OCTOBER 1976

- high-frequency receiver design 10
- multiband hf converter 32
- microwave amplifier design 40
- two-channel vhf-fm receiver 48
- four-band vhf converter 64
- and much more . . .
are required. Solid-state 5 digit LED receive fre-
148MHz) for transmit and receive Automatic repeater split (selectable up or down) 2 built-in programmable channels $495.00.

TEMPO SSB/ONE (SSB adapter for the VHF/ONE) Selectable upper or lower sideband Plugs directly into the VHF/ONE Noise blanker built-in VXO for full frequency coverage $225.00.

KENWOOD
TS-700A

The promise of 2 meter operation...the Kenwood way. The TS-700A operates all modes: SSB (upper & lower) /FM/AM/CW and provides the dependability of solid state circuitry. Has tunable VFO and 4 MHz band coverage (144 to 148 MHz). Automatically switches transmit frequency 600 KH for repeater operation. AC and DC capability through its built-in power supply. Outstanding frequency stability Complete with micro phone and built-in speaker. $700.00

HENRY RADIO

TEMPO
CL 146A

a VHF/FM mobile transceiver for the 2 meter amate-

Henry Radio's

If you wish to return an item within 15 days for full credit toward the purchase of new equipment, you must return it in its original condition. All returns must be accompanied by a copy of the original receipt and a letter explaining the return. You must pay all shipping costs.
Sends code so smooth you'll think it's part of your hand...

The Heathkit HD-1410 Solid-State Electronic Code Keyer makes operating CW a real pleasure! Separate dot and dash paddles are fully adjustable so you get the exact "feel" you like. The dots and dashes are self-completing and always in the proper proportion, so your CW signal is accurate and precise. Iambic operation lets you form characters with minimal wrist movement for comfortable, fatigue-free sending. And the HD-1410's solid-state output eliminates the bouncing and sticking problems found in many relay-type keyers.

You can build the HD-1410 to send 10-35 wpm while you're a Novice, and a simple adjustment will increase its capability to 10-60 wpm when you advance. The HD-1410 is just one of the many superb Amateur Radio kits in the new Heathkit catalog. Get your FREE copy now!

FREE!
HEATHKIT CATALOG
Send for your copy today!

Heath Company, Dept. 122-22
Benton Harbor, Michigan 49022
Stay tuned for future programs.

The HAL ST-6000 demodulator /keyer and the DS-3000 and DS-4000 KSR/RO series of communications terminals are designed to give you superlative TTY performance today—and in the future. DS series terminals, for example, are re-programmable, assuring you freedom from obsolescence. Sophisticated systems all, these HAL products are attractively priced—for industry, government and serious amateur radio operators.

The HAL ST-6000 operates at standard shifts of 850, 425, and 170 Hz. The tone keyer is crystal-controlled. Loop supply is internal. Active filters allow flexibility in establishing different tone pairs. You can select AM or hard-limiting FM modes of operation to accommodate different operating conditions. An internal monitor scope (shown on model above) allows fast, accurate tuning. The ST-6000 has an outstandingly high dynamic range of operation. Data I/O can be RS-232C, MIL-188C or current loop.

The DS-3000 and DS-4000 series of KSR and RO terminals provide silent, reliable, all-electronic TTY transmission and reception, or read-only (RO) operation of different combinations of codes, including Baudot, ASCII and Morse. The powerful, programmable 8080A microprocessor is included in the circuitry to assure maximum flexibility for your present needs—and for the future. The KSR models offer you full editing capability. The video display is a convenient 16-line format, of 72 characters per line.

These are some of the highlights. The full range of features and specifications for the ST-6000 and the DS series of KSR and RO terminals is covered in comprehensive data sheets available on request. Write for them now—and tune in to the most sophisticated TTY operation you can have today...or in the future.

HAL Communications Corp., Box 365, 807 E. Green Street, Urbana, Illinois 61801 • Telephone: (217) 367-7373

More Details? CHECK-OFF Page 134
OCTOBER 1976
volume 9, number 10

editorial staff
James R. Fisk, WDITY
editor-in-chief
James H. Gray, W2EIQ
Patricia A. Hayes, WN1WPM
Alfred Wilson, WENIF
assistant editors
J. Jay O'Brien, W6GO
fm editor
Joseph J. Schroeder, WBUUUV
associate editor
Weyne T. Pierce, K3SUUK
cover

publishing staff
T. H. Tenney, Jr., W1NLB
publisher
Harold P. Kent, WN1THP
assistant publisher
Fred D. Miller, Jr., W1TUSO
advertising manager
Cynthia M. Schlosser
assistant advertising manager
Theresa R. Bourgault
circulation manager

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire (03048)
Telephone: 603.878.1444

subscription rates
U.S. and Canada: one year, $10.00
three years, $20.00
Worldwide: one year, $12.00
three years, $24.00

foreign subscription agents
Ham Radio Canada
Box 114, Gander
Ontario, Canada, N7A 3Y5

Ham Radio Europe
Box 444
194 04 Upplands Vastby, Sweden

Ham Radio France
20 bis, avenue des Clariers
89000 Auxerre, France

Ham Radio Holland
Postbox 3051
Deurne 2206, Holland

Ham Radio Italy
STE. Via Manago 15
1 20134 Milano, Italy

Ham Radio UK
Post Office Box 64, Harrow
Middlesex HA3 6SH, England

Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1976 by
Communications Technology, Inc.
Title registered at U.S. Patent Office
Microfilm copies are available from
University Microfilms
Ann Arbor, Michigan 48103
Second-class postage paid at Greenville, N. H. 03048
and at additional mailing offices

contents

10 high-frequency receiver design
Ulrich L. Rohde, DJ2LR

26 double-conversion high-frequency receiver
Jack Perolo, PY2PE1C

32 multiband high-frequency converter
M.A. Chapman, K6SDX

40 solid-state microwave amplifier design
H. Paul Shuch, W6GUAM

48 two-channel receiver for repeater monitoring
R.B. Shreve, W6GRG

52 updating tube-type fm receivers
H.M. Meyer, Jr., W6GGV

54 RC active filters
Fred M. Griffee, W4IYB

60 wideband receiver preamp
Edward A. Pacyna, Jr., W1AAZ

64 four-band vhf receiving converter
S.A. Smith, W3TOM

71 phasing-type signal detector
Donald B. Lawson, WB9CYY

4 a second look
134 advertisers index
111 flea market
120 ham mart
78 ham notebook
82 new products
134 reader service
85 short circuits
6 stop press

october 1976
In their quest for new sources of needed energy, researchers at the Lawrence Livermore Laboratory in California are putting together the world's largest laser in an effort to exploit the ultimate energy source — the same fusion energy as that used by the stars. The 200-foot (60m) long laser, which is scheduled to be completed by early 1977, is expected to produce 25-million watts of electricity. Initially, it will take more energy than this to make it work, so the system will operate at a net energy loss, but scientists expect to upgrade the mammoth to 100- to 300-trillion watts, and by 1980 it should make world history by generating more energy than it actually consumes. When that happens, it will signal the birth of the fusion age and the beginning of civilization's independence from scarce oil, gas, coal and atomic fuels.

Water, the fuel for fusion, has a fantastic amount of energy locked inside: the heavy hydrogen (an isotope called deuterium) in just 75 gallons of water could light New York City for nearly 10 minutes! Although scientists have known about this cheap and inexhaustible energy source for more than thirty years, harnessing it is no easy trick. Stars solve the problem by compressing the hydrogen and heating it to extreme temperatures, and then use their immense gravitational pull to confine the plasma so it can't escape. This works just fine if you're as large as a star (our sun is 864,000 miles in diameter), but here on earth the job will be done with a powerful laser which is carefully focused on a pinhead-sized pellet of heavy hydrogen fuel, instantly heating it to a tremendous temperature. Part of the pellet’s outer shell is blasted outward; the inner part, however, implodes and compresses the fuel to 10,000 times its normal density. At the instant this happens the fuel fuses into lithium and emits a shower of heat and light. A thin layer of liquid lithium, which covers the spherical implosion chamber, carries away the heat which is used to drive turbines.

The huge laser, called Shiva after the Hindu god of destruction and reproduction, actually consists of twenty 1000-joule lasers, each about 150 feet (46m) long, arranged somewhat like a Gatling gun. Each of the individual lasers consists of a chain of seven elements: a master laser oscillator followed by six laser amplifiers which pumps out an intense pulse of light — equivalent to 10-million megawatts — lasting about a billionth of a second. Each of the 20 beams of carefully shaped and timed laser light simultaneously enter the ports of the implosion chamber and blast the fuel pellet into oblivion. The next pellet is then inserted into the center of the chamber and, once again, implodes after being blasted.

Although there are still a number of problems to be resolved, scientists are confident they will have the first successful fusion reactor in operation by early next year. It will take four or five more years to bring the system on line, but even at that, Shiva looks like the most promising new energy source to come down the pike in a good many years.

Jim Fisk, W1DTY
editor-in-chief
Now It’s Crystal Clear

Yes, now ICOM helps you steer clear of all the hassles of channel crystals. The new **IC-22S** is the same surprising radio you’ve come to know and love as the **IC-22A**, except that it is totally crystal independent. **Zero crystals.** Solid state engineering enables you to program 23 channels of your choice without waiting. Now the ICOM performance you’ve demanded comes with the convenience you’ve wanted, with your new **IC-22S**.
First Two Meter Worked All States was achieved by K0MQS when he worked K6YNB/KL7 via moonbounce August 17th. The Alaska contact was particularly timely for K0MQS as he'd just nailed his 49th state – Idaho – when he contacted W7UBI on August 2. The QSO with K0MQS was, coincidentally, K6YNB/KL7's first E-M-E contact though the DXpedition station had made some Perseids contacts.

VHF/UHF Bands Continued to offer "DX" treats with long-haul contacts almost a daily happening on two meters during early August. W2BGC has asked for log data from any stations that participated in the June 26-28 openings on two and six meters to aid in sporadic E propagation studies he's making.

SALE Of GENERAL CLASS AMATEUR LICENSES is being checked by FBI in Indianapolis and possibly other cities. An article in the Indianapolis Star describes a supposed ring of Amateurs who were telling prospective Amateurs that "They can bypass rigorous testing procedures by purchasing a General Class ham license for $200" from the gang.

"Mr. Big" in the operation is described in the article as "a government employee in Pennsylvania" who has access to the FCC's computers and, for a price, is "willing to feed the data into the computers to make sure a license will be issued."

The FBI's Agent in Charge in Indianapolis confirmed that an investigation is in progress but had no further details. Contacts at the FCC in Washington were not aware of either the story or the newspaper's report of it. Apparently a number of Indianapolis area Amateurs have been visited by the FBI investigators, and one of them said that an agent told him the Indianapolis investigation is "just the tip of the iceberg!"

FCC IS COMING DOWN HARD on bootleggers operating between the 27-MHz CB band and 10 meters. FCC agents and U.S. Marshalls nailed a dozen of the outlaw operators in a July raid in northern New Jersey, and seized an estimated $10,000 in radio gear.

A few requests continue to trickle in, and the fourth district has very few 1x2 calls received, however, a presently-licensed Novice should continue using "WN."

WN NOVICE PREFIXES will no longer be issued after October 1, and Novice licensees will receive the same prefixes as higher class license holders. In its announcement of the change August 19th, the Commission cited processing problems as the prime reason for the change – its computer has had some difficulty in translating a WN into a WA, WB, or (recently) WD, resulting in the issuance of some duplicate calls.

Present Novice Licenses whose licenses expire after October 1 will also be changing prefixes – the Commission plans to issue them new licenses with the appropriate new prefix – until a new license is actually received, however, a presently-licensed Novice should continue using "WN."

WD Call Signs are being issued or are on the verge of being issued in the 2nd, 4th, 6th and 8th call areas, according to the Commission's release on the Novice change, and WDs are imminent in the 5th, 9th and 6 districts.

Two Letter Call Requests have totaled about 400 since July 1st with 75 or so of those from two-letter-call holders wishing to change. A few requests continue to trickle in, and the fourth district has very few 1x2 calls left. Though the next group of eligible Amateurs will use up some of those remaining, the next big influx of requests is expected in January. Don't be surprised to hear X prefixes and "V" calls such as W9XA by then.

PACKRATS’ SOUTH AMERICAN MOONBOUNCE DXpedition in August was a resounding success with 16 stations in 8 countries worked off the moon on 432 MHz. First contact was with K7UV, providing him with the first E-M-E WAC, followed by W7CCX, F9PT, I5MSH, PA5SSB, LX1DB, K3POP, VE7BGC, WJAA, JA1YDV, K8UQA, W4ZX1, W6SL, WØYJS, K0TLH and K55LE. In addition to E-M-E operation, over 40 OSCAR 7 Mode B contacts were also logged before the group shut down to return to the States.

AMSAT’S ASCII STA has been granted and is good through February 6. More experimental use of ASCII through the satellites is being encouraged.

Tom McMullen, W6SL, has joined Ham Radio as managing editor. Tom, a well-known VHF/UHF experimenter, has been QST's Assistant Technical Editor. **Charlie Carroll**, W1BOQ, until recently a member of the ARRL technical staff, has also joined Ham Radio as an assistant editor. Welcome aboard!
If you’re fighting the constant battle of limited band width, high SWR ratios, inefficient low-pass TVI filter operation due to high SWR you’re not alone.

DenTron makes the Problem Solvers.

The DenTron tuners give you maximum power transfer from your transmitter to your antenna, and isn’t that where it really counts?

Our Super Tuners (A, B, & E) are the only tuners on the market that match everything between 160 and 10 meters. Whether you have balanced line, coax cable, random or long wire the DenTron Super Tuners will match the antenna impedance to your transmitter.

NEW: The Monitor Tuner (E) was designed because of overwhelming demand. Hams told us they wanted a 3 kilowatt tuner with a built-in wattmeter, a front panel antenna selector for coax, balanced line and random wire. So we engineered the 160-10m Monitor Tuner. It’s a lifetime investment at $299.50

The DenTron 80-10 AT (D) is a random wire, 80-10 meter tuner which is ideal for portable operation or apartment dwellers.

Every serious ham knows he must read both forward and reverse wattage simultaneously for that perfect match. So upgrade with the DenTron W-2 Dual in line Wattmeter (C).

The flexibility we build into our Tuners make any previous tuner you might have owned obsolete.

DenTron

Radio Co., Inc.

2100 Enterprise Parkway

Twinsburg, Ohio 44087

(216)425-3173

Dedicated to Making Amateur Radio MORE FUN!
If you haven’t tried the TS-700A … you haven’t experienced the excitement of 2-meters

Experience the excitement of 2 meters. There’s more than just FM repeaters, you know. SSB DX, OSCAR Satellite, CW…and do it all with a tunable VFO. Do it all with the Kenwood TS-700A.

- Operates all modes: SSB (upper & lower), FM, AM, and CW
- Completely solid state circuitry provides stable, long lasting, trouble-free operation
- AC and DC capability. Can operate from your car, boat, or as a base station
- 4 MHz band coverage (144 to 148 MHz) instead of the usual 2
- Automatically switches transmit frequency 600 KHz for repeater operation… reverses, too
- Outstanding frequency stability provided through the use of FET-VFO
- Zero center discriminator meter
- Transmit/Receive capability on 44 channels with 11 crystals
- Complete with microphone and built-in speaker

The TS 700A is available at select Kenwood dealers throughout the U.S. For the name of your nearest dealer, please write.

Specifications

TRANSMIT/RECEIVE FREQUENCY RANGE: 144-148 MHz
MODEL: SSB, FM, CW, AM
RF OUTPUT: CW, FM: more than 10W output
AM: more than 3W output. SSB: more than 20W, DC input
ANTENNA IMPEDANCE: 50(ohm) unbalanced
CARRIER SUPPRESSION: Better than 40 dB
SIDE BAND SUPPRESSION: Better than 40 dB
SPURIOUS RADIATION: Less than -60 db

MAX FREQUENCY DEVIATION (FM): ± 5 kHz
REPEATER FREQUENCY SHIFT WIDTH: 600 kHz
TONE BURST TIME: 0.5-1.0 sec
MODULATION: Balanced modulation for SSB
Variable reactance frequency shift for FM
Low power modulation for AM
MICROPHONE: Dynamic microphone, 500KΩ
AUDIO FREQUENCY RESPONSE: 400-2600 Hz
within ±9 db
RECEIVING SYSTEM: SSB, CW, AM: Single superheterodyne
INTERMEDIATE FREQUENCY: SSB, CW, AM: 10.7 MHz, FM: 1st IF, 10.7 MHz, 2nd IF: 465 kHz
RECEIVING SENSITIVITY: SSB, CW: S/N = 10 dB or better at 0.25μV, 20 dB noise (S/N = 40 dB or better at 1μV
IMAGERY RATIO: Better than 60 dB
IF REJECTION: Better than 60 db
PASS BANDWIDTH: SSB, CW, AM: More than 2 kHz at -6 dB
RECEIVER SELECTIVITY: SSB, CW, AM: Less than 4.5 kHz at -60 dB
FM: Less than 9 kHz at -60 dB
SQUELCH SENSITIVITY: 0.25μV
AUDIO OUTPUT: More than 2W at 8Ω load
RECEIVER LOAD IMPEDANCE: 8Ω
FREQUENCY STABILITY: Within ± 2 kHz during one hour after one minute of warm up, and within ±150 Hz during any 30 minute period thereafter
POWER CONSUMPTION: Transmit mode: 95W (AC 120/220V), 4A (DC 13.8V), max
Receiver mode: AC 45W (AC 120/ 220V), 0.8A (DC 13.8 V)
POWER REQUIREMENTS: AC 120/220V, 50/60 Hz, DC 12V (13.8V as reference)
DIMENSIONS: 278 W x 124 H x 320 D (mm)
WEIGHT: 11 kg
SUGGESTED PRICE: $700.00

Prices subject to change without notice
either way is the right way

...they're both KENWOOD

the TR-2200A

Kenwood's high performance portable 2-meter FM transceiver... completely transistorized, rugged and compact.

12 channel capacity. Built in telescoping antenna can be easily replaced, or stored in carrying case. Connector for external antenna also. External 12 VDC or internal Ni-Cad batteries, complete with 120 VAC battery charger. 146-148 MHz frequency coverage. 12 channels, 6 supplied. Battery saving "light off" position. Hi-Lo power switch (2 watts -400 mW). Sensitivity: 0.5 uV or less/26 dB S+N/N. Built-in speaker. Size: 5-3/8"x 2-5/16"x 7-1/8", 3-3/4 lbs. Complete with Dynamic mike, O-T-S carrying case, all cables, speaker/headphone plug and 10 Ni-Cad batteries. Amateur net... $229.00.

the TR-7200A

Kenwood's superb 2-meter FM mobile transceiver. Designed to withstand the most severe punishment while providing consistently excellent performance.

Packed with features like the PRIORITY function... Put your favorite crystals in channel 7, and the 7200A switches there with the push of a button... no matter what channel you are on. 146-148 MHz coverage, 22 channels, 6 supplied. Completely solid state. Voltage required: 13.8 VDC. Antenna impedance: 50 ohms. Frequency adjusting trimmers on every crystal. RF output power: 10 watts (or 1 watt at low power). Adjustable frequency deviation (factory set at ±5 kHz). Automatic VSWR protection. Receiver sensitivity less than .5 uV for 27 dB. Selectivity: 12 kHz/6 dB and 24 kHz/70 dB. Size: 7-1/16" W x 2-3/8" H x 9-7/16" D, 5-1/2 lbs.

Complete with dynamic mike, DC power cord, mobile mount, mike hanger, auxiliary connector and external speaker plug. Amateur net... $249.00.

The perfect companion to the TR-7200A is the PS-5 AC/DC power supply. Together they provide an efficient and handsome base station. The PS-5 is complete with a digital clock and automatic time control feature built in. Amateur net... $79.00.

116 EAST ALONDRA/GARDENA, CA 90248

KENWOOD... Pacesetter in amateur radio
optimum design for
high-frequency
communications receivers

High-performance circuits are described for communications receivers operating in the 10-kHz to 30-MHz range

The design of shortwave receivers has changed significantly in past years. Early receivers used double- or even triple frequency conversion, and selectivity was achieved at a fairly low frequency; for example, 455 kHz. Fig. 1 is a block diagram of this type receiver. Since the i-f had to be higher or lower than the frequency bands of these receivers, the i-f was usually set below 2 MHz, which resulted in image problems. To overcome this, many tuned circuits were required in the rf stages, and oscillator tracking became quite another problem.

Present-day design avoids these expensive mechanical arrangements thanks to the availability of crystal filters in the 30- to 120-MHz range. If an intermediate frequency higher than the highest frequency of reception is used, three advantages occur:

1. To achieve constant image and i-f suppression, a simple lowpass filter with a cutoff frequency of 31 MHz can be used, guaranteeing at least 80 dB suppression. Such a filter will also substantially reduce local-oscillator power radiation.

2. With both the oscillator and intermediate frequencies higher than the highest frequency of reception, gaps in receiver coverage are eliminated (a receiver with an i-f at 5.5 MHz, for example, precludes tuning between approximately 5 and 6 MHz).

3. The ratio of the oscillator frequency range (maximum/minimum) is, by definition, less than 2:1.

Additional input selectivity can be obtained by using fairly wide cross-modulation and intermodulation filters which operate in fixed-frequency bands. Thus the receiver can use bands of constant width; that is, in 1-MHz intervals.

If we talk about a good shortwave receiver, we must define "good" in terms of receiver electrical characteristics. Table 1 provides these characteristics for a shortwave receiver that is required for today's operation.

Many amateurs equate "good" with noise figure or signal-to-noise ratio. It has been recently agreed that a noise figure less than 10 dB is not essential for high-frequency amateur receivers. In some military and systems-oriented applications a noise figure of 6 dB or less is required for example, in systems using low-efficiency antennas such as whips. Unfortunately, sometimes some of this equipment is used with large antennas, so a large dynamic range in the receiver is needed despite the low noise figure.

What about oscillator radiation? The technique used by Southcom and being adapted by Atlas requires highly efficient shielding and filtering to avoid oscillator power feedthrough to the antenna input terminal. Commercially designed receivers for the military market must have a maximum of 15 microvolts reradiation of the oscillator signal—a requirement that practically none of the amateur receivers on today's market can fulfill.

new receiver design

Fig. 2 is a block diagram of a receiver with a first i-f of 40.525 MHz. This receiver covers 10 kHz to 30 MHz. The reason for choosing this i-f is that one of the standard i-fs in Europe is 525 kHz (455 kHz in the U.S.). By using a 40-MHz signal derived from an international frequency standard, conversion from the first to the second i-f can be accomplished easily.

The signal at the antenna passes through a 30-MHz lowpass filter and, depending on the selection of the reception frequency, through either a high- or lowpass filter with a 2-MHz cutoff and one of eight automatically selected bandpass filters in the range of 2 to 30 MHz. The signal is then applied to a balanced power amplifier through an automatic attenuator circuit consisting of negative temperature coefficient and positive temperature coefficient resistors. The 30-MHz filter rejects image frequencies. The 2-MHz highpass filter separates the broadcast range with its often very high field strength from the high-frequency region and prevents BC signals from arriving at the mixer. An independent agc circuit (not a limiter) is used in addition to the normal agc system. This independent agc circuit

By Ulrich L. Rohde, DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458
responds when signals equal to or above 100 mV are fed to the receiver input. This circuit acts as an automatic attenuator and protects all following stages from being overdriven without introducing any measurable distortion of its own. A push-pull power amplifier stage following the input filters uses heavy feedback to keep second- and third-order intermodulation distortion products as low as possible.

The signal is converted to the first i-f in a high-level +17 dBm or higher double-balanced mixer and applied to a cross-modulation filter. This filter is a low-ripple, 6-pole crystal filter with a bandwidth of ±6 kHz or less, depending on its purpose. This filter suppresses adjacent signals, which might otherwise produce cross modulation in subsequent stages. A high-level double-balanced mixer is also used for converting the first i-f to the second i-f (525 kHz), where main selectivity occurs. The bandwidth of the second i-f stage is selectable in steps between ±75 Hz to ±6 kHz, which permits optimum matching to the bandwidths required in the various modes of operation (slow CW, frequency-shift telegraphy or broadband telephony). Since individually switchable filters would hardly prove practical for such a large number of different bandwidths, a new double mixer with fixed-tuned filters has been designed (fig. 3).

The 525-kHz intermediate frequency with its side-band of ±6 kHz maximum is first converted into the range 52 to 64 kHz. It is then applied to a bandpass filter with a steep-edged selectivity characteristic at 64 kHz and converted to the original i-f. If the oscillator frequency is varied in the proper direction, the shift of the reduced i-f toward the steep filter edge clips or completely suppresses one sideband. Using the same oscillator frequency for mixing and remixing prevents any frequency errors from occurring between input and output, which might affect receiver setting accuracy. The position of the sidebands with respect to the carrier also remains unchanged. This arrangement is followed by a similarly designed selective circuit that can limit the other sideband. Similar selective filters are used in both circuits so that the oscillator frequency is symmetrical about the 525-kHz i-f. Thus, a frequency variation by the same amount but in the reverse direction results in a symmetrical bandwidth change. The selectivity at a 500-Hz spacing from the adjusted bandwidth is at least 60 dB, and the ripple within the i-f passband is about ±1.5 dB.

If filters with the same selectivity are used, double mixing ensures an identical, symmetrical skirt selectivity of the i-f passband characteristic, constant skirt selectivity for each bandwidth, and a phase delay characteristic symmetrical with the center frequency. With a-m reception, therefore, no distortion occurs due to delay time. With commonly used crystal or mechanical filters this high phase and gain linearity can't be achieved under any circumstances.

This method also provides a simple means of suppressing the upper or lower sideband during ssb reception. By setting the oscillator of the first and second selective circuits to a fixed frequency, variable limiting of the remaining sideband is possible.

Both conversion oscillators are synchronized with an internal reference oscillator to increase circuit stability. This avoids an impermissible variation or shift of the center frequency, especially in narrow bandwidths.

Advertised crystal filters, which are 8- to 10-pole

fig. 1. Block diagram of a single-conversion, low i-f, general coverage communications receiver typical of that used by many radio amateurs. The intermediate frequency is usually set below the tuning range of the receiver, as shown here, but this results in image problems on the higher frequencies.

table 1. Electrical characteristics for a modern shortwave receiver.

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>10 kHz to 30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna connection</td>
<td>50 ohms, unbalanced</td>
</tr>
<tr>
<td>Preselection:</td>
<td></td>
</tr>
<tr>
<td>10 kHz-2 MHz</td>
<td></td>
</tr>
<tr>
<td>2 - 30 MHz</td>
<td></td>
</tr>
<tr>
<td>Setting accuracy</td>
<td></td>
</tr>
<tr>
<td>Noise figure</td>
<td>about ±1 dB</td>
</tr>
<tr>
<td>Modes of operation</td>
<td></td>
</tr>
<tr>
<td>I-f bandwidth</td>
<td>±75 Hz to ±6 Hz in steps</td>
</tr>
<tr>
<td>I-f and image rejection</td>
<td>Greater than ±100 dB</td>
</tr>
<tr>
<td>Crossmodulation</td>
<td>Less than ±2 dB</td>
</tr>
<tr>
<td>Blocking through second signal</td>
<td></td>
</tr>
<tr>
<td>Intermodulation distortion</td>
<td>>50 dB with two 50 mV emf tones</td>
</tr>
<tr>
<td>In band</td>
<td>>90 dB with two 5 mV emf tones</td>
</tr>
<tr>
<td>Second order</td>
<td>>80 dB with two 5 mV emf tones</td>
</tr>
<tr>
<td>Third order</td>
<td>Should be calibrated in μV. Input voltage range < 1 μV to >100 mV.</td>
</tr>
<tr>
<td>5 meter</td>
<td>Audio output 0 dBm</td>
</tr>
<tr>
<td>Outputs for accessories</td>
<td>Oscillator output for counter and digital programmer</td>
</tr>
</tbody>
</table>

october 1976
A system for obtaining variable i-f bandwidth through the use of a double mixing scheme. This system is used in the receiver of fig. 2 to provide selectable bandwidths from 6 kHz to 75 kHz without the expense of a large number of separate i-f bandpass filters.

designs with shape factors between 1.4:1 and 1.2:1, have two unpleasant effects:

1. The extremely steep skirt selectivity presents a problem for the agc circuit because of the high group delay and phase shift, which cannot be compensated. In almost all cases strong interfering signals at the edges of the filter response band will make the agc pump. This instability introduces distortion and overshoot.

2. Because of their high Q, and despite their fairly wide bandwidth, these filters produce appreciable ringing.

In addition, it’s important to remember that, under the circumstances in which radio amateurs use their receivers, the i-f bandwidth for ssb reception should be between 1.9 and 2.4 kHz to avoid psychological fatigue caused by unpleasant hissing noises. More than ten years ago the bandwidth of the famous Collins KWM2 was restricted to 2.1 kHz for this reason.

I-f amplifier and gain control. The i-f amplifier boosts the incoming signal to an amplitude sufficient for distortion-free demodulation and ensures a constant output voltage by means of gain control. Its amplifying action is such that the inherent noise from the rf section is adequate to drive the succeeding agc amplifier to full output. If you analyze practically any amateur transceiver now on the market, you will discover that these receivers don’t have enough i-f gain. The reason for this is obvious: most manufacturers want to avoid the expense of careful shielding, which is required if the gain is more than 80 dB. However, to obtain enough audio

fig. 2. Block diagram of a high-performance, modern design communications receiver with an i-f at 40.525 MHz which overcomes many of the problems of previous designs. The noise figure of this receiver is about 10 dB, more than adequate for home-station use on any of the amateur high-frequency bands. Cross modulation, intermodulation distortion, and other operating characteristics of this receiver are listed in table 1.
output, a total gain of about 90 dB from the antenna input to the i-f output into the demodulator is required to obtain distortion-free demodulation. Unfortunately, many designers use high-gain rf amplifiers and high-gain first mixers, both of which overdrive the second mixer. A sufficiently low overall noise figure can be achieved with little rf gain, as explained below.

Modern integrated circuits, such as the Plessey SL600 series or the Motorola MC1349 and MC1590, offer a good choice for a low-distortion, stable i-f amplifier with a minimum of shielding. Such a design permits sufficient agc to reduce unpleasant audio level changes. In addition, appropriate distribution of the agc voltage must be applied to the various stages to ensure a linear increase in the signal-to-noise ratio at small input voltages. Fig. 4 shows the agc response provided by the design discussed above. The agc circuit must have high gain; through pure control action input voltages up to 100 mV emf can be reduced to a residual error of ±1 dB without additional driving (forward-acting regulation). Furthermore, the agc voltage must be applied in appropriate levels to the various stages to ensure a linear increase in the signal-to-noise ratio at small input voltages. The result is a signal-to-noise characteristic much better than previously known.

The agc response time and the type of rectification must be different for each mode of operation. Peak rectification with a short response rise time of about 20 dB per 10 mS should be used for rapid leveling of the gain to the nominal value when receiving CW or ssb signals; a too-short response time does, however, lead to blocking by interference pulses. Average-reading rectification is recommended in the a-m mode to maintain receiver dynamic characteristics.

The agc voltage fall time should be selectable to obtain a gain variation between 5 and 50 dB per second. The slow response fall time maintains the dynamic characteristics and prevents any amplification of unwanted noise during CW pulse intervals. It also takes effect with a-m signals suffering selective carrier fading; it does not eliminate the distortion but prevents audio volume from increasing.

The modulation frequency of the incoming signal, which is present in the control lines during agc operation, must be filtered — without affecting the dynamic control characteristics — so such an extent that no additional distortion arises in a-m reception due to inverse modulation. In ssb reception, with intermodulation and little difference between the sideband frequencies (f = 100 Hz), intermodulation products (2f1 - f2) because of inverse modulation must be suppressed at least 50 dB.

Demodulator and af amplifier. The demodulators for the various operation modes are connected to the output of the i-f amplifier. A-m signals are rectified in a diode
fig. 6. The frequency synthesizer with linear master oscillator which is used in the high-performance communications receiver. A complete description of this circuit, which uses four separate oscillators, is contained in the text.

fig. 7. Gain distribution of a high-performance, high-frequency receiver. High dynamic range, as shown in fig. 8, is obtained by using as little gain as possible while keeping the overall noise figure below 10 dB.
The i-f, CW, and ssb signals are converted into audio signals in a double-balanced mixer which is driven by a vfo for CW signals, and by a high-precision crystal oscillator for ssb signals. Frequency-modulated waves (maximum bandwidth 6 kHz) are demodulated in a discriminator preceded by a limiter.

The audio-frequency signal is applied through the function selector from the demodulators to an adjustable, balanced noise limiter, then to audio amplifiers. The amplifier with an output impedance of 600 ohms is associated with a balanced-line output. Starting from 0 dBm (1 mW into 600 ohms with 100% modulation), its output level is adjustable by ±10 dB. The second amplifier feeds a built-in speaker. It also contains a switch-selected 1000-Hz filter (bandwidth 200 Hz), which improves CW audio quality.

oscillator

The receiver frequency stability and setting accuracy depends on oscillator accuracy. The oscillator characteristics also affect receiver sensitivity, since strong interfering signals arriving at the mixer as a result of the receiver input broadband characteristic can convert noise sidebands and spurious oscillator responses into intermediate frequencies (fig. 5).

The oscillator frequency of the synthesizer (fig. 6), whose output is 40.525 to 70.525 MHz (oscillator 4), is derived in several phase-controlled circuits from selected harmonics of a 1-MHz crystal oscillator and the frequency of the variable-frequency master oscillator. The crystal in the 1-MHz oscillator is housed in a proportionally-controlled oven for stability. The frequencies derived from this 1-MHz oscillator are more accurate than those of the variable-frequency master oscillator, which determines receiver setting accuracy and stability.

While some receiver designs use frequency synthesizers which are switchable in steps down to 1 Hz, this much resolution is somewhat prohibitive for a search receiver. The lock time of such a frequency synthesizer would not permit easy tuning and, therefore, this type of receiver should only be used for channelized point-to-point communications. The method used here, derived from the Rohde & Schwarz EK07 shortwave receiver, was designed in 1957. A similar method has been used in receivers such as the National HR0500 and HR0600.

Basically, the 40.525 to 70.525 MHz frequency range is converted to an auxiliary i-f of 2.75 - 3.75 MHz. A frequency- and phase-sensitive double-balanced modulator is used as a comparator together with the master oscillator to determine oscillator 4 output frequency. The master oscillator, which can be tuned over a 1-MHz range (2.75 - 3.75 MHz) capacitor, exhibits a linear frequency characteristic. This linearity permits the use of 20 dBm. At -27 dBm input (two 20 mV emf signals), third-order products \((d_3) \) are down -85 dB and second-order distortion \((d_2) \) is down -100 dB.

The oscillator frequency of the synthesizer (fig. 6), whose output is 40.525 to 70.525 MHz (oscillator 4), is derived in several phase-controlled circuits from selected harmonics of a 1-MHz crystal oscillator and the frequency of the variable-frequency master oscillator. The crystal in the 1-MHz oscillator is housed in a proportionally-controlled oven for stability. The frequencies derived from this 1-MHz oscillator are more accurate than those of the variable-frequency master oscillator, which determines receiver setting accuracy and stability.

While some receiver designs use frequency synthesizers which are switchable in steps down to 1 Hz, this much resolution is somewhat prohibitive for a search receiver. The lock time of such a frequency synthesizer would not permit easy tuning and, therefore, this type of receiver should only be used for channelized point-to-point communications. The method used here, derived from the Rohde & Schwarz EK07 shortwave receiver, was designed in 1957. A similar method has been used in receivers such as the National HR0500 and HR0600.

Basically, the 40.525 to 70.525 MHz frequency range is converted to an auxiliary i-f of 2.75 - 3.75 MHz. A frequency- and phase-sensitive double-balanced modulator is used as a comparator together with the master oscillator to determine oscillator 4 output frequency. The master oscillator, which can be tuned over a 1-MHz range (2.75 - 3.75 MHz) capacitor, exhibits a linear frequency characteristic. This linearity permits the use of 20 dBm. At -27 dBm input (two 20 mV emf signals), third-order products \((d_3) \) are down -85 dB and second-order distortion \((d_2) \) is down -100 dB.

The oscillator frequency of the synthesizer (fig. 6), whose output is 40.525 to 70.525 MHz (oscillator 4), is derived in several phase-controlled circuits from selected harmonics of a 1-MHz crystal oscillator and the frequency of the variable-frequency master oscillator. The crystal in the 1-MHz oscillator is housed in a proportionally-controlled oven for stability. The frequencies derived from this 1-MHz oscillator are more accurate than those of the variable-frequency master oscillator, which determines receiver setting accuracy and stability.

While some receiver designs use frequency synthesizers which are switchable in steps down to 1 Hz, this much resolution is somewhat prohibitive for a search receiver. The lock time of such a frequency synthesizer would not permit easy tuning and, therefore, this type of receiver should only be used for channelized point-to-point communications. The method used here, derived from the Rohde & Schwarz EK07 shortwave receiver, was designed in 1957. A similar method has been used in receivers such as the National HR0500 and HR0600.

Basically, the 40.525 to 70.525 MHz frequency range is converted to an auxiliary i-f of 2.75 - 3.75 MHz. A frequency- and phase-sensitive double-balanced modulator is used as a comparator together with the master oscillator to determine oscillator 4 output frequency. The master oscillator, which can be tuned over a 1-MHz range (2.75 - 3.75 MHz) capacitor, exhibits a linear frequency characteristic. This linearity permits the use
of a directly calibrated scale with an ultimate resolution of 50 Hz.

To increase the variable master-oscillator frequency stability, all frequency-determining parts are housed in an oven and maintained at 60°C (140°F). Short needle pulses are derived from the 1-MHz oscillator output and are used to lock in oscillator 3 in 1-MHz steps. This frequency is required in a down-converter system to obtain 2.75 to 3.75 MHz for the master oscillator. The same needle pulses are used in a phase-locked loop system to synchronize the frequency of the 40-MHz crystal oscillator, which converts the first i-f (40.525 MHz) to the second i-f (525 kHz) with the 40th harmonic of the 1-MHz crystal oscillator. Oscillator 4 consists of six single oscillators, each of which is tuned over a range of about 5 MHz by tuning diodes.

The frequencies of oscillators 3 and 4 are converted to 775 kHz. This frequency is then applied to a 31:1 frequency divider. A phase comparator operating on the scanning principle compares the 25-kHz frequency difference with the output from the 1-MHz crystal oscillator. This output voltage adjusts oscillator 4 (residual superimposed ac voltages have been suppressed by the lowpass filter). If this circuit is not controlled, as for instance when the MHz range is changed, a search oscillator generates a sawtooth voltage that sweeps the oscillator range until its frequency is in the lock-in range of the control circuit. The frequency divider reduces the control circuit gain to the 31st part, thus increasing stability.

When the AFC circuit is switched on, the 25-kHz reference frequency is not derived from the 1-MHz crystal oscillator but from an LC oscillator, whose frequency can be varied by a varactor. If the receiver is not...
exactly tuned to the carrier, the output voltage of a narrowband FM discriminator at the output of the i-f section changes the LC oscillator frequency and hence that of oscillator 4, so that the carrier lies at midband except for a residual control error of about 5% of the original deviation. The AFC circuit permits adjustment to within ±1.5 kHz.

Free-running oscillator 4 has a high signal-to-noise ratio; for example, more than 140 dB per hertz of bandwidth at a 30-kHz spacing from the carrier. The control circuit has a narrow bandwidth to minimize its effect on the signal-to-noise ratio (circuit gain of 1 at about 5 kHz). Low-frequency disturbances, such as shock or noise caused by operating the switches or by the built-in monitoring loudspeaker, are avoided by mounting parts of the oscillator on shockmounts.

The mode of operation described is ideal for rapidly scanning wide frequency ranges, since a range of 1 MHz is covered in ten rotations of the tuning knob. The mode with high-scale resolution provides the full setting accuracy of the receiver. For this purpose, the tuning knob for the 100-kHz ranges is turned from its end position to the required 100-kHz step. The signal fed to the control circuit of oscillator 4 is a mixture of the tenth part of the master-oscillator frequency and a frequency derived from the 1-MHz oscillator. This signal is switch-selected in 100-kHz steps.

A frequency divider and a harmonic generator produce a 200-kHz spectrum from the 1-MHz frequency of the oscillator. Oscillator 1, like oscillator 2, is switched in 200-kHz steps by the 100-kHz tuning knob and converts one of the spectral lines in the mixer to 250 kHz. The subsequent phase bridge compares this frequency with a 250-kHz frequency derived from the 1-MHz oscillator by a 4:1 frequency divider, thereby producing the control voltage for oscillator 1. Oscillator 1 thus operates with the high accuracy of the 1-MHz crystal oscillator on one of the frequencies divided into 200-kHz steps between 4950 and 6750 kHz.

In a further phase-control circuit, the frequencies of oscillators 1 and 2 are converted to the 500-700 kHz range and compared in the phase bridge with the master oscillator frequency, which is divided in a ratio of 5:1. After separating the ac voltage components in the low-pass filter, the output voltage of the phase bridge controls the frequency of oscillator 2. By dividing the oscillator frequency in half, the frequency of the master oscillator, 2750-3750 kHz, is again obtained, but this time in a switch-selected, 100-kHz range. Because of the frequency divisions (5:1 and 2:1), the master oscillator covers only a tenth of the range so that receiver scale resolution and accuracy are increased by ten times. With a counter, the scale resolution may be 10 Hz or better and the BCD outputs may be used to program a direction finder through a remote-control system.

