRAPBOOK
by Ken Cornell, W2IMB
Everything you want to know about the license-free 160-190 kHz band! Get W2IF's review in the May issue of QST.
Order HR-LF $6.95

Ham Radio's Communications Bookstore
GREENVILLE, NH 03048
Enclosed is check or MO for the following
☐ 80 METER ☐ FRENCH ☐ LOW & MEDIUM
☐ DXing ☐ ATLANTIC ☐ FREQUENCY
☐ FOCUS ☐ AFFAIR ☐ RADIO
☐ SCRAPBOOK

NAME _______________________________________
ADDRESS ______________________________________
CITY _______________________________________
STATE _______ ZIP ________

More Details? CHECK — OFF Page 126
ALL-MODE VHF amplifiers

FOR BASE STATION & REPEATER USE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>INPUT</th>
<th>OUTPUT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V70</td>
<td>10-20W</td>
<td>60-70W</td>
<td>$6298</td>
</tr>
<tr>
<td>V73</td>
<td>1.5W</td>
<td>60-70W</td>
<td>$8329</td>
</tr>
<tr>
<td>V120</td>
<td>25-40W</td>
<td>110-130W</td>
<td>$9369</td>
</tr>
<tr>
<td>V130</td>
<td>1.5W</td>
<td>110-130W</td>
<td>$9419</td>
</tr>
<tr>
<td>V135</td>
<td>5-10W</td>
<td>110-130W</td>
<td>$9419</td>
</tr>
<tr>
<td>V180</td>
<td>10-15W</td>
<td>180-200W</td>
<td>$1225</td>
</tr>
<tr>
<td>Universal 19" Rack Mount</td>
<td></td>
<td></td>
<td>$925</td>
</tr>
</tbody>
</table>

- 143-149 MHz No Tuning
- AM - FM - CW - SSB
- 60dB Harmonics
- Heavy Duty
- No Power Supply Needed
- Illuminated Panel Meter
- + 13.5V/3Amp Socket
- 115 or 230V AC
- 60dB Spurious
- Fully Protected Output
- Internal I/R Switch
- U.S. Manufactured
- 19" Rack Panel Option
- Size: 8.1/2 x 13 x 7" H

Only two things are needed to put this power house on the air with your handy talky or mobile transceiver: a two foot piece of coaxial cable and a 115 or 230 volt AC outlet. That's all. You do not need anything else. The mobile transceiver can be powered directly from the accessory socket located in the rear panel of the RFPL amplifier. It puts out +13.5 volts at 3.5 amperes. This is sufficient for powering most 15 watt transceivers.

DEALER INQUIRIES INVITED

RF POWER LABS, INC.
11013-118th Place N.E. • Kirkland, Washington 98033 • Telephone (206) 822-1251 • TELEX No: 32-1042
SPECSCAN-S Programmable Scanner

The ONLY Digital Scanner made for the IC-22S. It adds a whole new dimension to 2M FM. If any other accessory can make your IC-22S as versatile as the SPECSCAN-S does, Buy It!

- Scans the entire 145-147 MHz Band in 15 kHz steps, automatically, or manually.
- Exclusive VARI-SCAN™ control allows full control of scan rate in either direction.
- Full compatibility with the duplex mode.
- Uses state of the art CMOS logic.
- Low current drain. Less than 500 mA.
- RF Immune. Unaffected by nearby equipment and in high RF areas.
- Large LED display lets you see every channel at a glance.
- Manual mode feature lets you scan past any portion of the band and manually select a desired channel.
- Can be used as a remote unit with the radio hidden under the seat, etc.
- Easy installation. Uses only one matrix position leaving the other 21 usable for manual programming.
- Automatically reads out your other 21 channels when they are used.
- Plugs into 9 pin accessory socket.
- Adjustable scan delay feature.
- 90 day limited warranty

ONLY $149.95 Amateur Net

DIGITRAN KEYBOARD

12 Key
$8.00
16 Key
$10.00

This very popular item at the 1976 Dayton Hamvention is NOW OFFERED TO YOU at these low prices. Incorporates the ideal ‘tactile feel’ leaving no doubt that contact has been made. These NEW key-boards, manufactured by THE DIGITRAN COMPANY, are furnished with instructions for combining with a MOSTEK or MOTOROLA chip and a crystal (plus several small components) to become a Tone Encoder.

NEW MOSTEK AUTO-PATCH TONE GENERATOR

Economical DTMF generating system combines CMOS logic, 0-to-A converters, an operational amplifier and bipolar transistors on a single IC chip. Uses inexpensive 3.58 MHz crystal. Dual tones mix internally. Tones are 14-step synthesized sine waves for low distortion. Compatible with Digitran® keyboard. Common key function outputs For 5-10 V. Model MK 5086. Interfaces to either a 2-of-8 keyboard or other electronic systems...

NEW!

Drake 1525EM

$49.95

Model 43

$120 + shipping

SPECTRONICS, INC.

1009 GARFIELD
OAK PARK, IL. 60304
312-848-6777
TELEX 72:8310

SPECIAL PRE-WIRED PRICE
BRAND NEW IC-22S WITH
SPECSCAN DIGITAL SCANNER
Both for only $398.00

SPECTRONICS, INC.

HOURS

STORE HOURS:
Mon-Thurs: 9:30-6:00, Fri: 9:30-8:00
Sat: 9:30-3:00, Closed Sun. & Holidays.

More Details? CHECK—OFF Page 126

october 1977
STOP! Don't order that counter kit until you see what EEB has come up with.
The NEW B & K 1827, 30 MHz counter (assembled and tested), a famous pre-scaler kit, hardware and complete instructions to result in 250 MHz Counter. ALL FOR $129.95 postpaid!

Model 1827
- 30 MHz reading guaranteed. 50 MHz typical.
- Full 6-digit display with range switch allows 8-digit accuracy.
- 1Hz resolution - even at 30 MHz and beyond.
- Completely portable for use anywhere.
- Exclusive battery saver features auto-shutoff of display to reduce battery drain.
- Operates on AA size batteries, AC charger/adapter or 12VDC with optional power card/adapter.

SPECS:
- FREQUENCY CHARACTERISTICS: Range: 100Hz to 30 MHz (guaranteed); 50 MHz typical. Accuracy: ±1 count. Resolution: 1 ppm of 6 digit scale.

INPUT CHARACTERISTICS:
Impedance: 10 kΩ maximum. Connector: RCA Phone. Sensitivity: 100mV RMS; 200 Hz - 300MHz.

INTERNAL TIME BASE CHARACTERISTICS
FREQUENCY: 250 MHz
Frequency and Type: 4.0MHz crystal oscillator. Stability: ±0.25 ppm (±1Hz). Temperature Stability: Better than ±0.001% (±2 ppm) from 0°C to 50°C ambient.

Model 1827 only
- Prescaler Kit $139.95
- Misc. & Instructions $154.95
- AC Charger and NICADS $31.00
- Test Antenna (BNC) $4.00

NEW MS-15 MINISCOPE
A Serviceman's Small Oscilloscope with Big, Big Performance and a Low, Low Price. The Model MS-15 by Non-Linear Systems, Inc.

FEATURES
- 15 megahertz bandwidth.
- External and internal triggering.
- Time Base - 0.1 microsecond to 0.5 sec/div.
- 21 settings.
- Battery or line operation.
- Size: 2.7"H x 4.0"W x 7.5"D
- Automatic and led sync modes.
- Power consumption less than 15W.
- Vertical Gain: -0.01 to 50 volts/div 12 settings.
- Weight: is only 3 pounds.

$289.00

SWAN TV2-B two meter transverter. $200 K3RYL 215-691-0669

TRANSMITTING TUBES, HV and filament transformers, rotary inductors, transmitting capacitors. Send stamp for flyer. T.S. Marinch Electronics, 102 Bell St., Weirton, W. Va. 26062

OLD GTS WANTED. Motorola HT100 wanted, state asking price. For sale or trade. Life Library of Photography. Other photo literature. Al Blank, W1BL, 727 Pine St., Bristol, CT 06010.

YOUR CALL on a Bumper Sticker. Red letters on White or Black $1.25 postpaid. R. Schweizer, Box 4675, Margate, Florida 33503.

TELETYPE EQUIPMENT for beginners and experienced operators. RTTY machines, parts, supplies. Beginner's special: Model 15 Printer and demodulator $139.00. Dozen black ribbons $6.50; case 40 rolls 1111 perf. tape $17.50 FOB. Atlantic Surplus Sales, 7376 Nautilus Ave., Brooklyn, N.Y. 11224. Tel: (212) 327-0349.

COLLINS 755.3-5360 = Nems Clarke Rcvr. 1501. $100. Skyweeper Rcvrl. $60 = all books. WAEU5, 11 Lafayette St. Copagaine, NY 11726.

MOBILE BONDING STRAPS under 50¢ each. Literacy Engineering, 930 Marine Drive, Port Angeles, Wash. 98362.

QSL FORWARDING SERVICE = 30 cards per dollar. Write: QSL Express, 30 Lockwood Lane, West Chester, PA 19380.

FERRATE BEAD ASSORTMENT includes convenient plastic storage box and one dozen each of BF341-101, BF43-801, BF64-801, BF84-801, BF73-101 and BF73-801 plus new spec sheets. Value $7.50 for $6.95.

FOR CONVENIENCE AND LOWER COST, ASSORTMENT INCLUDES: 2 pcs. each, T25-2, T25-6, T37-2, T37-6, T37-10, T37-12, T50-10, T50-12, T68-10, T80-2, T80-6, T94-2. 3 pcs. each, T50-2, T50-3, T50-5, T50-6, T68-2, T68-3, T68-6 and CONVENIENCE STORAGE BOX and SPEC SHEETS.

STOP!
flea market

VERY interest-ing! Next 4 issues $1 “Ham Trader Yellow Sheets,” Sycamore, Ill. 1978.

THE VIDEO AMATEUR is a new publication of, by and for the video enthusiast. Look to us for service tips, modifications for equipment, and a wide and varied exchange of products and information. Send for a free copy to P.O. Box 250, Coyote, CA 95013.

BUY-SELL-TRADE. Write for free mailer. Give name, address and call letters. Complete stock of major brands new and reconditioned equipment. Call for best deals. We buy Collins-Drake-Swane etc. SSB & FM, Associated Radio, 8122 Conser, Overland Park, Kansas 66204. 913-987-9901.

LETS TRADE. I have new HORNET ANTENNAS. 6-10 and 5 and call letters. Complete stock of major brands new and reconditioned equipment. Call for best deals. We buy Collins-Drake-Swane etc. SSB & FM, Associated Radio, 8122 Conser, Overland Park, Kansas 66204. 913-987-9901.

NEW SOCIETY CIRCULARS, 12 Vdc, leads, use factory connectors, $5. Three new regulated, variable, 12 Vdc 5A power supplies, $20 each. LOT shadow cast. SASE. W4API, Box 4066, Arlington, Virginia 22204.

CALL FOR QUOTES ON: YAESU FT301, KENWOOD TS520S, TS820S, TS600A, TR7400A, FT101E, TEMPO 2020 & ETO-ALPHA; ALL IN SEALED CARTONS. CALL FOR QUOTES ON ITEMS NOT LISTED.

CALL FOR FAST QUOTE, OR WRITE AND INCLUDE TELEPHONE NUMBER. IF WE HAVE YOUR BARGAIN, WE'LL CALL YOU PREPAID.

OMNI-J 2 meter mobile or portable antenna. 15-175 MHz gain over conventional o/line whip antenna $79.95; 200 MHz-$27.95.

ANTE NIAL SPECIALISTS VHFs fm antenna line includes a full range of cabling and jumpers. PREMAX 4 foot grounded radial or jumpers $4.50.

MIDLAND 23-135 dual meter reads SWR and SWR power handling. $1,395.

