For over 40 years...dicated to amateur radio...to offering the finest products...to dependable service.

HENRY RADIO

A name that says it all

TEMPO CL 146A

...a VHF/FM mobile transceiver for the 2 meter amateur band. Compact, rugged and all solid state. One channel supplied plus two of your choice. 144 to 148 MHz. Multifrequency spread of 2 MHz. 12 channel possible. Internal speaker, dynamic mike, mounting bracket and power cord supplied. A Tempo "best buy" at $239.00.

TEMPO VHF/UHF AMPLIFIERS

Solid state power amplifies for use in most land mobile applications. Increase the range, clarity, reliability and speed of two way communications.

KENWOOD TS-700A

The promise of 2 meter operation...the Kenwood way. The TS-700A operates all modes: SSB (upper & lower) /FM/AM/CW and provides the dependability of solid state circuitry. Has tunable VFO and 4 MHz band coverage (144 to 148 MHz). Automatically switches transmit frequency 600 KHz for repeater operation. AC and DC capability through its built-in power supply. Outstanding frequency stability Complete with microphone and built-in speaker. $599.00

YAESU FT-221R

A compact, versatile transceiver designed for the active 2 meter enthusiast. Features all mode operation — SSB/FM/CW/AM — with repeater offset capability. Advanced phase lock loop circuitry, computer-type modular construction. Preset pass band tuning provides the optimum selectivity and performance needed on today's active 2 meter band. Complete 144-148 MHz coverage. Built-in AC and DC power supplies and speaker. $595.00

ICOM IC-211

ICOM's new fully synthesized 4 MHz FM, USB, LSB, CW 2 meter transceiver. 100 Hz or 5 KHz steps, with dual tracking, optically coupled VFO's displayed by seven-segment LED readouts. Features new styling, new versatility and a new approach to the integration of functions. A compact "do everything" radio for 2-meters. The IC-211... $749 00

Now, meet Henry Radio...

Walt Henry W6ZN ANAHEIM
Ted Henry W6UOU LOS ANGELES
Bob Henry WBARA BUTLER

Plus a large staff of highly qualified sales and service personnel pledged to serve you. Henry Radio carries large stocks of all major brands. We take trade-ins, sell used equipment and offer better terms because we carry our own financing. Our reconditioned equipment carries a 15 day trial, 90 day warranty and may be traded back within 90 days for full credit toward the purchase of new equipment. Export inquiries solicited. Also, military, commercial, industrial, and scientific users...please write for information on our custom line of high power linear amplifiers and RF power generators.

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127

We stock the Bird Model 43 Wattmeter and accessories.

Prices subject to change without notice
EVER WISH YOUR RECEIVER COULD HEAR THE WEAK ONES?

Almost every amateur and commercial VHF/UHF receiver can be more sensitive with these popular preamps...over 7000 in use throughout the world.

PB KIT $7.95
P14 W/T $16.95

- Easy-to-tune cascade circuit
- 20-30 dB gain, 2.5 dB noise figure
- Fits in transceivers, only 1/2 x 2-3/8".

Available for any band 20-190 MHz.

FM TRANSMITTER KITS

- FOR REPEATERS, LINKS, OR JUST A GREAT SOUNDING PERSONAL RIG
- RATED FOR CONTINUOUS DUTY
- APPLICATION IN STORES, AVAILABLE
- SEE FEATURE ARTICLE IN AUG '76 HR
- FULLY SHIELDED PROFESSIONAL DESIGN
- INDIVIDUAL VERNIER FREQ CONTROLS
- COMPANION CABINETS AVAILABLE

200 MW EXCITER MODULE KITS

- T10-11 Eleven Channel Exciter for 2M, 6M, or 220 MHz...
- T10-1 At above but only One Channel...$45.95

T12 Tripler/Driver Module Kit, 150 mw 2M input, 200 mw 450 MHz output...$19.95

TEST PROBE KITS

- $7.95 ea

Contain probe, ground clip, cable, and all components except plug to mate with your test equipment.

TE-4 RF Detector Probe for VTM, good from 100 kHz to over 500 kHz.

TE-5 Direct probe for oscilloscope, etc.

TE-7 Widerband Detector probe for scopes.

VHF and UHF Converters

- Low Noise FET
- All common 1-4'
- Connectors
- Low Power Dissipation
- Crystals Available for any Desired Free Scheme.

MODEL C2S VHF CONVERTER KIT (shown) $25.95
- Models for 2M, 6M, 10M, 220 MHz, aircraft, com's, etc.
- Stable cascade of stage - 0.3-5.5 V u.sensitivity - 10-20 dB gain - Connects 2-1/2 x 4-1/2 pcs
- In stock 10-50 MHz.

MODEL U20-450 UHF CONVERTER $19.95
- For 432 MHz ft or otv, 450 MHz ft, aircraft or com's, etc.
- Economy Converter - Use with P15 Preamp for Optimum

T130 PA/Preamp for 2M Ht's

- Uses T130 RF Power Module and PB Preamp
- Automatic idlette switching
- Any HF up to 6W output
- Provides 20W output on xmit
- 20 dB Preamp on receive
- Wired and tested only $29.95
- Also available, Preamp $19.95
- Receive amplifier and speaker option ... $19.95

INEXPENSIVE DC POWER SUPPLIES

A great new line of power supplies to operate 12Vdc gear in the shack or shop! All have low ripple, good regulation, and overload protection. And they are IN STOCK for IMMEDIATE DELIVERY, and they are all WIRE and TESTED.

MODEL PRICE INTERMITTENT CONT
12CM $29.95 2.5A 1.5A
10SR 39.95 4A 2.5A
10SR 49.95 6A 4A
10BR 79.95 12A 8A
10BR* 99.95 12A 8A
10BR** 149.95 25A 10A

*Indicates model which has panel meter(s)

OTHER ITEMS IN STOCK

New Hy-Gain w/p and miniature RC-174/u Connectors and Adapters, etc.

Hamtronics Inc.
102 BELMONT RD., ROCHESTER, NY 14612

How to Order:
- CALL or WRITE NOW FOR FREE CATALOG OR TO PLACE YOUR ORDER!

Hamtronics Inc.
102 BELMONT RD., ROCHESTER, NY 14612

April 1977
Stay tuned for future programs.

NEW LOW PRICE
ONLY $595.00

The HAL ST-6000 demodulator/keyer and the DS-3000 and DS-4000 KSR/RO series of communications terminals are designed to give you superlative TTY performance today—and in the future. DS series terminals, for example, are re-programmable, assuring you freedom from obsolescence. Sophisticated systems all, these HAL products are attractively priced—for industry, government and serious amateur radio operators.

The HAL ST-6000 operates at standard shifts of 850, 425, and 170 Hz. The tone keyer is crystal-controlled. Loop supply is internal. Active filters allow flexibility in establishing different tone pairs. You can select AM or hard-limiting FM modes of operation to accommodate different operating conditions. An internal monitor scope (shown on model above) allows fast, accurate tuning. The ST-6000 has an outstandingly high dynamic range of operation. Data I/O can be RS-232C, MIL-188C or current loop.

The DS-3000 and DS-4000 series of KSR and RO terminals provide silent, reliable, all-electronic TTY transmission and reception, or read-only (RO) operation of different combinations of codes, including Baudot, ASCII and Morse. The powerful, programmable 8080A microprocessor is included in the circuitry to assure maximum flexibility for your present needs—and for the future. The KSR models offer you full editing capability. The video display is a convenient 16-line format, of 72 characters per line.

These are some of the highlights. The full range of features and specifications for the ST-6000 and the DS series of KSR and RO terminals is covered in comprehensive data sheets available on request. Write for them now—and tune in to the most sophisticated TTY operation you can have today...or in the future.

HAL Communications Corp., Box 365, 807 E. Green Street
Urbana, Illinois 61801 • Telephone: (217) 367-7373

More Details? CHECK—OFF Page 126
10 solid-state microwave power generators
James R. Fisk, W1HR

24 five-band ssb transmitter
Piero Moroni, I5TDJ

32 remote base for vhf-fm repeaters
Gordon Schlesinger, WA6LBV
William F. Kelsey, WA6FVC

41 graphical coil winding aid
Earl E. Palmer, W7POG

44 how to use the rf power meter
Robert S. Stein, W6NBI

50 2300-MHz bandpass filter
John M. Franke, WA4WDL
Norman V. Cohen, WB4LIJM

52 antenna-transmission line analog
Joseph M. Boyer, W6UYH

60 novel LED circuits
Kenneth E. Powell, WB6AFT

67 medical relay by satellite
David C. Nelson, K7RGE

74 better audio for receivers
Kenneth W. Glanzer, K7GCO

4 a second look
126 advertisers index
78 comments
101 flea market
116 ham mart

60 novice reading
6 presstop
126 readers service
44 repair bench
A new era in community education may well be the outcome if a petition filed recently with the FCC receives favorable action. Based largely on experience gained with vhf repeaters, and more specifically, amateur television repeaters, The Center for Advanced Study in Education of the City University of New York has filed a petition for the establishment of a new community educational radio service to be known as Communicasting. Called communicasting because it embodies elements of both communications and broadcasting, the new service would use television channels 70 through 83 for co-channel, multilateral video and audio communications. Using inexpensive terminals in homes, schools, community centers, libraries and hospitals, the system would tie the community together in an interactive educational network. The petition is co-sponsored by the Communicasting Association of America, a non-profit organization headed by W2KPO which is dedicated to using the radio spectrum for multilateral educational and scientific communications.

If Communicasting is approved, any individual at home would be able to receive the transmissions on one of the unused vhf channels of his television set. The low-power signals from the remote terminals would be transmitted to a translator where they would be re-transmitted on one of the uhf TV channels. The antennas would be high enough to cover the entire community. It is an idea that can effectively and inexpensively implement the concept of "Communicate instead of Commute" by providing electronic classrooms, forums, and lecture halls.

One of the first examples of Communicasting was established on the amateur two-meter band in 1955 when the Albany Medical College started a novel form of post-graduate education: Two or three members of the faculty discussed a medical topic while in direct radio communication with doctors located in outlying hospitals. The conference network consisted of a high-power transmitter at Albany Medical College and lower-powered units at twenty-one hospitals throughout eastern New York and western Massachusetts. The system is functioning to this day.

The principal of Communicasting was further demonstrated on the MARS frequencies in 1958-1960 where it was used for on-the-air scientific and educational forums. Today it is being used for weekly technical nets which are transmitted through a vhf repeater in the New York metropolitan area. Further experiments will be conducted in future months on the uhf television repeater recently unveiled by the Long Island Mobile Amateur Radio Club.

Many educators have recognized the potential of interactive radio and television in traditional classroom activities as well as in continuing and extension programs, and homebound education. At the City University of New York, the Center for Advanced Study in Education and the Institute for Research and Development in Occupational Education have been actively developing courses of study for electronic classrooms, studying the most effective way of delivering the curriculum, and assessing the coverage available with direct transmission and with repeaters. Their research will have a direct bearing on initial efforts to demonstrate a working system in New York State during the 1977-1978 academic year.

The FCC recognized the need for an "Educational Radio Service" in 1963 when they established the Instructional Television Fixed Service (ITFS) in the 2.5-2.69 GHz band. However, since equipment for these frequencies is up to a hundred times more expensive than equipment for the uhf bands, the use of ITFS is effectively limited to large, wealthy institutions who can afford the equipment. The proposed Communicasting network would put it within the reach of everyone.

As Dr. Lee Cohen of the City University of New York said recently, "At present we are in the stone age of multilateral education and scientific communication by radio. We look forward to the day when the FCC will allocate a band of frequencies wherein professional and educational groups could organize radio forums . . . This could eliminate the problems of time and distance in getting some of our foremost minds to communicate by radio, thereby educating a listening/viewing audience."

If you are interested in supporting this worthwhile proposal, or would like to know more about it, write to Ed Piller, W2KPO, Communicasting Association of America, Inc., 80 Birchwood Park Drive, Syosset, New York 11791.
ICOM INTRODUCES
THE REVOLUTION IN
VFO TECHNOLOGY

Introducing the IC-245, 144-148 MHz FM Transceiver

The VFO Revolution goes mobile with the unique, ICOM developed LSI synthesizer with 4 digit LED readout. The IC-245 offers the most for mobile on the market. The easy to use tuning knob moves accurately over 50 detent steps and assures excellent control as easily as steering the vehicle. With its optional adapter, the IC-245 puts you into all mode operation on 12V DC power with a compact dash-mounted transceiver. In FM, the synthesizer command frequency is displayed in 5 KHz steps from 146 to 148 MHz, and with the side band adapter the step rate drops to 100Hz from 144 to 146 MHz. For maximum repeater flexibility, the transmit and receive frequencies are independently programable on any separation. The IC-245 even comes equipped with a multiple pin Molex connector for remote control.

The IC-245 is a product of the revolution in VFO design, from its new style front panel, to its excellent mechanical rigidity and Large Scale Integrated Circuitry. Your IC-245 will give you the most for mobile.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Category</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td></td>
</tr>
<tr>
<td>Frequency Coverage</td>
<td>*144.00 to 148.00 MHz</td>
</tr>
<tr>
<td>Modes</td>
<td>FM (F3)</td>
</tr>
<tr>
<td>*SSB (A3J, CW (A1)</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>DC 13.8V ±15%</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>904 x 155 x 235D</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>2.7</td>
</tr>
<tr>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>TX Output</td>
<td>F3 10W</td>
</tr>
<tr>
<td>*A3J 10W (PEP), A1 10W</td>
<td></td>
</tr>
<tr>
<td>Carrier Suppression</td>
<td>40 dB or better</td>
</tr>
<tr>
<td>Spurious Response</td>
<td>-60 dB or less below carrier</td>
</tr>
<tr>
<td>Maximum Frequency</td>
<td>±5 KHz</td>
</tr>
<tr>
<td>Deviation</td>
<td>600 ohms</td>
</tr>
<tr>
<td>Microphone Impedance</td>
<td>600 ohms</td>
</tr>
<tr>
<td>RECEIVER</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>*A3J, A1 0.5 microvolt input gives 10 dB S+N/N or better</td>
</tr>
<tr>
<td></td>
<td>F3 0.6 microvolt or less for 20 dB quieting S+N+N+D/N at 1 microvolt input, 30 dB</td>
</tr>
<tr>
<td></td>
<td>-8 dB or less (F3)</td>
</tr>
<tr>
<td>Squelch Threshold</td>
<td>-60 dB or better</td>
</tr>
<tr>
<td>SYNTHESIZER</td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>144 MHz to 148 MHz</td>
</tr>
<tr>
<td>Step Size</td>
<td>5 KHz for FM</td>
</tr>
<tr>
<td>Stability</td>
<td>*100 Hz or 3 KHz for SSB per C in the range of -10 to +60 C, ±0.000145% per C</td>
</tr>
</tbody>
</table>

* Valid with SSB Adapter only

THE BEGINNING OF THE ICOM VFO REVOLUTION!
FCC'S PROPOSED AMPLIFIER BAN would prohibit the marketing of external RF amplifiers capable of operation from 24 through 35 MHz. In its February 18 Public Notice, the Commission specified its concern with the so-called "broad-band linears," which replaced "business-band" linears in the marketplace after those had been banned two and a half years ago, in February, 1975.

In Limiting Its Proposed Ban to 24-35 MHz the FCC also made note that though the Amateur service would be affected Amateurs would still be permitted to build 10-meter amplifiers or modify commercial units to cover 10 meters for their own use, while they "would respect the intent of this regulation and not supply these devices to non-Amateurs." Such construction by individual Amateurs would be limited to a single unit of a given model.

Some specific areas the FCC would like Amateurs to address in their comments are:

- Any Further Requirements which may be necessary to prevent the use of illegal amplification devices;
- Practicality Of Such a prohibition and possible techniques which could be used to produce such an amplifier;
- Problems Associated With preventing the few unscrupulous manufacturers from including such features as accessible wiring which could be cut to provide for operation on the prohibited frequencies; and
- Controls Which Could provide for operation on these frequencies, or any other concepts which could be used to circumvent this prohibition.

Comments On This Docket, 21116, are due May 25; Reply Comments must be submitted by June 6.

Amateur Transmitters and amplifiers would both require type acceptance under the terms of Docket 21117. In this NPRM the FCC pointed out that most current Amateur equipment is commercial and so it is capable of operation on CB frequencies, but the type acceptance could help control that capability. Furthermore, though Amateurs bear the basic responsibility for the performance of their equipment, type acceptance would be a means by which that responsibility could be shared by the makers.

Specific Exemptions from the type acceptance requirement for equipment built or modified by Amateurs for their own use were also proposed, as were provisions for type acceptance of kit-built designs. Comments on Docket 21117 are also due May 25 with Reply Comments June 6.

In Both Of These far-reaching Notices of Proposed Rule Making the Commissioners have left the door open for workable alternative-solutions to the problem of non-Amateur use of Amateur equipment on the CB bands. Three months should provide enough time to find some such solutions. Let's hope so!

SECONDARY AMATEUR STATION LICENSES could be abolished entirely or a moratorium imposed on processing Amateur applications other than those from new, upgrading or renewing Amateurs if the tide of multiple applications presently arriving at Gettysburg aren't stemmed. US license fees were abolished in January an increasing number of new applicants and the newly eligible 1x2 seekers now threaten to bury the limited portion of the Gettysburg facility devoted to processing Amateur applications.

FCC'S NEW NOVICE EXAM has a circuit diagram error in the Ohm's Law problem which makes it impossible to answer as presented. Gettysburg has been advised to give all Novice applicants credit for that question whether it is answered or not — Novice training instructors please note.

AMSA T AND ARRL HAVE SIGNED an agreement in which the League will provide major assistance to the on-going Amateur space program. The League also provided two technicians — WAJLD and WAlJZC — to bolster the AMSAT effort on the AO-D spacecraft. The AO-D Satellite (OSCAR 8) is now scheduled for a November 15th launch. It'll carry 145-28 and 145-435 MHz transponders; and, with its 500-mile high orbit, will be even easier to access — though for shorter periods — than the present Amateur satellites, OSCARS 6 and 7.

"AMATEUR RADIO...IN THE PUBLIC INTEREST" is a very attractive report on Amateur Radio in 1976 published by the ARRL for use in presenting the Amateur service to public officials and the media. Copies for PR use are available on request, but do specify with your request how and where they'll be used.

RF POLLUTION is being studied by the Environmental Protection Agency. The EPA says it's concerned about environmental exposure arising from the ever-increasing number of RF sources. It expects its extensive monitoring survey to lead to significant data within the next 18-24 months. They've already determined that "significant portions of the population are exposed to 0.1-1 microwatt/square centimeter range" radiation from the 55 to 1000-MHz part of the spectrum.
If you're fighting the constant battle of limited bandwidth, high SWR ratios, inefficient low-pass TVI filter operation due to high SWR you’re not alone.

DenTron makes the Problem Solvers.

The DenTron tuners give you maximum power transfer from your transmitter to your antenna, and isn't that where it really counts?

Our Super Tuners (A. B. & E.) are the only tuners on the market that match everything between 160 and 10 meters. Whether you have balanced line, coax cable, random or long wire the DenTron Super Tuners will match the antenna impedance to your transmitter.

NEW: The Monitor Tuner (E.) was designed because of overwhelming demand. Hams told us they wanted a 3 kilowatt tuner with a built-in wattmeter, a front panel antenna selector for coax, balanced line and random wire. So we engineered the 160-10m Monitor Tuner. It's a lifetime investment at $299.50

The DenTron 80-10 AT (D.) is a random wire, 80-10 meter tuner which is ideal for portable operation or apartment dwellers.

Every serious ham knows he must read both forward and reverse wattage simultaneously for that perfect match. So upgrade with the DenTron W-2 Dual in line Wattmeter. (C.)

The flexibility we build into our Tuners make any previous tuner you might have owned obsolete.

A. Super Tuner 1KW PEP - $129.50
B. Super Super Tuner 3 KW PEP - $229.50
C. W-2 Wattmeter - $99.50
D. 80-10 AT 500 W PEP - $59.50
E. Monitor Tuner 3 KW PEP - $299.50

All DenTron products are made in U.S.A.

Dedicated to Making Amateur Radio MORE FUN!
ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.
- Powered by 6-16vdc, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Low distortion sinewave output
- Available in all EIA tone frequencies, 67.0 Hz-203.5 Hz
- Complete immunity to RF
- Reverse polarity protection built-in

$29.95 each
Wired and tested, complete with K-1 element

communications specialists
P. O. BOX 153
BREA, CALIFORNIA 92621
(714) 988-3021

K-1 FIELD REPLACEABLE, PLUG-IN, FREQUENCY DETERMINING ELEMENTS
$3.00 each
Kenwood adds to your pleasure... wherever you go

TR-2200A
A 2-METER STATION THAT GOES WHERE YOU GO

The high performance portable 2-meter FM transceiver endowed with Kenwood's characteristic high level of quality. The TR-2200A provides superior performance for the active outdoorsman... portable, mobile or airborne... pleasure or emergency. 12 channel capacity (6 supplied). Built-in telescoping antenna can be easily replaced by a "rubber duck" antenna (RA-1 option). Connection for external antenna. External 12 VDC or internal Ni-Cd batteries. Battery-saving "light off" position. Hi-Lo power switch (2 watts-400 mW). Everything you need is included: batteries, charger, carrying case and microphone. Or mount it in your car as a mobile rig using an MB-1A mounting bracket (option).

TR-7400A
Outstanding sensitivity: large-sized helical resonators with High Q to minimize undesirable out-of-band interference, and a 2-pole 10.7 MHz monolithic crystal filter combine to give your TR-7400A outstanding receiver performance. This compact 6.2 pound package measures only 7-3/16" wide, 10-5/8" deep, and 2-7/8" high and is designed to give you the kind of performance specifications you've always wanted to see in a 2-meter amateur rig. High performance specifications of: Intermodulation characteristics (Better than -60dB), spurious (Better than -60dB), image rejection (Better than -70dB), and a versatile squelch system make the TR-7400A tops in its class.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS INC. 116 EAST ALONDRA/GARDENA, CA 90248

KENWOOD...facesetter in amateur radio
solid-state microwave rf generators

Of the many interesting trends that have developed in radio, perhaps none has been more spectacular than that toward the higher frequencies. No doubt many readers will remember when the term "high frequencies" was used to distinguish 100 kHz from audio, and when the "ultra highs" meant anything above 10 meters. Although most of the early developments in wireless around the turn of the century were accomplished on radio frequencies below 500 kHz, it's interesting to note that Heinrich Hertz's first experiments with wireless transmission in 1887 were conducted near 60 MHz; he later extended them to 500 MHz. In the first decade following Hertz's discovery the frequency frontier was quickly pushed to 75000 MHz. Marconi, in fact, used vhf in many of his early demonstrations, but quickly switched to the lower frequencies when he recognized that greater distances could be covered with the simple spark equipment then in use.

About the same time amateurs were opening up the "short waves" above 1500 kHz with their famous Transatlantic tests of the early 1920s, researchers E. F. Nichols and J. D. Tear had succeeded in producing radio waves as short as 0.22 mm (135 GHz). In 1923 Madame

By James R. Fisk, W1HR, ham radio magazine, Greenville, New Hampshire 03048
Glagowela-Arkadiewa working in Russia extended the frequency limit to more than 35-million MHz.\(^1\) In all of these experiments the microwave energy appeared as a harmonic component of high-energy spark discharges, and the power level was very low — perhaps microscopic would be a better description.

Soon after the invention of the three-element vacuum tube, work was started toward extending its range into the higher frequencies but there were many difficulties to be solved. Since the early tubes were built around techniques borrowed from the electric lamp industry, they were ill suited for the job at best. Extensions in frequency closely followed improvements in vacuum-tube manufacturing methods, but it wasn’t too long before researchers were faced with another problem: electron transit time — the finite time it takes an electron to cross the tube. At the high frequencies the transit time (about a billionth of a second) is short compared to one complete rf cycle, so the electrons can follow the rf voltage fluctuations on the grid. At the very high frequencies, however, the oscillations are so rapid that the voltage on the grid may go through several complete cycles while the electron travels across the tube, and the grid voltage cannot impose its signal pattern on the electron flow. The regenerative vacuum-tube oscillator could be made to work up to 150 or 200 MHz with tuned Lecher lines, but that was about the limit, even with specially designed tubes (two amateurs, Robert Kruse and Boyd Phelps, extended this to nearly 750 MHz in 1927, but that’s getting ahead of the story).

In 1920 two German engineers, H. Barkhausen and K. Kurz, found that if the grid of a vacuum triode was biased positively with respect to the plate, they could produce rf output at a wavelength of 43 cm (697 MHz).\(^2\) With this arrangement the highly positive grid accelerates the electrons from the cathode at high speed — some hit the grid and give up their energy as heat, but others pass through the openings in the grid, and are repelled by the negatively-charged plate back toward the grid. The electrons continue to orbit between the grid and plate, as shown here. The feeble output is coupled out through a tuned plate line.

The efficiency of the Barkhausen-Kurz oscillator was very low because most of the oscillating electrons were intercepted by the grid — which often ran white hot. In 1921 A. W. Hull proposed a solution to the problem: The magnetron, a device which didn’t require a grid; the electrons were kept in a circular orbit around the cathode by an external magnetic field (fig. 2). The original design received considerable modification, notably by Yagi and Okabe in Japan who split the anode.

![Fig. 2](image-url)
fets, varactor multipliers, and tunnel diodes are widely used on the microwave frequencies. The upper frequency limit for bipolar transistors is now about 4000 MHz, but GaAs fets (called device which uses transit time and the deceleration of applications where good frequency stability is required, and from about 4000 MHz to tunnel-diode receivers are used commercially on the frequencies work in 1937 when they built the first klystron, a "Although not discussed in this article, bipolar transistors, GaAs "gas fets") have been used experimentally at frequencies as high calculations, Russell and Sigurd Varian put these ideas to derive the oscillation energy directly from the electron time of electrons to control the electron stream and into two or more parts and increased both frequency and power output. Although the magnetron offered considerable promise, it ran into some of the same difficulties as other devices — the dimensions of the component parts became so small at microwave frequencies that it was difficult to dissipate heat in the small space which was available. Nevertheless, by 1936 C. Cleton and N. Williams at the University of Michigan were operating a magnetron at 50 GHz with very limited power output.

Obviously, before microwaves could be put into practical use, some way had to be found to generate useful amounts of power, but researchers were stymied on two fronts: the electrons moved too slowly, and the electrodes of the tube had to be as small as possible because they formed the capacitance of the resonant circuit. For the generation of liberal amounts of rf energy, however, the electrodes had to be as large as possible to dissipate the heat of electron bombardment. Thus, with existing devices, the requirements of microwave rf and high power could not be fulfilled simultaneously. In 1935 Dr. A. Arsenjewa-Heil and Dr. Oskar Heil proposed a unique solution to this mutual incompatibility. Why not, they asked, use the finite transit time of electrons to control the electron stream and derive the oscillation energy directly from the electron stream? In their proposed design the electrons didn’t hit the electrodes at all, so the heating problem was completely avoided. Although the Heils were the first to describe the principle of velocity modulation, others had been thinking along the same lines, including Dr. William W. Hansen at Stanford University. Based on Hansen’s calculations, Russell and Sigurd Varian put these ideas to work in 1937 when they built the first klystron, a device which uses transit time and the deceleration of bunched electrons across a vacuum gap to generate rf power (fig. 3).

In many respects the development of modern, solid-state microwave devices parallels advances in vacuum-tube technology in the 1920s and 1930s. Transistors suffer from electron drift-time problems at high frequencies, too, and it wasn’t too many years ago that amateurs were hoping for a low-cost transistor that they could use successfully on 3.5 MHz. Vhf and uhf transistors are now commonplace, but only because the manufacturers have found ways of making the active region of the transistor wafer thin enough that electron transit time doesn’t cause problems. At microwaves, however, transit time is still the limiting factor, and this is where the analogy between microwave vacuum-tube and semiconductor development comes in: Like the Barkhausen-Kurz oscillator, magnetron, and klystron that preceded them, the operation of Gunn devices, avalanche diodes, and other solid-state microwave rf sources is also based on electron transit time.

In 1953 W. T. Read of Bell Labs proposed a multilayer diode for generating microwave power. Read suggested that the finite delay between an applied rf voltage and the current generated by avalanche breakdown, and the subsequent drift of the generated carriers through the depletion layer of the diode junction would lead to negative resistance at microwave frequencies. The multilayer diode proposed by Read was very difficult to build, but in 1965 R. L. Johnston and his colleagues at Bell Labs experimentally verified Read’s principle when they achieved a pulsed power output of 80 mW at 12 GHz from a silicon junction diode driven into avalanche. Advances since 1965 have been so rapid that today avalanche-diode oscillators are established as one

*Although not discussed in this article, bipolar transistors, GaAs fets, varactor multipliers, and tunnel diodes are widely used on the microwave frequencies. The upper frequency limit for bipolar transistors is now about 4000 MHz, but GaAs fets (called “gas fets”) have been used experimentally at frequencies as high as 15 GHz. Varactor multipliers are used in many microwave applications where good frequency stability is required, and tunnel-diode receivers are used commercially on the frequencies from about 4000 MHz to 15 GHz.
fig. 4. Voltage-current plot for typical junction diode. When reverse bias exceeds the breakdown voltage, V_B, diode is biased into the avalanche breakdown region where large numbers of electrons are generated by secondary emission (also called avalanche multiplication).

of the most important of the solid-state microwave power sources. Since the operation of the Read device is based on a combination of impact avalanche breakdown and electron transit-time effects, diodes of this general type are generally called IMPATT diodes from IMPact Avalanche and Transit Time.

IMPATT operation

The basic construction of an IMPATT diode is similar to that of any pn junction diode. Shown in fig. 4 is a typical plot of dc current vs voltage for a pn junction diode. When the diode is forward biased, current increases rapidly for voltages above 0.5 volt or so. When the diode is reversed biased, however, a very small current called "leakage current" flows until the breakdown voltage, V_B, is reached. In ordinary rectifier diodes the breakdown voltage, V_B, determines the maximum PIV rating of the diode; if this rating is exceeded the diode will be destroyed.

When a pn junction is reverse biased a depletion region forms in the n-type region of the diode with its width depending on the applied bias. If the bias voltage is less than V_B, the depletion zone acts like a nonlinear capacitor — this is the property used in varactors and tuning diodes. When the reverse voltage exceeds V_B by a small amount, the diode is biased into the avalanche region. In this region the small leakage current has a very high probability of creating additional electrons by the process of secondary emission or avalanche multiplication. Biasing some diodes into the avalanche region results in catastrophic failure, because once started, the avalanche current cannot be stopped. However, if the semiconductor material is properly doped, the avalanche process can be controlled (as it is in Zener diodes and avalanche rectifiers).

Fig. 5 is a schematic representation of the electron movement in a reverse-biased pn junction with a large number of electrons generated in the avalanche zone flowing into the drift zone. In this condition, a large current can flow in the reverse direction with little increase in applied voltage. This is the avalanche breakdown current depicted in fig. 4. If, in addition to the bias voltage, an rf voltage exists across the depletion region of the diode (as it would be if the diode were mounted in a resonant cavity), under certain conditions the rf voltage induces an rf current that is out of phase with the applied voltage. If the rf current in the external circuit lags the rf voltage by more than 90 degrees, this is equivalent to a negative resistance.

In actual operation the IMPATT diode is biased just above the avalanche point (fig. 4) so the diode is biased into avalanche on positive swings of the rf voltage (fig. 6A). Since the number of electrons generated in the avalanche zone depends not only on the applied voltage but also on the number of charge carriers that are present, the avalanche current pulse continues to build

Low voltage dc to rf the solid-state way.
Avalanche--

When an rf voltage \(A \) is applied across a reverse-biased PN junction, during the positive half of the rf cycle large numbers of electrons are produced by avalanche generation. Since the avalanche process builds up slowly, it peaks when the rf voltage is zero, then slowly decays. This produces a pulse of electrons \(C \) which drifts toward the anode. The combination of avalanche buildup and drift time produces an external circuit current which is 180 degrees out of phase with the rf voltage \(D \).

Fig. 6. Voltage and current waveforms in a microwave avalanche (IMPATT) diode.

The pulse of electrons is launched into the drift zone (fig. 6C) and slowly drifts to the right toward the positively charged n-side of the junction. The electrons drift through the semiconductor material at a nearly constant velocity (about \(10^7 \) cm/second) so that it takes them to pass through the drift zone is simply the width of the drift zone, \(W_D \), divided by the velocity of the electrons, \(v \)

\[
T = \frac{W_D}{v}
\]

where \(T \) is the drift time. Since drift time is related to the frequency of operation, the width of the drift zone is carefully controlled during the manufacturing process.

While the pulse of electrons is drifting through the diode, they induce an approximate square wave of current in the external circuit as shown in fig. 6D. As can be seen in fig. 7, the combined delay of the avalanche process and the finite transit time across the drift zone has caused a positive current to flow in the external circuit while the rf voltage is going through its negative half cycle. Therefore the diode is delivering rf energy to the external circuit because of negative resistance.

The useful frequency range of the IMPATT diode is generally above 3000 MHz. Below this point the long transit times require a structure of such thickness that the breakdown voltage is very high. Most high-power IMPATT oscillators are used in the range from 5 to 13 GHz, although they have also been used successfully above 100 GHz. Most of the early IMPATTs were silicon types, but both germanium and gallium-arsenide (GaAs) have been used successfully. All types are noisy because avalanche breakdown is a noisy phenomenon, but GaAs types are somewhat less noisy than silicon devices. This is a problem in some applications (such as receiver local oscillators), but noise can be reduced substantially by proper circuit design. Another disadvantage is the relative high operating voltage (70 to 135 volts), and the requirement for a constant-current power supply. Operating efficiencies are on the order of 12 to 15 per cent, although careful construction, the use of GaAs, and the so-called double-drift structure can increase efficiency to 25 or 30 per cent.

The double-drift IMPATT diode has four layers instead of the usual three because an additional drift region is implanted in the diode (fig. 8). In the single-drift IMPATT described previously, the output current was the result of drifting electrons. The avalanche process, however, generates holes (positive charges) as up even after the rf voltage has begun to drop (fig. 6B). This is because of the highly nonlinear nature of the avalanche generation process. In a properly designed IMPATT diode the excess charge slowly builds up in the avalanche region during the positive half cycle of the rf voltage, and reaches a sharply-peaked maximum in the middle of the rf voltage cycle when the rf voltage is zero. Thus the waveform of the avalanche current, in addition to being very sharply peaked, lags the rf voltage by 90 degrees.

The pulse of avalanche current is launched into the drift zone (fig. 6C) and slowly drifts to the right toward the positively charged n-side of the junction. The electrons drift through the semiconductor material at a nearly constant velocity (about \(10^7 \) cm/second) so the
fig. 8. Construction of single- and double-drift IMPATT diodes.

Efficiency is greatly increased in the double-drift diode because the holes (positive charges) generated in the avalanche region drift across the P-doped region in phase with the electrons, providing greater power output. In the single-drift IMPATT the holes are simply returned to the cathode.

well as electrons. In the single-drift IMPATT the holes simply are returned to the cathode— in the double-drift structure the holes drift across the added p-doped drift region in phase with the electrons, resulting in greater rf power outputs.

Even with operating efficiencies of 25 per cent, heat dissipation becomes the limiting factor when substantial amounts of rf power are required from an IMPATT diode. With good heatsinking techniques the power output can be increased as much as 20 per cent—diamond heatsinks, which have superb thermal characteristics, are being used extensively in commercial IMPATT applications. It should also be noted that IMPATT diodes are being used almost exclusively as amplifiers—few are used as power oscillators.* When used as an amplifier the IMPATT is coupled into the system through a circulator as shown below. The IMPATT amplifier has only one port so the circulator, which allows rf energy to propagate in only one direction, is required to isolate the input signal from the output signal. Operation is similar to that used in a parametric amplifier and is called "reflection amplification."

TRAPATT diodes

In 1967 researchers at RCA were trying to develop an avalanche diode that would provide operation around 1000 MHz. According to the drift-time theory, as noted above, IMPATT diodes could not be made to operate at that low frequency, but the engineers had hopes of exciting the diode into some other mode. Within a few months they had found a new mode of operation that had both good efficiency and high power output: 425 watts peak, pulsed output with an efficiency of about 25 percent. As researchers continued to work with the new mode, they found a few diodes with efficiencies as high as 60 percent. They also worked on tuned circuits and eventually developed one that permitted continuous tuning from 900 to 1500 MHz. Since the operation of the high-efficiency diode didn’t fit any then-known theory, they called it the "anomalous" mode.

Further work at Bell Labs with computer simulation led to the announcement that the high efficiency resulted from the creation of a trapped voltage plasma state between successive sweeps of the classical IMPATT cycle. According to the Bell Theory, this dense plasma then shielded the interior of the diode from the external voltage so the charges (electrons and holes) drift out of the diode at low velocities, causing very long transit times. This led to the acronym TRAPATT for TRApped Plasma Triggered Transit.

Quantum physicists from Cornell University didn’t agree with the theory offered by Bell Labs—they held that though a trapped plasma could undoubtedly be created in an over-driven diode, it was not fundamental to high efficiency. Their contention was that the parametric theory of Avalanche Resonance Pumping (ARP) had broader validity. Many researchers felt that Bell Labs’ TRAPATT and Cornell University’s ARP were actually two aspects of the same thing. RCA apparently preferred the TRAPATT model but stayed out of the battle of the acronyms. However, in a moment of humor during one heated debate, someone suggested that the original RCA terminology "anomalous" mode could stand for "A Non-Ohmic Maximum Allowable Large Output Uhf Source!"

In the early 1970s it was discovered that many ordinary silicon rectifier diodes could be made to oscillate in the TRAPATT mode, but since this mode of operation is very fussy and requires tricky resonant circuit design to generate the required voltage waveform and suppress higher mode harmonics, the device has found limited applications—primarily in military L-band radar systems.
Gunn devices

In 1963, when John Gunn of IBM was studying the bulk resistance of a sample of n-type gallium arsenide, he discovered that when the voltage impressed across the sample was raised above a certain point (fig. 9), the current became unstable and began to pulsate cyclically at microwave frequencies. The mechanism which caused this to happen was a mystery at first, but Gunn suspected that a negative resistance was probably responsible, and suggested that a decrease in the mobility (velocity) of the electrons with an increase in applied voltage could account for the negative resistance. This was eventually proved to be the case.

Unlike most other materials, the electrons in gallium arsenide (GaAs) can be in one of two conduction bands, one with much higher electron velocity than the other. As the voltage across the GaAs is increased, more and more electrons are scattered to the low mobility band. This is shown graphically in fig. 10. Below the threshold point the current through the material is proportional to the applied voltage, so it behaves as a resistor. As the voltage is increased above threshold, however, sufficient electrons are displaced from the high mobility band that the net electron velocity through the GaAs begins to drop. Since the current through the material is proportional to electron velocity, this means a GaAs resistor (Gunn diode) will have a region of negative resistance — decreasing current with increasing voltage. As the voltage is increased past the negative resistance region, the current flow once again increases with applied voltage. Since this behavior is based on the transfer of electrons from one conduction band to another, microwave oscillators of this type are often called Transferred-Electron Oscillators or TEOs.

Although the negative resistance of GaAs accounts for its current instability characteristics at certain bias levels, the oscillation at microwave frequencies requires further explanation. As was mentioned previously, when the applied voltage is below threshold, the GaAs behaves as a linear positive resistance; under these conditions the internal electric field is constant throughout the material as shown in fig. 11A. If the applied voltage is increased above threshold, many of the electrons entering at the cathode are entering faster than they leave. This leads to a high field buildup at the cathode with an accumulation of electrons on the cathode side and a depletion of electrons on the anode side (fig. 11B). The electric field throughout the rest of the material begins to fall to a value below threshold. The high field domain drifts rapidly across the GaAs wafer (figs. 11C and 11D) to the anode where it is collected (fig. 11E). When the domain reaches the anode the bias supply again causes the field at the cathode to exceed the threshold level — a new domain is formed and the process repeats itself.

The current through the GaAs is lower during the transit time of the domain, and increases momentarily

fig. 9. When the bias voltage across a sample of n-type gallium arsenide (GaAs) is increased above the threshold point, the current becomes unstable and pulsates in a cyclic way. This is a result of negative resistance and is called the Gunn effect.

fig. 10. Electron velocity in GaAs as a function of applied electric field. As the electric field is increased, more and more electrons are scattered to the low mobility band, resulting in a net decrease in current flow through the material — this is equivalent to a negative resistance.
When a wafer of GaAs is biased below threshold, V_{th}, the material behaves as a linear resistance (A). A charge layer (domain) forms at the cathode when the material is biased above threshold (B), and drifts toward the anode at about 10^7 cm per second (C) and (D). Note that when the field domain forms at the cathode, the electric field in the rest of the material drops below the threshold level. When the domain is collected at the anode (E), the field in the material momentarily increases above threshold, a new domain forms at the cathode, and the process repeats itself. The current through the GaAs is lower during the transit time of the domain and increases when the domain reaches the anode, giving a series of sharp current spikes (F).

