SEPTEMBER 1976

- digital frequency readout 16
- morse keyboard 26
- uhf dummy load 30
- audio frequency-shift keyer 45
- troubleshooting solid-state 60
- and much more...

TWO-METER TRANSVERTER using POWER FETS
If you own a VHF ONE, a TS-700A or an FT-221

...Tempo’s 100AL10 solid state linear is just what you need

Double your pleasure with the first truly linear solid state power amplifier available. The 100AL10 guarantees increased range and clarity in your VHF communications under all operating conditions. It operates in the frequency range of 144-148 MHz with power output of 100W (nom) with 10W (nom) in. Modern solid-state technology is used throughout, along with conservatively rated components to assure the highest possible reliability. Microstrip design on glass epoxy circuit boards give added resistance to damage from shock or prolonged vibration.

Simply plugs into any of the above transceivers (an SSB adapter is required with the VHF-ONE) and you’re on the air... loud and clear.

The 100AL10 (12VDC) .. $179.00
The PS-1220 (AC power supply) $129.00
The 100-AL10-B (AC power supply and amplifier in one compact package... ready for AC operation) $295.00

The Tempo Line, now more than ever... solid value

Tempo VHF-ONE
- Full 2-meter band coverage (144 to 148 MHz for transmit and receive
- Full phase lock synthesized (PLL)
- Provision for accessory SSB adaptor
- 5-digit LED receive frequency display
- Automatic repeater split
- Solid state
- 10 watts output
... $495.00

Tempo SSB ONE
- SSB adaptor for the Tempo VHF-ONE
- Selectable upper or lower sideband
- Noise blanker built-in
- RIT and VXO
... $225.00

Tempo/CL-146A
- A mobile transceiver for the 2 meter amateur band
- Compact and rugged
- Solid state
- 144 to 148 MHz (any 2 MHz without retuning)
- 12 channel possible.
- One channel supplied, two channels of your choice free
... $239.00

Tempo CL-220
- Same general specs as CL-146A, but operates 220 to 225 MHz (any 2 MHz without retuning)
... $299.00

Tempo FMH
- Two watt VHF/FM hand held
- 6 channel capability
- Solid state
- 144-148 MHz
- Includes 1 pair of crystals, built-in charging terminals for ni-cad batteries
... $199.00

Tempo 6N2
- Power amplifier for 2 and 6 meter operation
- 2000 watts PEP input on SSB & 1000 watts input of CW + FM
- Solid state power supply
... $795.00

Tempo 2002
- For 2 meter operation
... $695.00

Tempo 2006
- For 6 meter operation
... $695.00

Tempo VH/FH Amplifiers
- A wide range of solid state power amplifiers for use in most land mobile applications.

Henry Radio

11240 W Olympic Blvd, Los Angeles, Calif. 90064 213/477 6701
931 N Euclid, Anaheim, Calif. 92801 714/677 9200
Butler, Missouri 64730 816/767 3127
YEARS AHEAD WITH YAESU

THE "WOW" DESIGN!
YAESU'S NEW FT221 — ENTIRE 2 MTR BAND!
FM-AM-USB-LSB-CW
PHASE LOCK LOOP!
AND WOW! ONLY $629.

Price and Specifications subject to change without notice.

No crystals needed!
Phase lock loop circuit!
3-way metering, discriminator zero center!
Repeater offset — up, down, (standard or special)!
Crystal calibrator!
FM-AM-USB-LSB-CW!
Clarifier offset tuning!
No-mar feel!
Auto-patch input!
0.5 microvolt receiver sensitivity!
24 watts SSB PEP input!

Broadbanded — no transmitter tuning!
Full band coverage — 144-148 MHz!
1 kHz dial accuracy!

20 watts input — FM and CW!
Pulse noise blanker!
AC-DC power supplies built-in!

See your Yaesu Dealer or write:
YAESU-MUSEN USA, INC., 7825 E. Rosecrans,
No. 29, Paramount, CA 80720
YAESU-MUSEN USA, INC., Eastern Service Center,
613 Redina Terrace, Cincinnati, Ohio 45215

YAESU
The radio.
Stay tuned for future programs.

The HAL ST-6000 demodulator /keyer and the DS-3000 and DS-4000 KSR/RO series of communications terminals are designed to give you superlative TTY performance today—and in the future. DS series terminals, for example, are re-programmable, assuring you freedom from obsolescence. Sophisticated systems all, these HAL products are attractively priced—for industry, government and serious amateur radio operators.

The HAL ST-6000 operates at standard shifts of 850, 425, and 170 Hz. The tone keyer is crystal-controlled. Loop supply is internal. Active filters allow flexibility in establishing different tone pairs. You can select A/M or hard-limiting FM modes of operation to accommodate different operating conditions. An internal monitor scope (shown on model above) allows fast, accurate tuning. The ST-6000 has an outstandingly high dynamic range of operation. Data I/O can be RS-232C, MIL-188C or current loop.

The DS-3000 and DS-4000 series of KSR and RO terminals provide silent, reliable, all-electronic TTY transmission and reception, or read-only (RO) operation of different combinations of codes, including Baudot, ASCII and Morse. The powerful, programmable 8080A microprocessor is included in the circuitry to assure maximum flexibility for your present needs—and for the future. The KSR models offer you full editing capability. The video display is a convenient 16-line format, of 72 characters per line.

These are some of the highlights. The full range of features and specifications for the ST-6000 and the DS series of KSR and RO terminals is covered in comprehensive data sheets available on request. Write to them now—and tune in to the most sophisticated TTY operation you can have today...or in the future.

HAL Communications Corp., Box 365, 807 E. Green Street
Urbana, Illinois 61801 • Telephone: (217) 367-7373

More Details? CHECK-OFF Page 126
Contents

10 two-meter transverter
Larry C. Leighton, WB6BPI

16 digital frequency readout for transceivers
Bruce E. McNair, WB2NYK

26 solid-state morse keyboard
William E. Smith III, WN9OVY

30 uhf dummy load
Lance G. Wilson, WB6QXF

34 hand-held calculators: solving radio problems
Robert P. Haviland, W4MB

38 automatic beeper for station control
Earl H. Hornbostel, WA6URN

42 turn-off timer for portable equipment
Richard D. Hardesty, W50XD

45 audio frequency-shift keyer
John B. Dillon, M.D., KH6FMT

48 calibration of ac meter scales
Kenneth F. Hager, W7KQ

52 10-amp voltage regulator
Gary L. Tater, W3HUC

56 cleaning printed-circuit boards
Budd M. Meyer, K2PMA

60 troubleshooting transistor circuits
Joseph J. Carr, K41PV

66 microprocessors
David G. Larsen, WB4HYJ
Peter R. Rony
Jonathan A. Titus

4 a second look

126 advertisers index

76 comments

101 fleamarket

116 ham mart

82 ham notebook

86 new products

60 novice reading

126 reader service

60 repair bench

92 short circuit

6 stop press
If attendance at the microprocessor seminars at the various hamfests around the country is any indication, amateur interest in these versatile machines is growing by leaps and bounds. Although a good deal of this increased interest is due to the drastic price reductions of the past few months, improved support from the manufacturers in terms of hardware and software have been a contributing factor. Whereas last year's computer hobbyist spent the majority of his time developing and building hardware, today the trend is toward the software, or programming, side of computer design. And, as many hobbyists are discovering, software is often more challenging — and rewarding — than wiring up a board full of logic chips.

Another trend that promises to increase the popularity of the home computer is that of designing the basic machine to accommodate future developments in microprocessor technology. Although the direct interface logic is different for each processor chip, with careful circuit design it's possible to retain all of the expensive memory boards of the basic system, as well as most of the input/output circuitry. This takes a good deal more planning, and an understanding of LSI IC design, but the computer manufacturer who is successful will dominate the future market. As it stands now, most computer systems are oriented around a single microprocessor chip. This is unfortunate because it means that each new, improved processor that reaches the marketplace requires a whole new design, an entirely new machine — input/output logic, memory and power supplies. At least one company, The Digital Group, Inc., has recognized this basic deficiency and has come up with a computer system that will accommodate a wide range of microprocessor chips. With this design concept you don’t have to buy a whole new system each time an advanced processor hits the market; you simply buy a new CPU card (at considerable cost savings) and use your existing memory and input/output logic.

As with all new developments, the microprocessor field has been in a continual state of flux since the first device was announced several years ago, and I see no reason for it to settle down in the near future. If you made a survey of computer hobbyists right now, you’d probably find that most of them use an Intel 8080 or 8080A in their system, with the Motorola 6800 running a distant second. This is an important consideration if you’re thinking about buying a computer for home use because it means that there are a large number of programs available which you can put to work as soon as you get your machine. Once you’ve had some “hands on” experience with existing programs, the task of writing your own programs will look much less formidable. That’s when the real fun of owning your own computer begins.

It’s important to keep in mind that just because the 8080 is king of the hill right now doesn’t mean it’s always going to be that way. The new Zilog 280, for example, operates much like the 8080, but is faster and has a more powerful instruction set; waiting in the wings are yet more powerful processor ICs which will reach the market in coming months. However, if you choose a system that has good software support, and is designed to accommodate future developments in microprocessor technology, you’ll have a computer that can be easily updated and expanded as soon as devices become available.

Many amateurs have been watching the home computer market with caution, waiting for the product to mature to the point where they can buy the most computing power for the least cost. Although we’ll almost certainly see some further price reductions in the months and years ahead, today you can put together a very good system for about the same cost as an ssb transceiver. If you choose wisely, and spend your money carefully, you can have a system now that will meet practically all of your future computer needs.

Jim Fisk, W1DTY
editor-in-chief
Now ICOM Introduces 15 Channels of FM to Go!

The New IC-215: the FM Grabber

This is ICOM's first FM portable, and it puts good times on the go. Change vehicles, walk through the park, climb a hill, and ICOM quality FM communications go right along with you. Long lasting internal batteries make portable FM really portable, while accessible features make conversion to external power and antenna fast and easy.

Grab for flexibility with the new IC-215 FM portable.

- Front mounted controls and top mounted antenna
- Narrow filter (15KHz — compatible spacing)
- 15 channels (12 on dial / 3 priority)
- Fully collapsible antenna
- Compatible mount feature for flexible antenna
- Dual power (3 watts high / 400 mw low, nominal)
- External power and antenna easily accessible
- Lighted dial and meter

Your new IC-215 comes supplied with: 5 popular channels; handheld mic, with protective case; shoulder strap; connectors for external power and speaker; 9 long-life C batteries.

VHF/UHF AMATEUR AND MARINE COMMUNICATION EQUIPMENT

ICOM WEST, INC.
Suite 3
13256 Northrup Way
Bellevue, Wash. 98005
(206) 747-9020

ICOM EAST, INC.
Suite 307
3331 Towerwood Drive
Dallas, Texas 75234
(214) 620-2780

September 1976
LONG-AWAITED CB EXPANSION was announced July 27th with 17 new channels added to the existing 11-meter CB band. The expansion to 40 channels won’t become effective until January 1 in order to give manufacturers time to develop, and have type-accepted, the new radios. One of the 17 new channels falls between channels 22 and 23 — the remaining 16 are from 23 up.

Tough New Technical Specifications on all new 40-channel CB gear are also a part of the Report and Order on Docket 20120. All transmitter harmonic and spurious radiation must be down 60 dB from the carrier instead of the present 49 dB, and total receiver radiation at the antenna terminals can’t exceed two nanowatts. In addition, receiver chassis radiation must be under five microvolts at three meters. As tough as these new specs seem, however, they are likely to get tougher.

TYPE ACCEPTANCE OF AMATEUR RADIO GEAR is still very much under consideration by the FCC. It’s not only a result of the misuse of Amateur transceivers by the “HF” groups and the proliferation of “3-30 MHz” broadband linear amplifiers, but is also due to some serious interference problems traced to inaccurately “spec’ed” commercially-made Amateur gear that was being used by Amateurs. Some action along these lines is not far off — perhaps by late Fall.

NOVICE PHONE PRIVILEGES are to be proposed to the FCC by the ARRL. The League Board of Directors voted in Denver to petition the Commission to immediately add 145-145.5 and 222-225 MHz CW, AM and FM with 50 watts DC input to the Novice frequency bands.

EXPERIMENTAL NOVICE LICENSING PROGRAM became an official reality with an FCC Public Notice issued July 21. Only a limited number of organizations will be selected to participate in the experimental phase of the program, which is designed to be a “controlled experiment” leading to improvements in the Novice license examination system.

Organizations Interested In Participating in the FCC’s new Novice license examination program should submit a detailed proposal to John Johnston, Chief, Amateur and Citizens Division, FCC, Washington D.C. 20554 for review.

Course graduates for the experimental program must include all material in the Commission’s Element Two Novice Study Guide but may be taken from any source. Instructors must be experienced and knowledgeable, hold a General or higher class Amateur license and be 21 or older. Course graduates will be required to pass a five wpm code test and a written examination of at least 20 questions covering the nine Element Two Study Guide categories — and some students from each class will still have to take a standard Commission-graded Novice examination.

AMATEURS APPLYING to the FCC for license renewal, modification, or other action should always try to pay by personal check. The returned cancelled check provides assurance that your application reached the FCC without a delay, and may even prove you’ve paid if your paperwork later gets lost in the system.

"Straight Forward" License Processing is now down to 7-8 weeks for most applicants, according to late reader reports. Anyone who has been waiting longer than 12 weeks for an Amateur license should probably call FCC at (202) 632-7175 for help.

1X2 CALLSIGN REQUESTS INCREASED SHARPLY after a very slow beginning. Since 1x2 assignments are hand processed, some delays seem likely — even some pre-July 1 requests for unspecified 1x2 calls will probably be delayed by the influx.

WD8 CALLSIGNS have been issued in quantity and should be showing up on the bands momentarily. A look in the latest Callbook shows WD4, WD9 and WD0 shouldn’t be far behind. For bicentennial purposes WD call holders should use "AE" for a prefix.

WT-PREFIXED CALLS have been issued to a few Amateur license applicants who’ve been the victims of an extremely slow-up in the FCC’s paperwork mill. The WT (for temporary) calls are good only until the computer issues the new Amateur’s permanent call, so they should be very good catches for prefix hunters.