YAESU FT101E — Hy-Gain 18AT-V/W. vertical antenna $649.00.

YAESU FT101EX — Hy-Gain 18AT-VWB vertical antenna $809.00.

Hy-Gain 18AB/WB 100 feet radial $10.00 per 100 feet.

Hy-Gain 18SV vertical $59.95.

Model 218 80 Yagi $21.50.

Hy-Gain 2400 Dipole $39.95.

VHF SPECIALS: Kenwood TS-700A List $1349.00. For complete list write to P.O. Box 250, Coyote, CA 95013.

R.C.-FLY-6000, FL-1500, FL-500, FL-260, 4-NB noise blander, 12 xtal and MS-4 speaker $550.00; 4-TXC, AC-4 power supply, two xtal $550.00; MN-4 matching network with Waters 384 mixer, $305.00; Omnibus complete kit $300.00; SB-520 scanyliner $120.00; SB-560 station console $75.00; SB-650 Freq. Disp. $150.00; Astastic T-188 receiver (with T-186 basic) $120; Astastic digital calman zero $75.00; Brown CATLA paddie and key $25.00; Everything above mint $1750.00. Ralph Conner, WSJF/10, 9140 Gladstone St., Phila., PA 19146. Phone: 215-140 2923.

NOW! COMBINATION DIGITAL CLOCK AND FREQUENCY COUNTER BATTERY OPERATED 6-12 and 12-24 hour clock. Batteries are of 5+1000 ma with anal onload power. 4 x 6 fixed Crystal, with digital display. $29.95.

ADVELO-SEMI-CONDUCTOR SUPERMARKET

NEW NOW IMPROVED DIGITAL ALARM CLOCK KIT Hours + Minutes + Seconds contained on a big 0.59 Semihandle 7 Segment Display LEDs. 1/4 hour format-24 hour alarm with snooze feature. Plus a top-notch trimer and a wide and varied change of products and information. Send for a free copy to P.O. Box 250, Coyote, CA 95013.

24/4 Hour Check Kit Six big size L.E.D. Freezle feature with unlimited wood cabinet. $29.95

FIND 200 and our new 52 month gift certificate. $99.95

VARIOUS POWER SUPPLY KITS — See Item # 4. 1.5-5 VDC $2.95, 12-26 VDC $6.95. 72 cents per unit shipping.

ADVELOCO

2281H Babylon Tpky, Merrick, N.Y. 11566

(516) 378-4665

TEST EQUIPMENT

All equipment is listed and unconditionally guaranteed. Money back if not satisfied or repair work performed, full amount will be shipped prepaid. Include check or money order with order. Price includes UPS or motor freight charges.

BOONTON 190A Q mtr 30 2000 MHz $425

BOONTON 207E AM FM Sig gen $459

ORC 1G101A LF sig gen 5k-100MHz $385

HP1618B Counter $595

AG 5510B 10Hz-10MHz $225

HP1618B 15MHz scope with reg horizon, dual trace vert plugs $385

HP1648 (MI) Delay sweep for above $135

TTL 1550MHz scope with reg horizon, dual trace vert plugs $475

HP175A 30MHz scope with reg horizon, dual trace vert plugs $565

HP1815A Sampling scope to 1 GHz $405

HP148B LF to 1000MHz $295

HP12A Pulse gen. 0.6-30kHz $89

HP1648 (MI) Delay sweep for above $135

Tek245C 10MHz Sweep $89

HP1648 SWEEP sweep range 4.4MHz 4.4GHz $495

HP903A VHF Ant Bridge 50-500MHz $135

Tek2200 8.2-12.4GHz sweep range $595

Tek536 514 Hz $135

Tek65 Dual beam 50-500MHz must be plug-ins (3 series) $295

Tek550 Std VTF (1.5-900MHz) $65

2 meter mobile or portable for $85. Send stamped, self addressed envelope

GRAY Electronics

P.O.Box 914, Monroe, Mich. 48161

Specialized in used test equipment
CHOOSE ONE OF THESE
TWO GREAT 2-METER FM TRANSCEIVERS.

BOTH SYNTHESIZED FOR STANDARD
AND "ODD-BALL" REPEATER SPLITS!

Model FM-28 Check these outstanding features:
- Fully-synthesized from 144 to 148 MHz in 5 KHz steps.
- Bright six-digit frequency display.
- Supplied with simplex, plus 600 and minus 600 KHz offsets. Up to two additional “non-standard” offsets available. Clean 25 watt transmitter. 0.25 UV receiver with helical front end. Modular construction. All solid state. Complete with base station and mobile mounts, hardware, DC cable, microphone and manual.
- **Introductory priced at only $359.95.**

Model FM-DX Compare the specifications of this unchallenged performer: 40 watt transmitter output.
- Extended frequency coverage from 143.5 to 148.5 MHz to facilitate MARS and CAP. Supplied with simplex, plus 600 and minus 600 KHz offsets. Up to three additional “non-standard” offsets available. LED frequency display. Selective, single conversion receiver. Rugged extruded chassis and modular construction will withstand the most severe environment. Engineered and built in USA. Shipped with mobile mounting hardware, power cables, microphone and manual. **Limited time pricing only $499.00.**

Optional accessories: Include base station, power supplies, tone encoders, antennas and solid state power amplifiers. Write or telephone today for detailed specifications.

Count on Clegg superior service. Clegg’s well staffed, well equipped organization is always available to you.
- Whether you need free product literature, replacement parts, service or just information, make a free Watts-line call from anywhere in the USA (except Pennsylvania) at no cost. Just dial 1-800-233-0250.
- In Pennsylvania, call (717) 299-7221 collect.
- Should your Clegg product ever require service, you can expect the fastest turn-around time in the industry—typically 48 hours—almost always less than one week.

Direct to you. Because Clegg considers licensed amateurs a professional group, you can purchase directly from Clegg and save dealer and middleman markup. And you’re protected.
- All Clegg products are sold with a 10-day money-back guarantee.

To place your order, send check (Visa or Master Charge accepted) to Clegg Communications Corporation, 208 Centerville Road, Lancaster, Pennsylvania 17603. Better yet—phone us on our TOLL-FREE line and we’ll ship today.

Clegg
Advanced technology in action!
Tone Encoders
For Continuous Tone Coded Squelch Systems
(CTCSS)
Compatible with subaudible tone systems such as Private Line, Channel Guard, and most others.
And a new dual encoder for both CTCSS & DTMF
Features:
- Temperature and frequency stability of ±0.1 Hz
- Frequency accuracy of ±0.25 Hz
- Plug-in-type tone elements
- Low-distortion sine wave
- Immunity to RF
- All EIA frequencies available, 67.0-203.5 Hz
- Other EIA frequencies mailable on special order
- 9-36 VDC, reverse-polarity protection
- Adjustable tone output level

Price: $27.95 wired

2027 A/B CTCSS and DTMF encoder. Both types of
encoding are combined onto one small board for
most hand-held and mobile radios. Only three con-
nections are required from the encoder board:
- VDC, ground, and tone output. Wired and tested, with one
tone element. Size: approximately 1 x 1.2 x 0.6".
Price: $24.95.

2027 A/B CTCSS and DTMF encoder. Both types of
encoding are combined onto one small board for
most hand-held and mobile radios. Only three con-
nections are required from the encoder board:
- VDC, ground, and tone output. Wired and tested, with one
tone element. Size: approximately 1 x 1.2 x 0.6".
Price: $24.95.

TG-1A miniature encoder. Will fit into most FM
radios. Only three connections to make—ground,
- VDC, and tone output. Wired and tested, with one
tone element. Size: approximately 1 x 1.2 x 0.6".
Price: $24.95.

TG-3A three-frequency encoder. Wired and tested.
Includes three tone elements and frequency-
selecting switch. Size: approximately 1.8" x 2.0" x
0.6". Price: $56.95.

PARAFRAME
PARABOLIC ANTENNA
FRAMEWORKS

For:
- EME
- TV DXing
- Radio Astronomy
- Experimenting
- Student projects

Apertures available —
12', 16', 20' TBA: 24'
With PARAFRAME you can build a complete 20' parabolic
antenna for $1300. With interchangeable feeds you can
have several antennas for the price of one.

JAMES K. VINES
611 Farmview Rd.
Park Forest South, IL
60466
(312) 534-0689
after 7 PM CDT