When the domain is extinguished at the anode, thus the output is a series of narrow current spikes with a period equal to the transit time through the wafer (fig. 11F). The domain velocity is about 10^7 cm per second so the wafer of GaAs must be about 10 microns thick for operation at 10 GHz. Since the frequency of the output current pulses is a function of drift time, this is called the transit-time mode of operation. It is rarely used, however, because frequency tuning is nil and efficiency is very low.

In practical microwave circuits the Gunn device is mounted in a high-Q resonant circuit – this provides a considerable tuning range because the rf voltage in the circuit influences the formation of the field domain at the cathode by swinging the applied voltage above and below the threshold level as shown in fig. 12. If the bias is set so the rf voltage drops below the sustaining voltage, V_s, the field domain will be quenched; when the rf voltage rises above threshold, V_{th}, a new domain will form at the cathode. As the domain starts to drift across the GaAs, the rf voltage will increase to a maximum and then decrease until it, too, is quenched.

The delayed-domain mode occurs when the instantaneous rf voltage never falls below the sustaining value but does go below threshold for a part of the cycle. If the field domain reaches the anode when the applied voltage is between V_s and V_{th}, the formation of a new domain is delayed until the rf swings above threshold. Using these techniques and others, the frequency of the output current spikes will adapt to the resonant frequency of the external tuned circuit and can be tuned over very wide frequency ranges.

The greatest advantage a Gunn device has over IMPATT and TRAPATT diodes is its ability to operate over a wide band with less noise and lower bias voltages at equivalent frequencies – this is an important consideration for amateurs who want to build simple microwave systems that operate from batteries for portable,
Simple Gunn-diode oscillator uses a half-wavelength coaxial cavity. Impedance matching is provided by the output coupling loop. This type of circuit can be tuned over an octave or more, but difficulties with oscillation at harmonic frequencies are common, and the coaxial cavity is more sensitive to temperature changes and load mismatches than waveguide resonators.

Mountain-top expeditions. Moreover, Gunn diodes are easily frequency modulated and lend themselves to automatic frequency control (afc). Compared to tubes the Gunn device operates at lower temperatures and without a vacuum, factors that contribute to longer life. In fact, a number of manufacturers are predicting useful lives of well over 300,000 hours for CW devices (in case you don’t want to figure it out, that’s equivalent to about 34 years of 24-hour-per-day operation). On the debit side, the Gunn diode is less efficient and has lower power output than other solid-state microwave devices, but this is more than offset by its simplicity of operation, wide tuning range, and lower operating voltage.

Gunn oscillators

Many early attempts to build Gunn oscillators were not all that successful — the results were seldom reproducible. Sometimes the device refused to oscillate in the resonant circuit, or if it did oscillate it wouldn’t be on the desired frequency, but this was new technology, fresh from the laboratory; the GaAs manufacturing process was still in its infancy so there were problems with the diodes, and nobody had any comparable experience to fall back on. Gunn diodes have improved over the years, and we now know what types of resonant circuits work best, but the plain truth of the matter is that not much actual circuit design takes place — not in the traditional sense anyway. As one designer at Microwave Associates pointed out recently, “Those who have experience with Gunn diodes usually take a rough cut at what they think will work, and then home in on the final layout by trial, error, and a good deal of sheer feel.”

One of the simplest forms of Gunn oscillator circuits is shown in fig. 13. Here, the diode is mounted at one end of a half-wavelength coaxial cavity which is adjusted to the desired operating frequency with a tuning screw. The location of the output coupling loop determines the load impedance presented to the diode. This type of resonator is easy to build and can be tuned over a very wide frequency range, typically an octave, but it has several disadvantages. For one thing, the Q is relatively low and the diode may want to oscillate at a harmonic frequency. In comparison with waveguide cavities, the coaxial resonator is also more sensitive to temperature changes and load mismatches.

For most applications a much better choice is the post-coupled rectangular waveguide cavity shown in fig. 14 separated from the output waveguide by a coupling iris. The size of the iris is determined experimentally for the best compromise between maximum power output...
and isolation from changes in diode impedance and load. The tuning rod may be either metal or a low-loss dielectric. The diode must be properly decoupled from the bias supply to minimize any rf resonances in the bias circuit and to prevent any rf loss. None of these things is trivial, so if you’re interested in building your own Gunn oscillators for the 10-GHz amateur band, I suggest that you try one of the proven designs published in the RSGB’s VHF - UHF Manual.11

If you don’t have any previous experience with microwave circuits, you may find it easier and less frustrating to purchase one of the new 10-GHz Gunnplexers which are being offered to amateurs by Microwave Associates. These Gunn-oscillator transceivers provide 20 mW of output power, include a built-in low-noise Schottky mixer diode, and are provided with varactor tuning. A ferrite circulator isolates the receiver and transmitter functions. The electrical specifications of the Gunnplexer are listed in table 1; a cut-away view of the transceiver is shown in fig. 15.

<table>
<thead>
<tr>
<th>RF center frequency</th>
<th>10250 MHz (4V varactor bias)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF power output</td>
<td>20 mW</td>
</tr>
<tr>
<td>Tuning: mechanical</td>
<td>± 100 MHz</td>
</tr>
<tr>
<td>electronic</td>
<td>60 MHz minimum</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>-350 kHz/°C maximum</td>
</tr>
<tr>
<td>RF power vs temperature and tuning voltage</td>
<td>6 dB maximum</td>
</tr>
<tr>
<td>Frequency pushing</td>
<td>15 MHz per volt, maximum</td>
</tr>
<tr>
<td>Noise figure</td>
<td>12 dB maximum</td>
</tr>
<tr>
<td>Input requirements:</td>
<td></td>
</tr>
<tr>
<td>Gunn voltage</td>
<td>+10 Vdc typical</td>
</tr>
<tr>
<td>Gunn current</td>
<td>500 mA maximum</td>
</tr>
<tr>
<td>Tuning voltage</td>
<td>+1 to +20 volts</td>
</tr>
<tr>
<td>Rf connectors</td>
<td>mates with UG-39/U waveguide</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-30 to +70 °C</td>
</tr>
</tbody>
</table>

In the Gunnplexer the Gunn oscillator provides both the transmit power and LO injection for the mixer diode. Therefore, the i-f used at each end of a communications link must be tuned to the same frequency, and the frequencies of the Gunn oscillators at each end of the link must be separated by the intermediate frequency. This is the same system used with klystron polaplexers and is shown in fig. 16. If the i-f is at 30 MHz, for example, and one Gunn oscillator is tuned to 10200 MHz, the other oscillator is tuned 30 MHz higher (or lower) to 10230 MHz (or 10170 MHz). Gunnplexers can also be used for two-way communications with stations which use polaplexers or separate 10-GHz transmitters and receivers. If a polaplexer is used at one end of the link, however, you should expect about 3 dB loss because of the difference in polarization.

All you need to put the Gunnplexer on the air is a well regulated 9-volt power supply (200 mA maximum), a bias supply for the varactor, an fm receiver, and a microphone and speech amplifier. This is the system used by W1HR and W1SL in their first two-way communications with Gunnplexers. Later you may want to add automatic frequency control (afc) or a phase-locking system, but this isn’t necessary to get started.

The 30-MHz i-f has been the standard for amateur microwave communications for a number of years, but there’s no reason why you can’t use a standard 88-108 MHz fm broadcast receiver as a tunable i-f. If you choose to go this route, be sure to pick a frequency that’s not occupied by a nearby fm transmitter — otherwise you may have problems with i-f feedthrough. In metropolitan areas it may be impossible to find a clear

*The Microwave Associates MA87127 Gunnplexer is a complete 10-GHz transceiver consisting of a Gunn oscillator, tuning diode, detector, and circulator and is priced at $85. Also available is the MA87108 which consists of the Gunn oscillator and tuning diode ($60), and the MA87140 which includes a complete transceiver and a 17-dB gain horn antenna ($100). Two complete transceivers with horn antennas, part number MA87141, are priced at $185. Write to Microwave Associates, Inc., Burlington, Massachusetts 01803 for the name of your nearest sales representative.

fig. 16. Gunnplexer operation. Since the same oscillator is used as both a transmitter and local oscillator for the mixer, the i-f at each end of the link must be at the same frequency, and the frequencies of the Gunn oscillators must be separated by the i-f. In the example shown here the Gunnplexer at one end of the link is tuned to 10200 MHz — 30-MHz i-f receivers are used to the Gunnplexer at the other end must be tuned 30 MHz higher or lower (10230 or 10170 MHz).

fig. 15. Cutaway view of the 10-GHz Microwave Associates Gunnplexer. The post-coupled Gunn diode is tuned to the desired frequency with the dielectric tuning screw, and the rf energy is coupled out through an iris. The ferrite circulator couples a small amount of energy into the Schottky mixer diode and isolates the transmit and receive functions. Mixer injection can be adjusted with the small screw mounted in front of the circulator. A horn antenna provides 17 dB gain.
channel, but most fm receivers can be "tweaked" slightly so they will tune to a clear spot above or below the fm broadcast band. If you use an fm broadcast receiver you won't be able to work stations using a 30-MHz i-f, but this is an inexpensive way to get started, and you can always go to 30-MHz i-f later.

If you decide to use a 30-MHz i-f, military surplus i-f strips are inexpensive, or you can use a tunable fm receiver such as the old Hallicrafters S-36 or S-27, or the military surplus BC683. W1SL and I used 35-year-old S-36 receivers in our initial experiments, but are planning to build some solid-state replacements in the near future. With the wide availability of ICs designed for rf amplification and fm demodulation, this should be a relatively easy task.

communications range

One of the first questions you’re probably asking is what kind of communications range can I expect with a 20 mW Gunnplexer system? As shown in fig. 18, this is a function of the bandwidth of the i-f system. This graph assumes a noise figure of 12 dB at 10 GHz which should be no problem with a low-noise (about 1 dB) i-f strip, and 17-dB horn antennas at each end of the link. For the bandwidth of an fm broadcast receiver, 240 kHz, the maximum line-of-sight range is about 25 miles (40 km). However, this graph is based on “threshold” (the beginning of reception of intelligible speech) and allows no margin for fading due to rainfall, multipath propagation, or other environmental effects. Therefore, for a practical system with good signal-to-noise ratios, somewhat less range should be expected. Range can be increased considerably by using parabolic reflectors, as shown by the dashed lines in fig. 18, but this entails additional cost and you may have trouble getting the antennas properly lined up.

Range can also be improved by using a narrower i-f bandwidth, but this requires the use of automatic frequency control or a phase-lock arrangement. Since the drift characteristics of the Microwave Associates Gunnplexer is about -350 kHz per °C maximum (downward drift with increasing temperature), it’s doubtful that the 240-kHz bandwidth of an fm broadcast receiver would be practical without continually adjusting varactor bias or using afc. The basic afc system is shown in fig. 19. To prevent the two Gunnplexers from chasing each other all over the band, only one end should use afc of the Gunn diode. Afc of the i-f LO is permissible at both ends of the link.

Stability can also be improved by placing the Gunnplexer in an insulated box and heating it with a light bulb or other heat source (such as a power resistor). For maximum temperature stability, a proportional temperature control system is suggested (reference 12 describes a proportional control circuit for crystal ovens that could be easily adapted to the Gunnplexer).

For an idea of what can be accomplished with low power on 10 GHz, consider the new world’s record on this band which was set in August, 1976, by GM30XX in Scotland, and G4BRS, in Cornwall, England — a
distance of 324 miles (521 km). Both stations used 10 mW Gunn oscillators with parabolic reflectors – a 24 inch (61cm) dish in Scotland and a 30-inch (76cm) reflector in England. This was their ninth try over this particular path, so it wasn’t as easy as it sounds, but it should give you an idea of what can be done with simple equipment, patience, and a lot of persistence.

phase locking

One of the best ways to improve communications range with the Gunnplexer is to decrease i-f bandwidth but this can only be done by phase locking the transmitter to a stable crystal oscillator. I don’t have any practical, tried and true circuits to offer yet, because I don’t know of any amateurs who have built a phase-locked Gunnplexer system, so the following are merely suggestions.

One arrangement, which was suggested by W1FC of Microwave Associates, is shown in fig. 20. In this system the output of the i-f amplifier is divided digitally and phase compared against a crystal-controlled reference oscillator. The time constant of the RC network shunting the error amplifier is chosen to allow the Gunnplexer to be frequency modulated.

Phase locking can also be used to good advantage in the receiver as a tracking filter. Whereas the threshold of intelligible speech in a conventional fm system occurs when the fm signal is about 10 dB above the noise, a phase-locked tracking filter can linearly demodulate fm signals buried 20 to 30 dB in the noise. One IC on the market which was designed specifically for this task is the Exar XR-215.

fig. 20. Gunnplexer phase-lock system suggested by W1FC. Output of i-f amplifier is divided down and compared against a crystal-controlled reference oscillator. Output of the phase detector is amplified to a suitable level to keep the Gunn oscillator locked to the crystal. Time constant of the RC network shunting the error amplifier is chosen to allow the Gunnplexer to be frequency modulated.

fig. 21. Proposed phase-lock system for a Gunnplexer operating on 10250 MHz. In this system the 120th harmonic of the 85.24-MHz crystal oscillator is mixed with a sample of rf energy from the Gunnplexer. The difference output is amplified, then phase compared with a signal derived from the crystal oscillator. The error voltage is amplified and fed to the tuning varactor in the Gunnplexer. With proper design, frequency stability of the Gunnplexer will be the same as the crystal reference oscillator.

Phase locking can also be used to good advantage in the receiver as a tracking filter. Whereas the threshold of intelligible speech in a conventional fm system occurs when the fm signal is about 10 dB above the noise, a phase-locked tracking filter can linearly demodulate fm signals buried 20 to 30 dB in the noise. One IC on the market which was designed specifically for this task is the Exar XR-215.

fig. 21. Proposed phase-lock system for a Gunnplexer operating on 10250 MHz. In this system the 120th harmonic of the 85.24-MHz crystal oscillator is mixed with a sample of rf energy from the Gunnplexer. The difference output is amplified, then phase compared with a signal derived from the crystal oscillator. The error voltage is amplified and fed to the tuning varactor in the Gunnplexer. With proper design, frequency stability of the Gunnplexer will be the same as the crystal reference oscillator.
I would like to thank Dana Atchley, W1CF, of Microwave Associates for making Gunnplexers available to the amateur community, and Fred Collins, W1FC (ex W1FRR), and Dr. Ron Posner (ex K6DJB) for their circuit suggestions.

references

ham radio
Introducing a new idea in TR switches. Solid state reliability.

Introducing the MA-8334 series solid state transmit-receive switch — the most reliable TR switch you can put into a piece of mobile communications equipment. The initial offering in our MA-8334 series has a CW input power rating of 50 watts and a frequency range of 20 to 1000 MHz.

is 50 MHz and higher, why not send for our free “Microwave Semiconductor Handbook.” Just call or write: Microwave Associates, Semiconductor Sales, Industrial Park, Burlington, MA 01803, tel. 617-272-3000.

MICROWAVE ASSOCIATES
solid-state
five-band transmitter

A companion transmitter to the I5TDJ receiver features all bands, solid-state circuitry, and 10-watt output.

On the air, amateurs speak proudly of using the "S-Line" or the "Drake Line." To complement the receiver I described last year in these pages, I built a companion five-band solid-state transmitter. Thus I felt I could proudly speak of using the "TDJ Line!"

I actually started the design in 1973 when high power rf transistors were not available in Italy. Thus, the output is only a modest 10 watts. None the less, I've made contacts with all continents and had a nice QSO on CW and ssb with JD1ACH during the Ogasawara (Bonin Island) DXpedition.

The transistors I used are a mixture of Phillips and U.S. types, collected over the years. Despite that, the 3rd-order IMD measures -28 dB below one tone of a 2-tone test. Output is actually greater than ten watts on all bands, with no tuning. A SPOT switch and carrier insertion for linear amplifier tuneup are included for convenience. Again, my friend I5FLN has duplicated my circuitry.

circuit description

The transmitter was designed to transceive with my receiver; the rf mixing scheme being identical. In the block diagram, fig. 1, note that the two modules, vfo and vfo converter, are common to both units. The builder has three options: you may use these two modules in the receiver, you can duplicate just the vfo module, or you can duplicate both modules and have a completely self-contained transmitter with frequency control from either unit - just like Drake. Don't forget a light to indicate which dial is operative!

In the ssb generator module, shown in fig. 1, the microphone signal is amplified in two stages and then applied to a diode-ring balanced modulator. The carrier is initially generated at 454 or 455 kHz, for CW/ssb. Undesired products are attenuated and suppressed by adjustment of the modulator and also FL1, a 2.4-kHz mechanical filter. The output from the filter is applied through a buffer to a balanced mixer comprised of two fets. Another pair of crystals at 8545 and 9455 kHz provide the signal, which is simultaneously applied to the fet mixer, for USB or LSB selection. The mixer output, after a three-section LC filter, is now a 9-MHz ssb signal.

In the next module, the 9-MHz signal is buffered and applied to a second diode ring mixer for addition to the signal from the vfo converter. Five wide-band LC filters at the output of the diode mixer select the desired band. The combination of diode mixer and LC filters again make for excellent suppression of undesired mixer products. The signal is now fed to a wide band amplifier and then to the power amplifier (PA) module.

Two transistors are used for the driver in the power amplifier module. The final transistor operates as a linear amplifier and has been protected against thermal runaway. No mismatch protection was deemed necessary. On several occasions the antenna was not connected, and no damage has resulted to date! In order to make the

By Piero Moroni, I5TDJ, Cosseria 10, Florence, Italy 50129 (translated by Joe Darmento, W4SXK)
most of the modest power available, a tuned circuit is used to match the final transistor to a 50-ohm output. Each circuit need only be set once during the initial adjustments. A sample of the output is rectified and used for alc. The 0.1 mA meter reads the supply voltage or may be switched to read alc voltage and thus monitor the output.

fig. 1. Block diagram of the solid-state transmitter. The vfo and mixing scheme are identical to the one used in the receiver described by the author in the October, 1975, issue of ham radio.

Except for the auxiliary circuit, each module was enclosed in a standard aluminum box, 3 x 4½ x 2 inches (77x107x49mm). The PA module is slightly larger, 3 x 5.7 x 2 inches (77x145x49mm). Each module may be arranged as desired to fit a commercial case, as done by 15FLN. All circuitry is mounted on single-sided epoxy-glass PC boards. I used an isolated pad drill rather than printed-circuit technique; it’s easier and quicker for a one-time project. Signal interconnections are made with phono jacks and plugs. All other interconnections enter the modules through 1500-pF feedthrough capacitors. Points designated as +12 always have power applied; +12T implies voltage on with PTT. When winding the toroids, make sure you twist the wires 7 to 8 turns per inch (2 to 3 turns per cm).

SSB generator module

Referring to fig. 2, Q1 and Q2 amplify the microphone signal to a few hundred millivolts for application to the balanced modulator. The four 1N270 diodes should be selected for equal forward resistance at 1 mA of current. Crystals Y1 and Y2 provide the 454/455-kHz carrier. On CW, the 454-kHz crystal causes the carrier to be transmitted 1 kHz above the vfo frequency. No problem — your contact receives a 1-kHz signal in the usb position of his receiver. R1 and C1 are used to null the carrier during the initial adjustment.

The gain of Q3 is controlled by the alc developed from the final transistor. Q6 and Q7 form the balanced mixer for signal conversion to 9 MHz. R2 is the balance pot, and when properly adjusted the mixer, in conjunction with L1, L2 and L3, will provide good attenuation of spurious products without resorting to an expensive commercial filter. One precaution, do not mount any oscillator components near the ends of the mechanical filter or you will not obtain good carrier suppression. Component placement is shown in the photograph.

Mixer and amplifier module

In the schematic, fig. 3, transistor Q1 is a buffer amplifier; the 100-ohm potentiometer adjusts the 9-MHz signal level into the diode mixer. Unfortunately, this type of mixer attenuates the desired signal approximately 6 dB and requires about 5 mW of oscillator injection. However, it does attenuate the oscillator signal at least 30 dB with satisfactory performance from 0.5 to 50 MHz. This latter characteristic is eminently desirable to provide constant output on all bands. Thanks to these characteristics the simple filters on the output are perfectly adequate. Except for component values these five filters are all identical to the 3.5 to 4 MHz filter shown in detail in the schematic. The filters are diode selected by the bandswitch. With feedback to improve linearity, the signal is amplified to about 50 mW by Q2 and Q3.

Components for this module are mounted on three small boards approximately 3/4 x 1 inch (15x25mm). One board holds the buffer and mixer, the second the 5 filters, and the third board contains Q2 and Q3. Separating the boards is helpful in home brewing. In case you make a fatal error, you ruin only a small part of your work.

Power amplifier module

Two transistors in push-pull, fig. 4, raise the signal level to 0.5 watt. CR1 is in thermal contact with one transistor to maintain collector currents within safe
fig. 2. Schematic diagram of the ssb generator. C1 is a 50-pF (ARCO) compression trimmer. FL1 is a Collins F455-Z7 filter. L1 through L3 are each 15 turns of no. 22 AWG (0.6mm) wire wound on a Micrometals T44-6 core. L3 also has a one-turn link. Each coil should be 0.95 \(\mu \)H. T1 and T2 are 455-kHz transistor i-f transformers (Miller 2031). The crystals are parallel resonant with 32-pF load capacitance.
fig. 3. Mixer and amplifier module schematic diagram. T1 and T2 are each 10 turns of no. 32 AWG (0.2mm) trifilar wound on a hi-j core (Indiana General CF2). T3 and T4 are identical to T1 except they are bifilar wound. T5 is wound on an Amidon T44-6 core. The primary is 15 turns of no. 24 AWG (0.5mm) with a secondary of 2 turns wound over the ground side of the primary. The rf choke, VK200 19/4B, is available from Elna Ferrite Labs, Woodstock, New York 12498.

<table>
<thead>
<tr>
<th>FL1</th>
<th>FL2</th>
<th>FL3</th>
<th>FL4</th>
<th>FL5</th>
<th>C1</th>
<th>C2, C5</th>
<th>C3</th>
<th>L1, L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 pF</td>
<td>330 pF</td>
<td>150 pF</td>
<td>100 pF</td>
<td>68 pF</td>
<td>300 pF</td>
<td>3300 pF</td>
<td>39 pF</td>
<td>3.4 μH, 30 turns no. 24 AWG (0.5mm)</td>
</tr>
<tr>
<td>3000 pF</td>
<td>3000 pF</td>
<td>1600 pF</td>
<td>1000 pF</td>
<td>430 pF</td>
<td>39 pF</td>
<td>3.3 pF</td>
<td>3.3 pF</td>
<td>1.6 μH, 20 turns no. 24 AWG (0.5mm)</td>
</tr>
<tr>
<td>8.2 pF</td>
<td>3.3 pF</td>
<td>3.3 pF</td>
<td>3.3 pF</td>
<td>3.3 pF</td>
<td>8.2 pF</td>
<td>8.2 pF</td>
<td>8.2 pF</td>
<td>0.9 μH, 15 turns no. 22 AWG (0.6mm)</td>
</tr>
<tr>
<td>0.9 μH</td>
<td>0.6 μH</td>
<td>0.6 μH</td>
<td>0.6 μH</td>
<td>0.6 μH</td>
<td>0.9 μH</td>
<td>0.9 μH</td>
<td>0.9 μH</td>
<td>0.5 μH, 11 turns no. 20 AWG (0.8mm)</td>
</tr>
</tbody>
</table>

Note: The coils for FL1 to FL3 are wound on Amidon T50-6 toroids and FL4 and FL5 coils are wound on Amidon T50-10 cores.
fig. 4. Schematic diagram of the power amplifier. RFC1 is 2 turns of no. 22 AWG (0.6mm) wound on a large Amidon bead. CR1 is a silicon diode rated at 0.4 A and 50 PIV. CR2 is also a silicon diode, 3 A and 50 PIV, stud mounted. T1 and T2 are each 6 turns no. 28 AWG (0.3mm), trifilar wound on a hi-μ 1/4-inch (6.5mm) core (Indiana General CF-2). T3 is a TV balun core wound with four twisted no. 28 AWG (0.3mm) wire. T4 is a high-μ Ferroxcube core wound with 5 turns of 6 twisted no. 28 AWG (0.3mm) wires.

capacitors

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>L2</td>
<td>3.8 μH, 30 turns no. 24 AWG (0.5mm) tapped 10 turns from the ground end</td>
</tr>
<tr>
<td>40</td>
<td>C7</td>
<td>360 pF, 22 turns no. 24 AWG (0.5mm) tapped 5 turns from the ground end</td>
</tr>
<tr>
<td>20</td>
<td>C5</td>
<td>180 pF, 15 turns no. 20 AWG (0.8mm) tapped 4 turns from the ground end</td>
</tr>
</tbody>
</table>

inductors

<table>
<thead>
<tr>
<th>Value</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>C3</td>
<td>120 pF, 13 turns no. 20 AWG (0.8mm) tapped 3 turns from the ground end</td>
</tr>
<tr>
<td>10</td>
<td>C1</td>
<td>90 pF, 11 turns no. 20 AWG (0.8mm) tapped 3 turns from the ground end</td>
</tr>
<tr>
<td>10</td>
<td>C2</td>
<td>150 pF, 13 turns no. 20 AWG (0.8mm) tapped 3 turns from the ground end</td>
</tr>
</tbody>
</table>

Note that L2 through L5 are wound on Amidon T50-6 cores while L6 and L7 are wound on T50-10 cores.

The ARCO trimmers are type 42 or 46 with the values indicated being for resonance. The trimmers, Amidon, and Miller parts are available from Circuit Specialists, Box 3047, Scottsdale, Arizona.
fig. 6. Module interconnection diagram. Note the 150-ohm resistor in the line between the VFO converter and the mixer/amp. CR1 through CR4 are 1N4148 diodes. The relay should have a 12-volt coil.

fig. 5. Schematic diagram of the ALC and control module.
Starting with the ssb generator, apply power to Q4 and verify there is about 2 volts of rf on the secondary of T2; adjust the core for maximum. Switch to CW, add power to Q3 at +12T and connect an oscilloscope to the secondary of T1. It should indicate about 100 millivolts; again adjust the core for maximum voltage.

Connect the grid-dip oscillator through a 1 to 2 pF “gimmick” to the source of Q5, apply +12 volts and verify that the transistor oscillates with either crystal. With a receiver connected to the 9-MHz output jack, apply power to Q6 and Q7 and check for output. It may be necessary to adjust the turns slightly on L1/L2/L3 for maximum output.

Turn Q4 off, switch to the 9455-kHz crystal and tune a receiver to this frequency. Adjust R2, the 10k pot, for minimum signal. After turning Q4 on again, switch to ssb, and alternate the adjustment of R1 and C1 in the balanced modulator, for minimum signal. In some cases C1 must be connected to the opposite side of the balanced modulator for better suppression. In my transmitter the carrier was down 80 dB.

With the ssb generator connected to the mixer amplifier module, temporarily solder a 47-ohm resistor on the output of the mixer module. The output of the vfo converter, as measured at the 150-ohm interconnecting resistor, should be approximately 0.5 volts. Switch to CW, set the vfo to 3.5 MHz, and apply power to +12 and +12T. You should measure at least 1.6 volts with an rf probe on the output. It may be necessary to adjust the turn spacing of L1 and L2 for maximum output. Repeat this procedure for all five bands, making any slight adjustment necessary to the respective filters.

The power amplifier is normally adjusted for maximum output. A temporarily-connected rf voltmeter is used to measure the output across a 50-ohm dummy load. The respective trimmers, C1 through C8, are adjusted for each band. At this point the entire transmitter can be interconnected as shown in fig. 6.

Set the carrier balance pot to its midpoint and adjust R3 in the mixer amplifier module for 200 millivolts on the secondary of T5. Change to 28-MHz CW and put a voltmeter in the alc line from the PA module. As the carrier level is increased you should get 10 watts output on all bands. Note also that the alc responds. Now, connect the alc line to the ssb generator. Locate the 62-pF trimmer on the PA module and adjust it for proper level of alc action — it should limit the output to 10 watts. Switch to ssb and, using a two-tone test or your mike, verify that this condition also exists.

Depending on your voice quality and language (Italian needs lots of alc) you may need to readjust the alc trimmer. The transmitter is now ready for operation.

checking and alignment

I suggest you check each stage individually. As a minimum you'll need a vvm or vtvm with an rf probe, a receiver that will tune around 9 MHz, and a grid-dip oscillator. An oscilloscope and frequency counter will help, and of course, a source of 12 volts at 3 amperes.

reference

ham radio
Drake Accessories

designed for convenience and accuracy

Drake Directional RF Wattmeters

W-4 1.8-54 MHz

WV-4 20-200 MHz

Drake directional, through line wattmeters, using printed circuits, toroids, and state of the art techniques, permit versatile performance and unsurpassed accuracy, yet at a lower cost.

In contrast to VSWR measuring devices of the past, Drake wattmeters are frequency insensitive throughout their specified range, requiring no adjustments for power or VSWR measurements.

Negligible insertion loss allows continuous monitoring of either forward or reflected power for fast accurate tune up and checking of transmitter-antenna performance.

Indirectly measure radiated power (forward power minus reflected power) and VSWR by means of a plastic nomogram included.

Each wattmeter makes possible quick, accurate adjustments of antenna resonance and impedance match, when placed between transmitter and matching network.

High accuracy; ideal as laboratory instruments.

Removable coupler allows remote metering.

Drake RCS-4 Remote Coax Switch

- Remotely Selects One of Five Antennas
- Grounds All Unused Antennas
- Grounds All Antennas in Gnd Position for Lightning Protection
- Front Panel Indicator Monitors Antenna Selection Interval
- Protected Against Adverse Weather Conditions
- SO-239 Connectors Provided for Main Coax Feed-Line and Individual Antenna Feed-Lines
- Handles 2000 Watts PEP
- Available in 120 V-ac or 240 V-ac 50/60Hz Versions

Drake MN-4 & MN-2000 Matching Networks

A Drake matching network is a worthwhile addition to any amateur station where peak performance is desired. Basically identical, except for power handling capabilities, the MN-4 and MN-2000 enable feedline SWR's of 5:1 to be matched to the transmitter. If input impedance is purely resistive, even higher SWR's can be handled. Besides presenting a 50 ohm load to the transmitter, the Matching Network’s built in rf wattmeter allows accurate and continuous power measurement and VSWR indication. The advanced wattmeter circuitry yields frequency-insensitive readings from 2 to 30 MHz, and accuracy until now obtainable only in expensive wattmeters.

MN-4 (300 Watts) $119.00

MN-2000 (2000 Watts) $220.00

For more details, please send name and date of this publication to:

R. L. DRAKE COMPANY

540 Richard St., Miamiusburg, Ohio 45342
Phone: (513) 866-2421 Telex: 288-017

Western Sales and Service Center, 2020 Western Street, Las Vegas, Nevada 89102 702/382-9470

More Details? CHECK-OFF Page 126

April 1977
the remote base:

an alternative
to repeaters

Recommended reading for those wishing to relieve congestion on the vhf bands — a definitive description of the difference between remote-base and repeater stations.

We feel that the case for remote base stations, as opposed to repeaters, is a very strong one for those interested in the advancement of vhf/uhf amateur communications. In this article we discuss the remote base-station concept with emphasis on its advantages over repeaters in today’s crowded vhf/uhf spectrum.

Appreciable differences exist in the technical details between remote bases and repeaters. The former require a far more flexible command and control system than for repeaters, but they are potentially capable of performing many more functions. Furthermore, the remote base is designed and built with the systems approach in mind and with an eye toward modernization and expansion, whereas repeaters tend to be limited to one or two functions and are generally designed as “common-carrier” machines.

background

Radio amateurs have explored the characteristics of frequency-modulated communications systems since the 1930s, when Edwin H. Armstrong demonstrated the feasibility of this mode of transmission. Initially failing to win acceptance on the hf bands because of the superiority of ssb in spectrum conservation and weak-signal

By Gordon Schlesinger, WA6LBV, and William F. Kelsey, WA6FVC. Mr. Schlesinger’s address is 5364 Saxon Street, San Diego, California 92115; Mr. Kelsey at 13086 Melrose Avenue, Chino, California 91710.
fig. 1. Evolution of a vhf remote-base station. A typical locally controlled amateur station is depicted in A. "Extended" local control is shown in B in which the microphone, speaker and control lines are rooted from the operating position to equipment located elsewhere on the premises. A wire-line-controlled remote base is shown in C (transmitter and receiver are located at an elevated site to increase operating range). A radio-controlled remote base station, D, is the same as in C except that the wire link is replaced with a pair of uhf radio channels.

reception, fm entered into general amateur use on the vhf bands in the late 1950s.

Amateurs associated with the commercial* two-way radio business (land mobile service) purchased obsolete police and taxicab radios, retuned them to operate on adjacent amateur vhf bands, and began to experiment with the new mode. Having radios that generally offered one, or at most two, crystal-controlled transmitting and receiving frequencies (or channels), local fm groups quickly adopted standardized channels on which all radios would be operated. In the uncrowded vhf bands of those golden days, these few fm channels were placed well away from existing a-m and CW activity, and the new fm operators were generally ignored. With pretuned radios transmitting and receiving on the same frequency and with effective squelch circuits silencing receiver noise between transmissions, a natural party-line type of operation ensued. Thus the very first amateur fm operations were of a simplex nature — direct, point-to-point transmissions on a single frequency.

In southern California, the first simplex channels were established on 146.760 and 146.940 MHz. Since an a-m repeater (K6MYK) had been in operation at this time, fm operators saw no need for duplication. Instead they concentrated on extending the range of their simplex stations. In the mid 1960s several groups of fm operators established remotely controlled 2-meter fm transmitters on several southern California mountains. These transmitters were operated by radio-control links on the 450-MHz amateur band. Soon thereafter 2-meter fm receivers, tuned to the transmitting frequency, were added to the remotely controlled installations. These early groups of fm experimenters had established base stations (i.e., stations designed to be operated at fixed locations), which were on mountains to increase range. They were remotely controlled and were operated by uhf radio links. These were among the first remotely controlled base stations, or remote bases, as they are more commonly known.

Early remote bases in southern California included those of W6YY, WB6SLR, WB6CZW, WB6LXD, and WB6QEN. From this beginning the number of southern California remote bases has increased to over 100 at present, with a smaller number in northern California, Nevada, and Arizona. Remote bases have been established in other parts of the country though nowhere in the numbers found in California.

development of remote stations

While both remote bases and vhf fm repeaters operate from elevated locations, it should be clearly understood that a remote base is not a repeater station. Major differences exist between them in construction, operation, and licensing; these differences are discussed later in greater detail. Most important, however, is the difference in intent of the two stations. Repeaters exist primarily to extend the intracommunity range of user mobile and hand-held portable stations, most operators

*The term "commercial radio" applies to a radio originally designed and manufactured for operation in the commercial two-way Land Mobile Radio Service and adapted to amateur use.
of which are not owners or control operators of the repeater. Remote bases, on the other hand, are extensions of the personal stations of their owners and are operated generally only by control operators.

Fig. 1 presents the evolution of the remote base concept. A typical amateur station is depicted in fig. 1A; for the sake of discussion let's assume that it's an fm base station. The owner/control operator talks on the local microphone, listens on the local speaker, and manually turns the transmitter on and off. All controls are at arms' length. This has been the typical style of amateur operation on all bands since the inception of ham radio.

Let's now assume, for reasons of space limitations, that it is inconvenient for the amateur to keep his fm base equipment at his operating position. Since fm stations are operated on crystal-controlled, fixed-tuned channels, it's not necessary to have direct physical access to the transmitter and receiver for tuning purposes. Therefore the amateur may elect to place his base equipment in his basement, attic, or garage, and extend the microphone, speaker, and push-to-talk lines back into his operating position (fig. 1B). Many commercial fm base stations include provisions for doing just this. The amateur is now operating his base station remotely by wire line, although for licensing purposes the station is still under direct control as long as it is entirely contained within the amateur's fixed station license location.

In fig. 1C we extend the operating range of the fm base station by relocating it to a higher elevation. It might be situated at a friend's house on a hill, on a mountain top commercial two-way radio site, or on top of a tall building—all depending on the local geography. The station is still controlled and operated by wire line, but in this case the length of the control line is measured in miles (km) rather than in feet (m). (The technical details of the control system depend on the characteristics of the wire-line pair, its length, and whether or not it is leased from the telephone company). This installation is now a remotely-controlled base station, or remote base, and it must be licensed as a remotely-controlled station. Few, if any, southern California remote bases are wire-line controlled, but the idea has merit for other areas of the country where distances and topography permit.

Now, let's assume that no wire lines can be run to the proposed remote base-station location because of expense, distance, or inaccessibility. It then becomes necessary to control and operate the remote base by radio (fig. 1D). FCC rules, (Part 97.109a), require that radio remote-control links operate on frequencies above 220 MHz. While some remote bases operate with 220-MHz radio links and a few others use the amateur microwave bands, the vast majority of remote base operators have elected to control and operate their stations through radio links on the 420-450 MHz amateur band. The reason for this is the availability of high-quality, surplus, commercial fm equipment designed to operate in the 450-470 MHz land mobile service band, or the 406-420 MHz government service band. The former set of radios can be easily retuned to operate in the 440-450-MHz segment of the amateur 3/4-meter band, while the latter set converts easily to the 420-430-MHz segment.

Note from fig. 1D that the control link must be bidirectional. Speech and control information is sent from the local uhf control-link transmitter to the remote base uhf control-link receiver. The information is demodulated and used to operate the vhf fm transmitter. Signals received by the remote base vhf receiver are used to modulate the remote uhf control-link transmitter and are then recovered by the local control-link uhf receiver. The entire control link could be operated on a single uhf channel but this is technically cumbersome. It has become customary to use separate channels for the uhf uplink and downlink. Spacing between the two control-link channels is typically on the order of 5 MHz, a separation sufficient to allow all uhf receivers to function properly while their associated transmitters are operating. Thus full two-way duplex operation of the control link is permitted; the control operator can simultaneously transmit signals to, and receive signals from, the remote-base station.

The locally-controlled fm base station in fig. 1A has now grown to become the radio-controlled remote base station in fig. 1D. Fundamentally, however, the only significant change between the two stations has been the replacement of three pairs of wires by one pair of 450-MHz radio links: the pair connecting the micro-
phone to the transmitter, the pair between the receiver and its speaker, and the push-to-talk line pair.

remote-base advantages

To this point we've discussed the concept of the radio-controlled remote-base station operating on fm simplex channels. While many southern California remote bases have been established to do just this, the description above is actually a restricted view of the capabilities of remote bases. In point of fact, the existence of the basic radio link and control equipment, together with the physical location of the remotely controlled station, represent a resource that can be developed: radios of any type of emission on any amateur band, from 1800 kHz to 10 GHz or higher can be operated remotely. The remote base, for example, allows operation of high-power transmitters, such as on the 50-MHz band, in areas where TVI is a problem. It allows operation on any amateur band where antennas can't be erected at the control operator's location. It affords improved operation on the hf bands where space for efficient antenna systems may be more easily available at the remote-base site.

A remote base offers the opportunity for a group of amateurs to relocate all their radios at one central point while achieving antenna space advantages on hf and height advantages on vhf/uhf. This relocation includes not only home-station radios but mobiles as well. All may be replaced with one uhf radio per location, thereby saving on duplication of radios among several home station and mobile installations.

Those remote-base stations that operate on the fm simplex channels promote spectrum conservation in several ways. With their extended local operating range, they provide interference-free regional-area communications. This can relieve congestion on the hf phone bands by shifting local-area communications to vhf. Because remote bases operate as simplex stations, each occupies only one vhf channel at a time (i.e., 146.940 MHz) rather than two required by a repeater (i.e., 146.340 and 146.940 MHz). Additionally, by the nature of the remote-base design, a control operator always monitors the channel of operation with a mountaintop receiver before transmitting. Thus activity on the operating channel over the entire remote base transmitting range can be easily detected and inadvertent interference avoided. The same is true for repeaters only when a separate receiver and auxiliary link system is used to monitor the output frequency from the repeater site.

Finally, a remote base usually represents the desire of a group of active vhf/uhf amateurs to build a communications system. In deciding to build a remote base, the constructing group does not require the use of the limited set of 2-meter repeater channels. This translates to spectrum conservation. In the southern California area it would be impossible to fit more than the one-hundred remote-base groups into individual 2-meter repeater pairs, even when using 15-kHz channel spacing and all the simplex channels. While it's true that each remote base requires a pair of dedicated channels, these channels are in the spacious 440-450 MHz region. On a narrow-band deviation (±5 kHz) basis, this region of the spectrum contains a potential 200 pairs of channels, with another 200 pairs in reserve between 420 and 430 MHz.

constructing a remote base

Occasionally an individual will undertake the entire job of designing, building, and installing a remote base. He will then either operate it as his own station, or may invite his friends to use the remote base as co-control operators. More often, in southern California, at least, a group of individuals will be formed to build and operate the remote base, thereby sharing the financial and technical responsibilities. The following comments, although addressed primarily to the group-ownership case, apply as well to single-owner bases. **Administrative and technical responsibility.** A remote base is a communications system that contains separate but intercommunicating radios. The cost and effort to build and operate a remote base is greater than that required to operate a home station, so careful attention should be given to financial and technical responsibilities. One member of the group should be responsible for handling and reporting finances. Provisions should be made for one owner selling his equity in the remote base in the event he must move out of the area. Provisions also should be made for including new members or owners. Lack of adequate preparation in this area has been an historical source of conflict in many remote base groups.