OSCAR 8 DELAY now looks like it might extend through 1980 for want of a timely launch vehicle. An interim satellite to supplement OSCAR 6 and 7 is being considered to take advantage of a NOAA launch opportunity in late 1977. Experienced volunteers to work on both hardware and software for the project will be needed.

Coast Guard Cutter planning an extended Arctic tour wants to use OSCARS for crew communications because of HF propagation problems and its being too far north to use synchronous satellites over the equator. AMSAT is looking for volunteers to make coverage plots to determine practicability — W3GEY has details.

WWV’S REMAINING PROPAGATION REPORT will be discontinued October 1 unless a tentative decision to disband the Telecommunications Services Center, which supplies the 14 minutes after the hour report, can be reversed. Write Dr. Douglas Crouse, Director ITS/OT, U.S. Department of Commerce, Boulder, CO 80302 or call him at (303) 499-1000, ext. 4215 — a carbon of your letter to the Honorable T.E. Wirth, U.S. House of Representatives, Washington, D.C.
If the amplifier you're thinking of buying doesn't deliver at least 1000 to 1200 watts output, to the antenna, you're buying the wrong amplifier.

Our New Super Amp is sweeping the country because hams have realized that the Dentron Amplifier will deliver to the antenna, (output power), what other manufacturers rate as input power.

The Super Amp runs a full 2000 watts P.E.P. input on SSB, and 1000 watts DC on CW, RTTY or SSTV 160 - 10 meters, the maximum legal power.

The Super Amp is compact, low profile, has a solid, one-piece cabinet assuring maximum TVI shielding.

The heart of our amplifier, the power supply, is a continuous duty, self-contained supply built for contest performance.

We mounted the 4 - 811 A's, industrial workhorse tubes, in a cooling chamber featuring the on demand variable cooling system.

The hams at Dentron pride themselves on quality work and we fight to keep prices down. That's why the dynamic Dentron Linear Amplifier beats them all at $499.50.

The No-nonsense Amplifier
at a No-Nonsense Price $499.50.
KENWOOD’S TS-700A finally fulfills the promise of 2-meters...more channels, more versatility, tunable VFO, SSB-CW and, best of all, the type of quality that has placed the Kenwood name out front.

- Operates all modes: SSB (upper & lower), FM, AM, and CW
- Completely solid state circuitry provides stable, long lasting, trouble-free operation
- AC and DC capability. Can operate from your car, boat, or as a base station through its built-in power supply
- 4 MHz band coverage (144 to 148 MHz) instead of the usual 2
- Automatically switches transmit frequency 600 KHz for repeater operation. Just dial in your receive frequency and the radio does the rest...Simplex repeater reverse
- Or do the same thing by plugging a single crystal into one of the 11 crystal positions for your favorite channel
- Outstanding frequency stability provided through the use of FET-VFO
- Zero center discriminator meter
- Transmit/Receive capability on 44 channels with 11 crystals
- Complete with microphone and built-in speaker
- The TS-700A has been thoroughly field-tested. Thousands of units are in operation throughout Japan and Europe

The TS-700A is available at select Kenwood dealers throughout the U.S. For the name of your nearest dealer, please write.
KENWOOD HAS ATTAINED A HIGHER LEVEL OF ACHIEVEMENT IN ITS TS-820 THAN EVER REACHED BEFORE. THE DISCRIMINATING AMATEUR WHO WANTS THE VERY BEST NEED LOOK NO FURTHER NOR WAIT ANY LONGER. THE TS-820 PACESETTER WILL PROVIDE SUPERIOR PERFORMANCE, VERSATILITY AND FEATURES FOUND IN NO OTHER TRANSCEIVER.

THE NEW "PACESETTER" IS THE ULTIMATE PROOF OF KENWOOD'S DEDICATION TO OFFERING ONLY THE VERY FINEST.

What makes the TS-820 the Pacesetter: Full 160-10 band coverage, QRM-killing IF shift, true R.F. speech processor, husky AC power supply, state-of-the-art PLL VFO system, rugged final amplifier, RF negative feedback circuit ... all this and more built in to make the TS-820 the Pacesetter that it is.

We haven't forgotten the other standard Kenwood features either ... efficient noise blanker, 25 kHz calibrator, built-in speaker, CW Sidetone and semi-break-in circuits.

Let's take a closer look at some of these important features. This month the Digital Readout: The Digital Display Readout directly indicates the transmit and receive frequencies by counting the carrier, VFO, and heterodyne signals. Unlike dials using a VFO signal only, it indicates the accurate frequency in any operating mode. The readout accuracy is determined by the standard 1 MHz oscillator which is calibrated to WWV. The counter actually figures the frequency down to 10 Hz and the digital display reads out to 100 Hz. Frequencies are displayed in Kenwood blue digits for long operation without fatigue.

When the Digital Display is installed, the D/H (display hold) switch is used as a memory device. By pressing the switch, the selected frequency will remain displayed.

KENWOOD'S
the Pacesetter

KENWOOD

116 EAST ALONDRA/GARDENA, CA 90248

...paceretter in amateur radio...
two-meter transverter

using power fets

How does 10 watts PEP output for 1 milliwatt input sound? Here's a complete transverter using a new power fet that gets it all together

This article describes a two-meter transverter which, with approximately 1 milliwatt input, will produce a nominal 10-watt PEP output with all distortion products 28 dB down from one tone of a two equal-tone test signal. The receiving converter, which uses a conventional dual-gate mosfet rf amplifier, compares favorably with a commercial receiver of recent design. These units are designed for use with a 28-MHz transceiver (in my case the Kenwood Twins).

design considerations

I used a modular approach in the design of this transverter. Advantages of this approach are given in an excellent article by Joe Reisert. One of the advantages of the modular approach becomes apparent during initial alignment, because three different output levels are readily available: from the mixer module, a nominal 100 milliwatts; from the first linear amplifier, a nominal 2 watts; and from the final linear amplifier a nominal 5 or 10 watts. The intermodulation specification for the two lower-level modules is a nominal 35 dB down. All modules are designed to work into a 50-ohm load. A block diagram is presented in fig. 1.

By Larry Leighton, WB6BPI, Siliconix, Inc., 2201 Laurelwood Road, Santa Clara, California 95054
Oscillator. This circuit (fig. 2) is described generally in reference 2. It is designed for use with a fifth-overtone 116-MHz crystal. In the past I've experienced difficulty with overtone oscillator circuits but this oscillator circuit is an exception. I've encountered no problems with spurious outputs or hard starting; and with the dual-gate buffer, the output of this module is relatively clean. The inductor in parallel with the crystal is necessary to prevent spurious oscillations. The oscillator module provides two mutually isolated 50-ohm outputs at 116 MHz. Nominal output level is 1 volt rms per output port. Using this approach and a little care, the transmitting converter can be used to tune the receiving converter provided you have a separate transmitter and receiver.

The oscillator output network is a lumped-constant equivalent of a Wilkinson n-way combiner, fig. 3. The constants for this circuit can be determined from the following equations.

\[
C2 = \frac{C1}{2} \quad (2)
\]

\[
L1 = L2 = \frac{R_o}{2\pi f_o} \quad (3)
\]

\[
R1 = 2R_o \quad (4)
\]

where:

- \(f_o \) = frequency (Hz)
- \(R_o \) = \(R_{gen} = R_{load} \) (ohms)
- \(C \) = capacitance (F)
- \(L \) = inductance (H)

For example, using \(f_o = 116 \text{ MHz} \) and \(R_o = 50 \text{ ohms} \),

\[
C1 = \frac{1}{(2\pi)(116 \times 10^6)(50)} = 27 \text{ pF}
\]

\[
L1, L2 = \frac{50}{(2\pi)(116 \times 10^6)} = 69 \text{ nH}
\]

\[
R1 = 2 \times 50 = 100 \text{ ohms}
\]

Mixer. The mixer circuit (fig. 4) has many advantages over conventional doubly-balanced mixers including low component count, and no requirement for balanced transformers. The mixer portions provide approximately 1 dB conversion gain and has a nominal 50-ohm input impedance at both input ports. The 1k variable resistor is used to minimize the 116-MHz local oscillator signal at the mixer output. While minimizing the 116-MHz local-oscillator signal, the fifth harmonic of 28 MHz is also minimized.

The input signals are cancelled at the mixer output in a manner similar to that of a push-push doubler. The mixer output contains the beat signal plus even-order

Local-oscillator module. Point-to-point wiring is used, with component leads serving as tie points. The trimmer capacitor is adjusted for maximum negative voltage at test point 1 (see fig. 2).
products of the input signals. The even-order products are attenuated by the output-network Q. The mixer circuit is very flexible. By removing the input matching networks and shunting the fet gates to ground with 10-k resistors, the choice of input frequencies can be changed easily. Only a small loss in conversion gain will be noted, and the input impedances will be something like 200 ohms. If you wish, you can design matching networks to make the input impedance look like 50 ohms again. For a more detailed treatment of this circuit, see reference 3.

The buffer transistor in this circuit draws 40 mA nominal current and dissipates approximately 0.8 watt. Because the transistor is not a high-power device, a clip-on heatsink should be used and some ventilation provided. The filter at the output of this stage is designed to attenuate the local oscillator second harmonic and could be eliminated if a bandpass filter is used at the antenna.

Mixer module. Input connector is at left, with balanced fet stage slightly to the right. The 2N3866 power stage is at the center, mounted in a clip-on heatsink. Output connector is at right.

Amplifiers. The linear amplifiers (figs. 5 and 6) provide three different output levels. One amplifier is designed to be driven directly from the mixer module. With 1 milliwatt input to the mixer module, this amplifier delivers a nominal 2 watts PEP output.

In this configuration, and with some slight changes in biasing networks; operation can be achieved with a 24-volt power supply and only a slight decrease in output power. In both power fet circuits, bias resistors are adjusted to set the fet quiescent drain current to 150 mA. After the quiescent drain current has been set, the gate voltage can be measured, and the variable resistors can be replaced with fixed resistors.

The amplifier in fig. 5 will deliver a nominal 5 watts PEP output with a 30-volt supply. With two of these amplifiers in series, mixer drive must be reduced to keep the final amplifier in the linear region.

The amplifier in fig. 6 will deliver a nominal 10 watts PEP output and also requires a decrease in drive at the mixer. Tuning this amplifier is a bit more complicated and requires back-and-forth adjustments between the two input networks for maximum undistorted output. Both amplifiers have a nominal 12.5 dB of gain and are capable of more output than that specified; but in the interest of good operating techniques, output power should not exceed that which is specified.

fig. 2. Local-oscillator module provides two mutually independent outputs at 116 MHz. L1 is 5 turns, 3/8" (6.5mm) ID; L2 is 7 turns, 1/8" (3mm) ID; L3, L4 are 4½ turns, 1/8" (3mm) ID. All are close wound using no. 20 AWG (0.8mm) enamelled copper wire. Q1, Q2 are Fairchild FT0601 or RCA 40673.

fig. 3. Wilkinson n-way divider or summer used in local-oscillator output as a lumped-constant equivalent circuit. Examples for determining values are given in the text.
fig. 4. Mixer module has a minimum of parts and uses no balanced transformers. All coils are 1/8 in. (3mm) ID close wound with no. 20 AWG (0.8mm) enamelled copper wire. L1 6 turns; L2, L3 4 turns; L4 4½ turns; L5 8 turns. Q1, Q2 are n-channel jfets (Siliconix J310); Q3 is a 2N3866 transistor.

fig. 5. Two- or five-watt linear amplifier uses a Siliconix VMP1 fet. Although designed for switching service, this device works well as a linear rf amplifier. L1 is 8 turns 1/8" (3mm); L2 is 5 turns, (3mm) ID close-wound with no. 20 AWG (0.8mm) enamelled copper wire.

the power transistor

Recently Siliconix announced the availability of a high-current, high-speed switching transistor known as the VMP1 Mospower FET. Although no rf specifications are available, the VMP1, designed to switch 1 ampere in 5 nanoseconds, works very well as a linear amplifier.

The VMP1 has some very desirable features compared with bipolar transistors in this application: a) no thermal runaway, b) no secondary breakdown, and c) input and output impedances are relatively high.

As with all fets, gain decreases slightly with increased temperature. Thermal runaway is no problem with the VMP1 which outweighs the disadvantage of the slight gain decrease. All three amplifiers were run for one-half hour continuously at full rated output with less than 0.5 dB decrease in output power with input level held

Five-watt linear amplifier module using a Siliconix VMP1 Mospower fet. Construction of the two-watt linear amplifier is similar.

*For ordering information on the Siliconix VMP1 Mospower Fet, write to Ed Oxner, Siliconix, Incorporated, 2201 Laurelwood Road, Santa Clara, California 95054.
constant. At the end of these tests, the fets were only warm to the touch.

After tuning and optimizing the matching networks, I disassembled them and measured the component values. With these values and the appropriate formulas, I determined that, for best performance at 7 watts PEP output, the source impedance is 12 ohms in series with an inductive 25 ohms and remains relatively constant for tor without introducing too much additional capacitance. In this case, I used a beryllium-oxide heatsink insulator 0.062 inch (1.6mm) thick. In this configuration, the fet shunt output capacitance was calculated at approximately 20 pF, and that of the heatsink insulator 26 pF, for a total shunt capacitance of 46 pF. At 145 MHz this presents no problem. The VMP1 can be used with circuit Qs as low as 2 using the above technique.

![Fig. 6](image)

fig. 6. Ten-watt linear amplifier uses two Siliconix VMP1 for a nominal 10 watts PEP output. These amplifiers have excellent stability and minimal gain decrease with increased temperature. L1, L2 are 8 turns; L3, L4 are 5 turns, all 1/8" (3mm) ID closewound with no. 20 AWG (0.8mm) enamelled copper wire.

The two higher power output stages have efficiencies of 30 to 40 percent and require adequate heatsinks. For the 10-watt unit, I used a 4 x 3 x 1-1/2 inch (10x7.6x4cm) fin-style heatsink with a beryllium-oxide heatsink insulator 0.062 inch (1.6mm) thick. If you don't use this style heatsink insulator, you must change the matching networks to compensate. I strongly recommend this style of insulator. For the 2-watt unit I used the recommended heatsink insulator but used the module chassis for the heatsink. (Care must be used when working with beryllium-oxide insulators. Pulverized particles are poisonous if breathed).