This type of synthesizer permits continuous tuning for many purposes. However, quasi-continuous tuning in steps of 10 Hz is admissible, which simplifies the whole synthesizer dramatically. This synthesizer has been described in detail to show what must be considered when building a practically spurious-free, low-sideband-noise local oscillator.
A. Circuit using current and voltage feedback for improved linearity and transformers for stabilizing input and output impedance from 100 kHz to 200 MHz. Amplifier has low output impedance; the two 27-ohm resistors are used to increase this value.

B. An improved version of the circuit in A. Output impedance is very high. Agc can be applied by replacing the two 270-ohm resistors with a single pin diode shunt regulator. This circuit is less expensive and simpler than a constant-impedance T-attenuator.

C. Low-noise version with emitter feedback for extremely high input and output impedance. Amplification is 7 (1:7 turns ratio) and input impedance is 300 ohms divided by 7, or 47 ohms. Output impedance is several hundred ohms. Noise figure of less than 2 dB can be obtained.

fig. 14. Three push-pull arrangements for high linearity input rf stages.
The receiver described above is the result of combining various optimized stages and careful planning. To predict the overall technical performance, it's required to start with a block diagram containing vital information, such as gain, dynamic range expressed in second, third, and higher-order intermodulation distortion, and noise figures.

Fig. 7 is a block diagram of a receiver with a first high i-f and shows the amplification or losses of each stage. As shown, the input bandpass filter and the automatic attenuator have a 0.5-dB loss. The push-pull rf amplifier provides approximately 11 dB gain, which will compensate for the losses of the passive, high-level, double-balanced mixer and the losses of the 40.525-kHz crystal filter. The overall gain from the rf input to the 40.525-MHz push-pull amplifier is 0 dB. The stages from 40.525 to 525 kHz are almost identical; however, the second-order intermodulation of the second rf amplifier does not exceed the high values of the first. This is not necessary because of the cross-modulation crystal filter. The second high-level double-balanced mixer has somewhat higher losses but provides the same or even better intermodulation distortion suppression. The first 525-kHz filter is about ±6 kHz wide, and the overall gain up to this point is 0 dB.

The overall noise figure, which can be calculated from the block diagram, is 8 dB. The second and third intermodulation distortion performance of the rf input is shown in fig. 8. The main idea of obtaining a high dynamic range lies in the concept of having as little gain as possible while keeping the overall noise figure below 10 dB. This is achieved by carefully selecting the characteristics of each of the individual stages, as will be described later.

For a few rare applications it may be necessary to suppress frequencies in the immediate vicinity of a desired signal, for example, where a transmitter and a receiver are used simultaneously. Under these rare circumstances an rf preselector, as shown in fig. 9, is an absolute necessity. Because of the preselector's high selectivity, a 10-volt emf signal, ±10% away from the frequency of reception should not create intermodulation distortion more than -9 dB down. However, for these purposes special transceivers with duplex capabilities are used. These preselective filters have about -4 to -5 dB insertion loss. A typical response is shown in fig. 10.

circuit analysis

Because of the new approach in the design of this receiver, the circuits of a number of stages will differ substantially from those commonly used. To give a better understanding of the overall system, the most important stages are shown and explained here.

Input filter. In most cases the highly selective preselector of fig. 9 is not required, so a combination of elliptical filters selected for the frequency ranges is adequate. Third- and higher-order, odd-number intermodulation distortion products cannot be overcome by selectivity unless filters are 10 kHz wide or less. Second-order intermodulation distortion products can be improved by about 40 dB with these switchable filters.

Special Bessel-Cauer elliptical filters are used with a given Chebyshev response in the passband. This is absolutely necessary, because 50-ohm impedance matching is required in the stopband and passband so that filters can be cascaded. Fig. 11 shows a modern input filter covering the range 1.5 to 30 MHz in six steps.

A highpass-lowpass input bandpass filter suppresses unwanted broadcast signals, and the lowpass filter section, together with the following lowpass section of the individual bandpass filter, guarantees more than 90 dB image suppression. The advantage of this technique is that these filters can be aligned very easily with the help.

fig. 15. Double-balanced mixers. A and B are medium- and high-power configurations; C is a double-balanced mixer for uhf/shf with adjustable bias.
fig. 16. Examples of fet mixers. A balanced mixer with high input impedance (1 kilohm) is shown in A. A two-tone, 176 mV emf signal produces third-order IMD 68 dB down. A balanced fet mixer with 50-ohm input is shown in B (same performance as the circuit in A). C is a double-balanced mixer suggested by Ed Oxner of Siliconix. Its performance is 3 dB better than that of the circuit in B. An improved version of this mixer is shown in D (on facing page), also by Mr. Oxner.
of a sweeper generator and an oscilloscope, and are much less complex than a mechanical tracking arrangement.

Input attenuator. Modern communications receivers should have low-distortion, automatic input attenuators that are activated at input signal levels above 100 μV emf. For the frequency range from 1 MHz to 30 MHz, pin diodes such as the HP5082-3081 are highly recommended in a double-T configuration (fig. 12), where the line impedance must remain fairly constant because of filter matching. The intermodulation distortion products of an attenuator such as this are about 85 dB down for two 1-volt emf signals. This means that the attenuator does not add any serious distortion to the system.

Rf input stage. In the past only certain vacuum tubes were considered to be sufficiently linear for rf front ends. However, recently it has been found out that if both voltage and current feedback are used in a transistorized rf stage, much better linearity can be obtained than with any receiving-type tube. The second-order intermodulation distortion products can be suppressed by almost another 40 dB over a single stage when using a push-pull arrangement. Fig. 13 shows the intermodulation distortion performance of a single stage and a push-pull stage, using the highly linear 2N5109 uhf power transistors made by RCA. The input and output impedances are stabilized with a third feedback network using a wideband transformer.

Fig. 14 shows three push-pull arrangements suitable for this purpose. Fig. 14A, which was published earlier,2-3 uses voltage and current feedback to minimize intermodulation distortion, while the transformers act as impedance stabilizing devices. The cores recommended are F625-0-TC9 for 1.5-30 MHz or F625-9-Q1 for the higher frequencies (made by Indiana General).

Fig. 14B shows an improved version of the circuit in fig. 14A. While the latter produces a 50-ohm output impedance, the circuits of figs. 14B and 14C are basically constant-current devices. Because of this, a push-pull pin diode attenuator using only two diodes can be used (5082-3081 made by Hewlett-Packard). With the constant-impedance attenuator, fig. 12, second-order intermodulation distortion products are also further suppressed. However, because of the unbypassed emitter resistors, the additional noise contribution will not permit noise figures below 3 to 4 dB.

Fig. 14C shows a low-noise arrangement in which...
fig. 18. Improved version of Martin's rf input stage. The 9-MHz trap suppresses i-f feedthrough, and the push-pull fets increase dynamic range by 4 dB relative to the original design. In addition, a noise blanker can be used with 1-μs switching time because of the push-pull arrangement.

I-f section of the high frequency receiver built by DJ2LR. Crystal filters are switched into the circuit with small relays. The i-f amplifiers are located along the bottom portion of the board.
emitter feedback through a transformer is accomplished. As a result, the input and output impedances are extremely high, and the voltage feedback permits choosing suitable values. However, this push-pull stage will provide noise figures of 2 dB or less, while still having the same basic dynamic range.

In some cases it's possible to build a receiver without an rf input stage. Especially for fixed operation, the antenna system will have a noise temperature much higher than 300 KT_0, which means that the various noise sources being picked up by the antenna system will provide a noise floor significantly higher than the receiver-input noise. Under these circumstances, receiver sensitivities up to 20 dB do not degrade overall performance. For applications like mobile radios, however, such sensitivity is not good enough. Since mobile antenna efficiency is between 10 and 30%, the noise pickup is reduced by the same amount and, therefore, noise figures less than 10 dB are vital. In cases of fixed stations new circuitry can be used, which is discussed in the next section.

Double-balanced wideband mixers. It has been found that push-pull arrangements have advantages over single-stage mixers; however, because of the high input impedance of tubes, few attempts have been made to use push-pull or double-balanced mixers with vacuum tubes in high-frequency communications receivers. Because of some other disadvantages the use of beam-deflection tubes was not a breakthrough. Since the introduction of low noise hot-carrier diodes, double-balanced mixers for high-level operation have been constructed and various configurations have been used, as shown in fig. 15.

Only recently double-balanced mixers with field-effect transistors have been used which exhibit excellent third-order intermodulation distortion suppression. Fig. 16 shows four tested configurations with fets. Figs. 16B and 16C use matched pairs.

Fig. 17 shows the third-order intermodulation distortion suppression of low-level double-balanced diode mixers, medium-level double-balanced mixers, and high-level double-balanced mixers, including double-balanced, field-effect transistor mixers. As can be seen, the fet mixer shows significantly higher signal-handling capability. Most circuits using field-effect transistors in double-balanced mixers were originated by Ed Oxner (ex W9PRZ) of Siliconix Incorporated.

Because of the inherent gain capability, fet double-balanced mixers offer advantages in test instruments but their application in shortwave receivers remains debatable. These circuits are very sensitive to load termination, and the input impedance of most crystal filters found on the market changes significantly over frequencies outside the passband. To reduce this effect, a resistive termination is required at the input (valid for all mixers, independent of configuration). However, the remaining impedance jump of 1 to 2 for out-of-passband operation reduces performance greatly.

Field-effect transistors are high-input-impedance devices. Fet mixers require about 2 volts rms across 50 ohms, which is equivalent to the injection required by a high-level double-balanced mixer. Because of the difficulty in providing wideband impedance matching in fets at high impedances, in my opinion medium- to high-level double-balanced mixers offer an advantage over fet mixers.

A typical application for an input stage using a double-balanced mixer and no rf stage is shown in fig. 18. This is an improved version of a circuit designed by Mr. Martin, based upon an article I published in 1972. The 9-MHz trap in the input suppresses image feedthrough. The grounded-gate operation of the CP643 transistors (Crystalonics) provides a wideband resistive input termination for the mixer. The magnitude of the input impedance to the CP643s can be set by adjusting the 250-ohm potentiometers.

The 2N5109 transistor amplifier provides about 20 dBm injection for the RAY3 high-level double-balanced mixer (Mini-Circuits Laboratory). This circuit, which is
similar to that found in the Atlas transceiver, has a distinct advantage: because of proper termination of the double-balanced mixer, unwanted intermodulation distortion products are at least 15 dB below those found in the Atlas circuit. The reason for this is that the Atlas circuit uses a tuned circuit between the crystal filter and the first i-f transistor (2N3866), and this tuned circuit does not provide proper matching to attenuate spurious products. All manufacturers of double-balanced mixers this push-pull amplifier is 220 ohms and a crystal filter requires 500 ohms, a 2:1 transformer, model T2-1 (made by Mini-Circuits Lab), must be used.

The 220-ohm resistor reduces the high-impedance characteristic effect of the filter as described in reference 3. The output termination of the crystal filter is provided by the tuned circuit, which is heavily damped by the 2.7 kilohm resistor. This is necessary to provide stable operation.

The KVG XF9B crystal filter is a popular ssb filter familiar to most amateurs. The first i-f stage after the crystal filter shown here provides enough gain and agc action for most applications.

The RAY3 double-balanced mixer requires a 50-ohm termination, which is obtained by an rf transformer, model T4-1.* Using a push-pull arrangement not only increases total dynamic performance by 3 dB but also provides the possibility of using the transistors as a switch for noise blanking. For high-efficiency noise blanking a switch time of 10 microseconds is essential. A similar circuit, which is extremely efficient, is found in the Swan 200 series of amateur equipment.

To reduce costs, or if the CP643 is difficult to obtain, two BF246C transistors, made by Texas Instruments, may be substituted. These are high-current vhf fets with an I_{DSS} of about 100 mA. Since the optimum load for this field-effect transistor provides 60 dB gain variation, and the overall gain from input to output at 50 ohms is 28 dB. In cases where a tuned circuit is used as a first i-f amplifier between the double-balanced mixer and an input stage, the dynamic range of the mixer will be heavily degraded. This is one of the reasons why the Atlas circuit does not provide the dynamic range that would be expected from the mixer alone. I believe this circuit is a good suggestion for experimenters who are still willing to build their own communications receivers.

Vhf crystal filters. Until recently low-loss 6-pole crystal filters were not available. The most significant feature similar circuit, which is extremely efficient, is found in the Swan 200 series of amateur equipment.

The field-effect transistor provides 60 dB gain variation, and the overall gain from input to output at 50 ohms is 28 dB. In cases where a tuned circuit is used as a first i-f amplifier between the double-balanced mixer and an input stage, the dynamic range of the mixer will be heavily degraded. This is one of the reasons why the Atlas circuit does not provide the dynamic range that would be expected from the mixer alone. I believe this circuit is a good suggestion for experimenters who are still willing to build their own communications receivers.

The field-effect transistor provides 60 dB gain variation, and the overall gain from input to output at 50 ohms is 28 dB. In cases where a tuned circuit is used as a first i-f amplifier between the double-balanced mixer and an input stage, the dynamic range of the mixer will be heavily degraded. This is one of the reasons why the Atlas circuit does not provide the dynamic range that would be expected from the mixer alone. I believe this circuit is a good suggestion for experimenters who are still willing to build their own communications receivers.

Vhf crystal filters. Until recently low-loss 6-pole crystal filters were not available. The most significant feature other than the shape factor of these vhf filters is the internal loss, which must be held below 5 dB (typical 4.5 dB) for narrow-band applications, i.e., ±3.5 kHz. Fig. 19 shows the typical response of a 41- or 49-MHz crystal filter.

When it was discovered that mechanical filters with magnetostrictive transducers create heavy intermodulation distortion at high input voltages, these filters were updated and now use piezo-electric transducers, which avoid this distortion. A similar effect can be observed at

*The RAY3 mixer and T4-1 transformer are made by Mini-Circuits Laboratory, 837-843 Utica Avenue, Brooklyn, New York 11203.
the input transformer of crystal filters using toroids. Two 1-volt input emf signals at 50 ohms must not produce third- and second-order intermodulation distortion products of 85 dB or less. Fig. 20 shows a typical configuration of a 6-pole vhf crystal filter with high distortion because of the input toroidal crystal filter, while fig. 21 shows an improved version using a tuned input transformer with almost no measurable distortion.

Oscillator sideband noise. As explained earlier, oscillator sideband noise contributes significantly to the large-signal-handling capability of a receiver. Blocking and 3-dB compression are often confused in the literature. Compression is the effect caused by sideband noise, i.e., 20 kHz off the vfo carrier frequency, which causes blocking. This blocking effect can be expressed in terms of the sideband noise as it affects receiver sensitivity:

Assume sideband noise of 145 dB per hertz located 20 kHz from the vfo carrier frequency and a receiver noise figure of 10 dB. An input signal of 50 mV will cause 3-dB blocking or desensitization of the receiver, while 3-dB compression may occur at a point as high as 1 volt on the input signal. This relationship is shown in fig. 22.

When designing oscillators with very low sideband noise, either selected fets operating in a saturated mode or medium-power 2N3866 transistors should be used.

bibliography

17. L.S. Baar, "RF Applications of the Dual Gate Mosfet Up To 500 MHz," RCA Application Note AN4431.
18. Richard Brubaker, "Semiconductor Noise Figure Considerations," Motorola Application Note AN421.
Although designed for shortwave broadcast, this receiver is easily modified to provide coverage between 3.2 and 30 MHz. Previous articles have described my ideas on monoband versus multiband receivers. The concepts developed in these articles are still true, but response to another article indicates many experimenters aren't interested in building a one-band receiver and are willing to accept spurious responses in a multiband unit. This is particularly true for amateur-band operation where it's a simple matter to change frequency if a contact is made where a spurious response exists in the receiver. My operation is largely confined to listening to shortwave broadcast. Tuning a signal on these bands is a different situation. Shortwave broadcast stations emit signals on one frequency. If one of these signals happens to fall on a spurious response in the receiver, reception is difficult and a rare DX station may be lost.

This article presents the results of my experiments to produce a miniaturized, solid-state receiver with a mechanical counter digital frequency readout. The receiver covers 4.2 - 5.2 MHz in five bands, but with modification to front-end inductances and suitable crystal selection, it can provide general coverage between 3.2 and 30 MHz.

Conversion method

An extensive search was made of commercial and military communications gear. Some mixing combinations, excellent as they are, were discarded because of their complexity. This was particularly true of the Collins 51J4, whose mechanical complexity is high and for the Racal 217 whose electrical complexity is high. Other combinations were also discarded. The Collins 75A4, for instance, would be difficult to duplicate because of the complexity required to build a linear vfo over 1 MHz in the 2 MHz region.

The Collins 75S3 series was screened in depth. I operated a 75S3 inside and outside the amateur bands for several years and found only one spurious response.

By Jack Perolo, PY2EIC, P.O. Box 2390, San Paulo, Brazil
at 5000 MHz caused by the second harmonic of the vfo when tuned to 2500 MHz. This occurred when 5 MHz was tuned in the 4.8-5.0 MHz band; by switching to the 5.0-5.2 MHz band, 5000 MHz was received with no problem.

Among the advantages a duplication of the Collins 75S3 would offer is its straightforward construction. And, even more important by amateur standards, the vfo tunes only 200 kHz making it easy to linearize. The price you have to pay for these advantages, however, is that if the vfo frequency excursion is only 200 kHz, each high-frequency crystal provides coverage for a band 200-kHz wide. In other words, if you wish to use the receiver over a wide frequency range, the quantity of crystals required is somewhat high. The model GP48 receiver described here has only five bands and therefore five crystals; earlier models had wider coverage: the GP45 had ten bands and the GP46 36 bands. At about $4 per crystal, the GP46 had about $150 worth of crystals.

I built some solid-state receivers around the Collins 75S3 mixer combination. I was quite pleased with these experimental efforts; then I made another unit (dubbed GP42). The GP48 is the sixth of a series. Its schematic appears in fig. 2. This receiver covers 4.2-5.2 MHz or, generally speaking, the 60-meter shortwave broadcast band. With suitable crystal selection and front-end coil inductances, any frequency between 3.2 and 30 MHz can be covered with the exception of 5.2-6.5 MHz.

circuit considerations

The basic circuit is closely related to the receivers in references 1 and 3, whereas the basic mixing scheme is derived from the Collins 75S3 line. There are, however, some differences worthy of mention. The Collins front end is slug tuned, with parallel capacitors switched in to cover the low-frequency bands. While I've built similar units, I preferred the usual variable capacitor combination for this project, as most builders would probably not be able to homebrew a backlash-free multicore mechanism. For those who prefer the permeability tuned version, some surplus outlets offer powdered-iron cores with high length-to-diameter ratios and with a spring (rather than the usual threaded pin) termination. The permeability, \(\mu \), of the cores is unknown, but it could be found with a grid dip meter or by breadboarding the front end before final assembly.

The Collins 3-MHz i-f is fixed tuned with a remarkably flat response over the 2955-3155 kHz range. I didn't wish to compromise on sensitivity and, after some experimenting, I decided to make the 3-MHz i-f partially tunable (fig. 1). The vfo capacitor is a two-gang affair that tunes the vfo and the input to the 3-MHz i-f amplifier, whereas the second mixer is fixed tuned. This improves the bandpass flatness and, by having a fixed-tuned mixer, buffer stages aren't needed between the vfo and the mixer. In fact, since the mixer is fixed tuned and operates over a narrow frequency range (200 kHz), it offers a reasonably constant load to the vfo.

This brings up another difference between my design and that of the Collins 75S3 line; the vfo is capacitance-tuned in my case. I have already published an article on...
Fig. 2. Receiver schematic. Crystal frequencies shown are for receiver coverage between 4.2-5.2 MHz. Receiver range may be changed to include 3.2-30 MHz by substitution of suitable crystals and front-end inductances.
a permeability tuned vfo as well as some generalized considerations on linear vfos. Again, the average amateur will find it difficult to come up with a backlash-free permeability-tuned vfo and even more difficult, as in this case, to gang two slugs together.

construction details

The photos show different views of the GP48; most of the construction details can be seen in these pictures. The receiver dimensions are 6 inches wide by 2.5 inches high by 6 inches deep (15 by 6 by 15 cm). All front and back panel lettering was made with a pantograph; knob skirts were made from 16-gauge stainless steel and were similarly engraved. Aluminum shields are 1/32 inch (0.8mm) for PC-board mounting and 1/16 inch (1.6mm) for chassis mounting. Extensive shielding and capacitive decoupling assure stable operation at high gain. High-quality components are used throughout.

The gear-reduction unit, which has a 100:1 ratio, is permanently lubricated in a sealed container. It’s a British import made by Muffett, Ltd. The counter, made by Veeder Root, has three vertical digits. A vertical counter eliminates parallax problems when the receiver is tilted upward. The receiver tuning rate is 10 kHz per knob revolution, which makes for exceptionally smooth action. The brass bevel gears for the counter, made by Boston Gears, have a 1:1 ratio.

The vfo double-gang variable capacitor is also a British import, available in the U.S. from the J.W. Miller Company. The capacitor has very low torque, with ball bearings at both ends. It is coupled by a flexible (bellow) joint to the worm gear reducer. The S-meter is a Japanese import with a 1-mA movement. The meter face was replaced with one reading in S-units.

The receiver cabinet, which is in two halves, is made of 18-gauge stainless steel, secured by 1/8 by 3/4 by 4½ inch (3 by 19 by 114 mm) spacer bars and four 4-40 (M3) binder-head screws. Four glass-epoxy PC boards are used. The i-f/af board is mounted on top of the chassis, while the vfo/3-MHz i-f/second mixer, together with the front-end rf amplifier/first mixer and crystal oscillator/crystal holder, are mounted below chassis.

The vfo circuit was derived from previous receivers and its circuit adapted to cover the 2500-2700 kHz
range; the variable capacitor (105 pF) is correct for the frequency excursion in question. The audio strip ends with a complementary pair wired to avoid transformers. Output power exceeds 0.5 W — more than enough for headphones. The power supply is electronically regulated providing, through back panel jacks, the dc power to run other gear, or conversely, to be used to feed the receiver from a dc source.

circuit details

Because of the extremely high gain of this set, proper shielding and bypassing must be used to achieve stability. All tuned circuits are shielded from the circuits of the corresponding active devices. Heavy filtering is used on all power lines. The vfo coil is shielded to minimize proximity effect. The vfo capacitor is not shielded because it must be accessible to allow for easy filing of its plates during the linearization procedure (described below). It must be remembered, however, that during the filing process, a small temporary shield must be fastened to the top of the vfo variable capacitor to simulate the effect of the metal receiver cabinet. Failure to do so will result in degrading vfo linearity because of the proximity of the cabinet when set in place.

It is important to understand that when a vfo is coupled to a counter, a simple change such as moving a wiring harness can degrade the calibration by more than one kHz at the band edge. Therefore, before starting to linearize the vfo capacitor all screws, nuts and components in general must be securely tightened in place and no circuit changes should be made during or after linearization. The easiest way to achieve perfect linearity is to file down the capacitor plates to within 1 kHz or so of the nominal frequency desired; from then on, the fine part of the linearization procedure is to slightly bend and adjust the side plates of the capacitor rotor. This procedure has the advantage of being reversible whereas filing is not.

selectivity improvements

A major difference between amateur-band operation and shortwave broadcast listening is in selectivity. In the first case interference may be generally avoided by changing frequency; obviously this isn’t possible when receiving shortwave broadcast stations. The minimum bandwidth for a-m reception is stated in the literature as 3 kHz or thereabouts. Any serious listener knows this number is way too high. I’ve used a 2.1-kHz bandwidth (through a mechanical filter) for many years but have changed to narrower bandwidths as conditions demand. For serious shortwave broadcast listening, I’d say the ideal receiver bandwidth is 1.8 kHz.

While mechanical filters are available with a skirt ratio of 2:1 (-60 to -6 dB), a nearby station can still cause interference because of the bell-shaped response of these filters. A remarkable improvement can be achieved by cascading two identical filters, but some words of caution are in order. Using this method, the skirt response at -60 dB can be improved by a factor of $\sqrt{2}$, or about 1.4 times, while maintaining the response constant at -6 dB (see fig. 3). A definite improvement is obtained; so much in fact that comparing two receivers tuned to the same station, one with a 1.4-kHz mechanical filter and the other with two cascaded 2.1-kHz mechanical filters (both bandpass figures at -6 dB), one’s reaction is that the second receiver is more selective than the first.

To realize the full potential of this combination it’s
Top view. Gear reducer is at top left. One of the 3-MHz i-f coils is visible below the variable capacitor. PC board in center includes the three i-f amplifiers, avc amplifier, and audio strip. At top right are the power transformer, mechanical counter, S-meter, rf/af control, and antenna input jack. Aluminum bracket, top left, shields the vfo coil to minimize proximity effect when the steel cabinet is installed.

imperative to use two filters of identical midband frequency to avoid stagger tuning with consequent skirt degradation. Each filter must be individually shielded to avoid ground loops and to ensure the signal travels through the filters and not around them. You can’t take excessive precautions in this respect, because such arrangements are critical beyond imagination. The GP46 receiver (mentioned earlier) was based on this concept with entirely satisfactory results. Another i-f stage should be added to compensate for the insertion loss of the second filter.

frequency readout

While an electronic frequency readout could be used, a mechanical counter is less expensive and physically smaller. For portable work, the mechanical counter is also better since it requires no power. I believe that the vfo linearization work, however tedious and delicate, is still more advantageous than building an electronic counter. Such a counter, however, could always be added to the receiver as an external unit. The advantage in this

case is that the counter can be used for other projects. I’ve found that an external counter offers less interference than built-in units, as their 100-kHz clocks tend to show some leakage into the receiver circuits.

acknowledgement

I’d like to thank PY2GP for his continued support in the realization of this and other projects.

references

ham radio
multiband high-frequency converter

A VVC-tuned converter that extends your 80-meter receiver tuning range to include 40-10 meters plus WWV

Many receiver designs have been published for the 80-meter band. This article provides complete design and construction details for a multiple-band converter to extend the range of this type of receiver. This design provides conversion of the hf bands and 10-MHz WWV signals to 3.4-4.0 MHz for i-f amplification and detection.

Fig. 1 illustrates the converter design in which mos field-effect transistors are used in the rf amplifier and mixer stages because of their superior spurious-response rejection and signal-handling capability. The dual-gate protected mosfet features rf gain or age control in the rf-amplifier (Q1) stage and outstanding mixing characteristics for conversion to the i-f output (Q2).

Overall gain of the converter is shown in table 1. Coil Q for each stage is fairly high; as a result bandwidths are narrow, so some method of tuning is necessary to cover each band. Tuning is by variable capacitance (VVC) diodes in each of the rf and mixer tuned circuits.

circuit description

Fig. 2 is a schematic of the rf and mixer stages. Selection of each band is by band switching the appro-

By M.A. Chapman, K6SDX, 935 Elmview Drive, Encinitas, California 92024
appropriate tuned circuit in the rf and mixer input stages. The mixer output uses a VVC that tunes a full MHz. The individual tuned circuit design centers are for the middle of each amateur band. The VVC will allow the coils to cover each band with a margin of several hundred kHz at each end. Both the rf and mixer stages depend on source resistance for gate bias. The source bias in Q2 is extremely important since it establishes the transfer curve linearity that provides an optimum combination of mixing and spurious response rejection (more information about this source bias and mixer linearity is given in the mixer discussion that follows).

Fig. 3 is the high frequency beat oscillator schematic. This circuit is an adaptation of those in references 1 and 2. A conventional LC network is illustrated for 10-meter beat-oscillator conversion. This signal could have been generated by a crystal as for the other bands; however, fundamental crystals above 20 MHz are expensive and restrict the circuit to some fixed segment of the 10-meter band. Down conversion is accomplished for all bands using a beat oscillator signal approximately 3.5 MHz less than the lower edge of the receiving frequency. For 7.0-7.3 MHz conversion we use the top end of the 80-meter band, 3.7-4.0 MHz, as the i-f output to minimize beat-oscillator feedthrough in the mixer output stage. The 20-meter band (14.0-14.25 MHz) is down converted to the middle of the 80-meter i-f range to maximize circuit selectivity in subsequent stages.

Regular 32-40 pF, parallel-tuned, fundamental-

<table>
<thead>
<tr>
<th>band</th>
<th>tuning range (MHz)</th>
<th>i-f output (MHz)</th>
<th>converter gain (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80M</td>
<td>3.5-4.0</td>
<td>3.5-4.0</td>
<td>37</td>
</tr>
<tr>
<td>40M</td>
<td>7.7-7.3</td>
<td>3.7-4.0</td>
<td>41.7</td>
</tr>
<tr>
<td>15M</td>
<td>21.0-21.45</td>
<td>3.5-3.95</td>
<td>34.5</td>
</tr>
<tr>
<td>10M</td>
<td>28.5-30</td>
<td>3.5-4.0</td>
<td></td>
</tr>
<tr>
<td>WWV</td>
<td>9.9-10.1</td>
<td>3.65-3.85</td>
<td>28.9</td>
</tr>
</tbody>
</table>

Sensitivity: <0.15 V rms using the i-f system described in reference 3 on all bands.
Bandwidth: ±100 kHz for 50% decrease in signal amplitude without peaking adjustment.
Spurious signal rejection: ≈ 50 dB attenuation at ±1 MHz.
frequency crystals should be used. The 2.2-22 pF parallel trimmer capacitors across the crystals may be deleted if you're willing to accept some error in the converted signal output. This error in most cases will be less than ±5 kHz if the capacitors are not used. The total capacitance across the crystal is the sum of the parallel component capacitance and the gate source capacitance. Since all of these components contain variations in capacitance tolerance, some compensation or trimming is required for exact beat-oscillator frequency generation.

Where digital readout schemes are used for frequency display and consideration has been given for band-edge
determination, this frequency error is continuously known. If you depend on a slide rule dial visual display of the tuned frequency, then the oscillator crystal frequencies should be set precisely using some type of capacitor trimming similar to that indicated in the diagram. Both oscillator and buffer use a source inductive load. Considering the wide range of oscillator frequencies, this method of buffering the oscillator produces a stable, moderately uniform output level and minimizes spurious frequencies, which could fall within the tuned frequency range. In combination, the rf mixer and oscillator stages are joined to provide a comfortable 300-500 kHz segment from each of the hf bands to be converted to the 3.5-4.0 MHz 80-meter band. Because of the wide tuning capability in the rf and mixer stages, MARS and general-purpose tuning can also be added if sufficient i-f tuning range is available.

construction

From the photos it’s seen that the converter is built around a simple PC board with attached aluminum plates acting as interstage shields and a convenient mount for the switch decks. This PC board with the attached shield plates is mounted in a standard LMB 136 aluminum chassis box. The shield plates are aligned by drilling the switch shaft clearance hole through all three plates at the same time, then centering one plate on the

*Undrilled PC boards are available from the author for $3.00 including postage.
end of the box to locate and align the box and shaft clearance hole. The PC board is attached to the bottom edge of the plates using self-tapping screws. The shield plates are fastened to the sides of the box in the same manner. This construction follows the same general approach described in reference 3.

To reduce spurious noise and birdies in other portions of the receiver, generous use is made of bypass capacitors and rf chokes both at the PC board and at the point on the chassis side where control and supply voltages are applied. Each stage is individually separated and control lines decoupled from each other to minimize feedback. An examination of figs. 4 and 5 shows potential bandswitching of six individual bands; however, only five are used in this design because of physical limitations of the box and coils. By using a slightly larger box, an additional portion of the 10-meter band could be included or perhaps a 6-meter segment.

Not everyone will be interested in the conversion of all the bands shown. For instance, if only two or three bands are desired, considerably more room would be available for access. If only one band conversion is desired, adequate room is available to mount the coil components directly to the PC-board groundplane areas. For those who may wish to experiment with a less complex and expensive system of fixed-band conversion, the capacitor resonant values of fig. 6 may be used. Padding the coils with a 10k, $\frac{1}{2}$-watt resistor will decrease coil Q sufficiently so that no rf tuning would be required over most of the 500-kHz band segment. The VVC control wouldn’t be required, resulting in a further reduction in power-supply voltages.

The PC layout of fig. 4 also indicates an unused pad next to Q3 gate. The purpose of this pad is for the installation of a coupling capacitor between the oscillator switch deck common and Q3 gate to allow for conventional LC networks to be used for all oscillator frequencies instead of crystals, similar to the method for generating high-frequency oscillator signals for 10 meters as in fig. 3.

oscillator

Construction should be accomplished one stage at a time. The easiest place to start is with the crystal oscillator. It’s not necessary to have the shields or switch decks in place to verify crystal-oscillator operation. Mount the oscillator components to the PC board as indicated in fig. 4. Temporarily install any fundamental frequency crystal between 3-30 MHz between the PC pad from Q3 gate and the ground plane where holes are provided. Install a 100 ohm current-limiting resistor from the +12V PC pad and apply power. The crystal signal should appear at the source of both Q3 and at the output coupling capacitor (270 pF) from the Q4 source.

mixer

The mixer output stage should be wired next. Estimate the service lead length required from the output coil to the board, and allow the coil to hang free from its leads. The bandswitch and shield between the input and output aren’t required for initial testing. Install 100-ohm current-limiting resistors to the +12V mixer coil PC pad and the VVC (4) control PC bus (0-12V). By applying a low-level 3.5-4.0 MHz signal to Q2 gate 1 and varying...
the VVC voltage on the output coil, signal gain and selection should be apparent. The network will be detuned because of scope probe capacitance if the scope probe is not placed on the coil link output. In this mode we’re using Q2 as a simple single-channel fet amplifier, tuning the drain circuit and monitoring the link. Additional verification can be obtained by temporarily grounding Q2 gate 2; the output signal should fall off immediately. To simplify these observations the signal applied to gate 1 should be modulated so that a high-frequency feedthrough apparent. Q1 gain control can be verified by temporarily grounding Q1 gate 2; the output signal should fall off immediately then slowly increase when gate 2 is left open. The rf and a.g.c. features of a dual-gate mosfet can be observed if a variable positive voltage is applied to gate 2. The mixer output should be similar to that shown in fig. 7. A signal envelope similar to that shown in fig. 7 should be seen while monitoring the mixer output coil link. Mixing linearity may be optimized by adjusting the temporarily installed 500-ohm potentiometer for both mixer gain and peak signal-to-local oscillator feedthrough ratios. Next, remove the potentiometer and measure its resistance. Select a fixed resistor of this value, which will be between 200 and 300 ohms. This resistor establishes the gate 1-to-source bias on Q2 for linearity of the fet transfer characteristics. For ideal mixing the transfer curve should approach a straight line when the output signal is plotted against the gate 1 voltage. Since the zero gate voltage versus drain current varies over a wide margin, selection of this source resistor will optimize the device operation.

rf amplifier

The rf amplifier PC components should be installed next. As in the previous steps, no interstage shield is necessary for initial testing. From the pad on the PC board for Q1 drain circuit, temporarily install a 0.01 μF capacitor to the gate 1 pad of Q2 and add a 100-ohm resistor between the Q1 drain PC pad and the +12 V bus. Apply power to the rf and mixer drain circuits and oscillator, and apply a low-level modulated 14-MHz signal to Q1 gate 1. The mixer output should be similar to the previously described mixer test signal, with some high-frequency feedthrough apparent. Q1 gain control can be verified by temporarily grounding Q1 gate 2; the output signal should fall off immediately then slowly increase when gate 2 is left open. The rf and agc gain control features of a dual-gate mosfet can be observed if a variable positive voltage is applied to Q1 gate 2. The output signal should be nearly zero when gate 2 is at or near ground potential; then the output signal will rise in amplitude as the gate 2 voltage is increased to about 8 Vdc. Maximum gain is achieved when the gate 2-to-source voltage is about 6 Vdc.

You may want to adjust the Q1 source resistor. Because Q1 is a depletion device, the source could be operated at ground potential with maximum gain from the stage; however, some biasing of gate 1 is desirable for device stability, and 100 ohms is a common value for a mosfet in this type of rf application. For higher frequencies, such as 144 or 220 MHz, a 220-ohm resistor would...
provide some improvement in the noise figure with a sacrifice in gain. If you need the extra gain, the source resistor could be reduced to 47 ohms. If plenty of selectivity and gain are available in the i-f amplifier, my suggestion would be to increase Q1 source bias to several hundred ohms.

final adjustment

At this point we’re confident of our component operation, and all temporary connections should be removed. Figs. 4 and 5 illustrate the inductor and switch deck interconnection. The switches select the crystal beat oscillator frequency and appropriate tuning network for the desired band. In the 80-meter position the signal bypasses the rf mixer stages and is presented directly to the output connector. Using 24 AWG (0.5mm) solid hookup wire, adequate strength is available to support the coil components until you’re ready to install the PC board into the box and fasten the coil to the chassis sides.

Before installing the PC board and coil assemblies into the box, the interface connections should be temporarily installed as in fig. 7 and a low-level signal applied to each band. This will allow you to de-bug any wiring errors and initially adjust the coil slugs. A signal level of one or two millivolts may be required, depending on your oscilloscope sensitivity, for alignment. A typical modulated 14-MHz signal is shown in fig. 6 and indicates the envelope response with proper tuning and normal gain settings. The signal amplitudes and features may differ considerably if the mixer output is left unloaded. During my initial testing, a 51-ohm, 1-watt resistor was used across the oscilloscope input terminals, and the normal input capacitance was 40 pF.

additional suggestions

VVC selection was based on what was readily available. Nominal resonance capacitance for middle of the band tuning of each coil is shown in table 2. An infinite number of VVC and capacitor values will tune the circuits. The total tuning capacitance of these VVC devices is not fully used for the bands indicated. The tuning ratio for the rf and mixer input VVC devices is approximately 3, and the mixer output VVC device has a tuning ratio of 10. The reader is referred to Motorola’s application note 4 for design options.

Resistors for the oscillator are $\frac{1}{4}$-watt; those for the rf and mixer are $\frac{1}{2}$-watt. Low-voltage ceramic or mica capacitors are used. You might experiment using 100-ohm resistors in place of rf chokes for cost reduction; however, the tradeoff here is added spurious noise.

application

Fig. 7 shows the typical interface for VVC control and power bus lines. The rf and mixer tuning controls may be ganged as indicated by adjusting the mixer tuning control for maximum signal output at 3.75 MHz then readjusting the coil slug to the center positions. Tracking between rf and mixer stages is not perfect because of device nonlinearity and frequency tuning ranges; however, for nominal 500 kHz bandwidths, these variations are minimal.

Reference 3 includes an agc circuit that may be used instead of the rf-amplifier gain control. Because of the high input impedance of Q1 control gate, several agc stages may be ganged in parallel; however, the device types in the rf and i-f stages should be similar because of variations in gate 2 voltage and gain between device types. For optimum receiver performance, the VVC controls should remain independent so that signal peaking will be maximum.

references

if the 4-BTV weighs 39% more... what do others leave out?

HUSTLER FIXED STATION FOUR BAND VERTICAL

The 4-BTV is longer for greater aperture, larger in diameter for strength and bandwidth, heavier traps for precision and safety factor. Individually, each subassembly weighs more to collectively give you an antenna designed for convenience of assembly and installation, a wide margin in mechanical stability and far superior electrical performance.

- Lowest SWR—PLUS!
- Bandwidth at its broadest! SWR 1.6 to 1 or better at band edges.
- Hustler exclusive trap covers “Spritz” extruded to otherwise unattainable close tolerances assuring accurate and permanent trap resonance.
- Solid one inch fiberglass trap forms for optimum electrical and mechanical stability.
- Extra heavy duty aluminum mounting bracket with low loss—high strength insulators.
- All sections 1½” heavy wall, high strength aluminum. Length 21′ 5”.
- Stainless steel clamps permitting adjustment without damage to the aluminum tubing.
- Guaranteed to be easiest assembly of any multi-band vertical.
- Antenna has ¾”-24 stud at top to accept RM-75 or RM-75-S Hustler resonator for 75 meter operation when desired.
- Top loading on 75 meters for broader bandwidth and higher radiation efficiency!
- Feed with any length 50 ohm coax.
- Power capability—full legal limit on SSB and CW.
- Ground mount with or without radials; roof mount with radials.

one setting for total band coverage! 40 THROUGH 10 METERS

HUSTLER ANTENNA PRODUCTS—for sixteen years—original designs—created and manufactured by American ingenuity, labor and materials—used by communicators throughout the world.

Hustler designs are patented under one or more of the following assigned to New-Tronics Corporation: 3287332, 3513472, 3419869, 3873985, 3327311, 3599214, 3582951

Available from all distributors who recognize the best!

new-tronics corporation

15800 commerce park drive, brook park, ohio 44142
Exporter: Raburn Agencies, Inc., New York, N.Y.
A complete design approach for uhf and microwave amplifiers, and the performance tradeoffs which result with simplified design methods

In two recent articles I introduced a rather simplistic design method for matching microwave transistors in microstrip line preamplifiers for 1296 MHz. The designs proved entirely acceptable for amateur applications, exhibiting input and output vswr well below 2:1, and yielding gains within 0.5 dB of those theoretically obtainable from the transistors used in the circuits. In fact, these designs were so successful that they ultimately formed the basis for a commercial product line for the 1296 MHz band. There is, however, no reason why full maximum available gain, and true 1:1 vswr, should not be achievable in microstrip line amplifiers if simplistic design methods are abandoned in favor of a more complex, rigorous approach. In military and aerospace electronics, where the ultimate in performance is essential, such perfectionism has become a watchword. Small wonder, then, that a few discerning radio amateurs are attempting to achieve state-of-the-art performance in their microwave transistor designs.