One individual should be responsible for obtaining the site for the remote base, which should be the first task undertaken and completed. When the site involves rental of space at a commercial two-way radio installation, it has been found best to have a single individual from the group maintain relations with the site owner. One individual will have to arrange for licensing the remote base, whether it is in his name or in that of a club station. Additional non-technical duties that may need to be delegated include a) obtaining supplementary permits (for example, from the Forest Service, Bureau of Land Management, local governmental authority) to operate the station, b) maintaining memberships in regional amateur radio associations, and c) providing for fulfillment of public-service commitments.

Technical responsibilities in establishing a remote base should be divided into design, construction, and installation and maintenance areas. A single individual should have overall responsibility for the design of the entire system, although he may wish to delegate specific design projects to others. Particular attention should be given to interfacing between the various subsystems, such as audio and control signal levels between rf hardware and the control system.

Once original equipment designs are complete, construction of individual components can be delegated to group members. Emphasis should be placed on building for reliability, both in selection of components and in construction practices. One or two individuals should assume the responsibility of tuning the rf hardware, integrating the amateur-constructed subsystems.
into the final assembly, and performing on-the-ground checkout.

Maintenance. When installation of the remote base is completed, the maintenance team assumes responsibility for continued operation. These people should be equipped with the specialized test equipment (wattmeters, signal generators, frequency and deviation meters) for servicing fm communications systems. Inevitably there will be an initial period of system debugging as various design and subsystem deficiencies become apparent. Frequent trips to repair and service the remote will later taper off to occasional visits for scheduled maintenance. At this point the design team will probably begin work on improved subsystems to be retrofitted into the existing remote base, or perhaps better quality rf hardware will be acquired and put into service. Few remote bases are ever truly "completed."

Rf hardware. The remote base typically will consist of commercially manufactured rf hardware and amateur-built control systems. Antennas may be either commercially manufactured or home built. In the selection of transmitter and receiver strips, southern California remote-base groups invariably use late-model commercial equipment. All or partially solid-state equipment is preferred for greater reliability, although high-quality all-tube equipment has performed well at some installations for many years. Receivers should have good sensitivity (rf preamps may be added) as well as excellent rf selectivity and cross-modulation rejection; many busy commercial radio sites contain very heavy rf fields. Vhf receivers and transmitters should be capable of operation on several different channels, so that the remote base may be switched to operate on whatever channel the control operator wishes to use. The vhf transmitters should be capable of moderate power output (30 - 100 watts), and should be free from spurious output. A remote base operating from an elevated location with a few hundred milliwatts of spurious output will certainly make its presence known.

Commercially manufactured resonant cavities are often used ahead of the entire vhf portion of the remote base to provide additional rf selectivity. The uhf remote base control-link radio should be the best that can be purchased, since it will be the limiting factor in using remote base from distant locations. Matching commercially manufactured 110-Vac power supplies for fm installations are preferred to home-built supplies since they provide the exact voltages required, have provisions for properly interconnecting the transmitter and receiver to other equipment, and are usually rated for continuous-duty operation under severe environmental conditions.

Antennas. Antennas and transmission lines for the remote base should be selected with regard to survival under severe weather conditions. Antenna gain, easily obtainable at vhf and uhf is an additional factor to be considered. Remember, however, that many "gain" antennae have major radiation lobes directed at the horizon; for a mountaintop installation it may be preferable to select antennae that radiate their major lobes below the horizon. Transmission lines should exhibit the lowest loss possible; weak received signals and expensively generated vhf and uhf power can be lost in inferior cox. If available, commercially manufactured Foamflex should be used.

Control systems. Control systems are the heart of a remote base; they are always amateur constructed. In southern California they vary in complexity from simple audio-tone decoders that drive rotary stepping switches to sophisticated multilevel digital logic circuitry. These advanced systems allow any piece of rf hardware in the remote base to be interconnected with one or more of the remaining pieces in various combinations. Control systems reflect individual needs and capabilities; space prohibits giving specific examples.

A control system performs several functions in addition to enabling transmitters to be turned on and off. In general, the control system must provide for:

1. Authentication and decoding of the received control signals.
2. Selection and activation of the required transmitters and receivers.
3. Selection of specific frequencies to be used within each transmitter and receiver.
4. Processing and conditioning of audio.
5. Automatic indentification of active transmitters.
6. Automatic timing of transmission length to provide ultimate shutdown protection should the control link fail.

Typically, remote bases are controlled by specific audio tones sent along with speech on the uhf uplink channel. The use of Touch-Tone* audio encoders for this purpose has become relatively standard. The control link usually also contains a subaudible continuous tone squelch signal (Private Line, Channel Guard, etc.) as a verification device. Audio-tone decoders, logic circuits, and audio processors are matters of personal preference and design, although some circuits have been published. Timers and lDers are well documented in amateur literature.

*Touch-Tone is a trademark of American Telephone and Telegraph.
It is considered good construction practice to build all control circuits, timers, audio processors, and identifiers on standard-size edge-connector cards for insertion into a card rack. Interconnections to the individual pieces of rf hardware from the control system are made from the contacts at the rear of the card rack. Provisions should be included in any control system for expansion; the use of individual cards for specific circuits facilitates this goal.

New designs for amateur-built components should be breadboarded and thoroughly tested on the bench before being constructed in final form. In testing, provisions should be made for checkout of the new designs under conditions of continuous duty in temperature and humidity extremes. Fig. 2 shows a typical remote base station.

One other design feature should be included in any remote base: “series audio.” This is illustrated in fig. 3. In a series-audio system, the remote-base vhf receiver runs continuously, even when the control operator transmits; his speech is sent from his 450-MHz control transmitter to the 450-MHz remote base receiver and is then transmitted by the remote base vhf transmitter. The vhf receiver remains on, and although not connected to an antenna during this time, still receives a signal from the vhf transmitter operating nearby. This signal is retransmitted back to the control operator over the 450-MHz downlink. The control operator can listen to his voice as it is being transmitted on vhf by the remote base and can verify that the vhf transmitter in the remote base is being properly modulated. The speech from the control operator follows a path from the control-station microphone back to the control-station loudspeaker, with the remote base vhf transmitter and receiver in “series” with the duplex control link.

Operating a remote base

What can be done with a remote base is limited only by the imagination and ingenuity of its owners. First and foremost, however, southern California remote bases operate on the area’s simplex channels: many can be heard on 146.940 and 146.760 MHz. This is the historical rationale for the establishment of a remote base; and in fulfilling this function, remote bases have helped to remind fm operators — in a time of rapidly expanding numbers of repeaters — that much good work can be accomplished on a point-to-point simplex basis. Occasionally a remote base will be used to transmit bulletins of interest to the regional fm community on 146.940 MHz (a channel that every fm operator can monitor). With their height advantage, many southern California remote bases can be heard from Santa Barbara to the Mexican border; they provide an invaluable resource for tying together an entire region by radio.

Because of the large number of remote bases in southern California, an agreement has been reached that use of the 146.460-MHz simplex channel will be limited to an “intercom” channel among remote bases. This allows two or more remote bases to avoid monopolizing 146.760 or 146.940 MHz, which would prevent mobiles and home-base stations from using these channels. This arrangement has worked well in practice. A number of remote bases also have provisions for operating on 52.525 MHz and 29.600 MHz, the National simplex frequencies for these bands.

While it’s possible to equip a remote base to transmit on a repeater input channel and listen to the corresponding repeater output channel, such practice is not often done. An exception would be where the repeater to be contacted is so far from a majority of the remote bases’ control operators that they couldn’t transmit on vhf directly into the repeater from their locations.

Several remote bases have been equipped with hf ssb transceivers. Notable was the former WA6ZRB remote base, which contained provisions for transmitting on 40 meters including remote tuning of the transceiver vfo. The remote was often used by control operators to check into the WCARS net.

Many remote bases contain autopatches. The use of a remote base for this purpose is particularly fortuitous because it removes the autopatch operation from repeaters in the busy 2-meter band thus reducing congestion and increasing repeater availability for mobile users. Generally, because of nonavailability of telephone lines at the remote base site, a special pair of auxiliary link channels operating in the 420 - 430 MHz region are used to transmit control-link audio from the remote base site to a telephone ground station at a convenient location.

Many remote bases contain auxiliary uhf radios, which link to other remote bases in other areas. Often two or more remote base groups will enter into reciprocal operating agreements, so that by means of the radio links the members of one group, transmitting through their own remote, can control and operate the other remote bases. For example, the Gronk Radio Network can be activated so that stations in southern California can talk to and operate through remote bases in central and northern California, and in Nevada and Arizona (and vice versa). This is an area where advanced fm operators...
are awaiting FCC rules and regulations to catch up to the state of the art.

Several remote bases contain special functions, such as telemetry of prevailing environmental and equipment conditions at the remote base site, or television surveillance of the site.

Remote bases have participated in emergency activities. With their great range and ability to contact virtually any fm-equipped amateur through vhf simplex channels, they provide a natural focus for emergency and disaster operations. Of particular note is the participation of remote bases in the rescue effort after the San Fernando Valley earthquake of 1971. The use of remote bases to relay traffic accidents and other emergencies to public service agencies is a common occurrence.

licensing

Before adoption of Repeater Docket RM 18803, remote bases were routinely licensed by the FCC after the required showings had been submitted. The FCC, then as now, wanted to be convinced that the remotely controlled station would not be tampered with or operated by unauthorized people, and that provisions had been made for automatic shutdown of the transmitters should a failure of the control link occur. Remote-base licenses could be single “additional station” licenses, or primary-station licenses with authorization for remote control. Control operators required no special licenses but were listed as control points on the remote base license.

Southern California remote-base operators became concerned with the status of licensing after the adoption of RM 18803. Apparently under the misapprehension that only a handful of remote base licenses would be requested, the FCC devoted its time to the increasing number of repeater applications. But along the way, they released a set of “interpretations” of the new Part 97 rules, which completely changed the nature of remote-base operation.

The interpretations included a requirement for a) the licensing as auxiliary-link stations of all uhf transmitters that carry speech to and from the remote base, b) the licensing as control stations of all uhf transmitters sending control information to the remote base, and c) the use of separate uhf frequencies for remote base speech and control uplink channels. A subsidiary effect of these interpretations was to declare as “illegal” the operation of the remote base from portable and mobile locations since, by definition, auxiliary links must operate between two fixed points. The FCC has since dropped the requirement that separate channels must be used for speech and control uplinks.

Nevertheless, remote-base operators are faced with a cumbersome and expensive licensing procedure and with operating restrictions more severe than those before RM 18803. The current licensing procedure, under which the FCC is processing and issuing remote base licenses, is as follows:

The mountaintop remote base must be licensed as a “secondary station” or “club station.” This basic license covers the hf and vhf portion of the station; an “auxiliary link” license is required to cover the uhf down-link transmitter. Both privileges may be combined on a single station license for a single application fee. Each control operator must modify his primary station license to include both “control station” and “auxiliary link” privileges; this also can be accomplished with one application fee. The FCC has deleted the requirements for submitting many parts of the required showings, making them instead a required part of the station log.

During the ensuing years the FCC has come to better understand the remote base concept, and has shown increasing willingness to allow remote base (and also repeater) licensees more latitude in the operation of their stations. Docket 21033, which is based in part on a Rule Making petition by the authors of this article, if adopted, will grant essentially complete freedom to operate remote-base stations in the traditional ways described above. For example, Commission restrictions against operation of a remote base from portable and mobile control locations will be eliminated, licensing will be greatly simplified, and the distinction between the remotely controlled base station (with its associated control operators) and the true repeater will be clearly drawn. Southern California remote base operators are generally pleased with the content of this Docket, and are looking forward to increased flexibility and freedom to innovate.

Remote bases are completely different in intent and operation from repeater stations. Repeaters are operated to extend the communications range for operators of specific mobile and hand-held portable stations interested in communications among themselves. Remote bases are operated as extensions of the owners’ personal
stations for purposes of communicating with all amateur stations. Almost all users of repeaters are not control operators, and the act of activating a repeater by transmitting on its input channel is not an act of controlling the repeater. Repeater control station operators are responsible for activating the station to repeat the transmissions of other amateurs and for suspending operations in the event that FCC rules are not complied with. By contrast, in southern California, every user of a remote base station has been a control operator. The remote base must be commanded by the control operator through the uhf radio link to operate for each transmission; it is not designed to automatically retransmit signals.

The comment has been made that, because the operation of a remote-base station involves speech transferred between hf-vhf and uhf frequencies, the remote base operates as a crossband repeater. From the discussion above it should be clear that the remote-base station does not fit the basic definitions of a repeater. The act of monitoring a vhf channel through the remote-base vhf receiver and uhf downlink channel is not an act of repeater usage. The system could be used as a crossband repeater if a) two nonremote base simplex stations were to transmit on a channel being monitored by a remote base, and b) each were to listen to the other through the remote base 450-MHz downlink instead of directly on the vhf channel. In practice this seldom happens; if it should happen it is the responsibility of the remote-base control operator to suspend operations on that vhf channel.

It is our feeling, which is shared by a majority of southern California remote base operators, that liberalization of the present FCC rules (and interpretations of these rules) is required. Ideally each remote base could be licensed as a remotely controlled station, with one license covering the entire mountaintop station including the uhf radio links. Each user would be required to be an authorized control-station operator, having control-station privileges added to his primary station license. There would be no limit to the number of control stations that could be conveniently licensed including other remote base stations operating as control stations (many remote bases have 15 control operators at present). The control-station license would confer the privileges of both controlling and operating the remote base and would be usable in portable and mobile operation in addition to its customary fixed-station use. Were these proposed changes to be adopted, remote-base operators would achieve more flexibility to innovate in the amateur vhf and uhf bands.

conclusion

For those vhf/uhf-oriented groups wishing to expand their interests from individual circuits and individual stations to building an entire communications system, the remote-base concept has several advantages. It offers the chance to experiment with systems engineering — to design and build a system constructed from individual pieces of equipment. The final system can reflect the designers' needs, wishes, and abilities, rather than the standardized requirements of the marketplace. The remote base offers reliable, interference-free local communications capability on the vhf bands, thus helping to relieve congestion on the crowded hf bands. It abolishes the need for duplication of radios between home and car, or duplication among several cooperating owners, and permits the establishment of high-power transmitters and large antennas at the remote-base site. It fosters spectrum conservation on popular bands by removing the requirement for dedicated repeater channels, substituting instead the need for a dedicated pair of channels in the far-less congested 420-450 MHz band. It promotes the use of simplex communications, thus reducing the load of busy repeaters.

Southern California amateurs developed the remote-base concept more than ten years ago. It has proved to be a useful adjunct to the amateur vhf community. We look forward to its adoption in other parts of the country.

references

ATB-34

THE COMPLETE 3 BAND ANTENNA

BY

cushcraft

IN STOCK WITH YOUR LOCAL DEALER

IN CANADA:
SCOTCOMM RADIO LTD. - 4643 Levesque Blvd. - Chomedey, Laval, Quebec

WORLDWIDE:
P.O. BOX 4860, MANCHESTER, N. H. 03108
You'll find this family of parametric curves indispensable when designing small inductors for rf work.

Winding a small inductor can be frustrating and usually involves several trials. Here's a simple graphical method that will produce accurate inductance values on the very first try. Carbon composition resistors, 1/4 through 2 watts, and standard-size coil forms up to 1/4 inch (12.5mm) diameter are used for winding the coils.

literature methods

The usual method for winding coils is to use Wheeler's approximate formula

\[L = \frac{r^2 n^2}{9r + 10l} \]

(1)

where \(L \) = inductance (\(\mu \)H)
\(r \) = coil radius (inches)
\(l \) = coil length (inches)

If all dimensions are in millimeters, eq. 1 becomes

\[L(\mu\text{H}) = \frac{0.0394r^2 n^2}{9r + 10l} \]

These formulas are accurate with one percent for \(l > 0.8r \) (i.e., if the coil is not too short). The procedure for winding the coil is described in *The Radio Amateur's Handbook* and several other publications. It usually involves the solution of Wheeler's formula for \(n \), searching a wire table for a suitable wire size, then spacing the wire along the coil form to get the required number of turns in the calculated coil length. Also coil inductance slide rules are used such as the ARRL Type A Lightning.

By Earl Palmer, W7POG, 1751 Military Road South, Seattle, Washington 98188
fig. 1. Curves for finding inductance as a function of turns closewound on composition resistor forms.

fig. 2. Curves for finding inductance as a function of turns closewound on standard-size coil forms 0.165 in. through 0.25 in. diameter (4.2 through 6.4 mm).

fig. 3. Curves for finding inductance as a function of turns closewound on standard-size coil forms 0.260 in. through 0.5 in. diameter (6.6 through 12.5 mm). A complete set of full-size curves is available from the author for $2.00 postpaid.
Calculator. These work fine for large coil diameters, ½-inch (12.5mm) or greater, but are not calibrated for smaller coil forms.

Accurate small coils can be made if the windings are closewound. Then the wire size determines the coil length (number of turns x wire diameter = coil length). For closewound coils, Wheeler’s formula can be written:

\[
L = \frac{d^2 \eta^2}{18d + 40n/T}
\]

where:
- \(L\) = inductance (\(\mu\)H)
- \(d\) = coil diameter (inches)
- \(n\) = number of turns closewound on coil
- \(T\) = number turns/inch of the particular wire size used for the coil

For dimensions in millimeters, eq. 2 is:

\[
L (\mu\text{H}) = \frac{0.0294 d^2 \eta^2}{18d + 40n/T}
\]

This formula is no simpler than the previous formula, but it is in a form that can be plotted in terms of inductance vs turns for a given wire size and coil diameter. This was done using a Monroe 1666 desktop calculator and plotter. With these graphs and a fair assortment of enameled copper wire, accurate inductors up to approximately 100 \(\mu\)H can be wound.

Graphical solution

Fig. 1 is used for winding inductors on carbon composition resistors. Composition resistors make excellent forms as their size is standard throughout the industry. The graphs will not let you try to wind more turns on the resistor than it will hold, and the minimum number of turns will be high enough to ensure reasonable accuracy. In winding these inductors keep the following in mind:

1. If the resistor is not going to be removed from the coil use a high resistance value, 100k or more.
2. If the Q of the inductor is important or the frequency of resonance is above 30 MHz, it would be best to remove the resistor form. For very small wire sizes this is impractical as the resultant coil would be too fragile.
3. If the accuracy of the inductor is important, then use as many turns as possible. The greater the number of turns, the more accurate the formula and the graph.
4. When an inductor is to be used as an rf choke, its self-resonant frequency is important, as it exhibits a high impedance at that frequency. Commercially manufactured inductors usually have specified self-resonant frequencies and may be used in a circuit for that reason. So beware – a hand-wound inductor may not work in a particular circuit even though it has the same inductance as a manufactured inductor. To find the self-resonant frequency of an inductor, short its leads and measure the resonant frequency with a grid-dip meter.

Figs. 2 and 3 are used for winding coils on standard-size forms that are normally used for printed circuit work. Larger coil-form sizes of 1/2, 3/8, and 1/4 inch (12.5, 9.5, and 6.5mm) are also included. The same precautions concerning Q and accuracy apply. For these inductors keep the following in mind:

1. If the coil is to be tuned with a ferrite or powdered-iron slug, the frequency used to determine the value of required inductance should be 15 to 20 per cent above the desired value. This is only a rule of thumb and does not take into account the difference in permeability of different slug materials. For brass slugs use a frequency 10 to 15 per cent lower.
2. For slug-tuned coils, the length of the windings should be less than the length of the slug. Typically it should be 75 per cent or less.
3. For air-wound coils, use a frequency 10 per cent below that desired. The coil can then be spread slightly to obtain the desired frequency.

Using the graphs

To gain confidence in these graphs, wind several inductors and check their actual value. A simple way to do this is to make a tuned circuit with a known capacitance then check the resonant frequency with a grid-dip meter. The expression for inductance is:

\[
L = \frac{25330}{f^2 C}
\]

where:
- \(L\) = inductance (\(\mu\)H)
- \(f\) = frequency (MHz)
- \(C\) = capacitance (pF)

I have wound at least one inductor from each graph and find the accuracy better than 10 per cent, which is satisfactory for most home-construction projects.

Example: Suppose a 3.3-\(\mu\)H inductor is needed for a low-power lowpass circuit and it is desired to keep the size at a minimum. Looking at the graph using a ½-watt resistor as a form, the maximum inductance is approximately 2.5 \(\mu\)H, so the next size (or \(\frac{1}{2}\)-watt) must be used. On the \(\frac{1}{2}\)-watt resistor graph, the 3.3-\(\mu\)H inductance line intersects the wire-size lines at 36 turns AWG no. 40, 41 turns AWG no. 38, and 48 turns AWG no. 36 (0.08, 0.10, and 0.13mm). Any of these combinations can be used; however, it would probably be somewhat easier to work with the larger wire size.

For calculating the inductance of toroids see references 2 and 3.

References

Ham radio
Bob Stein, W6NBI

how to use the lab-type rf power meter

When the average amateur hears the words "rf power meter," they bring to mind instruments such as those made by Drake, Swan, Collins, Heath, and others. These are all designed for relatively high powers in the high-frequency and low vhf regions, having full-scale ranges from 20 to 2000 watts. In a more professional class are the through-line instruments manufactured by Bird and Sierra, which use plug-in elements for various frequency ranges between 2 and 1000 MHz, and for full-scale power levels between 1 and 1000 watts.

Power meters such as these are suited for both field and home station use, and require no power source other than the rf energy being measured. However, when it comes to measuring low power, such as the output of a local-oscillator chain, a signal generator, or low-power stages in a solid-state transmitter, they are relatively useless. In such applications, it is necessary to use a laboratory-type power meter which is capable of measurements at the milliwatt and microwatt levels.

And, as with most electronic test equipment, a sensitive instrument can be used to make measurements above its range by means of certain auxiliary equipment. Thus, this type of power meter can be a versatile measurement tool for all power levels normally encountered by the experimenting amateur.

instrument availability

As with the first article in this series, this one is intended to demonstrate the use of test equipment which is more or less generally available on the surplus market. The instrument which is most often seen is the Hewlett-Packard model 430C Microwave Power Meter. Similar instruments also available from surplus sources are the Sperry Microwave Average Power Meter model 31A1 and the Narda model 440C Microwave Power Meter. Before the word "microwave" turns you non-uhf types off, read on. Microwave is a misnomer, although it must be admitted that these instruments were designed for use at frequencies up to 40 GHz. But they may also be used at 10 MHz and lower; it all depends on the bolometer being used with the power meter.

Which brings us to the next point — without a bolometer, a power meter is rather useless. The bolometer is a power-sensing device which is mounted separately from the power meter and connected to it by means of a cable. There are two types of bolometers: barretters,....
which are normal resistance elements with a positive temperature coefficient, and thermistors, which are manufactured from metallic oxide materials which exhibit a negative temperature coefficient. In its simplest form the barretter may be a short length of very fine wire, such as an instrument fuse, or a metallized film resistor.

The three power meters mentioned above can be used with either a thermistor or a barretter mount.

The Hewlett-Packard model 476A Bolometer Mount, which employs barretter fuses, and the model 477B Thermistor Mount. Several others are listed in table 1. Obtaining the bolometer mount is generally more difficult than finding a power meter, but they are around. On the other hand, a simple barretter mount suitable for use to over 500 MHz has been built by W6VSV and will, hopefully, be the subject of a forthcoming article.

Later model power meters, such as the Hewlett-Packard model 431 series, are also beginning to show up surplus. This type requires a temperature-compensated thermistor mount, typically a Hewlett-Packard model 478A or 84788. The instruments may be differentiated by the bolometer connector on the front panel. The older type power meter and bolometer are interconnected via a simple coaxial cable; the newer temperature-compensated thermistor mount connects to the power meter by means of a cable with multi-pin connectors.

how it works

The bolometer-power meter combination functions because of the fact that the bolometer element is essentially not frequency sensitive within its specified range (although there are some variations which are plotted at selected points on the newer mounts). This means that equivalent amounts of power, from dc to the maximum specified frequency, will produce the same resistance in the element.

In the earlier power meters, the bolometer forms one leg of a bridge which is connected in the feedback loop of an audio oscillator; see fig. 1. Dc bias is also applied to the bolometer element. This configuration results in a self-balancing circuit. The combination of dc bias and audio-frequency power applied to the bolometer causes it to assume a resistance value which balances the bridge. In practice, this balance is achieved by adjusting the bolometer bias controls on the power meter so that the meter indicates zero with no external rf power applied to the bolometer.

When the bolometer is connected to a source of rf power, it heats and its resistance changes, unbalancing the bridge. Since the bridge-oscillator circuit is self-balancing, and the dc bias is fixed when the meter is zeroed, the bridge rebalances itself by reducing the audio oscillator power by an amount equal to the external rf power. This decrease in oscillator power is measured by a voltmeter circuit which indicates an equivalent power increase representing the external rf power applied to the bolometer.

The Hewlett-Packard model 430C and similar power meters are designed to work with both positive (barretter) and negative (thermistor) temperature-coefficient bolometers which have operating resistances of 100 or 200 ohms. Front-panel switches on the power meter change the bolometer bridge configuration to accommodate these variations.

Because simple bolometers, especially the thermistor type, are extremely sensitive to changes in the ambient...
temperature, improved thermistor mounts have been developed which are temperature compensated by incorporating additional thermistors in the mount. This requires additional circuitry in the power meter which uses the compensating thermistors to maintain a balanced detection bridge under changing temperature conditions.

Thermistors vs Barretters

A comparison of thermistors and barretters applies only to the Hewlett-Packard model 430C, the Sperry Microwave model 31A1, the Narda model 440C, and other similar types which are designed for uncompensated bolometers. (The later, improved power meters all use temperature-compensated thermistor mounts).

In general, thermistors are more sensitive, have a greater power range, and are less susceptible to overload and burnout than barretters. On the other hand, a barretter responds more quickly because it has a shorter time-constant, and thus is able to follow a modulation envelope better. However, either may be used to measure the average power of a modulated signal.

The previously mentioned power meters will operate with either 100- or 200-ohm bolometers. (This refers to the bridge resistance, not the bolometer's input impedance which is usually 50 ohms). Since all of these power meters are able to provide a wide range of bias currents, any bolometer which allows the power meter to be zeroed is suitable for use with that instrument.

Because of the susceptibility of low-level barretters to burn-out, the coarse zero-set control on the power meter must always be turned fully counter clockwise before the bias-current switch is turned on or off. This avoids putting a switching transient through the barretter, which might cause it to burn out.

Measuring Power Below 10 Milliwatts

Measuring rf power within the power range of the bolometer and power meter (usually 10 milliwatts maximum) is as simple a procedure as can be imagined. First, connect the bolometer mount to the power meter with an appropriate cable, then set the power meter resistance and polarity switches to the positions which correspond to the bolometer being used. If a temperature-compensated thermistor mount is used, set the calibration-factor switch on the power meter to the factor which is specified on the mount.

Energize the power meter and zero the meter on the power range to be used. If you use an uncompensated thermistor or barretter, this only entails setting the bias-current switch to the lowest current range which will allow the meter to be zeroed by means of the zero-set controls. When using a barretter, be sure to observe two precautions:

1. Make sure the coarse zero-set control is turned fully counterclockwise before you turn the bias-current switch, and
2. Do not exceed the maximum safe current specified for the barretter.

When using a temperature-compensated mount, there may be some differences among the various power meters made by different manufacturers. Therefore, the instruction book for the power meter being used should be consulted.

Allow the power meter to warm up. In the case of the older types used with uncompensated bolometers, an hour or more may be required to reach a stable operating temperature, especially on the two lowest power ranges. It is advantageous to have the bolometer mount connected to the device under test during this warm-up period so that the mount and the device under test are at the same temperature.

After the power meter and bolometer have warmed up, re-zero the meter. Turn on the rf power source to be measured and read its output directly from the power meter. Since bolometers have time-constants as high as one or two seconds, you must take this delay into account before reading the meter.

When using the older types of power meters and bolometers, severe drift occurs on the two most sensitive ranges (0.1 and 0.3 milliwatt), even after several hours of warm-up. This drift can be minimized, but by no means eliminated, by protecting the bolometer mount from...
drafts and other environmental changes. One way of doing this is to enclose the mount in a block of styrofoam which has been cut and formed to fit closely around the mount. Even wrapping several layers of cloth around the housing will be an improvement over a "bare" mount.

Despite such attempts to stabilize the bolometer, I have found it necessary to re-zero the meter after every reading on the 0.1-milliwatt range. Consequently, I generally take between two and six readings, and average them to arrive at a meaningful measurement.

At this point there may be a question as to why powers of 0.1 milliwatt or less would be of interest to an amateur. A good example of this is checking or calibrating the output level of a signal generator. For instance, there are a great many TS-497/URR signal generators available surplus. Although this military version of the venerable Measurements Corporation model 80 has seen its day, it is quite adequate for the experimenter who is interested in a 2- to 400-MHz instrument. The main problem with such military surplus is that the output level may have to be readjusted. Since the calibration must be made at 50 millivolts output, a sensitive indicating device is required over the frequency range of the signal generator. A power meter and bolometer can do this nicely above 10 MHz, since 50 millivolts across 50 ohms is 50 microwatts, which is half-scale on the 0.1-milliwatt range of the power meter.

measuring power above 10 milliwatts

Because most of the power meters and bolometers which are likely to be available have a maximum power limit of 10 milliwatts, signals above that power level must be reduced by some means to use the instruments.

The most convenient method is to introduce attenuation between the rf source and the bolometer in 10-dB steps, which will allow you to multiply the power-meter readings by multiples of 10. Thus, to increase the range to 100 milliwatts, a 10-dB loss pad can be inserted between the source and the bolometer mount, as shown in fig. 2. In the same manner, the power-meter range can be extended to 1 watt by the use of a 20-dB pad, although you must be certain that the attenuator can dissipate 1 watt. The 10-watt level can be reached by using a 30-dB pad, but this must be a power attenuator rated at 10 watts dissipation or greater.

For powers over 1 or 2 watts, a directional coupler will usually be more convenient to use than a loss pad. This arrangement appears in fig. 3. A 50-ohm load, capable of dissipating the output power of the rf source, is connected to the main output port of the directional coupler, which must also be able to handle the full output power. The bolometer mount is connected to the auxiliary output port. Knowing the coupling factor (in dB) of the directional coupler, you need only to multiply the power indication by the power ratio equivalent to the coupling factor to obtain the actual power.

It is also possible to use a combination of both methods to reduce the power to 10 milliwatts or less. For example, let’s assume that the power to be measured is expected to be 20 watts, but a 30-dB directional coupler is all that is available. Since 30 dB represents a power ratio of 1000, this would only extend the power-meter range to 10 watts. Thus attenuating the 20-watt input by only 30 dB would result in 20 milliwatts at the auxiliary output port of the coupler, but this can be

Table 1. Frequency ranges and standing-wave ratios of typical bolometer mounts.

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency range and SWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewlett-Packard 476A</td>
<td></td>
</tr>
<tr>
<td>Barretter</td>
<td>20 - 500 MHz: less than 1.15</td>
</tr>
<tr>
<td></td>
<td>10 MHz - 1 GHz: less than 1.25</td>
</tr>
<tr>
<td></td>
<td>50 MHz - 7 GHz: less than 1.3</td>
</tr>
<tr>
<td></td>
<td>10 MHz - 10 GHz: less than 1.5</td>
</tr>
<tr>
<td></td>
<td>10 - 25 MHz:</td>
</tr>
<tr>
<td></td>
<td>1.75 maximum</td>
</tr>
<tr>
<td></td>
<td>25 MHz - 7 GHz:</td>
</tr>
<tr>
<td></td>
<td>1.3 maximum</td>
</tr>
<tr>
<td></td>
<td>7 - 10 GHz:</td>
</tr>
<tr>
<td></td>
<td>1.5 maximum</td>
</tr>
<tr>
<td>FXR N218A</td>
<td></td>
</tr>
<tr>
<td>Thermistor (temp.</td>
<td></td>
</tr>
<tr>
<td>compensated)</td>
<td>10 MHz - 10 GHz:</td>
</tr>
<tr>
<td></td>
<td>1.5 maximum</td>
</tr>
<tr>
<td>Narda 560</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>20 MHz - 1.5 GHz:</td>
</tr>
<tr>
<td></td>
<td>1.5 maximum</td>
</tr>
<tr>
<td></td>
<td>0.5 - 10 GHz:</td>
</tr>
<tr>
<td></td>
<td>1.5 maximum</td>
</tr>
</tbody>
</table>

*May use any one of several bolometer elements, either thermistor or barretter types. Model number is for mount only.
reduced by inserting a low-power loss pad between the coupler and the bolometer mount; a 10-dB pad would increase the overall attenuation to 40 dB, permitting measurements up to 100 watts.

measurement accuracy

As with all rf measurements, there are many factors which affect the accuracy of the power measurements described. The one of major significance for amateur purposes is the loss caused by a mismatch between the rf source and the bolometer mount. Table 1 shows the frequency range and swr of several mounts. Note that, except for the Hewlett-Packard model 478A between 10 and 25 MHz, all have maximum swrs of 1.5:1 or less. This is a reasonably good load, especially if the source can be tuned to conjugately match the bolometer mount, as evidenced by maximum output power. Of course, using the measurement configurations shown in figs. 2 and 3 reduces the measurement uncertainty to a virtually insignificant figure because of the matching improvement provided by the directional coupler and load and/or the loss pad.

If, however, the bolometer is fed directly from the power source, and the output of the source is fixed, there will be a loss in available power because the load (bolometer mount) impedance will probably not provide a conjugate match to the source impedance. The limits of this loss can be determined from fig. 4, where the solid diagonal lines represent the minimum loss and the broken lines the maximum loss.

As an example, assume that you want to measure the output of an amplifier which has been adjusted for maximum output power into a known 50-ohm load. We can assume then that the output swr of the amplifier (the source) is 1.0:1. Measurements are being made with a bolometer mount (the load) having a maximum specified swr of 1.5:1. The intersection of the 1.5:1 mount-swr line and the 1.0:1 source-swr line lies at approximately 0.17 on the solid diagonal lines and at approximately 0.17 on the broken lines. Since the minimum and maximum losses are equal, there will be a 0.17-dB mismatch loss.

If the same bolometer mount is used to measure the output of a signal generator having a specified output swr of 1.2:1, it can be seen that the intersection of the 1.5:1 mount-swr line and the 1.2:1 source-swr line is at about 0.055 on the solid diagonal lines and 0.37 on the broken lines. Therefore the mismatch loss will be between 0.055 and 0.37 dB.

Other factors which affect measurement accuracy are instrument error, miscellaneous rf loss, dc-to-microwave substitution error, and thermoelectric-effect error. A complete discussion of these errors appears in reference 3, along with a more detailed explanation of mismatch loss.

references

TECHNICALLY SPEAKING, HEATH HAS THE BEST 2-METER AROUND.

Take our HW-2036 Frequency-Synthesized 2-Meter Transceiver for example

Our circuit designs prove it

The HW-2036 offers true digital frequency synthesis for real operating versatility. No extra crystals are needed and there are no channel limitations. Advanced digital circuitry uses a voltage-controlled oscillator (VCO) that is phase-locked to a highly stable 10 MHz crystal-controlled reference. Double-tuned stages following the VCO in the receiver and transmitter provide clean injection signals. The result is a signal that has spurious output more than 70 dB below the carrier (see spectrum analyzer photos below). Additionally, the "add 5 kHz" function is accomplished digitally in the HW-2036 so that no frequency error is introduced.

True FM

Careful attention to the transmitter audio circuitry and the use of true FM gives exceptional audio quality. A Schmitt-trigger squelch circuit with a threshold 0.3 µV or less provides positive, clearly-defined squelch action. Other design advantages include diode-protected dual-gate MOS FET's in the front end, IC IF and dual-conversion receiver.

Outstanding Specifications

The HW-2036 puts out a minimum 10 watts and operates into an infinite VSWR without failure. Receiver sensitivity is an excellent 0.5 µV for 12 dB Sinad making the HW-2036 ideal for use in crowded signal areas. We think you'd be hard-pressed to find a comparably-priced 2-meter transceiver that gives you the features and performance of the HW-2036.

There's more for the Ham at Heath

FREE HEATHKIT CATALOG

Read about other fine Ham equipment and our wide variety of outstanding electronic kits — everything from lamp dimmers to color television is in our big FREE catalog.

Send for yours today!

Heath Company, Dept. 122-27 Benton Harbor, Michigan 49022

Heath Company, Dept. 122-27
Benton Harbor, Michigan 49022

Please send me my FREE Heathkit Catalog.
I am not on your mailing list.

Name

Address

City State

AM-343 Zip

April 1977 P 49

More Details? CHECK — OFF Page 126
stripline
bandpass filter
for 2304 MHz

Interdigital filters can be easily made by using simple hand tools and this stripline design.

Prior to the use of interdigital filters, amateurs used only simple half- and quarter-wavelength coaxial-line cavities as filters. Such filters, while easy to construct, lack the needed sharp skirts — interdigital filters have the steep skirts and are only moderately more difficult to construct. However, the need for a lathe to square up the rod ends prompted us to investigate another form of the interdigital filter. An article by John R. Pyle prompted us to investigate another form of the interdigital filter.

fig. 1. Details of the center conductor measurements and spacings.

By John M. Franke, WA4WDL, Apt. 225, 1006 Westmoreland Avenue, Norfolk, Virginia 23508, and Norman V. Cohen, WB4LJM, 7719 Sheryl Drive, Norfolk, Virginia 23505
fig. 2. The sandwich construction of the interdigital filter showing the center conductors and the spacers.

provided the necessary design curves for fabricating stripline interdigital filters. His paper provided the needed graphs for filters of 1 to 10 percent bandwidth with up to 8 fingers. The curves are normalized for a 1/16-inch (1.5mm) thick center conductor between two ground planes separated by 5/16-inch (8mm).

filter construction

One such filter recently constructed is shown in the photographs. This filter was designed for 2.5 GHz with a bandwidth of 10 percent. The filter preceded a times-4 multiplier to 10 GHz. The dimensions of the center conductor are shown in fig. 1. For other frequencies, the finger widths and spacings are held constant and the fingers are made one quarter-wavelength long. The overall sandwich construction is illustrated in fig. 2. The center conductor was made from brass sheet to avoid having to solder the fingers to the root strips. The 1/8-inch (3.2mm) spacers were made from a copper ground strip although brass could be used. The cover plates were fabricated from 1/16-inch (1.6mm) sheet brass. The input and output BNC connectors are sweat soldered to one of the cover plates. The connector center pins were trimmed to just touch the center conductor when assembled, and were soldered to the center conductor before attaching the other cover plate. The sandwich is bolted together with eight 6-32 (M3.5) machine screws. Note that a screw is located near the root of each finger to reduce the contact resistance where there is high circulating current. Alternately, the entire assembly could be sweat soldered together once the fingers have been trimmed. After assembly, the entire unit was given two coats of clear lacquer for corrosion protection. The only tools used in the construction were a hacksaw, an electric drill, and an assortment of hand files.

The response of the completed filter is shown in fig. 3. The midband loss could be reduced by silver plating the unit but we felt this was not worth the added cost. If the center frequency is too high, file away at the spaces between the fingers.

The stripline interdigital filter is a useful alternative to the popular coaxial interdigital filter. The stripline construction is easier for amateurs lacking a lathe and is mechanically stable since the fingers are an integral part of the frame. Future work will involve using double-clad printed circuit board stock for the center conductor to get an even more simple and rugged filter.

references

Top view of the filter showing the input and output connectors.
the antenna-transmission line analog

a key to designing and understanding antennas

A practical, non-mathematical discussion of a technique used by professional engineers to design and analyze antenna performance — it is equally applicable to amateur antennas.

At the present state of the electronics art, the antenna represents the most rewarding, fun-filled, and low-cost area remaining for amateur experimentation. In addition, there is always the challenging possibility of making a real contribution to technology. In all cases, experimentation with radiators will invariably result in improved on-the-air signals.