Construction hints

As with any vhf project, lead lengths should be as short as possible. Circuit layout is important; if you use the schematics and photos as guides for component placement, you shouldn't have any difficulties. The values for variable capacitors are nominal. That is, these

Ten-watt linear amplifier module uses two Siliconix VMP1 Mos-power fets on a finned heatsink. In this photograph the input is at left, output at right. Bias adjust pots are at left.
values must be within the range of the capacitors. This allows some flexibility during parts procurement. I recommend high-quality capacitors in the linear amplifier output networks.

Initial adjustments should be made with reduced input drive. Then the input drive should be increased slowly until final adjustments can be made. In any case, the output should show a slight dip when the output shunt capacitor is tuned to resonance.

Any of these configurations will allow full coverage of the 2-meter band. The output in the 10-watt configuration was measured on a Hewlett-Packard spectrum analyzer. Three frequencies were visible on the display. The local oscillator output was 35 dB down from the 145-MHz output, and the second-harmonic was 45 dB down. I didn't have the opportunity at this time to balance the mixer, so it's conceivable the local oscillator could have been adjusted so that it was greater than 35 dB down. An appropriate antenna bandpass filter should significantly improve these figures.

Although I wouldn't recommend this project to a beginning vhf enthusiast, I can say I've had few problems with the project. I've built two complete transverters of the 2-watt variety, one 5-watt linear, and two 10-watt linears with the same good results. Both transverters are on the air and work very nicely.

In conclusion, I'd like to thank WA6COB and WA6VAB for their help on this project. Special thanks go to Ed Oxner of Siliconix, and Will Alexander, WA6RDZ, for their enthusiasm and technical support and to WAGRNC for the photography.

references
Digital frequency display for amateur communications equipment

Although designed for Heath SB-series equipment, this compact frequency display is easily adapted to most amateur gear.

During the past few years a number of frequency displays have been offered by manufacturers or described in the amateur literature. I found that most had some undesirable feature: cost, complexity, or difficulty in setup and adjustment. The design I finally arrived at satisfied my needs and hopefully it will be useful to others.

Although this display was designed for the Heath SB series, it will work well with nearly any receiver, transmitter, or transceiver. Construction cost should be less than $50 even if you have a barren TTL junkbox. No exotic parts are required, so it should be no problem obtaining everything required from the popular parts distributors.

Theory of operation

Let's begin by looking at a typical amateur transceiver, such as the Heathkit SB101, to see what's required to make a digital frequency display. Fig. 1 shows a simplified block diagram of the SB101 in receive mode. As you can see, there are four signals to consider in computing the received signal frequency: the first heterodyne oscillator, the vfo, the carrier/product oscillator, and the audio output frequency. There are at least...

By Bruce McNair, WB2NYK, 12 Marion Avenue, Howell, New Jersey 07731
three different ways of combining these signals to yield the correct frequency, and I've seen all of them used in the past.

The first method is to build a mixer to combine all the signals and come up with an rf signal to count. However, unless you go to great pains to shield everything, it's likely your frequency readout system will sneak enough signal back into the receiver to cause havoc.

The second approach is to combine the four signals digitally by using an up/down counter. The counter adds by counting upward and subtracts by counting downward. For any particular mixing scheme in a rig, this method is workable, but the counter must be reprogrammed for a different rig using a different combination of oscillator signals.

Finally, the third approach takes advantage of the fact that two of the four signals are crystal-oscillator signals and are fairly stable. These are the first heterodyne and carrier/product oscillators. The third signal is the audio output and, in most cases, can also be considered to be constant. This leaves only one variable -- the vfo.

Realizing this, all you need do now is determine the vfo frequency at some given frequency and later determine the offset from the original vfo frequency. For example, if you measure the vfo at 4995 kHz when the receiver is tuned to 14.000 MHz, and then measure 5003 kHz when tuning an unknown frequency, you know the unknown frequency is 14.000 + (5.003 - 4.995) or 14.008 MHz. Remember that in the Heath SB series the vfo is tuned backward up the band (because the second i-f is the difference between the vfo and the first i-f).

implementing the theory

The next problem to solve is, how do you accomplish the subtraction of frequencies? Also, how do you determine and store the vfo frequency at the band edge? It turns out that both problems can be easily solved by the proper choice of the digital counter. The 74192 programmable up/down BCD counter is a handy device to use in this and many other applications. This device has been described in other articles so I'll briefly outline its operation.

Frequency subtraction. As shown in fig. 2, this counter has up/down inputs and carry/borrow outputs. When a pulse appears on the up input, the counter advances to

![fig. 2. Heart of the frequency display is the 74192 programmable up/down BCD counter. UP/DOWN and CARRY/BORROW inputs and outputs are used to subtract frequencies and store the vfo frequency at the band edge in the counter display.](image-url)
dently of whatever else the counter may be doing, when a pulse appears on the clear input, the 74192 goes to state zero. Also independent of other inputs, when a load signal is received the data present on the preset inputs are loaded as the new state of the counter. For example, if the 74192 were in state 7 and a load pulse occurred, and if the preset inputs were 0101 (5 in decimal), the counter would go immediately to state 5.

There are certain restrictions in the use of this counter, but they are logical. Telling the counter to simultaneously count up and down is ambiguous; likewise, telling the counter to load a preset and clear at the same time does not make sense.

Now, how is this device useful? Suppose you had three 74192s cascaded to form a counter that will count to 999, as shown in fig. 3. Assume you initially loaded the counter with 995. Now you gate the vfo into the counter through the down input for 1 ms. Initially you are at 14.0 MHz so the vfo is at 4995 kHz. In 1 ms, 4995 pulses get through to the counter. Well, 995 (the initial state) minus 4995 (the number of down pulses) equals -4000. What state is the counter in at the end of the counting interval? Is it -4000? Not really, because the counter only remembers the three least-significant digits. The -4 showed up as four borrow pulses from the last stage. Therefore, you are tuned to 14.000 MHz and the counter displays 000. When you tune to 14.008 MHz, the vfo will be oscillating at 5003 kHz, and a 1-ms gating signal will admit 5003 pulses. The final state of the counter is now 995 - 5003 = -4008. Again, only the three least-significant digits are seen and you see 008, corresponding to 14.008 MHz. It's easy to see that a four-digit counter and a 10-ms gate would display to the nearest 0.1 kHz.

Calibrate sequence. It looks like the first question is now answered: to subtract frequencies you just load the counter with the preset for the band edge and count down. But now for the second problem. How do you determine the frequency at the band edge and save it for future presets? This question can be answered in terms of what you already have — a device that will start at zero or any preset number and count up or down from there. Normally you start at some preset and count down. What if you started at zero and counted up to some final state? If you then saved that final state for your new preset, everything would be solved. You would start at zero, count up to a final state, then count back to zero. This "calibrate" sequence could be initiated by pushing a button to activate the proper control logic. The vfo would be initially set to the low edge of the band (while tuning in the rig's 100-kHz calibrator), and the counter would display all zeros. As the vfo is tuned away from the band edge, the counter will read the operating frequency accurately.

Let's look at a diagram of one decade of the counter circuit required. Fig. 4 illustrates what is needed. For those who can understand a timing diagram better than my word description, see fig. 5, which also shows the control signals the counter requires.

In fig. 6, I've put the whole counter together in a block diagram. The set pushbutton initiates the calibrate sequence described above. Finally, fig. 7 shows what is required for control and timing logic. As described under

![fig. 4](image-url)
construction and adjustment, this board contains the only variable element: the crystal oscillator. As shown in fig. 7, two options are available for this oscillator. Initially I used a simple and reliable CMOS oscillator circuit. The circuit is, however, difficult to trim (I had to open up the crystal can to do so!). If you decide to use that doesn't tune backward, simply reverse the up/down lines that come out of the control board to the first decade.

construction

I chose to put all control logic including the time-base

the alternative oscillator shown on page 21, it will have to be external to the control board but will be much easier to adjust.

As described, the frequency display will operate with nearly any rig in which the vfo tunes backward and will indicate frequency within 10 Hz. If your rig uses a vfo oscillator and count-down circuitry on one board. Each decade of the counter occupies its own board. This method seemed to give the most compact layout when using printed-circuit boards. It also made it five times easier to design the counter board(s)!

Fig. 8 gives the foil pattern used for the control board, and fig. 9 shows

fig. 5. Timing diagram of the digital-frequency display including control signals.

fig. 6. Block diagram of the frequency-display counter showing counter decades and time base and control-logic relationships.
fig. 7. Control and timing logic. An alternative time-base oscillator, shown on the opposite page, must be external to the control board but is much easier to adjust than the circuit shown for U5.
the part and jumper layout. To avoid the use of jumpers on the five decade boards, I used a double-sided board, illustrated in fig. 10, with component layout in fig. 11. Note that if you wish to avoid double-sided boards, the component side of this board is really just a number of jumpers and could be eliminated. I have tried to show my chassis layout in the photographs, but realize that almost nothing is critical about the layout.

George Oliva, WA2UOA, used an approach that may interest some people trying to duplicate this circuit. He used two separate chassis, one for all logic — hidden away under the rig and a tiny LMB chassis for the displays and set pushbutton, both sitting on top of the rig.

power supply

Since all circuitry is TTL (or CMOS running at TTL levels) the logic needs a fairly well regulated 5-volt supply. Current consumption, if you use standard 7400-series TTL, will be about 1.5 amperes, with each board (control and decade) drawing 220 to 230 mA. If you have or feel like buying some 74LS low-power Schottky logic (especially for the 74192s) the load on the supply will be eased considerably.

I decided to save my 74LS192s for a project requiring more speed and now live with a rather warm three-terminal regulator. I chose to power all five decade boards from one 7805 regulator in a TO3 case mounted on the rear panel and to power the control board with its own 78M05 mounted on the board in a TO5 case. In both cases, unregulated dc was 11 volts dropped to 7 volts through a series resistor (R7 and R8 in fig. 12) to prevent the regulators from overheating because of a 6-volt internal drop. Make sure any three-terminal regulator you use is well decoupled on both the input and output. At least 0.1µF is required to prevent oscillation under load or at higher temperatures.

If you'd like to stay with a single regulator, it will be necessary to use an external series pass transistor to handle the current. All these ideas are shown in fig. 12.

installation

I hope I haven't given the impression that this digital-frequency display works only on receive — it was just easier to describe that way. For the Heath SB101 and most other sideband transceivers, the first heterodyne oscillator and the carrier/product oscillator are common to receive and transmit. With my SB101, I can read transmit and receive frequencies with an inboard or outboard vfo without any switching. This is the installation I describe, but any other should become obvious.

On receive, the vfo injection circuit looks like that in fig. 13. The point labelled A on one side of R221 is the best place to pick off the receive vfo signal, whether an internal or external vfo is used. On transmit, the circuit is as shown in fig. 14. The point labelled B on one side...
of R927 is the best place to take off the transmit vfo signal, also independent of the control mode.

To combine these two signals, I used the simple circuit of fig. 15. If you've built your own external vfo, or are using a different rig, make sure that power is applied only to one vfo at a time when in the transmit mode, or you may find yourself operating on two frequencies at the same time!

The CMOS circuit used for buffering the vfo signal should be adequate for most rigs. Mine has worked
reliably with signal levels of 500 mV at 5 MHz and was
good to 50 mV with the breadboard.

The only adjustment is in the crystal oscillator used
for the frequency standard. To guarantee accuracy over
the entire 500-kHz tuning range of the Heath SB series,
when calibrated at one end, the 1-MHz oscillator must
be within 5 Hz, which should be easy to ensure. For
Collins equipment with a 200-kHz tuning range, the
oscillator need be within 12 Hz.

As mentioned above, if you use the onboard crystal
oscillator, it will be necessary to open up the crystal
(preferably in a HC6/U holder) and make pencil marks
on the center of the crystal to lower its frequency. Do
this while listening to WWV for a zero beat or while
measuring with a frequency counter. An alternative
method would be to zero beat an a-m broadcast station,
although the frequency tolerance of these stations is
rather poor for this purpose. To zero beat an a-m sta-
tion, use the 10-kHz output of the 7490 divider. What-
ever method of frequency measuring you use, you’ll
probably find it much easier if you have built the
external 1-MHz oscillator that can be trimmed with a
capacitor.

The use of this counter should be evident from the
fig. 12. Power-supply suggestions for the frequency display. A separate 5-volt supply is shown in A; B shows a single supply using a series pass transistor to handle the current.

![Diagram]

description of its theory of operation, but there are a few things I'd like to point out. First, when tuning CW, remember that the transmitter operates with 1-kHz offset in the carrier oscillator. Therefore, if you want to display both transmit and receive frequencies accurately, it will be necessary to tune in the calibrator with the same offset. Hopefully, this offset will be the point where the CW filter peaks up. For single-sideband operation, it will be necessary to zero beat the calibrator. Remember that the vfo and carrier generator are different for upper and lower sideband; you'll have to recalibrate when switching between them. This shouldn't cause too much inconvenience, since USB and LSB usually are not mixed within any given band. Finally, remember that it will be necessary to recalibrate when switching bands, since you are changing the first heterodyne oscillator crystals. On the same band, when operating in the same mode, recalibration normally will not be required.

possible modifications

Let me point out a few simple changes you might consider to make your digital frequency display more convenient and more versatile. First is changing from 10-Hz to 100-Hz readout. You may not feel that 10-Hz accuracy is needed in your station. This is actually the easiest change of all: just leave out the least-significant digit decade module and bypass one of the 7490s in the time base divider. The display will then be updated 10 times faster (10 times per second) and some savings will be realized (about $7 in construction cost and about 200 mA of current consumption). By the way, this change will also relax the requirements for time base accuracy; 1 MHz ±50 Hz will be sufficient.

![Diagram]

fig. 13. The Heath SB101 second receive mixer circuit showing where to obtain the receiver vfo signal.
The next possibility is the installation of a double-pole, double-throw switch in the up/down signal lines from the control board to the first decade. If this switch is rigged to reverse these lines, you can operate the display with forward and backward tuning vfos.

suggested parts sources

A large number of distributors sell the parts used in this project, many of whom advertise in *ham radio*. Two I've had experience with are James Electronics, Belmont, California and Solid State Systems, Columbia, Missouri.