PARABOLIC ANTENNA
FRAMEWORKS

IC-22S
146 MHz FM 10 W
TRANSEIVER

IC-211
144 to 148 MHz
SBB/FM/CW
10W TRANSEIVER
IMMEDIATE DELIVERY
SHIPPING PREPAID IN USA

MASTERS "SINCE 1932"
COMMUNICATIONS
7025 N. 57th Dr.
GLENDALE, AZ 85301
PHONE
602-939-8356

More Details? CHECK — OFF Page 126
<table>
<thead>
<tr>
<th>DIODES/ZENERS</th>
<th>SOCKETS/BRIDGES</th>
<th>TRANSISTORS, LEDS, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914 100v 10mA .05</td>
<td>8-pin pcb .25 ww .45</td>
<td>2N2222 NPN (Plastic .10) .15</td>
</tr>
<tr>
<td>1N4005 600v 1A .08</td>
<td>14-pin pcb .25 ww .45</td>
<td>2N2907 PNP .15</td>
</tr>
<tr>
<td>1N4147 100v 1A .15</td>
<td>16-pin pcb .25 ww .75</td>
<td>2N3906 PNP .10</td>
</tr>
<tr>
<td>1N4148 75v 10mA .05</td>
<td>22-pin pcb .45 ww 1.25</td>
<td>2N3054 NPN .35</td>
</tr>
<tr>
<td>1N753A 6.2v z .25</td>
<td>24-pin pcb .35 ww 1.10</td>
<td>2N3055 NPN 15A 60v .50</td>
</tr>
<tr>
<td>1N758A 10v z .25</td>
<td>28-pin pcb .35 ww 1.45</td>
<td>T1P125 PNP Darlington .35</td>
</tr>
<tr>
<td>1N759A 12v z .25</td>
<td>40-pin pcb .50 ww 1.25</td>
<td>LED Green, Red, Clear .15</td>
</tr>
<tr>
<td>1N4733 5.1v z .25</td>
<td>Molex pins .01 To-3 Sockets .45</td>
<td>D.L.747 7 seg 5/8” high com-anode 1.95</td>
</tr>
<tr>
<td>1N5243 13v z .25</td>
<td>2 Amp Bridge 100-prv 1.20</td>
<td>XAN72 7 seg com-anode 1.50</td>
</tr>
<tr>
<td>1N5248 14v z .25</td>
<td>25 Amp Bridge 200-prv 1.95</td>
<td>FND 395 Red 7 seg com-cathode 1.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOS</th>
<th>- T L -</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 .15</td>
<td>7400 .15</td>
</tr>
<tr>
<td>4001 .20</td>
<td>7401 .35</td>
</tr>
<tr>
<td>4002 .20</td>
<td>7402 .20</td>
</tr>
<tr>
<td>4004 .35</td>
<td>7403 .25</td>
</tr>
<tr>
<td>4006 1.20</td>
<td>7404 .15</td>
</tr>
<tr>
<td>4007 .35</td>
<td>7405 .25</td>
</tr>
<tr>
<td>4008 .95</td>
<td>7406 .35</td>
</tr>
<tr>
<td>4009 .30</td>
<td>7407 .56</td>
</tr>
<tr>
<td>4010 .45</td>
<td>7408 .26</td>
</tr>
<tr>
<td>4011 .20</td>
<td>7409 .15</td>
</tr>
<tr>
<td>4012 .20</td>
<td>7410 .10</td>
</tr>
<tr>
<td>4013 .40</td>
<td>7411 .25</td>
</tr>
<tr>
<td>4014 1.10</td>
<td>7412 .30</td>
</tr>
<tr>
<td>4015 .95</td>
<td>7413 .45</td>
</tr>
<tr>
<td>4016 .35</td>
<td>7414 1.10</td>
</tr>
<tr>
<td>4017 1.10</td>
<td>7415 .26</td>
</tr>
<tr>
<td>4018 .50</td>
<td>7416 .40</td>
</tr>
<tr>
<td>4019 .60</td>
<td>7420 .15</td>
</tr>
<tr>
<td>4020 .85</td>
<td>7426 .30</td>
</tr>
<tr>
<td>4021 1.35</td>
<td>7427 .45</td>
</tr>
<tr>
<td>4022 .95</td>
<td>7430 .15</td>
</tr>
<tr>
<td>4023 .25</td>
<td>7432 .30</td>
</tr>
<tr>
<td>4024 .75</td>
<td>7437 .35</td>
</tr>
<tr>
<td>4025 .25</td>
<td>7438 .35</td>
</tr>
<tr>
<td>4026 1.95</td>
<td>7440 .25</td>
</tr>
<tr>
<td>4027 .50</td>
<td>7441 1.15</td>
</tr>
<tr>
<td>4028 .95</td>
<td>7442 .45</td>
</tr>
<tr>
<td>4030 .35</td>
<td>7443 .85</td>
</tr>
<tr>
<td>4033 1.50</td>
<td>7444 .45</td>
</tr>
<tr>
<td>4034 2.45</td>
<td>7445 .65</td>
</tr>
<tr>
<td>4036 1.25</td>
<td>7446 .95</td>
</tr>
<tr>
<td>4040 1.35</td>
<td>7447 9.5</td>
</tr>
<tr>
<td>4041 .69</td>
<td>7448 .70</td>
</tr>
<tr>
<td>4042 .95</td>
<td>7450 .25</td>
</tr>
<tr>
<td>4043 .95</td>
<td>7451 .25</td>
</tr>
<tr>
<td>4044 .95</td>
<td>7453 .20</td>
</tr>
<tr>
<td>4046 1.75</td>
<td>7454 .25</td>
</tr>
<tr>
<td>4049 .70</td>
<td>7456 .40</td>
</tr>
<tr>
<td>4050 .50</td>
<td>7457 .40</td>
</tr>
<tr>
<td>4066 .95</td>
<td>7472 .40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINEARS, REGULATORS, etc.</th>
<th>TRANSISTORS, LEDS, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8266 .35</td>
<td>LM320K5 (905) 1.65</td>
</tr>
<tr>
<td>MCT2 .95</td>
<td>LM320K12 1.65</td>
</tr>
<tr>
<td>8038 .35</td>
<td>LM320K18 1.65</td>
</tr>
<tr>
<td>LM201 .75</td>
<td>LM320T12 1.65</td>
</tr>
<tr>
<td>LM301 .25</td>
<td>LM320T15 1.65</td>
</tr>
<tr>
<td>LM308 (Mini) .75</td>
<td>LM339 .95</td>
</tr>
<tr>
<td>LM309H .65</td>
<td>7805 (340TS) .95</td>
</tr>
<tr>
<td>LM309K (340K-5) .85</td>
<td>LM340T24 .95</td>
</tr>
<tr>
<td>LM311 .15</td>
<td>LM340T24 2.15</td>
</tr>
<tr>
<td>LM311D (Mini) .75</td>
<td>LM340T24 1.25</td>
</tr>
<tr>
<td>LM318 (Mini) .65</td>
<td>LM340K12 .95</td>
</tr>
<tr>
<td>LM318 .35</td>
<td>LM340K15 1.25</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>LM340K18 .95</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>LM340K24 .95</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>LM373 2.95</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>LM380 .95</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>LM709 (B,14 PIN) .25</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>LM711 .45</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>LM7451 .65</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>NE565 .50</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>NE566 .95</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>NE566 1.75</td>
</tr>
<tr>
<td>LM318 .65</td>
<td>NE567 1.35</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS UNLIMITED
7889 Clairemont Mesa Boulevard, San Diego, California 92111
(714) 278-4394 (Calif. Res.)
All orders shipped prepaid
Open accounts invited
COD orders accepted

SPECIAL DISCOUNTS
Total Order Deduct
$35 - $99 5%
$100 - $300 10%
$301 - $1000 15%
$1000 - Up 20%

Discounts available at OEM Quantities California Residents add 6% Sales Tax
All IC’s Prima/Guaranteed. All orders shipped same day received.

24 Hour Toll Free Phone 1-800-854-2211 MasterCharge / BankAmericard / AE
Ham Radio Humor
by R. W. Johnson, W6MUR

The first of its kind! A collection of limericks, poems, famous advertisements, jokes and one liners, prose and miscellany both reprints and originals — all which an element of humor you’re sure to enjoy. Round out your ham library with this light-hearted book!

Order RWJ-HU
Greenville, NH 03048

- Enclosed is $4.95 — send me a copy of Ham Radio Humor.
- NAME
- ADDRESS
- CITY _STATE ZIP

We’re Microwave Associates, Inc., a brisk pace-setter in the rapidly expanding telecommunications field. With a growth rate of some 35% and sales in excess of $60,000,000, we’re moving ahead dramatically. Right now our Communication Equipment Group — a select and respected team — needs several professionals with the capability to keep pace with us.

R-F Development Engineer
You’ll develop solid state microwave sources and design microwave transistor amplifiers and varactor multipliers. A minimum of 5 years design experience in the development of VHF through microwave utilizing transistors and varactor type sources, plus B.S.E.E. or equivalent is required.

R-F Technician
You will be assisting in the development of various circuits ranging from low frequency of UHF region. An Associates Degree or equivalent plus 3 years related experience is required.

Electronic Technician
An Associates Degree or equivalent is necessary. Duties include the development of power supplies, logic circuitry, analog and digital controls and logic equipment.

In addition, to the above positions, we also have openings for experienced P.C. Board and Mechanical Drafts Persons.

If you are interested in moving ahead in one of the fastest-growing areas of technology, please call or send resume — including salary requirements and indicating your area of interest — to Martha Hoo, (617) 272-3000 ext. 886.

Microwave Associates, Inc. offers excellent salaries and company benefits, including our new Employee Stock Ownership Plan, and a firm commitment to promote from within.

ERICKSON COMMUNICATIONS
5935 N. Milwaukee Ave.
Chicago, IL 60646
(312) 631-5181

ERICKSON COMMUNICATIONS
5935 N. Milwaukee Ave.
Chicago, IL 60646
(312) 631-5181

MICROWAVE ASSOCIATES, INC.
COMMUNICATIONS EQUIPMENT GROUP
Third Avenue, Burlington, Massachusetts 01803
An Equal Opportunity Employer

More Details? CHECK — OFF Page 126
You've requested it, and now it's here! The CT-50 frequency counter kit has more features than counters selling for twice the price. Measuring frequency is now as easy as pushing a button, the CT-50 will automatically place the decimal point in all modes, giving you quick, reliable readings. Want to use the CT-50 mobile? No problem, it runs equally well on 12 V dc as it does on 110 V ac. Want super accuracy? The CT-50 uses the popular TV color burst freq. of 3.579545 MHz as reference. Tap off a color TV with our adapter and get ultra accuracy — .001 ppm! The CT-50 offers professional quality at the unheard of price of $79.95. Order yours today!

CT-50, 60 MHz counter kit ... $79.95
CT-50 WT, 60 MHz counter, wired and tested 159.95
CT-600, 600 MHz prescaler option for CT-50, add 29.95

Want a clock that looks good enough for your living room? Forget the competitor’s kludges and try one of our! Features: jumbo 4" digits. Polaroid lens filter, extruded aluminum case available in 5 colors, quality PC boards and headers. All parts are included, no extras to buy. Fully guaranteed. One to two hour assembly time. Colors: silver, gold, black, bronze, blue (specify).

Clock kit, DC-5 ... $22.95
Alarm clock, DC-8, 12 hour only 24.95
Mobile clock, DC-7 ... 25.95
Clock kit with 10 min ID timer, DC-10 25.95
Assembled and tested clocks available, add $10.00

Wired, tested, PS-18 ... $59.95
K-IT, PS-18 ... $44.95

Extend the range of your counter to 680 MHz. Works with all counters. Less than 150 mv sensitivity. Specify ‘PC’ on order.

Wired, tested, PS-18 ... $59.95
K-IT, PS-18 ... $44.95

The famous PC class C power amp now available mail order! Four Watts as for 30 Watts out, in 2 in for 15 out, 1 in for 5 out, incredible value, complete with all parts, instructions and details on T-R relay. Case not included. Complete Kit, PA-1 .. $24.95

30 watt 2 meter Power Amp

Regulator

MRB 238 20W VHF .. $11.95
NPN 2N3904 type ... 10.00
PNP 2N3906 type ... 13.00
NPN Power Tab 40W .. 3.00
PNP Power Tab 40W .. 3.00
FET 102 type .. 3.00
UJT 2N2464 type ... 3.00
2N3905 NPN Power 75 ... 1.95

DIODES: 1KV 2.5A ... $5.00
100V, 1A ... 10.00
1N814A type .. 50.00

14 PIN ... 5.00
16 PIN ... 5.00
24 PIN ... 6.00
40 PIN ... 7.00

6 hole Bulm Bears .. 5.00

Satisfaction guaranteed or money refunded. Orders over $10.00 add $1.00. Orders under $10.00 add 75c. NY residents add 8% sales tax.

More Details? CHECK — OFF Page 126
1977 ARRL FLORIDA GULF COAST CONVENTION
Clearwater Beach, November 19 and 20
Sponsored By
Florida Gulf Coast Amateur Radio Council

Only REAL Convention in the South-east with Exhibitors, Flea Mkt., Technical Sessions, FCC Exams, Forums, QCWA, AWA, SMIRK, 10-10 Club, etc. Full Ladies activities plus hotel facilities on the Golf.

Tickets: Adv’d. $3 Single; $5 Family
+ 2 Bonus tickets. Banquet: $9
(Reserve early)

Ray Spence, FCC Chief Eng., Bob and Ellen White, of ARRL as guest speakers at Forums. Saturday Eve Banquet with IARU President, Noel Eaton, VE3CJ, as guest speaker.

Full Info and reservation for Sheraton Hotel contact:
F.G.C.A.R.C. Convention
P. O. Box 157
Clearwater, Florida 33517

Plug it in like a key
and send perfectly timed Morse code as easily as typing a letter. Sidetone and buffer register make it simple to send at the speed you select.

Available directly from the factory for only $225 plus postage & handling. Mastercharge or BankAmericard accepted. Call or write to order or request complete specifications and options.
Synthesizer 220

Compatible with virtually all 220 transceivers; Clegg, Midland, Cobra, etc.

The Synthesizer 220 is a 1¼ meter frequency synthesizer. Frequency is adjustable in 5 KHz steps from 220.00 MHz to 225.00 MHz with its digital readout thumb wheel switching. Transmit offsets are digitally programmed on a diode matrix, and can range from 100 KHz to 10 MHz. No additional components are necessary.

FEATURES

- T² Logic
- Maximum offset versatility – easily programmed to any IF and transmitter offset between 100 KHz and 30 MHz in even 100 KHz increments.
- Simple jumper wire change enables use on rigs with 18, 9, 6 MHz transmit crystals.
- All frequencies locked to one master crystal oscillator.
- 2 pole output filter on receive line.
- Virtually no measurable difference in spurious outputs between crystal or SYN 220.
- Lookup time typically 150 milliseconds.
- Easily interfaced to most rigs.