Many creative amateurs who begin to investigate antennas, however, become frustrated. They have no difficulty understanding certain principles given in elementary treatments of antenna theory, and such initial knowledge carries them through an early fun period of cut and try; but some of the results obtained from such experiments are confusing and demand explanations not found in non-professional books on antennas. If the amateur persists in his experimentation and becomes seriously interested, he finally gets to a point where he wants to know — before stringing up more wire or guying up more sections of metal tubing — answers to questions such as, “How do I tailor my antenna design so I can tune over the entire band without the vswr on my feedline climbing to magnitudes into which my rig refuses to load? How much coil reactance does it take to resonate my old 75-meter vertical antenna on the 160-meter band? How efficient is my 20-meter center-loaded whip on the station wagon?”

Beyond this, many hams would like to try out their own ideas for antennas but want to know beforehand, with reasonable accuracy, how their brainchild is going to perform on the air.

Giving up on the elementary texts, some of these same amateurs turn to the professional antenna literature for help but are usually stopped cold. Unless they are already engineers by training, they are taken aback by pages covered with the esoteric symbols of the higher mathematics: Fourier series and transforms, Bessel functions, Legendre polynomials, and everywhere copious use of the integral and differential calculus. Few

By Joseph M. Boyer, Antenna Consulting Engineer, 17302 Yukon, Suite 63, Torrance, California 90504
amateurs want to go back to college in order to pursue a hobby. Even in the communications industry, many engineers feel there is something mysterious and scary about antennas and leave their design to a handful of specialists.

There is, however, a relatively easy way to avoid the need for using high powered mathematics while getting good, workable answers of engineering accuracy to your antenna questions; answers which will permit you to design complex antennas and predict their performance before you build them. The key to all this goes by the rather complicated sounding name of Antenna/Transmission Line Analogue, but the only complicated part about it is its name.

What the Transmission Line Analogue does is to permit an on-paper conversion of your own particular antenna or concept into an equivalent rf transmission line. Once done correctly, this analogue key cranks out answers like your own private computer terminal. You might suspect that because the analogue key dispenses with higher mathematics, it must be some inaccurate, slip-shod method shunned by the real professionals. This is far from true — the analogue key method is used daily by working professional antenna engineers to design commercial and military radiators of all types for use in the frequency spectrum from 10 kHz on up. In its most fundamental form it was used by the brilliant antenna theoretician Dr. Schelkunoff in evolving his powerful mode theory of antennas. As you gain familiarity with the analogue key by usage, you will become positively ingenious in figuring out ways to extend its application into the most involved antenna situations.

To really use the analogue key effectively, however, you must first understand how and why it works and where it comes from. The material which follows may lead you back over some familiar territory, but the route is necessary to establish a certain basic way of thinking about antennas.

primary mode waves on cylindrical antennas

Fig. 1A shows a perfectly straight, center-fed cylindrical conductor magically suspended without support in free space. You may recognize it as the familiar doublet antenna, having a total length of $2h$ and a half length, h. Its uniform conductor diameter, d, is twice its radius, a. For the moment, forget just how long $2h$ or h is supposed to be in electrical degrees at the operating frequency f (hertz). This doublet antenna has two center input terminals labeled A and B. If you could connect a very accurate rf impedance bridge (complete with its own built-in signal source) directly to the antenna input terminals A - B, without disturbing the invisible fields surrounding it in space, the bridge would read out the doublet’s input impedance $Z_{in(A,B)}$ in the form of two separate parts, R_{total} and jX. The R_{total} part is the real or resistive part of the entire complex impedance $Z_{in(A,B)}$; the X part with the lower-case j complex operator in front of it (as a label to make sure you separate it from the real part) is reactance. The bridge cannot tell you that the resistive part R_{total} is really made up of two separate resistive parts, or

$$R_{total} = R_r + R_l$$

The R_r is a resistance-like term called the radiation resistance which is a measure of how much wave energy is lost from the antenna by radiation per rf cycle.

![Diagram](image)

fig. 1. Center-fed, cylindrical doublet antenna in free space (A), and its feedpoint impedance. Equivalent monopole antenna of equal half-length, h, and equal radius, a, operated against an infinitely large, perfectly conducting ground plane is shown at (B).

No one wants the R_l ohmic loss resistance part of R_{total}. It just causes some of your input power to terminals A - B to be converted into heat, yet it is always present in real-world antenna elements. One of the battles in antenna design is to keep the ohmic part as small as possible in ways which will be discussed later. In any event, carefully log the input impedance,

$$Z_{in(A,B)} = R_{total}(d) + jX(d)$$

$$= R_r(d) + R_l(d) + jX(d) \text{ ohms}$$

which you have measured for this particular doublet antenna of specific half length h, and particular conductor radius a, at some exact rf frequency f (hertz).

Now imagine that the half of the antenna connected to input terminal B suddenly disappears, leaving only the other half-length element suspended in free space. A very thin, infinitely large, perfectly conducting metal sheet is then placed exactly through the mid-way point between the former input terminals, the sheet forming a plane lying at a right angle to the remaining antenna half (fig. 1B). The remaining antenna terminal A is now spaced a small distance above the metal plane. By connecting a ground lug to the metal plate at a point directly below terminal A, you now have a monopole antenna (half antenna) operating over a perfect ground plane. Label the newly installed ground terminal with
the letter G. The remaining half of the former doublet is still as before: Same length h, same conductor radius a. With the rf bridge reconnected to the new input terminals A, G take a reading of the monopole input impedance over perfect ground. You find the new rf input impedance to be

\[Z_{in(m)}(m) = \frac{1}{2} \left(Z_{in(A,B)} \right) \]

\[= \frac{1}{2} \left[R_{total(d)} + jX_{(d)} \right] \]

\[= \frac{1}{2} \left[R_{(d)} + R_{(d)} + jX_{(d)} \right] \text{ohms} \]

or,

\[Z_{in(m)}(m) = R_{total(m)} + jX_{(m)} \]

\[= R_{(m)} + R_{(m)} + jX_{(m)} \text{ohms} \]

As a result of this first experiment, you write yourself a rather formal note, "The complex input impedance of a cylindrical monopole antenna of conductor length h and conductor radius a, erected normal to an infinitely large, perfectly conducting ground plane, is exactly one-half of a full doublet antenna of identical half-length h and conductor radius a in free space, when both antennas are measured at the same radio frequency."

With this important experiment out of the way, step back some distance from the monopole antenna erected over the perfect ground plane so that you can inspect its entire length, h. Now, really using your imagination, assume that you own a very special pair of eye glasses which permit you to actually "see" electric field lines of force E, and magnetic field lines of force H. Carefully watching the monopole antenna, again turn on the rf generator so that it supplies energy at frequency f to the monopole input terminals A - G. Fig. 2A is an attempt to show what you would "see."

At the instant you closed the switch \(t=1\), a small expanding surface like a bubble would appear around the antenna base. Its surface would be covered with dotted E lines pointing radially outward from the surface of the monopole conductor element, with each E line gracefully arching over so that it pointed directly down at right angles to the flat surface of the ground plane. At the same instant you would perceive dashed H lines getting longer and longer as they climb up the antenna. Again freeze time at this point so that you can closely inspect the initial wave surface.

The surface of the "bubble" is a wave front. As this is the first wave to be introduced to the monopole antenna, it's called a precursor; a sort of "scout wave" sent out to explore the electrical nature of the yet-unknown antenna to determine — at this one particular frequency — just exactly how the waves to follow will have to finally arrange themselves to be in agreement with certain natural laws.

One of these natural laws dictates that the electric lines of force always point precisely at right angles into the surface of a good conductor such as the antenna element, and also point precisely into the flat perfectly conducting surface of the groundplane. Another thing: The "antenna" is the total combination of the monopole conductor and the ground-plane surface; the wave front or antenna field is not in the antenna conductors, but instead fills the space surrounding the monopole conductor element and the ground-plane surface. The antenna conductor monopole element (or each half of the doublet in free space), together with the ground plane, compose the "nature" of the antenna, and are called the antenna boundaries. These boundaries are what the first precursor wave is trying to explore, for they alone will determine what finally happens later in time.

Now unfreeze time and let the wave front expand and climb higher up the antenna. Again freeze time at \(t=2\). Now you will notice a very interesting effect: In order to span the increasing distance along the arc between the monopole conductor surface and the ground plane, the E lines get longer and longer as they climb up the monopole. You will also notice that the brightness of the E line arcs closest to the base of the antenna are less intense than those stretching over to ground from higher up on the antenna. Conversely, a fixed radial distance from the antenna, the magnetic field circles around the monopole conductor are intensely bright and glowing around the antenna base, but are less bright as they form around higher parts of the monopole conductor. Clearly, electric field intensity is increasing with height up the antenna; magnetic field intensity is decreasing with height.

Antenna specialists use the ratio of the magnitude of the electric line of force, E, to that of the magnetic field line, H, (at any point in space) to define what is called wave impedance, \(Z_{wp}\). This is comparable to what the electronics engineer merely calls impedance when he is dealing with the ratio of voltage, \(V_r\), to current, I, in circuits physically small in terms of the wavelength of rf energy circulating within them. In contrast, antennas are "big" circuits in terms of the operating wavelength. As a consequence, their fields extend out to great distances around the antenna and the field — rather than voltage or current on conductors — is of first importance.

With this idea of wave impedance in mind, a re-examination of the monopole antenna field discloses that the wave impedance equal to \(E/H\) must be increasing in the wavefront as it expands higher and higher up the antenna (because \(E\) is increasing and \(H\) is decreasing). The wave impedance is small in magnitude near the input terminals A - G, but increases steadily with antenna height, h.

This brings up one important way of thinking about all antennas: Antennas attempt to perform an impedance-matching function, providing an impedance match between their input terminals and that of the surrounding space by using their conductors as wave impedance "transformers." In this picture, space itself is a common "master" transmission line connecting your antenna with every other antenna in the universe. Such a space transmission line has its own characteristic impedance, \(Z_s\), and possesses an infinite number of input
and output terminals. For the moment, however, just assume that this space transmission line surrounds your antenna; it wants to accept the rf energy you are putting into the input terminals of the antenna, but will only accept your wave energy as radiation when certain

precise boundary conditions are met. The antenna tries to accomplish this feat of getting its waves off into space, but must wait to see what the precursor wave "says" after exploring the antenna.

Let time again unfreeze, and watch the wave front expand through $t=3$ to the moment of truth at $t=4$. The wave front has been racing (when you permitted it to) up the antenna at almost, but not quite, the speed of light $(3 \times 10^8$ meters/second). Things appear to be going smoothly so far as the precursor wave is concerned, with those antenna boundaries changing in a nice, gentle fashion. Then crash! As if it had smashed head-on into a wall, the precursor wave finds the end of the monopole conductor. To the scout wave this is like an electromagnetic explosion. Let's freeze time again just at the instant this explosion occurs. What happened? To find out, we have to take a cut through the antenna field from a point looking directly down on the monopole conductor. Such a field cut is denoted by the dashed line x-y in view $t=4$ of fig. 2. The downward looking view is seen in fig. 3.

There are those outward pointing radial electric field lines, E, and the closed circles of magnetic lines, H. Waves in which the electric field lines lie at right angles

![Fig. 2. Precursor TEM wavefront moving up a cylindrical monopole antenna and outward on ground plane G for times $t=1$, $t=2$, $t=3$, and $t=4$. End reflection occurs at $t=4$. Top view of the E and H lines at $t=4$ are shown in fig. 3.](image)

precise boundary conditions are met. The antenna tries to accomplish this feat of getting its waves off into space, but must wait to see what the precursor wave "says" after exploring the antenna.

Let time again unfreeze, and watch the wave front expand through $t=3$ to the moment of truth at $t=4$. The wave front has been racing (when you permitted it to) up the antenna at almost, but not quite, the speed of light $(3 \times 10^8$ meters/second). Things appear to be going smoothly so far as the precursor wave is concerned, with those antenna boundaries changing in a nice, gentle fashion. Then crash! As if it had smashed head-on into a wall, the precursor wave finds the end of the monopole conductor. To the scout wave this is like an electromagnetic explosion. Let's freeze time again just at the instant this explosion occurs. What happened? To find out, we have to take a cut through the antenna field from a point looking directly down on the monopole conductor. Such a field cut is denoted by the dashed line x-y in view $t=4$ of fig. 2. The downward looking view is seen in fig. 3.

There are those outward pointing radial electric field lines, E, and the closed circles of magnetic lines, H. Waves in which the electric field lines lie at right angles

![Fig. 2. Precursor TEM wavefront moving up a cylindrical monopole antenna and outward on ground plane G for times $t=1$, $t=2$, $t=3$, and $t=4$. End reflection occurs at $t=4$. Top view of the E and H lines at $t=4$ are shown in fig. 3.](image)
Now let's try to think the way an antenna theoretical does. Here we have these two classes of waves: TEM mode waves on the antenna in which all electric lines must end on conductors, and space or radiation waves. In free space (say halfway to the planet Mars) there are no electrical conducting surfaces upon which the electric field lines in space waves can end. But we already know that radio waves can propagate through free space. That reflected from the open end of the antenna; absolutely no wave energy got away into space as radiation. When a total reflection occurs, the only thing that prevents the space standing wave from reaching a VSWR of infinity to one is the very small ohmic resistance of the highly conducting antenna element. Obviously, if that situation continued, antennas, as we know them would not exist. Fortunately, for radio amateurs and antenna men, it must mean that the kind of waves which can exist as radiation must — regardless of wavefront geometry — contain electric lines which close on themselves or form loops the way the magnetic field closes on itself around our antenna. This idea turns out to be correct. There is an infinite variety of space wave modes, but none of them includes the TEM mode wave. Therefore, a pure TEM mode cannot make the transfer from the antenna boundaries into free space. Free space is an incompatible boundary condition for the TEM mode, precursor wave. Such incompatibility constitutes a huge impedance mismatch to the guided TEM mode wave at the end of the antenna.

Faced by a large mismatch at the top of the antenna, the TEM mode wave does what all waves do when faced by a mismatch on a transmission line: it is reflected and starts back down the antenna toward the input terminals. In doing so, however, the scout wave encounters other TEM mode waves coming up the antenna in the opposite direction. This kind of situation, with coherent waves moving in opposite directions, always produces the same phenomenon: Standing waves. Note, however, that these standing waves exist in space along the entire length of the antenna and are not to be confused with similar standing waves which can form in an antenna feedline because of an impedance mismatch between the antenna input impedance and the line's characteristic impedance.

It should be noted that the TEM scout wave is totally doesn’t. Nature has arranged things so that as the downward moving scout wave continues to interfere with more and more TEM mode waves coming up the antenna, a wave conversion results: some of the original TEM mode energy is transformed into new, higher order mode waves — wave types which possess closed E and H line geometry and which can make the transfer from the antenna to space. As this converted wave energy (a surprisingly small amount of the total) begins to leave the antenna, energy loss causes the near-to-infinite VSWR of the space standing wave to drop to a more reasonable magnitude. The antenna has now reached its steady state of operation.

Here, now, is our antenna: It is “ringing” like a sort of electromagnetic bell as the waves (not charges) race out along the length of the antenna, smash into the top end impedance discontinuity, then race back down the antenna, performing the mode change and supporting the existence of the space standing wave. Each rf cycle produces a small loss of energy to free space as radiation. The actual amount of radiation loss per rf cycle is dependent upon the length of the antenna (h or 2h) in electrical degrees at the operating frequency, and the conductor geometry (which, for a monopole, includes the ground plane).

Do I hear you say that this picture sounds very much like one describing the way an open-ended (open-circuited) rf transmission line operates? Let's examine that idea! We saw that the wave impedance, $Z_W = E/H$,
was not uniform along the length of the antenna. We also compared a cross section of the antenna field (pre-cursor or scout wave) to the field inside a coaxial transmission line and found them to be the same. Now, even elementary books tell us that, in a lossless transmission line, the ratio of distributed series inductance to distributed shunt capacitance per unit length solely determines the characteristic impedance of the line as

\[Z_o = \sqrt{\frac{L}{C}} \]

(Advanced textbooks go on to say that the wave impedance, \(Z_w \), of the TEM mode waveform propagating down the transmission line is also a function of this same \(L/C \) ratio in the transmission line. Standard types of rf transmission lines, however, have uniform characteristic impedance so therefore they must have a constant \(L \) to \(C \) ratio per unit length.

Such reasoning makes it clear that the cylindrical antenna — when viewed as an rf transmission line — must possess a variable ratio of \(L \) to \(C \) along its length. To reinforce this idea, make another mental experiment: cut out a short section from the monopole antenna conductor. Measure the shunt capacitance to ground of this short conductor section, first at the antenna tip height, then at the antenna midheight, and finally, at the base just above the ground plane. Intuition tells us that the shunt capacitance to ground of the conductor section will be maximum at the antenna base, less at the midheight, and least at the top of the monopole. Fig. 4 shows this same “measurement” result for the case of a doublet antenna. If capacitance to ground (or to the other side of a doublet) varies with position, obviously the \(L/C \) ratio cannot be a constant — and that says that the antenna characteristic impedance must also be non-uniform.

But, couldn’t we just take this non-uniform characteristic impedance of the antenna and use it as a transmission line model of the antenna in the analogue key method? Yes, but this approach would be a bit messy to put into practical use. Calculations for non-uniform impedance transmission lines are more laborious than those related to lines with uniform impedance. Let’s try again. If you have a quantity which changes in some smooth way over a given distance such as \(h \), it’s possible to take its mean or average value. In high class mathematics, this is called the integral of something (in this case, \(Z_o \)) over the length, \(h \). That is actually what is done: You take this mean or average value of \(Z_o \) for the antenna length, \(h \), and then use this average \(Z_o \) as the uniform \(Z_o \) of your analogue transmission line representing your antenna.

It sounds neat, except that getting this mean \(Z_o \) for an antenna is not an easy task. It was solved back in the 1920s at great calculation labor using a dc potential method. Fortunately, later work by Dr. Schelkunoff of Bell Telephone Laboratories has given us some simple formulas to determine the average characteristic impedance of certain kinds of antenna conductor geometry. These conductor geometries include those most often used by amateurs, and professionals alike.

Before presenting these simple formulas, let’s make sure we have the concept of the analogue transmission line idea clearly in mind so it may be used with confidence in our experiments on paper with antennas.

antenna into transmission line

An rf transmission line constructed from extremely high conductivity elements of copper or aluminum, with only air as insulation, represents a very low electrical loss system. Electromagnetic waves moving down such a line stay almost perfectly constant in strength or amplitude even when traveling over long distances in electrical degrees of line length. This constancy of amplitude means that you can use simple trigonometric functions such as the sine, cosine, tangent, or cotangent of the line length in electrical degrees to accurately represent the behavior of waves on low loss line.

On the other hand, if you used poor conductors such as steel or lead to build an rf transmission line, the resistance of the conductors would rob energy from the waves moving down the line and convert it into heat; as a consequence of this energy loss, the wave amplitude would decay or decrease in strength with electrical distance traveled. To represent decaying waves you have to use mathematical functions which also decay in amplitude with electrical distance: Hyperbolic functions. Finally, in correctly representing radiation loss you come up against the cosine and sine integral calculus functions. Not only are these, valuable as they are, a little tacky to use in an amateur technical journal, but I promised at the beginning that only simple math would be needed.

A decision to stick to the use of simple, everyday trig functions means that we must use a lossless equivalent transmission line to represent the antenna. Knowing that real antennas have loss, hopefully the good kind of loss called radiation resistance, how can a lossless transmission line model of the antenna give us accurate answers when solving real antenna problems? Recall the TEM wave mode which did not radiate? That TEM mode would be a uniform amplitude wave representing the major portion of the rf energy oscillating (standing) in the antenna region. If we used only this non-radiating mode wave in the analogue line representing the antenna, the answers would describe only the reactive behavior of the antenna at its input terminals. The real or resistive part of \(Z_{\text{imp}} \) would be missing in the answer because it is radiation energy loss which the TEM mode cannot account for in antenna systems. Is that bad? Certainly not! One of the most important things you want to find out when exploring your antenna ideas on paper is how the reactance at the input terminals will change as you move your transmitting frequency over an amateur band, what \(jX \) will do if you use a loading coil in the antenna, or how \(jX \) changes from one amateur band to another.

The real or resistive part of the antenna's input impedance (which is related to radiation resistance) changes very slowly with frequency; the reactive part, however, varies at a much greater rate with changes in operating frequency. The rate at which the reactive part of antenna input impedance changes with frequency is

1977 April
governed by the antenna's characteristic impedance when viewed as a transmission line. Does this mean that you just forget all about the real part of Z_{in}? No, not at all. You'll end up with a complete answer for $R_A + jX_A$ alright, but you will obtain the real part, R_A, the lazy man's way: By looking up the antenna's radiation resistance, R_r, as a function of its electrical length h (or $2h$) at the operating frequency, using published graphs of this data. Then you'll add the radiation resistance to the reactive part obtained from the analogue key transmission line key model. It's that simple if a) you are using high conductivity antenna conductors such as copper or aluminum, and b) are feeding the antenna at a current maximum point such as the base of a monopole or the center of a doublet. In the rare case where you are not feeding at a current maximum point on the antenna, then you transfer the R_e value you looked up to the actual feedpoint by a method to be given later.

Incidentally, in deference to Dr. Schelkunoff, it is only fair to mention that in the equivalent transmission line method he evolved, both the real and reactive parts of the total complex input impedance are obtained by using a special lumped "load impedance," determined by separate calculations, which is placed across the end or "output terminals" of the paper analogue transmission line representing the antenna. This more sophisticated technique, however, demands use of advanced forms of mathematics.²

characteristic impedance of cylindrical antennas

Schelkunoff gives the mean characteristic impedance of a doublet antenna with cylindrical conductor elements as,

$$K_A = 120 \left(\log e \frac{2h}{a} - 1 \right) \text{ohms} \quad (1)$$

Then, recalling the first experiment where you found that a monopole antenna of length h over a perfect ground plane had an input impedance exactly one-half that of a doublet antenna in free space of half length h, and the same conductor radius a, the mean characteristic impedance of a monopole antenna over ground is

$$K_m = 60 \left(\log e \frac{2h}{a} - 1 \right) \text{ohms} \quad (2)$$

Don't let the log, part bother you. If your pocket electronic calculator doesn't give the natural log, of a number directly, or if you only have tables of the common log, 10, then

$$\log e \frac{2h}{a} = (2.3026) \times \log_{10} \frac{2h}{a}$$

The notation K_A and K_m is used to denote the mean antenna characteristic impedance instead of, say, Z_{oA} or Z_{om}. This avoids any confusion with the Z_o of a standard transmission line used to feed the antenna.

coming up

In the second part of this article I will describe use of the transmission line key method to solve a number of different antenna problems faced by the radio amateur. These will include the design of monopole and doublet antennas capable of being operated over the entire frequency width of an amateur band while keeping the vswr in the feedline down to a specified maximum value into which modern transmitters will load full power. I will also discuss base, center, and higher position coil loading of electrically short monopole and doublet antennas for maximum efficiency. Finally, I will show you how to "dissect" an antenna of your own design into parts to determine if it will operate as you wish.

Each example will be carefully worked out in full detail (no steps omitted) so you can easily follow the solution and not get lost. In this way you will be able to quickly translate the analogue method to your own problems for any antenna on any amateur band. In the meantime, if you are totally unfamiliar or a bit rusty in the use of elementary plane vectors (phasors) to represent a complex ac impedance, $R + jX$, I suggest you visit the library and get a copy of Basic Mathematics For Electronics,³ or its much earlier version, Mathematics For Radiomen and Electricians, by N. Cooke. Cooke was able to teach tens of thousands of Navy gobs to easily master basic ac math on a crash basis during WW II. You will also find him easy to follow and understand.

The difference between an amateur and a professional in a given field of science should not be one of knowledge, but only that the amateur is rewarded in pleasure and the professional in coin of the realm.

references

The transceiver that has everything you'll ever need!

The 350-XL was designed to fill all the operating requirements of the ham operator. Whether you operate fixed, portable, or mobile, SSB, CW, RTTY, or SSTV, the 350-XL is the perfect rig. It has the performance, versatility, and power to give you everything you need all in a single, compact, high quality transceiver.

We deliberately made many of our special features such as the auxiliary VFO and the Digital Dial Frequency Readout optional so that every feature you could possibly want is available, but you only pay for those that you use. We even made our programmable selectivity filter an option, enabling us to lower the base price of the 350-XL to $895.

The Atlas 350-XL is the State of the Art in Amateur Radio Transceivers for the Next Decade, but available today at your ham dealer.

Atlas 350-XL (less options) $895.
Model DD6-XL Digital Dial Readout $195.
Model 305 Plug-in Auxiliary VFO $155.
Model 311 Plug-in Auxiliary Crystal Oscillator $135.
Model 350-PS Matching AC Supply $195.
Mobile Mounting Bracket $65.

Other optional features to be announced.

THE ATLAS 350-XL

ATLAS RADIO INC.
417 Via Del Monte, Oceanside, CA 92054
Phone (714) 433-1983
novel indicator circuit

Novel and multi-purpose indicators can be added with a minimum of parts by using the MV5491 red and green LED

Since light-emitting diodes have become available at reasonable prices I find myself using more and more of these devices to monitor the internal circuitry in my equipment from the front panel. LEDs make it easy and economical to do this. I think you gain a better understanding of the internal functions of your equipment through the use of monitor or indicator points. When trouble occurs in the equipment it can often be diagnosed from the front panel with these indicating devices. They can pay their own way both in operator satisfaction and in ease of maintenance, not to mention their esthetic value.

I recently began using a fairly new device, the MV5491 LED manufactured by Monsanto. This device is quite different from the LEDs I had utilized in the past and has proven to be not only interesting, but very practical. Before describing this device I would like to review the standard LED drive circuits I had been using in most of my equipment to acquaint fellow amateurs who, as of yet, have not put these devices to work in their own equipment.

a standard driver circuit

The standard LED driver circuit that I have been using for the past few years is shown in fig. 1. This configuration uses one-sixth of a TTL hex-inverter buffer, type SN7406, to drive a LED. The SN7406 has an open collector output with the LED and associated current limiting resistor serving as the collector load for the output transistor of the IC. In this circuit, a positive input will provide a low output at the collector, forward biasing the LED and causing it to illuminate. Resistor R1 limits the current through the LED to a safe value as specified by the LED manufacturer. This is a simple, inexpensive circuit and six LEDs can be driven from a

By Ken Powell, WB6AFT, 6949 Lenwood Way, San Jose, California 95120
fig. 2. Two-state LED drivers. The circuit shown in (A) will provide a red indication with a positive input, (B) a green indication.

single SN7406. This makes for a very low component count and is easily added to existing equipment or new designs. The only calculation required is the value of R1, the current-limiting resistor. To calculate this we must know the voltage and current ratings of the LED. Red LEDs are usually rated at 1.65 volts and about 20 mA. Subtracting the LED voltage and the saturated SN7406 collector voltage from the source voltage, 1.65 + 0.35 from 5.00, we come up with a difference of 3.0 volts which must be dissipated across R1, at the rated current of 20 mA. Using Ohm’s law we can calculate the resistor value to be 150 ohms. For the wattage requirement we can use the I^2R formula to arrive at 0.06 watts, so a \%watt resistor will suffice.

This circuit works well for source voltages up to about 30 volts, and of course the value of the current limiting resistor must be selected for different source voltages. Most of the LEDs have a maximum current rating of 40 to 50 milliamperes and I find that approximately half the rated current will yield adequate light output and assure long life for the indicator. Fig. 1B is the same basic circuit but it will light the LED with a low or false input. This is accomplished by using a hex buffer, SN7407, rather than the SN7406. The SN7407 does not contain the inverter function found in the SN7406, but it is pin for pin compatible and the voltage and current ratings are alike. As can be seen in fig. 1, you can drive the LED with a true or a false signal, depending on the driver you select. As you get more involved in digital equipment, and I am sure we all will be more involved in this technology in the not-too-distant future, our use of circuits of this type will increase and a working knowledge of them will become more important.

The Monsanto MV5491 is in a standard package like most other LEDs, but is comprised of two light-emitting diodes connected inversely in parallel. One of the parallel diodes is red and the other is green, so steering current in one direction will yield a green light and reversing the current flow will yield a red indication. Stopping the current flow will turn both diodes off, furnishing three distinct indications from one device. The colors are a very vivid red and green, not like some of the earlier single diode devices that were red no matter what the label said!

The red diode section of the MV5491 is rated at 1.65 volts, with a test current of 20 milliamperes and a maximum current of 70 mA. The green diode section is rated at 3.0 volts, with a test current of 20 milliamperes and a maximum current of 50 mA.

The unit comes complete with mounting ring and requires a quarter-inch (6.5mm) diameter mounting hole. When drilling the mounting holes for these and other LEDs in this type package, do not bevel the edges of the holes as this tends to negate the positive effect of the plastic mounting hardware furnished with the LEDs.

The Monsanto MV5491 is in a standard package like most other LEDs, but is comprised of two light-emitting diodes connected inversely in parallel. One of the parallel diodes is red and the other is green, so steering current in one direction will yield a green light and reversing the current flow will yield a red indication. Stopping the current flow will turn both diodes off, furnishing three distinct indications from one device. The colors are a very vivid red and green, not like some of the earlier single diode devices that were red no matter what the label said!

The red diode section of the MV5491 is rated at 1.65 volts, with a test current of 20 milliamperes and a maximum current of 70 mA. The green diode section is rated at 3.0 volts, with a test current of 20 milliamperes and a maximum current of 50 mA.

The unit comes complete with mounting ring and requires a quarter-inch (6.5mm) diameter mounting hole. When drilling the mounting holes for these and other LEDs in this type package, do not bevel the edges of the holes as this tends to negate the positive effect of the plastic mounting hardware furnished with the LEDs.

the driver circuit

The project I was working on when I came across this new device used a single five-volt source, so it took a little head scratching to figure out a scheme for driving this new LED. I began scratching out diagrams on the top of the work bench and after an hour or so had an LED that would change color as the input was toggled. I was working on a piece of digital gear so I wanted the driver circuit to be ICs rather than discrete components and eventually came up with the circuit shown in fig. 2. This circuit worked out fine and I had an indicator that was green when the input was normal but promptly turned red when an off-normal condition was encountered.

The indicator circuit uses a single SN75452 IC driver and one-sixth of a hex inverter, SN7404, and two
resistors. It is much like the circuit described in fig. 1, but produces a more profound effect when activated. When this circuit, depicted in fig. 2A, receives an active or positive input, transistor Q2 of U2 is in conduction. This condition brings the red cathode of the LED to ground potential. At the same time, the Q1 section of U2 is cut-off. This brings the green cathode and red anode to a positive potential. With this condition we have the red diode of the LED forward biased (lighted) and the green diode reverse biased (extinguished).

The current through the red diode will be limited by resistor R1. A negative input to the circuit will cause the Q1 section to conduct and the Q2 section to be cutoff. This will forward bias the green diode and reverse bias the red diode. Resistor R2 will limit the current through the green diode. In this configuration, a high or positive input to the circuit will give a red indication and a low input will yield a green indication. If the opposite function is desired, green indication on a positive input, the inverter SN7404, should be placed in series with the Q2 input as per fig. 2B.

Do not try transposing the LED as the voltage and current specs of the two parallel diodes are different. This is the reason why the current-limiting resistors, R1 and R2, have different values. With the values shown, the red diode is forward biased at approximately 1.65 volts at 15 milliamperes with R1 setting this parameter. The green diode is set at approximately 3 volts and 20 mA by the value of R2. The resistor values are calculated in the same manner as described for the basic circuit of fig. 1, with the exception of resistor wattage ratings.

When Q1 or Q2 is conducting, the entire source voltage is dissipated across the resistors. The maximum dissipation in this case is about ¼ watt, so ½-watt resistors should be installed. In digital circuits where both Q and Q signals are available, such as the output of
a flip-flop, the inverter portion of the circuit can be deleted and the out-of-phase signals fed to the driver circuits.

If your application requires more than one indicator circuit, the configuration shown in fig. 3 will reduce the component count. In this configuration two different type drivers are used, one noninverting and one inverting type. These are both in mini-dip packages and will fit in a single dip socket or equivalent space on a pc board. This circuit will drive two MV5491 LEDs and requires only four external resistors. A close inspection of the circuit diagram will show that it uses the internal function of the driver IC to perform the function accomplished by the hex inverter in earlier circuit descriptions. If a number of these dual diode indicators are to be used, this is an excellent choice for a driver circuit.

applications

I am sure that there are numerous applications for the MV5491 LED, probably as many as there are amateurs still in the homebrew business. I have sketched out a few ideas that I hope to put to use in the future and possibly interest others in their applications.

Fig. 4A uses an active filter preceding the indicator circuit to form a level detector for signals at the desired frequency. This circuit should furnish a green indication on resonance and a red signal at either side of resonance. A circuit or circuits of this type might prove useful for SSTV, RTTY, or subaudio-tone indication for control purposes on fm. This is the same basic circuit described earlier which uses one drive IC and one-sixth of a hex-inverter IC.

Fig. 4B is a take-off on the tuning indicator but would provide an indication with an input change of only a few millivolts, depending on the type of comparator. When used with the LM 311 it will provide excellent performance and can be operated from a single 5-volt power source.

Fig. 4C is a TTL level detector which can be used with TTL, DTL, and RTL logic in the form of a logic probe for trouble-shooting. It will furnish a green indication on a high or plus signal and a red indication on low or false signals. The voltage to operate the circuit can be taken from the equipment under test.

Fig. 4D is a TTL pulse catcher. Again, it can be used as a logic probe for IC circuitry. In this circuit the driver circuit is cross-coupled to form a latch or memory element. A positive-going pulse sets the latch to indicate the presence of a pulse and the latch is reset manually with the reset switch. It should also work well for locating intermittents, such as glitches. You can leave the probe connected to the circuit under test and return to the problem later to see if the latch has been set by an unwanted signal. A circuit such as this one can at times, be more valuable than a scope.

Fig. 4E is a vertical sync indicator for SSTV. In this application we can trigger a retriggerable single-shot with the one-eighth hertz vertical-sync pulse. The absence of a vertical sync pulse will allow the single-shot to time out and change the state of the LED from green to red. The vertical reset switch is then used to restart the vertical sweep and reset the LED to its green state.

Fig. 4F is a coincidence detector with three states. If inputs A and B are both high, the indication will be green. If inputs A and B are both low, the indication will be red. If the inputs are out of phase, one high and one low, the indicator will be in the off or third state. This would provide a good indicator for complex logic circuit monitoring.

Fig. 4G could be used as a temperature-monitoring device with the set points adjusted by a trimming resistor shunted across the thermistor. For photometric application, the thermistor could be replaced by a photocell. A comparator could be utilized before the TTL gate, for increased sensitivity.

I think this is just the beginning for applications of this unique device and I hope this article will stir the interest of other amateurs and further the interest in a return to more homebrew activity. I have enjoyed working with this device and the highlight was the look on a friend's face as the LED changed from red to green. I really had him going until I explained the device to him. This little LED can add the bells and whistles touch so often found in today's commercial equipment to your own homebrew efforts.

ham radio
The ultimate transceiver . . . Kenwood’s TS-820. No matter what you own now, a move to the TS-820 is your best move. It offers a degree of quality and dependability second to none, and as the owner of this superb unit, you will have at your fingertips the combination of controls and features that, even under the toughest operating conditions, make the TS-820 the Pacesetter that it is.

Unprecedented demand plus the painstaking care Kenwood lavishes on each TS-820 has created a backlog of orders, but rest assured, it’s well worth waiting for. Once you have operated the TS-820 you will not be satisfied with anything else.

Features

Following are a few of the TS-820’s many exciting features:

SPEECH PROCESSOR • An HF circuit provides quick time constant compression using a true RF compressor as opposed to an IF clipper. Amount of compression is adjustable to the desired level by a convenient front panel control.

IF SHIFT • The IF SHIFT control varies the IF passband without changing the receive frequency. Enables the operator to eliminate unwanted signals by moving them out of the passband of the receiver. This feature alone makes the TS-820 the pacesetter that it is.

PLL • The TS-820 employs the latest phase lock loop circuitry. The single conversion receiver section performance offers superb protection against unwanted cross-modulation. And now, PLL allows the frequency to remain the same when switching sidebands (USB, LSB, CW) and eliminates having to re-calibrate each time.

TS-820 Specifications

- **Frequency Range:** 1.8-29.7 MHz
- **Modes:** USB, LSB, CW, FSK
- **Input Power:** 100W PEP on SSB, 150W DC on CW, 100W DC on FSK
- **Antenna Impedance:** 50-75 ohms, unbalanced
- **Carrier Suppression:** Better than 40 dB
- **Sideband Suppression:** Better than 50 dB
- **Spurious Radiation:** Greater than -60 dB
- **Receiver Sensitivity:** Better than 0.25uV

R-5999D

The R-5999D is the most complete receiver ever offered. It is entirely solid state and covers the full amateur band, 10 thru 160 meters, CW, LSB, USB, AM and FM. The T-5999D transmits CW, LSB, USB and AM, and has only 3 vacuum tubes, built-in power supply and full metering.

Because of the larger number of controls and dual VFOs, the combination offers flexibility impossible to duplicate with most transceivers . . . for example, transmitting and receiving on different frequencies, no matter how far apart.
NOW — SPECIAL GROUP DISCOUNTS ON THESE TWO GREAT UNITS!

At their regular low prices these units represent the best value for the FM'er. Now they are available at even lower prices when ordered by clubs or repeater groups! Special prices applicable on quantities of 2 or more. Prices as low as $140.00 in larger quantities.

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>MARK 3</th>
<th>FM-76</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 4 pcs.</td>
<td>$166.50</td>
<td>$162.00</td>
</tr>
<tr>
<td>5 - 9 pcs.</td>
<td>162.00</td>
<td>155.00</td>
</tr>
<tr>
<td>10 - 19 pcs.</td>
<td>156.00</td>
<td>150.00</td>
</tr>
<tr>
<td>20 - 39 pcs.</td>
<td>151.00</td>
<td>145.00</td>
</tr>
<tr>
<td>40 +</td>
<td>146.00</td>
<td>140.00</td>
</tr>
</tbody>
</table>

Phone Bob Rauch, WA3QEZ, at Clegg today for details on these units and the special GROUP PURCHASE plan.
medical data relay
via Oscar satellite

A look at the techniques for the transmission of high-speed data through Oscar

The Oscar series of satellites have suddenly provided the amateur radio operator with a whole new field of expertise to learn and experiment with. Now we have reliable and widespread vhf and uhf coverage with minor atmospheric noise. Part of the justification behind the Oscar program is that we, as amateurs, use the satellites to explore and experiment with previously unavailable technologies. Many experiments have involved propagation and its related effects. RTTY, slow-scan TV, mobile operation, and even microcomputer access have all been tried. But, a largely unexplored area involved the use of the satellite to relay data unrelated to amateur radio. Achieving this result could have strong implications in the chosen field.

The practice of medicine today is absorbing new technologies as fast as they appear. This oftentimes carries a requirement that man and medicine be able to efficiently exchange information. It soon became apparent that the data transmission system I was developing at the University of Arizona Hospital could be adapted for use through Oscar.

It was originally proposed by 4X4MH to send an electrocardiogram (EKG) through Oscar 6. In the latter part of 1975 this was attempted by W6CG and W7VEW. Success was claimed but nobody knew the parameters necessary to decode the data. It had been an experiment involving “black boxes.” At that point it became obvious that the handling of this kind of data was new to amateurs and new techniques had to be learned. I decided to stay with the EKG because it represents a commonly known and needed piece of physiological data. In addition, its bandwidth is wider than most other physiological signals. The ability to successfully relay an EKG would mean that most other types of medical data could be handled as well. Two techniques will be discussed and their merits examined.

To begin with, it’s necessary to understand a little about the EKG itself. This is the controlling signal that tells your heart when and how to beat. To satisfactorily represent an EKG for most purposes requires a bandwidth of 0.5 to 50 Hz. Ideally, the lower response should extend to dc. In addition, this signal must be made compatible with amateur ssb transmitters and tape.

By David Nelson, K7RGE, 4733 East Linden, Tucson, Arizona 85712
recorders if Oscar is to be used in the link. Remember that recorders and transmitters have a lower audio cutoff frequency that may vary from 50 to 300 Hz. Especially in a transmitter, the passband linearity of the audio circuits may vary a few dB. Obviously, the data must be encoded into a new format so that it can be transmitted through the system. Any form of a-m is clearly out. This then leaves fm, which has several desirable characteristics. The first is that amplitude variations due to non-linear circuits, and a host of other possibilities, disappear. Amateurs experimenting with sstv discovered this in the late 1950s. Second, the use of fm permits the use of a tape recorder to serve as an interim storage device. This is necessary since the source of the EKG was anything but close to the transmitting site. Separate scheduling of the various phases of the experiment was then possible. However, the use of a tape recorder introduces some gremlins because the mechanical assembly that moves the tape can introduce errors that are difficult or impossible to eliminate. This and other considerations come into play when designing a system with 1 percent accuracy.

analog fm

This approach is the easiest to understand and put to practical use, but it also has its shortcomings. The principle is to use a voltage-controlled oscillator (vco), with its input driven by the data source, as a source of fm. All that remains is to choose an appropriate carrier frequency and set limits on the deviation. At the receiving end, an fm demodulator will transform the varying frequency into a similarly varying voltage. If all goes well, this will provide a faithful reproduction of our data.

system problems

Since a tape recorder is being used, we must contend with a certain amount of instability in the speed of the tape drive. This speed fluctuation, known as flutter, will modulate the material recorded on the tape and add undesirable components. Rerecording on different machines adds to the problem. If the basic drive speed of the two is slightly different, a dc offset will be introduced. Unless we have a grounded second fm channel available for reference, and the ability to simultaneously transmit the two, the degradation caused by flutter cannot be overcome; it can only be minimized by using quality tape machines and maximizing the deviation of the vco.