This article is an exposition of state-of-the-art design techniques and is intended to be instructional, rather than constructional. By briefly reviewing the design approach applied in my previous articles, I shall attempt to identify the omissions which cause the resulting amplifier performance to depart from optimum. Following a brief discussion of transistor parameter characterization, I will show the mathematical procedures necessary to overcome the performance shortcomings of my previous designs. This is followed by a design example based on the MRF-901 transistor. The final section of the article outlines the minor performance differences between the rigorous design approach and more casual matching computations. For those readers who are interested, an appendix is provided which outlines some of the rules of vector arithmetic that are required for proper manipulation of semiconductor scattering parameters.

Simple matching scheme

For any two-port device, optimum power transfer occurs when both input and output are terminated in their complex conjugate impedances. That is, for any port impedance consisting of a resistance and a series reactive component, the termination should appear as a like value of resistance in series with the opposite reactive component. For example, a port with an impedance of 35 + j100 ohms (35 ohms of resistance, 100 ohms of series inductive reactance), should be terminated in 35 - j100 ohms (35 ohms of resistance, 100 ohms of series capacitive reactance).

Recognizing the above, amplifier design consists of causing the ports (transistor input and output impedances)...

By H. Paul Shuch, WA6UAM, Microcomm, 14908 Sandy Lane, San Jose, California 95124
...ances) to be terminated in their complex conjugates. The problem is to identify the actual transistor input and output impedances occurring at a given frequency, and under a given set of bias conditions.

It is convenient to assume that the impedances related to the transistor's input and output reflection coefficients (s_{11} and s_{22}) approximate the device’s input and output impedances. This is the approach I used in my previous articles. The fallacy (and one source of minor errors) is the fact that s_{11}, the input reflection coefficient, directly relates to input impedance only when the output is terminated in a pure resistance of 50 ohms. Similarly, s_{12}, output reflection coefficient, is directly related to the output impedance only when the input is terminated in a pure resistance of 50 ohms. In other words, varying the impedance match at one port will affect the impedance seen at the other port.

To understand the reason for this interaction, it’s important to realize that no transistor is strictly a unilateral device. Any time a signal is injected into the output of a transistor amplifier, some signal will be discernible at the input. The physics of semiconductor construction allow for a feedback path which, though it may appear minimal, nonetheless allows output matching to have an impact on input impedance, and vice versa.

If the input and output reflection coefficients of a transistor were both zero, this feedback path would have no effect on transistor matching. A reflection coefficient of zero indicates a corresponding port impedance of 50 ohms, nonreactive. Since s_{11} is measured with the output terminated in 50 ohms, and s_{22} is measured with the input similarly loaded, this is the only case in which terminating one port will not disrupt matching to the other. Of course, if both the input and output impedances of a transistor were 50 ohms, pure resistive, matching to a 50-ohm source and load would be considerably simplified. Unfortunately, we are not blessed with such transistors. Hence, to properly determine input and output impedances, the device’s transfer coefficients must be considered.

S-parameters

In addition to s_{11} and s_{22}, the reflection coefficients discussed previously, a microwave transistor is characterized by a forward transfer coefficient, s_{21} (mathematically related to gain), and a reverse transfer coefficient, s_{12} (which describes the internal feedback path). Together, these four scattering parameters fully characterize the operation of the device. From them can be calculated the transistor’s stability factor (tendency to oscillate under various conditions of source and load termination), maximum available gain, maximum stable gain, and equivalent input and output impedances. The s-parameters can be further manipulated to determine the device’s maximum linear power output capability although such an analysis is beyond the scope of this article.

It should be remembered that each of the four s-parameters varies with frequency, as well as with varying conditions of bias current and operating potential. The term “scattering” is derived from the fact that the para-

![fig. 1. Using a Smith chart to plot the load impedance which exhibits the specified load reflection coefficient, $0.7 \angle 39.6^\circ$. On this normalized Smith chart this yields 1.24 + j2.17. In a 50-ohm system the required load impedance is 62 + j108.5. To plot this point first locate the angle of the reflection coefficient on the peripheral scale and draw a line from 39.6° on this scale through the center of the chart. Referring to the radially scaled voltage reflection coefficient below the chart, measure the distance to 0.7, and transfer this length to the previously plotted line on the Smith chart. The crossover point marks the required complex load impedance.](image-url)

...meters describe a set of variables, based on traveling waves incident on a port and reflected (or scattered) from it, which are evaluated with a mathematical tool called a scattering matrix. It should be further pointed out that s-parameters are vectors. That is, they appear as points on a Smith chart or polar plot which can be defined by both magnitude and angle. For example, at a frequency of 1.3 GHz, with a collector current of 10 mA and a collector-to-emitter potential of 10 volts, the common-emitter s-parameters for a Motorola MRF-901 microwave transistor are:

$$\begin{align*}
s_{11} &= 0.47 \angle 161^\circ \\
s_{22} &= 0.43 \angle -41^\circ \\
s_{12} &= 0.08 \angle 64^\circ \\
s_{21} &= 3.1 \angle 63^\circ
\end{align*}$$

A complete discussion of the derivation and usefulness of the four s-parameters is available in an application note published by Hewlett-Packard. Tabulations of s-parameters corresponding to various frequencies and bias conditions are available from the manufacturers of most microwave transistors.

gain and stability analysis

Before attempting to determine input and output impedances and design matching networks, it is desirable to approximate the gain capabilities of the transistor...
under the chosen operating conditions, and to determine whether the resulting amplifier will be stable. Three parameters which aid in such analysis are Maximum Available Gain (MAG), Maximum Stable Gain (MSG), and Rollett’s stability factor (K). K indicates the amplifier’s tendency to oscillate. If K is greater than 1, the amplifier will be stable under any combination of input and output impedances or phase angles. Such an amplifier is said to be unconditionally stable. Conservative design philosophy suggests that if K calculates to less than unity a different transistor or bias condition should be selected.

Maximum stable gain is, to quote WA6RDZ, “... the most important figure of merit. Transistors with high MSG easy to match, easy to tune, and give high performance, trouble-free amplifiers.” Maximum available gain, also easily calculated, is a fairly accurate approximation of the gain you will observe in the actual circuit if it is carefully designed and built. If MAG is on the order of 2 or 3 dB less than MSG, the amplifier is likely to be both stable and reliable.

Of the above parameters, MSG is the most readily computed because it involves only the absolute values (magnitudes) of s_{21} and s_{12}:

$$\text{MSG (dB)} = 10 \log \left| \frac{s_{21}}{s_{12}} \right|$$

In order to perform the remaining calculations, the vector quantity Δ and the scalar values B_2 are required:

$$\Delta = s_{11} \cdot s_{22} - s_{12} \cdot s_{21}$$

$$B_2 = 1 + |s_{22}|^2 - |s_{11}|^2 - |\Delta|^2$$

It is now possible to calculate Rollett’s stability factor, K:

$$K = \frac{1 + |\Delta|^2 - |s_{11}|^2 - |s_{22}|^2}{2 \cdot |s_{21}| \cdot |s_{12}|}$$

If K proves greater than unity, go ahead and calculate maximum available gain:

$$\text{MAG (dB)} = \text{MSG} + 10 \log |K \cdot \sqrt{K^2 - 1}|$$

where if B_2 is greater than zero (i.e., positive), the sign preceding $\sqrt{K^2 - 1}$ is negative, and if B_2 is less than zero (i.e., negative), the sign is positive. At this point in the circuit design, it is possible to determine whether the performance of the amplifier is acceptable for the intended application. If the amplifier proves only conditionally stable ($K \less than 1$), or if MAG is insufficient, select another transistor or bias point, and go through the calculations again with the new s-parameters.

output conjugate matching

Assuming that the gain and stability analysis indicate that the amplifier design is workable, the output circuit is designed to terminate the transistor in the complex conjugate of its actual output impedance. To determine the true output impedance requires a manipulation involving not only s_{22}, but also Δ and B_2 (eqs. 2 and 3) as well as s_{11}. To find the desired load reflection coefficient, first compute the intermediate vector quantity C_2:

$$C_2 = s_{22} - (\Delta \cdot s_{11}^*)$$

where the asterisk indicates that the complex conjugate of the immediately preceding vector is used (that is, same magnitude, angle has opposite sign).

The angle of the desired load reflection coefficient, Γ_{ML}, is simply $C_2\Phi$. The desired magnitude is found from:

$$|\Gamma_{ML}| = \frac{B_2 \pm \sqrt{B_2^2 - 4 |C_2|^2}}{2 |C_2|}$$

The sign preceding the radical sign is, once again, opposite to the sign on B_2. The desired load reflection coefficient may now be converted on a Smith chart into a complex impedance value, then matched to 50 ohms, as discussed in my previous articles.

input conjugate matching

Once the output load has been specified, the source reflection coefficient which will properly terminate the transistor’s input is found from

$$\Gamma_{MS} = \left[\left(s_{11} + \frac{s_{12} \cdot s_{21} \cdot \Gamma_{ML}}{1 - (\Gamma_{ML} \cdot s_{22})} \right) \right]^*$$

where the asterisk indicates the complex conjugate (same magnitude, angle has opposite sign). This reflection coefficient may be plotted on a Smith chart to determine equivalent impedance, and the result transformed to 50 ohms.

To those readers who have Hewlett-Packard HP-45 engineering calculators, I highly recommend an article by Martin7 which reduces formulas similar to the above to straightforward keystroke sequences. I have also published a HP-35 algorithm for series-to-parallel complex impedance conversion which may prove useful in designing matching networks.8 Additionally, I recently derived a family of programs for the new HP-25 programmable calculator which greatly simplify all of the above calculations.*

*A complete set of HP-25 amplifier design programs is available from the author for $2.00 plus a stamped, self-addressed envelope.
design example

As noted previously, the common-emitter s-parameters for the Motorola MRF-901 transistor at 1.3 GHz, when biased at 10 volts and 10 mA, are as follows:

\[
\begin{align*}
 s_{11} &= 0.47 L + 161^\circ \\
 s_{22} &= 0.43 L - 41^\circ \\
 s_{12} &= 0.08 L + 64^\circ \\
 s_{21} &= 3.10 L + 63^\circ
\end{align*}
\]

Using these parameters, the maximum stable gain, MSG, is calculated from eq. 1:

\[
\text{MSG (dB)} = 10 \log \frac{s_{21}}{s_{12}} = 10 \log (3.1/0.08) = 15.9 \text{ dB}
\]

Before performing the remaining calculations, it’s necessary to compute the vector quantity \(\Delta \) (eq. 2) and the scalar quantity \(B_2 \) (eq. 3).

\[
\Delta = (s_{11} \cdot s_{22}) - (s_{12} \cdot s_{21})
\]

\[
= |s_{11}| \cdot |s_{22}| L(s_{11} + s_{22}) - |s_{12}| \cdot |s_{21}| L(s_{21} + s_{22})
\]

\[
= |0.47| \cdot |0.43| L(161^\circ + (-41^\circ)) - |0.08| \cdot |3.1| L(63^\circ + 64^\circ)
\]

\[
= (0.202 L \cdot 120^\circ) - (0.25 L \cdot 127^\circ)
\]

Converting to rectangular notation and subtracting the x and y components,

\[
\Delta_x = 0.049 \\
\Delta_y = -0.025
\]

Returning to polar notation

\[
\Delta_{R} = \sqrt{\Delta_x^2 + \Delta_y^2} = \sqrt{0.00306} = 0.055
\]

\[
\Delta_{\theta} = \arctan \frac{\Delta_y}{\Delta_x} = \arctan -0.500 = -26.56^\circ
\]

\[
\Delta = 0.055 L - 26.56^\circ
\]

The scalar quantity \(B_2 \) is calculated from the relationship

\[
B_2 = 1 + |s_{22}|^2 - |s_{11}|^2 = |\Delta|^2
\]

\[
= 1 + (0.43)^2 - (0.47)^2 - (0.055)^2 = 0.96
\]

With the vector quantity \(\Delta \) and scalar quantity \(B_2 \) now known, it’s possible to calculate Rollett’s stability factor, \(K \), from eq. 4.

\[
K = \frac{1 + |\Delta|^2 - |s_{11}|^2 - |s_{22}|^2}{2 |s_{21}| \cdot |s_{12}|} = 1 + \frac{(0.55)^2 - (0.47)^2 - (0.043)^2}{2(3.1)(0.08)} = 1.20
\]

Since the stability factor is greater than 1, the amplifier will be unconditionally stable.

The maximum available gain, MAG, of the amplifier is calculated with eq. 5.

\[
\text{MAG (dB)} = \text{MSG (dB)} + 10 \log |K \sqrt{K^2 - 1}|
\]

Since \(B_2 \) is greater than zero (i.e., positive) the sign of the radical is minus.

\[
\text{MAG (dB)} = 15.9 + 10 \log |1.20 - \sqrt{1.20^2 - 1}|
\]

\[
= 15.9 + 10 \log 0.54
\]

\[
= 15.9 + (-2.7) = 13.2 \text{ dB}
\]

Since MAG is approximately 3 dB lower than MSG, the amplifier can be expected to tune easily.

output matching. To terminate the transistor in the complex conjugate of its output impedance, first compute the intermediate vector quantity \(C_2 \) from eq. 6.

\[
C_2 = s_{22} - (\Delta \cdot s_{11}^*)
\]

remembering that the angle of \(s_{11}^* \) has a sign opposite to that of \(s_{11} \) (in this case, \(s_{11}^* = 0.47 L - 161^\circ \))

\[
C_2 = (0.43 L - 41^\circ) - [(0.054 L - 25.61^\circ) \cdot (0.47 L - 161^\circ)]
\]

\[
= (0.43 L - 41^\circ) - (0.02 L 173.4^\circ)
\]

Converting to rectangular notation and subtracting the x and y components,

\[
C_{2x} = 0.344 \\
C_{2y} = -0.284
\]

Returning to polar notation

\[
C_{2R} = \sqrt{C_{2x}^2 + C_{2y}^2} = \sqrt{0.199} = 0.45
\]

\[
C_{2\theta} = \arctan \frac{C_{2y}}{C_{2x}} = \arctan -0.826 = -39.6^\circ
\]

\[
C_2 = 0.45 L - 39.6^\circ
\]

The angle of the load reflection coefficient, \(\Gamma_{ML\theta} \), is \(C_{2\theta} \) where the asterisk indicates that the sign of the angle is changed. In this case, \(C_{2\theta}^* = +39.6^\circ \). The magnitude of the load reflection coefficient is found from eq. 7:

\[
|\Gamma_{ML}| = \frac{B_2 \pm \sqrt{B_2^2 - 4|C_2|^2}}{2|C_2|}
\]

where the sign ahead of the radical is opposite to the sign on \(B_2 \).

\[
|\Gamma_{ML}| = \frac{0.96 - \sqrt{(0.96)^2 - 4(0.45)^2}}{2(0.45)} = 0.70
\]

\[
\Gamma_{ML} = 0.70 L 39.6^\circ
\]

This quantity may be plotted on a Smith chart to determine the desired load impedance as shown in fig. 1.* This yields

\[
Z_L = 62.0 + j108.5
\]

*The load impedance can also be calculated from the relationship

\[
Z_L = Z_\| - \Gamma_{ML}
\]

where \(Z_\| \) is the complex load impedance (R+jX), \(Z_o = 50 + j0 \), and \(\Gamma_{ML} \) is the complex load reflection coefficient. Since all quantities are complex numbers, vector arithmetic is required.
Input matching. Now that the output load impedance has been specified, the source reflection coefficient which will properly terminate the input to the transistor can be calculated from eq. 8:

\[
\Gamma_{MS} = \left[s_{11} + \frac{s_{12} \cdot s_{21} \cdot z_{ML}}{1 - \frac{z_{ML} \cdot s_{22}}{1}} \right] * \\
= (0.47 \angle 161^\circ) + \left(\frac{(0.08 \angle 64^\circ) \cdot (3.1 \angle 63^\circ) \cdot (0.7 \angle 39.6^\circ)}{1 - [(0.7 \angle 39.6^\circ) \cdot (0.43 \angle -41^\circ)]} \right) * \\
= (0.47 \angle 161^\circ) + \left(\frac{(0.08 \cdot 3.1 \cdot 0.7) \angle 64^\circ + 63^\circ + 39.6^\circ}{1 - [(0.7 \cdot 0.43) \angle (39.6^\circ - 41^\circ)]} \right) * \\
= (0.47 \angle 161^\circ) + \left(\frac{0.17 \angle 166.6^\circ}{0.70 \angle 0.60^\circ} \right) * \\
= [(0.47 \angle 161^\circ) + (0.24 \angle 166^\circ)] * \\
\]

Converting to rectangular notation and adding the x and y components,

\[
\Gamma_{MSx} = -0.68 \quad \Gamma_{MSy} = 0.21 \\
\]

Returning to polar notation

\[
\Gamma_{MSR} = \sqrt{\Gamma_{MSx}^2 + \Gamma_{MSy}^2} = \sqrt{0.51} = 0.71 \\
\Gamma_{MS\theta} = \arctan \frac{\Gamma_{MSy}}{\Gamma_{MSx}} = \arctan -0.31 \\
\Gamma_{MS} = 0.71 \angle 162.7^\circ = 0.71 \angle -162.7^\circ \\
\]

The source reflection coefficient for a complex conjugate input match may be plotted on a Smith chart to determine the corresponding source impedance. This yields the series complex impedance, \(Z_s = 8.7 - j7.4 \) ohms (parallel complex impedance, \(Z_p = 15 + j17.6 \) ohms).

Matching networks. An input conjugate match can be obtained by shunting the transistor base with a capacitive reactance equal to the desired parallel equivalent reactance value (\(-j17.6 \) ohms) and transforming the source impedance to the required parallel resistance value (15 ohms) through a quarter-wavelength transmission line. The required capacitance value is found from the familiar reactance equation

\[
C = \frac{1}{2\pi f X_c} \\
\]

At 1296 MHz:

\[
C = \frac{1}{2\pi (1296 \cdot 10^6) 17.6} = 6.98 \text{ pF} \\
\]

A 10 pF trimmer capacitor will assure a proper reactive termination.

Transformation of the resistive component (to a 50-ohm source in this case) is accomplished with a quarter-wavelength transmission line which has a characteristic impedance \(Z_o \), equal to the geometric mean of the source impedance \(Z_f \), and the parallel input resistance, \(R_p \).

\[
Z_o = \sqrt{R_p \cdot Z_f} \\
\]

With a 50-ohm source and a parallel input resistance of 15 ohms

\[
Z_o = \sqrt{15 \cdot 50} = 27.4 \text{ ohms} \\
\]

At 1296 MHz this is easily provided by a microstrip transmission line 0.26 inches (6.5mm) wide and 1.16 inches (29.5mm) long on a 1/16-inch (1.5mm) double-clad, fiberglass printed-circuit board.

A similar quarter-wavelength transformer can be designed to match the resistive component, \(R_s \), of the complex series output impedance (62 ohms) to a 50-ohm termination, \(Z_t \). As before, the characteristic impedance of the transmission line is given by

\[
Z_o = \sqrt{R_s \cdot Z_t} = \sqrt{62 \cdot 50} = 55.7 \text{ ohms} \\
\]

At 1296 MHz this is provided by a microstrip transmission line 0.09 inches (2.3mm) wide and 1.21 inches (30.7mm) long on a 1/64-inch (1.5mm) double-clad, fiberglass printed-circuit board.

The required inductive reactance in series with the collector (10.8 ohms) is provided by shunting a capacitive reactance across the output end of the quarter-wavelength transformer. The required capacitive reactance is given by

\[
X_c = \frac{Z_o^2}{Z_s} = \frac{55.7^2}{108.5} = 28.6 \text{ ohms} \\
\]

At 1296 MHz:

\[
C = \frac{1}{2\pi (1296 \cdot 10^6) 28.6} = 4.3 \text{ pF} \\
\]

Again, a 10 pF trimmer capacitor will suffice. The circuit in fig. 2 shows the complete matching layout.

performance comparison

A simplified amplifier design, in which source and load impedances appear as the complex conjugate of the impedances related to \(s_{11} \) and \(s_{22} \), yields the circuit shown in fig. 3. This circuit was derived by matching to the following assumed shunt-equivalent impedances:

Parallel: \(Z_{in} \) (derived from \(s_{11} \))

\[
= 21 \angle j56.5 \text{ ohms} \\
\]

Series: \(Z_{out} \) (derived from \(s_{22} \))

\[
= 75 - j52.5 \text{ ohms} \\
\]

A more rigorous analysis shows the actual device impedances to be:

Parallel: \(Z_{in} \) (actual) = 15 \(\parallel j17.6 \) ohms

Series: \(Z_{out} \) (actual) = 62.0 - j108.5 ohms

Note that the reactive components of the shunt input impedance and the series output impedance differ significantly. Thus some degree of mismatch can be anticipa-
ted if the circuit of fig. 3 is built as shown. Since the actual device impedances are now known, this mismatch can be accurately predicted.

As it happens, only the resistive component of the transistor’s input or output complex impedance sees a mismatch. This is because the tuning range of the trimmer capacitors in fig. 3 is sufficiently wide to properly terminate the reactive components. The input and output mismatches are determined by transforming the actual resistive components through the existing quarter-wave length transformers and comparing the resulting impedance to 50 ohms. Referring to fig. 3,

\[Z_{in} (amplifier) = \frac{Z_i^2}{R_p in} = \frac{32.4^2}{15.0} = 70.0 \text{ ohms} \]

\[Z_{out} (amplifier) = \frac{Z_o^2}{R_p out} = \frac{74.8^2}{62.0} = 90.2 \text{ ohms} \]

Thus, the input vswr is 1.4:1 and the output vswr is 1.8:1, calculated values which correlate quite closely with those values observed in the actual amplifiers.

These input and output mismatches will result in somewhat lower stage gain than available from a properly terminated device. Actual stage gain is found from

\[A_p (dB) = MAG + G_1 + G_2 \]

where \(G_1 \) and \(G_2 \) are both negative and represent the mismatch losses at the input and output, respectively. Since \(G_1 \) (for a 1.4:1 vswr) is about -0.1 dB, and \(G_2 \) (for a 1.8:1 vswr) is about -0.4 dB,

\[A_p = 13.2 + (-0.1) + (-0.4) \]

\[= 12.7 \text{ dB} \]

This closely represents the measured gain of the amplifier shown in fig. 3.

summary

A method has been outlined for using device s-parameters to analyze the gain and stability of a microwave amplifier, and to determine appropriate source and load impedances for a complex conjugate match. It has been shown that designing around the reflection coefficients of a particular transistor (while ignoring the transfer coefficients) resulted in input and output mismatches of 1.4:1 and 1.8:1, respectively, while degrading overall amplifier gain by approximately 0.5 dB. This is a modest penalty for enjoying the convenience of a simplistic design approach. Whether the additional performance available from the more rigorous design method is justified depends largely upon the goals of the designer, and the intended application of the amplifier.

references

appendix 1

vector arithmetic

In the application of s-parameter design equations, it's necessary to perform numerous computations involving vector quantities. Vectors may be expressed either in conventional polar notation (magnitude \(R \) and associated angle \(\theta \)) or may be resolved into their rectangular components (\(x \) and \(y \) displacement on Cartesian coordinates) as shown below. Since the vector is part of a right triangle, manipulation between the two forms of notation involves the application of trigonometric functions. These manipulations may be accomplished on a slide rule, manually with the aid of trig tables, or on a hand-held digital calculator.
Readers who have advanced scientific calculators which include polar-rectangular conversion and summation keys will find the process considerably simplified. The following review is for the benefit of those not so fortunate.

1. Resolving vectors. Vector arithmetic often requires that the \(x \) and \(y \) components of the vector be known. Any vector, \(\mathbf{V} \), described by magnitude, \(R \), and angle \(\theta \), can be resolved into its \(x \) and \(y \) components with the following formulas:

\[
x = R \cos \theta \\
y = R \sin \theta
\]

Example: What are the \(x \) and \(y \) components of the vector \(9.22 \hat{x} + 40.6^\circ \)?

\[
x = R \cos \theta = 9.22 \cos 40.6^\circ = 7.00 \\
y = R \sin \theta = 9.22 \sin 40.6^\circ = 5.88
\]

2. Constructing vectors. The results of vector addition and subtraction (reviewed later) generally appear as \(x \) and \(y \) components of the resultant vector. These coordinates can be converted to a polar vector of magnitude, \(R \), and angle, \(\theta \), with measurements on a graphical plot, or by using a trigonometric solution. Since the vector is represented by the hypotenuse of a right triangle formed by dimensions \(x \) and \(y \), the Pythagorean theorem may be used to find the magnitude \(R \):

\[
R = \sqrt{x^2 + y^2}
\]

Trigonometry is used to calculate the angle \(\theta \):

\[
\theta = \arctan \frac{y}{x}
\]

Example: What is the magnitude, \(R \), and angle \(\theta \), of the vector described by the Cartesian coordinates, \(x = -7 \), \(y = 6 \)?

\[
R = \sqrt{x^2 + y^2} = \sqrt{49 + 36} = 7.69 \\
\theta = \arctan \frac{y}{x} = \arctan \frac{6}{-7} = -50.1^\circ
\]

3. Vector addition. Any two vectors \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \), which have been resolved into \(x \) and \(y \) components \(V_{1x}, V_{1y}, V_{2x}, \) and \(V_{2y} \), may be added by summing the respective \(x \) and \(y \) components. The summed components may then be constructed into a resultant vector \(\mathbf{V}_r \), of magnitude \(V_{rR} \) and angle \(\theta_r \).

Example: What is the sum of vectors \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \) when

\[
\mathbf{V}_1 = 1.5 \hat{x} + 40^\circ \\
\mathbf{V}_2 = 2.0 \hat{x} - 60^\circ
\]

\[
V_{1x} = V_{1R} \cos \theta_1 = 1.5 \cos 40^\circ = 1.15 \\
V_{1y} = V_{1R} \sin \theta_1 = 1.5 \sin 40^\circ = 0.96 \\
V_{2x} = V_{2R} \cos \theta_2 = 2.0 \cos -60^\circ = 1.00 \\
V_{2y} = V_{2R} \sin \theta_2 = 2.0 \sin -60^\circ = -1.73 \\
\Sigma_x = V_{1x} + V_{2x} = 1.15 + 1.00 = 2.15
\]

4. Vector subtraction. Any two vectors \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \), which have been resolved into \(x \) and \(y \) components \(V_{1x}, V_{1y}, V_{2x}, \) and \(V_{2y} \), may be subtracted one from the other by subtracting their respective \(x \) and \(y \) components. The results of such subtraction comprise the \(x \) and \(y \) components of the resulting vector \(\mathbf{V}_r \), which may be constructed to yield magnitude \(V_{rR} \) and angle \(\theta_r \).

Example: What is the difference when vector \(\mathbf{V}_2 \) is subtracted from vector \(\mathbf{V}_1 \)?

\[
V_1 = 0.8 \hat{x} - 40^\circ \\
V_2 = 0.4 \hat{x} + 120^\circ
\]

\[
V_{1x} = V_{1R} \cos \theta_1 = 0.8 \cos -40^\circ = 0.61 \\
V_{1y} = V_{1R} \sin \theta_1 = 0.8 \sin -40^\circ = -0.51 \\
V_{2x} = V_{2R} \cos \theta_2 = 0.4 \cos 120^\circ = -0.20 \\
V_{2y} = V_{2R} \sin \theta_2 = 0.4 \sin 120^\circ = 0.35 \\
\Sigma_{x} = V_{1x} - V_{2x} = 0.61 - (-0.20) = 0.81 \\
\Sigma_{y} = V_{1y} - V_{2y} = -0.51 - (0.35) = -0.86 \\
V_{1R} = \sqrt{\Sigma_{x}^2 + \Sigma_{y}^2} = \sqrt{(0.81)^2 + (-0.86)^2} \\
\theta_r = \arctan \frac{\Sigma_{y}}{\Sigma_{x}} = \arctan \frac{-0.86}{0.81} = -46.7^\circ
\]

5. Vector multiplication. For any two vectors, \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \), each described by a magnitude, \(R \), and an angle, \(\theta \), the vector product is found by multiplying the the magnitudes and adding the angles:

\[
\mathbf{V}_1 \times \mathbf{V}_2 = V_{1R} \times V_{2R} \hat{z} \\
\theta_{12} = \theta_1 + \theta_2
\]

Example: What is the vector product of \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \) when

\[
\mathbf{V}_1 = 0.8 \hat{x} + 45^\circ \\
\mathbf{V}_2 = 0.65 \hat{y} - 118^\circ
\]

\[
V_{1R} \times V_{2R} = 0.8 \times 0.65 = 0.52 \\
\theta_{12} = \theta_1 + \theta_2 = 45^\circ + (-118^\circ) = -73^\circ
\]

6. Vector division. For any two vectors, \(\mathbf{V}_1 \) and \(\mathbf{V}_2 \), each described by a magnitude, \(R \), and an angle, \(\theta \), the vector quotient is found by dividing the magnitudes and subtracting the angles:

\[
\mathbf{V}_1 \div \mathbf{V}_2 = \frac{V_{1R}}{V_{2R}} \hat{z} \\
\theta_{12} = \theta_1 - \theta_2
\]

Example: What is the vector quotient when \(\mathbf{V}_1 \) is divided by vector \(\mathbf{V}_2 \)?

\[
\mathbf{V}_1 = 0.96 \hat{y} + 64^\circ \\
\mathbf{V}_2 = 0.42 \hat{x} - 102^\circ
\]

\[
V_{1R} \div V_{2R} = 0.96 \div 0.42 = 2.29 \\
\theta_{12} = \theta_1 - \theta_2 = 64^\circ - (-102^\circ) = 166^\circ \\
V_{2} = 2.29 \hat{x} + 166^\circ
\]

7. Maximum angle. Whenever a vector manipulation yields an expression whose angle exceeds 180°, subtract the absolute value of the angle from 360°, and assign to the resulting angle a sign opposite to that of the original angle.
Examples: \(-196^\circ = 360 - (-196)\)
\[= 360 - 196 + 180^\circ\]
\[= 360 - 360 - 265^\circ\]
\[= 360 - 265 = 95^\circ\]

8. Compound expressions. In expressions involving both vector and scalar quantities, treat the scalar quantity as though it were a vector of angle 0°.

Example: In the expression for the source reflection coefficient which will properly terminate the transistor's input (eq. 81), the product of the load reflection coefficient, \(\Gamma_{LL}\), and \(\Gamma_{LS}\) are subtracted from one. If \(\Gamma_{ML} \cdot \Gamma_{SS} = 0.65\), what is the value of the expression, \(1 - (\Gamma_{ML} \cdot \Gamma_{SS})\)?

\[V_1 = 1.0^\circ\]
\[V_2 = 0.65 L - 118^\circ\]
\[V_{12} = V_{1R} \cos V_{18} = 1 \cos 0^\circ = 1\]
\[V_{18} = V_{1R} \sin V_{18} = 1 \sin 0^\circ = 0\]
\[V_{21} = V_{2R} \cos V_{18} = 0.65 \cos -118^\circ = -0.31\]
\[V_{22} = V_{2R} \sin V_{18} = 0.65 \sin -118^\circ = -0.37\]
\[\Sigma_x = V_{1x} - V_{2x} = 1.00 + 0.31 = 1.31\]
\[\Sigma_y = V_{1y} - V_{2y} = 0 - 0.37 = -0.37\]
\[V_{18}^2 = (\Sigma_x)^2 + (\Sigma_y)^2 = 1.31^2 + 0.37^2 = 2.04 = 1.43\]
\[V_{10} = \arctan (\Sigma_y / \Sigma_x) = \arctan 0.57 / 1.31 = 23.5^\circ\]
\[1 - (\Gamma_{ML} \cdot \Gamma_{SS}) = 1.43 \times 1.23 = 1.75^\circ\]

9. Angular functions. Since most trigonometry tables show only the functions to 90° when working with vectors which may fall in any of the four quadrants below (0 through 360 degrees) this can lead to ambiguities in specifying the angle \(\theta\) of a resultant vector. Note that the tangent function varies from zero to \(\pm\infty\), from zero to 90 degrees, from \(-\infty\) to zero in the second quadrant (90 to 180 degrees), from zero to \(\pm\infty\) in the third quadrant (180 to 270 degrees), and from \(-\infty\) to zero in the fourth quadrant (270 through 360 degrees). The sine and cosine functions are also ambiguous, as shown, but this doesn't create a problem in vector arithmetic.

In the expression for the angle of the source reflection coefficient, \(\Gamma_{MS}\), in the design example \(\Gamma_{MS} = -0.68\) and \(\Gamma_{MS} = 0.21\). Therefore,
\[\Gamma_{MS} = \arctan -0.68 / 0.21 = \arctan -3.21\]
\[=-17.3^\circ\]

This is in the fourth quadrant whereas the x and y values place the vector in the second quadrant. Therefore, the correct value for the angle is 180° + (17.3°) = 162.7°. The same sort of ambiguity exists for the first and third quadrants, and can only be resolved by inspection.
two-channel scanner
for repeater monitoring

Simple modifications to WA2GCF’s popular channel scanner for use with the Icom IC-2F and other vhf-fm transceivers

The two-channel scanner described in this article was never really designed — it evolved. I wanted a simple scanner to monitor two repeaters, using a small solid-state transceiver. The simplest circuit I found was one described by WA2GCF in an article in *Ham Radio*. The unit proved to have all the advantages the author claimed; it was inexpensive, small, easy to assemble, and operates directly from the 13-volt transceiver power supply or an auto battery. Only minor modifications were necessary to monitor the two club repeaters with my Icom IC-2F.

The first problem was how to use diode switching with the IC-2F receiver oscillator. WA2GCF described circuitry for switching crystals in oscillators requiring +5 volts to turn on, and oscillators requiring a ground for turn-on. Both are designed for circuits where one side of the crystal is grounded. The IC-2F, however, like many other Japanese receivers, has a receiver oscillator in which the crystal is connected between the collector and base of the oscillator transistor (fig. 1A). Neither side of the crystal can be grounded. At first it appeared it would be necessary to redesign the oscillator circuit, but the switching circuit modification shown in fig. 1B, which required rewiring only the switch, proved useable.

squelch recognition

Scanning action is stopped when a carrier opens the receiver squelch. The original scanner could be stopped by a squelch circuit that goes to ground when an incoming signal is received, or with alternate wiring by a squelch circuit that is at ground potential when the squelch is closed and goes high when it is opened. Unfortunately, the IC-2F does neither. Its squelch circuit is high when the squelch is closed, and goes to a lower voltage when it opens, but not all the way to ground. The scanner stopped for strong signals but not for ones that were weak but still quite readable.

The original circuit used to stop the scanner multivibrator is modified by changing Q1 to a npn transistor with its emitter connected to the positive supply voltage, and adding an npn transistor, Q1A, to control it as

By Pat Shreve, W8GRG, 2842 Winthrop Road, Shaker Heights, Ohio 44120
shown in fig. 2. The base of Q1A is biased so that it will be turned off when the squelch circuit connected to its emitter is high; it is turned on by a voltage less than the bias but still above ground potential, which occurs when many club members want to do. If the repeater carrier does not drop between users’ transmissions, the scanner locks on that repeater and will stay there for the entire conversation. Without a periodic search-back feature the squelch opens. When Q1A is off, Q1 and Q2 are also off, and the multivibrator can oscillate. When the three transistors turn on, the multivibrator is locked and scanning action stops.

The scanner still had one disadvantage for monitoring our two repeaters, which all our control operators and there is no way for the listener to know what may be happening on the other repeater.

To prevent lock-up on any channel for long periods a lock release, rather than a priority channel circuit, is needed. This can be done by adding a timer to the squelch recognition circuit described above. Instead of

fig. 1. IC-2F receiver oscillator circuit. (A). As originally wired. (B). Modified for diode switching. Heavy lines show wiring changes.

fig. 2. Multivibrator circuit modification to stop scanning action with low but above-ground stop signal.
providing bias for Q1A from the V+, it is supplied from the output of an NE555 timer IC which is programmed to be high for about 15 seconds and low for a fraction of a second. Each time the IC cycles the scanner will move to the next frequency. With a two-channel scanner both frequencies are checked at least every 15 seconds. Even with four channels none is unguarded for more than a minute.

control switching

The scanner does not switch transmitter crystals, so manual switching to a selected frequency is necessary when the operator wants to talk. My IC-2F is a six-channel transceiver, with a six-position, double-pole, channel selector switch. As originally wired in fig. 1A, the common terminal on the receive side was connected to the collector of the oscillator. Rewired as in fig. 1B, this half of the switch controls V+ to the crystal switching circuits of four crystals. The other two positions, in which there are no crystals, control V+ to the scanner and the synthesizer, so that the scanner is disabled when the switch is turned to any transmitting position.

construction

The scanner modifications shown here can be easily applied to the scanner described in WA2GCF’s article. For those who want only two channels, the complete circuit is reproduced in fig. 3. Full-size circuit board patterns for the scanner and the crystal-switching circuit are shown in fig. 4.* Component placement is shown in figs. 5 and 6. All of the components except the circuit boards can be purchased from ham radio advertisers for less than $5, or obtained locally. Tolerances are not critical, and almost any switching diodes and general-purpose silicon transistors can be substituted for those shown without affecting operation.

The 680-ohm resistor and 33-μF capacitor in the bias supply of Q6 unbalance the circuit sufficiently to insure

* A set of drilled, glass-epoxy, printed-circuit boards is available for $5, postpaid, from D.L. McLaren, 19721 Maplewood Ave., Cleveland, Ohio 44135
the start of scanning action. With the scan rate provided by the multivibrator circuit components shown in fig. 3, and the NE555 timing values, the scanner should stop every time it senses an active frequency.

adjustment

The scan rate can be varied by changing the values of the multivibrator capacitors. The length of time the scanner will stay locked on a single frequency can be changed by replacing the 1-megohm NE555 charging resistor with a different value. If these timing components are changed, it may be necessary to change the value of the 47k discharge resistor, also, to limit the multivibrator to only one cycle each time the NE555 output goes low. Excessive low time will cause the scanner to miss a signal on the next channel.

reference

how to improve receiver performance of vacuum-tube vhf-fm equipment

Simple circuit modification for replacing 6AK5 receiver rf amplifier stages with a low noise, dual-gate, mosfet

Vhf fm operation is becoming increasingly popular with radio amateurs, with tens of thousands of fm transmitters and receivers now in use, and more being put into service daily. Not an insignificant number of these rigs are converted from commercial service — equipment that was originally manufactured by firms such as Motorola, RCA, and GE. However, most of the older receivers use vacuum-tube front ends so they don't provide the sensitivity that is possible with modern solid-state devices. This article describes a simple, proven mosfet circuit that can be easily substituted for those noisy tube-type front ends.

The most popular receiver rf amplifier used by communications equipment designers back in the late 1950s and early 1960s was based on the 6AK5 pentode — a workhorse used heavily during the war in vhf radar and communications systems. Typical receiver sensitivities provided by this tube are on the order of 1.5 to 3.0 microvolts for 20 dB quieting. Considering the state of the art for those days, that was not shabby performance.

In recent years the communications designer has been provided with a proliferation of very reasonably priced, high performance, dual-gate mosfet devices from several different manufacturers. One example is the 3N204 by Texas Instruments which has optimum spot noise figures of 2 dB at 200 MHz, 3 dB at 400 MHz, degrading to 7 dB at 900 MHz, all for $1.25 in small quantities. Anyone who has worked with a 417A/5842 vacuum-tube converter from the 1950s can certainly appreciate how rapidly technology has marched forward during the past two decades.

By Hank Meyer, W6GGV, 29330 Whitley Collins Drive, Rancho Palos Verdes, California 90274
It's a relatively simple task to replace the 6AK5 rf amplifier in your present rig with a 3N204 or other dual-gate device. Fig. 1 shows the circuit of a typical 6AK5 rf amplifier stage found in many commercial rigs, while fig. 2 shows the base diagram of the 6AK5. The following steps describe the circuit modification, which can be accomplished in less than an hour.

1. Remove the center pin from the 6AK5 tube socket by bending it over and breaking it with a pair of pliers. Cut any wires which are soldered to the center grounding pin.

2. Install a 33k, 1/2-watt resistor from pin 6 to ground. If there is already another resistor from pin 6 to ground, remove it. Make sure that there is a 0.001 μF disc bypass capacitor between pin 6 and ground.

3. Remove the original resistor from the B+ line to pin 6 and replace it with a 120k, 1/2-watt resistor.

4. Remove the voltage-dropping resistor(s) from the B+ line to the B+ point on the 6AK5 rf amplifier plate output coil and replace it with a 300-ohm, 1/2-watt resistor.

5. Break the B+ line from the high-voltage feedpoint to the 6AK5. Now install a 3-lug terminal strip (two insulated lugs, one grounded lug) by soldering the ground lug to a convenient point on the chassis. Install a 6.8k, 2-watt resistor between the two insulated tie points and connect one end of the resistor to the previously removed B+ line. Connect an 18-volt zener diode (400 mW to 1 watt rating) from the other end of the 6.8k resistor to ground. From this same point connect a wire to the former B+ feedpoint for the 6AK5.

6. Insert the 3N204 mosfet into the center hole of the 6AK5 tube socket.

7. Using the 3N204 basing diagram in fig. 3, make the following connections to the 6AK5 tube socket:
 - Drain to pin 5
 - Source to ground (pin 3 or 4)
 - Gate 1 to pin 1
 - Gate 2 to pin 6

8. Disconnect the antenna input lead and reconnect it to the top of the rf input coil as shown in fig. 3.

9. Using a signal generator or on-the-air signal, repeak the tuned input and output circuits for maximum output.

10. Remove the 6-volt filament wiring from the socket, but before you do, check to see if two or more tubes are wired in series. If they are, install a 36-ohm, 2-watt resistor in series with the filament line to compensate for the current drain of the 6AK5 filament. This completes the conversion.