Finally, if you have installed the forward/backward switch, you now have a new piece of test equipment for the shack: a general-purpose frequency counter with direct readout to 1 MHz and 10-Hz accuracy. To make the counter even more versatile, you can build a preamp and bypass the CMOS buffer, yielding a counter usable to at least 20 MHz with the capability of measuring frequency drift and offset automatically (good for checking the drift characteristics of a new vfo).

All parts used in this project are stocked by at least one of these suppliers on a regular basis.

conclusion

I've enjoyed designing and building this frequency readout system and hope I've given enough information so that others can duplicate it. I'd be interested in hearing of any difficulties encountered. I'd also like to hear of any improvements or changes others may come up with.

acknowledgements

I'd like to thank George Oliva, WA2UOA, for his assistance with the photographs and Glenn Williman, WB2DHG, for his constant and occasionally useful criticism.

references

Digital frequency display showing arrangement of decade counters.
the Accu-Mill

a keyboard interface for the Accu-Keyer

With this circuit and an ASCII-encoded keyboard connected to an Accu-Keyer, you can send perfect Morse at 25 words per minute or better.

More than six thousand Accu-Keyers have been built worldwide since the circuit was introduced in the August, 1973, issue of QST. The Accu-Mill connects to the Accu-Keyer or to an Accu-Keyer with memory using simple circuitry. With it you can key in your message from a typewriter keyboard, then start sending with your paddle without throwing switches — great for contest operation. The basic Accu-Mill circuit requires a computer-type ASCII-encoded keyboard (many are beginning to show up in the surplus market). You’ll also need an Accu-Keyer with an extra-large power supply and a negative 12-volt supply. The following features have been designed into the Accu-Mill:

1. Sixty-four or 128 characters of buffering.
2. Usable with the Accu-Keyer or Accu-Keyer with memory, including provision for external paddles.
4. Nonbuffered operation with repeating keys and nonbuffered operation with non-repeating keys, both switch selected.
5. Speed control by the Accu-Keyer.
6. Easy interface with keyboards having standard or inverted outputs.
7. Only one circuit board.

The Accu-Mill was also designed so that other functions can be added such as:

1. RTTY
2. Radio ASCII when approved.
3. Counter with digital display to let you know how much buffer has been used.
4. A back space function to allow correction of keystroke errors.
5. Three programmable “vectored” message memories that work with the keyboard buffers to allow automatic insertions in a programmed contest report, so that you can type variables such as callsign, RST and number, for example, and the machine will make insertions while you update the log.

All these extras are now on paper and should be available soon. The memory and backspace features are particularly exciting, because they allow a 10-wpm typist who makes lots of mistakes (like me) to operate in a contest at 25-wpm or better.

logic description

The basic Morse board is presented here. The board uses easy-to-obtain 7400-series TTL devices except for the buffers, which are Fairchild OptiMOS devices; and the read-only memories (ROMs), which usually have the 8200-series TTL numbering (8223, 82523, and 82S123 tri-state), but also have the 7400 designation of 74188.

Most of the devices have standard totem-pole outputs, which provide logic levels of 0 and 1. Some have open-collector outputs, which provide logic levels of 0 and not-0. These special types are used to connect to the outside world in places where either another output or another device (such as paddles) will operate an input. For proper operation we provide the logic 1 level with an external pull-up resistor. This resistor provides 5 volts at low current when the device is in the not-0 state. When the device is in the 0 state, the open-collector output shunts the voltage from the resistor, and a 0 logic level occurs.

The buffers are 3341 types: first-in first-out (FIFO) shift registers, the same as used in every popular buffered Morse or RTTY keyboard. Here’s how they work: A short shift-in pulse commands data to enter. Data goes into the input and “falls through” to the last unoccupied slot of 64 positions. Data is output by a shift-out pulse of any length. By analogy, imagine a long, tilted gutter with a man at the top dumping in tennis balls as fast as he can and another man at the bottom, who takes them out when he needs them. As long as the man at the top is faster than the man at the bottom, there will always be a supply of tennis balls in the gutter. That’s how it works.

By William E. Smith III, WNSOVY, 1880 Bonnie Lane, Apartment 201, Hoffman-Estates, Illinois 60194
Fairchild explains it. If you can type fast enough you’ll get ahead of the output and your sending will be very smooth, or you can load up the registers and go out for coffee while the machine works your contact.

The read-only memories are of the field-programmable type. You can easily program them to your code with a very simple circuit. They are used here as look-up tables. Each time a binary address is placed on their inputs, the ROMs “look up” the proper code associated with that binary address and present that code to their output lines. The 74151s are data selectors or multiplexers; they act something like single-pole, 8-throw switches, and scan the ROM outputs.

functional description

Buffer. The Accu-Mill logic diagram is shown in fig. 1. U1 is used only for ASCII keyboards with inverted outputs. U2 and U3 condition the signal from the keyboard that says a key has been pressed (KP). U2 and U3 provide the very short pulse needed for the buffer shift-in command and the control needed to disable the buffer for non-buffered operation.

U10–U13 are the 3341 buffers. Each buffer contains a channel four bits wide. We need a six-bit data channel, so the buffer is configured as two channels of data buffering, each four bits wide (two unused bits). It is probable that each channel will operate at a different natural speed, which would result in bad data output, so U14 synchronizes the two channels.

The buffers retain stable data on the output pins after shift-out returns low. If stable data were to remain on the input to the next stage, the keyer would lock up on one character. U15, U16 are NAND gates. When shift-out returns low, the gates stop data, and the next stage gets an acceptable signal (binary 111111), which prevents lockup.

So far we’ve looked at the first stage of the Accu-Mill. In this stage we input data from the keyboard and subject it to buffering so that we can get ahead of the transmitted output and type at our own speed. The next stage contains the magic that makes Morse code.

Morse-converter. This stage includes seven devices. U17–U20 are the read-only memories, which contain the ASCII-to-Morse conversion logic. U21, U22 are data selectors, which read the Morse code. U23 is the control counter, which drives the data selectors.

Data at the buffer output is presented to the memory address lines. Since each key has a different binary number, each key addresses a different place in memory, and the memories output a different Morse code bit for each key pressed. The Morse information appears at the memory outputs in parallel form: all dots and dashes appear at once. U21, U22 are data selectors, which put the Morse information in serial form. The data selectors start by looking at Morse bit one and sequentially scan all output bits until the character is complete. The memories are wired so that U17, U18 are dot memories, and U19, U20 are dash memories.

Accu-Keyer interface. This stage includes U24, U25. These gates provide control signals and interface to the Accu-Keyer. U24A, U24B replace the paddles. The changes in the Accu-Keyer called for in the wiring of the paddle jack (fig. 1) will greatly increase rf noise immunity in the Accu-Keyer. The use of 74132 Schmitt triggers in place of U1, U2 in the Accu-Keyer should cure even the most severe rf problems. Similarly, a 7414 hex Schmitt trigger could be used in high-noise environments in place of U1 in the Accu-Mill.

data flow

The letter A. The letter A is a good example to use in describing data flow through the Accu-Mill, because it has just one dot and one dash. So press A. The keyboard generates 1000001, a seven-bit binary number. But a six-bit number is sufficient to describe all 64 possible characters in memory, so ignore bit seven and leave that wire disconnected.

The six-bit code 000001 is presented to the buffer stage. KP generates shift-in. 000001 is entered into the buffer and falls through to the output. U14 senses valid output data and opens gates U15, U16, which invert the data. Now the data is 111110, a six-bit code that is presented to the memory section.

Each memory has only five address lines, so it would appear that there’s another unused bit. The extra bit, bit six, is used to select which 32 of the 64 characters is being addressed, letters or numbers. Bit six, which is high (1), is fed to, but does not enable, memories U17, U19, which are programmed for numbers and punctuation. Bit six is also inverted by U25A, and fed to U18, U20. This low (0) signal enables U18, U20, and the memory is ready to make a letter.

The remaining five bits, 11110, address U18 (dot) and U20 (dash) to the places where Morse information necessary to make A is stored. Dot memory U18 outputs 1000000, dash memory U20 outputs 0100000. Data selectors U20, U22 are looking at position one (far left). Dot data selector U21 sees a high bit in position one and causes inverter U24A to ground the dot input of the Accu-Keyer, and a dot is sent. On the dot falling edge, control counter U23 is clocked up by a signal fed back from the Accu-Keyer output.

The output count of U23 changes and drives both data selectors up to the next output lines in the memory. Now dash data selector U22 sees a high bit in position two and causes inverter U24B to ground the dash input of the Accu-Keyer, and a dash is sent. Again control counter U23 is clocked up, and the data selectors are driven up to position three. Neither sees a high bit, so neither sends a dot or a dash. The Accu-Keyer assumes end-of-character and sends a character space.

Spacing considerations. A special condition exists for the seven-baud word space. The keyboard has a space bar, but the Accu-Keyer is capable of sending character-spaces only – not word spaces, so the Accu-Keyer needs to be tricked. A word space always follows a character which has a character space. The character space will be the first three of the seven-baud word space. The space bar will be programmed to send the letter E through the Accu-Keyer. The letter E is one baud, which totals seven baud with the previous character space.

To avoid letting the E get to the transmitter, the
fig. 1. Logic diagram for the Accu-Mill. Shown are methods for connecting three different PROM chips, though all should be of the same type. A complete memory programming chart is supplied with the circuit board, or 825123s are available preprogrammed. In this circuit all resistors are 2200 to 3300 ohms, 1/4 watt, terminated with V+ unless indicated otherwise. All power-supply connections are assumed, as is proper bypassing of V+. Numbered wires are for logical reference, not pin numbers. Keyboard connections are on the left, Accu-Keyer connections are on the right.

* ALL MEMORIES SHOULD BE THE SAME TYPE
memory is programmed differently for this special E to make it seem transparent at the transmitter. The dot memory will be 10000001; dash memory will be 00000001. Note that the first bit (left) in the dot memory will send a dot; the second bit is empty, which signals end of character. A character space is sent, the counter is cleared, and the next character begins. Note also that the data selectors never get to position eight to read the extra ones — this is the trick. These two extra bits are fed to NAND gate U25B. Its output goes low and swamps the keying signal before it gets to output transistor Q3 or Q5. As far as the Accu-Keyer is concerned the letter E was sent, but it never gets to the transmitter.

Using the same logic, a 36-baud pause can also be generated by programming a dot, 00000001, and a dash, 11111111. The keyer sends ... }
150-watt uhf dummy load

Details of a 50-ohm, 150-watt dummy load that exhibits less than 1.2:1 vswr through 1500 MHz — total parts cost is less than $40.

Although most amateurs have a dummy load that is suitable for use on the high-frequencies, most low-cost, high-power dummy loads are quite reactive at vhf and present anything but a 1:1 vswr. Occasionally good quality commercial loads are available on the surplus market at reasonable prices, but off-the-shelf vhf dummy loads that will handle 100 watts or more are priced out of the reach of most amateurs. The rf load described here, which is rated at 150 watts, and provides less than 1.2:1 vswr through 1500 MHz, can be put together for less than $40.

The heart of this unit is the CTC TA150-50 microstrip termination which looks much like a high-power uhf transistor. The device, which is only about 1/4-inch (6.5mm) wide and an inch (25.5mm) long, is attached to an aluminum heatsink as shown in the photographs. The input coaxial connector is connected to the load through a 50-ohm microstrip line that allows close contact to the termination (fig. 1).

Construction

Construction of the 150-watt load is simple, but a moderate amount of care is required to assure good uhf performance. The first step is to prepare the heatsink by milling a small indentation, about 0.1 inch (2.5mm) deep, in the center of the heatsink as shown in fig. 2. This allows the load of the TA150-50 termination to be at the proper height to match the microstrip feedline. Installing the TA150-50 so its input lead is too high or too low may break the lead or crack the ceramic insulation. The correct mounting is shown in fig. 3.

Make sure that the indentation milled into the heatsink is reasonably smooth and flat. Any irregularities in the mounting surface for the TA150-50 termination, or bowing of the heatsink, may crack the BeO ceramic when the mounting screws are tightened. An imperfect mounting surface can also result in poor thermal transfer characteristics which will lower the power rating of the completed dummy load.

Although Teflon-glass circuit board was used in the author’s model shown in the photographs, epoxy-glass circuit-board can be used if you do not expect to use the load above 300 MHz. This is not because of the higher loss of epoxy-glass circuit board (which is good to over 1000 MHz), but because of variations in thickness from one manufacturer to another which affect the impedance of the microstrip transmission line. In addition, voids in epoxy-glass circuit board can cause difficulties. If all you have is G-10 circuit board, by all means use it, but don’t be surprised if the vswr above 300 MHz is substantially greater than 1:1.

Circuit-board dimensions for both materials are given in fig. 1. After the circuit board is etched and cut to size, six holes are punched in the board for mounting on the heatsink (see fig. 4). Do not use less than six mounting holes.

By Lance Wilson, WB6QXF, Communications Transistor Corporation, 301 Industrial Way, San Carlos, California 94070
screws because they provide the ground for the 50-ohm microstrip feedline.

Temporarily place the termination in the indentation and mark the position of the two flange-mounting holes. Remove the termination and drill and tap the heatsink for 4-40 (M3) screws. Temporarily install the termina-

1. Schematic diagram of the 150-watt dummy load which exhibits less than 1.2:1 VSWR from DC through 1500 MHz. The CTC TA150-50 rf termination must be mounted on a heatsink as shown in the photographs.

3. Correct installation of the TA150-50 is shown at (A). If the milled indentation in the heatsink is too deep (B) or too shallow (C), the termination lead will not match the height of the microstripine and may result in damage to the device. Correct depth is 0.1" (2.5 mm).