SPECIFICATIONS

- Frequency: 220 – 225 MHz
- Transmit offsets: Simplex, +1.6 MHz, -1.6 MHz plus 3 additional field programmable offsets.
- Output: 3 volts to a 50Ω load.
- Input voltage: 11 – 18 VDC at .900 amps.
- Size: 8″ long x 5½” wide x 2¾” high
- Complete kit including all electronics, crystal, thumb wheel switch, cabinet, etc.
- Shipping weight 2 lb. 4 oz.

KIT $169.95 – Wired & Tested $239.95

Prices and specifications are subject to change without notice. Export prices are slightly higher.

IN AREAS NOT SERVED BY A VHF ENGINEERING DEALER, SEND THIS ORDER FORM.

THE WORLD'S MOST COMPLETE LINE OF VHF - FM KITS AND EQUIPMENT

DIVISION OF BROWNIAN ELECTRONICS CORP.

Box H / 320 Water St. / Binghamton, NY 13901
Phone 607-723-9574

ORDER FORM

<table>
<thead>
<tr>
<th>Item</th>
<th>Price Each</th>
<th>Quantity</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesizer 220 Kit</td>
<td>$169.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesizer 220 Wired & Tested</td>
<td>$239.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name ___________________________ Total ___________________________

Address ___________________________ Shipping ___________________________

City ___________________________ NYS Resident ___________________________

State ___________________________ Sales Tax ___________________________

Zip ___________________________ Total Enclosed ___________________________

Expiration Date ___________________________

Master Charge or Bank Americard No. ___________________________

Bank No. ___________________________

Bank Americard

More Details? CHECK – OFF Page 126
<table>
<thead>
<tr>
<th>State</th>
<th>Store Name</th>
<th>Address</th>
<th>Phone Number</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>LONG'S ELECTRONICS</td>
<td>3521 Tenth Ave, North</td>
<td>800-633-3410</td>
<td>Call us Toll Free to place your order.</td>
</tr>
<tr>
<td>Arizona</td>
<td>MASTERS COMMUNICATIONS</td>
<td>7025 N. 57th Drive</td>
<td>602-939-8356</td>
<td>Rohn tower distributor, Atlas, Radio Shack, Icom, Tempo & service.</td>
</tr>
<tr>
<td>Arizona</td>
<td>POWER COMMUNICATIONS</td>
<td>6012 North 27th Ave.</td>
<td>602-242-8990</td>
<td>Arizona's #1 Ham Store.</td>
</tr>
<tr>
<td>California</td>
<td>C & A ELECTRONICS</td>
<td>2529 East Carson St. P.O. Box</td>
<td>213-834-5868</td>
<td>Not the biggest but the best since 1962.</td>
</tr>
<tr>
<td>California</td>
<td>COMMUNICATIONS CENTER</td>
<td>705 Amador Street</td>
<td>707-642-7223</td>
<td>Who else has a Spectrum Analyzer?</td>
</tr>
<tr>
<td>California</td>
<td>HAM RADIO OUTLET</td>
<td>999 Howard Avenue</td>
<td>415-342-5757</td>
<td>Visit our stores in Van Nuys and Anaheim.</td>
</tr>
<tr>
<td>California</td>
<td>QUEMENT ELECTRONICS</td>
<td>1000 So. Bascom Avenue</td>
<td>408-998-5900</td>
<td>Serving the world's Radio Amateurs since 1933.</td>
</tr>
<tr>
<td>Colorado</td>
<td>C W ELECTRONIC SALES CO.</td>
<td>1401 Blake St. Denver</td>
<td>303-573-1386</td>
<td>Rocky Mountain area's complete ham radio distributor.</td>
</tr>
<tr>
<td>Colorado</td>
<td>MILE-HI COMMUNICATIONS, INC.</td>
<td>1970 South Navao Denver</td>
<td>303-936-7108</td>
<td>Rocky Mountain's newest ham store.</td>
</tr>
<tr>
<td>Florida</td>
<td>AGL ELECTRONICS, INC.</td>
<td>1800-B Drew St. Clearwater</td>
<td>813-461-HAMS</td>
<td>West Coast's only full service Amateur Radio Store.</td>
</tr>
<tr>
<td>Florida</td>
<td>CENTRAL EQUIPMENT CO.</td>
<td>18451 W. Dixie Highway</td>
<td>305-932-1816</td>
<td>Specializing in Amateur, CB & Marine Equipment.</td>
</tr>
<tr>
<td>Florida</td>
<td>RAY'S AMATEUR RADIO</td>
<td>1590 US Highway 19 So.</td>
<td>813-535-1416</td>
<td>West coast's only dealer: Drake, Icom, Cushcraft, Hustler.</td>
</tr>
<tr>
<td>Illinois</td>
<td>ERIKSON COMMUNICATIONS, INC.</td>
<td>5935 North Milwaukee Ave.</td>
<td>312-631-5181</td>
<td>Hours: 9:30-9 Mon. & Thurs. 9:30-5 Tues., Wed., Fri. 9-3 Sat.</td>
</tr>
<tr>
<td>Illinois</td>
<td>SPECTRUM INC.</td>
<td>1009 Garfield Street</td>
<td>312-848-6777</td>
<td>Chicagoland's Amateur Radio leader.</td>
</tr>
<tr>
<td>Indiana</td>
<td>HOOSIER ELECTRONICS</td>
<td>P.O. Box 2001</td>
<td>812-238-1456</td>
<td>Ham Headquarters of the Midwest. Store in Meadow Shopping Center.</td>
</tr>
<tr>
<td>Iowa</td>
<td>BOB SMITH ELECTRONICS</td>
<td>12 South 21st Street</td>
<td>515-576-3886</td>
<td>For an EZ deal.</td>
</tr>
<tr>
<td>Kansas</td>
<td>ASSOCIATED RADIO</td>
<td>8012 Conser P.O.B.</td>
<td>913-381-5901</td>
<td>Amateur Radio's Top Dealer.</td>
</tr>
<tr>
<td>Kentucky</td>
<td>COHOON AMATEUR SUPPLY</td>
<td>Highway 475</td>
<td>502-886-4535</td>
<td>Yeeus, Ten-Tec, Tempo, Dentron. Our service is the BEST.</td>
</tr>
<tr>
<td>Kentucky</td>
<td>PROFESSIONAL ELECTRONICS, INC.</td>
<td>1710 Joan Avenue</td>
<td>301-792-0500</td>
<td>New & Used Amateur Equipment.</td>
</tr>
<tr>
<td>Kentucky</td>
<td></td>
<td></td>
<td>301-661-2123</td>
<td>A professional place for amateurs. Service-sales-design.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>TUFTS RADIO ELECTRONICS</td>
<td>386 Main Street</td>
<td>617-395-8280</td>
<td>New England's friendliest ham store.</td>
</tr>
<tr>
<td>State</td>
<td>Name</td>
<td>Address</td>
<td>Phone</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Michigan</td>
<td>Amateur Radio Dealer</td>
<td>1207 West 14 Mile Road Clawson, MI 48017</td>
<td>313-435-5560</td>
<td>same location for 25 years.</td>
</tr>
<tr>
<td>Minnesota</td>
<td>ERI Electronic Center, Inc.</td>
<td>127 Third Avenue North Minneapolis, MN 55401</td>
<td>612-371-5240</td>
<td>ECI is still your best buy.</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Communications Center, Inc.</td>
<td>2226 North 48 St. Lincoln, NE 68504</td>
<td>800-228-4097</td>
<td>Your Full Line Authorized Yaesu Dealer.</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Evans Radio, Inc.</td>
<td>Box 893, Rt. 3A Bow Junction Concord, NH 03301</td>
<td>603-224-9961</td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Atkinson & Smith, Inc.</td>
<td>17 Lewis St. Eatontown, NJ 07724</td>
<td>201-542-2447</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>Electronic Module</td>
<td>601 N. Turner Hobbs, NM 88240</td>
<td>505-397-3012</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>Adirondack Radio Supply, Inc.</td>
<td>185 W. Main Street Amsterdam, NY 12010</td>
<td>518-842-8350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CFP Communications</td>
<td>211 North Main Street Horsham, PA 19010</td>
<td>607-739-0187</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand Central Radio</td>
<td>124 East 44 Street New York, NY 10017</td>
<td>212-682-3869</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harrison</td>
<td>"Ham Headquarters, USA" Route 110 & Smith Street Farmingdale, L. I., N. Y. 11735</td>
<td>516-293-7990</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radio World</td>
<td>Oneida County Airport Terminal Bldg. Oriskany, NY 13424</td>
<td>315-337-2622</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Universal Service</td>
<td>114 N. Third Street Columbus, OH 43215</td>
<td>614-221-2335</td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Radio Store, Inc.</td>
<td>2102 Southwest 59th St. (At 59th & S. Pennsylvania) Oklahoma City, OK 73119</td>
<td>405-682-2929</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Electronic Exchange</td>
<td>136 N. Main Street Soudarton, PA 18964</td>
<td>215-723-1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ham Buenger</td>
<td>68 N. York Road Willow Grove, PA 19090</td>
<td>215-659-5900</td>
<td></td>
</tr>
<tr>
<td>South Carolina</td>
<td>Amateur Radio Electronics</td>
<td>100 State St. West Columbia, SC 29169</td>
<td>803-796-7957</td>
<td>Featuring Swan Equipment</td>
</tr>
<tr>
<td>Tennessee</td>
<td>German Town Amateurs Supply</td>
<td>3203 Summer Ave. Memphis, TN 38112</td>
<td>800-238-6168</td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>AGL Electronics</td>
<td>3068 Forest Lane, Suite 309 Dallas, TX 75234</td>
<td>800-527-7418</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardin Electronics</td>
<td>5635 E. Rosedale Ft. Worth, TX 76112</td>
<td>817-461-9761</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Amateur Electronic Supply, Inc.</td>
<td>4828 West Fond du Lac Avenue Milwaukee, WI 53216</td>
<td>414-442-4200</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>Amateur Radio Supply Co.</td>
<td>6213 13th Avenue South Seattle, WA 98108</td>
<td>206-767-3222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denco Communications Center</td>
<td>1728 East 2nd Street Casper, WY 82601</td>
<td>307-234-9197</td>
<td></td>
</tr>
</tbody>
</table>

See Warren K21XN or Joe WB2GJR
ATLAS 350XL DENTRON MLA 2500 WILSON HT's REPEATERS

For details on this new supersales service, call toll FREE 800-233-0250, in Pa. call (717) 299-7221 collect. Or visit the new Clegg supersales center, 208 Centerville Road. Lancaster, Pa. 17603.

NOW! A NEW SUPERSERVICE TO FILL ALL YOUR HAM NEEDS.

Clegg

THE FINEST ANTENNA TUNER AVAILABLE

- Presents 50-75 Ohm Resistive Load to Your Transmitter Using Virtually Any Antenna System
- Improved Ultimate Transmatch Circuit Matches coax, Random Wire and Balanced Antennas
- Continuous 1.7-30 MHz Coverage
- 229-203 Rotary Inductor (28 JH)
- Rugged Cast Aluminum Turn Counter
- Handles 3 KW PEP
- Monimatch SWR Circuit
- Heavy Duty Balun
- Velvet-Smooth 6 to 1 Vernier Tuning
- 0-100 Logging Scale on Capacitors
- Available in Kit Form or Assembled
- One Year Factory Warranty
- Available without SWR for use with your present SWR meter or wattmeter.
- Custom Vacuum Capacitor Designs and Individual Components Available

Call or Write for Pricing, Spec Sheet, and FREE Amateur Market Antenna Tuner Comparison Chart That Tells It Like It Is! Dealer Inquiries Invited.