I have converted several 6AK5 rf amplifier stages to dual-gate mosfets using this simple procedure, and all have provided outstanding results. Sensitivity measurements using a Hewlett-Packard 6080 signal generator indicate a sensitivity of about 0.25 to 0.30 microvolts for 20 dB quieting — a marked improvement in performance.

In addition to the 3N204 I have tried several other, similar dual-gate devices, including the 3N201 and 3N200, all with good success. All of these devices are in the same price class, although the 3N204 has a bit better performance. If you're using an older tube-type commercial rig, this simple modification can significantly extend your receiving range and operating pleasure.
RC active filters
using op amps

An overview of three of the most popular filter circuits,

A narrow bandpass filter of small size and low power consumption is often needed for increased receiver selectivity or other communications applications, such as RTTY. Active filters are also presently found in IC form for applications in modems, function generators, and level detectors. This article presents information that has been omitted from the many articles on the subject in the amateur literature. Three of the most popular RC active filters are described together with their design equations and response characteristics. Also included is a discussion of breadboard testing and results of filter performance both singly and in cascaded form.

choice of circuit

The parallel-T network is a popular narrowband filter, which is used in the feedback loop of an op amp in various ways. In this case the network was inserted between the inverting input and op-amp output: In this arrangement R1, C1 form part of the network, allowing a symmetrical response about center frequency. This added input network increases the lower-frequency skirt selectivity, which otherwise would not fall off as fast as the upper-frequency skirt characteristic. The frequency-response equation including phase relationships is:

\[
\frac{e_o}{e_i} = \left(\frac{1}{R_1 + \frac{1}{j\omega C_1}} \right) \left(\frac{R_2[2 + j\omega C_2 R_3]}{1 - \omega^2 \left(\frac{C_2 R_3}{2} \right)^2} \right) \left(\frac{R_2}{R_1} \right) \left(\frac{2 + j\omega C R_3}{R_1} \right)
\]

The response equation remains in this form since it becomes rather cumbersome to deal with if expanded further. The design equations for the filter are:

\[
f_o = \frac{1}{\pi C_2 R_3} \sqrt{1 + \frac{2 R_3}{R_2}} \approx \frac{1}{\pi C_2 R_3}
\]

(2)

\[
C_1 = \frac{\alpha}{2\pi f_0 R_1}
\]

(3)

where \(\alpha = \sqrt{2} \)

\[R_2 = R_1 = \frac{1}{2R_3(\pi f_0 C_2)^2}\]

(4)

for \(\frac{e_o}{e_i} = 1 \)

\[R_3 = 2R_4\]

(5)

Typical values chosen for this filter were:

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>C1</th>
<th>C2</th>
<th>(f_o)</th>
<th>3-dB BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>39,000 ohms</td>
<td>39,000 ohms</td>
<td>0.006 (\mu F)</td>
<td>0.1 (\mu F)</td>
<td>1000 Hz</td>
<td>3 dB</td>
</tr>
</tbody>
</table>

The Q can be made very high if desired, but the skirt

By Fred M. Griffie, W41YB, 8809 Stark Road, Annandale, Virginia 22003
selectivity or bandpass-filter shape factor with only one stage remains poor. With three or four stages, the skirt selectivity and shape factor become fairly good for a narrow-bandpass audio filter; however, the component tolerance sensitivity is high.

Another circuit employing feedback in a slightly different manner (the same approach used by the popular MFJ-CWF2 filter) to acquire the bandpass characteristic is given below (for one stage):

$$e_0 \over e_i (\omega) = - \frac{j\omega[1/R_1C_1]}{R_1 + R_2 - \omega^2 + j\omega\left[\frac{C_1}{C_2} + \frac{1}{R_3C_1}\right]}$$

(6)

The response and design equations can be derived in the usual manner as in the previous case using flow-graph analysis. They are given below for reference:

$$f_o = \frac{1}{2\pi \sqrt{R_1R_2R_3C_1C_2}}$$

(7)

$$e_0 \over e_i (\omega_o) = - \frac{R_3}{2R_1}$$

(8)

$$R' = \frac{1}{2}f_oC, \text{ where } C = C_1 = C_2$$

$$R_3 = \alpha f_o C$$

$$R_2 = (2\pi)^2 f_o C\alpha$$

$$Q = \pi \alpha, \text{ letting } \alpha = \sqrt{2}$$

Again, this filter will not have good skirt selectivity and cascaded stages must be used to obtain a good shape factor. Otherwise, regardless of Q, signals will still be heard with respect to sideband frequencies far removed from the center frequency, f_o. Values chosen from the design equations for this filter are given below for four stages:

$$R_1 975,000 \text{ ohms} \quad C_1 0.001 \text{ } \mu\text{F} \quad f_o 1000 \text{ Hz}$$

$$R_2 13,165 \text{ ohms} \quad C_2 0.001 \text{ } \mu\text{F} \quad 3\text{-dB BW 71} \text{ Hz}$$

$$R_3 1.95 \text{ megohms} \quad \text{Shape factor 13} \quad Q = 14$$

fig. 1. Input bandpass filter section, A, and cascaded sections, B, used for analysis.

The rationale for component values is discussed in the text.
Still another circuit that is probably a little more complex is shown in fig. 1. The response and design equations for this filter are:

$$\frac{e_o}{e_i}(\omega) = -\frac{j\omega[1/R1C1]}{1 - \frac{R5}{R3R6C1C2} \left(\frac{R5}{R4} \right)^2 + j\omega[1/R2C1]}$$

$$f_o = \frac{1}{2\pi} \sqrt{\frac{1}{R3R6C1C2} \cdot \left(\frac{R5}{R4} \right)^2}$$

Choose $C1 = C2$

$R4 = R5$

$R3 = R6$

$$Q = 2\pi f_o C1 R2$$

Typical component values chosen for this circuit were:

- $R1 = 98,000 \text{ ohms}$
- $R4 = 10,000 \text{ ohms}$
- $C1 = 0.01 \mu\text{F}$
- $R2 = 98,000 \text{ ohms}$
- $R5 = 10,000 \text{ ohms}$
- $C2 = 0.01 \mu\text{F}$
- $R3 = 15,915 \text{ ohms}$
- $R6 = 15,915 \text{ ohms}$
- $C0 = 0.01000 \text{ Hz}$

3-dB BW: 71 Hz (four stages), shape factor 13

(See fig. 1 for final values).

The values for $R1$, $R2$, and $R3$ were made variable for the first stage, while a potentiometer was used in the following stages for $R3$. (See fig. 1.) $R1$ varies the overall filter gain, $R2$ the Q, and $R3$ tunes each stage to the same desired center frequency. A value of 50k was more than adequate to cover the tolerance variations and range of interest. The variable pots, $R1$ and $R2$, were 500k maximum for the input stage. The remaining stages included the values given above except for $R3$, which was chosen to be 50k in series with a 10k resistor.

This approach shows no improvement in skirt selectivity over the others and, in the same manner, requires cascaded stages or building blocks as they are sometimes called. However, this circuit has the advantage of not being so component-tolerance sensitive. In fact, the Q can be varied without affecting the gain or center frequency by varying $R2$, the gain can be varied independently by varying $R1$; and the center frequency can be varied independently by varying $R6$ or $R3$. The filter can be easily tuned using components with 10-percent tolerance. Also, you can adjust the tone or output level without varying other filter parameters, such as frequency or Q.

This completes the basic description of the three more popular bandpass filter circuits. The following discussion addresses the breadboard testing of each circuit, with a final filter design using the circuit having independent characteristic control.

Filter-circuit breadboards

The parallel-T network was evaluated first. The feed-
back network using a parallel-T network was very sensitive to component variation. The measured filter characteristics agreed with theoretical results, using a programmable hand calculator, almost to the point where one would be satisfied without evaluating a breadboard circuit (if 1-percent or better component tolerances were used).

The second circuit evaluated was that used in the popular MWJ-CWF2, which uses matched components for each section — difficult to implement unless you have an impedance bridge. The measured results again agreed with theoretically derived results when 1-percent component tolerances were used.

When reviewing the references on this subject, I found that all attained the same success between theoretical and measured results at audio frequencies when using close tolerance value^4. As in the parallel-T circuit, the second circuit was sensitive to component-value variation and only slight improvement was obtained regarding characteristic control.

The third circuit was by far the most superior in terms of varying filter characteristics independently of each other. Again, theoretical results agreed with measured results after tuning each stage to the desired center frequency. In all cases, the measured results departed from those of the theoretical case only when the operational amplifier characteristics no longer were allowed to assume a very high input impedance, a near-zero output impedance (power limited of course), and a very high open-loop gain (with respect to the Q and skirt selectivity plus stage-to-stage isolation).

construction and cost

Cost was kept to a minimum by using available barrel-kit components. In this case, 14 good μ741 ICs were found among fifty purchased, for a little less than two dollars. The quad operational amplifier, LM324, although a little more expensive, provided a much neater layout and also showed a slightly higher open-loop gain at 1000 Hz, where the μ741 drops of quite a bit.

Construction and layout were arranged so that either the quad operational amplifier chips or the single μ741 could be evaluated. The photos show top and bottom component layout. Printed circuit boards could have been used, but construction time and cost would have increased. Batteries were used; however, a separate power supply might be more desirable. The filter draws only about 17 mA.

concluding remarks

Fig. 2 illustrates the response characteristics as the stages are cascaded. At first I thought that one stage with a higher Q would suffice (the dashed curve shows the response characteristic of a single stage with a Q of 63). This arrangement didn’t provide the desired skirt attenuation for rejecting strong signals close to center frequency, so additional stages were cascaded to improve the shape factor (60-dB bandwidth divided by the 3-dB bandwidth).

Cascading stages offered more practical and less component-sensitive values for R1 and R2. An important observation noted from the response curves is that only one stage needs a variable pot for varying Q, at least within the ranges normally desired. If a greater Q range is desired, pots can be used in all four sections.

The more practical approach for wide Q variation is to use a four-stage pot with a common shaft coupling. Similarly, the frequency adjustment requires only one pot per stage unless a wide frequency range is desired. Normally R5 is chosen to equal R4; C1 to equal C2; and R3 to equal R6 for maximum dynamic range. However, varying only one of the resistors, R3 or R6, seems to allow ample dynamic range, especially if the filter is installed immediately after the detector in a receiver. A center frequency between 700 and 1500 Hz is usually chosen.

It will also be noted from fig. 2 that the response is not affected nearly as much near the center frequency when cascading stages as it is far removed from the center frequency. This further illustrates the need for cascading stages to obtain the desired skirt selectivity.

The two circuits shown in fig. 1 illustrate the input stage, A, which includes the pots for Q and gain adjustment and the following additional cascaded stages, B, each of which uses a pot for tuning to center frequency. The op amps, with their near-infinite input impedance...
and near-zero output impedance, provided excellent isolation between filter stages in the feedback loop. In this case, the noninverting inputs were connected to ground along with the center common point of the two bias sources of plus and minus 9 volts.

Very weak signals could be pulled out of the noise by increasing the first-stage filter gain and Q. The filter exhibits an increase in weak-signal level when the gain and Q are adjusted carefully by presenting energy near the center frequency of the filter, which causes it to ring slightly. Filter ringing increases the desired signal output level and provides an apparent signal-processing gain, which strengthens the lower signal voltage levels. This does not mean that energy is created, but that energy is added to the amount detected.

It was not the intent of this article to describe each filter in great detail but rather to present an introduction and the supporting design equations. Many other configurations are possible, but I feel that those discussed here are of primary interest. At any rate, you can use the design equations for your own audio bandpass filter and tailor it to your requirements.

References

Ten Commandments for technicians

I Beware the lightning that lurketh in the undischarged capacitor, lest it cause thee to bounce upon thy buttocks in a most untechnician-like manner.

II Cause thou the switch that supplieth large quantities of juice to be opened and thusly tagged, that thy days in this earthly veil of tears may be long.

III Prove to thyself that all circuits that radiateh and upon which thou worketh are grounded and thusly tagged lest they lift thee to radio frequency potential and causeth thee also to make like a radiator.

IV Tarry not amongst those fools who engageth in intentional shocks for they are surely nonbelievers and are not long for this world.

V Take care that thou useth the proper method when thou taketh the measure of a high-voltage circuit lest thou incinerate both thyself and thy meter, for verily, though thou hast no account number and can easily be surveyed, the test meter doth have one and, as a consequence, bringeth much woe unto the supply department.

VI Take care that thou tampereth not with safety devices and interlocks, for this incurreth the wrath of thy supervisor and bringeth the fury of thy safety inspector down upon thy head.

VII Work thou not on energized equipment, for if thou dost, thy fellow workers will surely buy beers for thy widow and console her in other ways.

VIII Service thou not equipment for electrical cooking. It is a slothful process and thou might sizzle in thine own fat for hours upon a hot circuit before thy Maker sees fit to end thy misery.

IX Trifle thou not with radioactive tubes and substances lest thou commence to glow in the dark like a lightning bug and thy wife have no further use for thee except thy wages.

X Thou shalt not make unauthorized modifications to equipment, but causeth thou to record all field changes and authorized modifications made by thee, lest thy successor tear his hair out and go slowly mad in his attempt to decide what manner of creature hath made a nest in the wiring of such equipment.

Reprinted with permission from *Newcastle*, publication of the U.S. Army Engineer District, Los Angeles Corps of Engineers.
The Drake SSR-1

provides real
PORTABILITY and
VERSATILITY
in a
general coverage
SW receiver ...

Compare these features with any other general coverage SW receiver:

- Complete general coverage operation from 500 kHz to 30 MHz with synthesizer circuitry. No range crystals to buy. Dial calibration accuracy within 5 kHz at all frequencies.
- Built-in telescoping antenna with provision for external antenna.
- Built-in ac power supply. Provision for internal "D" cell batteries in built-in battery holder. Receiver automatically switches to batteries if ac power fails.
- Product detector for ssb/cw reception.
- Clarifier for extra fine ssb/cw tuning.
- 100% solid state. Dc power cord available for external 12V dc operation from auto or boat.

For more information on this and other fine Drake products, please contact:

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288417

More Details? CHECK-OFF Page 134

drake

Built-in loud speaker. Drake HS-1 cushioned, impedance-matched headphones also now available for SSR-1

Small size: 13" wide, 11" deep, 5.5" high (33 x 28 x 14 cm). Weight 14 lbs (6.4 kg).
wideband preamp

Construction details for a low noise, wideband receiver preamp that covers the frequency range from 1000 kHz to 50 MHz

Here's an effective yet inexpensive wideband preamp that covers the amateur high-frequency bands. Use it to soup up old receivers of the pre-1970 era or improve performance of more modern equipment. The circuit is easy to build, requires no exotic parts, and should go together in one or two evenings. Total parts cost is less than ten dollars.

The circuit (fig. 1) features a 2N5109 npn silicon high-frequency transistor, which is used in CATV amplifiers requiring low cross-modulation distortion and low-noise input. The 2N5109 has a 3-dB noise figure at 200 MHz, current gain-bandwidth product of 1200 MHz, cross-modulation distortion of -70 dB, and collector-emitter amplifier voltage gain of 11 dB (50-216 MHz). It sells for about $3.00 in small quantities. A PC-board layout is shown in fig. 2.

While the circuit was intended to be used in the frequency range from 1 to 50 MHz, the 2N5109 is a hot performer well into the vhf range. However, the coupling and bypass capacitors, balun transformer, and circuit layout may need to be changed to reach the higher frequencies. In certain cases, as when using a wideband antenna or equipment with poor intermodulation or spurious-response characteristics, it may be necessary to use bandpass filters\(^1\) on the amplifier input or output.

acknowledgement

I would like to acknowledge the contributions of Jim Jenkins, K1JXK, who's early ideas led to my writing this article.

By Ed Pacyna, W1AAZ, Danbury Circle, Amherst, New Hampshire 03031

reference

fig. 1. Wideband preamp schematic. The .47 μH inductor can be a couple of ferrite beads placed over a short loop of no. 20 to no. 30 AWG (0.8-0.25mm) insulated wire. The 4:1 wideband transformer in the transistor collector circuit is made by twisting together two pieces of insulated 20 to 30 AWG (0.8-0.25mm) wire, then winding 8 to 10 bifilar turns on a 1/4 to 1/2 inch (6-13mm) toroid core.

fig. 2. Foil side of the printed-circuit layout for the wideband amplifier.

fig. 3. Component layout for the wideband high-frequency preamplifier.
WILSON 204 MONOBANDER PLUS DB33

The Wilson 204 is the best and most economical antenna of its type on the market. Four elements on a 26' boom plus a Gamma Match (no balun required) make for high performance on CW & phone across the entire 20 meter band. The 204 Monobander is built rugged at the high stress points. Using taper swaged slotted tubing permits larger diameter tubing where it counts, for maximum strength with minimum wind loading.

The DB33 is the newest addition to the Wilson line of antennas. Designed for the amateur who wants a lightweight economical antenna package, the DB33 complements the M204 for an excellent DX'ers combination.

WILSON AMATEUR ANTENNA SPECIFICATIONS

<table>
<thead>
<tr>
<th>Boom Length (ft)</th>
<th>Number of Elements</th>
<th>Turning Radius (ft)</th>
<th>Surface Area (sq ft)</th>
<th>Wind Load at 90 MPH (lbs)</th>
<th>Assembled Weight (lbs)</th>
<th>Shipping Weight (lbs)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M620 40</td>
<td>5</td>
<td>27°</td>
<td>5.0</td>
<td>125</td>
<td>90</td>
<td>96</td>
<td>269.00</td>
</tr>
<tr>
<td>M604 26</td>
<td>4</td>
<td>22°</td>
<td>3.8</td>
<td>100</td>
<td>40</td>
<td>43</td>
<td>139.00</td>
</tr>
<tr>
<td>M155 26</td>
<td>5</td>
<td>18°</td>
<td>3.7</td>
<td>90</td>
<td>41</td>
<td>45</td>
<td>139.00</td>
</tr>
<tr>
<td>M154 20</td>
<td>4</td>
<td>16°</td>
<td>3.0</td>
<td>75</td>
<td>30</td>
<td>32</td>
<td>89.00</td>
</tr>
<tr>
<td>M106 31</td>
<td>6</td>
<td>16°</td>
<td>2.9</td>
<td>73</td>
<td>34</td>
<td>36</td>
<td>99.00</td>
</tr>
<tr>
<td>DB6420(40)</td>
<td>4</td>
<td>27°</td>
<td>7.8</td>
<td>190</td>
<td>105</td>
<td>110</td>
<td>299.00</td>
</tr>
<tr>
<td>DB4315(19)</td>
<td>4</td>
<td>15°</td>
<td>4.3</td>
<td>108</td>
<td>36</td>
<td>38</td>
<td>119.00</td>
</tr>
<tr>
<td>DB633(17)</td>
<td>3</td>
<td>12°</td>
<td>3.8</td>
<td>96</td>
<td>31</td>
<td>33</td>
<td>85.00</td>
</tr>
</tbody>
</table>

All Wilson Monoband and Duoband beams have the following common features:
- Taper Swaged Tubing
- Adjustable 52 Ω Gamma Match
- Full Compression Clamps
- Quality Aluminum
- Handle 4kw
- 2" or 3" Aluminum Booms
- Heavy Extruded Element to Boom Mounts

Accessories Available

ACCESSORIES AVAILABLE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>SPECIAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1 BATTERY CHARGER</td>
<td>$34.95</td>
</tr>
<tr>
<td>BP1 10 EA. AA GOLDS</td>
<td>$14.95</td>
</tr>
<tr>
<td>BT1 EXTRA BATTERY TRAY</td>
<td>$6.00</td>
</tr>
<tr>
<td>LC1 LEATHER CASE</td>
<td>$12.95</td>
</tr>
<tr>
<td>LC2 LEATHER CASE</td>
<td>$12.95</td>
</tr>
<tr>
<td>SM1 SPEAKER MIKE FOR EARLY MODEL 1402</td>
<td>$24.95</td>
</tr>
<tr>
<td>SM2 SPEAKER MIKE FOR ALL NEW HAND HELDS WITH ROUND 6 PIN CONNECTOR</td>
<td>$24.95</td>
</tr>
<tr>
<td>TE1 SUB-AUDIBLE TONE ENCODER INSTALLED</td>
<td>$34.95</td>
</tr>
<tr>
<td>TTF TOUCH TONE PAD INSTALLATION</td>
<td>$48.95</td>
</tr>
<tr>
<td>XFC1 10.7 KC MONOLITHIC XTAL FILTER</td>
<td>$9.95</td>
</tr>
<tr>
<td>CRYSTALS TX or RX (Common Frequency Only)</td>
<td>$3.75</td>
</tr>
</tbody>
</table>

WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NV. 89103 U.S.A. (702) 739-1931 TELEX 684-522
2.5 and 5 WATT 2 METER
6 CHANNEL HAND HELD TRANSCEIVERS

- .3 μV RECEIVERS - 12 kHz CERAMIC FILTERS
- OPTIONAL 12 BUTTON PAD AVAILABLE FOR ANY HAND HELD INSTALLED
- AVAILABLE FOR MARS OR CAP • 10 DAY MONEY BACK GUARANTEE
- 90 DAY WARRANTY • INCLUDES 52 SIMPLEX and "DUCKIE" ANTENNA

- TRIMMER CAPS ON RX & TX
- ALL PLUG-IN CRYSTALS
 (Same as WE-224 Mobile)
- 10.7 and 465 kHz IF
- .3 μV SENSITIVITY FOR
 20dB QUIETING

CURRENT DRAIN @ 12 VDC
MODEL 1402SM:
RCVR: 14 mA • XMTR: 500 mA
MODEL 1405SM:
RCVR: 14 mA • TX @ 1W: 400 mA
TX @ 5W: 900 mA

- 1402 HAS S METER & BATTERY INDICATOR
- 1405 HAS A SENSITIVE BATTERY INDICATOR
- BOTH MODELS FEATURE MICRO-SWITCH PTT
- THE 1405 CASE IS UNBREAKABLE LEXAN®
- THE 1402 CASE IS HIGH IMPACT ABS PLASTIC
- WEIGHT (w/o NI-CADS) IS LESS THAN
 22 OUNCES
- OVERALL MEASURE IS 8.9" x 1.9" x 2.9"
- 10 NI-CADS (ORDER BP-1) ARE EXTRA
 @ $14.95
- OVER 2000 UNITS IN STOCK

1 or 5 WATT MODEL 1405SM
SPECIAL @ $229.95

TO: WILSON ELECTRONICS CORP., 4288 S. Polaris Ave., Las Vegas, Nevada 89103, (702) 739-1931, Telex 684-522

FALL SPECIAL DIRECT SALE ORDER BLANK

PLEASE PRINT CLEARLY
ENCLOSED IS

■ CHECK ■ MONEY ORDER
■ MC ■ BAC
CARD # __________
EXPIRATION DATE __________
NAME __________
ADDRESS __________
CITY __________
STATE _____ ZIP ______ PHONE () __________
SIGNATURE __________

SHIPPING & HANDLING PREPAID FOR FALL SPECIAL NEVADA RESIDENTS ADD SALES TAX
SPECIAL PRICES GOOD THRU NOV. 30, 1976

More Details? CHECK-OFF Page 134 october 1976 63
four-band
vhf receiving converter

One 46-MHz crystal and an ingenious mixing scheme provide coverage between six meters and 420 MHz.

How would you like an inexpensive way to monitor your local two-meter repeater? Or how about a 220-MHz receiver? In fact, how about a receiver covering 6 meters through 420 MHz? These are a few of the questions that were buzzing around in my head, so I decided to build a general-purpose receiver capable of covering allvhf bands. The result is the front end of an all-band vhf converter.

design

At a recent test-equipment seminar, a nifty but little-used fact concerning mixers surfaced once again: Not only is the local oscillator's fundamental frequency available; but the mixer itself, being a nonlinear device, produces harmonics of the oscillator frequency that can be used in the mixing action.

Example: Use a 46-MHz local oscillator and an input of 51 MHz to generate an i-f at 5 MHz. The local oscillator's 138-MHz third harmonic can produce the same i-f from an input at 143 MHz. In fact, this i-f will be produced from any of the following input frequencies: 87 MHz, 97 MHz (2 x 46 = 92); 133 MHz, 143 MHz (3 x 46 = 138); 179 MHz (4 x 46 = 184); 179 MHz, 189 MHz (4 x 46 = 184); and so on.

Now, 46 MHz is not just a number plucked out of thin air for this example. It was developed after weeks of doodling, and is a key ingredient in the design. To understand why, consider this:

1 x 46 = 46 (used on 6 meters)
3 x 46 = 138 (used on 2 meters)
5 x 46 = 230 (used for 220 MHz)
7 x 46 = 322 (not used)
9 x 46 = 414 (used for 420 MHz)

Therefore, it should be possible to use only one crystal and some sort of odd-harmonic generator to meet the design objective of all-vhf-band coverage. 420 MHz is picked up as a bonus (vhf ends at 300 MHz).

circuit description

Fig. 1 is the complete converter schematic with parts list. Ignoring the broadband rf preamplifier (Q1 through Q3) for the moment, let us continue our study of the harmonic mixer. Crystal Y1, a plated, overtone unit, oscillates at 46 MHz in a series-resonant mode. Transistors Q5 and Q6 form the differential amplifier oscillator: rf voltage at Q5's collector is fed back to Q6's base by capacitor C5 and the crystal. Harmonic emphasis is supplied by tuned line L1 connected from Q6's base to rf ground. L1 is a shorted, quarter-wave transmission line cut to resonance at the crystal frequency. It is 3/4 wavelength long at the third harmonic, 5/4 wavelength long at the fifth harmonic, etc., and acts as a parallel-tuned circuit at all odd harmonics. Therefore, the fundamental and odd harmonics of the crystal are present at the base of mixer transistor Q6, as desired. Construction details for a miniaturized quarter-wave line suitable for PC-board mounting are given in fig. 2, which is self-explanatory.

The remainder of the converter consists of a broad-

By S. Smith, W3TQM, Laurel, Maryland 20810
band, cascode preamplifier (transistors Q1, Q2, and Q3) that is R-C coupled to mixer driver Q4. No tuning is incorporated purposely so that the converter may be conveniently used on any of the four bands. Of course, external tuning is required, or the device will work on all bands at once! It also converts local TV and fm frequencies, because even harmonics of the crystal are not eliminated in the design.

construction

Fig. 3A is the foil pattern I used. A glass/epoxy board, 2 by 2 inches (51x51mm) is used. Fig. 3B is a parts layout diagram. Note that all components mount on top of the board; the foil is the bottom. By reference

fig. 1. Schematic of the four-band vhf receiving converter. Resistors are 1/2 watt, 10% composition. All transistors are part of RCA CA3049T integrated circuit. Circled numbers are IC pin numbers. Capacitor voltage rating is 25 volts working or greater. Construction of transmission line resonator, L1, is shown in fig. 2.

fig. 2. Construction details for a miniaturized 1/8-wave transmission line suitable for PC-board mounting.

to figs. 2 and 3, you should have no difficulty building one of these converters.

The six transistors, in two differential amplifier configurations, are packaged as RCA's CA3049T integrated circuit. This IC was reportedly designed for low-noise vhf amplifier service and was chosen for its small size and cost.

performance

Several converters I built had sensitivities below 1 µV on 50, 144, and 220 MHz, and sensitivities of about 2 µV on 420 MHz. Image rejection and i-f feedthrough, being functions of the input tuning, are not meaningfully measured on such a broadband device. These parameters vary according to the tuning scheme used. Fig. 4 is a simple tuner that serves the purpose and matches the converter input to a 50-ohm antenna. Note that, with a bit of care, this input tuner could be bandswitched.

Conversion gain is a function of the band in use. The output level obtained during sensitivity checks, at 10 dB s/n ratio, is 10 µV. Power required is 12 Vdc at approximately 15 mA; the circuit works well on a 9-volt supply with slightly reduced sensitivity.

applications

I use one converter to monitor 146.76 and 146.94 MHz on a broadcast-band transistor radio. To do this, the crystal was changed to 48.5 MHz, achieving an injection frequency of $3 \times 48.5 = 145.5$ MHz. The resulting i-f is in the broadcast band, and the segment of two meters between 146 and 147 MHz can be tuned by tuning the broadcast receiver through the i-f range of 0.5 to 1.5 MHz. For 146.76 MHz, the i-f converts to 1260 kHz, while 146.94 MHz converts to 1440 kHz. Another common vhf fm frequency, 146.52, converts to 1020 kHz.
The i-f output can be inductively coupled to a pocket transistor radio or directly coupled to an auto broadcast receiver. See fig. 5 for suggested coupling methods. In either case, fm can be recovered quite successfully by slope detection. When using a pocket transistor set, interference from broadcast stations can be removed by wrapping the radio in aluminum foil. Be sure to put the rf choke of fig. 5 inside the foil and as close as possible to the radio’s Loop-Stick antenna.

Another of the converters is used to monitor the local repeater output at 146.76 MHz on my Drake R-4A receiver. Again, a crystal other than 46 MHz is used, so that the i-f can be tuned with the receiver. In this case, a 46.5-MHz crystal yields an i-f of 7.460 MHz, which is in range of the Drake’s 40 meter band. Once again, slope detection is used to recover fm; some distortion is experienced because of the receiver’s selectivity, but no trouble is experienced copying traffic.

Yet another unit is in use converting both 15- and 10-meter signals to an i-f in the range of a surplus BC-348 receiver. A crystal frequency of 25 MHz was chosen. It was necessary to replace the tuned line, L1, with a parallel-resonant circuit at the crystal frequency. The converter may also be used as a general-coverage vhf/uhf receiver. Any i-f up to 35 MHz may be used without modification of the original circuit, and other intermediate frequencies could be adapted by modification of the output stage.

As all crystal harmonics are present in the mixer, a frequency in the 25 to 1000 MHz range can be converted to an i-f of less than 35 MHz. As an example, using the second harmonic of 46 MHz (92 MHz), 121.5 MHz would be converted to 29.5 MHz. Using the third harmonic (138 MHz), this same signal would be found at 16.5 MHz. Thus, the converter can be used to monitor aviation, police, business, and other frequencies. Again, the tuned input circuit should be resonated to the desired frequency. Problems experienced when the signal frequency falls close to or on a crystal harmonic can be circumvented by using a second crystal differing in frequency from the 46-MHz standard, so that low i-fs are avoided.

Now there’s little excuse for not monitoring the higher-frequency amateur bands. This project can be built in a few evenings, and for less than $20.00. It’s inexpensive, simple, and it works. See you on vhf.
Page numbers 67, 68, 69 and 70 were skipped in this issue. There were no articles on these pages.
Ham Radio Magazine

October 1976

Page numbers 67, 68, 69 and 70 were skipped in this issue. There were no articles on these pages.
Page numbers 67, 68, 69 and 70 were skipped in this issue.
There were no articles on these pages.
Ham Radio Magazine

October 1976

Page numbers 67, 68, 69 and 70 were skipped in this issue. There were no articles on these pages.
Phase-shift network design and construction data for improving receivers with marginal selectivity

Phasing-type detectors, despite their superficial complexity, are the only means of avoiding audio images in a direct-conversion receiver. Likewise, if a superheterodyne receiver has inadequate selectivity or is plagued by broad-band i-f noise, the cure lies in either additional i-f filters or in a phasing detector.

Although the circuits described here would make a good direct-conversion receiver, they were designed for use in a superhet with lots of i-f noise and inadequate stop-band rejection. While this system can't offer all the advantages of a second crystal filter, it does give substantial improvement at moderate cost. (Phase-shift networks are described in the appendix for unwanted side-band suppressions of at least 30, 37, and 60 dB, depending on the audio bandwidth and circuit complexity. A simple network for CW reception offering 50 dB rejection is also described.)

The circuits were chosen for their ease of construction and adjustment. No special LCR precision bridges are needed to set the audio phase network capacitors. If you can tune a musical instrument the only test equipment needed is a grid-dip oscillator and a vtm. A frequency counter and oscilloscope are useful but not absolutely required. The system costs between $5 and $25 more than a simple bfo-product detector combination depending on how good a scrounger you are. (Compare this price with the cost of crystal filters!) The phasing detector block diagram is shown in fig. 1.

By Don Lawson, WB9CYY, 4601 Jay Drive, Madison, Wisconsin 53704
The audio phase-shift networks described here are also suitable for use in ssb phasing-type transmitters. For such applications wire the two inputs (C and D of fig. 3) together and run the outputs (TP1 and TP2) to the balanced modulators.

bfo and product detector

The bfo and product detector schematic is given in fig. 2. L2 and C2 resonate at the bfo frequency; R1 is equal to the reactance of the capacitor or inductor at resonance. For an i-f of 9 MHz, representative values are R1 = 180, C2 = 100 pF, and L2 = 3.13 μH.

The bfo uses about the simplest method I know for switching parallel-resonant crystals, and with MPF-112s at 35 cents apiece, it's fairly inexpensive. The product detector's dual gate mosfets, Q4 and Q5, can be MPF-121s or 40673s. If you buy three or four mosfets (instead of just two), you can be fairly sure of finding two that have similar values of V_{gs} and I_{ds}. R4 should be chosen so that the combined drain current of both mosfets is equal to the average of their individual values of I_{ds} so that about 9 volts are between the source and drain of each transistor (whichever condition gives the larger value of R4).

R2 and R3 can have values anywhere between 470 ohms and 1k and should be closely matched. C4 and C5 should also be matched to 5% or so (using the method described later). L3, L4, C6, and C7 form a lowpass filter to prevent the bfo signal from getting into the op-amps. The bfo-product detector assembly should be built into a shielded enclosure to keep the bfo signal out of the i-f strip.

audio circuits

The audio phase-shift network is shown in fig. 3. There are simpler circuits in the literature but this one is by far the easiest to build. C1, C2, C3, and C4 should be set to equal values by padding with small capacitors in

fig. 2. Bfo-product detector schematic. Components that must be closely matched are discussed in the text.

fig. 4. Audio amplifier and filter schematic. Cutoff frequencies are respectively 3 kHz and 800 Hz for the single- and double-section filters.
parallel. Several 50, 100, and 200 \(\mu F \) capacitors are handy for this. If you want to use some other value for the capacitors, multiply \(R_1 \) through \(R_4 \) by your capacitor value divided by 0.022; i.e., for 0.1 \(\mu F \), \(R_1 \) would be 23.03k \(\times \) 0.1/0.022 or 104.7k. The phase-shift network is designed to work from 300 to 4000 Hz and theoretically provides at least 31 dB suppression. For this circuit, \(R_5 \) through \(R_8 \) form voltage dividers. In the circuit of fig. 3 they have a ratio of resistances of 14.94 to 1.

\[
R_9, R_{10}, R_{11}, \text{and } U_3 \text{ form the voltage adder of fig. 1. } U_4 \text{ gives a good ac ground for the networks. Trying to substitute a large bypass capacitor for } U_4 \text{ isn’t good enough. To eliminate } U_4 \text{ you’d need dual power supplies for } U_1 \text{ through } U_3, \text{ so that dc ground is also a suitable ac ground. The audio output can be applied to an amplifier with sharp filters; a typical circuit is shown in fig. 4. The single-section filter is a 3-kHz elliptical low-pass; the two-section filter has a cutoff frequency of 800 Hz for CW reception.}
\]

construction and alignment

A grid-dip oscillator is all that’s necessary for building and checking the bfo and product detector. If an oscilloscope is available, it might be a good idea at this point to set \(L_2 \) initially for the point where the signals at A and B (fig. 2) are 90 degrees apart in phase. (Use the circuit of fig. 5A if a scope with a triggered sweep is available; use fig. 5B if one is not).

All capacitors in the audio phase-shift network should be matched as closely as possible and \(R_1-R_4 \) should be proportional to their calculated values. The ratios of \(R_5/R_6; R_7/R_8 \) should also be as close as possible to their computed ratios. For example, if all your capacitors were equal to 0.019 \(\mu F \) and \(R_1-R_4 \) were 0.9 times their computed values, the only bad effect would be that

the network frequency range would be shifted slightly. The resistors can be made up from parts on hand, using an accurate volt-ohmmeter, or 1% wirewound resistors may be used.

The capacitors can be matched quite well by using the oscillator circuit of fig. 6. Be sure to use an uncom-

pensated op-amp, such as a 748 or a 709. The internal compensation in a 741 will slow down the oscillator and measurements will be unreliable. Try to keep the frequency between 1 and 10 kHz for best accuracy. If you’re going for readings of four significant digits, power the oscillator from either batteries or a regulated supply to eliminate effects of line-voltage variations.

\[
\text{fig. 5. Setups for checking and presetting the rf phase-shift network. Methods (A) and (B) are for oscilloscopes with and without triggered sweep.}
\]

\[
\text{fig. 6. Oscillator circuit for measuring capacitance. An uncompensated op-amp should be used. } Q_1, Q_2 \text{ are general-purpose audio transistors.}
\]

\[
\text{fig. 7. Test circuit for checking the audio frequency phase-shift network.}
\]
The "frequency meter" should be either a digital frequency counter or a tape recorder. A meter-movement type instrument won't allow sufficient precision. If you use a tape recorder, find which capacitor gives the lowest-pitch tone then pad the other capacitors to give the same frequency. By taping the lowest pitch, you'll save having to switch constantly between capacitors for comparison. If you use a counter, choose one capacitor as a reference and note its frequency. Assuming it equals its marked value exactly, the relative capacitance of the other capacitor is:

\[C_x = \frac{f_{\text{ref}}}{f_x} \times C_{\text{ref}} \]

Unless you're using a very good ohmmeter to measure the resistors, there's little point in matching the capacitors to better than 0.25%. If possible, use high-stability capacitors (polystyrene is best).* If you're using carbon-composition resistors, coat them with epoxy to reduce variations of their values with humidity. Use fig. 7 to check the operation of the phase-shift network. With the scope setup shown you should be able to see a circle on the scope screen.

Referring to figs. 2 and 3, in final adjustment first wire A to C and B to D. Sweep the grid-dip oscillator or signal generator past the bfo frequency and decide which sideband (upper or lower) is being rejected. If it's not the sideband you want, try wiring A to D and B to C. (If you want to select sidebands by a panel switch, try using the circuit of fig. 8). Now, alternatively adjust L2 of the bfo and R9 of the audio phase-shift network for the best unwanted sideband rejection.

results

If you use the circuit in fig. 3, you should be able to easily get about 30 dB of unwanted sideband rejection between 300-4000 Hz. For better rejection, use one of the other circuits in the appendix.

I hope this article provides some ideas for those who build or modify receivers. When it comes to improving the selectivity of a marginal receiver, this system is the best for the money.

references

bibliography

The design of any phase-shift network is a trade between complexity, bandwidth, and phase accuracy. Phase-shift networks are a special category of "all-pass filters," meaning that the network gain is constant regardless of frequency. Phase-shift networks are characterized by a set of "singular frequencies." The calculation of these frequencies is too involved to be covered here, but an algorithm is in the literature that requires nothing more than a calculator with a square-root key.3*4 For those who don't like lots of arithmetic, I've compiled the results of several design computations in table 1. Network 1 is the general-purpose network shown in fig. 3, while network 2 is for more narrowband ssb use. Network 3 is for use in direct-conversion CW receivers. These networks are all of the four-pole variety since each has four singular frequencies.

<table>
<thead>
<tr>
<th>network</th>
<th>freq range (Hz)</th>
<th>minimum unwanted sideband rejection (dB)</th>
<th>singular frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300-4000</td>
<td>31</td>
<td>f₁ = 148.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₂ = 625.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₃ = 1916.09</td>
</tr>
<tr>
<td>2</td>
<td>300-2500</td>
<td>37</td>
<td>f₁ = 136.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₂ = 525.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₃ = 1428.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₄ = 5567.0</td>
</tr>
<tr>
<td>3</td>
<td>225-900</td>
<td>49</td>
<td>f₁ = 88.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₂ = 298.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₃ = 672.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f₄ = 2265.0</td>
</tr>
</tbody>
</table>

As noted before, the circuit used here was chosen for its simplicity of construction as compared to other circuits.5 (Unless you have a frequency counter or precision LCR bridge, it's much easier to set capacitors equal than it is to set them to arbitrary ratios). To compute component values from table 1, we take either odd- or even-numbered singular frequencies and plug them into the formulas of fig. 9. For example, let's try designing the network shown in fig. 3. As a start, we take odd frequencies of 148.9 and 1916 Hz. Converting to radians/sec, we get ω₁ = 935.6 and ω₂ = 12,38. Assuming C = 0.025 μF (2.5 x 10⁻⁶ F), we compute

\[R₂ = \frac{2}{(935.6 + 12,038) \times 2.5 \times 10^{-8}} = 6166 \, \text{ohms} \]

Likewise,

\[R₁ = \frac{1}{935.6 \times 12,038 \times (2.5 \times 10^{-8})^2 \times 6166} = 23,040 \, \text{ohms} = 23.04 \, \text{kΩ} \]

Finally, since we have a couple of 1k 1% resistors on hand, we choose R₄ = 1k and

\[R₃ = \frac{4 \times R₁ \times R₄}{R₂} = 4 \times 25,040 \times 1000 \times 6166 \]

We now have half of our network designed. For the other half we follow the same procedure except that we work with f₃ and f₄.