4. Drilling layout for the microstrip circuit board. Six mounting screws are required to provide good electrical contact with the heatsink. Printed-circuit layout is for 1/16" (1.5 mm) double-clad, Teflon-epoxy circuit board, which is recommended for this application. Dimensions for fiberglass-epoxy board are listed in fig. 1.

fig. 1. Schematic diagram of the 150-watt dummy load which exhibits less than 1.2:1 VSWR from DC through 1500 MHz. The CTC TA150-50 rf termination must be mounted on a heatsink as shown in the photographs.

fig. 2. Heatsink layout for the 50-ohm 150-watt dummy load.

fig. 3. Correct installation of the TA150-50 is shown at (A). If the milled indentation in the heatsink is too deep (B) or too shallow (C), the termination lead will not match the height of the microstripine and may result in damage to the device. Correct depth is 0.1" (2.5 mm).

fig. 4. Drilling layout for the microstrip circuit board. Six mounting screws are required to provide good electrical contact with the heatsink. Printed-circuit layout is for 1/16" (1.5 mm) double-clad, Teflon-epoxy circuit board, which is recommended for this application. Dimensions for fiberglass-epoxy board are listed in fig. 1.
Construction details of the 150-watt uhf dummy load.

Checkout and performance

Connect an rf power source to an accurate vhf swr meter and the completed rf load as shown in fig. 6. Make sure the swr meter is accurate at the frequency of the power source (a Bird model 43 Thru-line rf directional wattmeter with the correct plug-in element is a good choice). Gradually apply power to the rf load and look for any indication of high swr — this could indicate a poor solder joint, a short, or other assembly problem. If everything looks okay, go ahead and increase power up to the 150-watt maximum.

The maximum case temperature of the TA15050 is 100°C (212°F). Since case temperature is difficult to measure, heatsink temperature can be used as an indication of safe operation. If a good grade of thermal compound is used when mounting the TA15050, this will provide a case-to-heatsink thermal resistance of 0.3°C per watt. \(^1\) This means that, at 150 watts dissipation, the heatsink temperature will be 55°C (131°F). If you cannot measure the heatsink temperature or are in doubt, force-air cool it (that's what I did). At lower power levels, 35 watts or less, the heatsink should be okay for continuous use without any external cooling.

Note that the power limitation of the TA150-50 is 150 watts maximum — exceeding this rating, for either CW or PEP, may damage the termination.

The measured vswr of this dummy load is less than 1.2:1 all the way from dc to 1500 MHz. A somewhat similar device, the CTC TC250-50, is rated at 250 watts, but the maximum frequency rating for 1.2:1 vswr is only 1000 MHz.

Reference

Ham Radio
The performance of this compact, lightweight Atlas SSB transceiver is incredible! Measuring only 9 1/2" wide x 3 1/2" high x 9 1/2" deep, and weighing only 7 pounds, the Atlas 210x or 215x is less than half the size and weight of other H.F. transceivers, yet offers more features and greater operating pleasure.

5 BAND COVERAGE
The 210x covers 10 - 80 meters, while the 215x covers 15 - 160 meters.

ITS SOLID STATE DESIGN not only accounts for the lighter weight of your Atlas transceiver, but assures you years of cool, trouble-free operating pleasure.

MODULAR CONSTRUCTION makes any service that may be required fast and inexpensive. Most of the circuitry is on printed circuit boards, with three plug-in boards for R.F., I.F., and A.F. circuits. All sections are readily accessible, and your Atlas dealer can provide you with the circuit boards you may need.

TOTAL BROADBANDING ELIMINATES TRANSMITTER TUNING OR LOADING CONTROLS! With your Atlas transceiver you get instant QSY and band change.

200 WATTS POWER RATING! . . . In a seven pound transceiver! Incredible, but true. Atlas transceivers give you all the talk power you need to work the world barefoot. Signal reports constantly reflect great surprise at the signal strength in relation to the power rating.

PHENOMENAL SELECTIVITY. The exclusive Atlas 8 pole crystal ladder filter used in our transceivers represents a major breakthrough in filter design, with unprecedented skirt selectivity and ultimate rejection. As we showed on the graph in a recent ad, this filter provides a 6 db bandwidth of 2700 Hertz, 60 db down of only 4300 Hertz, and a bandwidth of only 9200 Hertz at 120 db down! Ultimate rejection is in excess of 130 db, greater than the measuring limits of most test equipment.

EXTENDED FREQUENCY COVERAGE. Adding the Atlas Model 10x Crystal Oscillator provides greatly increased frequency coverage for MARS and network operation. Frequency coverage with the 10x is: 1700-3000 kHz (Model 215x only), 3000-5200 kHz, 5800-10,000 kHz, 13,900-14,900 kHz, 20,600-21,600 kHz.

ATLAS TRANSCEIVERS ARE THE BEST TRANSCEIVER BUY ON THE MARKET TODAY . . . cubic inch for cubic inch, pound for pound, or feature for feature, and they’re Made in the U.S.A.

210x or 215x .. $649.
With noise blanker installed, $689.

ACCESSORIES
AC Console 110/220V .. $139.
Portable AC Supply 110/220V $95.
Auxiliary VFO Model 206 includes Digital Dial. $299.
Model DD6-B Digital Dial only $229.
10x Osc. less crystals $55.
For complete details see your Atlas dealer, or drop us a card and we’ll mail you a brochure with dealer list.
the hand-held electronic calculator: solving problems

This article is the second in a series on the hand-held electronic calculator. The first article described the operating principles of the four-function machine, gave examples of how to use it in handling basic arithmetic operations, and touched on the operations that can be performed with the more expensive and elaborate machines, including the use of constants, chain operations, and memories.

Despite its simplicity and low cost, the four-function calculator has as much potential calculating power as the more sophisticated machines, providing you're willing to accept slower operating speed and the occasional use of a scratch pad. The key to this power is in using approximations as a substitute for special calculator functions, using problem-organization techniques, and using a scratch pad as a substitute for calculator memory. With these tools, the simplest four-function calculator becomes usable for all radio calculations. The following text reviews many of the approximations that can be used and gives examples of problem solution. Clearly, the small calculator can be an instrument of great power.

calculator logic

As a first step it's desirable to spend a little time learning about the logic of the calculator. Sometimes the internal logic can be used to simplify a step; occasionally the logic will force a particular procedure. The major elements to understand are:

- **Rounding**: Drop digits, round to nearest value, or hold internally.
- **Overflow, underflow**: Signal used, calculation locked out or error possible.
- **Chain**: How to interrupt; how to change from + to −.
- **Constant**: Switchable, automatic, chainable.
- **Sign**: How to use; how to enter negative divide.
- **Memory**: Self accumulate, overflow, sign.
- **Function keys**: Determine logic (example: % is the same as = times 100 on divide, or as = divided by 100 on multiply).

These processes are best understood by working sample problems. For example, rounding can be checked by dividing 27 by 99 then multiplying by 2 (answer is 0.545454, rounds to 0.55).

problem organization

Most of the elements of problem organization concern arrangement of parentheses. For example, on the smaller calculators it's usually necessary to solve $A(B+C)$ by the steps $(B+C)\times A$, the key strokes now being simple. Sometimes it's desirable to write the problem as $AB+AC$ to eliminate inner parentheses. Again, it's sometimes desirable to combine parentheses. For example, the form $(AxB) + (CxD)$ can't be solved directly on small calculators lacking memory but can be rewritten in the form $\frac{AxB}{C} + D \times C$. Quite often it's necessary to repeat a calculation several times using different values of the unknown. (An example would be the calculation of a set of half-wave filters for TVI elimination). For problems of any complexity it's worthwhile to lay out a tabular calculating form with the successive numbers across the top of the page and successive values of the unknown down the page. It's best to arrange unknowns in order to simplify a check for mistakes. This process can compensate for memory deficiency of the less-expensive calculators by providing a convenient place for recording intermediate results. The preparation of such a table has another benefit—it can be filed for a permanent record and as future reference.

accuracy and rounding off

The fact that even small calculators have 6 or 8 digits encourages the bad habit of regarding all digits as important. Sometimes they are, as when an expression of the form $(A-B)$ is encountered and A and B are nearly equal. But more often, only the first few digits have significance—the others may as well be zeros.

Many small calculators have provisions for rounding to two decimal places, which takes care of small numbers. For large numbers, or in the general case, calculator rounding is possible by temporarily converting to a small number then scaling back.

By R. P. Haviland, W4MB, 2100 South Nova Road, Box 45, Daytona Beach, Florida
If \(n \) is the number of digits to be rounded off, and \(m \) is the digit capacity of the calculator, divide first by \(10^{(m+n)} \) then multiply by \(10^{(m+n)} \). On most small calculators, \(m \) is the number of digits displayed; for rounding decimals, regard \(n \) as minus.

If the calculator truncates or cuts off the result instead of rounding, rounding can be obtained by first adding 0.5 \(x \) to the number then proceeding as above.

It's rare for radio calculations to require accuracies of more than a few percent, since this is the usual measuring accuracy. For short calculations two significant figures are sufficient; three should take care of nearly all complex problems. An unnecessary number of digits gives a false impression of accuracy.

double precision

Despite the remarks above, there are times when the accuracy needed is greater than the number of digits provided by the calculator. Such problems can be handled by dividing the numbers into halves, performing a few operations, then combining the results— a process used in computer work called double precision. (Triple precision is possible but it's too complex to use).

Suppose a number 0123456789 is to be added to another number on a six-digit calculator. The first number can be divided into two parts, 01234 and 56789. Denote the first part by \(A \) and the second by \(a \). To add two such numbers \(Aa \) and \(Bb \), compute the sums \(C = A + B \) and \(c = a + b \). Write the result as \(Cc \). (There may be a carry from \(c \) to \(C \) or a borrow on subtract).

Example: Add 0123456789 to 1212121212.

<table>
<thead>
<tr>
<th>First number, (Aa)</th>
<th>(A = 01234)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B = 56789)</td>
<td></td>
</tr>
<tr>
<td>Second number, (Bb)</td>
<td>(B = 12121)</td>
</tr>
<tr>
<td>(b = 21212)</td>
<td></td>
</tr>
<tr>
<td>Add (A + B):</td>
<td>(C = A + B)</td>
</tr>
<tr>
<td>(= 01234 + 12121)</td>
<td>(= 13355)</td>
</tr>
<tr>
<td>Add (a + b):</td>
<td>(c = a + b)</td>
</tr>
<tr>
<td>(= 56789 + 21212)</td>
<td>(= 78001)</td>
</tr>
</tbody>
</table>

Write the result as \(Cc \): 1335578001.

If either number, say \(Aa \), has more digits than the other number, say \(Bb \), add zeros to the left of the smaller number. For example to add 0123456789 to 0123456, the numbers would be segmented as follows:

<table>
<thead>
<tr>
<th>(A = 01234)</th>
<th>(B = 00001)</th>
<th>(C = 01235)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = 56789)</td>
<td>(b = 23456)</td>
<td>(c = 80245)</td>
</tr>
<tr>
<td>(Cc = 0123580245), the sum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To multiply two such numbers \(Aa \) and \(Bb \), first compute the four products \(Cc = A \times B \), \(Df = A \times a \), \(Ee = b \times B \), and \(Ff = a \times b \). Compute the sums, \(c + d + e + f = G \), and \(d + e + F = H \). The final result is written as \(CGHF \). (There may be a carry from \(f \) to \(H \), from \(H \) to \(G \), and from \(G \) to \(C \)). A little practice will help keep the partials straight.

Example: Multiply 1234 times 5678 (answer 7006652).

<table>
<thead>
<tr>
<th>(Aa = 1234)</th>
<th>(A = 12)</th>
<th>(a = 34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bb = 5678)</td>
<td>(B = 56)</td>
<td>(b = 78)</td>
</tr>
<tr>
<td>(Cc = A \times B) = 12 \times 56 = 0672</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dd = a \times b) = 12 \times 78 = 0936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ee = b \times B) = 34 \times 56 = 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ff = a \times b) = 34 \times 78 = 2652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G = c + d + e + f) = 72 + 09 + 19 + 100 = 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H = d + e + F = 36 + 04 + 26 = 66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CGFH = 06) 100 66 52 = 7006652</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note the carry when the second number, 100, is combined with the first, 06. An easy way to keep the carry straight is to write the numbers as

\[
\begin{array}{c}
06 \\
100 \\
66 \\
52 \\
\hline
07006652
\end{array}
\]

For division it's easiest to perform long division, which can be done by direct operations. Enter the leftmost digits of the dividend until the number in the display is greater than the divisor. Subtract the divisor and repeat until the remainder is less than the divisor, recording the number of subtractions as the first digit of the quotient. Multiply this remainder by 10, which is the same as a shift operation. Add the next digit of the dividend and repeat the subtraction to obtain the next digit of the quotient. Repeat the shift-enter-subtract sequence until all digits have been entered. The remainder can be expressed as a fraction, or the division can be continued by entering zeros. If memory is available, the number of keystrokes needed is greatly reduced.

Example: Divide 987654321 by 12345 (answer: 80004.400243+).

A. Enter 98765 (dividend) into calculator, then successively subtract 12345 (divisor) until remainder is less than the divisor:

\[
\begin{array}{l}
98765 \\
- 12345 \\
86420 \\
- 12345 \\
74075 \\
- 12345 \\
61730 \\
- 12345 \\
49385 \\
- 12345 \\
37040 \\
- 12345 \\
24695 \\
- 12345 \\
12350 \\
\hline
12345
\end{array}
\]

Since 8 subtractions were required, first (left-hand) digit of the quotient is 8.
B. Multiply remainder by 10 and add next unused digit of the dividend: \((10 \times 5) + 4 = 54\)

Since this number is still smaller than the divisor, no subtraction can be made so the second digit in the quotient is 0.

C. Multiply the remainder by 10 and add the next unused digit from the dividend: \((10 \times 54) + 3 = 543\)

Since this number is still smaller than the divisor, no subtraction can be made so the second digit in the quotient is 0.

D. Multiply the remainder by 10 and add the next unused digit from the dividend: \((10 \times 543) + 2 = 5432\)

This number is still smaller than the divisor, no subtraction can be made, and the fourth digit in the quotient is 0.

E. Multiply the remainder by 10 and add the next unused digit from the dividend: \((10 \times 5432) + 1 = 54321\)

This remainder is larger than the divisor so successive subtractions can be made, as before:

\[\begin{array}{c}
54321 \\
- 12345 \\
31976 \\
- 12345 \\
29631 \\
- 12345 \\
17286 \\
- 12345 \\
4941 \\
\end{array}\]

1st subtraction
2nd subtraction
3rd subtraction
4th subtraction

Since four subtractions were required, the fifth digit in the quotient is 4.