P. O. Box 11
Ladysmith, WI 54848

IMPRESSES ALL SSB & CW STATIONS PR-1000 VARIABLE AUDIO FILTER

Greatly improves reception and audio selectivity of even the best ham receiver. Easy to operate and quickly connects between any ham receiver, transceiver or SWL receiver and speaker (or headphone). Provides variable selectivity bandwidth of 40 Hertz to 3000 Hertz with selectivity skirts a minimum of 85db. Super sharp 75db variable notch rejects nearby CW stations as close as 100 Hertz! Incorporates the latest electronic audio filtering circuitry. Five (5) integrated circuits with self contained 110 volt AC power supply and one watt audio amplifier. Attractive low profile eglidshell white cabinet with wood grain sides.

PRIME ELECTRONICS, INC. Dept. HR 221 West Market St. Derby, KS 67037
Please send me more information
PR-1000 Variable Audio Filters @ $99.95 each plus $5.00 postage & handling. Check or M.O. enclosed.
Name ____________________________
Address __________________________
City __________________ State ______ Zip __

Distributor and dealer inquiries invited.

Get the most from your antenna!

With the Omega-t Antenna Noise Bridge you can test for resonant frequency and impedance... adjust and retest... until your antenna performs at its optimum. Use the Noise Bridge to trim RF lines for best performance, too.

This patented design uses your sensitive receiver as a bridge detector, out-performing more expensive test equipments.

Reduce power loss due to mismatch — now! Get more details or order today.

Model TE7-91... 1-100 MHz range: $44.95
Model TE7-90... 1-300 MHz range: $44.95

P. O. Box 1346
RICHARDSON, TEXAS 75080
TELEPHONE (214) 231-9303

Sold at Amateur Radio Dealers or Direct from Electrospace Systems, Inc.

MILITARY SURPLUS WANTED

Space saves more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer: 201 440-8777.

SPACE ELECTRONICS CO.
Div of Military Electronics Corp.
35 Ruta Court, S. Hackensack, N.J. 07606

TEMPO-ONE OWNERS A NEW RIG FOR $50* More RX gain and selectivity, TX like undistorted kilowatt, extra carrier suppression.
Details: Dering Holding Co., 39/41 Mining Lane, Blackburn, BB2 2AF, England. Tel. (0254) 201 440-8777.

G2LL's RF Clipper Models FT1.01 and Tempo-One

*1st. price air postage, BankAmericard, Mastercharge, check.

IAMBIC KEYER

Fully Iambic, both DIT & DAH paddle memories, self completing characters, automatic spacing & weighting, sidetone output, transistorized output that keys, grid block or cathode keyed rig, speed from 5 to 40 w.p.m. The Paddles are on a beautiful finished wood base.

Kit $39.75 with Paddles $65.00
Assembled $65.95 with Paddles $80.00
Order from P. O. Box 426

DAYTRONICS COMPANY
12 OAKDALE AVE.
SELDEN, N. Y. 11784

More Details? CHECK OFF Page 126
3 new ones from Ham Radio’s Bookstore.

Already a best-seller in Europe!

New English language edition

The bible on SSB — originally published by Collins Radio Company

New softcover edition from Ham Radio!

Profusely illustrated with many diagrams, charts and photographs.

OSCAR — Amateur Radio Satellites
by Stratis Caramanolis
The comprehensive book on Amateur satellites. Learn the principles and then examine OSCAR from concept to actual use. A handsome volume.
200 pages, softbound
Order RS-O
Just $8.50

AMATEUR SINGLE SIDEBAND
A complete introduction to SSB and its equipment. Covers tests, measurements, and much more. A very readable must for anyone involved with SSB.
Order HR-SSB Just $4.95

New 4th Edition! Just Released!
RADIO DATA REFERENCE BOOK
by T. G. Giles, G4CDY & G. R. Jessop, G6JP
A handy reference for both Amateurs and engineers. Completely revised and updated. Over 25% more essential data in a convenient and more useful form.
Hardbound
Order RS-DJF Only $6.95

To Order CALL Today
TOLL FREE!
800-258-5353

More Details? CHECK—OFF Page 126

October 1977
CRYSTAL FILTERS and DISCRIMINATORS

9.0 MHz FILTERS
- XP9-A 2.5 kHz SSB TX $31.95
- XP9-B 2.4 kHz SSB RX/TX $31.45
- XP9-C 3.75 kHz AM $48.95
- XP9-D 5.0 kHz AM $48.95
- XP9-E 12.0 kHz NBFM $48.95
- XP9-M 0.5 kHz CW (4 pole) $34.25
- XP9-NB 0.5 kHz CW (8 pole) $63.95

9.0 MHz CRYSTALS (Hc25/u)
- XF900 9000.0 kHz Carrier $4.00
- XF901 8998.5 kHz $4.00
- XF902 9001.5 kHz LSB $4.00
- XF903 8999.0 kHz BFO $4.00

PRE-SELECTOR FILTERS

3 POLE, INTERDIGITAL
LOW LOSS 0.15 dB
- 420-450 MHz PSI432 $36.70
- 1250-1340 MHz PSI1296 $36.70

3 POLE, INTERDIGITAL
LOW LOSS 0.15 dB
- 420-450 MHz PSI432 $36.70
- 1250-1340 MHz PSI1296 $36.70

LINEAR AMPLIFIERS

COMPATIBLE WITH OUR LOW POWER TRANSVERTERS.
10W DRIVE, 50W IN/OUT
- EDL432, 50W (ILLUS) $139.95

EDL144, 100W 2M, IN CABINET, WITH 115V POWER SUPPLY $299.95

UPC Shipping at Cost

ANTENNAS (FOB) CONCORD

144-148 MHz
- 8 OVER 8 J-SLOT + 12.3 dB D8/2M $39.95
- 8 BY 8 VERTICAL POL. D8/2M-VERT. $48.70
- 8X/2M $34.95

420-450 MHz MULTIBEAMS
- 48 EL. GAIN + 15.7 dB dBi 70/MBM48 $44.95
- 88 EL. GAIN + 18.5 dB dBi 70/MBM88 $69.95
- 1250-1340 MHz $69.95
- 1296 MHz LOOP YAGI $69.95
- 26 LOOPS GAIN + 20 dBi 1296-LY $54.45

EDL432P, INCL. POWER SUPPLY/CABINET $299.95
EDL144, 100W 2M, IN CABINET, WITH 115V POWER SUPPLY $299.95

Spectrum International, Inc.
Post Office Box 1084
Concord, MA 01742, USA

2 METER F.M. SPECIALS

MOTOROLA T43A SERIES
150 MHz, 12 volt, 30 watts, transmitter narrow band with dynamotor power supply, receiver wide band (Sensicon "A" type) with vibrator power supply, 15" case, less accessories (not bench tested) $10.00

control head (less mike and bracket) $5.00

power and control cable, set $3.00

4.0 MHz FILTERS
- XP9-K 4.0 kHz SSB TX $31.95
- XP9-L 3.75 kHz AM $48.95
- XP9-M 0.5 kHz CW (4 pole) $34.25
- XP9-NB 0.5 kHz CW (8 pole) $63.95

9.0 MHz CRYSTALS (Hc25/u)
- XF900 9000.0 kHz Carrier $4.00
- XF901 8998.5 kHz $4.00
- XF902 9001.5 kHz LSB $4.00
- XF903 8999.0 kHz BFO $4.00

F-05 Hc25/u Socket Chassis $50
F-06 Hc25/u Socket P.C. Board $50

ALSO AVAILABLE FROM KVG

10.7 MHz CRYSTAL FILTERS
OSCILLATOR CRYSTALS 50 kHz TO 150 MHz
Write for Details

PRE-SELECTOR FILTERS

3 POLE, INTERDIGITAL
LOW LOSS 0.15 dB
- 420-450 MHz PSI432 $36.70
- 1250-1340 MHz PSI1296 $36.70

3 POLE, INTERDIGITAL
LOW LOSS 0.15 dB
- 420-450 MHz PSI432 $36.70
- 1250-1340 MHz PSI1296 $36.70

LINEAR AMPLIFIERS

COMPATIBLE WITH OUR LOW POWER TRANSVERTERS.
10W DRIVE, 50W IN/OUT
- EDL432, 50W (ILLUS) $139.95

EDL144, 100W 2M, IN CABINET, WITH 115V POWER SUPPLY $299.95

UPC Shipping at Cost

ANTENNAS (FOB) CONCORD

144-148 MHz
- 8 OVER 8 J-SLOT + 12.3 dB D8/2M $39.95
- 8 BY 8 VERTICAL POL. D8/2M-VERT. $48.70
- 8X/2M $34.95

420-450 MHz MULTIBEAMS
- 48 EL. GAIN + 15.7 dB dBi 70/MBM48 $44.95
- 88 EL. GAIN + 18.5 dB dBi 70/MBM88 $69.95
- 1250-1340 MHz $69.95
- 1296 MHz LOOP YAGI $69.95
- 26 LOOPS GAIN + 20 dBi 1296-LY $54.45

EDL432P, INCL. POWER SUPPLY/CABINET $299.95
EDL144, 100W 2M, IN CABINET, WITH 115V POWER SUPPLY $299.95

UPS Shipping at Cost

Now get TPL COMMUNICATIONS quality and reliability at an economy price. The solid state construction, featuring magnetically coupled transistors and a floating ground, gives you an electronically protected amplifier that should last and last.

The Linear Bias Switch allows you to operate on either FM or SSB. The 702 and 702B are exceptionally well suited for 2-meter SSB. Typical power output levels as high as 100W PEP can be achieved with the proper drive.

The broad band frequency range means that your amplifier is immediately ready to use. No tuning is required for the entire 2-meter band and adjacent MARS channels on TPL's new Econo-line.

See these great new additions to the TPL COMMUNICATIONS product line at your favorite radio dealer.

Call or write for prices and information on TPL's complete line of amateur and commercial amplifiers.

COMUNICATIONS INC.
1324 W. 1235TH ST., GARDENA, CA 90247 (213) 538-9814
Canada: A.C. Simmons & Sons Ltd., 281 Yorkland Blvd., Willowdale, Ontario M2J 1B8
Export: EMEC Inc., 2530 South 30th Avenue, Hollywood, Fla., 33020

More Details? CHECK—OFF Page 126
ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.

- Powered by 6-16vdc, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Low distortion sinewave output
- Available in all EIA tone frequencies, 67.0 Hz-203.5 Hz
- Complete immunity to RF
- Reverse polarity protection built-in

$29.95 each

Wired and tested, complete with K-1 element

communications specialists
P. O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

K-1 FIELD REPLACEABLE, PLUG-IN, FREQUENCY DETERMINING ELEMENTS

$3.00 each

More Details? CHECK OFF Page 126
The Frequency Standard is factory connected to your receiver is Canada. California residents add appear.

The Palomar Engineers Frequency Standard gives sharp clear markers throughout the high frequency band from 160 through 6 meters. With the panel switch in 100 KH position the markers can be heard every 100 KH for checking calibration of your receiver, transceiver, or VFO. Additional markers can be turned on with the panel switch every 50, 25, 10 or 5 KH.

The exclusive Palomar Engineers circuit generates only the wanted markers. No extra "ghost" markers appear.

Connection to your receiver is simple. A twisted-wire capacitor from the Standard to the receiver rf amplifier or mixer. Or a short "antenna" connected to the Standard may radiate enough marker signal.

The Frequency Standard is factory set to frequency and the setting can be checked and adjusted with the "zero" trimmer while listening to WWV or a broadcast station. All markers are as accurate as the WWV calibration, typically .001%.

Don't take chances; check your frequency. Use the Standard with the wide range of selectable markers, the time-proven Palomar Engineers Frequency Standard.

Send for free brochure.

The price is $37.50 (9-v battery included) and we deliver postpaid anywhere in the U.S. and Canada. California residents add sales tax. ORDER YOURS NOW!

ENERGY CRISIS SOLVED!

Personal energy crisis? Get precious RF on DX targets. World Recorders. Breaking antenna that won WSTP the QRP ARC 10.000,000 miles awayward.