Note that at DC the circuit gain is \(R₄/(R₃ + R₄) \). Since this is an all-pass network, all audio frequencies are attenuated by this same amount. Hence, this network attenuates the signal by 24 dB. Because the 741 op amps have internal noise it may be desirable, especially in direct-conversion receivers, to put low-noise amplifiers (such as an LM381) between the product detector and the phase-shift network. A final note: It's possible to cascade phase-shift network sections to get an 8-pole network. A practical 8-pole network is shown in fig. 10. According to a computer simulation, this circuit provides at least 80 dB of unwanted sideband rejection between 200-4000 Hz. This simulation was with 741s. It may be possible to get an additional 5 dB suppression by using 556 op-amps since their input impedance is much higher than that of a 741. Of course, the components would have to be set very accurately to realize this theoretical figure and a preamplifier would be necessary to overcome the network signal attenuation. This circuit would be ideal for a high-quality, phasing-type ssb direct-conversion receiver.
CONSUMER ELECTRONICS

PONG
SINGLE GAME $59.95
SUPER PONG $89.95

GAMES INCLUDED IN SUPER PONG ARE:
- PONG
- CATCH
- SUPER PONG
- HANDBALL

FEATURES OF PONG AND SUPER PONG:
- Realistic sound in stereo
- Paddle control by any direction
- 4 player game
- Game over when any player reaches 50 points
- Handicap feature
- Features of PONG and SUPER PONG

DISPLAY LEDS
SUPER SAVINGS $99

MAN 7

DISCRETE LEDS
SPECIAL SALE!

CLIPRITE 4/1 NEW LED MOUNTING SYSTEM

50 PCS. RESISTOR ASSORTMENTS $1.75 PER ASST.

JAMES
1021 HOWARD AVE., SAN CARLOS, CA. 94070
PHONE ORDERS — (415) 592-8097
FAIRCHILD

ANNOUNCES THE

SOLID STATE TECHNOLOGY KIT

- FOR THE EXPERIMENTER WITH TASTE FOR "STATE OF THE ART" PRODUCTS
- COMPLETE SPECIFICATIONS ARE PRINTED ON THE BACK OF EACH TECHNOLOGY KIT

<table>
<thead>
<tr>
<th>Card Front</th>
<th>Card Back</th>
<th>Card Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0020</td>
<td>FTK0020</td>
<td>FTK0011</td>
</tr>
</tbody>
</table>

DIGITS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0001</td>
<td>0.5" High Common Cathode Digit</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0002</td>
<td>0.5" High Common Anode Digit</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0003</td>
<td>.357" High Common Cathode Digit</td>
<td>$0.75</td>
</tr>
<tr>
<td>FTK0004</td>
<td>0.8" High Common Cathode Digit</td>
<td>$2.00</td>
</tr>
<tr>
<td>FTK0005</td>
<td>0.8" High Common Anode Digit</td>
<td>$2.00</td>
</tr>
</tbody>
</table>

0.8" HIGH DISPLAY ARRAYS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0010</td>
<td>12 Hour, 3½ Digit Clock Display</td>
<td>$7.00</td>
</tr>
<tr>
<td>FTK0011</td>
<td>24 Hour, 4 Digit Clock Display</td>
<td>$8.00</td>
</tr>
</tbody>
</table>

LED LAMPS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0020</td>
<td>10 Red LED Lamps</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0021</td>
<td>5 Mixed Colored LED Lamps</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0022</td>
<td>10 LED Mounting Clips</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0023</td>
<td>5 Three Piece LED Mounting Adapters</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

PHOTO TRANSISTORS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0030</td>
<td>5 Flat Lens Photo Transistors</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0031</td>
<td>5 Round Lens Photo Transistors</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0032</td>
<td>3 Flat Lens Photo Darlingtons</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0033</td>
<td>3 Round Lens Photo Darlingtons</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

PHOTO ARRAYS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0040</td>
<td>9-Element Tape Reader Array</td>
<td>$16.00</td>
</tr>
<tr>
<td>FTK0041</td>
<td>12-Element Card Reader Array</td>
<td>$24.00</td>
</tr>
<tr>
<td>FTK0042</td>
<td>Reflective Opto Coupler</td>
<td>$4.00</td>
</tr>
</tbody>
</table>

COUPLERS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0050</td>
<td>3 General Purpose Opto Couplers</td>
<td>$1.00</td>
</tr>
<tr>
<td>FTK0051</td>
<td>Darlington Opto Coupler</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

MOS CLOCK CIRCUITS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0040</td>
<td>Digital Clock/Calendar Circuit (FCM7001)</td>
<td>$7.00</td>
</tr>
<tr>
<td>FTK0041</td>
<td>Digital Clock/Calendar with BCD Outputs (FCM7002)</td>
<td>$7.00</td>
</tr>
<tr>
<td>FTK0042</td>
<td>Direct Drive Digital Clock Circuit with AC Output (FCM3817A)</td>
<td>$5.00</td>
</tr>
<tr>
<td>FTK0043</td>
<td>Direct Drive Digital Clock Circuit with DC Output (FCM3817D)</td>
<td>$5.00</td>
</tr>
<tr>
<td>FTK0045</td>
<td>Direct Drive Digital Clock/Calendar Circuit (FCM7015)</td>
<td>$6.00</td>
</tr>
</tbody>
</table>

KITS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTK0016</td>
<td>Automobile Clock Kit</td>
<td>$40.00</td>
</tr>
</tbody>
</table>

THESE PRODUCTS ARE PACKAGED FOR OUTSTANDING WALL DISPLAY APPEARANCE

FULL FAIRCHILD PRODUCT LINE TO FOLLOW

Satisfaction Guaranteed. $5.00 Min. Order. U.S. Funds. California Residents—Add 5% Sales Tax. Send a 13c Stamp (postage) for a FREE 1976 Catalog.

More Details? CHECK-OFF Page 134

october 1976
another squelch circuit

Interest has developed in the squelch circuit appearing in the September, 1974, issue of *Ham Radio*, page 68, which was published before the inexpensive and popular LM380 audio amplifier IC became readily available. Fig. 1 shows a squelch circuit with excellent performance and greater simplicity.*

Transistor Q1 amplifies random noise which is greater in frequency than the normal spectrum occupied by voice communications during no-signal conditions. Diodes CR1 and CR2 rectify the noise, which is filtered by R6, C5. Q2 conducts and clamps U1 off during no-signal conditions. A carrier activates the LM380. R6 determines the length of the squelch tail, and R5 controls the promptness to which the circuit responds to carrier signals. Increasing the value of C1 increases the noise-amplifier gain, but the smaller the value of C1, the less susceptible the circuit will be in responding to heavy voice peaks, thus the more positive its operation. Cost of the parts at the time of this writing: Q1 $0.45, Q2 $0.77, U1 $1.65. Not bad!

Robert Harris, WB4WSU

transfer letters

In the past I have had great difficulty with dry transfer letters failing to adhere to various surfaces, especially unfinished aluminum. There are two techniques which I have found helpful in overcoming this problem. The first is to abrade the surface to be lettered gently with very fine (0000 or finer) sandpaper and water, and then to dry it thoroughly before lettering. Alternatively, swab the area to be lettered with acetone (most nail polish removers will do). Other solvents probably would work as well, but I have not experimented with them. Either of these methods should always be used before trying to letter a raw aluminum surface that has been handled, or etched in a sodium hydroxide bath (this process leaves a waxy film on the aluminum, and the letters will not adhere to it).

Michael Tortorella, WA2TGL

voltage safety valve

The safety circuit in fig. 2 was developed after several accidents where a power transistor shorted in a low-
voltage power supply causing the transformer output voltage to be supplied to a solid-state transceiver. This voltage could be up to three times the rectified voltage and could cause considerable damage to the transceiver.

A high wattage zener diode could be used across the output of the power supplied, but it takes a very large zener to blow a fuse. Furthermore, the zener could burn open if used to carry currents above its rating.

What was needed was a circuit that would respond when a set limiting voltage was reached and cut off the current flow. The circuit in fig. 2 is simple and cheap, and uses a relay with contacts large enough to handle the required current (6 or 8 amperes should be ample). The relay coil should be about 200 ohms, the potentiometer 100 ohms or more, the zener diode is a 6 or 8 volt, 10 watt unit.

This circuit can be adjusted to trip at 14 to 24 volts. When the limiting voltage is reached the relay opens up, breaking the circuit to the transceiver. The residual charge in the circuit will hold the relay open until the voltage drops or the power is disconnected.

Harold C. Dressel, W2UVF

Swan 250 carrier suppression

Most Swan 250 transceivers have only about 30 to 35 dB carrier rejection. I have done some work on my unit and now have obtained more than 50 dB carrier rejection. All I did was put 1% resistors in the plate and screen circuits, remove the original 5k carrier balance pot, and install a ten-turn 2000-ohm pot with 1.5k resistors on each side of the pot to give finer control (see circuit in fig. 3).

After doing this I can still insert enough carrier to get full power output from the Swan 250. Before the modification I had about 150 mW of output power with the carrier completely nulled; now, with the carrier completely nulled, output is only 1.5 mW. All measurements were made with a Bird ThruLine wattmeter.

Charles A. Beener, WB8LGA

fig. 2. Over-voltage protection circuit. Potentiometer can be set so relay picks up at any preset voltage between 14 and 24 volts.

using your signal generator for absorption measurements

An absorption meter measures the frequency of an rf circuit to which it is coupled. Like a conventional signal generator, it uses an rf tank circuit to tune over the desired band. Therefore, it is logical to combine both functions in a single instrument. I modified my RCA model WR-50A signal generator to also operate as an absorption meter. Performance of the generator is not affected in any way.

The following are added: two RCA-type phono jacks on the front panel, an rf detecting diode, and a pickup (search) coil (see fig. 4). J1 is for the coil, J2 for a 50 μA meter. There is only a slight error in the dial calibration for absorption measurements (due to the pickup coil shunting the cathode portion of the generator tank).

The search coil does not have to be plugged in at the far end of an extension cable. I use 4 feet (1.2m) of ordinary shielded audio cable and find that 8 turns around a ½ inch (13mm) polystyrene coil form works well up to the frequency limit of the generator (40 MHz). An RCA phono plug is mounted on the coil form.

When you are ready to test the absorption device, couple its search coil to a grid-dip meter. At resonance, the meter will read about full-scale with the coils ⅛ inch (13mm) apart. Turn off the signal generator when making absorption measurements.

I. Queen, W2OUX

soldering tip cleaner

A clean soldering-iron tip helps make reliable solder connections. Fig. 5 shows an inexpensive tip cleaner made from a half-pint (⅓ liter) milk container and some sponges cut to fit the container.

fig. 3. New carrier-balance circuit for the Swan 250 increases carrier suppression to 50 dB or more. The 2000-ohm pot is a miniature, precision 10-turn unit (Bournes 3707).

fig. 4. The rf pickup coil is rectified by the diode and indicated by the meter.

fig. 5. Soldering iron tip cleaner.

Best results are obtained when the sponges are kept moist. To clean your soldering iron, just insert the tip between the sponges.

Gary Tater, W3HUC
Advance Registration $12.50 per person; with Hotel Sahara Late Show and two drinks $23.00 per person or with Hotel Sahara Congo Dinner Show (entree Cornish Hen), no drinks $30.00 per person. Tax and Gratuity included.

Totie Fields and Bert Convy are scheduled entertainers in Hotel Sahara’s Congo Room.

Advance Registration must be received by SAROC on or before January 1, 1977.

The NATION’S TWELFTH ANNUAL LAS VEGAS PRESTIGE CONVENTION

SAROC™

HOTEL SAHARA’S CONVENTION SPACE CENTER

January 6-9, 1977

- SAROC Registration includes: registration tickets, admission to technical sessions, Friday cocktail party hosted by T. P. L. Communications and TRI-EX Tower Corp. with SAROC; Saturday cocktail party hosted by Ham Radio Magazine with SAROC; Hotel Sahara Buffet Brunch on Sunday, Tax and Gratuity.

- Hotel Sahara room rate for SAROC registered delegates $17.00 per night plus room tax, single or double occupancy.

- Hotel Sahara room reservation request card will be sent to SAROC registered delegate.

Send your check or money order to SAROC, P. O. Box 945, Boulder City, NV 89005
We have the perfect mobile/portable HF SSB Transceiver for you.

The Atlas 210x/215x

The Atlas 210x or 215x measures only 9½ wide x 9½ deep x only 3½ high, yet the above photograph shows how easily the Atlas transceiver fits into a compact car. And there's plenty of room to spare for VHF gear and other accessory equipment. With the exclusive Atlas plug-in design, you can slip your Atlas in and out of your car in a matter of seconds. All connections are made automatically.

BUT DON'T LET THE SMALL SIZE FOOL YOU!

Even though the Atlas 210x and 215x transceivers are less than half the size and weight of other HF transceivers, The Atlas is truly a giant in performance.

200 WATTS POWER RATING!

This power level in a seven pound transceiver is incredible but true. Atlas transceivers give you all the talk power you need to work the world barefoot. Signal reports constantly reflect great surprise at the signal strength in relation to the power rating.

FULL 5 BAND COVERAGE

The 210x covers 10-60 meters, while the 215x covers 15-160 meters. Adding the Atlas Model 10x Crystal Oscillator provides greatly increased frequency coverage for MARS and network operation.

NO TRANSMITTER TUNING OR LOADING CONTROLS

with Atlas' total broadbanding. With your Atlas you get instant QSV and band change.

MOST ADVANCED STATE OF THE ART SOLID STATE DESIGN

not only accounts for its light weight, but assures you years of top performance and trouble free operating pleasure.

PLUG-IN CIRCUIT BOARDS

and modular design provides for ease of servicing.

PHENOMENAL SELECTIVITY

The exclusive 8 pole crystal ladder filter used in Atlas transceivers represents a major breakthrough in filter design, with unprecedented skirt selectivity and ultimate rejection. As the above graph shows, this filter provides a 6 db bandwidth of 2700 Hertz, 60 db down of only 4300 Hertz, and a bandwidth of only 9200 Hertz at 120 db down! Ultimate rejection is in excess of 130 db, greater than the measuring limits of most test equipment.

EXCEPTIONAL IMMUNITY TO STRONG SIGNAL OVERLOAD AND CROSS MODULATION.

The exclusive front end design in the receiver allows you to operate closer in frequency to strong neighboring signals than you have ever experienced before. If you have not yet operated an Atlas transceiver in a crowded band and compared it with any other receiver or transceiver, you have a real thrill coming.

ATLAS AMATEUR RADIO EQUIPMENT:

Model 210x or 215x Transceiver $679
With noise blanker installed $719

ACCESSORIES

AC Console 110/220V $147
With VOX $194
Portable AC Supply 110/220V $100
Plug-in Mobile Kit $48
Auxiliary VFO Model 206
Includes Digital Dial $299
Model DD6-B Digital Dial only $229
10x Osc. less crystals $55
Matching Transformer MT-1 $27
Model VX-5M Self-contained VOX $55

NEW FROM ATLAS

DL 200 Dummy Load
200 watt intermittent or 60 watt continuous power rating. Housed in a compact one pint can $9
(These new prices effective Oct. 1, 1976)

For complete details see your Atlas dealer, or drop us a card and we'll mail you a brochure with dealer list.

ATLAS RADIO INC.

417 Via Del Monte • Oceanside, CA 92054
Phone (714) 433-1983

october 1976
sub-audible tone encoder

Communications Specialists announce their new ME-8, a sub-audible tone encoder for repeater access. Measuring only 2x3x9 inches (5x7.5x22.5cm) and operating on any voltage between 6 and 16 volts dc, the unit is capable of generating any eight of the 32 EIA tone codes between 67.0 and 203.5 Hz.

Frequency selection is made by supplying ground or positive voltage to the desired control lead, and plugging in the desired K-1 element. The unit is completely immune to rf and has a start-up time of only 10 milliseconds. Frequency accuracy and stability are excellent and the output is a low-distortion sinewave at 3 volts rms.

The ME-8 is priced at $79.95 and includes eight K-1 elements. Extra elements are available for $3.00 each. For additional information write Communications Specialists, Post Office Box 153, La Brea, California 92621 or use check-off on page 134.

high-current regulated power supplies

VHF Engineering, Binghamton, New York, has announced two new regulated 12-volt dc power supplies for use in amateur and commercial applications. The two power supplies have current ratings of 15 amps at 10 to 12 volts dc, and 25 amps at 10 to 12 volts dc, respectively. Voltage regulation is 2% from no load to maximum rated current.

These new power supplies feature over-voltage protection and fold-back current limiting. Over-voltage protection is provided by a crowbar circuit which will shut down the supply if its output voltage exceeds 14 volts, thereby protecting the equipment being powered. The foldback current-limiting circuit limits the output current to a maximum of 1 amp if the output is shorted. This protects the power supply from damage and prevents high current from flowing into a piece of equipment that may have developed an internal short. When the short is removed, the power supply output returns to normal.

These regulated power supplies have been designed to commercial standards and use tinned, glass-filled epoxy circuit boards and high quality components. Additional information may be obtained from VHF Engineering, 320 Water Street, P.O. Box 1921, Binghamton, New York 13902 or use check-off on page 134.

air-variable capacitors

Among the components which are most difficult to find these days are air-variable capacitors, especially those rated for transmitting powers. Now, however, the Dentron Radio Company is offering a line of air variables which are suitable for most amateur applications in transmitters and antenna tuning units. Listed in the table above are the electrical specifications for these capacitors.

These air-variable capacitors may be ordered directly from Dentron Radio Company, 2100 Enterprise Parkway, Twinsburg, Ohio 44087. For more information use check-off on page 134.

bipolar/mos op amp

A new bipolar/mos op amp, the CA3140, featuring a pmos input stage and a bipolar output stage with a wide output voltage range, has been introduced by RCA Solid State Division. Its versatility permits it to fill virtually all 741 sockets and, at the same time, most of the premium op amp sockets currently served. The pmos input stage is similar to the one used in the RCA CA3130 op amp but with internal compensation and the ability to operate from a supply voltage between 4 and 44 volts, dual or single supply. A special feature is the addition of bipolar diodes which protect the input to such an extent that preliminary tests, under simulated electrostatic conditions up to 1000 volts, show the CA3140 to be more rugged than any other device yet tested, including bipolar and fet input op amps.

Typical performance features for the CA3140 include: an input impedance of 1500 megohms; input current of 10 pA at ± 15 volts, low input-offset voltage of...
5 mV, wide common-mode input voltage range, -0.5V below negative bus; output swing to within 0.2 volt of negative supply; high and low operating supply voltage of 4 to 44 volts, high slew rate of 9V/µs; high gain bandwidth product of 4.5 MHz; and fast settling time of 1.4 µs, to 10 mV with a 10 volt p-p signal. The new device is available in the basic TO-5 package or the dual-in-line package.

The breadth of applications permits the device to replace numerous op amp categories such as general purpose, fet-input, and wideband or high slew-rate types. The wide bandwidth feature reduces costs by permitting wideband video and audio circuits at lower cost than with current op amps, as well as lower-cost wideband TTL interfaces. The stroachable output stage allows the output to be driven low, independent of the input signal. The fact that the output swings to within 0.2 volt of the negative supply permits power transistors to be driven directly, thus eliminating level shifting circuitry.

For additional information, including copies of the 20-page data sheet, File no. 957, and a descriptive applications brochure, Publication no. 2M1144, offering a free sample, write to RCA Solid State Division, Box 3200, Somerville, New Jersey 08876 or use check-off on page 134.

digital pulse generator

Continental Specialties Corporation has introduced the Design Mate-4, a versatile, laboratory-quality generator which lists for $124.95. The DM-4 may be used as a clock source, delayed pulse generator, synchronous clock source, manual system stepper, pulse stretcher, or clock burst generator.

The DM-4 is designed to fill the bill wherever a source of clean, crisp, fast output pulses compatible with virtually
TWO METER MOBILEERS
RCA SUPERCARFONES
These rigs are ideal for two meter ham or commercial uses. No conversion
needed for the ham band.
Frequency range: 148 to 174 mc • Output power: 30 watts
Receiver sensitivity: .35 microvolt for 12 dB SINAD • Standby drain: 200 mA.
Fully transistorized receiver and exciter.
Plug in any tone coded squelch accessory designed for 12 volts.
While they last — ONLY $175.00 each, with accessories.
2 to 5 units $160.00 each 6 or more $150.00 each
ACT NOW, AT THESE PRICES WE WON'T HAVE THESE
RIGS VERY LONG.
PORTABLE USERS: We still have a few RCA TACTECS available for two meter
use. Prices start at $375.00 each. Call any evening for details.
Send check or money order to:
DUPAGE FM Inc.
P. O. Box 1, Lombard, IL 60148 • (312) 627-3540
TERMS: All items subject to prior sale, sold as is. If not as represented return for exchange or refund (our
option) within 5 days of receipt, freight prepaid. All items are shipped freight collect. Illinois residents add 5%
sales tax. Accessories do not include antennas, relays, crystals or reeds.

All logic families and discrete circuits is
required. It is capable of generating
symmetrical and asymmetrical pulses
from 0.5 Hz - 5 MHz and has a positive
output of 100 mV to 10 V, with a rise
and fall time of less than 30 nano-
seconds. Additionally, the DM-4 offers
an independently controlled pulse width
and spacing from 100 ns to 1 second in
seven overlapping ranges, as well as in-
dependent variable-amplitude CMOS,
and fixed-amplitude TTL outputs. The
unit operates either continuously or in
manual one-shot fashion. It also features
external triggering from dc to 10 MHz
and synchronous output gating.
For more information contact
Continental Specialties Corporation, 44
Kendall Street, Box 1942, New Haven,
Connecticut 06509 or use check-off on
page 134.

electronic keyer

The CW Sendin’ Machine was
designed by an amateur and allows you
to write in your log while it sends your
routine information. Not only a fine
keyer with iambic operation and dot
dash memories, it is also equipped
with two random-access memories that
can store short CW messages and send
them at the push of a button.
The model 2048 is equipped with a
cord and plug to be connected to your
favorite paddle. The keyer contains no
relays and can operate into open-key
voltages of up to 150 volts and closed-
key currents to 10 mA. Sidetone level
can be controlled by a volume control;
pitch can be varied by a pot on the PC
board.
The CW Sendin’ Machine model
2048 comes with two 1024-bit memo-
ries, and an automatic reset feature is
available as a modification which can be
added to your board. The PC board is
on a connector for easy service. The
board operates on 5 volts at 400 mA.
For more information write H.A.
Harp, WA4SVH, 718 Magnolia Dr.,
Lake Park, Florida 33403 or use check-
off on page 134.
Several errors crept into DJ2LR's excellent article on frequency synthesizers in the July, 1976, issue of *ham radio*. In fig. 13 (page 16), the wiper of the 4.7k potentiometer between the emitters of the two 2N3570 transistors should be grounded. In fig. 17 the input labeled "10 kHz from divider" should show a pulse width of 200-500 nanoseconds (not microseconds). In fig. 20 the CD4000 gate should be a 74C00, and in fig. 23 the gate with three inputs which is not identified is a 74LS30. Finally, the caption to fig. 24 on page 23 is incorrect — this circuit adds 41 MHz to the synthesizer reading.

DT-600 RTTY demodulator

In the schematic of the DT-600 RTTY demodulator in the February, 1976, issue of *ham radio* one end of the 10k balance pot (at the input to U1, wiper connected to R9) should go to -12 Vdc. This pot should be labeled R8. In fig. 5 the horizontal axis was measured in Hz but mistakenly labeled in baud; none of the standard RTTY speeds (60, 75, and 100 wpm) are attenuated. Potentiometers to fit the circuit board are available from Data Technology Associates, Inc., Box 431912, Miami, Florida 33143. A set of four pots is priced at $2.00.

DT-500 RTTY demodulator

Due to an editorial oversight, the names of co-authors Garey K. Barrell, K4OAH, and Archie C. Lamb, WB4KUR, were inadvertently deleted from the cover page of the DT-500 article in the March, 1976, issue. In addition, in fig. 2 (page 26), the negative return from the +170 Volt loop supply should be connected to ground through a 2500 ohm, 20 watt resistor. Printed-circuit boards for the DT-500 are priced at $10.50 from Data Technology Associates, Inc., Box 431912, Miami, Florida 33143. A set of four PC potentiometers is available from the same source for $2.00.

S-line frequency synthesizer

In the S-line frequency synthesizer article published in the December, 1975, issue, in fig. 3 (page 12) R2 should be connected to pins 4 and 5 of U1B, not pin 6. The parts layout in fig. 10 is correct.

GET TO THE TOP FAST!

NOW YOU CAN CHANGE, ADJUST OR JUST PLAIN WORK ON YOUR ANTENNA AND NEVER LEAVE THE GROUND!

Rohn manufactures towers that are designed and engineered to do specific jobs and that is why we have the FOLD-OVER TOWER...designed for the amateur. When you need to "get at" your antenna just turn the handle and there it is. Rohn "fold-over" towers offer unbeatable safety. These towers let you work completely on the ground for antenna and rotator installation and servicing. This eliminates the hazard of climbing the tower and trying to work at heights that could mean serious injury in a fall. So use the tower that reduces the risks of physical danger to an absolute minimum...the Rohn "fold-over"!

Like other Rohn big communication towers, they're hot dip galvanized after fabrication to provide a maintenance free, long lived and attractive installation. Rohn towers are known and used throughout the world...for almost a quarter century...in most every type of operation. You'll be in good company. Why not check with your distributor today?

More Details? CHECK-OFF Page 134
SWAN METERS HELP YOU GET IT ALL TOGETHER

These wattmeters tell you what's going on. With one of these in-line wattmeters you'll know if you're getting it all together all the time. Need high accuracy? High power handling? Peak power readings? For whatever purpose we've got the wattmeter for you. Use your Swan credit card. Applications at your dealer or write to us.

DON & BOB'S SUPER BUYS

OCTOBER RECEIVER DEALS
R-4C, R599D, SSR-1, SPR4 . . . Call or Write

HY GAIN TH6DX $192.00
TH3MK3 3 ELEMENT BEAM, 20, 15, 10 $160.00
MOSLEY CLASSIC 33 $179.00
GREAT BUYS ON 204BA, 402BA
BN86 $15.95
CDE HAM-II ROTOR $129.00
KLM (KENPRO) ROTOR + 100 FT. OF CABLE $100.00
18HT HY TOWER $218.00
ROHN 25G TOWER & ACCESSORIES Call or Write
BELDEN 8214 RG-8/U FOAM COAX 23¢/FT.
BELDEN 8237 RG-8/U 19¢/FT.
BELDEN 8 WIRE ROTOR CABLE #8448 14¢/FT.
AMPHENOL PL-259 59¢
CALL FOR QUOTES — TS-520, TS-820, TS-700A, 210X.
TEMPO 2020 & MULTI 2700 Call or Write
BOXS
SWAN SWR-1 $18.95
ELECTRA BEARCAT 101 $319.00
RAYTHEON 811A, SEALED BOXES $15 per pair
PENETRATOR 200 W BASE AMPLIFIER $275.00
ALL PRICES FOB HOUSTON. CALL TODAY FOR ITEMS NOT LISTED.

MADISON ELECTRONICS SUPPLY, INC.
1508 Mckinney Avenue, Houston, Texas 77002
713/658-0268
Nites 713/497-5683

More Details? CHECK-OFF Page 134
There is no substitute for quality, performance, or the satisfaction of owning the very best.

Hence, the incomparable Hy-Gain 3750 Amateur transceiver. The 3750 covers all amateur bands 1.8-30 MHz (160-10 meters). It utilizes advanced Phase-Lock-Loop circuitry with dual gate MOS FET's at all critical RF amplifier and mixer stages. There's a rotating dial for easy band-scanning and an electronic frequency counter with digital readout and a memory display that remembers frequencies at the flip of a switch. And that's just the beginning.

Matching speaker unit (3854) and complete external VFO (3855) also available.

See the incomparable Hy-Gain 3750 at your radio dealer or write Department MM. There is no substitute.
Performance... your choice for under $299*

Horizon “2” outclasses them all! 25 watt output 2 Meter FM transceiver for HAM, CAP, and MARS • Full 12 channel capability • All solid state • Compact size: 6½ x 2¾ x 9 inches • Weighs less than 4 pounds • Dynamic microphone • Built-in speaker • External speaker jack for 3 watts of crisp audio • Unique quick release/locking bracket and key included.

Because no two transceiver applications are exactly alike, Standard also makes the rugged 146-A. An action Handheld for 2 meter FM, the 146-A, like the Horizon “2”, is also available for under $299. Both of these rugged radios offer you exceptional quality and outstanding performance at a price that's right.

Incredible counter!

Incomparable price!

A 500mHz (6-Digit) FREQUENCY COUNTER for under 40 cents per mHz! Figure it out. It adds up to unheard-of savings! With guaranteed quality to match and exceed overpriced brands. Let us prove it to you now!

$199.95 assembled

169.95

Perfect for: CBers, Hams, Service Techs, & Experimenters!

- HAM, CB, & COMMERCIAL BANDS • WIRED & TESTED AVAILABLE • 100Hz READOUT • 6 DIGITS • CRYSTAL TIME-BASE *1Hz OPTIONAL • MASTER CHG./ B. AMERICANOK • ADD $2 SHIPPING

Incredible counters starting at $45.95 are also available! All counters can be factory wired and tested. Write or call today!

Box 357, Dept. 61, Provo, UT 84601 (801) 375-8566

HIGH QUALITY HEAVY DUTY GEAR-MOTORS — made by BODINE as used by Xerox — surplus but guaranteed perfect.

Gear Input 1650 RPM — Output 28 RPM — Shaft ⅛” steel with ⅛” Key and Keyway — capacity 44 Inch/lbs.

115 V 60 Cycle 1/15 HP Complete with Capacitor.

Price $16. F.O.B. Dallas, Shipping Weight 20#. Send Cash with order — shipped UPS or advise.
DATA-TONE KEYBOARDS
- Five Styles
- Slimness - 0.050"
- Positive Tactile Feedback
- Positive Audio Feedback
- Keyboards are designed, fabricated and guaranteed by Data Signal
- Gold Plated Contacts
- Stainless Steel Domes
- Conforms to curved-surfaces
- Best keyboard for Hand Helds

DATA-TONE ENCODERS
- RF Proof
- Cmos IC Encoder
- Sub-Miniature HC-43 Crystal
- Choice of Five Keyboards
- Single Tone Capability
- Lowest Cost
- Easy Installation

DATA-TONE ENCODER
- Self-Contained
 - Complete 12 or 16 digit encoders for mounting directly to hand held ports. All electronics included WITHIN keyboard, includes LED and adjustable output control. Only ½" thick. Select style when ordering.
 - DTM
 - $49.50

SUB-MINIATURE MODULE AND KEYBOARD
- The smallest encoder, allows for mounting encoder INSIDE hand-held portable, while 0.50 thick keyboard mounts on portable. Assembly for quick installation. Select style keyboard when ordering.
 - SME
 - $29.50

DO-IT-YOURSELF KITS
- All-crate encoders are here, now buy the parts and build your own DATA-TONE Encoder. Parts come with complete set of instructions and schematics.
- Keyboard, Your choice of styles
 - $8.50
- Digital IC Encoder with 1MHz, HC-43 Crystal
 - $13.50
- P.C. Board with all resistors, capacitors, etc.
 - $2.50*
 - (*FREE with purchase of keyboard, encoder and crystal.)

AUTOMATIC DATA TONE DIALER
- Automatic mobile telephone dialing is now available. By the push of a single button you can automatically dial up to six separate 7-digit numbers. All solid-state micro-power COS-MOS design. Automatic PTT operation. Low profile dash mount, easy installation. Available with keyboard for manual dialing of numbers. Manual operation provides automatic PTT operation with ½ second transmitter hold.
 - AMD-4
 - Factory programming of numbers $7.50.
 - $119.50

DATA TONE PADS
 - TTP-1, 2
 - $59.50

DATA TONE TO DIAL PULSE CONVERTER
- Convert standard 4.9 Data Tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-falseing Data Tone decoder, large capacity 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function. * and # digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting.
 - DPC-121
 - P.C. Board $195.00
 - Rack Mount $285.00

ANTI-FALSING DATA TONE DECODER
- Now a true anti-falseing decoder/receiver. Virtually immune to high noise or audio falsoing. Twelve or 16 digit capability. Completely solid state, uses latest Phased Locked Loop decoding. Single 5 volt power supply. Heavy duty transistor output. Available as p.c. board or 19" rack.
 - TTD-126-12
 - 12 digit
 - P.C. $149.95
 - Rack $219.95
 - TTD-126-16
 - 16 digit
 - P.C. $169.95
 - Rack $239.95

REPEATER AUTO PATCH
- It's complete - a single digital access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dial-in capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.
 - RAP-2
 - PC $99.50
 - Rack $149.50

DELUXE C-MOS P.C. KEYER
- Complete C-MOS keyer in kit form, or wired, just right for your custom enclosure. Versatile controls allow wide character weight variations, speeds from 5 to 50 w.p.m. plus volume and tone control. Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuits. With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.
 - C-MOS Keyer Wired $24.95; Kit $19.95

DELUXE RECEIVER PREAMP
- Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signal with a Data Preamp.
 - FREQUENCY
 - USE
 - STAGES
 - GAIN DB
 - RF
 - KIT
 - WIRED
 - 144 to 148
 - 2 Meter
 - Single
 - 20
 - 2.5
 - $9.50
 - $12.50
 - 1 thru 30
 - HF Broadband
 - 19-36
 - 3
 - $17.95

Basic $59.50

Order Today – Send for Free New Catalog
DATA SIGNAL, INC.
2403 COMMERCE LANE
ALBANY, GEORGIA 31707. 912-883-4703

More Details? CHECK-OFF Page 134
ter 1976 89
NEW 500/50 MHz FREQUENCY COUNTER

FEATURES
- 8 Digit Display
- Large 3" LED Readouts
- Automatic Op Placement
- Resolution to 1 Hz
- High Input Sensitivity
- Automatic Input Limiting
- Input Diode Protected
- Selectable Gate Times, 1 ms and 1 sec. Precision for 10 sec.
- High Stability 10 MHz Crystal Time Base
- Plug-in Time Base
- Plug-in Prescaler

SPECIFICATIONS

BASIC

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50 MHz</th>
<th>500 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Z</td>
<td>1 Meg/20pf</td>
<td>50 ohm</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>20 mv @ 50 MHz</td>
<td>150mv @ 500 MHz</td>
</tr>
<tr>
<td>Range</td>
<td>10 Hz to 50 MHz</td>
<td>10 MHz to 500 MHz</td>
</tr>
<tr>
<td>Max. Input Voltage</td>
<td>120V RMS to 10 MHz</td>
<td>2.5V</td>
</tr>
<tr>
<td>Time Base</td>
<td>10 MHz XTAL</td>
<td>± 1 ppm 15° to 55°C</td>
</tr>
<tr>
<td>Power</td>
<td>17V 50/60Hz 15W</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>8.8" x 8" x 2.8"</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>3 lbs, 10 oz.</td>
<td></td>
</tr>
</tbody>
</table>

WITH PRESCALER

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50 MHz</th>
<th>500 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Z</td>
<td>1 Meg/20pf</td>
<td>50 ohm</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>20 mv @ 50 MHz</td>
<td>150mv @ 500 MHz</td>
</tr>
<tr>
<td>Range</td>
<td>10 Hz to 50 MHz</td>
<td>10 MHz to 500 MHz</td>
</tr>
<tr>
<td>Max. Input Voltage</td>
<td>120V RMS to 10 MHz</td>
<td>2.5V</td>
</tr>
<tr>
<td>Time Base</td>
<td>10 MHz XTAL</td>
<td>± 1 ppm 15° to 55°C</td>
</tr>
<tr>
<td>Power</td>
<td>17V 50/60Hz 15W</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>8.8" x 8" x 2.8"</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>3 lbs, 10 oz.</td>
<td></td>
</tr>
</tbody>
</table>

PRICES

- **50 MHz Kit**
 - Model CTR-2: $199.95
 - Model CTR-500: $249.95
- **50 MHz Factory Assembled**
 - Model CTR-2: $289.95
 - Model CTR-500: $349.95

Please add $2.00 shipping.

KITS INCLUDE

- All parts, drilled and plated PC boards, cabinet, switches, hardware and a complete instruction manual including calibration instructions.
- Factory assembled units are tested and calibrated to specifications.

DavIES ELEcTRONICS

636 Sheridan Drive, Tonawanda, N. Y. 14150
(716) 874-5848
THE "WOW" DESIGN!

YAESU'S NEW FT221 - ENTIRE 2 MTR BAND!

AND WOW! ONLY $629.

PHASE LOCK LOOP!

Price and specifications subject to change without notice.
KENWOOD'S TS-820
This is the PACESETTER for the industry and no small wonder when you consider these features:
IF shift, RF speech processing, digital readout (option), digital hold, monitor circuit, monoscale VFO dial, PLL circuitry, RF negative feedback, RTTY, 160-10 meter coverage, front panel VOX controls, RF attenuator, phone patch terminals, IF OUT jack, ... Treat yourself to all these operating conveniences now.
TS-820 $830.00 ppd. in U.S.A.

Accessories for the TS-820 are:
The plug-in digital kit (DG-1), a DC-DC converter (DS-1A), 500 cycle CW filter (CW-820), deluxe remote VFO (VFO-820), MC-50 microphone, TV-502 2 meter transverter, etc.

Send SASE NOW for detailed info on this system as well as on many other fine lines. Or, better still, visit our store Monday thru Friday from 8:00 a.m. thru 5:00 p.m.

KLASS RADIO Inc.
8400 N. Pioneer Parkway, Peoria, IL 61614
Jim Plack WB9BGS — Phone 309-691-4840

Announcing
BIG EAR
by
John Kraus, W8JK
Director and Founder
Ohio State-Ohio Wesleyan Radio Observatory
Author — ANTENNAS

- BIG EAR is a new book by a long-time amateur and inventor of antennas, a pioneer radio astronomer and mapper of the Cosmos.
- BIG EAR is about the Ohio telescope, how it has probed the universe to its limits and now searches for intelligent life beyond Mars.
- Accounts of personal exploits from early amateur days to the present provide revealing behind-the-scenes glimpses.
- An authoritative book written in a warm, entertaining, non-technical style.

225 pages, illustrated
Published July 1976
Paperbound $3.25, hardbound $6.25, postpaid
Cygnus-Quasar Books, Box 85, Powell, Ohio 43065

More Details? CHECK-OFF Page 134
Solder is for sissies.

Are you still designing circuits the old fashioned way? Soldering and unsoldering? Burning up valuable IC's? If so, it's time you made a switch to solderless breadboarding. E&L Instruments offers a complete line of breadboarding products from sockets to the most complete systems for professional use. Here are five ways you can go solderless . . .

SK-10 Socket

This precision solderless breadboarding socket will pay for itself in one afternoon. Integrated circuits and discrete components insert directly, without adapters. All interconnections are made with 20 to 26 gage solid conductor wire. $17.75.

Digi-Designer #DD-1K

A must for every student, engineer or technician doing digital circuit design. Handles both IC and discrete components without soldering. Connections to the SK-10 socket are made using any solid 22 gage insulated wire. The DD-1K includes a clock, power supply, logic lights, pulsers, logic level switches and much more. All circuitry is now in one circuit board. $70.00 in kit form.

Breadbox III

An economical approach to a large breadboarding area. Three SK-10 sockets, four 5-way binding posts, two BNC connectors, six BP-22 solderless breadboarding pins. $65.00.

Op-Amp Designer #OA-2K

Powerful design tool for linear work and CMOS digital circuitry. SK-10 socket. Heavy current capacities on all three power supplies [+/−15V & +5V DC]. Sensitive null detector and a full function generator with external frequency adjustment. All interconnections are solderless. $95.00 in kit form.

Op-Amp Designer #OA-3K

SK-10 socket. Plus and minus variable supplies (1 to 15V). This adjustable feature makes the unit exceptionally flexible, allowing it to be more useful for odd voltage requirements. The fixed 5 volt supply allows interfacing with TTL circuitry. $80.00 in kit form.

CIRCUIT DESIGN, INC.

Division of E&L Instruments, PO Box 24, Shelton, Conn. 06484

It's time you went solderless! Order any one of the five products above by completing and sending in this coupon. Please don't forget to sign coupon and include check, money order or charge card information.

Please send me your model ___________ pictured above for $__________.

Enclosed find my Check ___________ Money Order ___________ or Charge information for BankAmericard ___________ or Master Charge ___________. (Make sure you sign the order blank.)

NAME: ____________________________

ADDRESS: ________________________

CITY: ___________ STATE: ___________ ZIP: ___________

SIGNATURE: _______________________

Circuit Design will prepay shipping anywhere in the U.S.
FREQUENCY COUNTER
- 6 Digit .33 inch 7 seg. LED Latched Display (Can be expanded to 8 digits) Crystal Oscillator Timebase .001% ± 1 count. Readout MHZ or KHZ to over 40 MHZ.

MULTIMETER
- 1.5 Megohm Input Impedance. 100% Overrange except 1 amp range. AC-DCV 0-1000, 100.0, 100.0, 1000. AC-DCMA 0-1.000, 100.0, 100.0, 1000. OHMS 0-1000, 0-10K, 0-1 Megohm. Input protection, auto polarity, overrange and negative sign indication.

NEW AT A PRICE THE HOBBYIST CAN AFFORD KIT $69.95

DIGITAL CAPACITANCE COUNTER
- 4 Digit LED Display
- Ranges to 1000 MFD.
- ± 0.5% (± 1 PFD Below 100 PFD)

Add $2.00 Shipping/Handling
Allow 4 Weeks Delivery

California Residents add 6% Sales Tax
Send Check or Money Order to LIN CORPORATION
15311 S. Broadway Gardena, Ca. 90248
(213) 532-8609

FREQUENCY COUNTER KIT $179.95

1. Crystal Timebase, 1MHZ with six $21.95 divide by 10 Outputs 1HZ to 1MHZ (Size 3" x 5"")
2. Freq. Counter Gate Module $16.95 includes 80 MHZ + 10 Schottky (Size 3" x 5"")
3. Four digit 7 seg. .33 inch LED $34.95
- Latched Display (Size 4" x 5" x 3/4" high)
- (Above requires 5 VDC)
4. Function Generator Module $19.95
- Saw, Sine, and Squarewave Outputs 1HZ - 100KHZ to 10 Volt output.
- Requires Switches & Pots.
5. Function Generator Kit $39.95
- Includes assembled/tested module,
- Switches, Case, Hardware (Requires two 9 Volt Batteries.)