F. This same procedure can be used to as many decimal points as required, or the numbers (which are now small enough to be handled by most hand-held calculators), can be divided directly: \(4941 \div 12345 = 0.400243\)

Quotient is written from steps A through F:

\[ABCDEF = 80004.400243 \]

table lookup

Because the small calculator doesn’t have provisions for special functions or constants, these must be entered as needed. One way to do this is to keep a small set of tables with the calculator and look up values as needed. Small volumes of four-place tables of all common functions are often sold at school bookstores. Larger volumes are available, with greater accuracy, up to the 15-place tables issued by the U.S. Government. Tables of Functions by Jahnke and Emde is the standard volume for special functions.

Table lookup is also needed for typical constants and conversion factors. If several of these are needed often, it’s convenient to make up a short table on Dymo tape or on a card and fasten it to the calculator case. Typical constants would be \(\pi\), g, ft-lbs to ergs.

The second way of securing the functions needed is to compute them directly. Usually a full computation is too complex and time consuming to be practical, but many functions and constants can be generated by simple relationships that give approximately the correct value. Since most radio work doesn’t require high accuracy, these approximations are extremely useful. The following material shows approximations and error for the commonly needed functions.

numerical values:

- \(\pi \approx 22/7\)
- \(e \approx 19/7\)
- \(1/M = 16/7\)

M is the natural log of 10, used to convert from Naperian (base \(e\)) to common or Briggsian logarithms (base 10).

log functions:

\[e^x = 1 + x\quad \text{error less than 1% for } x<0.15\]
\[e^x = 1 + x + \frac{x^2}{2}\quad \text{error less than 1.5% for } x<0.50\]

Convert \(e^x\) to \(10^x\) by multiplying by \(1/M\) (x positive):

\[\log_{10} x = 2 \left(\frac{x - 1}{x + 1} \right) + \frac{2}{3} \left(\frac{x - 1}{x + 1} \right)^3\quad \text{error less than 1% for } x<2.5\]

Convert to \(\log_{10} x\) by dividing by \(1/M\).

trigonometric functions:

In the following, \(x\) is in radians or (degrees/57.296).

- \(\sin x = x\quad \text{error less than 1% for } x<14^\circ\)
- \(\sin x = x - x^3/6\quad \text{error less than 1% for } x<57^\circ\)
- \(\cos x = 1\quad \text{error less than 1% for } x<8^\circ\)
- \(\cos x = 1 - x^2/2\quad \text{error less than 1% for } x<38^\circ\)
- \(\tan x = x\quad \text{error less than 1% for } x<10^\circ\)
- \(\tan x = x + x^3/3\quad \text{error less than 1% for } x<30^\circ\)

For large values of \(x\), or any value if desired, calculate from

\[\sin (A \pm x) = \sin A \pm x \cos A\]
\[\cos (A \pm x) = \cos A \pm x \sin A\]

The values of \(\sin A\), \(\cos A\) to each \(10^\circ\) can be kept on a small card or attached to the calculator case. The error will be less than 0.5%.

inverse trigonometric functions:

- \(\sin^{-1} x = x\quad \text{error less than 1% for } x<0.24\)
- \(\sin^{-1} x = x + x^3/6\quad \text{error less than 1% for } x<0.58\)
\[
\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \quad \text{exact}
\]
\[
\tan^{-1} x = x \quad \text{error less than 1\% for} \quad x < 0.17
\]
\[
\tan^{-1} x = \pi/2 - 1/x \quad \text{error less than 1\% for} \quad x > 3.0
\]

It appears that all of the small calculators allow chained operation. This makes it easy to secure integer powers. Simply enter the number and press the times key the number of times of the power. Note that some calculators have automatic constant: for these it’s best to press the times key once and the equals key the remaining number of times. Note that some calculators have automatic constant: for these it’s best to press the times key once and the equals key the remaining number of times. This makes it easy to secure integer powers. For example, \(x^{1.6} = \left(\frac{x^2}{x^2}\right)^2\), which saves eight key strokes.

Reciprocals, or any negative integer power, can be secured easily with any calculator having constant or memory, since \(x^{-n} = \frac{1}{x^n}\). Place the calculator in the constant mode, enter the value of \(x\), press divide twice to secure a one, then press it followed by a divide, then the number.

Non-integer powers are occasionally needed. For example, if a cube root is needed, guess a number, cube it, and adjust the original guess. It’s not difficult to secure two- or three-digit accuracy this way, but more accuracy becomes time consuming.

Non-integral roots can sometimes be solved as problems in powers. For example,

\[
x^{0.8} = x^{(1 - 1/5)} = x \cdot x^{-1/5} = \frac{x}{\sqrt[5]{x}}
\]

These roots may also be secured from

\[
x^n = 1 + n \log_e x
\]

hyperbolic functions

In transmission-line calculations, hyperbolic functions are useful. Some approximations for these are:

\[
sinh x = x + \frac{x^3}{6}
\]
\[
cosh x = 1 + \frac{x^2}{2}
\]
\[
tanh x = x - \frac{x^3}{3}
\]
\[
\text{arctanh} x = x + \frac{x^3}{3}
\]

Note the close relationship to the trigonometric functions.

numerical integration

Integration, which corresponds to finding the area under a curve, is easily done using Simpson’s rule. Its formula expression is:

\[
\int_a^b f(x) \, dx = \frac{b - a}{3n} \sum (y_0 + 4y_1 + 2y_2 + 4y_3 \ldots + y_n)
\]

where \(y_0, y_1, \ldots\) are the values of \(F(x)\) at \(n\) equally-spaced intervals between \(a\) and \(b\) (\(n\) even).

To apply, plot the function as a curve, and divide the abscissa range into \(n\) equal spaces: ten is often a convenient number. Multiple each ordinate value by Simpson’s multipliers, respectively, 1, 2, 4, 2, 4, \ldots 1 for the first, second \ldots last ordinate. Obtain the sum, and multiply this by the length of each interval divided by three.

concluding notes

These are by no means all the techniques known and used, but they should be ample for all radio work, and much more. The bibliography gives some further data and techniques. Particular attention should be given to the series obtained by expansion using Taylor’s and MacLaurin’s theorems. These are the basis of most of the approximations above.

reference

bibliography

automatic beeper
for station control

This simple one-transistor circuit improves communications efficiency on crowded channels

Amateurs who have heard radio conversations from the Apollo moonwalkers could not have helped but notice that the conversations ended with a beep sound, which indicated transmission termination. This beep sound is an “automatic over” signal. A communications system using such a signal saves time, words, and reduces misunderstanding. The beep-tone frequency is about 800 Hz, which seems to be the frequency most sensitive to the human ear. Proper installation of the beep system will also ensure that transmitter modulation is at a maximum level, just below flat topping.

The “automatic over” system was first used in the Yaesu FT2F 2-meter transceiver. The circuit described here is simpler than that used in the FT2F.

The automatic beep system works in such a way that, when releasing the PTT switch, a time delay occurs in the action of the changeover relay (or relays), which keeps the transmitter on the air just long enough to transmit a tone burst. This tone is generated in a simple one-transistor phase-shift oscillator, fig. 1. The circuit uses only a few components and is powered by the voltage present between the PTT terminal and ground in the receive mode. This voltage is commonly 12 Vdc but may be any voltage between 6 and 30 volts dc.

Turning on the transmitter grounds the PTT terminal so that the oscillator supply is shorted on transmit, thereby stopping the oscillator, which is on during receive. The sequence of events is:

1. Receiver on, beep-tone oscillator (BTO) on, relay opens.
2. PTT closes, transmitter on, BTO off, relay closes.
3. PTT opens, transmitter on, BTO on, relay delay effective.
4. Delay time finishes, relay opens, BTO on, receiver on.

construction notes

The 3.9k resistors and 0.01 μF capacitors should be 5% tolerance or closer. The 0.01 μF capacitors must be mylar, polycarbonate, polystyrene, or oil. Do not use ceramics. The 470 pF and 0.02 μF capacitors may be ceramic or other types. All resistors can be 1/2, 1/4 or 1/8 watt. The capacitors and resistors marked with an asterisk must be matched within 5%. If matched within 5%, a 20% variation from given values is satisfactory.

The transistor can be any small-signal silicon npn type with a gain of at least 300 at 1 mA. A low-gain transis-

By Earl Hornbostel, WA6URN, Republic Crystal Labs, P.O. Box 445, Greenhills Post Office, Rizal, Philippines
tor, mismatched resistors or capacitors, or poor-quality capacitors can cause the oscillator to start slowly or not start at all. Hundreds of different types of transistors are available that will work well in this circuit (i.e., 2N930).

There is nothing critical about layout so any method of wiring is acceptable. A small PC board can be made, assembly can be made on a perf board, or terminal lug strips can hold the parts. A convenient way of assembly is to make a small etched board from single-sided copper clad stock, which is used as one side of a box on which the parts can be soldered on the etched side, leaving a continuous copper border. Do not drill any holes. The other five sides of the box can be made from the same material. One of these sides (not an end) can be used as a cover and should be slightly smaller all around, by the material thickness, so that it will fit inside the box formed by the other five pieces.

When the etched board has been wired and tested, the other five sides, with copper facing in, are then soldered together, taking care to line them up straight. Mount the microphone jack and dress the cable, leaving a little slack. Tape the cable inside the box to prevent strain on the soldered joints. The cover plate should have a single grounded wire soldered to it. With copper facing in, push the cover plate into the box about 1/8 inch (3mm), leaving an edge around which Duco cement can be applied. Don't use epoxy cement if you want to open the box later for servicing. This construction method results in a solid, shielded, insulated box that won't break the "over" habit, but soon quick exchanges will increase the pleasure of operating and more natural conversation will ensue.

fig. 1. Circuit of the beeper oscillator. Parts marked with an asterisk must be matched within 5 percent. The transistor can be any small-signal silicon npn device with a gain of at least 300 at 1 mA.

installation

Only three connections are needed for this circuit: ground, microphone input, and the hot PTT terminal, all of which are in the microphone cable. The easiest way to install the unit is to use a duplicate microphone jack and plug and a small metal box. Mount the jack on one side of the box. On the opposite side drill a hole for a short piece of microphone cable and wire the duplicate microphone plug to the end of this cable. Mount the volume control to another face of the box. Connect the short length of microphone cable to the microphone jack. If a separate ground is used for the PTT circuit, (sometimes done to avoid switching transients that cause thumps during operation), be sure this ground is the same as that used for the oscillator. Also be sure the microphone shield does not short to the box or box wiring.

The last thing to do is to install a capacitor across the relay first controlled by the PTT switch. The capacitor, in the case of 12-volt relays, must be in the 300-1000 \(\mu F \) range with at least a 15-volt rating. This capacitor, which is shunted across the relay coil, will charge during transmit causing a delayed release when changing to receive, turning on the beeper. This action occurs because, while the relay is still holding, opening the PTT switch places a potential on the oscillator. The capacitor, in negative-ground systems, should have its negative terminal connected to the PTT-lead terminal of the relay.

No definite value for the capacitor can be given, since this depends on the coil resistance and the length of beep desired. The formula for calculation is:

\[
T = RC
\]

where \(R \) = relay coil resistance (ohms)
\(C \) = capacitance (farads)
\(T \) = time (seconds)

The potentiometer should be set to fully modulate the transceiver without flat topping.

operation

The beeper will operate with any transceiver, a-m or fm, that has a PTT switch with a positive dc voltage of 6 to 20 volts on the PTT terminal during receive. This applies to most modern solid-state or hybrid sets that use a 12-Vdc relay for changeover. Tube sets may or may not have 12-Vdc control relays, so check this before starting the project. Be sure that the control circuit, when open, can pass 1 or 2 mA into the oscillator. In other circuits, such as when bias or the cathode of a tube is controlled, first check the voltage on the PTT terminal in the receive mode. Place a 10k resistor across this terminal and check again. If the voltage across this resistor is not less than 6 volts nor more than 30 volts; and if the receiver continues to operate, the circuit will permit the beeper to work. If negative voltage with respect to ground is present, then use a pnp transistor in the beeper.

Older sets, such as the KWM-2 and the other vacuum-tube equipment, may have the PTT relay in the plate lead of a vacuum tube. The much higher resistance in this case will not only require a lower capacitance, but a higher voltage rating, for the shunt capacitor. Some newer two-meter solid-state transceivers don't use a relay for switching. Instead, diode or regulator-type switching is used. In these cases, it will be necessary to use a much higher value for \(R1 \) — say 2.7 megohms or higher -- and a high-gain (at low current) transistor. Not more than 50 microamperes should pass through \(R2 \), so that switching is not affected. The transistor is a low-current, high-gain device usually sold for "low noise" preamplifier use.

When the beeper is first used it will be difficult to break the "over" habit, but soon quick exchanges will increase the pleasure of operating and more natural conversation will ensue.

ham radio
The Drake SSR-1 provides real
PORTABILITY and
VERSATILITY in a general coverage SW receiver...

Compare these features with any other general coverage SW receiver:

- Complete general coverage operation from 500 kHz to 30 MHz with synthesizer circuitry. No range crystals to buy. Dial calibration accuracy within 5 kHz at all frequencies.
- Built-in telescoping antenna with provision for external antenna.
- Built-in ac power supply. Provision for internal "D" cell batteries in built-in battery holder. Receiver automatically switches to batteries if ac power fails.
- Product detector for ssb/cw reception.
- Clarifier for extra fine ssb/cw tuning.
- 100% solid state. Dc power cord available for external 12V dc operation from auto or boat.

Small size: 13" wide, 11" deep, 5.5" high (33 x 28 x 14 cm). Weight 14 lbs (6.4 kg).