THE JOYSTICK VFA

Variable freq. ant. gives low angle, omnidirectional, harmonic free radiation on all bands 160 thru 10. MARS and receive on all BC & SW.

1000's of glowing reports in our files of the VFA in use. when in your QTH and/or under QRP, contests, etc.

SYSTEM ‘A’ $75.00

250W.F.F. R.F. Improvement Filter Receiver

Price $19.95

Freq. set at factory $5.00 extra

Calibrated 6%.

Send for more info

NEW ELECTRONIC PARTS

SPECIALS

- Keyboard Enclosures

BE ON TARGET

with JAN QUARTZ CRYSTALS

ENERGY CRISIS SOLVED!

- CB Synthesized
- CB Standard
- General Communications
- Industry
- 2-Meter
- Scanners
- Marine VHF
- Amateur Bands

Dependable USA Mfg. for
- Frequency Control
- Frequency Stability
- High Performance

Write or phone for more details Send 10c for our latest catalog

SUB-AUDIBLE GENERATOR

for FM

- Inexpensive multi tone encoder
- Compatible with PL-CG QC
- Low distortion sine wave
- Input 8-18 VDC unregulated
- Rugged, plastic
- Encased with leads
- Adjustable frequency (98-250 Hz), Lower available
- Excellent stability

Send for free brochure.

TONE ENCODER PAD

MODEL TTP-03

$54.95

POSTPAID

TX RESIDENTS ADD 5% SALES TAX

THE CUBE

BE ON TARGET

with JAN QUARTZ CRYSTALS

NEW ELECTRONIC PARTS

SPECIALS

- Keyboard Enclosures

BE ON TARGET

with JAN QUARTZ CRYSTALS

NEW ELECTRONIC PARTS

SPECIALS

- Keyboard Enclosures

WANTED FOR CASH

- Other tubes and Klystrons also wanted. See last month for other items available.

THE Ted Dames Company

308 Hickory St. Arlington, N.J. 07012
(201) 998-4246 Evenings (201) 998-6475
A Message from Art . . . About AGL

We’ll See You —
October 7th, 8th & 9th at the ARRL WEST GULF DIVISION CONVENTION, Austin
October 28th, 29th & 30th at the LAKE TEXOMA HAMFEST

AGL Electronics

LARRY TULLY, President
ART HOUSEHOLDER, Vice President
GORDON FOGG, Secretary-Treasurer

AGL is a comparatively new company with an old-fashioned philosophy about giving our customers the best service we can deliver at the most competitive price.

Everyone at AGL is a licensed ham operator with a strong electronics background, and although AGL is new, we've probably met and talked with most of you at hamfests for the past many years. (We would rather not discuss how many.)

We think we have accumulated one of the most complete inventories of electronics in the southwest. We've combined that with our own skills and backgrounds and created a business that we hope you will like doing business with.

By the way, if you like to "horse trade" on equipment, you are more than welcome. In fact, we encourage it.

Stop in and see for yourself, you are going to like AGL.

AGL Electronics

CALL US TODAY TOLL FREE AT 1-800-527-7418
CALL 214-241-6414 (In Texas)
LARRY WASWWh GORDON N5AU MIKE WASUOB MIKE WBSACM TOM K5TM BOB W5XC

3068 FOREST LANE, SUITE 309 • DALLAS, TEXAS 75234
TOROID CORES

- All the popular sizes and mixes.
- Fast Service. Same day shipment via first class mail or air.
- No minimum order.

IRON POWDER TOROIDS:

<table>
<thead>
<tr>
<th>SIZE</th>
<th>MIX 2 5-10 MHz</th>
<th>MIX 6 1-10 MHz</th>
<th>MIX 12 50-100 MHz</th>
<th>2 DOZEN</th>
<th>PRICE USA $</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-200</td>
<td>120</td>
<td>2.00</td>
<td>3.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-106</td>
<td>135</td>
<td>1.06</td>
<td>1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-90</td>
<td>55</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-48</td>
<td>57</td>
<td>0.80</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-50</td>
<td>51</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-25</td>
<td>34</td>
<td>0.25</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RF FERRITE TOROIDS:

<table>
<thead>
<tr>
<th>SIZE</th>
<th>MIX 1 1-10 MHz</th>
<th>MIX 2 1-10 MHz</th>
<th>MIX 3 10-150 MHz</th>
<th>2000</th>
<th>PRICE USA $</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-240</td>
<td>1300</td>
<td>2.40</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-125</td>
<td>900</td>
<td>1.25</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-67</td>
<td>690</td>
<td>0.87</td>
<td>2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-50</td>
<td>500</td>
<td>0.50</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-37</td>
<td>400</td>
<td>0.37</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-23</td>
<td>100</td>
<td>0.23</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chart shows uH per 100 turns.

FERRITE BEADS:

- 4x $2.00 DOZEN
- 2x WIDE BAND CHOKES 95¢ EACH

PALOMAR ENGINEERS

BOX 455, ESCONDIDO, CA 92025
Phone: (714) 747-3343

YOU’VE SEEN THE MAGAZINE ARTICLES

Here’s what you can expect from the DX ENGINEERING RF Speech Processor.

- 6 dB INCREASE IN AVERAGE POWER
- MAINTAINS VOICE QUALITY
- IMPROVES INTELLIGIBILITY
- NO CABLES OR BENCH SPACE REQUIRED
- EXCELLENT FOR PHONE PATCH
- NO ADDITIONAL ADJUSTMENTS—MIKE GAIN ADJUSTS CLIPPING LEVEL
- UNIQUE PLUG-IN UNIT—NO MODIFICATIONS REQUIRED

This is RF Envelope Clipping — the feature being used in new transmitter designs for amateur and military use.

Models Now Available
- Collins 323, KWM-2... $98.50 ea.
- Postpaid — Calif. Residents add 6% Tax

Watch for other models later!

DX Engineering

1050 East Walnut, Pasadena, Calif. 91106

SST T-1 RANDOM WIRE ANTENNA TUNER

All band operation (1650-10 meters) with most any random length wire. 300 watt output power capability. Used for portable or home operation. Toroid inductor for small size. 3 x 4.1/2 x 2 3/8. Such a unit makes 50-100 watt transmitters portable. Guaranteed for 1 yr. 10-day trial. Compact size in color. Only $29.95 postpaid. Calif. Sales Tax on Calif. orders only. Warranty for USA only.

SST ELECTRONICS, P.O. BOX 1, LAWNDALE, CA 90260

See our HAM MART listings to find the Amateur Radio dealers nearest you.

Microcomputer Interfacing Workshop

December 8-10, 1977

A three-day workshop based on the popular 8080 and 8085 microprocessors. Over 20 operating microcomputers are available for participant use.

Digital Electronics for Automation Workshop

December 6-7, 1977

A two-day workshop based on the small scale and medium scale TTL integrated circuits. Many hours of laboratory time with individual broadboarding stations will be provided along with in-depth lectures. For more information on these workshops contact Dr. Norris Bell, V.P.I. and S.U. Continuing Education Center, Blacksburg, Virginia 24061, (703) 951-6328.
TS-1 MICROMINIATURE ENCODER-DECODER

- Available in all EIA standard tones 670Hz-2035Hz
- Microminiature in size, 1.25 x 2.0 x .65" high
- Hi-pass tone rejection filter on board
- Powered by 6-16vdc, unregulated, at 3-9ma.
- Decode sensitivity better than 10mvRMS, bandwidth, ±2Hz max., limited
- Low distortion adjustable sinewave output
- Frequency accuracy, ±.25Hz, frequency stability ±.1Hz
- Encodes continuously and simultaneously during decode, independent of mike hang-up
- Totally immune to RF

Wired and tested, complete with K-1 element

$59.95

K-1 field replaceable, plug-in, frequency determining elements

$3.00 each

COMMUNICATIONS SPECIALISTS

P.O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

The Leader in the Northwest!

ATLAS
ICOM
KENWOOD
YAESU

KENWOOD TS-520S

KENWOOD TS-820S

ATLAS 350-XL

YAESU FT-101E

YAESU FT-301D

ABC COMMUNICATIONS
17550 15th AVE. N.E.
SEATTLE, WASH. 98155
206-364-8300

Other locations:
(Walk-in customers only)
Bellevue - 12001 N. E. 12th
Everett - 6920 Evergreen Way

TO PLACE ORDER CALL TOLL FREE IN STATE OF WASH.
1-800-562-7625
Why work in the dark? Your SWR
not resonant antennas from 1 to 100 MHz. And
reactance readings on dipoles, meter or your resistance noise
your antenna.

If there is one place in your station where you cannot risk uncertain results it is in your antenna.

The Palomar Engineers R-X Noise Bridge tells you if your antenna is resonant or not and, if it is not, whether it is too long or too short. All this in one measurement reading. And it works just as well with ham-band-only receivers as with general coverage equipment because it gives perfect null readings even when the antenna is not resonant. It gives resistance and reactance readings on dipoles, inverted Vees, quads, beams, multiband trap dipoles and verticals. No station is complete without this up-to-date instrument.

Why work in the dark? Your SWR meter or your resistance noise bridge tells only half the story. Get the instrument that really works, the Palomar Engineers R-X Noise Bridge. Use it to check your antennas from 1 to 100 MHz. And use it in your shack to adjust resonant frequencies of both series and parallel tuned circuits. Works better than a dip meter and costs a lot less. Send for our free brochure.

The price is $49.95 and we deliver postpaid anywhere in U.S. and Canada. California residents add sales tax.

Italy write i2VTT, P.O. Box 37, 22063 Cantu. Elsewhere send $52.00 (U.S.) for air parcel post delivery worldwide.

Fully guaranteed by the originator of the R-X Noise Bridge. ORDER YOURS NOW!

PLANE XT-7 CALLING EARTH

You too the exciting frontiers of astronomy, with a sense of great adventures to come.

Dinah Mochè THE PHYSICS TEACHER

"Lively, human, thought-provoking"
Ron Bierweiss FEE SPECTRUM

"An inspiration to any young scientists!"
Bernard Burke PHYSICS TODAY

BIG EAR

John Kraus W8JK

228 pages Illustrated

Cyan-Guanus Books, Box 85, Powell, Ohio 43065 $3.25 paper, $6.95 hardcover, postpaid

SEMETECH BRIDGES

Heat sink 5" center hole mtx. 10 Amp — Tested
200 V P.I.V. $1.75 ea. 400 V $1.95 ea. 600 V $2.15 ea.

5 AMP — TESTED
200 V P.I.V. $1.75 ea. 400 V $1.95 ea. 600 V $2.15 ea.

CARBON TRIMMERS

Miniature 1/4 watt units. PC Board style.
200, 700, 1000, 1.5K, 2.5K, 10K, 30V ea. or $5.15 p.p.

NEW SIZES — S.A.T. P.MOY

PC BOARD POTENTIOMETERS

American made, various sizes:
25K, 100K ohms. $5.15 ppd.
CTS Blue wheel. Values: 5K, 1K, 10K, 50K, 100K ohms.

m. weinschenker

electronic specialties, Box 533, IRWINK, PA 15642
SPEND 8 FABULOUS DAYS IN EXCITING HAWAII ON SAROC'S HAWAII WEEK

INCLUDING

SAROC'S THIRD HAWAIIAN CONVENTION
November 1 to 8, 1977

Your holiday includes:

• Attendance at SAROC Hawaiian Convention, Saturday and Sunday, November 5 and 6.
• Seven nights at the fabulous HYATT KUHIMA RESORT HOTEL and COUNTRY CLUB on Oahu's North Shore.
• Roundtrip air transportation, double occupancy in hotel room and SAROC Advance Registration just $350 per person. Limit 2 pieces of luggage per person. Tax and gratuity included.
• Departs Los Angeles, November 1, 1977 — Returns November 8, 1977. (United Airlines OTC Flight)
• $100 deposit immediately, full payment by September 15, 1977.
• SAROC Advance Registration $3.00, with Saturday Banquet $11 per person.