Add $1.00 Shipping Any Above
Allow 3 Week Delivery

TONE ENCODER PAD MODEL TTP-03

- A Better Keyboard
- Output Level Set Pot
- Crystal Controlled-Digitally Synthesized Tones
- Strapping for Hi-Low Z Output
- Internal 5 V. Regulator
- Supply Voltage Range 7 to 24 V.
- RFI Suppression
- Velcro and Case Included
- Size 2.80 - 2.00 - 0.60 Inches

CLEM ENG ELECTRONICS CO.
BOX 12171 — DALLAS, TEXAS 75225

$54.95
POSTPAID IN U.S.A.

TONE ENCODER PAD

ANTENNA SUPERMARKET, PO Box 1682, Dept. H, Largo, Fla. 33750

DIPOLE AND WIRE ANTENNA KITS, complete with HI-Q BALLUN. 100' rope. copper antenna wire and insulators.
80/40/15 parallel dipole $36.95 160 short, 130' length $36.95
40/20/15 parallel dipole $30.95 80 short, 63' length $31.95
80/40 trap dipole $41.95 40 short, 33' length $28.95
40/20 trap dipole $36.95 Single band models from $24.95

VERTICALS — complete with Universal Mounting Base, Folds to 5' for Easy Transport, Hvy. Duty Aluminum Tubing.
20/15 trap, 13' hgt. $29.95 160 compact 23' hgt. $44.95
40/20/15 trap 22' hgt. $44.95 80 compact 30' hgt. $39.95
80/40/20 trap 30' hgt. $69.95 40 compact 15' hgt. $34.95
80/20/15 trap 20' hgt. $59.95 20/15/10 full size vertical $29.95
10 meter cov. for above add 9.95

NEW APARTMENT / PORTABLE
- Limited, roof or patio, camper, trailer, motor home. All bands. 80 to 10, folds to 5' easily, 13' height. 80-40-20-15-10 $49.95 Include Interlock # and Expiration date on Credit Card orders.

ADAX ALUMA TOWERS
LOW PRICED
MADE IN ALUMINUM

• TELES Pring (CRANK UP)
• GUYED
• TILT OVER MODELS
QUALITY MADE

EXCELLENT FOR
HAMB COMMUNICATIONS
10 MODELS MFG.

Towers to 100 feet. Specials designed & made. See dealer or send for free catalog.

FRED FRANKE, INC.
BOX 2808/NR
VERO BEACH, FL. 32960
PHONE (305) 567-3415

NEW from NRI Home training in AMATEUR RADIO

NRI, leader in Communications, Television, Electronics and TV- Radio home training, now offers the first in Amateur Radio courses, designed to prepare you for the FCC Amateur License you want or need.

Don't lose your favorite frequency
The FCC has said "either-or" on licensing, but to pass Advanced and Extra Class exams, you need the technical guidance as offered by NRI. NRI Advanced Amateur Radio is for the ham who already has a General, Conditional or Tech Class ticket. Basic Amateur Radio is for the beginner and includes transmitter, 3-band receiver, code practice equipment. Three training plans offered. Get all the facts. Mail coupon. No obligation. No salesman will call on you. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

 MAIL NOW
NATIONAL RADIO INSTITUTE
46-076
Washington, D.C. 20016
Please send me information on Amateur Radio training.
Name: ____________________________ Age: ____________________________
Address: ____________________________
City ____________________________ State ___________ Zip ____________
ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL
HERE'S A HOT NUMBER!

CALL

800-325-3636

(TOLL FREE)

FOR

NEW & USED

AMATEUR RADIO EQUIPMENT

HAM RADIO CENTER INC.

8340-42 OLIVE BLVD., P. O. BOX 28271

ST. LOUIS, MISSOURI 63132
the
BRIMSTONE 144
2 METER FM TRANSCEIVER

• 143 to 148.99 MHZ in digitally dialed 5 KHz steps without buying a single crystal. 142 MHZ coverage optional.
• 25 Watts RF output
• 20+12 Db SWR sensitivity
• Completely independent transmit/receive frequency control, yet simple! with the flip of a single switch.
• Includes dynamic microphone and mobile mounting bracket.

AMATEUR NET $650.00

NEW PRODUCTS!

• REPEATER AUTOPATCH AND CONTROL
 3 digit access, single digit disconnect.
 Repeater ON/OFF control
 AGC with 30 Db dynamic range on all inputs and outputs! Just connect repeater Rcvr, TX, Idler,
 Touch Tone line and power.
 Size 9½” x 10½” x 3¼”

$199.95 Assembled

• 650 MHZ PRESCALER KIT
 Why pay $75.00 to $100.00 or more for a 260 MHZ prescaler when you can get one that goes all the way to 650 MHZ for just
 Size 1” x 4½”
 12V or 5VDC

$47.50

• TOUCH TONE KEY BOARD
 Positive snap-action push-button switch!
 No need to worry about long-finger nails!
 No more mis-dials because of intermittent switch contacts.
 Standard touch-tone format.
 Size 2”w x 2”h x 1”d

$9.00

• COMING SOON the P.A.D. The PROGRAMMABLE AUTOMATIC DIALER. Send for more information.

 Send for our six page COLOR brochure which gives you the full story, inside and out!

Touch Tone™ — trademark of the Western Electric Co.

COMPETITIVELY PRICED!

$49.95 EPC-300
300 MHZ Prescaler
• Built-in 117% 60 Hz, power supply
• Size 7½” x 3½” x 4”
• BNC input, output connectors
• Input impedance = 50 ohms
• Output TTL, Fan out of 1
• Sensitivity 14 Mc @ 150 MHZ, 150 no @ 300 MHZ

$32.95 EPC-144-B
2 Meter FM Transmitter
• 2 Channel, 144-148 MHZ
• Power Output 2 watts typical, 1 watt min @ 12.5 VDC
• 50 ohm output impedance
• Narrow band FM ± 5 Khz
• Rugged balanced emitter output
• Small size 1 7/8” x 1 1/2” x 1”

$39.95 LA-144
30 Watt 2 Meter Power Amplifier
• Frequency range 144-148 MHZ
• Maximum RF output power 30 watts
• Maximum RF input power 5 watts
• Supply voltage 13.6 VDC
• Small size 1 7/8” x 5/8” h x 3” L
• Virtually burn-out proof balanced emitter output. transistor.
• Fully compatible with the EPC-144-B
• 50 ohm input & output impedances
• Sold as a fully tested & assembled circuit board less case, connectors and heat sink

Eiprocom
ELECTRONIC PROTOTYPE CONSULTANTS
1907 W. Campbell / Phoenix, Arizona 85015

2 METER CRYSTALS IN STOCK

FOR THESE RADIOS ON
STANDARD ARRL REPEATER FREQUENCIES

Clegg HT-146
Drake TR-22
Drake TR-33 rec only
Drake TR-72
Genave
Heathkit HW-202
Heathkit HW-2021 rec only
Icom/VHF Eng
Ken/Wilson
Lafayette HA-146
Midland 13-505
Regency HR-2A
Regency HR-212
Regency HR-28
Regency HR-312
Regency HR-2MS
S.B.E.
Sonor 1802-3-4, 3601
Standard 146/B26
Standard Horizon
Tempo FMH
Trio/Kenwood TR2200
Trio/Kenwood TR7200

Send for free frequency list and order blank to:
KENS CO

Box 469
Quincy, MA 02169
(617) 416-4257

Aha, the SECRET of PC Board success finally revealed.
A perfectly balanced lighting tool combining magnification with cool fluorescense. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished.

Regularly $70.00. Now, over 30% discount (only $49.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax. Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmerica accepted

D-D ENTERPRISES
Dept A, P.O. Box 7776
San Francisco, CA 94119
DON'T BROADCAST
THE FACT THAT YOU'VE GOT
A HAM RIG.

Now you don't have to let everyone know that you've got a mobile ham transceiver. Our model ASPR798 gain disguise antenna looks and acts just like a normal Ford antenna, operating on AM and FM broadcast* as well as the 2 meter band. We know the disguise is effective because we've been making them for law enforcement agencies for years. Antenna Specialists has an entire line of disguise antennas to prevent the theft of your VHF FM rig. Exact replacements for Chrysler and Ford products and universal mounts for everything else on wheels.

When it comes to choosing the right amateur antenna, don’t settle for less than the best. Look for the Stripes of Quality. At your Antenna Specialists Dealer.

*When used with corresponding antenna coupler.

the antenna specialists co.

a member of The Allen Group Inc.
12435 Euclid Avenue, Cleveland, Ohio 44105
Export 2200 Shames Drive, Westbury, L.I. New York 11590
Canada: A. C. Simmons & Sons, Ltd.

© 1976 by The Antenna Specialists Co.
If you want a microcomputer with all of these standard features...

- 8080 MPU
 (The one with growing software support)
- 1024 Byte ROM (With maximum capacity of 4K Bytes)
- 1024 Byte RAM
 (With maximum capacity of 2K Bytes)
- TTY Serial I/O
- EIA Serial I/O
- 3 parallel I/O's
- ASCll/Baudot terminal compatibility with TTY machines or video units
- Monitor having load, dump, display, insert and go functions
- Complete with card connectors
- Complete factory assembled and tested
- Not a kit
- Optional accessories: keyboard/video display, audio cassette modem interface, power supply, ROM programmer, and attractive cabinet... plus more options to follow.

The HAL MCEM-8080. $375

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us... and how far it can take you in your applications. That's why we'd like to send you our card—one PC board that we feel is the best-valued, most complete microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessor-based terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp.
Box 365, 807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

NOW AVAILABLE IN KIT FORM

- 6:1, 4:1 and 1:1 Baluns
- Frequency Range 3-30 MHz
- 2 KW Rating
- Lightning Protection Built In

All Prices Postpaid in USA / Add Shipping outside USA
Shipping Wt. 1 lb.
[California Residents Add 6% Sales Tax]

FIVE NINE PLUS
3402 Campus
Claremont, Ca 91711
(714) 621-6588

FM XMTR KITS

- 2M, 150MW EXCITER $39.95
- 432-450 MHz TRIPLER $19.95
- 20W PA, WIRED $79.95

Send SASE for Catalog, included.
Rcvrs, Preamps, Conv., etc.

hamtronics, inc.
182 BELMONT RD., ROCHESTER, NY 14612

More Details? CHECK-OFF Page 134
DIGITAL DATA RECORDER
for Computer or Teletype Use
Up to 4800 Baud

Uses the industry standard tape saturation (NRZ) method to beat all FSK systems ten to one. No modems or FSK decoders required. Loads 8K of memory in 17 seconds. This recorder enables you to back up your computer by loading and dumping programs and data fast as you go, thus enabling you to get by with less memory. Great for small business bookkeeping. Imagine! A year's books on one cassette.

Can be software controlled. Comes complete with a software program used to test the units in production (8080). Manual includes software control hook up data and programs for 8080 and 6800.

SPECIFICATIONS —
MODEL CC7:
A. Recording Mode: Tape saturation binary (NRZ). This is not an FSK or Home type recorder. No voice capability. No Modem. Runs at 2400 baud or less Asynchronous and 4800 baud Synchronous. Runs at 3.1"/sec. Speed mechanically regulated ± .5% or better.
B. Two channels (1) Clock, (2) Data. Or two data channels providing four (4) tracks on the cassette. Can also be used for Bi-Phase, Manchester, etc.
C. Inputs: Two (2). Will accept TTY, TTL or RS 232 digital.
D. Outputs: Two (2). Board changeable from TTY, RS232 or TTL digital.
E. Erase: Erases while recording one track at a time. Record new data on one track and preserve three or record on two and preserve two.
F. Compatibility: Will interface any computer using a UART or ACIA board. (Altair, Sphere, IMSAI, M6800, etc.)
G. Other Data: 110-220 V - (50-60) Hz; 3 Watts total; UL listed; three wire line cord; on/off switch; audio, meter and light operation monitors. Remote control of motor optional. Four foot, seven conductor remoting cable provided.
H. Warrante: 90 days. All units tested at 300 and 2400 baud before shipment. Test cassette with 8080 software program included.

Also available — MODEL CC7A with variable motor speed which is electronically regulated. Runs 4800 baud Synchronous or Asynchronous. Recommended for quantity users who require tape interchangeability. Comes with speed calibration tape to set exact speed against 60 cycle line.

$169.95

NEW — 8080 I/O BOARD with ROM
Permanent Relief from “Bootstrap Chafing”
This is our new “turnkey” board. Turn on your Altair or IMSAI and go (No Bootstrapping). Controls one terminal (CRT or TTY) and one or two cassettes with all programs in ROM. Enables you to turn on and just type in what you want done. Loads, Dumps, Examines, Modifies from the keyboard in Hex. Loads Octal. For the cassettes, it is a fully software controlled Load and Dump at the touch of a key. Even loads MITS Basic. Ends “Bootstrap Chafe” forever. Uses 512 bytes of ROM, one UART for the terminal and one USART for the Cassettes. Our orders are backing up on this one. #2SIO (R)

Kit form $140.00
Fully assembled and tested $170.00

Fill out form and send check or money

NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
201-561-3600

SHIT TO:

CARD NO. ZIP
EXPIRATION DATE

Data Recorder CC-7 @ $149.95
Data Recorder CC-7A @ $169.95
Please enclose $2.00 Shipping & Handling on each Recorder or I/O Board.

Operating & Technical Manual (Schematics) Includes Software & Hookups for 8080, 6800, and I/O. $2.00
N. J. Residents add 5% Sales Tax

More Details? CHECK-OFF Page 134
INTRODUCING THE
ALL MODE LINEAR
AMPLIFIER FOR 2 METERS

For use with the many new all-mode 2 meter transceivers, typified by the Kenwood TS-700A.

SPECIALTY COMMUNICATIONS SYSTEMS MODEL 2M10-70L

SCS's AMPS ARE BUILT FOR ALL MODES OF OPERATION!
Want more power on FM? You've got it with the SM10-70L. Want more power on SSB? Just flip the switch on the 2M10-70L and you've got it.

A TRUE 70 WATT P.E.P. OUTPUT with 10 watts input. WITH LOWER INPUT POWER, THE 2M10-70L GIVES APPROXIMATELY A 10 dB GAIN.

SCS's ALL MODE LINEAR AMPS ARE FULL CAPACITY PRODUCTS! Not economy lines. The Model 2M10-70L is the finest linear amplifier for 2 meters that can be purchased. Components are of the highest quality.

SM10-70L gives approximately 10 dB gain. Full VSWR and reverse voltage protection. Under 1 dB insertion loss in receive or bypass mode. Harmonics levels typically -40 dB or better.

A TRUE 70 WATT P.E.P. OUTPUT with 10 watts input. With lower input power, the 2M10-70L gives approximately a 10 dB gain.

SPECIALTY COMMUNICATIONS SYSTEMS, INC.
8160 Miramar Road, San Diego, CA 92125 • Louis N. Anciaux • WB6NMT

YOUR BEST BUY IN KITS
ANALOG-DIGI-LAB
Features 3 Regulated power Supplies, 3 Output wave forms, 8 digital level switches, 2 no bounce pulser switches.
8 LEDs with drivers. 1 AP Super strip. Easily constructed. Designed by RETS Electronic Schools. 1st time offer. $139.00

Frequency Counter
7 Digit 0-500 MHz Freq. Counter $99.00
7 Dig 0-500 MHz Freq. Counter $139.00
8 Digit 0-30 MHz Counter with Options (Special) $99.00
0-300 MHz Precal for 8 Digit Counter $19.95
0-600 MHz Precal for 8 Digit Counter $39.95
Gabinet accessory package available for all of the above $24.95

HAL-TRONIX
P. O. Box 1101 • Southgate, Mich. 48195
(313) 285-1782

GROTH-Type
Counts & Displays Your Turns
99.99 Turns
One Hole
Panel Mount
Handy Logging Area
Spinner Handle Available

Case: 2x4"; shaft ¾" x 3"
The last few years have seen a remarkable quantum jump in the cost effectiveness of computing power brought about by the advent of inexpensive microcomputer systems. You've been reading about these machines for some time in the technical press. You've seen stories of applications ranging from specialized numerical control systems for machine tools to intelligent traffic light controllers.

One of the most exciting possibilities which has come about as a result of the inexpensive LSI computer is the fact that a general purpose computing system is within the budget range of you, the individual with an interest in the technology and an appreciation of both the intellectual challenge and fun of building and using a personal computing system. There is now a whole micro industry of companies which package and market microcomputer related items as kits, finished products and related items for personal use. The products range from complete system kits with hardware and software to peripherals, software and literature on the subject. But where do you go to find out about this personal involvement aspect of microcomputer technology?

Turn to BYTE, The Small Systems Journal for a wealth of information on the personal use of computer systems. BYTE is a monthly compendium of information you need for personal use applications of microcomputers:

Theoretical:
- Computers are Ridiculously Simple
- What is a Character?
- Total Kitchen Information System
- The Magic of Computer Languages
- Data Paths
- Processing Algebraic Expressions
- The Software Vacuum

Practical:
- Build a Graphics Interface
- Powerless IC Test Clip
- Let There Be Light Pens
- Golf Handicapping By Computer
- The COMPLEAT Tape Cassette Interface
- Assembling Programs By Hand
- Add A Kluge Harp to Your Computer

Speculations:
- Buck Rogers and the Home Computer
- Could A Computer Take Over?
- Frankenstein Emulation
- Biorythm for the Computer

News and Reviews:
- Son of Motorola
- The LSI-11: A New Mini-Microcomputer System
- Microprocessor Update: CP-1600
- Microprocessor Update: TMS9900
- Assembling an Altair 8800
- The HP-65: World's Smallest Computer System
- The SR-52: Another World's Smallest
- The CT-1024 Kit
- Build a 6800 System With This Kit

BYTE is professionally edited and packed with the information you need on this fast growing field of personal computer applications. Don't miss a single exciting issue. Order your subscription today, using the coupon below, or phone your request directly (call 603-924-7217 and ask for the subscription department).

If you are into computers, if you are planning a computer of your own, or if you're just curious, send this coupon today... subscribe to BYTE.

Please allow six weeks for processing.
TS-1 MICROMINIATURE ENCODER-DECODER

- Available in all EIA standard tones 67.0Hz-203.5Hz
- Microminiature in size, 1.25x2.0x.65" high
- Hi-pass tone rejection filter on board
- Powered by 6-16vdc, unregulated, at 3-9ma.
- Decode sensitivity better than 10mV RMS, bandwidth, ±2Hz max., limited
- Low distortion adjustable sinewave output
- Frequency accuracy ±.25Hz, frequency stability ±.1Hz
- Encodes continuously and simultaneously during decode, independent of mike hang-up
- Totally immune to RF

Wired and tested, complete with K1 element

$59.95

K1 field replaceable, plug-in, frequency determining elements

$3.00 each

COMMUNICATIONS SPECIALISTS

P.O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

PRESTO!

Your counter becomes
a digital display!

Like magic, Hufco’s Digi-Dial Adaptor turns any frequency counter into an absolutely accurate digital display! Inexpensively! With continual display of both transmit and receive frequencies — as fast as you turn your transceiver dial!

With the Digi-Dial Adaptor your counter easily adapts to Yaesu, Tempo, Drake C Line, Collins, Kenwood and other transceivers. (Tell us which other brand you have. We’ll tell you if the adaptor fits.)

Operation requires only a connecting cable to the transceiver VFO plug. Translates VFO output to 2 through 2.5 kHz. No internal connection or modifications necessary! Complete instructions included.

No frequency counter? Get both the Digi-Dial Adaptor and a frequency counter from Hufco. We have counters starting as low as $45.95!

Quick!
Order yours today!

Name ____________________________
Address ____________________________
City/State/Zip ____________________________

Hufco Box 357, Dept. 70, Provo, Utah 84601 801/375-6566

DIGI-DIAL ADAPTOR

39.95

kit form

$49.95 assembled

We’re Fighting Inflation

No Price Rise for ’76

FOR FREQUENCY STABILITY

Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS

Frequency Standards

100 KHz (HC 13/U) $4.50
1000 KHz (HC 6/U) 4.50

Almost all CB sets, TR or Rec $2.50
(CB Synthesizer Crystal on request)

Amateur Band in FT-243 ea $1.50

4/55.00

80-Meter $1.00 (160-meter not avail.)

For 1st class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.

Div. of Bob Whan & Son Electronics, Inc.
2400 Crystal Dr.
Pt. Myers, Fla. 33901
All Phones: (813) 936-2397
Send 10¢ for new catalog

102 october 1976

More Details? CHECK-OFF Page 134
ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.

- Powered by 6-16vdc, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Low distortion sinewave output
- Available in all EIA tone frequencies, 67.0 Hz-203.5 Hz
- Complete immunity to RF
- Reverse polarity protection built-in

$29.95 each

Communications Specialists
P. O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

K-1 FIELD REPLACEABLE, PLUG-IN, FREQUENCY DETERMINING ELEMENTS

$3.00 each
NEW! ATRONICS Visual Code Reader Kit $149

Model KCR101

Ready Made Model CR101 $225

USE YOUR BANKAMERICARD

Now you can have the famous Atronics Code Reader, that displays decoded Morse Code signs visually, in kit form. Assembly is simple, and can be completed in as little as 5 hours. Complete, step by step instructions are included.

The Atronics Code Reader:
- Displays letters, numbers, and commonly used punctuation visually as Morse Code signal is received.
- Operating speed 5 to 50 WPM at selected speed.
- All Solid State

Buy Factory Direct & Save! Send for Free Literature Today.

ATRONICS P.O. Box 77, Escondido, CA 92025 Call (714) 745-1971
WINTER IS JUST AROUND THE CORNER. NOW'S THE IDEAL TIME TO PUT UP THAT ANTENNA SYSTEM OR TOWER YOU'VE BEEN THINKING ABOUT ALL SUMMER. DURING OCTOBER SAVE $ $ ON THE ANTENNA PACKAGE OF YOUR CHOICE . . .

FULL SPEC SHEETS AVAILABLE ON REQUEST. A WIDE SELECTION IS AWAITING YOUR PHONE CALL OR LETTER.

OF SPECIAL INTEREST . . .

MOBILE CHARGERS
We have a limited supply of mobile, rapid chargers for the HT-220 Omni. These chargers are similar to the Convertacom Console, but Convertacomm goodies are not installed. Chargers are checked out and print of PC board is included.

Only $75.00
Plus Shipping

SOLID STATE RECEIVER STRIPS
We have some Motorola “H” series hi-band receiver strips in stock. They have the cavity front end for selectivity. Ideal for repeater receiver or standby use. Limited supply.

$49.00 each
Plus Shipping

...if you have been having difficulty locating the Wattmeter or element just right for you . . . You may have been looking in the wrong places. Our large inventory of most common elements lets you get what you want when you need it. Give us a call first for your BIRD needs.

WE WANT TO MEET YOU . . .

We'll be at the following Hamfests . . . Hope to see you there . . . Sept. 26 Louisville, Ky — Oct. 2, 3 Memphis, Tn — Oct. 8, 9 Omaha, Nebr. If not send for your FREE Buyer's Guide and shop with confidence from your own home.
A SUPER QUALITY kit that features:
• Handsome extruded aluminum case in black, gold, silver, bronze or blue
• Large .33” bright LED display
• 12 or 24 hour readout format
• All parts included — no extras to buy
• Alarm version (12 hour only)

$24.95

FM WIRELESS MIKE KIT
Transmit up to 300’ to any FM broadcast radio. Sensitive mic. input requires crystal, ceramic or dynamic mike. Runs on 3 to 9V. Small one inch square size. Complete Kit $2.95

600 MHz PRESCALER
Extend the range of your counter to 600 MHz. Works with most any counter. Completely assembled and tested. Sensitivity of 100 millivolts. Choice of 1/8” or 1/10, specify with order. $26.95

FERRITE BEADS
Beads come with valuable info on uses and specs. $15/$1.00

6 DIGIT LED CLOCK KIT
$22.95

60 Hz TIME BASE KIT
Run any digital clock in your car, boat or airplane. Features zero regulation, output buffering, CMOS circuitry and small size. Kit includes all parts and instructions to hook up to any clock. $4.95 6/$25.00

SIREN KIT
Produces police-type wall of siren at toy volume. Runs speaker from 3-45 Ohms to 200 mW output. Requires power source of 3 to 6 volts. A neat toy for the kids. Complete Kit $2.95

2-METER LINEAR (KW)
DON’T MISS OUT ON OSCAR AND 2 METER DX. AM-SSB-CW-FM MODES. 16 in W X 5 in. H X 17 in. D IN A CASE THAT EVEN THE XYL WILL WANT IN THE LIVING ROOM! ALL NEW AMERICAN PARTS-FULLY ASSEMBLED AND TESTED. (requires power supply offered below or equivalent) fob san bernardino. Calif. L-2-K $450

COMMERCIAL QUALITY 2KW POWER SUPPLY

PERCENT OF QUIETING MEASUREMENT
FINELY, A SYSTEM TO MEASURE THE PERCENT OF QUIETING IN FM RECEPTION. ACCURATE AND CONSISTENT PERCENT QUIETING REPORTS PLUS FINE TUNING FM RECEIVERS AND ANTENNA SYSTEMS MAKES THIS A WINNER! THIS PIECE OF GEAR IS A MUST FOR THE SERIOUS VHFER. ASSEMBLED AND TESTED. shipped paid in U.S.A. PQ-A $65

FREQUENCY DEVIATION MEASUREMENT
A 2 METER FREQUENCY DEVIATION METER AT ITS BEST. STABLE, ACCURATE AND EASY TO OPERATE. MULTI-RANGE FOR WIDE OR NARROW FM DEVIATION. SUPPLIED WITH BATTERY AND 146.94 MHz XTAL (other freq avail). ASSEMBLED AND TESTED. shipped paid in U.S.A. FD-2 $85

SORRY-NO COD’S

CHM products inc.
p.o. box 6193
san bernardino, california 92412
FIRST
Make this comparison:
The GTX-1 gives the high quality performance that compares with Motorola, GE, RCA or any other hand-helds that sell for $700 or more.

THEN
Check these features:
Small: only 8"x2.6"x1.28" ...
Appearance: slim silhouette all black metal ... Serviceable: easy access to separate receive and transmit circuit boards ... PLUS: 6 pole xtal filter for superlative receiver operation ... and: trimmers on receive and transmit xtals: standard 10.7 MHz 1st IF.

and specs:
Rec. Sens.: .2μV for 12 db SINAD ... Adjacent channel rejection: ±30 kHz 55 db ... Spur. Resp.: more than 65 db ... Audio Output: 500 mw ... Power output: Hi 3 w, Lo 1 w ... Audio Quality: Distortion free, crisp, clear receive and transmit.

NOW
Look at the Price:

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTX-1</td>
<td>2 meter, 6 channel, Hand-Held (without encoder)</td>
<td>$249.95</td>
</tr>
<tr>
<td>GTX-1T</td>
<td>2 meter, 10 channel, Hand-Held (with encoder)</td>
<td>$299.95</td>
</tr>
</tbody>
</table>

GENAVE stocks most common 2-M Xtals for immediate delivery

Use This Handy Order Form

Add $4 per Radio for Shipping, Handling, and Crystal Netting.

Payment by:
- Certified Check/Money Order
- Personal Check
- C.O.D. Include 20% Down

Note: Orders accompanied by personal checks will require about two weeks to process. 20% Down Payment Enclosed. Charge Balance To:
- BankAmericard
- Master Charge
- Interbank

IN residents add 4% sales tax
CA residents add 6% sales tax

All orders shipped post-paid within continental U.S. (allow 8 weeks delivery.)

Details? CHECK-OFF Page 134 october 1976
ADVA

VARIABLE POWER SUPPLY
- Continuously Variable from 2V to over 15V
- Short-Circuit Proof
- Typical Regulation of 0.1%
- Electronic Current Limiting at 300mA
- Very Low Output Ripple
- Fiberglass PC Board Mounts All Components
- Assemble in Components except Case and Meters

OTHER ADVA KITS:
- LOGIC PROBE KIT (Use with CMOS 11L, 74L, 4001, 4066, and most MOS IC's)
- Graphic kit includes wave and strip tools.
- ORDER BY PHONE

FIXED REGULATED POWER SUPPLIES (Short-contact insert with internal current limiting. Contact us and total regulation of 0.5% makes these ideal for fixed-voltage power supplies. Available for 5V, 8V, 9V, 12V, 15V, 20V, 24V. Supply voltage automatically tuned.)
- ORDER BY PHONE

ADVA ELECTRONICS
BOX 4181 D, WOODSIDE, CA 94062
Tel. (415) 851-0455

MORE SPECIALS:
- RC54007 - 15V @ 50mA VOLTAGE REGULATOR IC. Very easy to use. Makes a neat highly regulated, 15V Supply for OP AMP's, etc. Requires only one unregulated DC (15Vavy) and 2 bypass capacitors.
- With Data Sheet and Schematics. $1.25
- LM1451 FREE COMPARED OR AMPS, IC1745, etc. $0.50
- MC1494 DUAL 741 OP AMP $25
- MC4548 DUAL 741 OP AMP $25
- 2N5084 NPN TRANSISTOR AMPLIFIER SWITCH to 50 mA / 100 / 500 kHz
- SPECIFY VOLTAGE 4.2, 6, 8, 9, 9.2, 12, 30V (+10%) 1 WATT $2.50
- MONEY BACK GUARANTEE
- ALL TESTED AND GUARANTEED

SUPER SPECIALS:
- 14401 10V/1mA Drive 20/81 $0.75
- 14402 10V/1mA Rect. 15/81 $0.75
- 14160 30V/1mA Rect. 4/91 $1.15
- 14161 30V/1mA Rect. 4/91 $1.15
- 15110 30V/1mA Rect. 4/91 $1.15
- 2N3906 NPN TRANSISTOR AMPLIFIER SWITCH to 50 mA / 100 / 500 kHz
- SPECIFY VOLTAGE 4.2, 6, 8, 9, 9.2, 12, 30V (+10%) 1 WATT $2.50

TEST EQUIPMENT
All equipment listed is operational and unconditionally guaranteed. Money back if not satisfied—equipment being returned must be in original carton. Include check or money order with order. Prices include UPS or freight charge.

BECKMAN 730A Counter Freq Conv 10 10000mHz $100.00
BOONTON 190-A mtr 100 200mHz $10.00
BOONTON 2028 20mHz $10.00
BOONTON 2028-A RF 20mHz $10.00

GR546C Audio microwaver
GR281A Twin T Imp Bridge to 40mHz $105
GR1302A Audio Osc. 0.1 10000Hz $25
HP1610B/15051 150mHz ChannelScope with Norm Horiz. Dual Trace Vert Plugs $375
HP1616B/15051 Delay sweep for above $100
HP1568A Sampling Scope 1 166B $375

NEW INNER CONDUCTOR
- for AMATEUR USE

- 50 OHM JACKETED HARDLINE
- very low loss per 100 ft.
- improved receiver sensitivity
- .45 dB to 50 MHz
- .90 dB to 146 MHz
- 1.90 dB to 450 MHz
- 4.20 dB to 1296 MHz
- longer life

SALE $45.00 per foot

WIRE CONCEPTS INC.
201-227-1751
198 Passaic Ave.,
Fairfield, N.J. 07006

GRAY Electronics
P.O. Box 941, Monroe, Mich. 48161
Specializing in used test equipment.
Since 1969, the year in which TEN-TEC introduced the first solid-state HF transceiver, progress has been rapid. It was in this year that we produced the POWER-MITE which triggered the booming QRPp activity. Two years later, the ARGONAUT followed, demonstrating that Ham Radio can be more than just push-button communication.

Then, in 1972, a break-through — the 100 watt “405” solid state linear amplifier which requires but two watts of rf drive power. And in 1973 the 200 watt TRITON made its debut, with unique and exciting operating advantages made possible by full solid-state technology.

At the moment, there are over 7,500 solid-state TEN-TEC transceivers in service in nearly every Free-world country. We are acknowledged, we think, to be the World’s Most Experienced Designer of Fully Solid-State HF Transceivers. And there is no short cut to design perfection.

It is notably significant that TEN-TEC is the only manufacturer that has placed a five-year pro-rata warranty on output transistors — with an unlimited guarantee the first year against failure from any possible cause under normal operating conditions.

You can put your full trust in the integrity of design, quality, craftsmanship and performance to specifications of any TEN-TEC product. Year after year after year . . . See your local TEN-TEC Dealer, or write for full details.

Argonaut

SSB/CW 5 watts input. Fully solid-state.

“405” Linear

100 watts input. Fully solid-state

Triton IV

SSB/CW 200 watts input. Fully solid-state.

TEN-TEC

SEVIERVILLE, TN. 37862

EXPORT: 5715 LINCOLN AVE.

CHICAGO, ILLINOIS, 60646
Poly Pak's EXCLUSIVE $1.98 BARREL KITS

BARGAIN! Test FM YOURSELF! Pay 98¢ for 100' of BARRELS PURCHASED! Now, for the first time, the popular Poly Pak's - exclusive BARREL KITS are available to the amateur radio community. Also, Bonham Enterprises introduces a new way to receive your equipment - ship it from the Poly Pak! Remember, you have the same. Therefore, you are getting a different material as the usual "TESTER" KITS.

BARREL KIT 1 75 for $1.98 Cat. No. 104214 Untested.
BARREL KIT 4 100 for $1.98 Cat. No. 105218 Untested.

BARREL KIT 25 A 40 GROSS 500 for $1.98 Cat. No. 105218 Untested.
BARREL KIT 33 10 LONG LEAD DISCS 500 for $1.98 Cat. No. 106228 Untested.
BARREL KIT 36 To MOUTHED RESISTORS 100 for $1.98 Cat. No. 107238 Untested.
BARREL KIT 23 1 NIPPLES 100 for $1.98 Cat. No. 108249 Untested.
BARREL KIT 26 1 WATT ZENER DIODES 100 for $1.98 Cat. No. 109250 Untested.
BARREL KIT 22 1-3/4" LONG LEAD DISCS 100 for $1.98 Cat. No. 110260 Untested.
BARREL KIT 25 POLYSTYRENE CAPS 100 for $1.98 Cat. No. 111261 Untested.
BARREL KIT 36 NATIONAL IC DIP ASSORTED 100 for $1.98 Cat. No. 112262 Untested.

223$ 5 for $1.98

CITIZENS BAND POWER SUPPLY

12 VDC @ 1 AMP, CONTINUOUS DUTY

CONVERTS CB, HMAM RINGS TO HOME COMPLETELY WIRED

$69.95

ECC INDUSTRIAL SPEED CONTROL

Designed and built for commercial and professional use. Simple to install, it is both easy to install and easy to use. A must for all companies and all businesses.

$99.95

SALE ORDER BY CAT. NO. 101983 & TYPE AT LEFT

$1.98

Terms: Add postage. Rated: net 30 Phone: Wakefield, Mass. (617) 242-2659 Retailers and Distributors. MINIMUM ORDER — $6.00

Poly Pak's INC. Wakefield, Mass., U.S.A. 01890

More Details? CHECK-OFF Page 134
Non-commercial ads 10¢ per word; commercial ads 40¢ per word, both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY Copy or special layout or arrangement is available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, N. H. 03048.

WANTED: SSB TRANSCiever for mountain backpaking or design information for same. Also wanted is the larger RC rig. modest money. W6DOM, 6017 Morenci Ct., San Jose, California 95120.

STOP don't junk that television set. ASE manufactures the world's most complete line of television picture tubes. Over 1700 types. Most types immediate delivery. Tubes for Old or New TV's, black and white or color, 2 year factory warranty. Lowest prices anywhere. Allied Sales & Engineering, Inc., Dept. 22, Pimento, N. C. 28766, Telephone 812-498-6555.

WANTED: Mint 500CX, 117XC, VX2. Indicate serial number. WB21WH.

ETCHED CIRCUITS glass epoxy, drilled and plated. 100% guaranteed. Send artwork to Ready Circuits, P. O. Box 34, Pinehale, Montana 59831.

VARIABLE CONDENSORS Johnson 154-3, 19-480pf, 2kV, used excellent condition. $12 each. Send check or 3 for $33. PMPSD, Box 297, Sabinca, P. O. 60300.

SYNTHESIZER. See Ham Radio, July 76, page 20-23, figures 21 to 24. Kit for $115, assembled and tested, $140. Power supply to run from 110 volts or additional $15.00. CTO, P. O. Box 708, Cambridge, MA 02139.

FREQUENCY COUNTER BOARDS, Jan 76 Ham Radio includes 500 kHz prescaler circuitry and LED readout with parts, $10. QST March 76 speech compressor, $10.00. Both projects come with parts source listing. Double sided glass epoxy drilled and plated, CSJ Electronics, 5501 Cameron Ct, Lincoln, NE 68502.

HEATHKIT BY ANDREA — Excellent building and check-out service. Most Heath equipment. We shipped finished product to you. For rates / information, Tyco Communications, Route 3, Mt. Airy, Md 21771, 301-831-7086.

TELETEYPE EQUIPMENT FOR SALE for beginners and experienced operators, RTTY machines, parsharal beginners package consists of Model 15 page printer and TRS-20 demodulator $125.00. Atlantic Surplus Sales, 3700 Nautilus Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349.

KLM, LESSEN, ARCS, and HENRY RADIO — We stock popular items, KLM Echo II, Echo 700C, Multi-7, Multi-U1, KLM antennas, 7 to 470 MHz, Large antennas and mounts for 2 meters and 450 MHz, ARCS 432 MHz transverter and kilowatt amplifiers, Henry Radio solid state amplifiers 50 to 500 MHz. Write/Call for information. Tycol Communications, Rt. 83, Mt. Airy, Md. 21771. 301-831-7086.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories, Literature, Electro Engineering, 930 Marine Dr., Port Angeles, WA 98362.

LOOKING FOR USED GER! Buyers & Sellers radio brokerage has the equipment you want at the right prices. Call our Ham Gear Hotline 617-536-8777 Monday-Friday.

GOVERNMENT SURPLUS Communication, FREE catalog, Colonel Russell, 9410 Washington Ave., KY 40222.

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Braintree, Mass. 02184.

COMPLETE LINE KLM, CushCraft, Covercraft dust covers, SCS amplifiers, Regency, Tries Towers, Call or write Radios Unlimited, 86 Bad Ave., Piscataway, New Jersey 08854, 201-756-4037.

500 MHz PRESCALER +10 or +100 $59.95. Free information. CBS Enterprise, P. O. Box 1356, Long Beach, Calif. 90810.

CONVERSION RECEIVER KITS for AM or CW. Write WBSMBD, 3132 North Howell Avenue, Chicago, Illinois 60641.

FERRITE BEADS: Ferroxube beads with specification and application sheet — 10 @ $1.00 postpaid. Includes latest catalog. CPO Surplus, Box 189, Braintree, Mass. 02184.

FREE Catalog. Calculators $4.95 each, ultrasonic, digital thermometers, strobe light kits, JARS, memories, electronic photographic flash, rechargeable batteries, LED's, transistors, IC's, piezoelectric crystals, toroidal cores, unique components. Chaney's, Box 2736, Denver, Colo. 80227.

NEW POWERFUL THREE OUTPUT REGULATED POWER SUPPLY, PLUS 900 parts worth $400.00 list. Solid state TV recorder electronic unit, Schematics, parts cross reference, Free brochure, $17.95 plus $3.50 S&H. USA Master Charge/Visa Accepted. Satisfaction guaranteed. Madison Electronics Company, Incorporal, Box 365, 077, Madison, Wis. 53758.

YAESU EQUIPMENT OWNERS — Present or Prospective — Join the five-year-old. Battery, members receive valuable monthly Newsletter. Choose — CW or SSB. Write/call 2VK2, 2VK3, Box 7791 NW 42nd PI., Coral Springs, Fla. 33065.

GILDER T-10 Calibrator

- Calibrate any type of receiver
- Strong harmonics every 10, 25, 50, 100 and 1000 kHz
- Adjustable output level
- Modern CMOS integrated circuits
- Accurate—completely drift-free
- Identifies by "Gate" circuit
- Easy to use—long battery life

See our mini-catalog for other SWL supplies including books, clocks, antennas, headphones, log sheets, receivers, QSL albums, etc.

GILFRED ASSOCIATES, INC.
P.O. Box 239, Park Ridge, N. J. 07656
HAMMARLUND HQ180 RECEIVER — General coverage and Ham band coverage — 0.5 to 30 MHz, $195, W6OSU, 7811 Agnew Ave., Los Angeles, CA 90045. Phone 213/670-5466.

NOT C.B. decal $1.62. I x 2 inches, black on white, plastic, weatherproof, peel and stick. Great for load coils, radios, control heads, etc. Stop having your rig marked for C.B. radio. 10 for $1.00, with SASE 12 for $1.00, 100 for $7.00. P. P. Pitts, 2113 Laster Lane, Birmingham, AL 35226.

QRP TRANSFORMER for H77, Ten-Tec, and others. Write for details to Peter Mechem Associates, 19 Loretta Rd., Warrenton, Va., 22191.

FOR SALE: AR-88, RCA WW2 comm. receiver. Top condition, with manuals and complete set. $400. John 229-230 rotary input, vernier dials, optional SWR meter, styled cabinet and color options to complement Collins, Heath, and Drake. Limited, priced, and amateur market antenna tuner comparison chart from RF Power Components, P. O. Box 11, Ladysmith, Wis. 54848. (715) 532-9711.