It is appropriate now to look ahead and anticipate that Doppler shift and receiver tuning errors will be present. As such, it is unwise to make the vco deviation equal to the maximum that the receiving demodulator can accommodate as there would be no room left for error. With all these factors in mind, I settled on a 1-kHz carrier with ±40 per cent deviation for full-scale input to the vco. The vco I used was a Hewlett-Packard 3310A function generator set to 1 kHz and modulated by the EKG source.

Another problem is noise and here we can only maximize the received signal-to-noise ratio. However, this will not completely delete the effect of noise introduced by the satellite's transponder and atmospherics, especially on 10 meters. Noise causes a directly visible reduction in the resolution of the data.

The receiving demodulator is worthy of a little more attention. In fig. 1, you can see that the audio signal is fed to the input of a 565 phase locked loop. The error voltage of the loop (pin 7) contains the data being

fig. 1. Schematic diagram of the analog fm demodulator. The frequency of the phase-locked loop can be changed by adjusting R1.
sought, along with the undesirable dc and ac components. Following the loop is a differential amplifier. Its purpose is to remove the large intrinsic dc component of the error signal and amplify the rest by a factor of two. Following the amplifier is a four-pole, active-RC, low-pass filter, also with a gain of two. This filter serves to eliminate the high-frequency ac components that are a product of the loop's internal detection process. It also very accurately determines the bandwidth of the demodulator. In this case, the Butterworth filter is scaled for a cutoff frequency of 100 Hz. This response is flat in the passband, down by -3 dB at the cutoff frequency, and rolls off at -6 dB per octave per pole or -24 dB per octave for this filter. The oddball capacitor values are a consequence of an accurate filter design. Labeled capacitor values should not be trusted. I used a pair of 10 per cent capacitors (no ceramics) for each of the four and measured each pair on a bridge to obtain values within one per cent. Lesser accuracy can be tolerated for less accurate results. Following the filter is an amplifier to scale and shift the output to a reasonable value.

demodulator alignment

To align the demodulator, apply ±5 volts and set the potentiometer to give a loop frequency of 1 kHz at pins 4 and 5. The input should be grounded at this time. Then the potentiometer on the output amplifier is adjusted to give zero output voltage. If the device is now working properly, the loop should lock onto and track any input signal that lies within ±50 to 60 per cent of 1 kHz. The input level can range from 20 mV to 2 volts rms. The output will swing positive for input frequencies above 1 kHz and negative for inputs below 1 kHz. The output-scale factor is approximately 0.5 volt per 10 per cent deviation and is independent of the loop frequency. Note that only one adjustment must be changed to accommodate different carrier frequencies. Fig. 2 shows a photograph of the demodulator.

The 1 per cent resistors used here serve more to guarantee close resistance ratios than absolute values. Readers familiar with op-amp design will note that most of the values in the individual sections can be changed, except for the filter ladder, as long as the resistance ratios are accurately maintained. This ability lends itself to the use of available units rather than pursuing absolute values.

This demodulator can also be made to serve as a tuning indicator during the test transmission if you have some prior knowledge of the data. The EKG waveform stays mostly near zero and deviates rapidly when it does so. If a zero-center microammeter is bypassed with a capacitor to provide a one to two second time-constant with the meter resistance, the meter will respond to very slow changes such as Doppler shift but will show little response to the faster EKG data. This yields an indicator that tells how to correct the receiver tuning to offset the Doppler shift. All you have to do is keep the meter centered during the transmission by adjusting the receiver tuning. Incorrect tuning will deflect the meter to one side or the other. This method is considerably more accurate than tuning by ear because changes of 10 per cent are quite visible.

Another method of correcting for Doppler involves the use of a second non-modulated audio carrier sufficiently removed from the first so it doesn’t interact. The tuning indicator is locked onto this new carrier. However, this may exceed the available audio bandwidth and requires bandpass filters.

In September, 1975, I conducted a test of this

fig. 3. Analog electrocardiograms that have been transmitted through Oscar 6 and 7. Note the less accurate response of the Oscar 7 Mode A version.

fig. 4. A flow chart for the PCM type system. This method allows the process to be done at different times and locations.
method with W6ELT transmitting a cassette tape through Oscar 6 and Oscar 7, mode A. Shortly thereafter we tried another transmission to both myself and the radio club at the National Institute of Health in Bethesda, Maryland. The results are shown in fig. 3. Note the difference in the results between Oscar 6 and 7. This is due to the stronger signal available from Oscar 6. Although perfectly copiable signals were present, there is still a residual amount of noise present. This is best seen in the baseline of the EKG. In addition, even though the Doppler was manually compensated for, this method would have been useless if the data had been of a completely unknown form. Obviously, there is room for improvement in many areas.

going digital

The quickest way to solve many of the problems is to go to a digital method of encoding data. Not only can better resolution be achieved, but the effects of noise, Doppler, and tape flutter can be simultaneously eliminated. However, you must pay the price in terms of system complexity and cost. But if truly accurate, reproducible results are required, this is the way to go. This method is commonly known as pulse code modulation (PCM).

The principles are to convert the data into a digital word and then handle the bits serially, one at a time. Unlike analog techniques, digital signals can be regenerated in the presence of noise. The resolution of the system is determined by the number of bits that represents the data. I chose eight bits which gives a resolution of 0.4 per cent of full scale. This method of handling the data contains a number of parallels to RTTY and some of the techniques can be directly applied. The conversion from analog to digital is accomplished by a commercial module appropriately called an analog-to-digital (A/D) converter. For the purposes of this discussion it is not necessary to understand the inner workings of this and other modules used. It is only necessary to understand their function.

Following the conversion to digital, the parallel eight-bit word presented by the A/D converter is transformed into a serial bit stream by a rather amazing IC called a universal asynchronous receiver transmitter, or UART. This IC consists of two halves. The transmitter...
half takes a parallel input and formats it into a serial asynchronous code with start, stop, and parity bits added to the data. The receiving half does just the opposite. It accepts a serial input, strips off the bookkeeping bits, checks for errors, and outputs the digital word in parallel. Controlling all of these operations is an external clock which determines how fast the system runs. Except for the clock, all of this is nicely packaged into a single 40-pin IC.

The serial-bit stream from the UAR/T then controls an FSK oscillator. This oscillator is switched between two discrete audio frequencies and is an audio representation of the digital signal. These audio signals are then placed on a cassette tape to be transmitted later through the satellite. A block diagram of the system is shown in fig. 4. Each of the three lines takes place at a different time due to equipment locations and schedules.

The FSK generator is fairly straightforward and is shown in fig. 5. Basically an 8038 IC function generator is switched between two adjustable trimmer resistors giving independently adjustable mark and space frequencies. The output is phase coherent although switching does not necessarily take place at the zero crossing points of the sine wave.

UAR/T description

As mentioned before, it is the UAR/T's job to perform the parallel-to-serial and the serial-to-parallel conversions. This IC does each job independently, simultaneously, and at different rates if desired. In my case this last capability was not necessary.

As shown in fig. 6, the IC is programmed for an eight-bit word, two stop bits, and even parity by setting pins 36-39 permanently high. The parity bit is included for error-detecting purposes and is used later to give an indication of the validity of the received data. The input data word is applied, in parallel, to pins 26 to 33 by the A/D converter and a pulse is generated by the flip-flops which loads this word into the UAR/T's internal register. The UAR/T begins each conversion produces an eight-bit word and the UAR/T adds four bits of bookkeeping data per word, we must transmit the bits at the rate of 1200 per second to process the EKG. It would be nice to go faster, but bandwidth requirements become more restrictive when it comes to the FSK; to send 100 data points per second, the UAR/T must be clocked at 16 times the baud rate (1200 baud). Thus a 19.2 kHz clock is required. This clock should be crystal derived and applied to both the transmit and receive halves of the chip (pins 40 and 17).

The receiving portion is equally as simple. The serial bit stream is applied to pin 20. The received word is presented on pins 5-12 and pin 19 goes high to signal its arrival. This control signal is also applied to the UAR/T through pin 18 to signal the removal of the data. When pin 18 is set low, it resets pin 19 low. However, this does not happen instantly and internal propagation delays turn the pin 19 signal into a short low-going strobe. If needed, this may be used to signal the arrival of a new data word.

The rest of the pins are control functions which should be wired as shown. Pin 21 must be strobed high when power is first applied to clear all internal registers and ready the chip for operation. Anyone desiring to build a modern RTTY system using surplus keyboards will find the UAR/T very handy indeed.
facturers, including General Instruments, Texas Instruments, American Microsystems, and National Semiconductor, produce compatible ICs. The National MM5303N was used in the system I built.

digital decoding

Receiving and decoding the FSK signal involves the same process as receiving RTTY. The only differences are that the system is running much faster and that the keying is a change in audio frequency presented to the transmitter rather than a change in its fio. Fig. 7 shows the diagram of a suitable FSK demodulator. Note the lack of bandpass filters on the input. Since these tests were done on Oscar's experimental orbits, a clear channel was available. This made it easy to control Doppler shift. Once again, a phase-locked loop tracks the input signal frequency and provides an appropriate error signal. Following the differential amplifier, the error signal is applied to a five-pole, Butterworth lowpass filter which has a cutoff frequency at 1500 Hz. The output of the filter resembles a digital signal but shifts up and down from zero depending on Doppler and the receiver tuning. Therefore, a zero-crossing detector is useless at this point. The easiest way to remove the dc offset is by capacitor coupling. The time constant associated with this capacitor is chosen to block slow changes such as Doppler and slow receiver tuning changes, but to pass the faster incoming data. Now, you can use either a zero-crossing detector or preferably, a Schmidt trigger.

The next stage can serve as either type of detector. By adjusting the feedback resistance on the op amp, the hysteresis can be tailored to the amount desired. More resistance results in less hysteresis. This method of detection allows any combination of mark-space frequencies to be used. As long as these frequencies do not drift too near the passband of the lowpass filter, any shift that exceeds the effective modulation introduced by the noise will produce a waveform that the detector can convert into a usable digital signal. The fact that these frequencies may drift is of no consequence. If, for some reason, it is desirable to disable this tracking feature, simply short the coupling capacitor in the detector as shown.

This signal is next converted into a TTL compatible level. The net result is a decoder that does not care what the mark-space frequencies are, what their deviation is, and is not affected by drift, except by going too far down. On a test bench this circuit reliably decodes any shift above 50 Hz, with an input frequency of at least 1900 Hz and at any speed to 1200 baud.

Fig. 8 shows a dual-trace presentation of data as received through Oscar. The upper display is the input to the detector and the lower display is the digital output. The vertical scale represents shifts of 250 Hz per division; 850-Hz shift being used at this time. The waveform represents part of a digital word being received; note the noise-induced ripple. Any deviation exceeding this margin gives good data. This display shows how much deviation is needed for the noise level present. My first test used 170-Hz shift which proved to be insufficient as the noise margin was over 200 Hz. The next test, using 850-Hz shift succeeded. Subsequent tests are being conducted to determine the minimum necessary shift. Obviously the bandwidth presented to the phase-locked loop depends on the receiver and there is noise contribution from every bit of it. In my case the receiver was a Drake 2B with the selectivity set to 3.6 kHz.

Received signal strength also has a great deal of influence with respect to the noise. The use of bandpass filters on the input of the decoder could drastically cut this noise bandwidth but that would require the receiver operator to exactly track the Doppler shift by hand. In addition, the group-delay distortion of any such filters must be closely controlled since at 1200 baud you only have a couple of cycles of one frequency present assuming a 2400 Hz mark. To my way of thinking, it was the job of the decoder to eliminate the Doppler and not mine, so I just left the bandwidth wide open and used a wider shift. Only occasional retuning was necessary during the pass to compensate for the Doppler.

Following this decoder, the data goes to the receiving...
half of the UAR/T where the serial-to-parallel transformation takes place. The parallel digital word presented at its output goes to a digital-to-analog converter which feeds a fourpole, lowpass filter set to 50 Hz. The output of this filter is the reconstructed analog data. Fig. 9 shows the result of the tests. The bottom strip is the original data and the top strip shows the same data after passing through Oscar 7 mode B. Out of 60 seconds of data, 5 parity errors were found. Although the same EKG was not used for both techniques, the improvement is obvious. Note the lack of degradation due to Doppler shift and noise. Doctors who examined the strips were unable to distinguish between the original and the satellite relayed versions.

While not optimum, this technique demonstrates what can be done with an ordinary audio channel. For more permanent experimentation I would recommend that you replace the 8038 fsk generator with a crystal-controlled programmable system, using digital counters, and synthesize a sine wave from a BCD-to-decimal decoder such as the 7442. This would give absolutely stable and accurate mark-space frequencies. Some input bandpass filters could be added to the demodulator. This system could also be adapted to multichannel use. It would require splitting the data word into two parts and sending each half, along with its appropriate address, as one word through the UAR/T. A substantially higher bit rate would then be required.

summing up

So what has been the benefit of all this? Most obvious is that a satellite may be used to relay high-quality physiological data. This has definite use for regions where traditional land-based communications are marginal or non-existent. Small Alaskan towns are a prime example. Currently the federal government is involved in projects of exactly this nature. For amateurs this marks the first time that the FCC has granted permission to use an eight-level teleprinter code. At the time these experiments were being formulated, such permission did not exist and AMSAT was kind enough to pass my request along to the FCC. This opens the field for the use of surplus ASCII terminals and I anticipate that we will begin to see video terminals interconnected via amateur radio. As the cost of television typewriters continues to drop, this will make it easy for anyone to implement a low-cost RTTY station that can run at 25 characters per second. Although this experiment used an EKG, it could just as easily be text coded into ASCII and sent at 100 characters/second. The ability to handle bulky information rapidly can benefit users such as RTTY traffic nets, WIAW bulletins, and satellite telemetry of internal operations. The list of possibilities is limited only by one's imagination.

I need to acknowledge the help given me by AMSAT in relaying my request for authority to use an eight-level code to the FCC, and to W6CG and W6ELT who helped control the satellite and transmit the tapes through it. I would be happy to answer anyone's questions upon receipt of a self-addressed, stamped envelope.
better audio
for new or old communications receivers

Shaped audio responses can serve to reduce fatigue and distortion

A typical ssb signal can be sharp, penetrating, and with distortion painful to listen to. If your receiver's audio system has high distortion or lacks in volume, here is a technique that will solve the problems and open up a new concept in comfortable listening. It's also great for contests where distortion adds to the fatigue factor.

the solution
Being a classical music fan and having a deep interest in audio, I came up with a technique that should attract any phone man. The audio system in many receivers leaves a lot to be desired. Exceptions to this were Karl Pierson and his KP-81 with high and lowpass audio filters. The Hallicrafters SX88 also had selectable audio response curves. Both had 10 watts of clean audio.

What I've done on all my receivers (except the KP-81 and SX88) is add a 20-watt hi-fi amplifier. Connected to the output of your receiver's detector (fig. 1), you can select either the normal receiver audio, the outboard amplifier, or both. Further, the use of a good speaker, preferably one of the good high-efficiency hi-fi speakers, means you don't have to increase the volume as much. A large speaker moves a lot of air and it "fills" the room. I often run upstairs and can hear the bigger speaker better upstairs as compared to a smaller one.

audio emphasis
The ultimate in audio control is to use an audio amplifier with a Sound Effects Amplifier (SEA), as used by JVC in their audio systems. I find it very helpful in shaping the audio characteristics of various signals under different interference and voice conditions.

Radio Shack has an excellent SEA unit called a Stereo Frequency Equalizer that permits you to emphasize or attenuate any part of the audio response curve by 10 dB. The change in voice characteristics is useful under various receiving conditions and will also

By Ken Judge Glanzer, K7GCO, 202 South 124th Street, Seattle, Washington 98168

74 apr 1977
fig. 1. The large speaker may be connected to the receiver through other pieces of audio processing equipment. This allows you to adjust for the best audio reception under various receiving conditions.

act as an audio filter for CW. An equalizer could be used between the microphone and transmitter to provide the best audio for rag chewing or DXing. One idea is to record your normal and altered voice and then listen to the tape directly, not over the air.

circuit modifications

Minor modifications can be made to many receivers by removing capacitors that are across the collector to base junction of transistors in the audio amplifier stage. In some cases there may be a capacitor across the primary of the output transformer. These capacitors usually attenuate the high frequencies. Typically the first loss in hearing occurs at the higher frequencies. This can be relieved by increasing the high frequency response. Sometimes the substitution of a different tube, transistor, or output transformer will also help to alleviate the problem.

Have you ever seen an article on transistor frequency multiplier design?

The current issue of VHF COMMUNICATIONS has one!

Subscription rate $7.00 per year.

VHF Communications

915 N. Main Street
Jamestown, N. Y. 14701

new from DAVIS ELECTRONICS

Small & Lightweight PREAMP PROBE

Designed to Probe Miniature Equipment

10 MV at 150 MHz with typical counter
Increase the sensitivity of your counter 10X to measure weak RF signals.

Features:
- 10 to 500 MHz range
- 20 dB gain (10X)
- small & lightweight (has 2 oz. head)
- clips on (doesn't need to be held)
- battery-operated
- high Z input
- 50 ohm output
- $49.95 (postage paid, USA)

Guaranteed for 1 year.

DAVIS ELECTRONICS

636 Sheridan Drive
Tonawanda, New York 14150
(716) 874-5848
CHOOSE TOP NOTCH RIG PERFORMANCE FROM THIS SHOWCASE OF SWAN METERS.

Swan precision meters are designed and built to help you make sure you're putting out all the watts your rig can deliver.

And Swan meters are priced so low they'll probably pay for themselves in improved rig performance and signal power.

At last: A precision wattmeter for the 2-meter man. The upper-band man needs accurate output measurements, too. Now our WM6200 gives them to him with ±7% accuracy output power at 50 to 150 MHz. Two scales to 200 watts. Reads SWR on expanded range scale.

WM6200 In-Line Wattmeter .. $59.95

Measure power coming and going. Measure SWR and get maximum power to your antenna. Then get your antenna pattern right by measuring relative radiated power. A one-two power punch at a knockout price. F5-2 SWR and Field Strength Meter $15.95

Easy-on-the-pocket pocket SWR. Mighty mite SWR meter with high accuracy, SWR-3 indicates 1:1 to 3:1 SWR at 50 ohms on frequencies from 1.7 to 55 MHz. Precision PC board directional coupler makes it a solid value at a rock-bottom price. SWR-3 Pocket SWR Meter $12.95

SWR bridge bridges the price barrier. This little jewel gives you relative forward power and SWR on two 100 microampere meters at a remarkably low price. Rear mounted coax connectors for easy, neat installation. Capable of handling 1000-watt signals on frequencies from 3.5 to 150 MHz. With low insertion loss, it's great for mobile operations, too. SWR-1A Relative Power Meter and SWR Bridge $25.95
All-the-law-allows in-line wattmeter.
With three scales to 2000 watts, new flat-frequency-response directional coupler for maximum accuracy and a price anybody can afford, this meter has become an amateur radio standard. 3.5 to 30 MHz with expanded range SWR scale.
WM2000 In-Line Wattmeter . . . $59.95

This wattmeter tells the truth about SSB. True peak envelope power of your voice modulated signal is what you want to know most about your SSB transmission, and that’s where our WM3000 shines. Flat response forward or reflected power from 3.5 to 30 MHz on scales to 2000 watts in RMS or PEAK at the flip of a switch. WM3000 Peak/RMS Wattmeter $79.95

Sniffs out radiated power wherever it is. This little unit is so compact it could measure relative radiated power in your pocket. Telescoping antenna and a frequency range of 1.5 MHz all the way to 200 MHz.
FS-1 Field Strength Meter $10.95

Double-duty in-line wattmeter.
Use this meter for output power measurement and troubleshooting, too. Better than 10% full scale accuracy from 2 to 30 MHz, and you can go to 50 MHz with only slightly reduced accuracy. Four scales to 1500 watts and selector for forward or reflected power.
WM1500 In-Line Wattmeter $74.95

Put your frequency up in lights. Perfect tuning and matching don’t mean a thing if you’re not on frequency.
This counter tells the story on big, bright 5-digit LED display. Reads to ± 100 Hz or ± 1 KHz between 5 KHz and 40 MHz. Signal levels to 50 millivolts so you can use as a test meter, too. FC-76 Frequency Counter $189.95

Swan products available at:

ARTCO ELECTRONICS
302 Wyoming Ave., Kingston, PA 288-8585 / Shavertown Shopping Center, Shavertown, PA 675-2654
RC notch filter

Dear HR:

A subscriber of your magazine recently showed me the article on TWIN-T CX7 PARALLEL-T SAME (YLF WAL) BOLTED LATTICE forerunner Syndrome Delta) BRIDGED LADDER STACKED-T fig. 1. Popular ac null circuits (left) and their duals (right). The bridged-ladder was the circuit discussed in WASSNZ's article in the September, 1975 issue of the magazine.

"Hall's" notch filter in the September, 1975 issue and I was very pleased with your enthusiastic presentation of the circuit. Obviously, I too feel that it has not had the popularity it deserves! Since you solicited comments on it and similar circuits, I would like to make a few comments which may be of some interest.

First, just for the record, the circuit has had some mention. The most complete description was by Leon Grillet (91st Congress des Societes Savantes, Rennes, 1966, Tome II) which is in French, except for the algebra. You mentioned the article by Glasgal who referenced another EEE article by B.M. Van Emden (May, 1964). It has also appeared in a book, Alternating Current Bridge Methods (Hague and Foord, Pitman, London). This is Foord's revision of Hague's classic, the bible of ac bridge designers (my speciality). It was also briefly described by Penn and Grillet in letters (see Electronic Engineering, 1964). Others have mentioned it but only as introductory references before they described new circuits.

The name "bridged-differentiator" describes more than the network's typology which I've called a "bridged-ladder." It should be noted that the term "twin-T" has been used to describe measurement circuits with the same typology as the notch filter but with different circuit elements. Also, the dual of a twin-T has been called a bolted-lattice (by an Englishman, I think) but could be called a "series-pi." The dual of the bridged-ladder might be called a "stacked-T" (see fig. 1).

The network has its advantages and disadvantages. The advantage in the General Radio null detector is not so much its economy on one potentiometer (which has a 46 dB exponential taper to get a log scale and is not inexpensive to make), but in its behavior. The obvious choice would have been a two-potentiometer Wien bridge, but when that circuit is adjusted in a high-gain feedback circuit, tracking unbalance as the wiper jumps from one wire to the next causes gain variations which make an indicating meter fluctuate widely. With one potentiometer, the gain may change in discrete steps as successive wires are contacted, but at least the peak is approached monotonically.

The main disadvantage of this circuit is that its Q is lower than that of a twin-T, like all null circuits adjusted by one component, Q varies over the...
tuning range. The null detector uses the transfer impedance to obtain a more constant Q. The result is not ideal but surprisingly good. As I remember it, we were about to abandon the network when we discovered this way of using it.

There are other circuits to be considered, particularly the one by Y.A. Andreyev mentioned in the G-R experiments article (and by Grilllett and Penn). Its tuning law seems preferable. There are many bridge-type networks which use a single variable resistor or capacitor. My favorites are those in the G-R Experimenter article that have a $(1 - \alpha)/\alpha$ tuning law which tunes from zero to infinity (see fig. 2). Over a 10 to 1 frequency range, a linear variable component gives a pretty good logarithmic dial. I’ve always wanted to experiment more with these circuits and maybe your readers would have fun making oscillators with them.

Finally, I would like to note that I’m very glad to have been made aware of your magazine. While I’m not an amateur, the few issues of ham radio I glanced through contained several articles that interested me. I plan to look through more and follow it in the future.

Henry P. Hall
Senior Principal Engineer
Gen Rad

50-MHz frequency counter

Dear HR:

I am writing concerning WB2DFA’s article on the “50-MHz Frequency Counter” in the January, 1976, issue of ham radio. The schematic for the counter circuit contains three errors in the crystal-oscillator section: the inputs to the SN7400 NAND gates are left floating. For the oscillator to work properly there must be a definite high on the unconnected input pins. Admittedly, the oscillator may work if the inputs drift high because of internal transistor action, but for reliable and stable operation there should be a high on the unconnected inputs to the NAND gates. This problem may be corrected in one of two ways:

1. Connect input pin 2 of U1A to pin 1, pin 4 of U1B to pin 5, and pin 10 of U1C to pin 9; or

2. Supply V_{CC} to the unconnected inputs through 2200- to 6800-ohm resistors (any resistor between these two values will work).

Both methods make the NAND gates function as inverters but method 2 decreases the effective fan-in of the chip so it presents less of a circuit load.

This should solve any problems readers may have with intermittent or malfunctioning oscillators in the frequency counter.

James R. Aiello
JRA Systems
St. Clair Shores, Michigan

Although the inputs to the NAND gates should be pulled high rather than being allowed to float for true digital operation, we are not concerned with noise immunity in this case. In fact, it’s less noise immunity that kicks the oscillator into action in the first place. Furthermore, tying both input pins together means that twice as much sinking current will be required to pull those inputs down, thus making the oscillator harder to start.

WB2WUF of Port Monmouth, New Jersey, built the counter almost a year ago, and in a recent conversation with him he reported that everything is still working okay. I have never had any problem with oscillator start-up either, and suggest that the circuit be left as is.

James W. Pollock, WB2DFA

telephone system precautions

Dear HR:

The telephone companies have rules against interconnects for a very good reason: they want the system to go on working.

In a recent issue of ham radio you published a schematic which showed a tap on a phone line which was directly grounded to the equipment. No doubt the author got away with it because he did not ground his equipment to the real world.

Although one wire of the phone pair into your house may appear to be at ground potential when first checked with a voltmeter, this is not a ground wire and the system must be isolated from ground to work properly. The phone will have all kinds of buzz and crosstalk if one lead is even bypassed to ground because phone pairs are balanced audio circuits.

A typical input to the switchgear in the phone office looks like this:

The transformer picks off the audio in a fully balanced manner, with the capacitor providing the tie at the center for audio. Another winding on the transformer passes the audio on into the system.

The relay detects the presence of dc current in the phone (off-hook and dial pulses), again in a balanced manner with two coils. Adding another ground at the user’s end shorts one winding of each.

From there on, things get quite complicated because the relay is not always the same relay. A different physical relay may be in the circuit for each digit of the dialed number, with the dc provided during the talking phase being many steps removed (and perhaps many miles away) from the relay monitoring the line when on-hook. A ground on one lead causes great confusion in all this.

If you must attach to the system, there is a simple method of keeping out of trouble. Always present to the phone line a transformer winding with a blocking capacitor in series. The winding impedance can be anywhere from 50 to 2000 ohms. The capacitor should be no larger than 0.2 µF and able to stand 90 Vac ringing voltage with 48 Vdc superimposed (i.e., at least a 200 V paper capacitor).

On the other side of this transformer, you can do pretty much what you like as long as you don’t drive audio into it at such levels that things are louder than normal speech in the normal telephone.

For a simple ring-detector, as was desired in the ham radio article, an optical coupler works admirably. Place a 0.1 µF in series with it to block dc from the phone system and put a diode across the optical coupler to pass the reversed part of the ringing cycle.

N. J. Thompson, KH6FOX
Honolulu, Hawaii

...every tower in the world should be made this good.

Once in a while something really big comes along like Tri-Ex's all new W-80. So big we decided to call it the "Big W". It's the big one of Tri-Ex's "W" Series towers.

Early on was the W-51. A superb performer and very popular still.

Last year came the W-67. Higher, bigger, stronger.

Now the W-80, Tri-Ex's "Big W" tower.

Excellent Performance

Provides good DX capability at low costs. And if you're watching the sunspot cycle—it's now on an upswing for better than average transmission and reception.

"Big W" is a free-standing, crank-up tower that goes a full 80-feet up. You can lower it with relative ease under windy conditions using "Big W's" comfortably positive pull-down cable to protect your antenna load.

Inherently Strong

As with all "W" Series towers, the W-80 is made of high strength steel tubing legs with solid rod "W" bracing. Stable? You bet!

Hot dipped galvanized after fabrication. Long lasting. Five sections. Included is a free rigid base mount. And the top plate is pre-drilled for a TB-2 thrust bearing.

"Big W" is your kind of tower? Better believe it! Write today or see your nearest dealer. Ask about the W-80. It's real.
OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101. Specify when ordering.
$3.95 ea.

OF-1 OSCILLATOR
Resistor/capacitor circuit provides osc over a range of freq with the desired crystal. 2 to 22 MHz, OF-1 Lo, Cat. No. 035108. 18 to 60 MHz, OF-1 Hi, Cat. No. 035109. Specify when ordering.
$3.25 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106. Specify when ordering.
$4.50 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mw, depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz, Cat. No. 035104. Specify when ordering.
$4.75 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103. Specify when ordering.
$4.50 ea.

DAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat No. 035107. Specify when ordering.
$4.75 ea.

EXPERIMENTER CRYSTALS
(HC 6/U Holder)
Cat. No. Specifications
031080 3 to 20 MHz — for use in OX OSC Lo. Specify when ordering $4.95 ea.
031081 20 to 60 MHz — for use in OX OSC Hi. Specify when ordering $4.95 ea.
031310 20 to 60 MHz — for use in OF-1H OSC. Specify when ordering $4.25 ea.
031300 3 to 20 MHz — for use in OF-1L OSC. Specify when ordering $4.25 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: International Crystal Mfg. Co., Inc., 10 North Lee, Oklahoma City, Oklahoma 73102.

More Details? CHECK — OFF Page 126
INTRODUCES THE VERSATILE NEW

HR-312

- More Channels...at the flip of a switch
 Unlock the unique mode switch and 12 channels become 144

 .25 μV Sensitivity plus 75 db adjacent channel selectivity and 70 db image rejection

- More Power Out
 35 watts nominal with a minimum of 30 watts across the band
 ... for a lot less

$269.00

Amateur Net

© 1976

THE FM LEADER

2 METER 220 MHz
6 METER 440 MHz

More Details? CHECK — OFF Page 126
THE STANDARD OF VALUE: ALPHA 76

- 2 + KW PEP
- 1KW LOCKED-KEY
- 10 THRU 160 METERS

- True CCS Kilowatt Average D-C Input
- Fully Self-Contained in One Cubic Foot
- Popularly Priced
- Full Year Warranty

ALPHA 76 is first of all power — brute, uncompromising power. It easily handles up to 2.5 KW PEP or more — a full 1000 watts of average d-c input — with no need for a key-down time limit! That’s true ‘continuous duty’ [or ‘CCS’ — Continuous Commercial Service]. No other linear amplifier, except another ALPHA, delivers such power capability in a self-contained desk top cabinet.

ALPHA 76 is also the only true [CCS] full KW linear that includes 160 meter amateur band coverage and costs under $2000!

Traditional ALPHA ruggedness and quality are conspicuous throughout the ALPHA 76 — modern ceramic tubes; a full pi-L network with silver-plated copper tubing coils plus Teflon-insulated toroids for compactness and efficiency; the brutish 1.5 KVA [CCS!] transformer that itself outweighs many competitive amplifiers.

ETO’s dedication to your convenience shows up in features like the plug-in transformer for easy handling and UPS shipping; the remarkably compact one-cubic-foot size for a linear of this power capability; full amateur band coverage including 160 meters; and the built in rf directional wattmeter.

ALPHA 76 is real ‘ALPHA’ all the way — POWER, QUALITY, CONVENIENCE . . . YOU CAN BUY A CHEAPER LINEAR . . . BUT IS THAT REALLY WHAT YOU WANT?

CALL OR WRITE ETO FOR SPECS AND DETAILS ON ALL ALPHA LINEARS AND ON ALPHA/VOMAX — THE NEW ‘SPLIT BAND’ SPEECH PROCESSOR THAT BEATS RF CLIPPING.

TECHNICAL SPECIFICATIONS, MODEL PA-76

FREQUENCY COVERAGE: Tunable 1.8-2.0 and 3-30 MHz; all bands 160-10 meters.

PLATE POWER INPUT: Up to 2.5 KW PEP-SSB, 1 KW average or key down; no time limit.

RF POWER OUTPUT: Typically 1.2-1.5 KW PEP-SSB voice, 600 watts continuous carrier.

INPUT & OUTPUT IMPEDANCES: 50 ohms nominal, unbalanced; VSWR 2:1 or less.

DRIVE POWER: Nominal 100 watts PEP, 50 watts carrier; compatible with all popular exciters and transceivers.

DISTORTION: Third order IM more than 30 db below 1 KW PEP output.

ALC: Negative-going, adjustable threshold.

TUBE COMPLEMENT: Two Eimac 8874 ceramic-metal grounded grid triodes.

COOLING: Full-cabinet, ducted forced air; low noise centrifugal blower.

PROTECTION: Primary fuses, plate overcurrent relay; AC & HV cover interlocks.

PRIMARY POWER: 240V/10A or 120V/20A nominal, 50-60 Hz, 1A Automatic step-start.

SIZE & WEIGHT: 7.5"h x 17"w x 14.75"d. 75 pounds net [UPS-shippable, 2 cartons].
DALLAS, TEXAS 75219
(214) 823-3240

Emits a piercing dual tone blast that is impossible to ignore. Great with our Sender Receiver Kit. All components and quality PC Board included. Speaker and power switch not included.

DALLAS, TEXAS 75219
(214) 823-3240

Features:
- Output adjustable from 3 to 30 Volts DC
- Adjustable Current limiting to 15 Amps
- Special Pre-regulator circuit eliminates need for massive heat sinks
- Better than 1% Load & Line Regulation from 0 to 15 Amps
- Low Ripple output
- Heavy duty 10 lb. Transformer

Features of Kit:
- Output adjustable from 3 to 30 Volts DC
- Adjustable Current limiting to 15 Amps
- Special Pre-regulator circuit eliminates need for massive heat sinks
- Better than 1% Load & Line Regulation from 0 to 15 Amps
- Low Ripple output
- Heavy duty 10 lb. Transformer

PS-12 POWER SUPPLY KIT
We Guarantee your Satisfaction!
Not only is the PS-12 able to supply a continuous 10 AMPS (15 AMPS intermittent) of low ripple, regulated DC voltage, but it is also variable from 3 to 30 Volts! Use it as a building block for a fantastic bench supply.

BULLET SUPER STAR PS-01A
A compact, well regulated triple output power supply. Gives +5VDC @ 1.5A and +15 @ 150mA and -15 @ 150mA. Complete with PC Board, components, heat sinks and quality transformer. PS-01B same as above but with +/– 12 output instead of +/– 15. Please specify model number when ordering.

BULLET SUPER STAR PS-01A
A compact, well regulated triple output power supply. Gives +5VDC @ 1.5A and +15 @ 150mA and -15 @ 150mA. Complete with PC Board, components, heat sinks and quality transformer. PS-01B same as above but with +/– 12 output instead of +/– 15. Please specify model number when ordering.

MINI GRANDFATHER CLOCK KIT
The most fascinating kit we have ever offered features: * Large LED Simulated swinging pendulum matches tick-tock sound * Electronic tone chimes the hour (ie: 3 times for 3 o’clock) * Quality components & 2 PC boards measuring 4.5” x 6.5” * All CMOS IC construction * Transformer provided, no case included * Large 6” LED readouts.

ULTRASONIC SENDER-RECEIVER KIT 19.95
A complete transmitter/receiver kit that will flood an average sized room with 23KHZ sound and detect any movement in the area. The output is a DC level that can be used to trigger a relay, bell or alarm. Uses 2 quality transducers. All components & PC Board included. (Requires 9.15 VDC @ 60mA [not supplied]).

AUTOMATIC TIME OUT CIRCUIT for ultrasonic or mechanical switch alarm. Provides a five second entry delay, sounds alarm for one minute, then re-arms itself. Requires 6.15 VDC.

FEATURES:
- Output adjustable from 3 to 30 Volts DC
- Adjustable Current limiting to 15 Amps
- Special Pre-regulator circuit eliminates need for massive heat sinks
- Better than 1% Load & Line Regulation from 0 to 15 Amps
- Low Ripple output
- Heavy duty 10 lb. Transformer

KIT INCLUDES:
- Transformer
- Heat sink (drilled)
- Semiconductors (diodes, transistors, etc.)
- All components (resistors, caps)
- Transistor mounting hardware & insulators
- Drilled & plated PC Board
- Wire

ONLY $129.50

#18,361 — Ideal low cost camera for security or other installation. 7038 — 1” vidicon, random scan, power supply, 117V AC, 60 cps, video output — horizontal resolution 450 lines, ALC, Wt. 5.6 lbs. 6.6” W x 9.5” D x 3.2” H. Brand new. Japanese import. Less lens — $129.50.

This camera plus hundreds of other bargains in video equipment listed in our Flyer 976N5 & 977J1 — copies free on request.

DENSON ELECTRONIC CORPORATION
Mail: P. O. Box 85
Vernon, CT 06066
Tel: 203/875-5198

Office: 4 Longview St.
Ellington, CT 06029
NEW FROM HY-GAIN
2-METER BEAMS THAT
LAST LONGER. WORK HARDER.
AND COST LESS.

Introducing a whole new generation of Hy-Gain 2-Meter beams.

Completely redesigned for greater strength and corrosion resistance. So they last longer.

Newly engineered for greater performance and maximum efficiency. So they work harder, your transceiver works better.

And built better. So you pay less for the performance you want.

Our new 2-Meter beams give you the kind of performance you expect from the world's largest manufacturer of quality antennas. Yet, thanks to Hy-Gain technology, they weigh less, have lower wind loading and are UPS shippable.

They use an exclusive new element to boom mounting system that's mechanically stronger and electrically more efficient. All can be vertically or horizontally polarized. And all are constructed of the finest aluminum and ZMI hardware.

Hy-Gain 214 14-element close spaced beam with extremely high forward gain and narrow beam width. $26.95

Also available with 8-element optimum spacing,

Hy-Gain 208. $19.95

Hy-Gain 205 5-element optimum spaced end mount beam with high forward gain and broad frequency response. $16.95

Also available with 3 elements, Hy-Gain 203. $12.95

See the new generation of Hy-Gain 2-Meter beams at your amateur radio dealer. Or write Hy-Gain; 8601 Northeast Highway Six; Lincoln, NE 68505.

WE KEEP PEOPLE TALKING.

Hy-Gain reserves the right to change prices, designs and/or specifications at any time without notice.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>214</th>
<th>208</th>
<th>205</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom length</td>
<td>186"</td>
<td>148 3/4"</td>
<td>75"</td>
<td>43 1/2"</td>
</tr>
<tr>
<td>Longest element</td>
<td>39 1/2"</td>
<td>40 3/4"</td>
<td>39 3/8"</td>
<td>40 1/4"</td>
</tr>
<tr>
<td>Turning radius</td>
<td>95"</td>
<td>75 1/8"</td>
<td>73"</td>
<td>43 1/2"</td>
</tr>
<tr>
<td>Wind survival</td>
<td>80 mph</td>
<td>80 mph</td>
<td>80 mph</td>
<td>80 mph</td>
</tr>
<tr>
<td>Mast diameter</td>
<td>1 1/4" O.D.</td>
<td>1 1/4" O.D.</td>
<td>1 1/4" O.D.</td>
<td>1 1/4" O.D.</td>
</tr>
<tr>
<td>Boom diameter</td>
<td>1 1/4" O.D.</td>
<td>1 1/4" O.D.</td>
<td>1 1/4" O.D.</td>
<td>1 1/4" O.D.</td>
</tr>
<tr>
<td>Wind load area</td>
<td>1.65 ft² max.</td>
<td>1.26 ft² max.</td>
<td>.740 ft² max.</td>
<td>.496 ft² max.</td>
</tr>
<tr>
<td>Net weight</td>
<td>5.5 lbs</td>
<td>4.1 lbs</td>
<td>2.9 lbs</td>
<td>2.2 lbs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical</th>
<th>214</th>
<th>208</th>
<th>205</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward gain</td>
<td>13.0 dBd*</td>
<td>11.8 dBd*</td>
<td>9.1 dBd*</td>
<td>6.1 dBd*</td>
</tr>
<tr>
<td>Front-to-back ratio</td>
<td>20 dB</td>
<td>20 dB</td>
<td>20 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>Maximum SWR</td>
<td>2:1</td>
<td>2:1</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Band width</td>
<td>2 MHz</td>
<td>2 MHz</td>
<td>4 MHz</td>
<td>4 MHz</td>
</tr>
<tr>
<td>Maximum power</td>
<td>250/500 PEP</td>
<td>250/500 PEP</td>
<td>250/500 PEP</td>
<td>250/500 PEP</td>
</tr>
<tr>
<td>Impedance w/balun</td>
<td>52 ohms</td>
<td>52 ohms</td>
<td>52 ohms</td>
<td>52 ohms</td>
</tr>
<tr>
<td>1/2 power beam width</td>
<td>35° vertical</td>
<td>43° vertical</td>
<td>60° vertical</td>
<td>95° vertical</td>
</tr>
<tr>
<td>Stacking distance</td>
<td>82° min.</td>
<td>82° min.</td>
<td>82° min.</td>
<td>82° min.</td>
</tr>
</tbody>
</table>

*Hy-Gain antennas are gain rated against a standard dipole antenna (dBd) instead of a theoretical isotropic source (dBi). This is a more honest and realistic means of comparing forward gain.
High Pass Filters for TV Sets

provide more than 40 dB attenuation at
52 MHz and lower. Protect the TV set from
amateur transmitters 6-160 meters.