Write for further details

SAROC
BOX 945, BOULDER CITY, NEVADA 89005
Superior Quality and Construction at a price you can afford.

Tristao is a pioneer. Years of designing and manufacturing show in structural performance and practical pricing. Certified welded construction; sandblasted surfaces; hot-dipped galvanized; heavy duty for capacity, strength, safety. Send for FREE Catalog.

Dealer Inquiries always invited.

Self-supporting or Guyed TOWERS

CZ SERIES
Self-supporting 38' to 84' for most tri-band beams in 60 mph winds. Equipped with heavy duty winch.

CTL SERIES
Guyed crank-up 18' thru 105' for tri-band beams to 8 sq. ft. Takes CQD HAM I and similar rotors. Complete installation packages available.

TRISTAO MAST MASTER
Self-supporting Rotating Crank-up

SUPER AND STANDARD MINI-MASTS
Supports 10 sq. ft. antenna in 50 mph winds. Self-supporting With winch and cable Models from 40' to 87'.

FULL LINE OF MINI-MAST ACCESSORIES

NEW EXCLUSIVE ROTOR BASE
For standard CQD or others including HAM II.

CUSTOM TOWERS BUILT TO YOUR SPECIFICATIONS
Masts priced from $198.50

All parts available on request.

TRISTAO TOWER
Division of Palmer Industries, Inc.
415 E. 5th St. - P.O. Box 115
Hanford, CA 93230 / Ph. (209) 582-9016
Send me your complete catalog.

Name ____________________________
Address ____________________________
City ____________________________ State __ Zip ____________________________

1977 October 122
LUNAR proudly announces a NEW 2-Meter AMPLIFIER/PREAMPLIFIER the 2M10-80P

The Marriage Between Power Amplifiers and Receiving Preamplifiers is Finally Consummated! Lunar Offers an SCS 2M10-80L Power Amp and an "Angelinear" 144W Preamp in a Single, Functionally-Designed Package that Combines Two Superior Products Into One!

Features:
- Ten watts input — eighty watts output
- Harmonic reduction exceeds -60 dB to meet FCC R&O 20777 Specifications
- Variable T-R Delay for CW/SSB
- Functionally-Designed Extrusion Includes Mounting Lip
- Preamplifier Selectable Independently of Power Amplifier
- Automatic T-R Switching of Amp & Preamp
- Preamp gain: Nominally 11 dB
- Noise Figure: Nominally 2.5 dB
- (Including Relay Losses)
- Remote Control Head Available Separately

Introductory Price: Lunar Model 2M10-80P $189.95

Please add $3.00 shipping and handling

Also From Lunar:
Available Now: Complete Line of Separate Preamplifiers
50-450 MHz

Coming Soon: Complete Line of 50-450 MHz Amp/Pream
Combinations
Preamps Through 2.5 GHz
Transverter Systems 50 MHz-2.5 GHz
Converters and Filters 2 MHz-2.5 GHz

California residents add 6%. Order today at your dealer or direct from:

LUNAR electronics
SUITE 10
6170 KURTZ ST
SAN DIEGO, CA 92110
714-299-7740
Lourie N. Anciaux WB5NMT

6 DIGIT MINI MOBILE ALARM CLOCK KIT

Many of our customers who have bought our other mobile clock kits (MK.02 & MK.04), have requested a small mobile clock for in dash mounting. We put our engineer to work on it and the result is the compact MK.05. Designed to be a mobile clock from the ground up. There has been no compromise on quality. Take a look at the spec, price, size and compare it with any other clock kit on the market. We will be waiting for your order!

Features:
- Quiet crystal movement
- Voltage protection
- Magnetically, 15 inch, 6 digit LED readout with spacing between hours, minutes, & seconds
- Two Quality epoxy glass PC boards are drilled & plated
- No additional components are required
- Battery life with presentable 34 hr alarm (speaker NOT included)
- Can be used as elapsed timer
- Easy, quick assembly
- 9-14 VDC or 40 to 50 mA
- Readouts can be turned off & the clock continues to keep time
- PC based Clock
- Resistant board: 2 3/8" x 7/5"

MK-05 $12.95

OVERVOLTAGE PROTECTION KIT

The OVP-1 is an overvoltage protection circuit designed to protect your expensive gear if the series pass regulators short or unauthorized hands tamper with the voltage setting on a variable supply. Set the OVP-1 for 1 or 2 volts over the normal operation voltage and it will instantly go into current limiting; if the supply has this feature, or blow the fuse. The kit comes complete with PC board, all components including the 78A SOC and complete easy to follow instructions. Designed specifically for the PS-12 Power Supply Kit.

MK-03 AIRCRAFT/CLOCK TIMER KIT.

You don't have to be a pilot to need the MK-03. If you want a mobile clock that offers: six, 4" LED readouts, 24 hour real time readout, 24 elapsed time readout; alarm, snooze, display blanking, Timer and clock share same set of readouts but are totally independent of each other. Timer has reset and freeze feature, Many other options are available. Sold less case and switches because of the various mountings and options available. $26.95/complete electronics and boards less switches and case.

TERMS: NO COD's * Send check or M.O. * Add 5% postage
Orders over $10. add 60c handling * Repair service available Accepting phone orders on Master Charge and Bankamerica.
GREAT VALUES from Amateur Radio’s most complete selection!

March 1968 (first issue)

May 1969

August 1969
FEATURING: Homebrew Parabolic Reflector, Solid-state Q-Ser. Frequency calibrator with mos IC’s, New multiband quad antenna, Troubleshooting with a scope.

September 1969
FEATURING: FM techniques and practices, IC power supplies, 1560-MHz varactor tripler, Tunable bandpass filters, Amateur microwave standards.

October 1969
FEATURING: Hot Carrier Diodes, Low-cost linear IC’s, Diversity antennas, solid-state 432-MHz exciter, Tropospheric-duct communications.

November 1969
FEATURING: Op Amps ... theory, selection & application, WWV receiver, Multi-band antenna, Electronic key, Six-meter collinear.

June 1970
FEATURING: Communication experiments with light emitting diodes, FM modulation standards, Designing phase-shift networks, Transistor frequency multipliers, RTTY frequency shift meter.

October 1970
FEATURING: An SWR meter for accurate RF power measurements, Direct-conversion receiver, IC voltage regulators, 432 MHz converter, Introduction to thyristors.

December 1970
FEATURING: SSB generator, RF interferometer, Antenna bridge, QRP transmitter, AFSK oscillator.

June 1971
FEATURING: A practical approach to 432-MHz SSB, FM carrier-operated relay, Audio AGC systems, Practical IC’s, Low-noise 1296-MHz preamp.

June 1972
FEATURING: 5 Band solid-state communications receiver, FM repeater control, SSB transceivers, microwave experimenting.

October 1972
FEATURING: 4 channel spectrum analyzer, HF frequency synthesizer, all-band dipole, 160 meter vertical, multi-function IC’s.

February 1973
FEATURING: Communications receiver design, rf speech clipper, fm receiver scanner, Wellesley SL600 integrated circuits, solid-state noise blanker.

HAM RADIO BINDERS
Collectors items deserve the best protection you can give them, and we know of no better than our handsome Ham Radio Binders. Bound in washable buckram and supplied with year labels to identify each volume. Each binder holds 12 issues. Large Size Only $5.95 each 3 for $15.95.

HAM RADIO BOUND VOLUMES
Here is a handsome addition to your library. Twelve issues (a full year) of Ham Radio bound into a rugged, good looking hard cover book. Certainly the most deluxe way to collect Ham Radio and perhaps the only way to acquire some out of print back issues. Years 1973, 1974, 1975 and 1976 available.

March 1973
FEATURING: Solid-state 80-meter transceiver, reciprocating detector receiver, AF SK generator, electronic keys, mobile touchtone.

June 1973
FEATURING: Digital RTTY autostart, fm repeater installation, micropower receiver, broadband filter design, logic oscillators.

July 1973
FEATURING: SSVT test generator, carrier operated relay, VHF receivers, 10-meter frequency synthesizer, antenna matching.

December 1973
FEATURING: Two-meter power amplifier, AFSK generator, VHF cavity filter, Bandpass filter design, High-gain wire antenna.

January 1974
FEATURING: CW memory for RTTY identification, Linear amplifier, IC logic families, FM transceiver, Heatsink design.

April 1974
FEATURING: Communications techniques for Oscar 7, Active filter design, Telefax conversion, FM frequency synthesizer, Bandpass amplifier, Antenna radiation patterns.

May 1974
FEATURING: Sth annual antenna issue, Log periodic, Parabolic antennas, Antennas for satellite communications, Ground systems, Antenna measurements.

August 1974
FEATURING: High-power solid-state linear power amplifier, Wind loading on antenna structures, VHF bandwidth, SSB transceivers, Variable-speed RTTY.

February 1975
FEATURING: 2304-MHz power amplifier, Bandpass filter design, Speech processing RTTY terminal unit, GHz frequency scalers.

April 1975

June 1975
FEATURING: A phasing-type single-sideband transmitter, Slim-line touch-tone, UHF prescaler, Crystal oscillators, Noise-figure measurements.

July 1975
FEATURING: UHF double-balanced mixers, Tone encoder, Cubical quad antenna, ATV sync generators, 432 MHz converters, Sweepstakes winners.

August 1975
FEATURING: 500 watt power amplifier for 160 meters, FM alignment techniques, Programmable key memory, Solid-state 432 MHz linear amplifier, Adjustable IC voltage regulators.

September 1975
FEATURING: Inductively-tuned six-meter kilowatt, RTTY terminal unit, SSB speech splitter, 432 MHz power amplifier, Handheld touch-tone, VHF mobile antenna.

October 1975
FEATURING: Special receiver issue, Receiver sensitivity and dynamic range, High dynamic range receiver input stages, High-frequency communications receiver, Pre-amplifier for SI-FM communications, Crystal discriminator.

November 1975
FEATURING: High-performance VHF FM receiver, RTTY line-end indicator, Tunable audio filter, SSVT preamplifier, Binaural CW reception, Master frequency oscillator.

December 1975
FEATURING: S-line frequency synthesizer, Introduction to microprocessors, 1296-MHz bandpass filters, UHF frequency scaler, Cumulative index.

January 1976
FEATURING: 50-MHz frequency counter, microprocessors, Wideband linear amplifier, 432-MHz Yagi, audio power ICs.

June 1976
FEATURING: Survey of FM detectors, audio speech processing techniques, SSB linearity meter, receiver troubleshooting and microprocessors.

October 1976
FEATURING: High-frequency receiver design, multiphase bandpass, microwave amplifier design, two-channel VHF-FM receiver, four-band VHF converter.

December 1976
FEATURING: High-frequency communications receiver, loop antennas, broadband mospower amplifier. ASCII-to-Morse code translator, CUMULATIVE INDEX, first issue thru 1976.

HAM RADIO
GREENVILLE, NH 03048

There's no place like a good collection of HAM RADIO back issues to find answers you're looking for. Go over the list above and find the ones you need.

Enclosed is ______ for the items I have checked.

Name ____________________________
Call ____________________________
Address ____________________________
City ____________________________
State ________ Zip ________

October 1970 ☐ December 1970 ☐
June 1971 ☐ June 1975 ☐
July 1971 ☐ October 1975 ☐
December 1971 ☐ August 1975 ☐
January 1974 ☐

Just $1.50 each ppd.
3 for $3.95

HAM RADIO BOUND VOLUMES $19.95 Specify year(s)

124 october 1977
Calling All Hams...

It's Toll Free. So Dial Away!

1-800-325-3636

FOR NEW OR USED AMATEUR RADIO GEAR... we're specialists and carry in stock most of the famous-brand lines. Or, we will talk trade.