SALE: Model 28 ASR’s - KSR’s repairs - keyboards - all parts - all priced for hams. All in excellent condition. A.D.M. Communications, Inc., 1320 Industrial Escondido, Ca. 92025. (714) 747-0374.

TRAVEL-PACK QSL KIT — Send call and 25¢; receive your call sample kit in return. Samco, Box 293, Wynantskill, N. Y. 12198.

ARTS ON 7103 KHZ DAILY 1300Z to 1900Z for emergency or routine traffic. Amateur Radio Telegraph Society, 2730 South Tabor Ave., Silver City, New Mexico 88061.

WANTED: Car telephones and mobile telephone parts, heads, cables, etc. Greg Rymann, 87 Y-523, 19701, 914 376-4633.

TELEVISION SYNCRONIZATION GENERATOR. Broadcast standards. Best offer or swap for VHF or UHF transceiver. CB SS3, 1320 Industrial Escondido, Ca. 92025. (714) 747-0374.

MANUALS for most ham gear, 1939-70. List $1.00. Send SASE (or 25¢) for one specific model only. TDR, Box H846, Council Bluffs, Iowa 51501.

THE PERFECT GIFT FOR A HAM — His/her call sign cut into solid redwood. Type one: just the call, approximately 18" x 5½", $7.50. Type two: the call plus any handle, seven letters or less, $10. Type three: $12.50. Call Sign Ltd., P. O. Box 101, Hurley, N. Y. 12443. N. Y. State residents add sales tax.

RADIO MUSEUM now open. Free Admission. 15,000 pieces of equipment from 1890 tele- phone instruments to amateur and commercial transmission of the 1920’s. Amateur station W2AN. Write for information. Antiquis Wireless Assn., Main St., Holcomb, N. Y. 14469.

MOTOROLA HT220, HT200, Pageboy, and other popular 2M FM transceiver (Standard, Regency, etc.) service and modifications, at reasonable rates. W4AFY (B) 502-4439 evenings.

New Calculators made by one of the largest calculator manufacturers (their name has been removed so that we can offer these at this low, low price).

Check These Quality Features

- 8 digit display
- All functions plus constant (K) switch
- Flashing decimal point, set switch
- Clear last entry key
- Automatic display time-out to conserve battery
- Indicator for input greater than 8 digits
- Indicator for sum or product

SUPER CALCULATOR VALUE!

95¢ ea.

CHANNEY'S electronics
P. O. Box 27038 • Denver, Colorado 80227
Send for our free catalog listing hundreds of bargains on nicads, IC’s, transistors, digital- thermostats, clocks, ultrasonics, strobe lights, kits, crystals, resistors, capacitors, etc.

BUILD YOUR OWN TV CAMERAS
Ideal for hobby & business
Full Assemblies ready to use
Five types for $15.00 each

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer on 440-1876.

SPACE ELECTRONICS CO, div. of Military Electronics Corp., 35 Ruta Court, S. Hackensack, N. J. 07606

125 Hz Crystal Filter
For Drake R-4C

Cuts QRM. Ideal for DX and Contest Work. Does what no audio filter can do. A must for CW operators who want the best. 125 Hz at -6 db, 325 Hz at -40 db, 8 poles.

CF-125/8
$125.00
Return in 10 days for full refund if not satisfied.

Sherrwood Engineering, Inc.
Dept. A
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

For Drake R-4C

125 Hz Crystal Filter

Cuts QRM. Ideal for DX and Contest Work. Does what no audio filter can do. A must for CW operators who want the best. 125 Hz at -6 db, 325 Hz at -40 db, 8 poles.

CF-125/8
$125.00
Return in 10 days for full refund if not satisfied.

Sherrwood Engineering, Inc.
Dept. A
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257
6 Digit LED Clock Kit - 12/24 hr.

$9.95 ea. QTY. 12 or more $10.95 ea. 6-11 $11.95 ea. 1-5

KIT INCLUDES
- 6-1/2" x2" PC Board
- Size: 61/2" H, 41/2" W, 3" D
- #I7001B [6-.4" Digits/Man-64]
- #I7001C [4-.6" Digits/2-.3" Seconds]
- ALL KITS ARE COMPLETE INCLUDING IC SOCKET, TRANSFORMER, LINE CORD, SWITCHES, etc.

CABINET I
3"H, 61/4" W, 51/2" D
CABINET II
21⁄4"H, 51/2" W, 4" D

ANY SIZE/ COLOR $6.50 ea. 2/$12.

RED OR GREY PLEXIGLAS FOR DIGITAL BEZELS
95¢ ea. 4/$3

6 Digit-LED Clock-Calendar-Alarm Kit

- 12/24 HR TIME • CHOICE OF DIGITS • 28-30-31 DAY CALENDAR • AC FAILURE/BATTERY BACK-UP • 24 HR ALARM - 10 MIN. SNOOZE • ALTERNATE TIMES (5 AM) AND DATE (2 SEC) OR DISPLAYS TIME ONLY AND DATE ON DEMAND • THIS KIT USES THE FANTASTIC CT-7001 CHIP. FOR THE PERSON WHO WANTS A SUPER CLOCK KIT-TOO MANY FEATURES TO LIST!
- #7001B [6-.4" Digits/Man-64] $39.95
- #7001C [6-.6" Digits/2-.3" Seconds] $42.95
- #7001D [4-.8" Digits/2-.3" Seconds] $45.95

ALL KITS ARE COMPLETE INCLUDING IC SOCKET, TRANSFORMER, LINE CORD, SWITCHES, etc.

Fairchild Super Digit
FND-359
61/2" Char. Ht.
7 segment, LED
RED Com. Cath.
Direct replacement for popular FND-70.

CLOCK IC'S
CT-7001…...7.95
CT-7002…...13.95
-MM5314...3.95
-MM5359N...2.50
-MM5316N...4.95
-MM5375...3.95

IC SOCKETS
Pin Profile 1-24, 25 100
14 LP $2.25 $2.20 $2.20
16 LP $2.25 $2.20 $2.25
18 LP $2.25 $2.20 $2.25
24 SP $2.25 $2.25 $2.25
SP $2.25 $2.25 $2.25
40 LP $2.25 $2.25 $2.25

NYLON WIRE TIES
6" for bundle dia. 1/4"-1/3"4/100/1.95
4" for bundle dia. 1/16"-1/34"4/100/1.75

Form Inexpensive Sockets
MOLIX
PINS
100 for $1.25

7-SEG LED

- COMMON CATHODE
- HP5082-7702 RED 3" 1.25
- FND-71 RED .25" .75
- FND-359 RED .4" .95
- FND-503 RED .5" 1.35
- FND-803 RED .5" 1.35
- DL-3340MB RED 3x.117.75
- DL-750 RED 8" 2.95
- XAN-654 GREEN 6" 2.95 (no D.P.)
- XAN-664 RED 6" 2.95 (no D.P.)

+10K 10 TURN SPECTROL POT
SPECTROL
$54.3$10

OPTOELECTRONICS, inc.

WE PAY ALL SHIPPING IN CONTINENTAL USA - OTHERS ADD 5% (10% FOR AIRMAIL)

ORDER BY TELEPHONE
USE BAC, MC or COD
Orders Under $15 Add $1 Handling CD Charge +1.00
Fla. Res. Add 4 1/2% Tax

More Details? CHECK-OFF Page 134
ERICKSON COMMUNICATIONS

Come in or call for the

Cash or Trade Deal on:
- Ameco • ASP • Atlas
- Belden • Bird • CDE
- CES • Collins • Cushcraft
- Data Signal • Dentron
- Drake • ETO • HAL
- Hy-Gain • Icom • KLM
- Kenwood • Larsen • MFJ
- Midland • Mosley • NPC
- Neutronics • Nye
- Regency • Shure • Swan
- Standard • TPL • Tempo
- Ten-Tec • Yaesu . . .

Hours: 9:30-9 Mon. & Thurs., 9:30-5:30 Tues. & Fri., 9-3 Sat.

ERICKSON COMMUNICATIONS

5935 N. Milwaukee Ave.
Chicago, IL 60646
(312) 631-5181

flea market

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. M3S 8R4.

TELETYPewriter PARTS. gears, manuals, supplies, tape, toroids, SASE list. Typetronics, Box 8873, Ft. Lauderdale, FL 33310. Buy parts, late machines.

OSL’S — **BROWNE WSCJ** — 30358 Lehigh, Allentown, Pa. 18103. Samples with cut catalog $0.50.

GOOD CONDITION — Conrac video monitors, used $150. Write for manual of model 8. CRC lab mount frame and not glare face plate. Ideal for use with scan converters. $100 each. Bob model 70B SSV monitor in original packing, $300. WDQFC, (713) 852-7875.

EXCLUSIVELY HAM TELETYPE. 21st year. RTTY Journal, articles, news, DX, VHF, classified ads. Sample 35c, $3.50 per year. Box 8873, Royal, FL 33864.

BUY — **SELL** — TRADE. Write for free mailer. Give name, address and call letters. Complete stock of major brands — new and reconditioned equipment. Call for best deals. We buy Collins, Drake, Swan, etc. S & B & FM. Associated Radio, 6012 Conser, Orlando, FL 32804, 913-381-5901.

OSCAR 7, SSB-CW TRANSMIT CONVERTERS. For 28 or 50 MHz output at 20 mw. 432 MHz output at 1 watt. Solid state, for 12 volt supply. 35 watt solid state amplifier available for this converter. Units designed and built by WCENC. Write for information. HF/HV Communications, 53 St. Andrew, Rapid City, S. D. 57701.

CIRCUIT BOARDS. Artwork, negatives, etching, SASE for details. Karl Raup, WB4OKG, Box 8013, Orlando, Fla. 32806.

FREE Over 100 electronics items. "Electronics Sourcebook" telex here, obtain free samples, manuals, publications. Write Technical Publications, 1405 Richland, Metairie, La. 70001.

YOU CAN INSTALL YOUR OWN SECURITY SYSTEM at a price you never dreamed possible. Our 1976 Burglar-Fire Alarm Catalog describes our complete line of commercial security equipment. It tells everything you need to produce a durable, custom installation — just as good as the professionals. Free Catalog. Erel Electronics, P. O. Box 146-D, Sheffield, Mass. 01257.

HEATH HW-101 with CW filter, HP-23B and SB-600. With new tubes and aligned. Used less than one hour on tubes $190. Telelectric MS-2 scanner, brand new $240. Clegg 66er rarely used $100. Kenwood TS-700A new $635. Also Yaesu FR-101 digital receiver and FL-101 transceiver. Write or call. All equipment meets factory specifications and is in mint condition in performance and looks. KGS-10, Mike Folta, Laddonia, MO 63352. 314-373-2325.

SB-14, mint condition, with mic and vtl calibrator, $240. John Abdnour, WB9TQT, 806 Arcadia, Bloomington, IL 61701.

YOUR AD belongs here too. Why not send it in today.

Coming Events

MEMPHIS IS BEAUTIFUL IN OCTOBER! The Memphis Hamfest, bigger and better than the 3,500 who attended last year, will be held at State Technical Institute, Interstate 40 at McNaron Road, on Saturday and Sunday, October 2 and 3. Demonstrations, displays, MARS meetings, flea market, ladies’ flea market, Too Hospitality room, information, entertainment, many outstanding prizes. Dealers and distributors welcome, too! Contact Harry Simpson, W4SCF, Box 70135, Memphis, TN 38117, phone 901 358-5707.

test for resonant resistance with an omega-t antenna noise bridge

The Omega-t Noise Bridge is an inexpensive and flexible testing device that can effectively measure antenna resonant frequency and impedance. This unique piece of test equipment does the work of more expensive devices by using an existing receiver for a bridge detector. There is no longer a need for power loss because of impedance mismatch. Get more details or order now!

MODEL T-701 for 1-100 MHz Range $29.95

MODEL T-702 for 1-100 MHz Range $39.95

VHF/UHF CONVERTERS & HYBRIDS

Ten meters through 432 Mhz. A post card will bring our full 1976 Catalog.

JANEL laboratories

3312 S.E. VAN BUREN BLVD.
CORVALLIS, OREGON 97330

Telephone: 503-757-1134

LED’S

High Dome: Red... 8/1.00
Green... 6/1.00
Yellow... 6/1.00

T1-31 Infrared LEDs... $1.20 each

LED panel mounts... 12/1.00

Capacitors
5 pf @ 15 V... 20/1.00
330 pf @ 15 V... 10/1.00
120 pf @ 5 KV... 10/1.00
100 pf @ 10 KV... 10/1.00
1 mfd @ 200 V... 20/1.00

Electrolytics
1000 mfd @ 6.3 V... 6/1.00
220 mfd @ 16 V... 1/1.00
Dynamic Mike Cartridge... 40 ohm... $1.50 each

2½ amp, 1000 V PiV Diode... 6/1.00

Orders over $5 will be shipped prepaid (in continental USA) Use "Check-OFF" for complete product catalog.

114 October 1976

More Details? CHECK-OFF Page 134
TOUCHTONE ENCODER KIT
SINGLE IC GENERATES THE STANDARD 16 TONE PAIRS FOR TOUCH-TONE DIALING KIT FEATURES:
Small Size (1.5 x 2.25"
No Tuning Required
PTT Circuit has built-in 1 second delay
Low Level output is adjustable
Audio output circuit for tone monitoring or acoustic coupling
Kit includes all parts
Plug compatibile with DIGITRAN® KEYBOARDS
Complete with PC Board

PS-01A POWER SUPPLY KIT
A COMPACT, WELL REGULATED TRIPLE OUTPUT POWER SUPPLY.
GIVES +5VDC @ 1.5A and +15 @ 150MA AND -15@150MA. THE PS-01A USES THE SUPERIOR 78L SERIES OF 3 TERMINAL REGULATORS.

SPECs:
Voltage: +591.5A
Ripple: Less than 10mv
Regulation: Load 50mv
Line 100mv

2N 3772
150W 60V NPN POWER TRANSISTORS
Most popular unit for high current power supplies or audio work.
NEW-GUARANTEED
$1.75

2N3904
NPN General Purpose Switching
12/1.00

2N2222
UNMARKED TO-18 NPN
12/1.00

2N4861
N CHANNEL FET
GEN. PURPOSE FET
3/1.00

AUDIBLE CONTINUITY TESTER KITS
A FANTASTIC LITTLE DEVICE THAT HAS A HUNDRED AND ONE USES AROUND THE SHOP AND HOME.
USES:
Code Practice
Continuity Test
Transistor Test
LED & ODIDE Test
Tone varies with resistance
REQUIRES 3 TO 6 VOLT BATTERIES
(Not included)

$1.95

50 OHM COAX
SUPER QUALITY COAX
SLIGHTLY LARGER IN DIAMETER THAN RG-74
BUT BETTER SPECS
100 ft. ROLL
$3.99

6 DIGIT ALARM CLOCK CHIP
MM5375AB
NEW LOW PRICE!
$2.95

DIGITAL AND PLATED PC BOARDS FOR $375
Com Cathodes – 1.50
Com Anode – 1.50

SPECIAL PRICE TRIPLE OUTPUT POWER SUPPLY
REDUCED TONE DIALING KIT FEATURES
Small
Screwless Input
15VDC @ 15A
and +15 @ 150MA
AND -15@150MA

$14.95

STEEL FRAME CAGE IN S. AMERICA

$2.50

5000 FALLS COAX
SUPER QUALITY COAX
SLIGHTLY LARGER IN DIAMETER THAN RG-74
BUT BETTER SPECS
100 ft. ROLL
$2.99

CONTEST ELECTRONIC DESIGN
Monthly Prize Given for best circuit.
1. All entries become property of BULLET.
2. Entry should include schematic and circuit description.

WATCH THIS SPOT FOR WINNERS NAME!
$100 GIFT COUPON FROM BULLET

IN SPECS HOUSE NO
GUARANTEED
PS-OIA AS ABOVE BUT WITH 125 OUTPUT INSTEAD OF 15

225 gms
INCH
100V 30MA ASSORTMENT OF BRIDGE RECTIFIER
2-56, 4-40, 6-32 and 8-32 WE BOUGHT A WHOLE HOUSE NUMBER
TRUCKLOAD OF VARIOUS
SCREWS AND NUTS VALUES
FROM 20 mfd to
A FULL 225 gms
INCH
100V 30MA ASSORTMENT OF BRIDGE RECTIFIER
2-56, 4-40, 6-32 and 8-32 WE BOUGHT A WHOLE HOUSE NUMBER
TRUCKLOAD OF VARIOUS
SCREWS AND NUTS VALUES
FROM 20 mfd to
NEW! IC KEYER
The World's Greatest Sending Device

Adjustable To Any Desired Speed
Now available from Palomar Engineers the new Electronic IC KEYER. Highly prized by professional operators because it is EASIER, QUICKER, and MORE ACCURATE.

It transmits with amazing ease CLEAR, CLEAN-CUT signals at any desired speed. Saves the arm. Prevents cramp, and enables anyone to send with the skill of an expert.

SPECIAL RADIOMODEL
Equipped with large specially constructed contact points. Keys any amateur transmitter with ease. Sends Manuals, Semi-Automatic, Full Automatic, DOT Memory, Square, and Lambic - MORE FEATURES than any . . . other keyer. Has built-in sidetone, speaker, speed and volume controls, BATTERY OPERATED, shielded die-cast metal case. FULLY ADJUSTABLE contact spacing and paddle tension. The perfect paddle touch will AMAZE you.

Every amateur and licensed operator should know how to send with the IC KEYER. EASY TO LEARN. Send anywhere on receipt of price. Free brochure sent on request.

Send check or money order. IC KEYER $87.50 postpaid in U.S. and Canada. Add $10.00 for HEAVY NON-SKID BASE. IC KEYER LESS PADDLE $47.50. Add 4 1/2 sales tax in California. Italy write INVTT, P.O. Box 37, 22843 Canlu. Elsewhere send $92.00 (U.S.) for IC KEYER or $72.00 (U.S.) for IC KEYER LESS PADDLE for air parcel post delivery worldwide. Fully guaranteed by the world's oldest manufacturer of sending keys. ORDER YOURS NOW!

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025
Phone: (714) 747-3343

FLEA MARKET

NOW YOU ALL COME, YOU HEAR? Where? Why All Hudson River Convention, November 13 and 14, Playboy Resort and Country Club at Great Gore, McAffee, New Jersey. Many exhibitors, giant indoor flea market, FCC and ARRL forums, FCC exams, special TL programs, technical sessions and Saturday night banquet with Jean Shepherd. K2ORS world traveler, columnist and famed radio and TV personality as the speaker. For information write to Al Piddington, W2FSA, 4 Acorn Drive, East Northport, N. Y. 11733.

5TH ANNUAL SOUTHERN MINNESOTA SWAPFEST Minnesota's largest ham gathering Saturday, October 2, 9:00-4:00 P.M. VARS Box 3, Waaseca, Minn. 56093 Talk-in on 94 or call 507-835-2679.

SAVE THIS DATE: October 9, 1976 for the 22nd Annual VHFE. Western Michigan H7T activity. Write: Dr. Glenn Wilcox, Chm., W9UHF/B, Dept. of Electrical Engineering, Western Michigan University, Kalamazoo, Ml 49008. Get on the mailing list for yourself and your club.

THE NEXT CEDAR VALLEY AMATEUR RADIO CLUB HAMFEST is Sunday, October 3, in Cedar Rapids. Send word to interested wavers welcome. ARRL representation. Held at Hawkeye Down Exhibition Building, ample parking. Admission $1 all day, $2.00. First table $3.00; others $5.00. Saturday afternoon setup available Talk in frequencies 142.6/76, 146.52, 1.970 MHz. Prizes are Collins of Des Moines, SUR, TV-3, Receiver, Tantrum TH-3M/K3, Wilson WE-224 Mobile DXVCR, Wilson 140/SW M/H, Heathkit HW-8 QPQ CVCR, plus more. Write: CVARC Hamfest, P. O. Box 949, Cedar Rapids, Iowa 52406.

INDIANA—Marshall county swap-sho, shop, Sunday, October 3, 9:00-4:00 P.M. Plymouth Ind. National Guard Armory located at 1200 W. Madison St., from 7:00 a.m. to 4:00 p.m. Talk-in on 146.0767 and 146.2945 simplex. Free tables, no charge for setup. $2.00 at the door. Food, drink, and door prizes. For further information contact WAVIN, Route 3, Box 526, Plymouth, Indiana 46563.

PASCAGOUA AIR SHOW EXPO AIRCRAFT will hold its annual Air Show Oct. 15, 16 and 17. In conjunction, the JA Amateur Radio Club will operate mobile units and a multi-band radio station. The special call of KMS5BA will be applied for. Operators are needed. KMS5BA will also operate from here in the 19th (91326) and 20th (91327) annual World Scout Jamboree on the air. We hope any Explorers with an amateur license will be present and take shifts as operators. Any scout or scout leader is asked to contact W5UCY as soon as possible.

CEDAR VALLEY HAMFEST (Cedar Rapids, IA) will be held Sunday, October 3, 9:00-4:00 P.M. Advancetickets CVARC, P. O. Box 949, Cedar Rapids, IA 52401.

Stolen Equipment

EBC-144JR: 2 meter transceiver. Serial number 075144, black, "Two" home-brew antenna with magnetic mount. Unit is im- scribed on bottom with "Norton J. Masiewicz". Call: W2OFT; SS: 089-32-6899; N. J. Dr. Lic. #: MOB1476312424; Tel #: 0121-538-1657. Any info, contact above or Bernard Township Police (201) 766-1122.

HELP!
HELP! We are buyers as well as sellers. Have you any? We don't have a catalog, by the way we'd publish the ambition would be gone.

DISC-CAP, 19075 Breamore Rd., NORTH RIDGE, CA 91326 213-360-3387

NEW-MULTI-BAND ANTENNA TUNER
Guaranteed
$125.00
To 6 Meters plus 160/110/6 SQ Bands, Full Band Tuning. Unit (1 kHz Band) to 60 MHz Vertical or Horizontal, Available to 150 MHz at $1.00 per MHz. Complete with Kit KIT-1002 for $259.00 Wall Cable and Kit KIT-2002 for $325.00 plus $15.00 for USA, $25.00 elsewhere. Send stamped envelope for Information.

SST T-1 RANDOM WIRE ANTenna TUNER

Electro-magnetic field tuned for 144/432 MHz. Complete with kit KIT1502 for $89.00, KIT1503 for $159.00, KIT2002 for $175.00. Call Charley for 60 MHz kits.

SST ELECTRONICS P.O. BOX 1, LAWNDALE CA 90260

PROBABLY THE BEST IN THE WORLD

An antenna system that holds a WORLD PERFORMANCE RECORD won from a cramped, low power location.

THE JOYSTICK VFA

A Variable Frequency Antenna that gives you all ham bands 160 thru 10 plus MARS and BC and all the MHz in between. It comes to you with ATU easily assembled, only 7’ 6” long, directed by airmail from UK manufacturer. Save, too, on favourable exchange rates.

SYSTEM 'A' $69.90, 250 w. p.e.p. SYSTEM 'J' $91.33, 500 w. p.e.p. (inquire for availability)

SEND MASTER CHARGE NUMBER OR CHECK OR ASK FOR BROCHURE

Partridge (HR) Electronics Ltd.

Broadstairs, Kent, England G3CED Phone Thaneit 62535 G3VFA
SUB-AUDIBLE GENERATOR for FM
THE CURE

- Inexpensive multi tone system
- Compatible with PL-CC-GQ
- Low distortion sine wave
- Adjustable frequency (98-250 Hz).
- Rugged, plastic enca-ased with leads, easy to mount.
- Input 8-18 VDC unregulated
- Excellent stability

Price $19.95
Calif. res. add 6%
Faq. set at factory $5.00 extra
Send for more information

Lyle Products
P.O. Box 2083
Santa Clara Calif.
95051

LOWEST PRICES

WE OFFER THE IDENTICAL PRODUCT AS THE OTHER HOUSE AT ABOUT ONE HALF THE COST

Iron Powder Ferrite Toroidal Cores

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-200</td>
<td>$1.60</td>
</tr>
<tr>
<td>T-130</td>
<td>1.15</td>
</tr>
<tr>
<td>T-106</td>
<td>0.75</td>
</tr>
<tr>
<td>T-94</td>
<td>0.50</td>
</tr>
<tr>
<td>T-80</td>
<td>0.40</td>
</tr>
<tr>
<td>T-68</td>
<td>0.35</td>
</tr>
<tr>
<td>T-35</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Ferrite Shielding Beads

<table>
<thead>
<tr>
<th>Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-73-101</td>
<td>$1.80</td>
</tr>
<tr>
<td>24-43-101</td>
<td>$1.00</td>
</tr>
<tr>
<td>24-73-801</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Offered in stock.

Specify desired material for toroids - All popular sizes in stock.

Packing & Shipping in USA $2.00
SEND FIRST CLASS STAMP FOR PARTS FLYER

G.R.U. WHITEHOUSE & CO.

TRANSFORMERS

American made, 115V Primaries:
6.3 V, 1 Amp, Shielded $1.75 ea.
12V - 250 mls - for P.C. Board. Size:
1/2 x 1/4 x 1/2, 3.5 OZ.
12 volt 1.25 amp. $1.68 ppd.
12V, 1 Amp $2.57 ppd.
12V, 3 Amp $4.15 ppd.

NEW NEW NEW

Dual Secondaries: 180-18V @ 1.2 Amp
60-18V at 00 MA, 1.5 oz. Shielded.
1/2 x 1/4 x 1/2. (400 MTG) - $3.85 ppd.
200-20-22V - 1 Amp, 63V, Tap 4 Amp -
2 x 1/2 x .05 MTG (2.7) Leads from
top of shield, 1.4 oz.
20-20-24V @ 1 amp with tap at 6.3 volt for
pilot light.

TRANSITOR OUTPUT TRANSFORMER
One watt rating 600 ohm Center tapped primary, 8 ohm secondary 85c Each ppd.

TRANSITOR and Relay Assem-
by consists of (2) MJE3055 and (2) MJE3056
transistors (10 amp, 50w, 60v complementary pairs)
mounted in 1" channel. Heat sink 2 1/2 x 1/4 x 1/2.
(2) XTAL CAN RE-
lays, DPDT, 28v, 8000rms.
5.6 ma DC, 1 amp contacts mounted on PC board with resistors. $2.65 ea. ppd.

BRIDGE 400 PIV - 1.5A. Gen. Inst. P.C.
Bd type. 60c ea. or $3/1.75 ppd.

SEMETECH BRIDGES
Heat sink w/center hole mtg. 10 Amp Tested -
100V P.I.V. $1.25 ea. ppd.
200V P.I.V. $2.00 ea. ppd.
400V P.I.V. $3.50 ea. ppd.
1200V P.I.V. $11.50 ea. ppd.

25 AMP - TESTED
50V P.I.V. $1.75 ea. ppd.
100V P.I.V. $2.00 ea. ppd.
200V P.I.V. $2.25 ea. ppd.
400V P.I.V. $3.50 ea. ppd.
600V P.I.V. $6.85 ea. ppd.

TUNING METERS - Blue tinted plastic body, 0 to left, graduated scale, 200/A 1/16 x 1/16 x 1/4". Scale can be repositioned. $18.48. $2.25 ea. or $4/6.95 ppd.

For FM cased with leads. easy Input QC

More Details? CHECK-OFF Page 134

october 1976 117

X

EQWERS

SQUARE - 3 = .4 - .3W, 4 mtr holes.
$1.45 ea. ppd. $2/8.40 ppd.

PIONEER - Round 2 1/4 x 7/8 - 160 -
.3W, 4 hole mtg. $1.55 ea. $2.85 or $4.50 ppd.

OVAL - 2 x 4 x 1 1/4 deep - 8 - .1W,
4 hole mtg. $1.75 ea. ppd. $3/13.15 or
$6/7.75 ppd.

Round #5P8582 2 x 1/8 - 8 - .1W
$1.35 ea. ppd. $2.55 or $4.75 ppd.

NOBLE Dual Slide Potentiometer, 2 1/2 x

1/2 x 1/2 with 1 1/4" lever.
$1.45 ea. or 10 for $12.00 ppd.

NEW - Just Arrived - NEW
1/2 WATT - Full Leads - Imported Re-
sistors, 5% Tolerance, 33 - .2W - .3W -
400 - .3W - .3W - 470 - .2W - .3W -
1k - 2k - 3k - 4.7k - 5k - 6.8k - 7.5k -
8k - 9.1k - 10k - 15k - 22k - 20k - Resistors 10% Re-
sistors, 47 - 10k - 13k - 15k - 22k - 20k - Both
tolerances. $1.66 ppd. (You choose values)
One Value $10/14.55 ppd.
Assorted - 100/$43.55 ppd.

QUANTITY PRICES 500 or 1000 sets.

1/2 WATT CARBON RESISTORS
With Full Leads - 33 sets. Values may be mixed.
Tel. 5%, 10%, 25%, No Choice of Tolerance.
6.8 770 1.3K 4.7K 47K 330K 2.2M
22 330 1.5K 3.4K 68K 390K 2.7M
27 390 1.8K 6.8K 75K 470K 5.6M
47 270 2.2K 8.2K 100K 680K 9.1M
47 620 2.4K 10K 120K 1M 10M
62 720 2.7K 12K 150K 2M 20M
100 1K 3.3K 33K 220K 1.8M

ZERENS

OUR TEST - Very Good Knee - No
Hobby Types.
400 MILLI WATT UNITS - 3, 3.3, 3.9, 4.3, 4.7, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1, 18, 22,
24, 27, Volts.
1 Watt Units - 10, 11, 12, 13, 15, 16,
18, 20, 22, 27, 30, 33, 39, 43, 47, 51, 56,
62, 68, 75, 83, 100, 110, 120, 130,
150, 160, 180, Volts
ALL UNITS 10% - 4 for $1.00 ppd.
9% - 3 for $1.00 ppd.

SEND STAMP FOR BARGAIN LIST
Pennsylvania Residents - ADD 6%
ALL ITEMS PPD. USA
Canadian orders for less than $5.00 add
$1.00 to cover additional mailing costs.
UPS requires your street address.

m. weinschener
electronic specialties-Box 353, Irwin, Pa 15642
DUPLExER & CAVITY KITS

Now available for you fully assembled and tuned!

- UPGRADE YOUR REPLACER WITH A RF TECHNOLOGY DUPLExER.
- ALL DUPLExERS AND CAVITIES ARE TEMPERATURE COMPENSATED WITH INVAR® AND MEET ALL COMMERCIAL STANDARDS.
- ONLY TOP QUALITY MATERIALS GO INTO OUR PRODUCTS.
- BOTH KITS & ASSEMBLED DUPLExERS AND CAVITIES ARE AVAILABLE TO YOU AT A SAVERS TO YOU.

Model 62-3...6 cav., 2 mtr., insertion loss 0.6 db with isolation 100 db typical; pwr. 350 w. Kit $349 ea. - Assembled $499.

Model 4220-3...4 cav. 220 MHz insertion loss 0.6 db with 80 db isolation typical; pwr. 350 w. Kit $249 ea. - Assembled $329.

Model 4440-3...4 cav. 440 MHz, insertion loss 0.6 db with 80 db isolation typical; pwr. 350 w. Kits $249 ea. - Assembled $329.

Only hand tools are necessary to assembly Kits!

Send your order to: Distributor: ALDELCO RADIO, 386 Main St., Medford, Mass. 02155. Phone (617) 395-8260.

(Want something really small and efficient?

Then you want the antenna that's known around the world for its small size and superior performance . . .

The mini-Products Multiband HYBRID OVAL

- ELEMENT LENGTH - 11 ft.
- BOOM LENGTH - 54 INCHES
- WEIGHT - 15 POUNDS
- WIND SURVIVAL - 75 MPH
- BANDS COVERED - 6, 10, 15 & 20
- 1200 WATTS P.E.P.
- FEED LINE - 50 OHMS

Mini-Products Inc.

1001 W. 18th St. Erie, Pa. 16502

LOGIC PROBE

From Logic Systems Inc. Look at This!

- 2 meg input
- Input protection
- Automatic memory
- Use with TTL/DTL/MOS/CMOS
- Check or M.O. for Detectors

L.S.I., Box 7177, Univ. Sta., Provo, Utah 84602

NEW CODE TAPE

SINGLE 60 min. ALL YOU NEED AT $5.00...10, 15 and 20 wpm. Easiest to learn, most popular. Get your new ticket easily with this proven technique. Order now during our introductory offer. Instructions included.

50.00 c. M. D. Electronic

Dept. 10, P.O. Box 7177, Provo, Utah 84602

ANTENNA COMPONENTS

COAX CABLE TO MIL SPEC BY TIMES & ESSEX

RG 8/U $19/C
RG 8/A/U $20/C
RG 8/U FOAM $22/C
RG 11/U $14/C
RG 11/A/U $17/C
RG 58/A $10/C
RG 213 $23/C
RG 331 $45/C

ANTENNA WIRE $5/C

RIBBON CABLE

24 AWG 20 Cond. $5.00 ft.

RIBBON CABLE

22 AWG 20 Cond. $7.50 ft.

INS. OPEN LINE BROWN $5.50/C

CONNECTORS

PL 259 $60; SO 239 $60; PL 258 $100; UG 175/U $20; 88/U $80; UG 1094/U $65

SHIPPED ANYWHERE IN U.S.A.

WIRE CONCEPTS INC.

201-227-1751

198 Passaic Ave., Fairfield, N.J. 07006

More Details? CHECK-OFF Page 134
RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mW, depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz, Cat. No. 035104 Specify when ordering. $4.75 ea.

OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101 Specify when ordering. $3.95 ea.

OF-1 OSCILLATOR
Resistor/capacitor circuit provides oscillation over a range of frequencies with the desired crystal. 2 to 22 MHz, OF-1 LO, Cat. No. 035108; 18 to 60 MHz, OF-1 HI, Cat. No. 035109 Specify when ordering. $3.25 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102; 20 to 170 MHz, Hi Kit, Cat. No. 035103 Specify when ordering. $4.50 ea.

DAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat No. 035107 Specify when ordering $4.75 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102
<table>
<thead>
<tr>
<th>State</th>
<th>Store Name</th>
<th>Address</th>
<th>Phone</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>LONG'S ELECTRONICS</td>
<td>3521 TENTH AVE. NORTH BIRMINGHAM, AL 35234 800-633-3410</td>
<td>Call us Toll Free to place your order</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAM RADIO OUTLET</td>
<td>999 HOWARD AVENUE BURLINGAME, CA 94010 415-342-5757</td>
<td>Northern California's largest new and used ham inventory.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HENRY RADIO</td>
<td>931 N. EUCLID AVE. ANAHEIM, CA 92801 714-772-9200</td>
<td>The world’s largest distributor of Amateur Radio equipment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-TRON</td>
<td>2811 TELEGRAPH AVENUE OAKLAND, CA 94609 415-763-6262</td>
<td>We service what we sell.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUEMENT ELECTRONICS</td>
<td>1000 SO. BASCOM AVENUE SAN JOSE, CA 95128 408-997-5500</td>
<td>Serving the world's Radio Amateurs since 1933.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C W ELECTRONIC SALES CO.</td>
<td>1401 BLAKE ST. DENVER, CO 80202 303-573-1386</td>
<td>Rocky Mountain area’s complete ham radio distributor.</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>GRICE ELECTRONICS</td>
<td>320 EAST GREGORY PENSACOLA, FL 32502 904-434-2481</td>
<td>Your Gulf Coast Drake & Kenwood dealer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERIKSON COMMUNICATIONS, INC.</td>
<td>5935 NORTH MILWAUKEE AVE. CHICAGO, IL 60646 312-631-5181</td>
<td>Headquarters for all your Amateur Radio needs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPECTRONICS, INC.</td>
<td>1009 GARFIELD STREET OAK PARK, IL 60304 312-848-6777</td>
<td>Chicagoland’s Amateur Radio leader.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COHOOON AMATEUR SUPPLY</td>
<td>HIGHWAY 475 TRENTON, KY 42286 502-886-4535</td>
<td>Ten-Tec dealer — Call 24 hours for best deal</td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>KLAUS RADIO, INC.</td>
<td>8400 NORTH PIONEER PARKWAY PEORIA, IL 61614 309-691-4840</td>
<td>Let us quote your Amateur needs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPECTRONICS, INC.</td>
<td>1009 GARFIELD STREET OAK PARK, IL 60304 312-848-6777</td>
<td>Chicagoland’s Amateur Radio leader.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOOSIER ELECTRONICS</td>
<td>P. O. BOX 2001 TERRE HAUTE, IN 47802 812-238-1456</td>
<td>Ham Headquarters of the Midwest. Store in Meadow Shopping Center.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COHOOON AMATEUR SUPPLY</td>
<td>HIGHWAY 475 TRENTON, KY 42286 502-886-4535</td>
<td>Ten-Tec dealer — Call 24 hours for best deal</td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>COMM CENTER, INC.</td>
<td>9624 FT. MEADE ROAD LAUREL PLAZA RT. 198 LAUREL, MD 20810 301-792-0600</td>
<td>New & Used Amateur Equipment. All Inquiries Invited.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TUFTS RADIO ELECTRONICS</td>
<td>386 MAIN STREET MEDFORD, MA 02155 617-395-8280</td>
<td>New England’s friendliest ham store.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUDIOLAND</td>
<td>36633 SOUTH GRATIOT MT. CLEMENS, MI 48043 313-791-1400</td>
<td>All major brands, new/used equipment & accessories.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PURCHASE RADIO SUPPLY</td>
<td>327 E. HOOVER ANN ARBOR, MI 48104 313-668-8696 or 668-8262</td>
<td>We still sell Ham parts!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RADIO SUPPLY & ENGINEERING</td>
<td>1203 WEST 14 MILE ROAD CLAWSON, MI 48017 313-435-5660</td>
<td>10001 Chalmers, Detroit, MI 48213, 313-371-9050.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC CENTER, INC.</td>
<td>127 THIRD AVENUE NORTH MINNEAPOLIS, MN 55401 612-371-8240</td>
<td>ECI is still your best buy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIDCOM ELECTRONICS</td>
<td>2506 SO. BRENTWOOD BLVD. ST. LOUIS, MO 63144 314-951-9990</td>
<td>At Midcom you can try before you buy!</td>
<td></td>
</tr>
</tbody>
</table>

Dealers, you should be here too! Contact Ham Radio today for complete details.
<table>
<thead>
<tr>
<th>State</th>
<th>Dealer Name</th>
<th>Address</th>
<th>Phone</th>
<th>Specialties</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>Evans Radio, Inc.</td>
<td>Box 893, Rt. 3A Bow Junction, Concord, NH 03301</td>
<td>603-224-9961</td>
<td>Icom & Yaesu dealer. We service what we sell.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Atkinson & Smith, Inc.</td>
<td>17 Lewis St., Eatontown, NJ 07724</td>
<td>201-542-2447</td>
<td>Ham supplies since “55”.</td>
</tr>
<tr>
<td>New Mexico</td>
<td>Jim's TV and Electronics</td>
<td>805 N. First, Grants, NM 87020</td>
<td>505-287-9148</td>
<td>Stocking Icom, BAC & MC. Open 6 Days.</td>
</tr>
<tr>
<td>New York</td>
<td>Adirondack Radio Supply, Inc.</td>
<td>185 W. Main St., Amsterdam, NY 12010</td>
<td>518-842-8350</td>
<td>Yaesu dealer for the Northeast.</td>
</tr>
<tr>
<td></td>
<td>CFP Communications</td>
<td>211 North Main St., Horseheads, NY 14845</td>
<td>607-739-0187</td>
<td>Jim Beckett, WA2KTJ, Manager. Dave Flinn, W2CFP, Owner.</td>
</tr>
<tr>
<td></td>
<td>Harrison</td>
<td>"Ham Headquarters, USA" Route 110 & Smith St.</td>
<td>516-293-7990</td>
<td>Since 1925 . . . Service, Satisfaction, Savings. Try Us!</td>
</tr>
<tr>
<td>Ohio</td>
<td>Universal Service</td>
<td>114 N. Third St., Columbus, OH 43215</td>
<td>614-221-2335</td>
<td>Give U.S. a try when ready to buy.</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>Radio Store, Inc.</td>
<td>2102 Southwest 59th St., Oklahoma City, OK 73119</td>
<td>405-682-2929</td>
<td>New and used equipment — parts and supply.</td>
</tr>
<tr>
<td>Oregon</td>
<td>Oregon Ham Sales</td>
<td>409 West First Ave., Albany, OR 97321</td>
<td>503-926-4591</td>
<td>Yaesu dealer for the Northwest.</td>
</tr>
<tr>
<td></td>
<td>"Ham" Buenger, Inc.</td>
<td>68 N. York Rd., Willow Grove, PA 19090</td>
<td>215-659-5900</td>
<td>Communications specialists. Sales and service.</td>
</tr>
<tr>
<td></td>
<td>Hamtronics, Inc.</td>
<td>4033 Brownsville Rd., Trevose, PA 19047</td>
<td>215-357-1400</td>
<td>Same location for 25 years.</td>
</tr>
<tr>
<td>South Dakota</td>
<td>Burghardt Amateur Center</td>
<td>124 First Ave., N.W. P.O. Box 73, Watertown, SD 57201</td>
<td>605-886-7314</td>
<td>America's most reliable Amateur Radio Dealer — Nationwide!</td>
</tr>
<tr>
<td>Texas</td>
<td>Altec Communications</td>
<td>1800 S. Green St., Longview, TX 75601</td>
<td>214-757-2831</td>
<td>Specializing in ham equipment for the Ark-La-Tex.</td>
</tr>
<tr>
<td></td>
<td>Teco Electronics Super Store</td>
<td>1717 S. Jupiter Rd., Garland, TX 75040</td>
<td>800-527-4642</td>
<td>Call Toll Free for Service Today!</td>
</tr>
<tr>
<td>Virginia</td>
<td>Arcade Electronics</td>
<td>7048 Columbia Pike, Annandale, VA 22003</td>
<td>703-256-4610</td>
<td>Serving Maryland, D.C., and Virginia area since 1962.</td>
</tr>
</tbody>
</table>
Amateur crystals 143.99 - 148.01 only for this trim price (and it's postpaid). Florida residents add 4% sales tax. Send frequencies, make and model when ordering. Our price includes most gear on our free Parts List. For equipment not listed, we'll provide prices on request and slice up something special. Master Charge & Bankamericard telephone orders accepted. No C.O.D.'s.