Drake TV-300-HP
For 300 ohm twin lead
$10.60 ea.

Drake TV-75-HP
For 75 ohm TV coaxial
For TV type F
cable; TV type F
connectors installed
$13.25 ea.

Low Pass Filters for Transmitters

have four pi sections for sharp cut off below channel 2,
and to attenuate transmitter harmonics falling in any TV
channel and fm band. 52 ohm. SO-239 connectors built in.

Drake TV-3300-LP $26.60 ea.
1000 watts max. below 30 MHz
Attenuation better than 80 dB above
41 MHz. Helps TV i-f interference, as
well as TV front-end problems.

Drake TV-5200-LP $26.60 ea.
200 watts to 52 MHz. Ideal for six
meters. For operation below six
meters, use TV-3300-LP or TV-42 LP.

Drake TV-42-LP $14.60 ea.
Four section filter with 43.2 MHz
cut-off and very high attenuation in all
TV channels for transmitters
operating at 30 MHz and lower. Rated
100 watts input.

To receive a FREE Drake Full Line Catalog.
please send name and date of this publication to
R. L. DRAKE COMPANY

Western Sales and Service Center, 2020 Western Street, Las Vegas, Nevada 89102 • 702/382-0470

SPECIAL INTRODUCTORY OFFER

at a price YOU can afford!

SCOTT

COMMUNICATIONS
SYSTEMS

TOUCH TONE ENCODER (Shown) Complete $52.95
RF ACTUATED CW MONITOR—
for the best in CW operating $24.95
CRYSTAL CALIBRATOR—100, 50, 25 kHz $19.95
range extended to 10, 5, 1 kHz $24.95

RTTY OPERATORS
Digital Date-Time-Message Generator, UARTS.
Quick Brown Fox Generator, many others.

MICROPROCESSOR BUFFS
CPU, Backplane, I/O Memory, Timing,
many others — boards, kits and assemblies.

VHF-FM TRANSCEIVER
TT Pad Programmable, PROM selected Channels.
Hi/Lo Power, PLL-5 kHz resolution.
Above available early '77, write for details.
Send 13¢ Stamp for latest catalog.

SCOTT COMMUNICATIONS SYSTEMS
Box 2117, Dept. H, Stamford, Ct. 06906 or
Call (203) 357-1667

To receive a FREE Drake Full Line Catalog.
please send name and date of this publication to
R. L. DRAKE COMPANY

Western Sales and Service Center, 2020 Western Street, Las Vegas, Nevada 89102 • 702/382-0470

SPECIAL INTRODUCTORY OFFER

at a price YOU can afford!

SCOTT

COMMUNICATIONS
SYSTEMS

TOUCH TONE ENCODER (Shown) Complete $52.95
RF ACTUATED CW MONITOR—
for the best in CW operating $24.95
CRYSTAL CALIBRATOR—100, 50, 25 kHz $19.95
range extended to 10, 5, 1 kHz $24.95

RTTY OPERATORS
Digital Date-Time-Message Generator, UARTS.
Quick Brown Fox Generator, many others.

MICROPROCESSOR BUFFS
CPU, Backplane, I/O Memory, Timing,
many others — boards, kits and assemblies.

VHF-FM TRANSCEIVER
TT Pad Programmable, PROM selected Channels.
Hi/Lo Power, PLL-5 kHz resolution.
Above available early '77, write for details.
Send 13¢ Stamp for latest catalog.

SCOTT COMMUNICATIONS SYSTEMS
Box 2117, Dept. H, Stamford, Ct. 06906 or
Call (203) 357-1667

K-ENTERPRISES

MODEL 4X6C
50 HZ—250 MHZ $270.00

300 and 500 MHZ PRESCALERS
FREQUENCY STANDARDS
MARKER and PEAKING GENERATORS
POWER SUPPLIES AMPLIFIERS

WRITE FOR FREE CATALOG

K-ENTERPRISES
Box 410 (N.W. of town) FAIRLAND, OK 74343
ANNOUNCING

AMERICA'S NEWEST AMATEUR DEALER!
(and therefore the most eager to serve you)

AGL ELECTRONICS IN ACTION!
Our staff of experienced Hams is waiting to assist you with the selection of the best possible equipment to complement your station. Contact us today for friendly and competent advice. You deserve the best treatment and we'll provide just that. Good Amateur equipment and service is the name of our game.

ET0
DRAKE
COLLINS
ICOM
KENWOOD

LARRY WA5WWH GORDON WA5JMK MIKE WA5UOB MIKE WB5ACM TOM WB5IZN
214-241-6414

AGL ELECTRONICS
3068 FOREST LANE, SUITE 309 • DALLAS, TEXAS 75234
TS-1 MICROMINIATURE ENCODER-DECODER

- Available in all EIA standard tones 67.0Hz-2035Hz
- Microminiature in size, 1.25x2.0x.65" high
- Hi-pass tone rejection filter on board
- Powered by 6-16vdc, unregulated, at 3-9ma.
- Decode sensitivity better than 10mv RMS, bandwidth, ±2Hz max., limited
- Low distortion adjustable sinewave output
- Frequency accuracy, ±.25Hz, frequency stability ±1Hz
- Encodes continuously and simultaneously during decode, independent of mike hang-up
- Totally immune to RF

Wired and tested, complete with
K1 element
$59.95
K1 field replaceable, plug-in, frequency determining elements
$3.00 each

COMMUNICATIONS SPECIALISTS
P.O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

GLB PUTS THE ENTIRE 2M. F.M. BAND
IN THE PALM OF YOUR HAND!

It had to happen. A tiny frequency synthesizer for your favorite two meter hand-held rig is finally here, and it had to come from GLB Electronics, the pioneer in Amateur Radio Channelizers. The amazing GLB 200 gives your hand-held complete two-meter coverage from 146 to 147.995 Mhz. in 5 Khz. steps, with built in repeater offset, both plus and minus 600 Khz! The 200's the ultimate in operating convenience, with an incredibly low current drain of just 3.5 Ma. in receive mode. That's less than the current drain of most touch tone pads.

Your new GLB 200 will operate with any hand-held transceiver, with spurious outputs over 60 DB down! Space does not allow us to show complete specs. here, but we're proud of them. Write us for more information, or to order your GLB 200. You want unlimited flexibility with your hand-held two meter transceiver, and GLB wants to hand it to you.

The all new state of the art GLB 200. Completely wired and tested, no other options required, just $59.95.
We welcome Master Charge or Bank Americard.

GLB ELECTRONICS
60 Autumnwood Dr., Buffalo, N.Y. 14227

TECHNICAL WRITERS FOR ELECTRONIC SELF-INSTRUCTION PROGRAMS

We're looking for a combination of Hemingway and Marconi — educational writers who can be both descriptive and technically accurate.

You'll design and write self-instructional materials in electronics and communication technology. Demonstrated performance in the creation of tutorial material is highly desirable. An amateur radio license or first class FCC license is also desired.

These positions require the technical knowledge to plan and create a complete learning program.

Heath Company is a long recognized leader in the manufacture of fine electronic and technical equipment with a solid record of continued growth. The successful candidates can look forward to excellent facilities and working conditions in a dynamic engineering department. These positions offer salaries to match your background, an attractive benefit program and a pleasant lifestyle in a community on the shore of Lake Michigan.

Send resume to:
HEATH COMPANY
Attn: Jim Cooperider
Benton Harbor, MI 49022

More Details? (Please — OFF Page 126)
think of yourself as an antenna expert! —you select your components!

1. Get optimum performance band for band. Choose from medium or high power resonators for your favorite bands.

2. Fold over, 360° swivel mast for quick band change or easy garaging. Select from two versions, fender/deck or bumper mount location.

4. Get exceptional reports, broadest bandwidth, lowest SWR. Use with any convenient length 50 ohm coax. Matching devices not required.

5. For convenience, use the Hustler stainless steel resonator spring, and special design quick disconnect.

...and you’ll mobile with the experts’ foremost choice... Hustler

Get fixed station reports from your mobile—operate 6-10-15-20-40-75 or 80 meters with the experts and join the vast majority using Hustler for nearly two decades.

EXTRAORDINARY features

- Stainless steel ball mount, adjustable
- Fast, quick disconnect
- Balanced line

HUSTLER ANTENNA PRODUCTS—for sixteen years—original designs—created and manufactured by American ingenuity, talent and materials—used by communicators throughout the world

Available from all distributors who recognize the best.

new-tronics corporation
15800 Commerce Park Drive
Brookpark, Ohio 44142
(216) 267-3150

“the home of originals”
Q. WHAT IS IMPORTANT IN A FREQUENCY COUNTER?

A. ACCURACY. If it's not accurate, it's not useful.

The Davis Frequency Counter was designed for maximum accuracy from 10 Hz to 500 MHz. Accuracy is achieved with a precision built-in TCXO (temperature compensated crystal oscillator) time-base accurate to 1 ppm (parts per million) over a temperature range of 15°C to 55°C. Also essential is the input sensitivity. The Davis Frequency Counter incorporates a high-sensitivity input amplifier that extends the useful range to measure low level signals.

THE DAVIS FREQUENCY COUNTER ALSO FEATURES:

- 8-Digit Display (for more accuracy)
- Large 2½” LED Readouts
- Automatic Decimal Point Placement
- Resolution to 1 Hz
- Automatic Input Limiting (eliminates input level adjustment)
- Input Diode Protected (protects circuitry against overload)
- Selectable Gate times: 1 ms (for rapid reading) and 1 sec. (for maximum accuracy) Provision for 10 sec. (for maximum accuracy at low frequencies)
- Plug-In Time Base (for future options)
- Plug-In Prescaler (for future options)
- Automatic Self-Check

SPECIFICATIONS:

- Frequency Range: 10 Hz to 500 MHz
- Input Z: 1 Meg/20 pf to 50 MHz 50 ohm above 50 MHz
- Sensitivity: 10 Hz to 25 MHz: 10 mv 25 MHz to 50 MHz: 3 mv 50 MHz to 500 MHz: 150 mv
- Time Base Stability: STD: 1 ppm 15°C to 55°C (1 ppm)
- Power: 115/50-60 Hz 15W
- Size: 11” x 6” x 2 ½” (220 x 203 x 71 mm)
- Weight: 3 lbs. 10 oz. (1.64 kg)

500 MHz Kit (TCXO standard) $249.95

500 MHz Factory Assembled $499.95

Factory assembled units are tested and calibrated to specifications; and are guaranteed for 1 year.

Shipping Charges $2.00

Installation and Calibrating Manual $3.00

(refundable with purchase)

OPTIONS:

Crystal Oven Option (plug-in) $49.95

1 ppm (± 0.0005%) 0°F to 100°F (increases accuracy over wider temperature range)

Larger (46”) Digit Option Available on factory assembled unit only $10.00

Preamp Probe Option $49.95

20 dB gain range 10 MHz to 500 MHz (increases sensitivity of counter 10X)

12 volt DC Option $10.00

10 sec Time Base Switch Option $10.00

CALL US FOR QUOTES ON: ATLAS 350X, KENWOOD TS520, TS700A, TR7400A, FT701E. ALL IN SEALED CARTONS.

CALL US FOR QUOTES & ITEMS NOT LISTED

MADISON ELECTRONICS SUPPLY, INC.

1508 McKinney
HOUSTON, TEXAS 77002
713/658-0268
Nites 713/497-5683

TERMS: All prices FOB Houston. Quotes Good 30 Days. All Items Guaranteed. Some items subject to prior sale. Send letterhead for Amateur dealers price list.
5-DIGIT LED CLOCK KIT #850-1

12/24 HR OPERATION BIG 4" DIGITS 50-60 HR OPERATION

KIT INCLUDES
+ INSTRUCTIONS
+ QUALITY COMPONENTS
+ 50 or 60 HR OPERATION
+ LATE NIGHT DETECTOR
+ 6-LED Readout (FND-308 Red/307 Green)
+ Transistors
+ Switches
+ Batteries
+ Cables
+ 24 Molex connectors IC socket

"Kit #850-1 will furnish all the components needed to assemble the kit."

KIT INCLUDES
- COMPLETE KIT WITH CIRCUIT BOARD, POWER SUPPLY, IC'S AND SOCKET, 16 TRANSISTORS, 9 SWITCHES
- AND REQUIRED PARTS: ALL 3001 KITS KIT CADDY AND ACCESSORY OPTIONAL QUARTZ CRYSTAL TIME BASE KIT 4-T-1

$39.95 ea.

5-DIGIT LED CLOCK KIT #850-4

12/24 HOUR OPERATION BIG 4" DIGITS 50-60 HR OPERATION

KIT INCLUDES
+ INSTRUCTIONS
+ QUALITY COMPONENTS
+ 50 or 60 HR OPERATION
+ LATE NIGHT DETECTOR
+ 6-LED Readout (FND-308 Red/307 Green)
+ Transistors
+ Switches
+ Batteries
+ Cables
+ 24 Molex connectors IC socket

"Kit #850-4 will furnish all the components needed to assemble the kit."

KIT INCLUDES
- COMPLETE KIT WITH CIRCUIT BOARD, POWER SUPPLY, IC'S AND SOCKET, 16 TRANSISTORS, 9 SWITCHES
- AND REQUIRED PARTS: ALL 3001 KITS KIT CADDY AND ACCESSORY OPTIONAL QUARTZ CRYSTAL TIME BASE KIT 4-T-1

$99.95 ea.

5-DIGIT LED CLOCK KIT

A complete kit including all parts. Kit includes:
- Six 5-digit displays, MM3014 IC, 50-60 Hz.
- Power Transformer, Line Cord, Switches, and all parts. Ideal for in Cabinet Display.

$99.95 ea.

5-DIGIT LED CLOCK KIT

A complete kit including all parts. Kit includes:
- Six 5-digit displays, MM3014 IC, 50-60 Hz.
- Power Transformer, Line Cord, Switches, and all parts. Ideal for in Cabinet Display.

$99.95 ea.
We would like to share the message and joy of Christ risen this Easter.

ICOM IC 22S Frequency Encoder by Trans Com

Have the best of two worlds with your IC 22S. Up to 21 of your favorite frequencies AND full 146 to 148 MHz coverage.

- Tuned from 146.010 to 147.99 MHz in 15 kHz steps.
- Simple installation using either 9 pin ASSY plug or the optional 24 pin ASSY plug.
- Lever type switches for easy frequency selecting.
- Priced at $69.95 (wired and tested)

Send check or money order to:

Trans-ICom
P. O. BOX 120
ADDISON, ILL. 60101
Ill. residents add 5% sales tax

TPL COMUNICATIONS

Talk power by TPL Econo-line

- Quality for an Economy Price
- Solid State Construction
- Linear Switch (FM/SSB)
- Broad Band

<table>
<thead>
<tr>
<th>Model</th>
<th>Input</th>
<th>Output</th>
<th>Typical Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>702</td>
<td>10W-20W</td>
<td>50W-90W</td>
<td>10W in/70W out</td>
<td>143-149MHz</td>
</tr>
<tr>
<td>702B</td>
<td>1W-5W</td>
<td>60W-80W</td>
<td>1W in/70W out</td>
<td>143-149MHz</td>
</tr>
</tbody>
</table>

Now get TPL COMMUNICATIONS quality and reliability at an economy price. The solid state construction, featuring magnetically coupled transistors and a floating ground, gives you an electronically protected amplifier that should last and last.

The Linear Bias Switch allows you to operate on either FM or SSB. The 702 and 702B are exceptionally well suited for 2-meter SSB. Typical power output levels as high as 100W PEP can be achieved with the proper drive.

The broad band frequency range means that your amplifier is immediately ready to use. No tuning is required for the entire 2-meter brand and adjacent MARS channels on TPL's new Econo-line.

See these great new additions to the TPL COMMUNICATIONS product line at your favorite radio dealer.

Call or write for prices and information on TPL's complete line of amateur and commercial amplifiers.

TPL COMMUNICATIONS INC.
1324 W. 135TH ST., GARDENA, CA 90247 • (213) 538-9814

Canada: A.C. Simmons & Sons Ltd., 263 Yorkland Blvd., Willowdale, Ontario M2J 1B8
Export: EMEC Inc., 2250 South 33rd Avenue, Hollywood, Fla. 33020

We would like to share the message and joy of Christ risen this Easter.
Crescomm Frequency Counters Features:

1. High Sensitivity VHF pre-scaler (built-in). 100mv RMS @ 50Ω @ 300MHZ. Frequency range DC through 600MHZ Model 600.

2. Excellent temperature compensation crystal controlled time base, yielding +1 part/10⁶ stability per hour after 10 min warm-up, ± 10PPM worst case, from 0° to +55°C!, at 100Hz @ 450MHZ is attainable, typically if calibrated to WWVL. This is approximately 2 parts in 10⁷.

3. 7 digit display, resolution 100Hz with 10m Sec. gate interval, pre-scaled! 10Hz resolution with 1 Sec. pre-scaled, 1Hz resolution with 10 Sec. gate interval pre-scaled!

4. Built-in 5VDC regulator; input to 3-terminal regulator is accessible for use with 12VDC out-board PS. You can use this counter mobile. "HAVE IT YOUR WAY"

Complete kit or preassembled, burned in, and environmental chamber tested unit available for the commercial shop or modern ham shack.

KIT Model 600K 179.00 ea.
PREASSEMBLED & TESTED Model 600 AT 249.00

Bank Americard and Master Charge accepted. Please include account number with order.

NAME -----------------------------
STREET -----------------------------
CITY ----------------------------- STATE ----------------------------- ZIP

CALL SIGN ----------------------------- SEND CHECK OR MONEY ORDER TO:

Crescomm Incorporated

Bldg. 13 Euclid Avenue, Newark New Jersey 07105 (201) 589-4647

More Details? CHECK OFF Page 126

april 1977
Counter Preamp/Probe
Sniffs out weak RF

Measuring oscillator frequency on modern communications equipment is tricky business. Circuit density and accessibility problems can be frustrating if you try using clip leads, loops, or coils. You might short out something or pull the oscillator off frequency with close coupling and be unable to get a reading because there just isn’t enough signal to drive the counter. Also the counter input cable itself may load the oscillator even though the counter is high impedance.

The COUNTER PREAMP is designed to solve these problems. It has 20 dB of gain which increases the sensitivity of your counter ten times. The low capacity insulated probe can pick up the signal just by holding it near the oscillator crystal, coil, or any active component. Sometimes it is possible to read the oscillator thru a plastic case. The preamp has BNC connectors on both ends and can be used as an in-line preamp for scopes, detectors, RF meters, etc., as well as counters. Input is high Z and output is low Z to drive 50 ohm cable. Another serious problem when aligning receivers is that many signal generators shift frequency when the attenuator is moved from high output to drive the counter to low output to make adjustments or check receiver sensitivity. The preamp will give 20 dB of isolation and eliminate the error.

Customers have commented that having used the preamp they are now unable to get along without it. Many have made repeat purchases. The preamps are battery powered with three penccils at 25 ma. Output level is 200 to 300 millivolts RMS. One year warranty, money back guarantee. Shipped with probe, less batteries, postpaid cont. USA. Foreign add $5.00. Call 213/342-2714 for COD or save money by sending check to Pagel Electronics.

8-LED Preamp, 100 KHz to 200 MHz $35.00
VHF Preamp, 1 MHz to 500 MHz $49.00

PAGEL ELECTRONICS
1-800-225-1280
6742-C Tampa Ave., Reseda, Ca. 91335

YOUR BEST BUY IN KITS

ANALOG-DIGI-LAB
Features 3 Regulated power Supplies. 3 Output wave forms, 8 digital level switches, 2 no bounce pulser switches, 8 LEDs with drivers, 1 AP Super strip. Easily constructed. Designed by RETS Electronic Schools. Now only $139.00

Clock Kit (complete less case) $12.95
Clock Cabinet $6.50 or $4.50 with purchase of clock kit

Function Generator Kit $10.95

Please add $1.00 Shipping/Handling on any order under $15.00
Send SASE for flyer. Featuring Electronic components and kits available.

HAL-TRONIX
P. O. Box 1101 • Southgate, Mich. 48195 • (313) 285-1782

TransCom TONE ENCODERS

TWO MODELS
TG-1 single frequency
TG-3 three frequency

-Plug in type tone elements
-Low distortion sinewave
-Extr. temp. & freq. stability
-Output level control
-Immunity to RF
-All EIA freq. avail. 67.0-203.5 Hz
-9-16V, reverse polarity protection incl.

Wired & tested with frequency element. TG-3 has 3 elements with frequency selection switch. Installed easily in most radios.

OE-1 $24.95 TG-3 $56.95

il residents add 5% sales tax.

Ham Radio HORIZONS

Amateur Radio’s NEW FUN MAGAZINE!

Ham Radio HORIZONS is a completely different idea, dedicated to the Beginner and Novice yet put together in a way that everyone will enjoy. In fact this is the first Amateur Magazine that will appeal to the non-Amateur members of the family.

Each month Ham Radio HORIZONS will be stressing the FUN side of our hobby — working DX, winning contests, improving your station, earning awards and upgrading your license. We’ll be showing you how to get started in Amateur Radio, the most fascinating of all hobbies. You name it, Ham Radio HORIZONS will cover it and we’ll do it in an easy to understand easy to enjoy manner.

Ham Radio HORIZONS is put together by an experienced and capable team of Amateurs, experts who know how to relate their experiences in an irresistible and exciting way — and just for you. You’ll like Ham Radio HORIZONS.

We’re promising you the most exciting year of Amateur Radio reading you ever had. Try a subscription and if you don’t completely agree we’ll gladly refund the unused portion of your subscription at any time.

SUBSCRIBE NOW so we can guarantee you’ll have a complete collection.

Ham Radio HORIZONS
Greenville, NH 03048

Please sign me up for a one year (12 issues) subscription to Ham Radio HORIZONS

Enclosed is check or money order for $10.00

Charge my MasterCharge Account.

Card No. ________________________
Expiration date ____________________

Bank No. (M/C only) __________
Use your card or pay now and get an extra issue free.

Bill me later.

Name: ____________________________
Address: __________________________
City: ____________________________
State: ____________________________

More Details? CHECK — OFF Page 126

94 hr April 1977
WILSON'S NEW WE-800 2M RADIO

Wilson's New Portable 800 Channel 2 Meter Synthesized Radio that can go anywhere with you. Switchable 1 & 12 watt output. 1 watt output with internal Ni-cad battery pack (takes regular 10 "AA" Ni-cads). Low current drain CMOS synthesizer: Rx 45 MA, TX 350 MA at 1 watt. 12 watt output mobile.

Covers frequency range 144-148 MHz in 5 kHz steps. 600 kHz off-set up or down. Two positions available for other than 600 kHz off-set. Five preset channels. On-off switch control for meter light in rear for power saving use. Size 8-1/4" x 6-3/4" x 1-7/8". Weight 1 lb., 15 oz.

ACCESSORIES & OPTIONS

- Battery Charger (BC2)
- 10 ea. AA Ni-Cad Battery Pack (BP-1)
- Extra Battery Tray (BT-1)
- Leather Case for 1402 (LC-1)
- Leather Case for 1405, 2202, 4502 (LC-2)
- Speaker Mike (SM-2) 6 pin connector
- TE-1 Sub-Audible Tone Encoder, installed
- TE-2 Sub-Audible Tone Encoder/Decoder, Installed
- TTP - Touch-Tone Pad - installation free if ordered at time of purchase of radio
- 10.7 KHz Monolithic Xtal Filter (XF-1)

MORE DETAILS? CHECK-OFF PAGE 126
The Amateurs at Klaus Radio are here to assist you in the selection of the optimum unit to fulfill your needs.

KLAUS RADIO Inc.
8400 N. Pioneer Parkway, Peoria, IL 61614
Jim Plack W9NWE — Phone 309-691-4840

More Details? CHECK-OFF Page 126
THE HAM-KEY
NOW 5 MODELS

NEW
MODEL HK-5
ELECTRONIC KEYER
$69.95

MODEL HK-1
$29.95
- Dual lever squeeze paddle.
- Use with HK-5 or any electronic keyer.
- Heavy base with non-slip rubber feet.
- Paddles reversible for wide or close finger spacing.

MODEL HK-2
$19.95
- Same as HK-1, less base for those who wish to incorporate in their own Keyer.

MODEL HK-3
$16.95
- Deluxe straight key.
- Heavy base, no need to attach to desk.
- Velvet smooth action.

MODEL HK-4
$44.95
- Combination HK-1 & HK-3 on same base.

Available from your local dealer or order direct.

HAM RADIO CENTER, INC.
8340-42 OLIVE BLVD. • P. O. BOX 28271 • ST. LOUIS, MO. 63132
Handymen! Hobbyists!
DO-IT-YOURSELFERS!

Let Kester Solder aid you in your home repairs or hobbies. For that household item that needs repairing — a radio, TV, model train, jewelry, appliances, minor electrical repairs, plumbing, etc. — Save money — repair it yourself. Soldering with Kester is a simple, inexpensive way to permanently join two metals.

When you Solder go "First Class" —use Kester Solder. For valuable soldering information send self-addressed stamped envelope to Kester for a FREE Copy of "Soldering Simplified".

KESIER SOLDER
4 Littoll
2301 Wrightwood Avenue
Chicago, Illinois 60639

125 Hz Crystal Filter for Drake R-4C

Cuts DRM. Ideal for DX and Contest Work. Does what no audio filter can do yet works well with an audio filter to improve receiver performance. A must for DX operators who want the best. 125 Hz at 0.5 db, 325 Hz at 0.6 db. 8 poles.

CF-125/8 $125.00

PRE-AMP

HIGH GAIN • LOW NOISE
35db power gain, 2.5-3.0 dB N.F. at 150 MHz 2 stage, R.F. protected, dual gate MOSFETS. Manual gain control and provision for AGC. 43/4" x 13/8" x 13/8" aluminum case with power switch and choice of BNC or RCA phono connectors (be sure to specify). Available factory tuned to the frequency of your choice from 5 MHz to 250 MHz with approximately 3% bandwidth. Up to 10% B.W. available on special order.

Model 201 price: 5-250 MHz $29.95

Vanguard Labs

196-23 Jamaica Ave.
Hollis, N. Y. 11423

TELEPHONE EQUIPMENT COMPANY
Post office Box 296, Lunden, Florida 32748
(904) 728-2730

COLLINS & MORE

Collins 51S1 Receiver $1295.00
Collins 30S1 Linear Amp $1400.00
Collins 75S3B, Exc. cond. $925.00
Collins 312B4, Exc. cond. $245.00
Collins KWM-2 transcrv. V.G. $850.00
Collins CP-1, crystal Pack $250.00
Collins 399C-1 VFO console $265.00
Drake R4A Receiver $325.00
Drake T4X Fac. update 2/76 $350.00
Heath SB503 ham receiver, mint $365.00
Heath SB401 Ham trans. mint $165.00

We stock good used equipment from Collins, Drake, Heath and other manufacturers. Hundreds of test items also available. Call for specific requirements, or write for free catalog.

DAMES COMMUNICATION SYSTEMS
201-998-4256
10 Schuyler Avenue
North Arlington, N. J. 07032

More Details? CHECK-OFF Page 126
Genave' amateur radio tomorrow... today!

GTX-200T
(incl. 146.94 MHz)
$249.95
Engineered and designed for the quality conscious 2-meter enthusiast

Genave's GTX-200T offers the FM operator up to 100 channel combinations incorporating 10.7 MHz first IF and 455 MHz second IF for outstanding sensitivity, minimizing effects of adjacent channel interference.

ADDITIONAL FEATURES INCLUDE:
- 30 watts output power, num. 25 watts min.
- @ 14 VDC input
- Separate controls for independent transmit and receive frequency selection
- Switch for lock-in of pre-selected frequency pairs allows one-knob operation
- Supersensitive dual-gate MOSFET in receiver head end.
- Blacklighted for night operation
- Factory-installed, front panel mount 12 digit tone encoder.

GTX-200
2-meter FM, 100 channel combinations, 30 watts (incl. 146.94 MHz)
$199.95

GTX-I
Hand-Held 2-meter FM, 5-channel, 3.5 watts hand-held
$249.95

GTX-IT
Hand-Held 2-meter FM, 6-channel, 3.5 watts hand-held
$299.95

ACCESSORIES FOR GTX-1 and GTX-1T
- $29.95
- $29.95
- $199.95
- $249.95
- $249.95
- $299.95
- $299.95
- $99.95
- $99.95
- $129.95
- $49.95

ACCESSORIES FOR GTX-1 and GTX-1T
- $29.95
- $39.95
- $129.95
- $49.95

CHECK THESE FEATURES:
- All metal case
- American made
- Accepts standard plug-in crystals
- Features 10.7 MHz crystal filter
- Trimmer caps on TX and RX crystals
- 3.5 watts output
- Battery holder accepts AA regular, alkaline or nicad cells
- Mini hand-held measures 8" high x 2.25" wide x 1.281" deep
- Rubber ducky antenna
- Wrist safety-carrying-sirap included
- 6 channels
- Factory-direct to you!

TONE ENCODER PAD
Plug-in installation on most amateur transceivers.

$29.95
$59.95

HURRY! USE THIS HANDY ORDER FORM OR CALL COLLECT TODAY!
(317) 546-7959

4141 Kingman Dr., Indianapolis, IN 46226
Phone-in orders accepted (317+546-1111)

NAME: ____________________________
ADDRESS: ________________________
CITY: ____________________________
STATE & ZIP: ______________________
AMATEUR CALL: __________________

PAYMENT BY:
□ Certified Check / Money Order □ Personal Check
□ Charge Balance To: ____________________________
□ BankAmericard # ________________________
□ Master Charge # ________________________
□ Interbank # ________________________
□ Expire: ________________________
□ IN residents add 4% sales tax: ________________________

Add $4 per Radio for Shipping, Handling, and Crystal Netting.
100'S OF BARRELS PURCHASED!

For the first time anywhere, Poly Pak merchants introduces a new way to select and buy an amplifier, receiver or other audio component. No guesswork or stock from the "barrel". Remember the days when you shopped around for months before making your final choice? The same way merchants treated you? Not Poly Pak. Bars from various factories ... their over stock. They've done the same. Now you're getting the best of the test at the lowest price. Poly Pak's testers do it. Their own testers do it. Polyester, nylon, metal, plastic, they test every part. Then they do it Again. Poly Pak's NSAV.

Buy 10 BARREL KITS 11TH Free

Order by Cat. No. A135181 & Type No.

100% EXCLUSIVE

You Might Be Surprised How Much You Can Save

100% MATERIAL INCLUDED

Includes 100% material too!!!

Every kit carries a money back guarantee.

100% OF BARRELS PURCHASED!

For the first time anywhere, Poly Pak merchants introduces a new way to select and buy an amplifier, receiver or other audio component. No guesswork or stock from the "barrel". Remember the days when you shopped around for months before making your final choice? The same way merchants treated you? Not Poly Pak. Bars from various factories ... their over stock. They've done the same. Now you're getting the best of the test at the lowest price. Poly Pak's testers do it. Their own testers do it. Polyester, nylon, metal, plastic, they test every part. Then they do it Again. Poly Pak's NSAV.
flea market

RATES Non-commercial ads 10¢ per word; commercial ads 40¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receivng grants from Flea Market (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all caps) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to correctness ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

HAM RADIO HORIZONS, a super magazine for the Beginner, the Novice and anyone interested in Amateur Radio. . . . It's all about. How to get started, The fun of ham radio. . . . What it's all about. How to get started, The fun of ham radio. It's all here and just $10.00 per year. T.S. Marlinch Electronics, 102 Bell St., Weirton, W. Va. 26062.

FREE CATALOG: Solar Cells, Ni-cads, Kits, Calculators, Digital Thermometers, Ultrasounds, Strobes, LEDs, Transistors, IC’s, Speakers, Unique Components. Channel’s, Box 27039, Denver, Colo. 80227.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

KLM ECHO II 2 meter SSB transceiver. 5 watts, crystalized for 144 to 144.3 MHz and 145 to 145.33 MHz. Have two units at $245.00 each. Stan Wigh, 1120 11th St., Port Angeles, WA 98203.

FREE CATALOG: Electronic Specialties, 1859 Wetmore, Tucson, AZ 85705.

MOTOROLA HT220, HT200, and Pageboy service and modifications performed at reasonable rates. WA4FRV (804) 520-5220 evenings.

QSL’s, Catalog 30M. RTTY paper and Pageboy

MOBILE BONDING STRAPS under 440 MHz for AN or repeater use. Will accept 150W over 40-50 W. Extensive line of relays, filters, 150-500 mfd. 30 volt. Machined, etc.

NEW Imported vertical pots (1/4, 1/2, W, 1000, 2500, 5000, 50K ohms. Slot adj. Also 5000 and 5K resistors. $1.20 per box.

NEW SIZES - VERTICAL MOUNT PC BOARD POTENTIOMETERS American made, CQ-93-QST. 2000, 100K, 300K ohms. $1.25 per box. CTS Blue wheel. Values: 750, 1K, 1.5K, 5K, 50K, 100K ohms or $1.25 per box.

CARBON TRIMMERS Miniature 1/4 watt units. PC type. Values: 200, 700, 1000, 1.5K, 5K, 10K, 20K, 50K, 100K. $30 ea. or $5/1.35 ppd.

NEW Mini Imported vertical pots (1/4, 1/2, 1/2W, 1000, 2500, 5000, 50K ohms. Slot adj. Also 5000 and 5K resistors. $1.20 per box.

SEMI-TECH BRIDGES Plastic mini meter hole mtg. 100. Tested — $1.50 ea. $1.75 25 ea. $27.50 50 ea. 500 V P.V. $1.95 ea. ppd. 600 V P.V. $2.15 ea. ppd.

CUTaway Bridge 2.3 x 0.75 x 0.50. 45 x 19 x 14. $23.50 ea. $21.50 6 ea.

SEMPOT BARGAIN LIST PENNSYLVANIA RESIDENTS - ADD 6% TAX. Canadian orders for less than $5.00 add $1.00 to cover additional mailing costs. UPS requires your street address.

More Details? CHECK — OFF Page 126
New! Broadband antenna matching.

For all verticals and mobile whip antennas.

Smaller size and higher efficiency. Only 3½" diameter for 5-Kw PEP capability.

Here is the answer to the matching problem for vertical antennas and mobile whips. A broadband transformer that matches your 50 ohm transmitter to 32, 28, 22, 18, 12, 8, or 5 ohms. Plenty of db loss. Also, more power goes to your completely broadband 1-30 MHz adjustment. The RF Transformer is a solving problem for vertical antennas.

Here is the answer to the matching network or tuner-less than 0.1 db loss. Tune the antenna to resonance; (1-10 MHz on three lowest taps).

Order direct. $42.50 postpaid U.S. with the new 12 sets crystals, scanner and preamp $800. Hal ST-6

$275.00.

Two adapters and other accessories included. NEW LOW PRICE $15.00.

REPAIRS.

DISC-CAP, 19075 BREAORE RD. NORTHURIG. CA 93126 213-360-3387

J. J. GLASS ELECTRONICS CO.

1624 South Main Street Los Angeles, CA 90015 213-749-1179 213-749-1170

TOUCH PADS, 12 button brand new — automatic electric house in a heavy gauge brushed stainless steel case. Can be used for repeater telephone computer security systems or etc. Schematic in- cluded. NEW LOW PRICE $15.00.

NEW 19" CABINET RACKS, white — 30"h x 15"d x 22"w, weight: 47 lbs. (due to size truck freight necessary) $34.95.

FACSIMILE UNIT Transmitter and receiver. 12" x 12" x 6". Used in many offices, sends 2-way message complete with 60 cy. power supply, with conversion sheets. All for $14.95 ea.

FAX PAPER 350 ft. roll $12.50.

TRENDELINE TELEPHONE SETS with touch pad in handset. Desk or Wall, less ringer, new only. Desk colors avail: turq., red, yellow. Wall: brown, red, yellow, ivory & blue. $45.00.

ASK ABOUT OUR TEST EQUIPMENT

Terms

Wanted in full or 25% deposit on COD orders. All prices FOB Los Angeles, California warehouse. Minimum order $5.00. 6% tax for California residents.

A new and improved version of the Collins Airborne Series-648. Same outstanding performance. Mechanical filters in IF, Digital Tuning, 1 kHz resolution, 26 VDC. Easily converted to 115VAC, 150-500 kHz, 2.25 MHz.

$365.00.

MIXED VALUES.

DISC CERAMIC CAPACITORS $5.00/LB. PDD. IN U.S.A.

If you don’t like the pound you get — call or write and we’ll send another pound FREE. (And you keep the first pound.)

LTG 275 MHZ VHF

COUNTERMETERS RCVR 30-260 MHz. Two separate front ends. 60-260 MHz front end has 425 db attenuation. FM has calibrated BFO, built-in BBR. Back lighted aircraft type panel. More info on request. $375.00.

SRR-13A RCVR 2.32 MHZ. THIS CRITTER IS IMMACULATE! Looks and smells new with some spares, connectors to make test cables and complete documentation. $425.00.

206 MHz and 2.3 GHz.

SOLID STATE RECEIVING SYSTEM With weather-proof preamp, 37 db NF @ 206 MHz, 6 NF max. @ 2390 MHz, 4.8 dB preamp included in weather-proof housing (8.7 dB NF). All units except preamp delivered str. rack mount. Complete documentation avail. $225.00.

For all verticals and mobile whip antennas. Smaller size and higher capability. For antennas with 12 sets crystals, scanner and preamp. $800. Hal ST-6 $275.00. Two adapters and other accessories included.

Send for free brochure.

Improve your station. Simplify your tuneup. Get better results with the new Palomar Engineers’ RF Transformer.

Order direct. $42.50 postpaid U.S. and Canada. California residents add sales tax.

PALOMAR ENGINEERS

455, ESCONRIDO, CA 92025 Phone: (714) 747-3343

FLEA MARKET

MODERN CODE PRACTICE. 0-2240pm on forty 60 min. cassettes, $10. Royal, P. O. Box 2174, Sandusky, Ohio 44870.

EXCLUSIVELY HAND-TYPE TYPE 23rd year, RTTY Journal, articles, news, DX, VHF, classified ads. Sample 25c, $3.50 per year. Box 837, Royal Oak, Michigan 48066.

SHELL: Collins 753-S $425, 325-S $775, 516FS $1100. Hal ST-6 RTTY Demodulator $200, Regency HR-2B with 12 sets crystals, scanner and preamp $200, WJZL 1096 Mountain Road, Pasadena Maryland 21122 — (301) 437-0171.

FIGHT TV with the RSO Low Pass Filter. For filter write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada M5B 3R4.

RUBBER STAMP, namecall/9TH $2.50 ppd. (CA residents add tax.) WLM Press, Box 2216, San Diego, CA 92112.

TELEPEWTER PARTS, gears, manuals, supplies, tape, toroids. SASE list. Typetronics, Box 8873, Ft. Lauderdale, FL 33310. Buy parts, late machines.

GET ON 160-10 with SST-T. See ad this issue. COD OK by phone (213) 376-5897. SST Electronics, P.O. Box 1, Lawndale, Cali, 90260.

LARSENS ANTENNA (our specialty) 2.432 magnetic, trunk-lip 5/8 $33.00, 5/8 ground plane $45.00. Bank Americard and Mastercharge accepted. 201-962-4655. Narwid Electronics, 61 Bellot Road, Ringwood, NJ 07646.

SIGNALLINE REPAIRS. 505-522-3705.

ORP TRANSWITCH for HW7, Ten-Tec, and others. Send stamp for details to Peter Meacham Associates, 19 Loretta Road, Walhast, Mass. 02154.

OSCILLOSCOPE CAMERA — Tektronics C-27 mint condition — fits any most oscilloscope with proper adapter. Two adapters and other accessories included. $630 value for $550 (203) 447-1762 days — ask for Mike (203)848-8614 after 7 PM and weekends.

MANUALS for most ham gear. 1939/70. List $1.00. Send SASE or 25c for specific model quote. Hobby Industry, WAIJK, Box 864, Council Bluffs, Iowa 51501.

STAINLESS and GALVANIZED STEEL antenna guy wire we specialize. Wilcox Electronics, Box 1331, S. L. Utah 84110.