FOR FAST, DOOR-STEP DELIVERY... give us a call. You'll be amazed; for we guarantee we'll ship your equipment the same day. Plus, most shipments are PRE-PAID.

TO SAVE MONEY... join thousands of our satisfied customers who buy from us as easily as from their local supplier. So, remember your call is Toll Free.

We welcome your Master Charge or Bank Americard.

HAM RADIO CENTER, INC.
8340-42 Olive Blvd. P.O. Box 28271 St. Louis, MO 63132

ADVA

VARIABLE POWER SUPPLY

- Continuously Variable from 2V to over 15V
- Short-Circuit Proof
- Typical Regulation of 0.1%
- Electronic Current Limiting at 300mA
- Very Low Output Ripple
- Fiberglass PC Board Mounts All Components
- Assemble in about One Hour
- Makes a Great Bench or Lab Power Supply
- Includes All Components except Case and Meters

OTHER ADVA KITS:

- Logic Probe Kit (use with CMOS, TTL, DTL, HTL, HPL, and most MOS IC's)
- Mosfet inverter against polarity reversal and overvoltage. Costs only $1.25 from stock near you. Use MOSFETs instead of dual LED resonant. Complete kit includes case and clip leads. ONLY $1.25.
- Fixed Regulated Power Supply KIT. Short-circuit proof with thermal current limiting. Compact size and typical regulation of 0.25% makes this ideal for circuits. Available for 5V @ 250mA, 6V @ 500mA, 9V @ 150mA, 12V @ 500mA. Specify voltage required. $1.50.
- Very low cost,
There's nothing like it!

Radio Amateur Callbook

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.

The U.S. Callbook has nearly 300,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you expect to come from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 235,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook $14.95

Foreign Callbook $13.95

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.25 for shipping. Illinois residents add 5% Sales Tax.

Radio Amateur Callbook, Inc.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

INDEX

ABC 571
AGL 558
AILE 443
Alto 443
Alum. 589
Amazon Wholes. 003
Arithmetic Label 326
Atlas 197
Atronics 382
Bauman 407
Beverage Ant. 245
Budwig 233
Bulldog 328
CFF 022
Calculator Shop 627
Cleng 465
Comm. Space 330
Crystal Banking Service 573
Cushcraft 035
Cygnus-Quarz 549
Dx Eng. 222
Danes 324
Danes Commercial 551
Data Signal 270
Davis 332
Daytronics 612
Dentron 259
Disc-Comp 449
Drake 039
E.T. L. O. 80-Meter DX Hdbk 254
Elect. Dist. 044
Elect. Equip. Bank 288
Electrospace 407
Erickson 047
Excel Circuits 535
French Atlantic Aff. 045
Gregg 254
Halltronix 254
Hamp Radio 150
Hamp Center 491
Hare 491
Heath 060
Holdings 252
Icon 060
Int. Circuits 518
Int'l X'tl 066
James 333

*Please contact this advertiser directly.

Limit 15 inquiries per request.

October 1977

Please use before November 30, 1977.

Tea off and mail to

HAM RADIO MAGAZINE — “check off”
Greenville, N. H. 03048

NAME...

CALL...

STREET...

CITY...

STATE ZIP...

126 october 1977
VHF MODELS FOR ANY BAND 26-240 MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8</td>
<td>26.5-88 MHz</td>
<td>$7.95</td>
</tr>
<tr>
<td>P8-24</td>
<td>88-172 MHz</td>
<td>$7.95</td>
</tr>
<tr>
<td>P8-2</td>
<td>172-230 MHz</td>
<td>$7.95</td>
</tr>
<tr>
<td>P14</td>
<td>88-230 MHz</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

P9 KIT $9.95 P14 W/T $19.95

Model kit where space permits — only 1/2 x 3 inches. Ideal for OSCAR!

RF POWER AMPLIFIER MODULES

- **T80-150**, 150-175 MHz, 20-25 W output, wired and tested, simply connect your cables... $79.95
- **T80-450**, 430-470 MHz, 13-15 W... $79.95

UHF MODELS FOR ANY BAND 380-520 MHz

- **R60-450**, 5-10 V economy rev, incl VHF Conv & IF/Audio Boards only... $39.95
- **R80-450**, 2-5 V sens monitor rev, incl UHF Conv, VHF Conv, and IF/Audio... $84.95
- **R95-450**, 0.4-1 V sens rev, incl P15 Preamp, VHF Conv, VHF Conv, and IF/Audio Boards... $94.95

FM/CW TRANSMITTER KITS

- **T40-11** Eleven Channel Exciter for 2M, 6M, or 220 MHz... $39.95
- **T40-1** One Channel Exciter... $34.95

VHF MODELS FOR ANY BAND 28-240 MHz

- **R60-450**, 0.2-0.4 V sens, incl P9 Preamp, VHF Converter, and IF/Audio... $69.95

Crystal Kits

Crystals (We stock common freq and will gladly order specials)... $5.50

PLANETARY ANTENNAS

- **LM-I** 0.5/8 w/m 2 meter whip... $63.85
- **LM-K** 3/4" Blind Hole Mount... $6.35
- **LM-LM-K** Gutter Clip Mount... $14.60
- **LM-LM-K** Trunk Lip Mount... $14.00
- **AIP**-K Trunk Gutter Mount... $9.10

TEST PROBE KITS

- **TE-3** RF Detector Probe for VTM, good from 100 kHz to over 500 MHz... $7.95
- **TE-4** Direct Probe for ac/ohms, etc... $7.95
- **TE-5** DC Probe w/res for 11 meg input VTM... $7.95
- **TE-6** Blocking Capacitor Probe for counter, signal generator, etc... $7.95
- **TE-7** Wideband Detector Probe for scopes... $7.95

IF YOU'VE HEARD THE NEW HY-GAIN 2M HT, YOU ALREADY KNOW IT'S FANTASTIC!

CORPARE WITCSS AND ACCURACY

- **LM-K** 3/4" Blind Hole Mount... $6.35
- **LM-LM-K** Gutter Clip Mount... $14.60
- **LM-LM-K** Trunk Lip Mount... $14.00
- **AIP**-K Trunk Gutter Mount... $9.10

Economical Antennas

We have a large stock of these popular whips. Pick the mount and whip which are right for you! All whips and mounts are interchangeable. Request catalog for more information.

Inexpensive DC Power Supplies

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Intermittent</th>
<th>Cont</th>
</tr>
</thead>
<tbody>
<tr>
<td>12CS4</td>
<td>$29.95</td>
<td>2.5A</td>
<td>1.5A</td>
</tr>
<tr>
<td>18A</td>
<td>39.95</td>
<td>4A</td>
<td>2.5A</td>
</tr>
<tr>
<td>18A</td>
<td>49.95</td>
<td>6A</td>
<td>4A</td>
</tr>
<tr>
<td>108A</td>
<td>79.95</td>
<td>12A</td>
<td>8A</td>
</tr>
<tr>
<td>109M*</td>
<td>99.95</td>
<td>12A</td>
<td>8A</td>
</tr>
<tr>
<td>109R*</td>
<td>149.95</td>
<td>25A</td>
<td>10A</td>
</tr>
</tbody>
</table>

*Indicates model which has panel meter(s)

Call or Write Now for Free Catalog or To Place Your Order!

- **Phone**: 716-869-2524, 9AM-9PM EST Daily.
- **Use Your Credit Card or C.O.D.**
- **Specify Operating freq** Add $1 shipping and handling.

For More Details? CHECK OFF Page 126
The NEW KENWOOD TS-820S transceiver
TS-820S features: • Factory installed digital readout • 10 thru 160 meters coverage • 200 watts PEP • Integral IF shift • Solid-state, except for drive and final stages • Noise blanker • VOX circuitry • DRS dial • IF out, RTTY, XVTR capabilities • Phone patch IN and OUT terminals • RF speech processor • Ask about optional equipment.

1048.00 is list price. Call Toll-Free to order.

The NEW KENWOOD VFO-820
The VFO-820 has solid-state construction. It matches the TS-820, perfectly. Features: • Covers bands between 1.8 and 30.0 MHz • Allows controlled cross-channel operation • Built-in RIT circuit • Indicators for both RIT & VFO circuits • Oscillation frequency: 5.0 to 5.5 MHz • Output voltage: 1V ± 3dB (across a 470 ohm load)

145.00 is list price. Call Toll-Free to order.

KENWOOD TR-7500
2m FM transceiver
TR-7500 has what you need for 2 meters! • PLL synthesized • 100 channels (88 pre-programmed, 12 extra diode programmable) • Single knob channel selection • 2-digit LED frequency display • Powered tone pad connection • 10 watts HI output, 1 watt LOW output.

299.00 list price. Call for quote.

KENWOOD TS-520S
transceiver
TS-520S has: • 10-160 meter coverage • Optional DG-5 digital-frequency display • New speech processor w/audio compression amplifier • AC power supply (DC optional) • RF attenuator, front panel activated • Provisions for separate receive antenna • Phone patch provisions.

649.00 list price. Call for quote.

KENWOOD TR-2200A
2m FM transceiver
TR-2200A features: • Solid-state construction • 2 watts HI output, 0.4 watts LOW output • 12 fixed channels (6 supplied) • ¾ wave telescoping antenna • Rechargeable NiCad batteries included • Lighted ch. indicators • Hand mike • Carrying case & strap • Battery charger • DC power plug with lead.

229.95 list price. Call for quote.

Remember, you can call TOLL-FREE: 1-800-633-3410 in U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.
one knob channel selection using optical sensing to select 800 channels

memory circuit that allows instant return to any frequency selected between 144-148 MHz

large 4 digit LED frequency readout

fully synthesized frequency control, using PLL techniques in 5 KHz steps

built-in tone burst, plus optional tone squelch encoder/decoder

spurious well below minus 60dB requirement—superior cross modulation, overload and image rejection

standard 600 KHz offsets plus any split within the band using the memory circuit

automatic final protection, PLL “unlock" protection and busy channel indicator

selectable 10 watt/1 watt output

See this sensational new two meter transceiver at your YAESU DEALER now!

Yaesu Electronics Corp., 15954 Downey Ave., Paramount, CA 90723 (213) 633-4007

Eastern Service Ctr., 613 Redna Terrace Cincinnati, OH 45215
Look over DenTron’s low profile, stylized MLA-2500 amplifier. Two EIMAC high-mu 8875 power triodes are the heart of the modularized design. The combination of DenTron’s cathode-driven circuitry and EIMAC’s 8875s provides simplicity, economy and high power all in one compact package.

Unexcelled for rugged amateur service, the 8875 is a natural choice for DenTron, just as it and other EIMAC power tubes are the choice of most principal manufacturers of amateur, commercial and military communication equipment.

Whether you build or buy your equipment—go EIMAC. The EIMAC name is your assurance of power, dependability and quality. Send today for your free copy of the EIMAC Quick Reference Catalog which provides information on all popular EIMAC products. Write Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

EIMAC 8875s Power DenTron’s MLA-2500 Linear Amplifier.
Send for your copy of the world's largest catalog of quality kit-form electronic products.

Take your pick of nearly 400 fun-to-build and practical money-saving kits — all backed by Heath — world leader in better electronic kits since 1947.

FREE! mail card now

FREE! mail card now

Yes! Please rush me my personal copy of the NEW Heathkit Catalog.
I am not on your mailing list.

Name:
Address:
City:
State:
Zip:
Dept. 122-34
Ham Radio PC-124
Get your very own copy of the latest
HEATHKIT
MAIL-ORDER KIT CATALOG
FREE!

Kits for almost everything in electronics; auto
and marine accessories, TV, stereo hi-fi,
home products
and much more. All
are easy to
build with
crystal-clear,
step-by-step
Heathkit
assembly
manuals.

SEND FOR IT TODAY!