Savoy Electronics Inc.
P.O. Box 5727, Fort Lauderdale, Florida 33310
305/563-1333
Manufacturers of Quality Quartz Crystals Since 1937

1/2 PRICE SALE!
Regardless of size of order

7400 Series	7439	.45	7496	.90	74173	1.10	74197	1.00	MH	0028CN	2.95	MEMORIES
7400	1.7	.74	1.00	.74	1.07	.95	4174	1.50	74198	2.00	0025CN	2.00
7401	1.7	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0026CG	4.00
7403	1.7	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7404	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7406	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7410	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7411	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7413	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7414	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7415	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7417	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7425	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7426	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7428	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7430	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7432	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7437	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95
7438	.45	.74	1.00	.74	1.02	.95	4174	1.50	74195	2.00	0022CN	2.95

WEIRNU
P.O. Box 942, Colton, CA 92324

Sensational price! Superb quality!

6995 11995
(30mHz Kit)
(250mHz Kit)
6-DIGIT FREQUENCY COUNTERS

Hufco
Write or call today!
P.O. Box 357, Dept. 54,
Provo, UT 84601 (801) 375-8566

12 Button touch-tone pads calibrated and guaranteed 90 days (abuse excluded) with diagram $14.00
Attractive plastic mounting box with bracket $4.75
Complete working system ready to connect to your transmitter $24.95

TELEPHONE EQUIPMENT COMPANY
Post Office Box 596, Leesburg, Florida 32748
(904) 728-2730

VHF TRANSVERTERS

- 50, 144 & 220MHz models
- 1 watt min. output
- Compatible with HF SSB equip
$129.50

VHF Signal Co.
2246 Beech St.
Laurel, DE 19956 (302) 846-2631

More Details? CHECK-OFF Page 134
EXPAND YOUR COVERAGE WITH THIS 150 WATT OUTPUT RF AMPLIFIER

All solid state / Strip line design
Broad band / High efficiency
Easily added to your present system.

Power boosters for 2 meters, Class C using balanced emitter transistors for long life and high SWR protection. For FM mobile or fixed operation.

PA140/10
- 5-15 watts in for 100-150 watts out
- 13.6 volts Typically 140 watts
- 10 watts in

PA140/30
- 15-40 watts in for 100-150 watts out
- 13.6 volts Typically 140 watts
- 30 watts in

POWER GAIN: PA 140/10... 12DB PA 140/30... 7DB

INPUT POWER: PA 140/10... 5 to 15 watts
- PA 140/30... 15 to 40 watts

INPUT VOLTAGE: 12 to 14 volts DC negative ground

STANDBY CURRENT: Virtually insignificant

INSERTION LOSS: Less than 1 DB on receive

DUTY CYCLE: 50% or less

POWER GAIN: PA 140/10... 12DB PA 140/30... 7DB

INPUT POWER: PA 140/10... 5 to 15 watts
- PA 140/30... 15 to 40 watts

INPUT VOLTAGE: 12 to 14 volts DC negative ground

STANDBY CURRENT: Virtually insignificant

INSERTION LOSS: Less than 1 DB on receive

DUTY CYCLE: 50% or less

DIMENSIONS: 7” x 10-1/2” x 2-7/8”

WEIGHT: 4 lbs.

PRICES
- PA 140/10... $179.95 wired and tested
- PA 140/30... $159.95 wired and tested

OUR PS 3012

THE BRUTE

At last a brute of a power supply that will deliver regulated 11-14VDC at 30 amp and at a very affordable price. The PS3012 is a ruggedly built, fully protected power supply. This is the power supply that is destined to become the standard of the industry.

PS 3012...
- Price $239.95... Wired & Tested

Other models available.

PS 25C...
- 25 amps at 12VDC...
- Wired, $149.95 Kit, $129.95

PS 15C...
- 15 amps, 12VDC...
- Wired, $94.95 Kit, $74.95

Just Look At These Features:

- Over-voltage protection crowbar
- Electrostatic shield for added transient surge protection
- A foldback output limiter operates for loads outside of the operating range.
- Isolation from ground. The circuit is isolated from the case and ground.
- 115/230 volt input - 50/60 cycle.
- Units are factory wired for 115 volt AC, 50/60 cycle power. A simple jumper will reconfigure the input for 230 volt AC, 50/60 cycles.
- Temperature range – operating: 0° to 60° C.
- Black anodized aluminum finish.

SHIPPING INFORMATION: All shipments are F.O.B., Binghamton, N.Y. 13902. Customers will be billed for shipping and handling. For shipping charges, please refer to shipping table on reverse. Add 1 to 2 weeks for delivery. TERMS: C.O.D., cash or check with order. We also accept BankAmerica and Master Charge.

CLAIMS: Notify VHF and the carrier of damage within 10 days of receipt of shipment.

RETURN: Obtain return authorization number before returning any merchandise. PRICES AND SPECIFICATIONS subject to change without notice. Export prices are slightly higher.

THE WORLD'S MOST COMPLETE LINE

OF VHF - FM KITS AND EQUIPMENT

S O R D E R F O R M

<table>
<thead>
<tr>
<th>Item</th>
<th>Price Each</th>
<th>Quantity</th>
<th>Total Price</th>
</tr>
</thead>
</table>

NAME

ADDRESS

CITY

STATE

ZIP

BANK NO.

EXP. DATE

SHIPPING INSTRUCTIONS: All shipments are F.O.B., Binghamton, N.Y. 13902. Customers will be billed for shipping and handling. For shipping charges, please refer to shipping table on reverse. Add 1 to 2 weeks for delivery. TERMS: C.O.D., cash or check with order. We also accept BankAmerica and Master Charge.

CLAIMS: Notify VHF and the carrier of damage within 10 days of receipt of shipment.

RETURN: Obtain return authorization number before returning any merchandise. PRICES AND SPECIFICATIONS subject to change without notice. Export prices are slightly higher.

PRICES AND SPECIFICATIONS subject to change without notice. Export prices are slightly higher.
The Black Cat® JB 2000 10/80 linear amplifier delivers the power you need and rugged performance you can count on. Designed and built with the same quality craftsmanship and pride that backs every Black Cat® product, the JB 2000 10/80 lets you stay up as long as you like, whenever you like.

Containing a 120VAC — 240VAC, Solid State self contained power supply, with a power input of 2000 watts PEP SSB, the JB 2000 10/80 linear amplifier greatly increases your signal. Whether building a new station or renovating an old, the Black Cat® JB 2000 10/80 is the perfect addition to any ham operator's equipment roster.

Also included in the Black Cat® line of durable and dependable ham accessories is the test equipment to insure that you stay on the air: the JB 1000 Dummy Load, JB 1000 SM Oscilloscope/RF Wattmeter/SWR Bridge, and JB 2000 SW Power Meter/SWR Bridge.

For complete information on all Black Cat® products, contact your nearest Black Cat® dealer, or write:

WAWASEE ELECTRONICS
"HOME OF BLACK CAT® PRODUCTS"
Wawasee Electronics Co., Inc.
P.O. Box 36 • Syracuse, Indiana 46567
Phone: (219) 457-3191

The new PC Designer template set has been updated to include additional, frequently used component packages and mounting patterns for printed-circuit layouts and assembly drawings. All patterns conform to guidelines established by Mil-Std 275C and The Institute of Printed Circuits bulletin CM-770. Component mounting patterns are on grid centers which enable the designer to design for automatic insertion assembly equipment.

Fixed and variable resistors, axial and radial lead capacitors, and several semi-conductor packages are included. Template use reduces circuit-board design time by eliminating constant referral to manuals and data sheets for package dimensions. The template sets are available from stock in actual, twice, and four times size layout ratios and are priced from $12.00 to $20.00 per set.

Write: TANGENT TEMPLATE, INC.
Post Office Box 20704
San Diego, California 92120

6 digit AUTOMOTIVE CLOCK KIT complete with a CRYSTAL TIMEBASE accurate to .01 percent. 12 volts d.c. operation — built-in noise suppression and voltage spike protection. Readouts blank when ignition is off — draws 25 mA in standby mode. Has .3 in. readouts. Use it in your car or for all applications where a battery-operated clock is needed. Approximate size 3" x 3.5" x 1.75"

WITH BLACK PLASTIC CASE $34.95 ppd.
WITHOUT CASE $29.95 ppd.
ASSEMBLED AND TESTED $45.95 ppd.

CMOS CRYSTAL TIMEBASE KITS with .1 percent accuracy. 5-15 v.d.c. operation. Draws only 3 mA at 12 volts. Single I.C. — very small size — the F.C. board is 7/8" x 1-5/8". Choose a main output of 50 or 100 Hz., 60 Hz., 500 or 1000 Hz., or 1 Hz. Several related frequencies are also available on each board, in addition to the main ones listed above. Be sure to specify the Frequency you want. All kits are $10.95 ppd.
For Spare Time Income, Your Own Business or a Career...

LEARN TO SERVICE
COMMUNICATIONS/CB EQUIPMENT...THE NRI WAY

Career opportunities are opening up fast for the man trained in communications.

The field of communications is bursting out all over. In Citizens Band alone, class "D" licenses grew from 1 to over 2.6 million in 1975, and the FCC projects about 15 million U.S. CBers by 1979. That means countless careers in design, installation and maintenance. Start training now, the NRI way, to get your FCC license and qualify for one of these openings.

Learn on your own 400-channel, digitally-synthesized VHF Transceiver.

The NRI Complete Communications Course teaches you to service and adjust all types of two-way radio equipment (including CB), using the one unit that is best equipped to train you for CB, Commercial, and Amateur communications: a digitally-synthesized 400-channel VHF transceiver and AC power supply. This 2-meter transceiver gives you "Power-On" training. Then we help you get your FCC Amateur License with special instructions so you can go on the air.

The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Also included are: your own electronics Discovery Lab, a new Antenna Applications Lab, an Optical Transmission System, CMOS Digital Frequency Counter, and TVOM. The course covers AM and FM Transmission Systems, Radar Principles, Marine, Aircraft, and Digital Electronics; and Mobile Communications. You must earn your first class radio telephone FCC license or you get your money back.

CB Specialist
Course now available

NRI now offers a special course in CB Servicing. You get 37 lessons, 8 reference texts, your own CB Transceiver, AC power supply and multimeter...for hands-on training. Also included are 14 coaching units to make it easy to get your commercial radio telephone FCC license—enabling you to test, install and service communications equipment.

Over a million men have enrolled with NRI

Send for the free NRI catalog and discover why more than a million men like yourself have chosen the NRI way the right way to get ahead. Read how you learn from bite-size lessons, progressing at your own speed to your FCC license and then into the communications field of your choice. There's no obligation and no salesman will call.

Send coupon now for FREE NRI catalog

Rush the free catalog of my choice (select only one, please). No salesman will call.

[] Complete Communications Electronics with CB
[] FCC Licenses
[] Aircraft, Mobile, Marine Electronics
[] CB Specialized Course
[] Amateur Radio
[] Basic and Advanced
[] Industrial and Business Electronics
[] Digital Computer
[] Electronics • Electronic Technology • Basic Electronics
[] IV/Audio Servicing
[] Choose from 5 courses:
[] Appliance Servicing
[] Homeowner & Professional Repairs
[] Automatic Mechanics
[] Master Automotive Technician • Tune-Up and Basic Repairs
[] Auto Air Conditioning
[] Air Conditioning & Refrigeration
[] Basic Air Conditioning Servicing • Master Course in Air Conditioning, Refrigeration & Heating

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016

APPROVED UNDER GI BILL, if taken for career purposes.

Check box for details

Name: ___________________________ (Please Print) Age: ______
Street: _________________________
City/State/Zip: ___________________

Accredited Member National Home Study Council

If coupon is missing, write to: NRI Schools, McGraw Hill Continuing Education Center, 3939 Wisconsin Avenue, Washington, D.C. 20016

NRI
More Details? CHECK-OFF Page 134
tober 1976
NEW

a digital
drequency
counter you
can count on

New 300/600 Mhz Digital Frequency Counters are in a class by themselves when it comes to reliability, accuracy and performance.

Quality features include full 7 digit display panel with large LED readouts, resolution to .1Hz, high input sensitivity, automatic limit on input, controlled time base, selectable gate times .1 sec., 1 sec. and 10 sec. and high stability time base options available.

Complete Kit includes all parts, drilled and plated PC boards, cabinet, switches, hardware and a complete Instruction Manual including calibration instructions.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Model 300 1Hz to 300 Mhz</th>
<th>Model 600 1Hz to 600 Mhz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Impedance</td>
<td>Direct Hi-Z, Pre-scaled 50 mV/20MHz</td>
<td>150 mV/200MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>50 mV/20MHz 150 mV/200MHz 600MHz</td>
<td></td>
</tr>
<tr>
<td>Time Base</td>
<td>10 MHz crystal oscillator</td>
<td>100 ppm 25 to 40 C 2 ppm 15 to 55 C</td>
</tr>
<tr>
<td>Stability</td>
<td>Standard 10ppm 1 ppm 2 ppm 15 to 55 C</td>
<td></td>
</tr>
<tr>
<td>TXCO*</td>
<td>2 ppm 15 to 55 C</td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>Model 300 1Hz to 300 Mhz</td>
<td>Model 600 1Hz to 600 Mhz</td>
</tr>
</tbody>
</table>

Resolution: 0.1 second gate 1.0 second gate 10.0 second gate*

Power: 120 VAC 25 Watts 12 VDC* (Optional)

Cabinet Size: 8" x 8" x 2½"

Send check or money order to:

Crescent

Wire & Cable Inc.

Bldg. 13 Euclid Ave., Newark N.J. 07105 (201) 589-4647

BOOKS BY PHONE

CALL TOLL FREE

800-258-5353

Almost all popular Amateur Radio Books available for immediate shipment.

HAM RADIO

GREENVILLE, NH 03048

HEARD THE GOOD WORD?

"You can order books from HAM RADIO on their NEW TOLL FREE NUMBER."

800-258-5353

NEW from the RSGB

VHF-UHF MANUAL

3rd Edition

by D. S. Evans, G3RPE
& G. R. Jessop, G6JP

Here is the most comprehensive and up-to-date book on VHF & UHF ever prepared for the Radio Amateur.

In over 400 pages it thoroughly covers such topics as receivers, transmitters, space communications, filters, antennas and FM. Included is a major new section on Microwave work.

This latest edition is a handsome hardbound book and is sure to become the standard reference for anyone involved in the world above 30 MHz.

ONLY $12.95

GIVE US A CALL TODAY!

HAM RADIO

GREENVILLE, N. H. 03048

126 October 1976

More Details? CHECK-OFF Page 134
Are you tired of the hours of detailed, eye-staining art work that goes into making printed circuit boards for "STAMP IT, ETCH IT"? It is introducing a new product called "STAMP IT, ETCH IT" Kit. This Kit will save the tedious art work and many hours of time out of printed circuit board preparation. In just a few short minutes you have a perfect looking printed circuit board ready for use! This "STAMP IT, ETCH IT" Kit is exactly as the stamping instructions. The step by step methods of instructions, you can have a printed circuit board and save hours of frustration. As easy as you see a rubber stamp to stamp messages on paper, you stamp your component connections on copper clad printed circuit boards. In your "STAMP IT, ETCH IT" Kit we supply all component stamps shown in SE-2 Kit. In the SE-2 kit we have resist ink pads, resist pen, and etching components. The most useful item in the "STAMP IT, ETCH IT" kit is our "ETCH IT" Footprint System of etching your printed circuit boards. With our kits and our etching etching components, you can offer to a print ed circuit board as fast as bobble etching, machine and the results are as good or better.

SE-2 KIT CONTAINS:

ADDITIONAL STAMPS

- Resist Ink
- Resist Pen

Only $9.95

PLUS 1 LB. POSTAGE

RAINBOW INDUSTRIES

P.O. BOX 2366 - DEPT. 11-3
Indianapolis, Indiana 46206

COAX CONNECTORS

PL 259 \(\ldots \) .50
SO 239 \(\ldots \) .50
PL 258 BARREL \(\ldots \) 3.50
DOUBLE MALE \(\ldots \) 1.75
M 385 "T" ADAPTER \(\ldots \) 2.95
M 389 Short Angle 1:4 \(\ldots \) 1.49
UG 175/7 U RE-DOUCER (RCS/7) \(\ldots \) .25
UG 176/7 U RE-DOUCER (RCS/7) \(\ldots \) .25
PL 259 P.O. (PUSH ON TYPE) \(\ldots \) 1.25

UNIT to...

- MOTOROLA M 1.50
- UG 259.10 ENC to UHF \(\ldots \) 2.95
- UG 273/3 UHF M to ENC \(\ldots \) 1.95
- UG 260/3 ENC CABLE \(\ldots \) 1.15
- UG 274/4 ENC T ADAPTOR \(\ldots \) 2.45
- UG 306/4 ENC \(\ldots \) 1.75
- DOUBLE MALE \(\ldots \) 2.45

VIDEO PREAMPS

High Quality).

3" CRT TUBES

3 1/2 NEW GUARANTEED.

PLUS 25.95 ppd.

PRINTED CIRCUIT

- G-10 FIBERGLASS
- Size 1 Side 2 Sided
 - 2" x 4" \(\ldots \) 2.50
 - 3" x 6" \(\ldots \) 3.50
 - 4" x 6" \(\ldots \) 4.50
 - 6" x 6" \(\ldots \) 6.50
 - 8" x 8" \(\ldots \) 9.50
 - 10" x 10" \(\ldots \) 13.50
 - 12" x 12" \(\ldots \) 2.50
 - 14" x 14" \(\ldots \) 2.25

QUANTITY DISCOUNT

- SMALL (same size)
 - 10 to 24 \(\ldots \) 10%
 - 25 to 50 \(\ldots \) 15%
 - 50 to 100 \(\ldots \) 25%
 - 100 up \(\ldots \) 25%

$5.00 Minimum Order

PLEASE ADD POSTAGE

HW-202 SCANNER

- Made to work with tone encoder.
- Mounts neatly on power board completely inside radio.
- Six bright 1, 2, 3, 4 dots clearly visible through semi-transparent meter panel.
- Stops scanning when either signal is heard or manual selection is made.
- Built-in squelch addition eliminates all noise when scanner is scanning.
- Designed especially for your HW-202.
- Assembled.

LOW PROFILE IC SOCKETS

- 22 \#11-10 17.00
- 22 \#11-9 18.00
- 22 \#11-8 18.00
- 22 \#11-7 18.00
- 22 \#11-6 18.00
- 22 \#11-5 18.00
- 22 \#11-4 18.00
- 22 \#11-3 18.00
- 22 \#11-2 18.00
- 22 \#11-1 18.00

WIRE WRAP

- 19 2.85 33.50
- 19 3.95 33.50
- 19 4.95 33.50
- 19 5.95 33.50
- 19 6.95 33.50
- 19 7.95 33.50

MODEL MF

- BOARD AND DESCRIPTION
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25
 - 10 Pos. Decimal, Ext. Bd. \(\ldots \) 3.25

ACCESSORIES

- End Plates \(\ldots \) 1.00
- Divider Plate \(\ldots \) 1.00
- Blank Body \(\ldots \) 0.50

SANDLIN ELECTRONICS ENGINEERING

P.O. Box 4909 / Martinez, Georgia 30907 / Telephone (404) 863-5852

FAN (MUFFIN TYPE)

- Rotron Mfg. Mod. MMU2A, 4." dia.
- Square, no hozel 30 C.F.M., Whisper Quiet, 115 VAC, 60 cy.

BRAND NEW

- $9.95 ea.
- STEREO PREAMPS

- Designed by WB4QDB — Georgia Residents Include 3% Sales Tax

NEW ELECTRONIC KEYER

- LOWEST PRICE EVER

- 3-50 WPM.
- Self-completing dots and dashes.
- Has speed control.
- Has automatic weight control.
- Built-in side tone to drive small speaker.
- Use directly with grid block keying or add relay (not included) as per instructions to key any transmitters.
- Use 3 penlight cells.
- Solder plated board. Instructions included.
- Just add your key, batteries and speaker.

ONLY

- $25.95 ppd.

Designed by WB4QDB — Georgia Residents Include 3% Sales Tax

MORE DETAILS? CHECK-OFF

Page 134

More Details? CHECK-OFF Page 134
GO AUTO-PATCH THE EASY WAY!

BUY AN IC-230 AT THE
REGULAR PRICE $489.00 AND GET THE
TOUCH TONE HANDSET FREE!

PLUGS DIRECTLY INTO IC-230
AND YOU ARE READY TO GO.
Works with IC-22A and others by
wiring accessory socket for handset.
TOUCH TONE HANDSET ONLY $79.00

IMMEDIATE DELIVERY FROM STOCK

TOLL FREE
complete details see our
113 page
HAM RADIO, Greenville,
NH 03048

ad in the April
1976
issue of this
magazine or call or write for addi-

tional information. Phone orders
accepted between
9 AM and 4 PM
EDT. (212) 468-2720

NEW ELECTRONIC PARTS
Resistors
Meters
LED Displays
Fuses
Capacitors
Switches
Printed Boards
IC-s
Diodes
Daisy Boxes
Mod-U-Line
Test Clips
Trimmers
Transistors
Hardware
And much more

Vanguard Labs
196-23 Jamaica Avenue
Hollis, N.Y. 11423

SYNTHESIZERS
We have the world's largest selection
of synthesizers for receivers,
transmitters and transceivers. For
complete details see our 1/3 page
ad in the April 1976 issue of this
magazine or call or write for addi-
tional information. Phone orders
accepted between 9 AM and 4 PM
EDT. (212) 468-2720

YAESU INTRODUCTORY SPECIAL
This SPECIAL OFFER is valid only
during October 1976. Don't miss out!
$749.00 will buy not only a brand
new YAESU FT-101E but also
two very popular accessories
(valued at $64.00). This pur-
chase will include a CW filter and a fan.
Order yours today. (N.Y. residents add
sales tax.)

Jim Beckett
WA2KTJ
Bryant Hozempa
WB2LWV

CFP Communications
211 North Main Street
Horseheads, N.Y. 14845
PHONE: 607-739-0187

BOOKS BY PHONE TOLL FREE
800-258-5353
HAM RADIO, Greenville, NH 03048

CLOSE OUT 1976!
ATTEND THE ARRL
FLORIDA SECTION CONVENTION
NOV. 6 AND 7 AT THE
SHERATON SAND KEY HOTEL
ON THE GULF, AT
CLEARWATER BEACH, FLORIDA

Complete family entertainment, with
tours to the area attractions such as
Disney World and Busch Gardens, plus
Hotel facilities. HAMS HAVE MORE FUN
also, with the best Technical Sessions
yet in the Southeast. Forums abound,
with John Johnson, K3BNS chairing the
FCC Forum. FCC exams given at the
Hotel Nov. 6! Send Form 610 and $4 to
FCC, Zack St., Tampa, FL 33602, to re-
serve your exam. ARRL President Dan-
nals will highlight the festivities at a
gala Banquet Saturday evening, with a
"Special Feature" unearthed from Lew
McCoy, W1UCP. A complete Drake station
(TR4C, RV-4, AC4) is the main Conven-
tion prize, with a TEN-TEC Argonaut 509
as the main Banquet prize.

Advanced Registration:
$3 family ticket (2 bonus tickets)
Banquet tickets:
$9 person (limit 400 persons)
Hotel:
$25 Single or Double, $4 per per-
son extra, under 18 free.
Write: Florida Gulf Coast
Amateur Radio Council, Inc.
P. O. Box 157
Clearwater, FL 33517
Convert Morse, RTTY and ASCII to Video

MODEL 100 TRI-MODE CONVERTER

Based on the powerful F-8 Microprocessor system, this new product from Info-Tech advanced technology features:

- Morse reception with Automatic Speed and Wordspace
- RTTY reception with four manually selected speeds and automatic readout of incoming speed (requires T.U. for demodulation)
- ASCII reception at 100 w.p.m. (110 baud); (requires T.U. for demodulation)
- Video Display: Model 100A—32 characters x 16 lines of 5 x 7 DOT matrix with scrolling
 - Model 100 B (optional)—64 characters x 16 lines with scrolling

PRICE:
Model 100 A—$450.00 (wired & tested)
Model 100 B— 495.00 (wired & tested)

Master Charge Welcome • Send for Data Sheets

INFO-TECH INCORPORATED
Specializing in Digital Electronic Systems
20 Worthington Drive, St. Louis, Missouri 63043
Phone: 314-576-5489
Thousands have already discovered the pleasure of owning Vintage Radio books. You too can enjoy browsing through those pioneer days of wireless and radio. You’ll recapture the excitement of wireless days even though they were long before your time. You’ll see fine old battery radios of the 1920’s, and rediscover “cathedral” radios of the 1930’s. You’ll relive the dawn of radio broadcasting, visit the radio operator aboard his ship, visit G. I. Joe in his foxhole with his handy-talkie set, and meet the radio “Ham” in his shack.

These experiences and many more await you in Vintage Radio’s family of books. Young or old, you’ll be fascinated by your journey through those earlier days. You’ll also discover the fun and rewards of collecting old-time radio sets and memorabilia.

1921-1932 RADIO COLLECTOR’S GUIDE

This book makes you an “instant expert” as you go prospecting for those fine old radios. It eliminates guesswork in determining a set’s age and “pedigree.” There are 264 pages loaded with over 50,000 facts on 9,000 radio models made by 1,100 manufacturers.

1927 RADIO ENCYCLOPEDIA

Own this authentic reproduction of Gernsback’s classic. Browse through radio’s heroes (who’s Marconi?) and hardware (what’s a coherer?) of the old days. 175 fascinating pages. Our hard-cover version is a serialized limited edition, an ideal gift.

A FLICK OF THE SWITCH 1930-1950

Here’s your time trip through the great days of radio broadcasting and the dawn of television. Revisit the Lone Ranger, Philco “cathedral” radios, old “Ham” days and many more. You’ll revel in 312 pages of story, old ads and over 1,000 pictures.

VINTAGE RADIO 1887-1929

You’ll enjoy this fascinating pictorial story of pioneer days in wireless and radio. Relive the days of Marconi, old spark transmitters, and the struggles of early radio broadcasting. It’s the radio collector’s reference, with over 1,000 pictures on 263 pages.

MOST-OFTEN-NEEDED 1926-1938 DIAGRAMS

This reprint of Morris Betrmann’s Supreme Publications book shows circuit diagrams for 600 radio models. Its 240 pages are valuable for historical circuit information, and are great aids in restoring those old sets. Made from Supreme’s original artwork, it is clear and readable.

Please add 25¢ per book postage and handling.

Order your Vintage Radio books from

Call Toll Free 800-258-5353

Greenville, NH 03048

8 AM TO 10 PM

Eastern Time
PALMER INDUSTRIES INTRODUCES THE NEW MODEL 52' TRISTAO SUPER MINI-MAST

Featuring an exclusive three-section, crank-up, self-supporting 52' mast with automatic brake winch. Constructed of high-strength steel tubing, designed to handle 9 to 10 sq. ft. of antenna and withstand winds of 50 to 60 MPH.

Only TRISTAO'S Mini-Mast features as an exclusive option, a rotor base assembly allowing rotor to be mounted at ground level for easy maintenance.

We offer a complete assortment of accessory bases and raising fixtures for the Mini-Mast.

NORMALLY STOCKED FOR IMMEDIATE SHIPMENT
40' MODEL ALSO IN STOCK

Call or write for FREE catalog covering all the other fine Tristao towers and masts.

TRISTAO TOWER DIVISION
PALMER INDUSTRIES, INC. Dept. HR
3900 San Fernando Road Glendale, Calif. 91204
(213) 246-8333

THE FM LEADER

2 METER 220 MHz
6 METER 440 MHz

FEATURING THE...

HR-2B
The Master in 2 Meter FM
Positive performance at a practical price makes our HR-2B tops on 2 meters. Individual trimmer capacitors give bull's-eye accuracy for working repeaters or point-to-point. The .35µV sensitivity and Hi/Lo power switch insure your hearing and being heard ... clearly and reliably ... the Regency way.

- 12 Channels
- 15 Watts
- $229.00 Amateur Net

...AND THE

HR-440
UHF—The Ultimate in FM
440 is fresh ... it's new ... and with our HR 440 you can use UHF without using-up your budget. So, pioneer some new ground! Put a compact HR 440 under your dash or at your desk. It's the best way to usher yourself into UHF.

- 12 Channels
- 10 Watts
- $349.00 Amateur Net

More Details? CHECK-OFF Page 134

Regency ELECTRONICS, INC. 7707 Records Street
Indianapolis, Indiana 46226

© 1976

october 1976 131
MICROPROCESSOR BOOKS
FROM ADAM OSBORNE

INTRODUCTION TO MICROCOMPUTERS —
Volume I Basic Concepts
by Adam Osborne
Takes you by the hand from elementary logic and simple binary arithmetic through concepts shared by all microcomputers. You learn how to take an idea that may need a microcomputer and create a product that uses one. This book is complete. Every aspect of microcomputers is covered: the logic devices that constitute a microcomputer system; communicating with the external logic via interrupts, direct memory access, and serial or parallel I/O; microprogramming and macro-programming; assemblers and assembler directions; linking and relocation — everything you need to know to start selecting or using a microcomputer.
Order AO-2001 Just $7.50

INTRODUCTION TO MICROCOMPUTERS —
Volume II Some Real Problems
by Adam Osborne
Covers real microcomputers in considerable detail. Every major microcomputer: 4-bit, 8-bit or 16-bit is described including some soon to be announced products. Major chip slice products are also covered; more than 20 microcomputers in all.
Included is material on the following:
— 8259 Priority Interrupt Control Unit from Intel
— 8253 Programmable Counter Timer from Intel
— 8257 Direct Memory Access control devices from Intel
— 6028 Priority Interrupt Controller from Motorola
— 6875 USART from Motorola
— M6700 single chip microcomputer from Motorola
— 10800 family of chip slice logic from Motorola
— Single chip F-8 from Fairchild
— EA9002 microprocessor from Electronic Arrays
Plus others
Order AO-3001 Only $7.50

8080 PROGRAMMING FOR LOGIC DESIGN
by Adam Osborne
A completely new book on a totally new subject: implementing digital and combinatorial logic using assembly language within an 8080 microcomputer system. What happens to fan-in and fan-out? How do you implement a one-shot? This book simulates well known digital logic devices using assembly language. Next it shows you how to simulate an entire schematic, device by device, keeping the assembly language simulation as close to the digital logic as possible. But that is the wrong way to use a microcomputer; the book explains why. Then shows you the correct way.
Order AO-4001 Just $7.50

Order from HAM RADIO, Greenville, NH 03048
ARRL HUDSON DIVISION CONVENTION
NOVEMBER 13-14, 1976
SHANGRI-LA '76
PLAYBOY RESORT & COUNTRY CLUB
AT GREAT GORGE
McAFEE, NEW JERSEY
SPONSORED BY THE HUDSON AMATEUR RADIO COUNCIL, INC.

BANQUET: SPEAKER—JEAN SHEPHERD, K2ORS
PROGRESS THRU: EDUCATION • TECHNICAL KNOWLEDGE • PUBLIC SERVICE

FOR ALL
INDOOR SWIMMING—SAUNA—WORLD'S LARGEST
WHIRLPOOL—TENNIS—RIDING—GOLF—FREE DAY CAMP
FOR 4 YEAR OLDS & UP—BABYSITTERS AVAILABLE . . .
EATING AT THE DELI, BUFFET IN THE LIVING ROOM,
SIT UNDER A FORTY-FIVE FOOT TREE IN THE SIDEWALK
CAFE, DINNER IN THE PENTHOUSE OR PLAYBOY CLUB
OR THE VIP ROOM . . . UNBELIEVABLE BUT TRUE,
PLUS LIVE BROADWAY ENTERTAINMENT AND A THREE
LEVEL GAME ROOM . . . STAY FOR A FEW NIGHTS
AND HAVE A REALLY SUPER VACATION . . .

FOR THE HAM
ANTENNAS—ARPSC & AREC—ARRL & FCC FORUMS—
ATV—CONTEST—CAC—CONSUMER FORUM—DX—FAX—
FM & REPEATERS—LAW—MARS—MICROPROCESSING &
HAM APPLICATION—OSCAR—PUBLIC RELATIONS—QRP—
RTTY—SOLID STATE—TECH. MOVIES—TRAINING—
VHF-UHF—YLRL
MANUFACTURERS EXHIBIT AREA . . . LATEST GEAR
TAKE YOUR LICENSE UPGRADE TEST AT THE CONVENTION
SEND FORM 610 WITH CHECK OR M.O. MADE OUT TO F.C.C.
1 WEEK IN ADVANCE TO: PAUL MAZER, 70-29 KISSENA
BLVD., FLUSHING, N.Y. 11365

GIANT INDOOR FLEA MARKET
SELLERS: ONE DAY—$8.00, TWO DAYS—$15.00, PLUS CONVENTION REGISTRATION
JR FLEA MARKET TABLE RESERVATIONS: WRITE P.O. BOX 1054, PASSAIC, NEW JERSEY 07051

SPECIAL CONVENTION HOTEL RATES: $36.00 PER NIGHT FOR TWO, $8.00 EACH ADDITIONAL PERSON IN THE
ROOM. $32.00 PER NIGHT FOR A SINGLE ROOM.

More Details? CHECK-OFF Page 134
INDEX
ARRL Florida Convention 128
ATV Research 117
AV Forecast 108
Ariel 118
Antenna Specialists Co. 97
Antenna Supermarket 94
Antenna 93
Atlas 92
J. P. Ashcraft Co. 88
Atlas Radio 81
Atronics 104
Baum 105
Barry 100
Budweig Mfg. Co. 128
Bullet 115
Byte Publications, Inc. 103
CFP Communications 128
CHM Products, Inc. 106
CalCom Systems, Inc. 104
Chaneys Electronics 112
Circuit Design Div. of E & L 93
Clegg Communications Corp. 83
Clegg Electronics 94
Cleveland Institute of Electronics Communications Engineering 90
Communications Specialists 102
D. R. Corbin Mfg. Co. 114
Creston Wire & Cable, Inc. 126
Cush Craft 135
Cygnus-Quasar Books 92
D & D Enterprises 96
Data Signal, Inc. 85
Davis Electronics 90
Dentron Radio Co. 90
Disc-Cap 116
Drake & Co. R-L 59
DuPage FM 84
Dynamic Electronics 104
E. H. Johnson 75
Electron Technological Operations 51
Electronic Distributors 71
Electrospace 114
ELPROCON 74
Erickson Communications 94
Five Mile Plus 90
Fred Franke, Inc. 94
General Aviation 101
Geller Associates 111
Gray Electronics 104
Gregory Electronics 106
Ham Communications Corp. 214
Haltronix 100
Ham Radio 126, 130
Ham Radio Center, Inc. 95
Hamtronics, Inc. 92
Heath Company 1
Henry Radio Stores 109
Hessle Eletronics 136
Hudson Division, ARRL Convention 133
Huff 122
Hy-Gain Eletronics, Inc. 87
Imron 89
Info-Tech 120
International Crystal 76
James Electronics 77
J FNB Crystals 89
Janel Labs 114
Kensco Communications, Inc. 89
Kester Solder 92
Klaus Radio 94
Lior Corporation 96
Logic Systems, Inc. 111
Lyle Products 133
M & D Enterprises 115
Mfg. & Electronics 112
Madison Electronics Supply 214
Magic 104
Mini Products 98
M-Tech 96
National Multiplex Corp. 94
National Radio Institute 125
Newtronics Corp. 79
Nexus Trading Company 124
Northshore RF Technology 118
Nuda Electronics 104
Optoelectronics 113
Palmomar Engineers 104
Partridge (H.R.) Electronics 116
Poly Paks 92
Radio Amateur Callbook 100
Rainbow Industries 127
Ramsey Electronics 106
Regency Electronics 131
Rohn 95
SSR Electronics 116
Sandian Electronics Engineering 117
SAMCO 20
Satan Electronics 56
Sato Electronics 56
Savoy Electronics 122
Securiton 86
Sherwood Engineering 112
Space Electronics Corp. 112
Specialty Communications Systems 105
Spectronics 105
Spectrum International 47
Standard Communications 86
Swann Electronics 86
Tangent Template 124
Telephone Equipment Company 122
Ten Tec 129
TRadio, Div. of Palmer 131
Universal Radio 111
Utah FM Sales 128
VHF Engineering, Div. of Brownian 132
VHF Signal Co. 122
Vanguard Labs 117
Varian, Eirec Division 124
Webster Electronics 124
Webster Communications 90
Webster Radio 98
Weinshenker 117
Weing 117
Whitehouse & Co. 117
Wilson Electronics 62
Wire Concepts, Inc. 108
Yee Soo Benson USA 91, Cover N

October 1976

There's nothing like it — radio amateur callbook

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.

The U. S. Callbook has nearly 300,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you’re looking for the Foreign Callbook with almost 235,000 calls, names and addresses of amateurs outside of the USA.

Order from your favorite electronics dealer or write direct for your free catalog to:

RADIO AMATEUR CALLBOOK INC.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

Advertisers V check-off

...for literature, in a hurry — we’ll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ext. Ham Radio 234
2 METERS...

... Alive with activity at both ends of the band! Be a part of the total 2 Meter picture with the Cush Craft Twist Antenna. Actually two, easily assembled, 10 element yagis in one — the vertical elements are cut for the high end, the horizontal elements for the low end, and separate feed lines are used. The A147-20T is tailored to meet the demands of the operator who enjoys the best of both worlds — FM and SSB/CW.

A147-20T $47.50

CQ OSCAR . . .

... Extend your horizon — Explore the exciting new world of amateur satellite communications using low power with our multi-polarized Twist Antennas. All models include phasing harness for selectable linear or right/left circular polarization. Two of these Twists may be mounted on the A14T-MB mounting boom which is complete with a pre-drilled plate for a readily available mast-through rotator. Face this challenging frontier — Become a Specialist!

A144-10T $32.50
A144-20T $47.50
A432-20T $45.00
A14T-MB $13.95

PERFORMANCE ARRAYS . . .

Enjoy fade-free contacts on VHF/UHF with Twist Antennas and Arrays. Excellent for scatter and other long-haul techniques. Double your effective radiated power by stacking two Twists, or quadruple ERP by stacking four Twists. Arrays are easily assembled for your special communications requirement. Write for stacking and phasing harness details concerning amateur and commercial frequencies. Dependable communications — Now Yours!

IN STOCK WITH DISTRIBUTORS WORLDWIDE

Cushcraft CORPORATION
621 Hayward St., Manchester, N.H. 03103

More Details? CHECK OFF Page 134

October 1976
400% MORE RF POWER
WITH THE NEW MFJ SUPER LOGARITHMIC SPEECH PROCESSOR

Up To 400% More RF Power is yours with this plug-in unit. Simply plug the MFJ Super Logarithmic Speech Processor between your microphone and transmitter and your voice is suddenly transformed from a whisper to a Dynamic Output.

Your signal has power to slice through QRM and you go from barely readable to “solid copy OM”.

Look that happens to the RF power output on our NCX-3. It was tuned for normal SSB operation and then left untouched for these “before” and “after” oscillograms.

Three active filters concentrate power on those frequencies that yield maximum intelligence. Adds strength in weak valleys of normal speech patterns. This is accomplished through use of an IC logarithmic amplifier with a dynamic range of 30 dB for clean audio with minimum distortion.

The input to the LSP-520BX and LSP-520BX II is completely filtered for RF protection. A 9 volt transistor battery provides months of operation. These quality units are designed and manufactured entirely in the U.S.A.

ORDER TODAY. MONEY BACK IF NOT DELIGHTED. ONE YEAR UNCONDITIONAL GUARANTEE.

ORDER BY MAIL OR CALL 1-601-323-5869 AND CHARGE IT ON MFJ ENTERPRISES • P. O. BOX 494(H) • MISSISSIPPI STATE • MISSISSIPPI 39762

Please add $2.00 per item for Shipping and Handling
There are many reasons for you to choose Yaesu and they are best summed up as PERFORMANCE AT THE RIGHT COST. Your dealer will proudly demonstrate why the finest sounding signals heard around the world originate from YAESU.
Amateurs who build their own equipment go EIMAC.

Building HF or VHF power amplifiers? You'll find them described in detail in both the *ARRL Handbook* and the *Radio Handbook*. And you'll find that EIMAC tubes are the overwhelming choice of expert equipment designers for 1.8 to 1296 MHz service.

The *Radio Handbook* features a deluxe amplifier using the 3-1000Z for HF service plus other HF or VHF designs built around the 3-500Z, 4CX1500B, 8877 and the 8874. The *ARRL Handbook* describes a multiband HF amplifier using the 8877, plus other designs featuring the 3-500Z, 8873, 4CX250B and 3CX100A5. And there's plenty of information about design and construction of transmitting equipment using EIMAC power tubes in both handbooks.

For tube information, contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.