HELP FOR YOUR NOVICE, general, advanced ticket. Recorded audio-vision theory instruction. Free information. Amateur License Instruction, P. O. Box 6015, Norfolk, Va. 23508.

2-BAY METERS, $3.50 each, for all popular rigs. In stock. Immediate delivery. Send cash or money order. We pay postage. Rollin Distributors, P. O. Box 436, Dunellen, N.J. 08812.

SIX DIGIT
12/24 HOUR
CLOCK KIT
$22.95
MODEL DC-5
The best looking, most complete kit on the market! Features include: Time set pushbuttons, jumbo 4" readouts, Polariod lens filter, line cord transformer, super quality PC boards and durable extruded aluminum base in 5 colors. All parts are included which make this kit the best value anywhere. Super instructions reduce assembly time to only 1/2 hours. Fully guaranteed. Colors available: gold, silver, bronze, blue and black (specify).
MOBILE VERSION, 01% accuracy, 12VDC, DC-7 .. $25.95
ALARM CLOCK, 12 HR only, DC-8 ... $24.95
TIME BASE KIT, use with any 60Hz clock ... $4.95

CALANDER-ALARM-CLOCK
6 digit LED 12/24 Hour
Has every feature one could ever ask for. Includes everything except case, build it into wall, station or even car!
FEATURES:
• 6 Digits, 3" Hi LED
• Calendar shows mo./day
• True 24 Hour Alarm
• Snooze button
• Battery back up with built in on chip time base
Complete Kit, less case, DC-9 $34.95

CHEAP CLOCK
FEATURES:
• 12/24 Hour format
• 6 digits, 4" high LED
• Test buttons
• Instructions
• PC board & transformer
• Board, etched & drilled
Transformer, lug type $1.49
Transformer line cord $1.98

30 WATT 2 Meter Power Amp
The famous RE class C power amp now available mail order! Four Watts in for 30 Watts out, 2 in 15 out, 1 in 8 out. Incredible value complete with all parts, instructions and details on TR relay. Fully stable, output short proof, infinite VSWR protected! Case not included.
Complete Kit .. $22.95

600 MHz PRESCALER
$59.95
600 MHz Prescaler assembled and tested. Extends the range of your counter to 600 MHz. Works with most counters. Available in kit form for $44.95. Specify: X10 or X100 with order.

COMING SOON:
VIDEO TERMINAL KIT
$129.95
Factory prime mini dip with both Xerox and 741 part numbers

741 OP-AMP SPECIAL
10 for $2.00

TTL LINEAR REGULATOR TRANSISTORS
7400 35 555 50 30K $.99 NPN 2N2906 type 10/51.00
745112 75 566 75 30K $.99 PNP 2N2906 type 10/51.00
7447 79 557 1.75 340K-12 $.99 NPN Power Tab 40W 3/51.00
7413 35 1458 65 785 $.99 PNP Power Tab 40W 3/51.00
7425 50 LED DRIVER 7812 $.99 FET MFT-102 type 3/51.00
740A 55 7591 50 7815 $.99 2N3904 type 3/51.00
7418 3.50 75992 50 7818 $.99 2N3905 NPN Power .75

DIODES: 1KV, 2.5A 5/$1.00 100V, 1A 10/$1.00 1N914 type 50/$2.00

LED BEADOUTS: Com. Anode 5" FND 510 $1.25 Com. Cath 4" FND 350 $.75
Polaroid Filter, red 1.125" x 4.25" 5.59 DL-33 3 digit .1" .50

FERRETI BEADS with info & specs .. 15/$1.00
6 hole Balun Beads .. 5/$1.00
SLIDE POT - 10K linear .. 4/$1.00
1000uf 15V FILTER CAP .. 5/$1.00

Sockets
ASSORTMENT OF 12 most used IC sockets. Good to have around the shop. $1.95

SOCKET KIT

SIREN KIT
Produces upward and downward wail characteristic of police siren. 200mw audio output. runs on 3.9 volts, requires 8.45 ohm speaker.
Complete Kit .. $2.95

CODE OSCILLATOR KIT
Powerful 1 watt audio oscillator of approx. 1 kHz. Good for many uses. Great for warning alarm, battery charger, voltage indicator and code oscillator.
Complete Kit .. $2.50

POWER SUPPLY KIT
Complete triple regulated power supply provides variable ±15 volts at 200ma and ±5 volts at 1 amp. 50w load regulation good filtering and small size. Kit less transformers, requires 6-8v at 1 amp and 18 to 30vdc.
Complete Kit, PS-3LT .. $6.95

DECADE COUNTER PARTS KIT
Includes: 740A OA 33 MHz counter, 7475 latch, 7447 LED driver, LED readout, current monitor, 50ohm load, good filtering and small size. Kit less transformers, requires 6-8v at 1 amp and 18 to 30vdc.
Kit of Parts, DCF-1 .. $3.50

MINI-KITS
FM WIRELESS MIKE KIT
FM-1 $2.95
Transmit up to 300' to any FM radio. Sensitive mike input requires dynamic, crystal or ceramic mike. Runs on 3.9 volts.

TONEDECODER KIT
A complete tone decoder on a single PC Board. Features: 400 to 5000 Hz adjustable frequency range, voltage regulator, 567 IC. Useful for test tone decoding, tone burst detection, FSK demodulation, FM receiving, and many other uses. Use for 12 button touchtone decoding. Runs on 5 to 12 volts.
Complete Kit, TD-1 .. $4.95

LED BLINK KIT
A great attention getter which alternately flashes 2 jumbo LEDs. Use for name badges, buttons or warning type panel lights.
Complete Kit, BL-1 .. $2.95

SUPER-SNOOP AMPLIFIER
A super-sensitive amplifier which will pick up a pin drop at 15 feet! Great for monitoring baby's room or as a general purpose test amplifier. With 2 watts of output, runs on 6 to 12 volts, uses any type of mike. Requires 45 ohm speaker.
Complete Kit, BN-9 .. $4.95

MUSIC LIGHTS KIT
See music come alive! 3 different lights flicker with music or voice. One light for lows, one for the mid-range and one for the highs. Each channel individually adjustable, and drives up to 300 watts. Great for parties, band music, night clubs and more.
Complete Kit, ML-1 .. $7.95

Radio detail? CHECK OFF Page 126

Electronic Parts
TTL LINEAR REGULATOR TRANSISTORS
7400 35 555 50 30K $.99 NPN 2N2906 type 10/51.00
745112 75 566 75 30K $.99 PNP 2N2906 type 10/51.00
7447 79 557 1.75 340K-12 $.99 NPN Power Tab 40W 3/51.00
7413 35 1458 65 785 $.99 PNP Power Tab 40W 3/51.00
7425 50 LED DRIVER 7812 $.99 FET MFT-102 type 3/51.00
740A 55 7591 50 7815 $.99 2N3904 type 3/51.00
7418 3.50 75992 50 7818 $.99 2N3905 NPN Power .75

DIODES: 1KV, 2.5A 5/$1.00 100V, 1A 10/$1.00 1N914 type 50/$2.00

LED BEADOUTS: Com. Anode 5" FND 510 $1.25 Com. Cath 4" FND 350 $.75
Polaroid Filter, red 1.125" x 4.25" 5.59 DL-33 3 digit .1" .50

FERRETI BEADS with info & specs .. 15/$1.00
6 hole Balun Beads .. 5/$1.00
SLIDE POT - 10K linear .. 4/$1.00
1000uf 15V FILTER CAP .. 5/$1.00

Complete Kit, less case, DC-9 $34.95

SIREN KIT
Produces upward and downward wail characteristic of police siren. 200mw audio output, runs on 3.9 volts, uses 45 ohm speaker.
Complete Kit, SM-3 .. $2.95

CODE OSCILLATOR KIT
Powerful 1 watt audio oscillator of approx. 1 kHz. Good for many uses. Great for warning alarm, battery charger, voltage indicator and code oscillator.
Complete Kit, CPO-1 .. $2.50

POWER SUPPLY KIT
Complete triple regulated power supply provides variable ±15 volts at 200ma and ±5 volts at 1 amp. 50w load regulation good filtering and small size. Kit less transformers, requires 6-8v at 1 amp and 18 to 30vdc.
Complete Kit, PS-3LT .. $6.95

DECADE COUNTER PARTS KIT
Includes: 740A OA 33 MHz counter, 7475 latch, 7447 LED driver, LED readout, current monitor, 50ohm load, good filtering and small size. Kit less transformers, requires 6-8v at 1 amp and 18 to 30vdc.
Kit of Parts, DCF-1 .. $3.50

Ramsay Electronics
P. O. BOX 4072 ROCHESTER, N. Y. 14610
(716) 271-6487

More Details? CHECK OFF Page 126

April 1977 103
NEW IC KEYER

The World's Greatest Sending Device

Adjustable to Any Desired Speed

Now available from Palomar Engineers - the new Electronic IC KEYER. Highly prized by professional operators because it is EASIER, QUICKER, and MORE ACCURATE.

It transmits with amazing ease CLEAR, CLEAN-CUT signals at any desired speed. Saves the arm. Prevents cramp, and enables anyone to send with the skill of an expert.

SPECIAL RADIO MODEL

Equipped with large specially constructed contact points. Keys any amateur transmitter with ease. Sends Manual, Semi-Automatic, Full Automatic, Dot Memory, Squeeze, and tamba - MORE FEATURES than any other keyer. Has built-in sidetone, speaker, speed and volume controls. BATTERY OPERATED, heavy shielded die-cast metal case. FULLY ADJUSTABLE contact spacing and paddle tension. The perfect paddle touch will AMAZE you.

Every amateur and licensed operator should know how to send with the IC KEYER. EASY TO LEARN,Send anywhere on receipt of price. Free brochure sent on request.

Send check or money order. IC KEYER $97.50 postpaid in U.S. and Canada. IC KEYER LESS PADDLE and non-skid base $67.50. Add 6% sales tax in California.

Italy write i2VTT, P.O. Box 37, 22063 Cantu.

Fully guaranteed by the world's oldest manufacturer of electronic keys. ORDER YOURS NOW!

flea market

OSCAR: 432. 144 MHz transmitters; year guarantee, models (MFM144-2B, MFM144-2BP, DTM144-2B, DTM144-2BP) $44 for 4 so, send SASE to John Walker, WB8BGY, 1930 Merith, Dr, Loveland, CO 80540.

COLLINS KWM-2 (serial 138655) with 516FS power supply, speaker $700, 7550 with 200 cycle filter (serial #436) $430, Drake T22C4A $315, all excellent manuals, F.O.B. K5SM, 227 Fourth St, East, Sonoma, CA 95476.

ICS, TRANSISTORS, CAPACITORS, RADIOS. Catalog 25c. SASE gets catalog. For some checker game 2, 3 or 4 can play. Instructions, Board, Checkers included $6.00. John Rogers, 1927 Barry, Chicago, III 60657.

STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. We are factory-authorized dealers for Kenwood, Drake, Collins, ICOM, Ten-Tec, Atlas, Tempo, Regency, Swan, Midland, Alpha, Standard, Denton, Hy Gain, Mosley, Cushcraft, and CDE, plus accessories. For the best deal around on HF or VHF gear, write or call us today for our low quote price and become one of our many happy and satisfied customers of HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802 (812)239-1456.

TECH MANUALS for Govt. surplus gear - $5.00 each: 11-1000, URM-250, OS-150, PRG-1, 19, 10. Thousands more available. Send 50c (coin) for 22-page list. W3IDH, 7218 Roanme Drive, Washington, DC 20021.

Coming Events

WBSL 12th Los Angeles Amateur Radio Convention, Saturday and Sunday, May 21 & 22, 2814 Empire Ave., Burbank, CA 91605.

FIRST ANNUAL UNIVERSITY OF PITTSBURGH HAMFEST, March 26, 1977, 10 AM to 6 PM at Pitt Student Union on 5th Avenue at Blvd. For more information contact W3YL, Pittsburgh Amateur Radio Association, Box 304, Schenley Hall, University of Pittsburgh, Pittsburgh, PA 15260 or phone 412-424-7768.

THE ROCK RIVER RADIO CLUB HAMFEST is April 24, 1977, at Amboy, Illinois, Lee County at the 4H Center, Routes 30 and 52. Same place as last year. Tickets $1.00 advance. 2.00 at gate. Parking available at nominal fee. Write Carl Karlson, W9EFC, Natchua, Illinois 61057. Indoor and outdoor facilities.

KANSAS CITY: Eighth Annual Northwest Missouri Hamfest. April 22-23, 1977 at Exhibit Hall 2, Municipal Airport. Forums, swap tables, commercial exhibits, contests, YL-YL program, free parking. Banquet Saturday evening at 6.00pm. No guest fee. For further information contact or to reserve a space, June W1NYD, 829 E. 46 St, Kansas City, MO 64110.

VHF—UHF ENTHUSIASTS. 22nd annual West Coast VHF Conference at the Miramar Hotel on the beach in Santa Barbara, CA, May 13-15, 1977. Technical and operating oriented sessions for beginners and advanced VHFErs, plus the traditional receiver noise figure and antenna gain measurements. Registration at 6 PM Friday, May 13. Full day of activities, 10 AM Saturday. Lunch Saturday, Pau Schuch (WASUAM) will coordinate noise figure measurements, and a VHF Contest Forum will be led by Wayne Overbeck (KEYRA). Pre-registration $2 until April 30, $3 after. Registration forms, hotel info and details from Dr. Overbeck, Communication Division, Pepperdine University, Malibu, CA 90265.

28TH DAYTON HAMVENTION at Hara Arena April 29, 30, May 1, 1977. Technical forums, exhibits, and huge flea market. Program brochures mailed March 7th, to those registered within past three years. For accommodations or advance flyer, write Hamvention, P.O. Box 44, Dayton, Ohio 45401.

ANNOUNCING The first "International" PAN-AMERICAN HamExposition Jamboree, October 29-30, 1977. Write in for regular show mailings. For further information: Brownie Amateur Radio Club, Capt. S.F. Redd" Criss (Show Chairman), W42ZR, 3701 State Road 84, Ft. Lauderdale, FL 33312.

ALDECO SEMI-CONDUCTOR SUPERMARKET

RF DEVICES

2N3973 3W 400 MHz... $5.90 2N5080 8W 175 MHz... $5.40

2N3975 4W 400 MHz... $5.40 2N5080 15W 175 MHz... $6.55

2N3975 4W 250 MHz... $4.75 2N5080 20W 350 MHz... $12.30

2N3975 4W 350 MHz... $7.50 2N5080 40W 400 MHz... $16.20

HEAVY DUTY RECTIFIERS

200 volt 150 Amp 609... $8.50

200 volt 250 Amp 609... $15.70

100 volt 2 Amp Silicon Rectifier RCA... $10 for 99

200 volt 50 Amp 609... $4.50

ALDECO KITS

Digital Clock Kit. Harris, Model 58 and 590, Large Half Inch LED readouts. Etched time indicator. 12 hour format with 24 hour alarm. Service feature, AM indicator, Power Supply, power failure indicator. Complete with wood cabinet. $23.95

NOW OPEN - ALDECO COMPUTER CENTER - books, magazines, kit, backup and 216-4955

ADDECO

2281H Babylon Trpk., Merrick, NY 11566 (516) 378-4555

EQUIPMENT SPECIAL

Hewlett-Packard 738A-739AR-2005SR Voltmeter Calibrator Set

$395

F0B Monroe

Used for direct, accurate, calibration of voltmeters. DC RF (to 10MHz), scopes, etc. In rack cabinet with manuals.

INCLUDES:

738AR Provides DC and 400Hz AC at levels from 300uV to 300V in steps of 0.3, 0.5, 1, 2, 3, and 3 with multipliers of 0, 1, 2, 3, 5. AC Output 100mV to 10V HF output 10uV to 100V. 28 stop measurement to check meter tracking.

739AR Companion unit providing 300kHz to 10MHz signals for RF meter checking. ACC. 0.05 per Cent.

2005SR Auxiliary generator used as ext. source with 739AR to extend range from 600kHz down to 5Hz. Max. dist. 0.2%.

TEST EQUIPMENT

Tektronix, Measurements. HP, Fluke, etc. used but good working condition. Money back guarantee. Send for catalog.

GRAY Electronics

P.O. Box 941, Monroe, Mich. 48161

More Details? CHECK — OFF Page 126

104 April 1977
<table>
<thead>
<tr>
<th>DIODES/ZENERS</th>
<th>SOCKETS/BRIDGES</th>
<th>TRANSISTORS, LEDS, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914 100v 10mA</td>
<td>8-pin pcb .25</td>
<td>2N2222 NPN .10</td>
</tr>
<tr>
<td>1N904 400v 1A</td>
<td>14-pin pcb .25</td>
<td>2N2907 PNP .15</td>
</tr>
<tr>
<td>1N906 600v 1A</td>
<td>16-pin pcb .25</td>
<td>2N3740 PNP 60v .25</td>
</tr>
<tr>
<td>1N907 1000v 1A</td>
<td>18-pin pcb .25</td>
<td>2N3906 PNP .10</td>
</tr>
<tr>
<td>1N4148 75v 10mA</td>
<td>22-pin pcb .45</td>
<td>2N3055 NPN 60v .50</td>
</tr>
<tr>
<td>1N753A 6.2v z</td>
<td>24-pin pcb .35</td>
<td>TIP125 PNP Darlington .35</td>
</tr>
<tr>
<td>1N755A 10v z</td>
<td>26-pin pcb .35</td>
<td>LED Green, Red, Clear .15</td>
</tr>
<tr>
<td>1N756A 12v z</td>
<td>40-pin pcb .50</td>
<td>D.L.747 7 seg 5/8" high com-anode 1.95</td>
</tr>
<tr>
<td>1N4743 5.1v z</td>
<td>Molex pins .01</td>
<td>XAN72 7 seg com-anode 1.50</td>
</tr>
<tr>
<td>1N5243 13v z</td>
<td>To-3 Sockets 25</td>
<td>FND359 Red 7 seg com-cathode 1.25</td>
</tr>
<tr>
<td>1N5244B 15v z</td>
<td>2 Amp Bridge 100-ppv 1.20</td>
<td></td>
</tr>
<tr>
<td>1N5254B</td>
<td>25 Amp Bridge 200-ppv 2.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C MOS</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 .20</td>
<td>7400 .15</td>
</tr>
<tr>
<td>4001 .20</td>
<td>7401 .15</td>
</tr>
<tr>
<td>4002 .25</td>
<td>7402 .20</td>
</tr>
<tr>
<td>4004 4.95</td>
<td>7403 .25</td>
</tr>
<tr>
<td>4006 1.20</td>
<td>7404 .15</td>
</tr>
<tr>
<td>4007 .40</td>
<td>7405 .25</td>
</tr>
<tr>
<td>4008 1.20</td>
<td>7406 .35</td>
</tr>
<tr>
<td>4009 25</td>
<td>7407 .55</td>
</tr>
<tr>
<td>4010 .45</td>
<td>7408 .25</td>
</tr>
<tr>
<td>4011 20</td>
<td>7409 .15</td>
</tr>
<tr>
<td>4012 .25</td>
<td>7410 .25</td>
</tr>
<tr>
<td>4013 .60</td>
<td>7411 .25</td>
</tr>
<tr>
<td>4014 .10</td>
<td>7412 .30</td>
</tr>
<tr>
<td>4015 .95</td>
<td>7413 .65</td>
</tr>
<tr>
<td>4016 .95</td>
<td>7414 1.10</td>
</tr>
<tr>
<td>4017 .10</td>
<td>7416 .25</td>
</tr>
<tr>
<td>4018 1.0</td>
<td>7417 .50</td>
</tr>
<tr>
<td>4019 .70</td>
<td>7420 .15</td>
</tr>
<tr>
<td>4020 .85</td>
<td>7426 .40</td>
</tr>
<tr>
<td>4021 1.35</td>
<td>7427 .45</td>
</tr>
<tr>
<td>4022 5.15</td>
<td>7430 .15</td>
</tr>
<tr>
<td>4023 0.25</td>
<td>7432 .45</td>
</tr>
<tr>
<td>4024 .75</td>
<td>7437 .45</td>
</tr>
<tr>
<td>4025 1.95</td>
<td>7438 .35</td>
</tr>
<tr>
<td>4026 0.50</td>
<td>7441 .50</td>
</tr>
<tr>
<td>4027 5.00</td>
<td>7442 .65</td>
</tr>
<tr>
<td>4028 .95</td>
<td>7443 .95</td>
</tr>
<tr>
<td>4030 0.45</td>
<td>7444 .55</td>
</tr>
<tr>
<td>4033 .95</td>
<td>7449 .95</td>
</tr>
<tr>
<td>4034 2.45</td>
<td>7455 .95</td>
</tr>
<tr>
<td>4035 1.25</td>
<td>7456 .15</td>
</tr>
<tr>
<td>4040 1.35</td>
<td>7457 .35</td>
</tr>
<tr>
<td>4041 .69</td>
<td>7461 .20</td>
</tr>
<tr>
<td>4042 .96</td>
<td>7450 .25</td>
</tr>
<tr>
<td>4043 1.25</td>
<td>7451 .25</td>
</tr>
<tr>
<td>4044 .95</td>
<td>7452 .25</td>
</tr>
<tr>
<td>4046 1.50</td>
<td>7453 .25</td>
</tr>
<tr>
<td>4049 .80</td>
<td>7454 .25</td>
</tr>
<tr>
<td>4050 .70</td>
<td>7460 .40</td>
</tr>
<tr>
<td>4066 1.35</td>
<td>7470 .40</td>
</tr>
<tr>
<td>4069 .40</td>
<td>7473 .35</td>
</tr>
<tr>
<td>4071 .35</td>
<td>7474 .40</td>
</tr>
<tr>
<td>C MOS</td>
<td>TTL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTEGRATED CIRCUITS UNLIMITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>7889 Clairemont Mesa Blvd. • San Diego, CA 92111 • (714) 278-4394</td>
</tr>
<tr>
<td>All orders shipped prepaid No minimum COD orders accepted</td>
</tr>
<tr>
<td>Discounts available at OEM Quantities California Residents add 6% Sales Tax</td>
</tr>
<tr>
<td>24 Hour Phone (714) 278-4394 MasterCharge / BankAmericard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINEARS, REGULATORS, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCT2 .95</td>
</tr>
<tr>
<td>8038 3.95</td>
</tr>
<tr>
<td>LM201AH .75</td>
</tr>
<tr>
<td>LM301AH .25</td>
</tr>
<tr>
<td>LM308AH 1.00</td>
</tr>
<tr>
<td>LM309H .65</td>
</tr>
<tr>
<td>LM309K .90</td>
</tr>
<tr>
<td>LM310 0.45</td>
</tr>
<tr>
<td>LM311D (Mini) .95</td>
</tr>
<tr>
<td>LM340T-24 1.25</td>
</tr>
<tr>
<td>LM340K-12 2.15</td>
</tr>
<tr>
<td>LM340K-15 1.65</td>
</tr>
<tr>
<td>LM340K-18 1.65</td>
</tr>
<tr>
<td>LM340K-24 1.25</td>
</tr>
<tr>
<td>LM373 2.95</td>
</tr>
<tr>
<td>LM380 1.95</td>
</tr>
<tr>
<td>LM709 (8, 14 Pin) .30</td>
</tr>
<tr>
<td>LM711 .45</td>
</tr>
<tr>
<td>LM723 .45</td>
</tr>
<tr>
<td>LM725 1.95</td>
</tr>
<tr>
<td>LM739 1.50</td>
</tr>
<tr>
<td>LM741 B-14 .25</td>
</tr>
<tr>
<td>LM747 1.10</td>
</tr>
<tr>
<td>LM1107 1.25</td>
</tr>
<tr>
<td>LM1458 .95</td>
</tr>
<tr>
<td>LM3900 .65</td>
</tr>
<tr>
<td>LM75451 .65</td>
</tr>
<tr>
<td>NE555 .50</td>
</tr>
<tr>
<td>NE556 1.10</td>
</tr>
<tr>
<td>NE655 .95</td>
</tr>
<tr>
<td>LM666 1.75</td>
</tr>
<tr>
<td>LM667 1.35</td>
</tr>
<tr>
<td>SN72720 .35</td>
</tr>
<tr>
<td>SN72820 .35</td>
</tr>
</tbody>
</table>
TOROID CORES

All the popular sizes and mixes.
Fast Service. Same day shipment via first class mail or air.
No minimum order.

IRON POWDER TOROIDS:

<table>
<thead>
<tr>
<th>CORE SIZE</th>
<th>MIX 2 12.5 MHz</th>
<th>MIX 6 18.0 MHz</th>
<th>MIX 12 24.0 MHz</th>
<th>SIZE CODE</th>
<th>PRICE USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-200</td>
<td>120</td>
<td>2.00</td>
<td>2.35</td>
<td>2.50</td>
<td>3.25</td>
</tr>
<tr>
<td>T-106</td>
<td>135</td>
<td>1.06</td>
<td>1.50</td>
<td>2.50</td>
<td>3.25</td>
</tr>
<tr>
<td>T-80</td>
<td>55</td>
<td>1.06</td>
<td>0.80</td>
<td>1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>T-68</td>
<td>57</td>
<td>0.80</td>
<td>0.80</td>
<td>1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>T-50</td>
<td>48</td>
<td>0.80</td>
<td>0.80</td>
<td>1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>T-25</td>
<td>34</td>
<td>0.80</td>
<td>0.80</td>
<td>1.50</td>
<td>3.25</td>
</tr>
</tbody>
</table>

RF FERRITE TOROIDS:

<table>
<thead>
<tr>
<th>CORE SIZE</th>
<th>MIX 0.1 600 MHZ</th>
<th>MIX 0.2 1800 MHZ</th>
<th>MIX 0.3 1.8 MHz</th>
<th>MIX 0.4 3.0 MHz</th>
<th>SIZE CODE</th>
<th>PRICE USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-240</td>
<td>1300</td>
<td>1.30</td>
<td>0.60</td>
<td>0.60</td>
<td>3.50</td>
<td>4.00</td>
</tr>
<tr>
<td>F-125</td>
<td>900</td>
<td>0.90</td>
<td>1.30</td>
<td>1.30</td>
<td>3.50</td>
<td>4.00</td>
</tr>
<tr>
<td>F-87</td>
<td>660</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>2.50</td>
<td>3.25</td>
</tr>
<tr>
<td>F-50</td>
<td>500</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>F-27</td>
<td>400</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>1.50</td>
<td>3.25</td>
</tr>
<tr>
<td>F-23</td>
<td>190</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

Chart shows uH per 100 turns.

FERRITE BEADS:

4x

$2.00 DOZEN WIDE BAND CHOKES

95¢ EACH

TO ORDER: Specify both core size and mix for toroids. Packing and shipping 50 cents per order USA and Canada. Californians add 6% sales tax.

Fast service. Free brochure and winding chart on request.

PALOMAR ENGINEERS

BOX 455, ESCONDIDO, CA 92025
Phone: (714) 747-3343

flea market

STARVED ROCK RADIO CLUB HAMFEST — June 5. S.A.S.E. alter 4/11/77 for details. SRRWQMKS, RFD #1, Oglesby, Ill. 61348

RADIO EXPO, CHICAGO. September 17, 18, at Lake County Illinois Fairgrounds. Manufacturers' exhibits, flea market, seminars, and door prizes. For information contact Earl Elrod, 640 West Las Cruces Ave., Las Cruces, New Mexico 88001

NEW JERSEY Delaware Valley Radio Association (W2Z-GWBRD). Flea market and auction will be held on Sunday, May 1, 1977, 9 A.M. rain or shine at the Villa Victoria Academy in West Trenton, N. J. (The school is located adjacent to Rt. 29 near the junction of Rt. 29 and 146.) Talk-in on 0767 and 146.52. Refreshments are available. Advance registration $1.00 or $1.50 at the gate. For additional information or ticket information contact DVRA, P. O. Box 704, West Trenton, N. J. 08628, S.A.S.E. please.

HAMFEST! Indiana's friendliest and largest hamfest. Wabash County Amateur Radio Club's 9th annual hamfest will be held Sunday, May 22, 1977, rain or shine, at the Wabash County 4-H fairgrounds in Wabash, Indiana. Large flea market (no table or set-up charge), technical forums, bingo for the xyl, plenty of free parking, lots of good food at reasonable prices. Only one ticket to buy this day. Admission is $2.25 for advance tickets, $2.50 at the gate. Children under 12 years old are admitted free. For more information or advanced tickets, write Bob Miller, 663 Spring Street, Wabash, Indiana 46992.

MOULTON AMATEUR RADIO CLUB. 16th Annual Hamfest. Last Sunday of May at Wyman Park, Sullivan. III. Heated indoor area and large outdoor parking area. No charge to vendors. For information write Mark Radio Club, PO Box 327 Mattoon, Ill. 61958. Talk-in 146.94.

KENTUCKY HAM-O-RAMA — Sunday, May 29 (Memorial Day Weekend) at Boone County Fairgrounds, Burlington, Kentucky. 10 minutes south of Cincinnati, 2 miles west of 1-75 South, Burlington exit. Prizes, refreshments, exhibits, flea market. NKARC, Box 31, Ft. Mitchell, Kentucky 41017.

F.M. 8"AT'S-H", DAYTON, OHIO, April 29, 1977, on the Friday night of the DAYTON HAMVENTION. This is a social evening for all hams and their friends from BPA to midnight at the Dayton Bimble Towers, First and Main Street. Admission is free. Sandwiches, beverages, snacks and C.O.D. bar will be available. Live entertainment by TV personality Rob Reider (WASGFF) and his group. 11PM prize drawing featuring ICOM IC-245 and other prizes. See you where the action is!

POTOMAC AREA HF V.SOCIETY sixth annual hamfest Saturday, May 7, 1977, from 8 a.m. to 5 p.m. at Frying Pan Park on West Ox Road in Herndon, Virginia. Approximately 15 miles west of Washington. D. C. Registration of $1 includes flea market or tail gate sale. Friendly people and beverage catering. Unlimited parking. Talk-in on 146.52 and 31.91. Repeat. For information contact K3OUA or WA3NLZ.

THE MESILLA VALLEY RADIO CLUB sponsors Whitey's Bean Feed and Swap-Fest Sunday, April 24th, at 10:00a.m. Located near Las Cruces, New Mexico at La Mafa with talk-ins on 176-0, 04-64 and 3940 KC. Fun all the family with big prizes, plenty of food and the usual beverage truck. All included for $5.00 for adults or $1.75 for kids. Eat, drink and win a prize with Whitey! K5ECO as host. Free overnight parking at grounds so come on for a spell. All correspondence should be made with Thomas B. Rapkoch Jr., 640 W. Las Cruces Ave., Las Cruces, New Mexico 88001.

THE CENTRAL MASS. AMATEUR RADIO ASSOC. auction and flea market April 15, 1977 at American Legion Post 341, 144 Main Street, Worcester. Mass. Talk-in on 37/97. Doors open at 6 PM. Auction starts 7 PM sharp. Flea market table (items $5 and under) rent will be $5. Items $10 and auctioned with 15% commission. Area set aside for direct buyer-seller barter for items $100 and up again with 15% commission to CMARA.

SWAPFEST Sunday May 1, 1977, sponsored by the Brownfield Amateur Radio Club, Brownfield, Texas. Info from Earl Elrod, Box 821, Brownfield, Texas 79316.

VACATIONLAND HAMFEST at the Erie County Fairgrounds, Sandusky, Ohio, May 22, 1977. Plenty of flea market tables available ($4 each), $1 for flea market (all items for sale), $5 for table. Talk-in 52/52. More info from Erie Amateur Radio Society, P. O. Box 2037, Sandusky, Ohio 44870. Free transportation to Cedar Point during Hamfest.

NOW . . .

EEB GOES MAIL ORDER AT SPECIAL PRICES

Distributor for Bird 43 (and elements)

Model 1471
B&K D'yeascope
 scopes & test equipment

Model 1472B 10 MHz 5" dual trace
Model 1472C 15 MHz 5" dual trace
Model 1472D 20 MHz 5" dual trace
Model 1474 30 MHz 5" dual trace
Model 1801 40 MHz 5" dual trace
Model 1801A 18MHz 5" single trace
Model 1802 180 MHz portable counter
Model 1827 30 MHz portable counter
Model 1873 50 MHz portable counter

For more information or advanced tickets, write Bob Miller, 663 Spring Street, Wabash, Indiana 46992.

FREE CATALOG

Next time you're in Washington, D. C. stop in and see us. 9-5 weekdays 10-4 Saturday

& COD WELCOME

Electronic Equipment Bank, Inc.
516 Mill Street, N.E. Virginia, Virginia 22210
(703) 938-3350

ETCH-IT-YOURSELF Printed Circuit Kit

$19.95 ppd.

NOW YOU CAN design and produce your own printed circuit boards.

IT'S EASY. Photo positive method. No soldering. No boric acid.

LESS THAN 2 HOURS to produce a leaded double sided circuit.

The kit includes:

- FREE CATALOG
- FREE TIPS & TRICKS
- FREE BOM FOR DESIGN
- FREE REFERENCE MATERIAL
- FREE LEDGER BOOK
- FREE BOM PAPER
- FREE KIT INSTRUCTIONS
- COMPLETE CIRCUIT DESIGN SYSTEM
- BEST VALUE ON THE MARKET

Add $1 for COD. S.A.S.E. for details.

EXCEL CIRCUITS co.
4412 Ferndale Rd., Virginia Beach, VA 23453-0440
Royal Oak, MI 48073

WANTED FOR CASH

4CX100 4CX1000 4-65 4-250
4CX250 4CX350 4-125A 4-400
4CX300A 4CX300 4-1000
4CX350A 4CX5000 304TL
4CX1000 5CX1500

Other tubes and Xylostrons also wanted.

The Ted Dames Company
308 Hickory St.
Arlington, N.J. 07002
(201) 998-4236
evenings (201) 998-6475

More Details? CHECK — Offer Page 126
Spectronics is now carrying the full line of Wilson Hand Helds — 2 Meter, 220 and 450. For two meter: the 2.5 watt Model 1402SM and the switchable 1 watt or 5 watt 1405SM. For 450, the Model 4502 and the Model 2202 for 220. Full line of accessories and options available too. Join thousands of Amateurs using Wilson... the dependable ones.

Model 1402SM
2.5 watt $179.95
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 kHz Ceramic Filter
- 10.7 kHz and 455 kHz IF
- 3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 4 oz. less Battery
- 5-meter/Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- 2.5 Watts Minimum Output @ 12 VDC
- Current Drain: RX 5 MA, TX 90 MA
- Microswitch Speaker Mic
- Unbreakable Lexan® Case

Each Radio Includes
FLEX Antenna
52/52 Crystal
Shown With Optional Touch-Tone Pad
Flex Antenna & Simplex
Xtal Freq. Installed 446.00 or 223.50
Both use same accessories as 1405 SM

Model 1405SM
1 or 5 watt... $249.95
- 6 Channel Operation
- Individual Trimming on all TX/RX Crystals
- All Crystals Plug In
- 12 kHz Ceramic Filter
- 10.7 kHz and 455 kHz IF
- 3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 4 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 5 Watts Minimum Output @ 12 VDC
- Current Drain: RX 5 MA, TX 90 MA
- Microswitch Speaker Mic
- Unbreakable Lexan® Case

Shown With Optional Leather Case

ACCESSORIES & OPTIONS

Battery Charger (BC2) 39.95
10 ea. AA Ni-Cad Battery Pack (BP-1) 16.95
Extra Battery Tray (BT-1) 6.95
Leather Case for 1402 (LC-1) 14.95
Leather Case for 1405, 2202,
4502 (LC-2) 14.95
Speaker Mike (SM-2) 6 pin connector 26.95
TE-1 Sub-Audible Tone Encoder, installed 59.95
TE-2 Sub-Audible Tone Encoder/Decoder, Installed 100.00
TTP - Touch-Tone Pad - installation free if ordered at time of purchase of radio. 59.95
10.7 kHz Monolithic Xtal Filter (XF-1) 12.95

SEE US AT DAYTON HAMVENTION APRIL 29, 30, MAY 1 FOR SUPER BUYS

SPECTRONICS, INC.
1009 GARFIELD
OAK PARK, IL. 60304
312-848-6777
TELEX 72:8310

HOURS
STORE HOURS:
Mon-Thu. 9:30-6:00, Fri. 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.

More Details? CHECK OFF Page 126 APRIL 1977
REPEATER AUTO PATCH

It's complete — a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dial-in capability, two-way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-221 dial converter is also required. P. C. board or Rack Mount available.

RAP-2 PC $299.50 Rack $149.50

DATA TONE TO DIAL PULSE CONVERTER

Convert standard 0-9 Data Tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-fa!ing Data Tone decoder, large capacity 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function. * and # digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting.

DPC-221 P.C. Board $219.50 DPC-221R Rack Mount $299.50

flea market

1977 MASSACHUSETTS QSO PARTY, May 14 & 15. May 14 1200 UTC to May 15 2200 UTC, no time limit. A station may be worked once per band, CW and VHF considered separate bands. No cross band or repeater QSO's. Main stations may work each other. Exchange RS(T) and county for Mass. and ARL Section (or Country) for others. Count two points for each completed exchange. Multiply total QSO points by Mass. counties (total 14) or multiply total QSO points by different counties plus ARL sections and DCCX counties worked (do not include E. Mass. or W. Mass. as sections) Suggested frequencies: CW 1810, 3550, 7000, 14000, 21000, 28000, phone: 1820, 3890, 7290, 14090, 21990, 289900, 50110, 14652. Novice: 3720, 7120, 21120, 28120. Suitable awards. Mailing deadline June 30. S.S.E. for results and awards. c/o R. J. Doherty W1GDF, RDF1 14 Pine St. Sandwich, Mass. 02563. Sponsored by the South Shore Repeater Assn., Weymouth, Mass.

CADILLAC MICHIGAN 17th Annual Swap-Shop will be held Saturday, May 21st 1977 at the National Guard Armory, Cadillac, Michigan. Free parking, everyone welcome. Tickets $2.00. Talk-in on 146.52 MHz.

DATA SIGNAL, INC.

2403 COMMERCE WAY
ALBANY, GA. 31707
912-883-4703

DELUXE C-MOS P.C. KEYER

Complete C-MOS keyer in kit form, or wired, just right for your custom enclosure. Versatile controls allow wide character weight variations, sped from 5 to 50 w.p.m. plus volume and tone control. Solid-state output switching cuts power, eliminates all annoying relay problems and is compatible with both grid block and solid-state circuits. With its side-tone monitor and 90 day warranty the Data Signal P.C. Keyer is the one for you.

C-MOS Keyer Wired $24.95 Kit $19.95

Send for Free Catalog DATA SIGNAL, INC.

W3KT QSL SERVICE

This outstanding organization in forwarding QSLs to DX stations for 15 years is still going strong.

For 6 cents each, or 20 per dollar, we will forward your QSLs to any DX station in the world. Thousands of DX stations use USA QSL managers, and for these we send the cards with SASEs, to insure a return QSL. Other cards are sent to QSL Bureaus, or DIRECT, as necessary.

For more details write to:
Jesse Biebberman, RD 1, Box 66, Malvern, PA 19355
The BLUE LINE is HERE!

Don’t sacrifice maximum power output and high efficiency for linearization. The BLUE LINE offers you the best of both designs. The BLUE LINE amplifiers are engineered using the latest state of the art stripline technology. This design technology means efficient broad band output with a very high degree of mechanical stability.

VHF engineering is the only name you have to remember when it comes to VHF or UHF amplifiers, just look at the variety available.

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Emission</th>
<th>Power Input</th>
<th>Power Output</th>
<th>Wired and Tested Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLB 3/150</td>
<td>45-55MHz</td>
<td>CW-FM-SSB/AM</td>
<td>3W</td>
<td>150W</td>
<td>TBA</td>
</tr>
<tr>
<td>BLC 10/70</td>
<td>140-160MHz</td>
<td>CW-FM-SSB/AM</td>
<td>10W</td>
<td>70W</td>
<td>139.95</td>
</tr>
<tr>
<td>BLC 2/70</td>
<td>140-160MHz</td>
<td>CW-FM-SSB/AM</td>
<td>2W</td>
<td>70W</td>
<td>159.95</td>
</tr>
<tr>
<td>BLC 10/150</td>
<td>140-160MHz</td>
<td>CW-FM-SSB/AM</td>
<td>10W</td>
<td>150W</td>
<td>239.95</td>
</tr>
<tr>
<td>BLD 2/60</td>
<td>220-230MHz</td>
<td>CW-FM-SSB/AM</td>
<td>2W</td>
<td>150W</td>
<td>159.95</td>
</tr>
<tr>
<td>BLB 10/60</td>
<td>220-230MHz</td>
<td>CW-FM-SSB/AM</td>
<td>10W</td>
<td>150W</td>
<td>259.95</td>
</tr>
<tr>
<td>BLD 10/120</td>
<td>220-230MHz</td>
<td>CW-FM-SSB/AM</td>
<td>10W</td>
<td>120W</td>
<td>259.95</td>
</tr>
<tr>
<td>BLD 10/40</td>
<td>420-470MHz</td>
<td>CW-FM-SSB/AM</td>
<td>10W</td>
<td>120W</td>
<td>259.95</td>
</tr>
<tr>
<td>BLD 2/40</td>
<td>420-470MHz</td>
<td>CW-FM-SSB/AM</td>
<td>2W</td>
<td>40W</td>
<td>199.95</td>
</tr>
<tr>
<td>BLD 3/80</td>
<td>420-470MHz</td>
<td>CW-FM-SSB/AM</td>
<td>3W</td>
<td>80W</td>
<td>259.95</td>
</tr>
<tr>
<td>BLD 10/80</td>
<td>420-470MHz</td>
<td>CW-FM-SSB/AM</td>
<td>10W</td>
<td>80W</td>
<td>269.95</td>
</tr>
</tbody>
</table>

Don’t forget our popular PA-2501 and PA-4010 at $74.95 (wired and tested) $59.95 (Kit)

Export prices slightly higher. Prices subject to change.