For more information on this and other fine Drake products, please contact:

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288-017
Drake is pleased to announce a significant new 2-meter FM design, successor to the Drake TR-22 series:

The New TR-33C FM Portable

is significant because in it, Drake brings to 12-channel FM portables:

- **SCPC** Frequency Control
- Lower Receiver Battery Drain
- Expanded Portable Antenna Choice

*Single Crystal Per Channel

SPECIFICATIONS TR-33C

GENERAL
- Frequency Coverage: 146-148 MHz, 12 channels (2 supplied: 146.52 and 146.94). Crystal determines receive frequency. **Transmit frequency offset for repeater operation determined by 5-position switch:** Simplex, +600 kHz, and -600 kHz supplied; any two additional offsets available with accessory crystals. **Power requirements:** 13.0 Volts dc ± 15% external supply or internal battery supply. **Current Drain (Batteries): Squelched receive: 30 mA; transmit: 400 mA.** External supply: above plus 45 mA for channel switch indicator lamp. **Antenna:** 50 ohm external antenna through SO-239 connector or screw-on telescoping whip antenna supplied; may be replaced with rubber helix antenna. **Dimensions:** 5.45" (138mm) x 2.78" (58mm) x 8.5" (216mm). **Weight:** 4.4 lbs (2kg).

RECEIVER
- Sensitivity: less than .5 uV for 20 dB noise quieting. **Selectivity:** ± 30 kHz adjacent channel rejection greater than 75 dB. **Modulation acceptance:** at least ± 7 kHz. **Intermodulation Rejection:** 70 dB referenced to sensitivity level. **First i-f:** 10.7 MHz with monolithic crystal filter. **Second i-f:** 455 kHz with ceramic filter. **Audio Output:** nominal 1 watt at less than 10% distortion into 8 ohm built-in speaker or external speaker.

TRANSMITTER
- RF Output Power: 1.5 watts nominal with 13.0 volts dc supply. **Frequency Deviation:** Direct frequency modulation adjustable to at least ±7 kHz, factory set at ± 5 kHz. **Separate microphone gain and deviation adjustments.**

ACCESSORIES
- **Model AA-10 Power Amplifier:** Use with TR-22C, TR-33C, or any transceiver up to 1.8 watts output. 10 dB power increase. At least 10 watts output at 13.8 Vdc. Automatic transmit/receive switching. **$49.95**
- **Model AC-10 Power Supply:** Powers the AA-10, TR-22C, TR-33C and TR-72. Simultaneously can charge the TR-22C/33C nicads. Supplies 13.8 volts up to 3 amps from 120 V-ac 60 Hz input. **$49.95**
- **Accessory Crystals** each **$6.30**
- **Model MMK-33 Mobile Mount** **$12.95**

Now at your dealer. For more details please contact:

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342
Phone: (513) 866-2421
Telex: 288-017

More Details? CHECK-OFF Page 126
turn-off timer

for portable equipment

This circuit prolongs battery life if you forget to turn off battery-operated instruments

Small battery-operated instruments are nice: no power cords, no heat, instant warmup, and portability. However, if you’re like me you’ll forget once in a while and leave something turned on with the result that one or more batteries will have to be replaced. So when I converted my vtm to battery operation, I decided to add a battery-saver circuit to prevent this from happening. The circuit worked out so well I have since added it to two other small pieces of test equipment.

basic circuit

Looking through the literature and reflecting on some recent and past experience, I decided to use CMOS devices and drive the ICvm load directly. There are several good reasons for this choice. The energized CMOS digital integrated circuit in the quiescent state uses “no power,” (typically 0.009 µW per device at 9 volts), output impedance is fairly low, input impedance very high, and they are inexpensive.

Using RC timing in a driving circuit to a CMOS gate or in a regenerative one-shot circuit is simple but has a big drawback in this application: the big “knees” in the transfer function. This simply means that voltage from an output gate will drift considerably over an appreciable part of the timing cycle. It’s therefore necessary to drive the input gate with a reasonably fast pulse to avoid drifting through the transfer. There are several different ways this can be done, but the 2N6028 programmable unijunction transistor was chosen for the job. This device is stable over an extremely wide range of operating conditions and can be made to operate with practically no battery current. It’s also readily obtainable on the surplus market for about 65 cents. Using this little gem with a CD4001 CMOS quad NOR gate resulted in the basic circuit of fig. 1.

operation

Gates G1 and G2 of U1 form a latch circuit or switch, which is operated by the Q1 timer. When S1 is switched to on, R2 charges through R2, causing the latch to switch making point A low (ground) and point B high (+9 volts). The timing circuit and the load connected to B are then turned on. R4 and R5 set the operating point of Q1. C1 charges through R1 then discharges through Q1. The discharge pulse across R6 is applied to G2 input, which switches the latch to its opposite state, A high B low. This action turns off both the timing circuit and the load, leaving only U1 in the quiescent state across the battery. Because U1 (the entire package) draws typically only 0.001 µA in this condition, S1 can remain on without decreasing battery life any more than its shelf life.

By Rich Hardesty, W5OXD, 2700 N. Lindbergh – Box 17, St. Louis, Missouri 63114
fig. 1. Basic ICvm timer circuit. Q1 is a programmable unijunction transistor, which drives a latch circuit composed of two gates of a CD4001 two-input quad NOR gate. With point A high and B low, both the timing circuit and load are turned off, leaving only U1 in the quiescent state across the battery. U1 current drain is only 0.001 μA in this condition.

Complete timer circuit

Fig. 2 shows the complete turn-off timer for use with the ICvm. Resistor R6 of fig. 1 has been replaced with the primary of T1, a homebrew pulse transformer, the secondary of which is used with the negative supply to the meter. When the timing discharge pulse occurs, it will appear across both windings of T1, switching both latches at the same time to turn off the meter. With the resistor values shown in the Q1 circuit the timer current is maintained below 1 μA while on.

Diodes CR1, CR2 have been added to provide discharge paths for C1, C2 in the off position of S1 while maintaining timing-circuit isolation in the on position; a direct connection to S1 (negative supply off) forms the discharge path for C3. This allows the circuit to be retriggered at any point in the timing cycle by merely switching S1 off then on again. Note also that the spare gates in each of U1 and U2 are used to drive the meter circuit. This is done for two reasons — they are there, and paralleling outputs reduces the output impedance and drive losses. The small amount of battery power lost in the output of the drive gates when they are on is not power that can be usefully saved by operating the ICvms directly with the batteries. The output voltages to the meter will be slightly lower than that of the batteries, but the meter is calibrated at whatever voltages are supplied to it. If you want to adapt the timer to a single 9-volt operated device, the positive battery or upper portion of fig. 2 may be used by itself. In this case replace T1 primary with a 10k resistor.

Construction

T1 is made as follows: Construct the form as shown in fig. 3 using a 0.6 x 0.6 inch (15x15mm) piece of perf board (0.1-inch or 2.5mm hole spacing) for the top. Use pieces of solid hookup wire run through side holes and twisted to make four terminals. Make the center hole slightly smaller than an 8-32 (M4) screw thread and screw the top against the head of a 3/4-inch-long (19mm) brass or nylon screw. Then force a fiber washer onto the screw, leaving enough thread to mount the
9.0 MHz FILTERS

<table>
<thead>
<tr>
<th>Filter</th>
<th>Frequency</th>
<th>Mode</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF9-A</td>
<td>2.5 kHz</td>
<td>SSB TX</td>
<td>$31.95</td>
</tr>
<tr>
<td>XF9-B</td>
<td>2.4 kHz</td>
<td>SSB RX</td>
<td>$45.45</td>
</tr>
<tr>
<td>XF9-C</td>
<td>3.75 kHz</td>
<td>AM</td>
<td>$48.95</td>
</tr>
<tr>
<td>XF9-D</td>
<td>5.0 kHz</td>
<td>AM</td>
<td>$48.95</td>
</tr>
<tr>
<td>XF9-E</td>
<td>12.0 kHz</td>
<td>NBFM</td>
<td>$48.95</td>
</tr>
<tr>
<td>XF9-M</td>
<td>0.5 kHz</td>
<td>CW</td>
<td>$34.25</td>
</tr>
<tr>
<td>XF9-NB</td>
<td>0.5 kHz</td>
<td>CW</td>
<td>$63.95</td>
</tr>
</tbody>
</table>

9.0 MHz CRYSTALS (H25/1u)

<table>
<thead>
<tr>
<th>Number</th>
<th>Frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF900</td>
<td>9000.0 kHz</td>
<td>Carrier</td>
</tr>
<tr>
<td>XF901</td>
<td>8998.5 kHz</td>
<td>USB</td>
</tr>
<tr>
<td>XF902</td>
<td>9001.5 kHz</td>
<td>LSB</td>
</tr>
<tr>
<td>XF903</td>
<td>8999.0 kHz</td>
<td>BFO</td>
</tr>
<tr>
<td>F05</td>
<td></td>
<td>H25/1u Socket .50</td>
</tr>
</tbody>
</table>

9.0 MHz DISCRIMINATORS

<table>
<thead>
<tr>
<th>Number</th>
<th>Frequency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XD9-01</td>
<td>± 5 kHz</td>
<td>RTTY</td>
</tr>
<tr>
<td>XD9-02</td>
<td>±10 kHz</td>
<td>NBFM</td>
</tr>
<tr>
<td>XD9-03</td>
<td>±12 kHz</td>
<td>NBFM</td>
</tr>
</tbody>
</table>

VHF CONVERTERS UHF

<table>
<thead>
<tr>
<th>RF</th>
<th>IF</th>
<th>N.F.</th>
<th>Nom. Gain</th>
<th>Power</th>
<th>V.N.F.</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>MHz</td>
<td>(typical)</td>
<td></td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144-148</td>
<td>3.48B</td>
<td>3.48B</td>
<td>3.48B</td>
<td>3.48B</td>
<td>3.48B</td>
<td>3.48B</td>
</tr>
<tr>
<td>220-224</td>
<td>26dB</td>
<td>26dB</td>
<td>26dB</td>
<td>26dB</td>
<td>26dB</td>
<td>26dB</td>
</tr>
<tr>
<td>432-436</td>
<td>20dB</td>
<td>20dB</td>
<td>20dB</td>
<td>20dB</td>
<td>20dB</td>
<td>20dB</td>
</tr>
<tr>
<td>1296-1300</td>
<td>9.0dB</td>
<td>9.0dB</td>
<td>9.0dB</td>
<td>9.0dB</td>
<td>9.0dB</td>
<td>9.0dB</td>
</tr>
</tbody>
</table>

4.5V C. 13/8" x 3" x 1/2" x 4 1/2" + connectors. Very low N.F. units on special order. Other ranges, amateur & commercial, to order. L.O. Output option - $5.00 extra. Shipping: Converters, $.20.

ANTENNAS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Gain</th>
<th>Feed</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>144-148 MHz</td>
<td>+12.6dBd</td>
<td>50Ω coaxial.</td>
<td>D8/2M</td>
</tr>
<tr>
<td>420-450 MHz</td>
<td>+15.7dBi</td>
<td>50Ω coaxial.</td>
<td>70/ MBM-48, $49.95</td>
</tr>
</tbody>
</table>

Fig. 4 is a suggested component layout on a 2 x 2-inch (51x51mm) perf board or PC board. Fig. 5 is a PC board layout (foil side) of fig. 4. C1 is a 3 μF, 50-volt capacitor. Obviously a lower-voltage type would take up less space. C1 should be a low-leakage type: polystyrene, polycarbonate, or mylar. With R1 of 22 megohms, I had about 3½ minutes-to-turn-off-time. The R1, C1 time constant may be adjusted to your preference.

references

1. Mike Kaufman, K8VCI, "How to Convert your VTVM to an IC Voltmeter," ham radio, December, 1974, page 42.
A stable, low-cost circuit designed around an 88-mH toroid

Many afsk circuits of varying complexity are available, but the circuit described here is the simplest and most satisfactory one I've found. Parts, excluding the relay,* are about $1.50. I don't know who the originator of the circuit is and claim no credit for it except to bring it to light. It was shown to me by WB6ETJ, who also uses it with complete satisfaction and who is equally in the dark as to its originator.

The circuit (fig. 1) uses one center-tapped 88-mH toroid tuned to the desired space frequency by suitable capacitors. These capacitors are paralleled by additional capacitors to tune the circuit to mark frequency. In the completed circuit, mark occurs when the relay is closed. For space frequency I used two capacitors totalling 0.0628 μF, then carefully removed turns from each side of the toroid center tap until the desired frequency was obtained. With care it's possible to obtain an accuracy of one or two hertz. The mark frequency may require three or four values of diminishing capacitance to reach the proper frequency, but with care equal accuracy is obtainable. If good quality mylar capacitors are used, the output is a perfect sine wave of equal amplitude.

A 2N404 pnp transistor is quite satisfactory as the oscillator; only 1.5 volts from a flashlight battery are required. The current drain is 100 microamperes, so battery life is very adequate. As I use my unit in a 12-volt system, the Variable Zener1 set at 1.5 volts works very well. The output, variable from 20 millivolts to 0.08 volt, is controlled by a 10k potentiometer.

The relay coil is plugged directly into my 150-volt, 60-mA loop. When the loop current is turned on, the relay closes, and the afsk is on mark. Space frequency occurs when the relay is opened by the teleprinter keyboard.

No special precautions are required for layout or construction. The unit works as well breadboarded as in a printed circuit I made to match my other gear. I've tried several types of 6-volt relays; all have worked satisfactorily. I've used this unit with an ST-6 and other terminal units. Since it plugs directly into the loop it doesn't interfere with other devices in the loop. All you have to do is plug the output into the transmitter audio input jack, and with a suitable output level you're in business.