FEATURES

- High efficiency means low current drain.
- Broad band design (no tuning).
- Direct 12 volt DC operation.
- Indicator lamps for On/Off and FM/SSB.
- Relay switching (allows you to put amplifier in or out of circuit at the flip of a switch).
- Insertion loss of less than 1 dB.
- One year limited warranty on parts and labor.

AVAILABLE AT THESE DEALERS:

<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Dealer</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALIFORNIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C & A Electronic Enterprises, Carson, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD Systems, Inc., Burbank, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS Electronics, Inc., Redondo Beach, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN Electric, Fresno, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sengelsten Elec, Inc., Rocks BK, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telecom Electronics, San Jose, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westcom, San Marcos, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zettel Corporation, Vello, CA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLORADO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listening Post & Electromagnetics, Durango, CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMUNICATION SPECIALISTS, Aurora, CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLORIDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amateur Wholesale Elec., Miami, FL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Indies Sales Co., Ltd., Miami, FL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILLINOIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klass Radio, Inc., Peoria, IL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics, Inc., Oak Park, IL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDIANA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astros Lin, Bloomington, IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electascy, Inc., Muncie, IN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOWA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block Smith Electronics, Fort Dodge, IA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad City Ham & C.B. Sales, Davenport, IA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KENTUCKY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohn & Associates, Supply, Lexington, KY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOUISIANA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. L. Stiner, Inc., New Orleans, LA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASSACHUSETTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tufts Radio, waypoints, MA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICHIGAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harry S. Smith, Southfield, MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adams Distributing Co., Canton, MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service & Engineering, Detroit, MI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISSISSIPPI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications Services, Philadelphia, MS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISSOURI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apollo Electronic Labs, Columbia, MO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEVADA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegas Radio, Las Vegas, NV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW YORK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.A. Communications Corp., Freeport, NY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borden Electronics, New York, NY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFP Enterprises, Hartford, NY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delmar Electronics, N.Y., NY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lofton Electronics, Opelika, NY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF Communications, Jamestown, NY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V.H.F. Electronics, Durham, NC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denton Electronics, Inc., Broken Arrow, OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Stores, Inc., Oklahoma City, OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUTH DAKOTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burgundt Amateur Center, Watertown, SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.L. Electronics, Dallas, TX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell Electronics, Garland, TX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Engineering, Houston, TX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIRGINIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Communications Co., Roanoke, VA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A & R Communications, Seattle, WA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEST VIRGINIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Systems Co., Ripley, WV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WISCONSIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amateur Electronic Supply, Milwaukee, WI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications Elec., Fond du Lac, WI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bytown Marine Limited, Ottawa, Canada K2H 7V1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transistor Distributors Ltd., Richmond, B.C. V7K 1K4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUERTO RICO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edison Electronics, Inc., Santurce, PR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPORT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTCO, Inc., So. Bay, NY</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In other areas contact VHF Engineering direct. Allow 6 to 8 weeks for delivery.

More Details? CHECK-OFF Page 126
CRYSTAL FILTERS and DISCRIMINATORS

9.0 MHz FILTERS - 2.5 kHz SSB TX $33.55
9.0 MHz FILTERS - 2.4 kHz SSB RX/TX $47.75
9.0 MHz FILTERS - 3.75 kHz AM $51.40
9.0 MHz FILTERS - 5.0 kHz AM $51.40
9.0 MHz FILTERS - 12.0 kHz NBFM $51.40
9.0 MHz FILTERS - 0.5 kHz CW (4 pole) $35.95
9.0 MHz FILTERS - 0.5 kHz CW (8 pole) $67.15

Inquiries invited.

9.0 MHz CRYSTALS (Hc25/u)

XF900 9000.0 kHz Carrier $4.00
XF901 8998.5 kHz USE
XF902 9001.5 kHz LSB
XF903 8999.0 kHz BFO $4.00
F05 He25/u Socket .50 $1.25

9.0 MHz DISCRIMINATORS

XD9-01 ± 5 kHz RTTY $25.30
XD9-02 ± 10 kHz NBFM $25.30
XD9-03 ± 12 kHz NBFM $25.30

TRANVERTERS for 432 MHz

Basic Model for
CW RTTY
AM FM
OSCAR
144 MHz Drive
15 watt, max. output
Rx N.F. 3dB typ.
QMT432

Advanced Model
ALL MODES
incl. SSB
28 MHz Drive
10 watt PEP output
3 dB Rx N.F.
M4T432

Also Available
28 MHz to 144 MHz SSB Transverter, M4T144
146 MHz to 440 MHz FM Transverter, M4T440

VISIT OUR DAYTON BOOTH TO SEE THE NEW ATV MODELS

ANTENNAS

420-450 MHz
68 element J-Beam MULTIBEAM
Gain 15.7 dBi. Feed 500 coaxial.
Model 70/MM48 $49.95

Crossed Yagis, Model 8XY/2m
Shipping: Antennas FOB Concord, Mass. via UPS. Write direct for Polar plots, Gain & VSWR curves.

SPECIAL SALE PRICE

$50.00

SPECIAL SALE PRICE

$75.00

6 digit AUTOMOTIVE CLOCK KIT complete with a CRYSTAL TIMEBASE accurate to .01 percent. 12 volts d.c. operation — built in noise suppression and voltage spike protection. Readouts blank when ignition is off — draws 25 mA in standby mode. Has 3 in. readouts. Use in your car or for all applications where a battery-operated clock is needed. Approximate size 3" x 3.5" x 1.75"

WITH BLACK PLASTIC CASE $34.95 ppd.
WITHOUT CASE $29.95 ppd.
ASSEMBLED AND TESTED $45.95 ppd.

CMOS CRYSTAL TIMEBASE KITS with .01 percent accuracy. 5-15 v.d.c. operation. Draws only 3 mA at 12 volts. Single I.C. — very small size — the P.C. board is 7/8" x 1-5/8". Choose a main output of 50 or 100 Hz., 60 Hz., 500 or 1000 Hz., or 1 Hz. Several related frequencies are also available on each board, in addition to the main one listed above. Be sure to specify the Frequency you want. All kits are $10.95 ppd.

Flyer available.
1977 ARRL NATIONAL CONVENTION

Toronto, Ontario
Canada
June 3rd 4th 5th 1977
The Sheraton Centre
Sponsored by
Scarborough Amateur Radio Club

For more information, please write to:
'77 ARRL National Convention
P.O. Box 1011, Station 'C', Scarborough
Ontario, Canada M1H 2Z4

© CN Tower Limited 1973
WHY WAIT??
BE ON THE AIR NOW WITH A
Wilson Electronics Corp.

HAND HELD

Wilson 2 meter Hand Held radios... The dependable ones... proven performance for the discriminating Ham who insists on quality and value.

Two models are available: the 2.5 watt model 1402SM, and the switchable 1 watt or 5 watt model 1405SM... options include Touch-Tone Pad, Battery Charger, Battery Packs, Speaker Mike, Leather Case, and Tone options.

Join the thousands of amateurs now using Wilson... the radio that goes where you do.

FAST DELIVERY!!

$249.95

1405SM HAND HELD
5 WATT TRANSEIVER
144-148 MHz

1402SM
HAND HELD
2.5 WATT TRANSCEIVER
144-148 MHz

4288 SO. POLARIS • LAS VEGAS • NEVADA • 89103

WILSON ELECTRONICS CORP.
FAST SCAN AMATEUR TELEVISION EQUIPMENT

- SOLID STATE
- BROADCAST QUALITY PERFORMANCE
- FOR TECHNICAL DATA AND PRICING, WRITE TO:

APTRON LABORATORIES
BOX 323, BLOOMINGTON, IN 47401

Call us...
We are ready to serve you...

WIRE CONCEPTS INC.
201-227-1751
198 Passaic Ave.,
Fairfield, N.J. 07006

FOR AMATEUR USE
50 OHM JACKETED HARDLINE
- very low loss per 100 ft.
- improved receiver sensitivity
 .45 DB to 50 MHZ
 .90 DB to 146 MHZ
 1.90 DB to 450 MHZ
 4.20 DB to 1296 MHZ
- longer life
SALE 45¢ per foot

ORDER NOW AND SAVE

NEW

SYNTHESIZERS
We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our 1/3 page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS
196-23 JAMAICA AVENUE
HOLLIS, N. Y. 11423

More Details? CHECK—OFF Page 126
Ham Radio’s guide to help you find your local Ham Radio store.

Alabama

TOWER ELECTRONICS CORP.
24001 ALICIA PARKWAY
MISSION VIEJO, CA 92675
714-768-8900
Authorized Yaesu Sales & Service. Mail orders welcome.

Arizona

Masters Communications
7025 N. 57th Drive
GLENDALE, AZ 85301
602-939-8356
Rohn tower distributor, Atlas, Icom, Tempo, HyGain & service.

California

C & A Electronics
2529 East Carson St.
P. O. Box 5232
CARSON, CA 90745
213-834-5868
Not the biggest, but the best — since 1962.

Colorado

C W Electronic Sales Co.
1401 Blake St.
DENVER, CO 80202
303-573-1386
Rocky Mountain area’s complete ham radio distributor.

Florida

Central Equipment Co.
18451 W. Dixie Highway
North Miami Beach, Fl. 33160
305-932-1818
Specializing in Amateur, CB & Marine Equipment.

Georgia

Erickson Communications, Inc.
5935 North Milwaukee Ave.
CHICAGO, IL 60646
312-631-5181
Headquarters for all your Amateur Radio needs.

Indiana

Hoosier Electronics
P. O. Box 2001
TERRE HAUTE, IN 47802
812-238-1456
Ham Headquarters of the Midwest. Store in Meadow Shopping Center.

Iowa

Bob Smith Electronics
12 South 21st Street
FT. DODGE, IA 50501
515-576-3886
For an EZ deal.

Kansas

Associated Radio
8012 Consor P.O.B. 4327
OVERLAND PARK, KS 66204
913-381-5901

Kentucky

C & A Electronics
2529 East Carson St.
Hawaiian Gardens, CA 90716
213-421-3786
Dealing exclusively in ICOM communications equipment.

Maryland

Comm Center, Inc.
9624 Ft. Meade Road
LAUREL PLAZA RT. 198
LAUREL, MD 20810
301-792-0600
New & Used Amateur Equipment. All Inquiries Invited.

Massachusetts

Tufts Radio Electronics
386 Main Street
MEDFORD, MA 02155
617-395-8280
New England’s friendliest ham store.

Dealers — you should be here too! Contact Ham Radio today for complete details.
<table>
<thead>
<tr>
<th>State</th>
<th>Company Name</th>
<th>Address</th>
<th>Telephone</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>Radio Supply & Engineering</td>
<td>1207 West 14 Mile Road, Clawson, MI 48017</td>
<td>313-435-5660</td>
<td>Amateur Radio dealer for the Northwest.</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Electronic Center, Inc.</td>
<td>127 Third Avenue North, Minneapolis, MN 55401</td>
<td>612-371-5240</td>
<td>Communications specialists. Sales and service.</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Communications Center</td>
<td>2226 North 48 St., Lincoln, NE 68504</td>
<td>402-466-3733</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Evans Radio, Inc.</td>
<td>Box 893, Rt. 3A Bow Junction, Concord, NH 03301</td>
<td>603-224-9961</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Atkinson & Smith, Inc.</td>
<td>17 Lewis St., Eatontown, NJ 07724</td>
<td>201-542-2447</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>New Mexico</td>
<td>Ham Equipment Center</td>
<td>6344 Linn N.E., Albuquerque, NM 87108</td>
<td>505-268-1744</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>New York</td>
<td>Adirondack Radio Supply, Inc.</td>
<td>185 W. Main Street, Amsterdam, NY 12010</td>
<td>518-842-8350</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>Electronic Exchange</td>
<td>136 N. Main Street, Souderton, PA 18964</td>
<td>215-723-1200</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>Texas</td>
<td>Hardin Electronics</td>
<td>5635 E. Rosedale, Ft. Worth, TX 76112</td>
<td>817-461-9761</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>Virginia</td>
<td>Arcade Electronics</td>
<td>7048 Columbia Pike, Annandale, VA 22003</td>
<td>703-256-4610</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>Amateur Electronic Supply, Inc.</td>
<td>4828 West Fond du Lac Avenue, Milwaukee, WI 53216</td>
<td>414-442-4200</td>
<td>New & used Amateur Radio parts and supply.</td>
</tr>
</tbody>
</table>
B. B. C.
ELECTRONICS COMPANY, INC.
"ONE OF THE FINEST NAMES IN THE INDUSTRY"

SPECIALISTS IN
HIGH-POWER RF TRANSISTOR COMPONENTS,
CMOS INTEGRATED CIRCUITS & ASSOCIATED COMPONENTS.

WISHES TO ANNOUNCE
A COMPLETE LINE OF AMATEUR H.F. AND V.H.F. EQUIPMENT
INCLUDING THE BEST NAMES IN THE BUSINESS.

LIBERAL DISCOUNTS TO LICENSED AMATEURS, HAS BEEN, AND STILL IS, OUR POLICY

— TRADE INS ACCEPTED —

FOR YOUR AMATEUR NEEDS FROM $1 TO $??
WRITE OR CALL
B. B. C.
BLUE GRASS PLAZA • 2417 WELSH ROAD • PHILA., PA. 19114
PHONE: (215) 464-1880

BULK ORDERS ACCEPTED

BIDS SUPPLIED

test for resonant resistance with an omega-t antenna noise bridge

The Omega-t Noise Bridge is an inexpensive and flexible testing device that can effectively measure antenna resonant frequency and impedance. This unique piece of test equipment does the work of more expensive devices by using an existing receiver, a bridge detector, and a receiver. There is no longer a need for power loss because of impedance mismatch. Get more details or order now!

Model TET-01 for 1-100 MHz Range $29.95
Model TET-02 for 1-300 MHz Range $39.95

More Details? CHECK — OFF Page 126
Midland makes four tough, top-performing mobile transceivers for serious amateurs. Reading from the top: There's Midland's newest—Model 13-510—with P.L.L. synthesizer, simplex and offsets to give it 4,000 frequency capability between 144 and 148 MHz. Combined with just about the most sensitive, selective dual conversion receiver you'll find, and a transmitter that puts out an honest 25 watts, you could hardly ask for more.

In the second row, there's Midland's deluxe, 30-watt 2-meter mobile—Model 13-505—featuring selective or simultaneous control for 12 crystal-controlled channels with "Channel A" priority switching, and such Midland standards as automatic VSWR protection and connection for tone burst.

The third row lines up Midland's basic 2-Meter mobile—Model 13-500. This popular 12-channel, 15-watt transceiver has a complete multiple FET front end coupled with high-Q helicalized cavity resonators. Despite its small size (2¼" h. x 6½" w. x 8¾" d.), it's designed for exceptional service and serviceability.

At the bottom is Model 13-509, Midland's "220" mobile. With 12-channel capacity, crystal controlled, it shares the compact size and receiver features of the 13-500 above, while delivering 10 watts output power (switchable to 1 watt when you want it).

All four are leading values from the leading name in personal communications: Midland.

Want to know more about Midland Amateur Radio? Write for our free brochure today.
Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished.

Regularly $78.00. Now, over 90% discount (only $54.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax. Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmericard accepted

D-D ENTERPRISES
Dept. A, P. O. Box 7776
San Francisco, CA 94119

How You Can Convert Your Rohn 25G Tower to a FOLD-OVER

CHANGE, ADJUST OR JUST
PLAIN WORK ON YOUR
ANTENNA AND NEVER LEAVE
THE GROUND.

If you have a Rohn 25G Tower, you can convert it to a Fold-over by simply using a conversion kit. Or, buy an inexpensive standard Rohn 25G tower now and convert to a Fold-over later.

Rohn Fold-overs allow you to work completely on the ground when installing or servicing antennas or rotors. This eliminates the fear of climbing and working at heights. Use the tower that reduces the need to climb. When you need to "get at" your antenna . . . just turn the handle and there it is. Rohn Fold-overs offer unbeatable utility.

Yes! You can convert to a Fold-over. Check with your distributor for a kit now and keep your feet on the ground.

AT ROHN YOU GET THE BEST

Rohn Fold-overs allow you to work completely on the ground when installing or servicing antennas or rotors. This eliminates the fear of climbing and working at heights. Use the tower that reduces the need to climb. When you need to "get at" your antenna . . . just turn the handle and there it is. Rohn Fold-overs offer unbeatable utility.

Yes! You can convert to a Fold-over. Check with your distributor for a kit now and keep your feet on the ground.

AT ROHN YOU GET THE BEST

Unarco-Rohn

Divisions of Unarco Industries, Inc.
P.O. Box 2000, Poolesville, Maryland 21772

You're Seeing the Magazine Articles

Here's what you can expect
from the DX ENGINEERING
RF Speech Processor:

- 6 db increase in average
 power
- Maintains voice quality
- Improves intelligibility
- No cables or bench
 space required
- Excellent for phone patch
- No additional adjustments
 - Mike gain adjusts
 clipping level
- Unique plug-in unit — no
 modifications required

This is RF Envelope Clipping —
the feature being used in new
transmitter designs for amateur
and military use.

Models Now Available
Collins 32S, KW-2 - $98.50 ea.
Drake TR-3, TR-4, TR-6, TR-4C,
T-4, T-4X, T-4XB, T-4XC $128.50 ea.
Postpaid — Calif. Residents
add 6% Tax

Watch for other models later!

DX Engineering
1050 East Walnut, Pasadena, Calif. 91106

More Details? CHECK — OFF Page 126
Since 1969, the year in which TEN-TEC introduced the first solid-state HF transceiver, progress has been rapid. It was in this year that we produced the POWER-MITE which triggered the booming QRPP activity. Two years later, the ARGONAUT followed, demonstrating that Ham Radio can be more than just push-button communication.

Then, in 1972, a break-through — the 100 watt "405" solid state linear amplifier which requires but two watts of rf drive power. And in 1973 the 200 watt TRITON made its debut, with unique and exciting operating advantages made possible by full solid-state technology.

At the moment, there are over 7,500 solid-state TEN-TEC transceivers in service in nearly every Free-world country. We are acknowledged, we think, to be the World's Most Experienced Designer of Fully Solid-State HF Transceivers. And there is no short cut to design perfection.

It is notably significant that TEN-TEC is the only manufacturer that has placed a five-year pro-rata warranty on output transistors — with an unlimited guarantee the first year against failure from any possible cause under normal operating conditions.

You can put your full trust in the integrity of design, quality, craftsmanship and performance to specifications of any TEN-TEC product. Year after year after year . . . See your local TEN-TEC Dealer, or write for full details.
SUPER VALUE!

- ICS Socketed
- Push button Switches on Main PC Board
- Open chassis for Easy Assembly

2 IN 1 DMM-COUNTER

FCM-8 8 DIGIT 250 MHZ KIT

Size 10W x 3-1/2H x 9D

$219.95

FREQUENCY COUNTER

FC-6 30 MHZ KIT

Size 7W x 3H x BD

$89.95

FC-6H 250 MHZ KIT

Size 10W x 3-1/2H x 9D

$129.95

CAPACITANCE COUNTER

Size 7W x 3H x BD

$89.95

- Perfect for CBers, hams, hobbyists, technicians. Hi Z input, 50MV sensitivity. Frequency 10 Hz to over 30 MHz. (FC-6) and 100 Hz to over 250 MHz. (FC-6H). Crystal time base. 5 ppm.
- Add $2.50 Shipping/Handling Each California Residents Add 6% Sales Tax

LIN CORP. 15311 S. Broadway, Gardena, California 90248 (213) 532-8809

SCAN

20 CHANNELS WITH YOUR HW-2036 AND OUR NX-1 SCANNER KIT

SUB-AUDIBLE GENERATOR for FM

- Inexpensive multi tone encoder
- Compatible with PL-CG-CC
- Low distortion sine wave
- Input 0-18 VDC unregulated
- Rugged, plastic encased with leads
- Adjustable frequency (98-250 Hz), Lower available
- Excellent stability

Add $2.50 Shipping/Handling Each California Residents Add 6% Sales Tax

EQUINOX CORPORATION
P.O. Box 1290, St. Petersburg, Fla. 33725

NOW... Yaesu AND Drake

WF-101E TRANSCEIVER

Mail Orders accepted. N. Y. residents add sales tax. See us for all your Amateur Radio needs. SASE will get our list of used Amateur Equipment.

WANTED: GOOD CLEAN TRADES!

C F P COMMUNICATIONS

WA2KTV

211 NORTH MAIN STREET

PHONE: 607-739-0187

WB2LVW

HORSEHEADS, N. Y. 14845

BUILD YOUR OWN TV CAMERA!

Ideal for home & business

ELECTRONIC KEYBOARD CABINETS

TWO SIZES $ D H

PRICE

$12.00 $13.50 $14.50

MANY OTHER ELECTRONIC COMPONENTS AVAILABLE

MILLITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer, 201-445-8777.

SPACE ELECTRONICS CO.

35 Ruta Court, S. Hackensack, N. J. 07606

Glade Valley School Radio Session

18th Year — July 30 thru August 12, 1977

Need someone to make you upgrade? Let us do it before the QRM does!

It's more fun our way. Instruction in theory and four code practice sessions per day. Have a "Vacation with a Purpose". Two weeks in the Blue Ridge Mountains of North Carolina. Classes at all levels and FCC exam available at close of Session.

C. L. PETERS, K4DNJ, Director

P. O. Box 458, Glade Valley, N. C. 28627

Please send me the Booklet and Application Blank for the 1977 Glade Valley School Radio Session.

Name__________________________

Call__________________________

Address_______________________

City/State/Zip__________________
Specials from MHz Electronics

Fairchild VHF Prescaler Chips
- 11C7OOC, High Speed Dual 5-4 Input no/or... 49.40
- 11C5ODC, 1 GHz Counter Divide by 4... 32.45
- 11C7OObm, 1 GHz Counter Divide by 4... 32.45
- 11C90DC, UHFF Prescaler 750 MHz D Type flip/flop... 50.00
- 11C24ODC, Dual TTL VCM same as MC4024P... 24.95
- 11C50DC, Phase Freq. Dec. same as MC4044P... 49.45
- 11C50BDC, ECL VCM... 49.45
- 11C70DC, 600 MHz flip/flop with reset... 79.20
- 11C81DC, 1 GHz 248/256 Prescaler... 29.20
- 11C70DC, 655 MHz Prescaler by 10/11... 59.00
- 11C90DM, same as above except Mil. version... 24.00
- 11C90OM, 605 MHz Prescaler by 5/6... 36.00
- 11C90DM, same as above except Mil. version... 24.00
- 95C90DC, 350 MHz Prescaler by 10/11... 9.50
- 95C90DM, same as above except Mil. version... 16.50
- 95C91DC, 350 MHz Prescaler by 10/9... 9.50
- 95C91DM, same as above except Mil. version... 16.50
- T.I. TMS5406/C2107, 4K RAM... 19.01

Batteries
- N.CAD's AA cells 1.25 volts at 500 mah... $0.49
- Gel-Cell 12 volts at 1.5 Amp Hr... $29.95

Crystals
- 1.000000 MHz... 4.95
- 5.000000 MHz... 4.95
- 3579.545 KC... 3.95
- 11.0549 MHz... 2.95
- 10.00 MHz... 4.95
- 12.00 MHz... 4.95
- 18.00 MHz... 4.95
- 20.00 MHz... 4.95
- 25.00 MHz... 4.95

Fairchild 95900DC Prescaler divide by 10 to 350 MHz.
- Will take any 65 MHz Counter to 350 MHz. Kit includes the following:
 - 1 95900DC
 - 1 959179
 - 1 85-06-1/2 BNC's
 - 1 Printed Circuit Board
 - And all other parts for assembly...

Fairchild 11C90DC Prescaler divide by 10 to 650 MHz.
- Will take any 65 MHz Counter to 650 MHz or with a 82590 it will divide by 1/10 to 650 MHz.
- This will take a 6.5 MHz counter to 650 MHz. Kit includes the following:
 - 1 11C90DC
 - 1 2N5179
 - 1 82590
 - 1 MC7850CP
 - 1 Bridge B2590 and $5.70 to $77.50...

Fairchild 3817 Clock Kit from Ham Radio, Feb. 39th, Pg. 26 — All parts included except transformer and case.
- 12 hour $24.95
- 24 hour $79.95

Transformers
- F-18X... 1.00
- F-22X... 1.00
- F-92A... 1.00
- F-91X... 1.00
- NILX... 1.00
- Model D-2... 1.00
- C-912-034... 1.00
- BE-12415-001... 1.00
- C-404-024... 1.00
- RS-1072... 1.00
- F-107Z... 1.00
- RS-1067... 1.00
- P-57B... 1.00
- P-57E... 1.00
- T-9F... 1.00

Polared Spectrum Analyzer
- Model DU-1A with 3 RF tuning units. Model STU1. 2A, 3A, will cover 10 MHz to 22,000 MHz...

Diodes
- IN270 Germanium Diodes...
- [Price and Description]

Fans
- [Fan Descriptions and Prices]

RF Transistors
- [List of Transistor Models and Prices]

MHz Electronics
- 2543 N. 32nd STREET
- PHOENIX, ARIZONA 85008
- PH. 602-957-0786
- NO C.O.D.
REMOTE CONTROLLED ANTENNA SWITCH

- The SW-5 is a heavy-duty remote controlled RF switch. Handles 4 kW PEP with negligible insertion loss and SWR below 30 MHz. Housed in rugged, weather-proof enclosure.
- Safe, low-voltage operation from 26 VDC supply in control unit.
- Indicator lights show at a glance which antenna is in use.
- Requires only two wires control cable. Ham-M cable satisfactory to 150 feet.
- Models from 3 to 9 positions. Optional connectors and special switching systems are available.
- Five position Model SW-5 $120.00
 (Shipping $3.00 in USA — 1A res. and 3%)

NEW! FMSC-1 SCANNER FOR KDK FM 144 INTRODUCTORY PRICE $169

FULL SCAN 146 and 147 MHz CONSECUTIVELY OR ANY 1 MHz, SCAN RATE: 1 MHz/2 SECONDS (ADJUSTABLE)
CONTROLS: SCAN/HOLD, LATCH/Delay, 600 KHz OFFSET (OFF, UP, DOWN), PROGRAM/1 MHz
SIMPLE INSTALLATION

$120.00
BIRD PRICES AT FACTORY NET

ICOM
IC-211
4 MEG, MULTI-MODE 2 METER TRANSCEIVER
NEW! IC-245
146 MHz FM 10 W TRANSCEIVER

NEW! TOUCH-TONE PAD COMPLETELY WIRED & READY TO PLUG IN $69.00 COMPLETE BACK ASSEMBLY

*NEW $39.95
NEW! ADD 5 CHANS (TOTAL 10) TO SRC-146A
Simple 10 min, installation
Same color and quality as SRC-146A
Completely WIRED & TESTED
ALSO usable with most other hand holds $39.95

See You at DAYTON!
available at Barry Electronics
THE NAME THAT'S KNOWN AROUND THE WORLD

COMPLETE YAESU, KLM, KENWOOD, DRAKE, ICOM, TEMPO, SHURE, TURNER ASTATIC, HYGAIN, LARSEN, KDR, ETC. IN STOCK. TOP TRADES GIVEN ON YOUR USED EQUIPMENT.

MAIL ALL ORDERS TO: BARRY ELECTRONICS CORPORATION 512 BROADWAY, NEW YORK CITY, NEW YORK 10012 BARRY INTERNATIONAL TELEX 12-7670 OPEN SATURDAYS 10 TO 5 212-925-7000

More Details? CHECK OFF Page 126
Advertisers V check-off

...for literature, in a hurry—we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio ☑ 234

INDEX

AGL Electronics 87
ADTV Research 122
Adva Electronics 124
Aldeco 104
Aptron 124
Antenna Mart 104
Artco 76
ARRL Convention 59
ARRL National Convention 113
Atlas Radio 118
BBC Electronics 119
Barry 125
B. H. Bauman 124
Budwig Mfg. Co. 114
Bullet 84
CFP Communications 122
Clegg Communications Corp. 66
Clegg Electronics 117
Cohoon Amateur Supply 92
Communications Electronics 112
Communications Specialists 8, 88
The Computer Room 73
Crescom, Inc. 93
Cushcraft 40
Cygnus-Quasar Books 96
D-D Enterprises 120
DX Engineering 120
Dames Communications Systems 98
Dames, Ted 108
Data Signal, Inc. 563
Davis Electronics 84
Dentron Radio Co. 73
Disc-Cap 102
Drake Co., R. 31, 36
Ehren Technological Operations, Inc. 83
Electronic Distributors 82
Electronic Equipment Bank Inc. 106
Electrospace 118
ELPROCON 122
Engel 122
Excel Circuits 109
Fred Franke, Inc. 82
Glade Valley 207
GLB Electronics 88
Gilfer Associates 124
Glade Valley Radio Sessions 122
J. J. Glass Company 102
Gray Electronics 104
Gregory 111
Hal Communications Corp. 117
Hamtronics 94
Ham Radio 94
Ham Radio Center 97
Hamtrons, Inc. 68
Health Communication 49, 88
Henry Radio Stores 103
Hi-Gain Electronics Corp. 85
ICOM 105
Integrated Circuits Unlimited 105
International Crystal 81
International Communications Systems, Inc. 110
James Electronics 115
Jan Crystals 84
K-Enterprises 96
Tro-Kenwood Communications, Inc. 9, 64, 65
Kester 98
Kester Solder 98
Klaus Radio 96
Lin Corp. 105
Logic Systems, Inc. 114
Longmeadow 178
Lyle Products 122
M.F. Enterprises 122
McBee Electronics 142
Madison Elector Supply 90
Masters Communications 112
Microwave Associates 23
Midland International 119
New-Tronics Corporation 89
Nextron Trading Company 115
Northshore RF Technology 66
Nu-Data Electronics 117
Optoelectronics 91
Optoelectronics 91
Palomar Engineers 102, 104, 106
Partridge (HR) Electronics 124
Partridge Electronics 96, 124
Pip Communications 98
Poly Paks 100
Radio Amateur Callbook 96, 103, 107
Ramsey Electronics 103
Regency Electronics 83
Rohn 120
Scott Communications 118
Securicon 118
Sherwood Engineering 98
Space Electronics 152
Spectronics 107
Spectrum International 75
Swan Electronics 76, 77
TDL Communications 92
Telephone Equipment Co. 98
Ten-Tec 122
Transelectron 92
Tri-Ex Tower Corp. 80
Tycal 90
VHF Communications 75
VHF Engineering, Div. of Brownian 80, 98, 114
Vanguard Labs 96
Wayne Electronics Corp. 73
Zeus Electronics Corp. 84

Advertisers Index

There's nothing like it —

Radio Amateur Callbook

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.

The U. S. Callbook has nearly 300,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 235,000 calls, names and addresses of amateurs outside of the USA.

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.25 for shipping. Illinois residents add 5% Sales Tax.

U.S. Callbook $14.95
Foreign Callbook $13.95

April 1977

Tear off and mail to

HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME

CALL

STREET

CITY

STATE ZIP

Radio Amateur Callbook, INC
925 Sherwood Drive
Lake Bluff, Ill. 60044

Radio Amateur Callbook, INC
Dept E
925 Sherwood Drive
Lake Bluff, Ill. 60044

126 April 1977
Call toll-free 800-647-8660 for products by MFJ ENTERPRISES

400% MORE RF POWER
PLUGS BETWEEN YOUR MICRPHONE AND TRANSMITTER

$49.95
LSP-520BX, 30 db dynamic range IC log amp and 3 active filters give clean audio. RF protected. 9 V battery. 3 conductor, 1/4” phone jacks for input and output. 2-3/16 x 3-1/4 x 4 inches.

$59.95
LSP-520BX II. Same as LSP-520BX but in a beautiful 2-1/8 x 3-5/8 x 5-9/16 inch Ten-Tec enclosure with uncommitted 4 pin Mic jack, output cable, rotary function switch.

SUPER LOGARITHMIC SPEECH PROCESSOR
Up To 400% More RF Power is yours with this plug-in unit. Simply plug the MFJ Super Logarithmic Speech Processor between your microphone and transmitter and your voice is suddenly transformed from a whisper to a Dynamic Output.

Your signal is full of punch with power to slice through QRM and you go from barely readable to “solid copy OM”.

$27.95
CWF-2BX Super CW Filter
By far the leader. Over 5000 in use. Razor sharp selectivity. 80 Hz bandwidth, extremely steep skirts. No ringing. Plugs between receiver and phone or connect between audio stage for speaker operation.
- Selectable BW: 80, 110, 160 Hz
- 60 dB down one octave from center freq. of 750 Hz for 80 Hz
- Reduces noise 15 dB
- 9 V battery
- 2-3/16 x 3-1/4 x 4 in.
- CWF-2PC, wired PC board, $18.95
- CWF-2PCk, kit PC board, $15.95

$49.95
CMOS-8043 Electronic Keyer
State of the art design uses CUR115-8043 Keyer-on-a-chip.
- Built-in Keyer
- Dot memory
- Iambic operation with external squeeze key
- 8 to 50 WPM
- Sidetone and speaker
- Speed, volume, tone, weight controls
- Ultra reliable solid state keying
- 300 volts max
- 4 position switch for TUNE, OFF, ON, SIDETONE OFF
- Uses 4 pentline transistors
- 2-3/16 x 3-1/4 x 4 inches

$39.95
NEW
MFJ-16010 Antenna Tuner
Now you can operate all band — 160 thru 10 Meters, with a simple random wire and run your full transceiver power output — up to 200 watts RF power output.
- Small enough to carry in your pocket, 2-3/16 x 3-1/4 x 4 inches.
- Matches low and high impedances by interchanging input and output.
- SO-239 coaxial connectors.
- Unique wide range, high performance, 12 position tapped inductor. Uses 2 stacked toroid cores.

$29.95
SBF-28X SSB Filter
Dramatically improves readability.
- Optimizes your audio to reduce sideband splatter, remove low and high pitched QRM, hiss, static crashes, background noise, 60 and 120 Hz hum
- Reduces fatigue during contest, DX, and ragchewing
- Plugs between phones and receiver or connect between audio stage for speaker operation.
- Selectable bandwidth IC active audio filter
- Uses 9 volt battery
- 2-3/16 x 3-1/4 x 4 inches

$27.95
MFJ-200BX Frequency Standard
Provides strong, precise markers every 100, 50, or 25 kHz well into VHF region.
- Exclusive circuitry suppresses all unwanted markers.
- Markers are gated for positive identification.
- CMOS IC's with transistor output.
- No direct connection necessary.
- Uses 9 volt battery.
- Adjustable trimmer for zero beating to WWV.
- Switch selects 100, 50, 25 kHz or OFF.
- 2-3/16 x 3-1/4 x 4 inches

$49.95
MFJ-1030BX Receiver Preselector
Clearly copy weak unreadable signals (increases signal 3 to 5 “S” units).
- More than 20 dB low noise gain.
- Separate input and output tuning controls give maximum gain and RF selectivity to significantly reject out-of-band signals and reduce image responses.
- Dual gate MOS FET for low noise, strong signal handling capabilities.
- Completely stable.
- Optimized for 10 thru 30 MHz.
- 9 V battery
- 2-1/8 x 3-5/8 x 5-9/16 inches

$15.95
NEW
CPD-555 Code Oscillator
For the Newcomer to learn the Morse code. For the Old Timer to polish his fist.
- For the Code Instructor to teach his classes.
- Send crisp clear code with plenty of volume for classroom use.
- Self contained speaker, volume, tone controls, aluminum cabinet.
- 9 V battery.
- Top quality U.S. construction.
- Uses 555 IC timer.
- 2-3/16 x 3-1/4 x 4 inches
- TK-555, Optional Telegraph Key

OUR OFFER TO YOU

Order by Mail or Call TOLL FREE 800-647-8660 and Charge It On

MFJ ENTERPRISES P. O. BOX 494 MISSISSIPPI STATE, MISSISSIPPI 39762

ORDER TODAY. MONEY BACK IF NOT DELIGHTED. ONE YEAR UNCONDITIONAL GUARANTEE.

Order By Mail or Call TOLL FREE 800-647-8660 and Charge It On

MFJ ENTERPRISES P. O. BOX 494 MISSISSIPPI STATE, MISSISSIPPI 39762
LONG'S RECOMMENDS...

Kenwood's TS-520 is the most popular transceiver we sell. It features: 10 thru 80 meter coverage, 160 watts - 80 to 15 meters, 140 watts on 10 meters, solid-state throughout except for final and drive stages, noise blanker circuit, 2-position amplified dash-type ALC circuit, 8-pole crystal filter, high-stability FET VFO, amplified-type AGC circuit (2-position), provision for up to 4 fixed channels, carrier level control on front panel, VOX/PTT/MOX circuit, Semi-break in with sidetone, RIT, Dual gate MOS FET 3SK35. Item No. 8500-115.

List Price .. 629.00

These are the 3 prizes to be given away at the 1977 Birmingham HAM FEST on May 7th & 8th! We hope to see you there! If you can't wait—Call Toll-Free: 1-800-633-3410 (in Ala.: 1-800-292-8668) & place your order from any line listed below.

KENWOOD, DRAKE, CDE, ICOM, HYGAIN, CUSHCRAFT, NPC, TPL, TRISTAO, NEWTRONICS, DENTRON, REGENCY, ROHN, KLM, YAESU, TEN-TEC, NYE VIKING & MCM

Long's Electronics
3521 10TH AVENUE NORTH, BIRMINGHAM, ALABAMA 35234

More Details? CHECK — OFF Page 126
For Flexible Station Design

and

Total Spectrum Coverage from 160 thru 2 Meters

NEW PRICING STRUCTURE — DOWN, NOT UP!

With more than 200,000 of the popular FT-101 series transceivers in service around the world, Yaesu production volume and manufacturing efficiencies have made a price reduction possible! These savings are being passed along to you, the customer — and they cover most of the FT-101 series accessories as well. See your dealer for full information.

ATTENTION: FT 101 OWNERS

Yaesu Electronics Corp., 15954 Downey Ave., Paramount, CA 90723 (213) 633-4007
Eastern Service Ctr., 613 Redna Terrace
Cincinnati, OH 45215 (513) 772-1500
EIMAC.

Meteor-burst leadership for over 30 years.

1946 EIMAC was there when radio amateurs first studied and utilized vhf meteor-reflected propagation. EIMAC 35Ts and 100THs did the job.

1947-1975 EIMAC was there when radio amateur and military circuits used meteor propagation for reliable communication. EIMAC 4CX250Bs and 4CX1000As did the job.

1977 EIMAC is at hand as Western Union International establishes world’s first data acquisition system based upon meteor-burst technology. EIMAC 8877s are doing the job.

Again, a unique radio amateur study and investigation leads to improved communication techniques. EIMAC is proud to have taken part in these experiments.

For complete information on EIMAC products or the 8877, send your QSL card to Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

varian
FREE! HEATHKIT CATALOG

The world's largest catalog of superb electronic products in easy-to-build kit form.

FILL IN COUPON AND MAIL TODAY

Yes! Please rush me my personal copy of the NEW Heathkit Catalog
I am not on your mailing list. Dept. 122-28

Name ____________________________
Address __________________________
City _____________________________
State _____________________________ Zip ______

Please send a catalog to my friend Dept. 122-283

Name ____________________________
Address __________________________
City _____________________________
State _____________________________ Zip ______

Ham Radio PC-120

FREE! send for yours now

YOU CAN BUILD any of our many quality electronic products that are both practical and fun.
See what a wide selection you have to choose from.

FREE! mail coupon now.
HEATHKIT
Catalog of nearly 400 electronic kits
FREE!
Complete
descriptions
of our exten-
sive line of
electronic
kits. Every-
thing from a
touch-control
lamp switch
to a "compu-
terized" color
TV system.
Kits for your
home and auto
—all easy to
build with our
famous step-
by-step
assembly
manuals.

send for it NOW!