By John B. Dillon, M.D., KH6FMT, P.O. Box 758, Koloa, Kauai, Hawaii 96756

*Available from Poly Paks, P.O. Box 942, Lynnfield, Massachusetts 01940. Order Clare reed sealed relay MR2MF-1006.

reference
SUPER FINE - 2 METER
MOBILE . . . 24 CHANNEL • 10 WATT
PRIORITY CHANNEL “CALL BUTTON” • MODULAR CONSTRUCTION

10 DAY MONEY BACK GUARANTEE

Only $199.95 thru Sept. 30, 1976

220 and 450 HAND HELDS

- SWITCHABLE 1 - 2.5 WATT (1 & 1.8W ON 450)
- 6 CHANNEL - ALL PLUG-IN XTALS WITH TRIMMERS ON BOTH TX & RX CRYSTALS
- 12 kHz CERAMIC FILTERS • BATTERY INDICATOR
- HAS .3 µV SENSITIVITY FOR 20 dB QUIETING
- 10.7 & 455 kHz IF ON 220 (21.4 & 455 kHz ON 450)
- CURRENT: 14 mA RX, 500 mA TX ON BOTH MODELS @ 12.0 VDC
- MICROSWITCH PTT BUTTON
- WEIGHT IS LESS THAN 22 OUNCES (w/o NI-CADs)
- SIZE IS 8.9” x 1.7” x 2.9”
- UNBREAKABLE LEXAN ® CASE
- BOTH UNITS USE THE SAME ACCESSORIES AS THE 2-METER 1402 & 1405 HAND HELDS
- OPTIONAL 12 BUTTON TOUCH-TONE PAD AVAILABLE
- COMES COMPLETE w/RUBBER DUCKIE, NI-CAD CASE, (223.50 INSTALLED OR 446.00 ON THE 450)

* 220 MHz MODEL 2202SM - $239.95
* 450 MHz MODEL 4502SM - $279.95

90 DAY WARRANTY

ACCESSORIES AVAILABLE

<table>
<thead>
<tr>
<th>Description</th>
<th>Special Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-1 BATTERY CHARGER</td>
<td>$23.95</td>
</tr>
<tr>
<td>BP1 10 EA. AA GOULD</td>
<td>$14.95</td>
</tr>
<tr>
<td>BT1 EXTRA BATTERY</td>
<td>$6.00</td>
</tr>
<tr>
<td>LC1 LEATHER CASE</td>
<td>$9.95</td>
</tr>
<tr>
<td>LC2 LEATHER CASE</td>
<td>$9.95</td>
</tr>
<tr>
<td>SM1 SPEAKER MIKE FOR EARLY MODEL 1402 PIN CONNECTOR</td>
<td>$24.95</td>
</tr>
<tr>
<td>SM2 SPEAKER MIKE FOR ALL NEW HAND HELDS WITH ROUND 6 PIN CONNECTOR</td>
<td>$24.95</td>
</tr>
<tr>
<td>TE-1 SUB-AUDIBLE TONE ENCODER</td>
<td>$34.95</td>
</tr>
<tr>
<td>TP-Touch-Tone Pad</td>
<td>$45.95</td>
</tr>
<tr>
<td>INSTALLATION AT TIME OF RADIO PURCHASE</td>
<td>FREE</td>
</tr>
<tr>
<td>INSTALLATION AT LATER DATE, ADD</td>
<td>$15.00</td>
</tr>
<tr>
<td>XF-1 16.7 KC MONOLITHIC XTAL FILTER</td>
<td>$9.95</td>
</tr>
<tr>
<td>CRYSTALS TX OR RX (Common Frequency Only)</td>
<td>$3.75</td>
</tr>
</tbody>
</table>

WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NV. 89103 U.S.A. (702) 739-1931 TELEX 684-522
2.5 and 5 WATT 2 METER
6 CHANNEL HAND HELD TRANSCEIVERS

* .3 µV RECEIVERS - 12 kHz CERAMIC FILTERS
* OPTIONAL 12 BUTTON PAD AVAILABLE FOR ANY HAND HELD
* AVAILABLE FOR MARS OR CAP • 10 DAY MONEY BACK GUARANTEE
* 90 DAY WARRANTY • INCLUDES 52 SIMPLEX and "DUCKIE" ANTENNA

TRIMMER CAPS ON RX & TX
ALL PLUG-IN CRYSTALS
(SAME AS WE-224 MOBILE)
10.7 and 455 kHz IF
.3 µV SENSITIVITY FOR
20dB QUIETING
CURRENT DRAIN @ 12 VDC
MODEL 1402SM:
RCVR: 14 mA - XMT: 500 mA
MODEL 1405SM:
RCVR: 14 mA - TX @ 1W: 400 mA
TX @ 5W: 900 mA
1402 HAS S METER & BATTERY
INDICATOR
1405 HAS A SENSITIVE BATTERY
INDICATOR
BOTH MODELS FEATURE MICRO-
SWITCH PTT
THE 1405 CASE IS UNBREAKABLE
LEXAN ®
THE 1402 CASE IS HIGH IMPACT
ABS PLASTIC
WEIGHT (w/o NI-CADS) IS LESS THAN
22 OUNCES
OVERALL MEASURE IS 8.9" x 1.9" x 2.9"
10 NI-CADS (ORDER BP-1) ARE EXTRA
@ $14.95

2.5 WATT MODEL
1402SM

TO: WILSON ELECTRONICS CORP., 4288 S. Polaris Ave., Las Vegas, Nevada 89103, (702) 739-1931, Telex 684-522

SUMMER SPECIAL DIRECT SALE ORDER BLANK
PLEASE PRINT CLEARLY

ENCLOSED IS ____________________________ CHECK ☐ MONEY ORDER ☐ MC ☐ BAC
CARD # ________________________________
EXPIRATION DATE _________________________
NAME _________________________________
ADDRESS ___
CITY _________________________________
STATE ______ ZIP ______ PHONE (______) ______

SIGNATURE ____________________________
SHIPPING & HANDLING PREPAID FOR SPECIAL
NEVADA RESIDENTS ADD SALES TAX
SPECIAL PRICES GOOD THRU SEPT. 30, 1976

Specify Freq. on Tone Encoder TE-1 ______ Hz

1 or 5 WATT MODEL 1405SM

OPTIONAL TOUCH-TONE PAD AVAILABLE FACTORY INSTALLED ON ALL HAND HELDS

Wilson Electronics Corp. SUMMER SPECIALS
calibrating ac scales

on the vtvm, icvm and fet voltmeter

A simple circuit of emf sources for an indirect but accurate means of calibrating your test equipment for ac voltages

In the absence of a precision voltmeter, the dc ranges of a vtvm or its solid-state counterpart may be quite accurately calibrated by using a dc source of reliable known open-circuit voltage. The zinc flashlight cell commonly used for this purpose is not a very reliable source, but the readily available P-13 mercury cell is quite reliable. The P-13 cell is well worth the cost of about $1.35 and possibly it could be stored for later use.

calibration with the vom

Calibration of the vtvm ac scales to any degree of accuracy is usually not so simple. If you have access to a precision ac voltmeter you're fortunate, but this isn't the usual case. The vtvm ac scales are generally calibrated by the amateur against a vom. The resulting calibration can be, and often is, poor. Even the better voms usually have an accuracy on ac scales of only ±3 - 5% of full scale.

*It's possible that the P-13 mercury cell could be preserved for a long period by storing it in a refrigerator deep freeze section. I haven't tried this with mercury cells, but common zinc flashlight cells have been stored for a number of years at about zero F. (−18°C) with little or no apparent deterioration.

When calibrating one instrument against another used as a standard, the errors of the two instruments are algebraically additive. It is for this reason that laboratories commonly use a standard instrument ten times as accurate as the one being calibrated. For example, to calibrate an instrument to ±1% accuracy, a standard instrument of ±0.1% accuracy is needed. In the worst case, let's assume the vtvm has an inherent accuracy of ±3%, is calibrated against a vom with an accuracy of ±5%, and the errors are accumulative. The calibrated meter would have an accuracy of not better than 8%.

calibration using ac line voltage

Probably a more common, but sometimes worse (and dangerous) method used by the amateur to calibrate the vtvm ac ranges is to use the ac mains and assume a nominal 117 volts. If the potential across the ac mains is indeed 117 volts calibration will be satisfactory but how are we to know? The "nominal 117 volts" may very well be anything between 110 and 125 volts, and in some areas where electric power shortage is often critical, the emf at the mains could be 105 volts or less. Let's take a case where the vtvm is calibrated using the ac mains at an assumed 117 volts, but that voltage is actually 125 volts and the errors are accumulative. The voltage error of about 7% and meter error of 3% result in accuracy no better than 10%; not very impressive, to say the least.

calibration circuit

Fig. 1 is a simple circuit of emf sources for an indirect, but more accurate means of calibrating the vtvm ac scales. Ignoring for the moment the part to the right connected by dotted lines to Y1 and Y2, the circuit will be recognized as an ac supply — T1 with a half-wave rectifier, CR1, and a filter, C1. R1 plays no part in the filter and is only used to limit initial surge current through CR1 when power is first turned on; usually it may be omitted. There is no load across C1 except C1 leakage resistance and the backward resistance of CR1, both of which will normally be very high. Having negligible load, capacitor C1 will charge to the peak voltage of the ac emf across X1-X2 minus the forward voltage drop across CR1. T1 may be any step-down transformer. CR1 and CR2 are silicon diodes. R1, if used, may be anything between 22-100 ohms, ½ watt.

By K. F. Hager, W7KQ, Route 1, Box 186, Burton, Washington 98013
C1 and C2 are about 0.5 µF. (More about circuit parameters later).

procedure

Before calibrating the vtvm ac ranges, best possible calibration of the dc ranges should be obtained. The ac ranges are then calibrated as follows: Measure the dc voltage across Y1 and Y2 with the vtvm set for dc measurements, common lead to Y2, probe to Y1. Call this voltage E. Remove the probe from Y1, set the vtvm for ac measurements and connect the probe to Y1. The rms potential across X1 and X2, E_{ac}, will be E plus the voltage drop across CR1, E_{cr}, multiplied by 0.707; that is: $E_{ac} = 0.707(E + E_{cr})$.

The ac calibration setup should now be arranged to show a meter reading E_{ac}. Example: Potential E is measured at 45 volts and E_{cr} has been determined as 0.3 volt. Therefore, 0.707 (45 + 0.3) = 32.0271 volts rms. Round this value to 32 volts. With the vtvm set for ac and probes across X1-X2, adjust the calibration so the meter reads 32 volts. Measurements should be performed several times to ensure that line voltage fluctuation doesn't introduce errors.

E_{cr} can't be measured directly with the vtvm but can be determined with a second like diode and a capacitor, CR2 and C2, connected to Y1 and Y2 as shown by the dashed lines in fig. 1. Do not attempt to measure the voltage drop by connecting the vtvm across Y1 and Z1. Shunting CR2 with the vtvm 11-megohm input resistance will cause the potential across Z1-Z2 to eventually reach the same potential as that across Y1-Y2. The speed at which this occurs, of course, depends on the capacitance of C2.

Measure the voltage at Y1-Y2 and the voltage at Z1-Z2. Note the difference in meter reading and let this difference be E_{cr}. CR1 and CR2 should be interchanged and the measurements repeated to determine any difference in voltage drop. Be sure to remove ac power and discharge the capacitors before starting a new set of measurements. In the calculation an ac sine wave is assumed; this will be found to be true where electrical power is from the U.S. and Canadian power grids. It may not be the case with a small, isolated power-generation and distribution system; in this event the waveform should be checked with an oscilloscope. Negligible load across Y1-Y2 is also assumed, and this is the case with a vtvm input resistance of 11 megohms.

circuit parameters

While nearly any available stepdown transformer may be used for T1, one that puts ac voltage across X1-X2, which permits ac and dc voltages to be read high on one scale of the vtvm, is preferable. If the vtvm has typical voltage scales of 0-1.5, 0-5, 0-15, etc., a small 6.3 Vac filament transformer is satisfactory. The open-circuit voltage, which is essentially that across X1-X2, will probably be 7-8 volts or so; this permits reading ac and dc voltages well upscale on the 0-15 volt range of the vtvm. A better choice might be a transformer that places 32-35 volts across X1-X2. In this case, both readings would be taken high up on the vtvm 0-50 volt scale. A transformer placing 12-14 volts or so across X1-X2 would be a poorer choice, since the dc voltage would be read well down on the 0-50 volt scale. Connecting X1-X2 directly across the ac power mains is definitely not recommended. Not only would a situation similar to that just cited occur, but the practice is very hazardous.

circuit constants

C1 and C2 may be almost any capacitors upward of about 0.5 µF. It is important that they have high leakage resistance. This requirement is easily met by tantalum or mylar-paper capacitors. Ordinary electrolytic capacitors may be used if the leakage resistance is high, although there appears little reason to use them. Capacitance is not at all critical. Capacitors between 0.22 and 80 µF have been used with no discernible difference in results. A difference in meter deflection just starts showing when the capacitance is reduced to 0.1 µF. Unnecessarily high capacitance is to be avoided, otherwise the voltage across C1 will change slowly when downward changes in ac line voltage occur. This lag makes calibration more time consuming, and possibly adds a little uncertainty in measurements. R1 may be omitted unless high capacitance is used.

Diodes CR1 and CR2 are International Resistor 170 or HEP 170, but they may be any good silicon diodes. Voltage drop across the HEP 170s, measured as described above, was 0.30 volt, with 45 volts across Y1-Y2. This drop remained constant with decreasing voltages across Y1-Y2 to 10 volts. With 5 volts across Y1-Y2, the CR voltage drop was 0.27 volt. Twelve HEP 170s were tested; 10 showed the same drop of 0.30 volt and two had just slightly less drop, with 45 volts across Y1-Y2.

In conclusion, there are a number of variables and therefore it's not possible to predict the accuracy to be expected after calibrating the vtvm ac ranges as described; however, it's likely to be better than that obtained by the usual methods of calibration.

†The vtvm common input is usually grounded to the chassis and metal case. If the common lead happened to be connected to the hot side of the ac line (a practically even chance), the full line voltage would be between the vtvm case and ground.

reference

1. Daniel A. Gomez-Ibanez, W691CI, "Calibrating a DC VTVM or FET VOM," QST, September, 1975, page 44.

ham radio
Everything you put into ham radio comes together at your antenna. That's why we put everything we've got into making Swan antennas the best you can buy.

Swan beam antennas are precision engineered to give you a full 2000-watt P.E.P. rating. They're designed for a VSWR of 1.5:1 or better at resonance. They'll give you optimum gain and they're built tough and rugged to stand up to some of the meanest environments.

Don't lose it right where it all comes together. Get one of these Swan beam antennas and top off your rig with a winner. Use your Swan credit card. Applications at your dealer or write to us.

TB-4HA
Heavy-duty, four-working-element antenna for 10, 15 and 20 meters. $249.95

TB-3HA
Heavy-duty, three-working-element antenna for 10, 15 and 20 meters. $189.95

TB-2A
Light-weight, two-working-element antenna for 10, 15 and 20 meters. $129.95

MB-40H
Heavy-duty, two-working-element antenna for 40 meters. $199.95

Ask about our 1040V trap vertical for 10 thru 40 meters with optional 75-meter add-on kit.

(Prices FOB Oceanside, CA)

Dealers throughout the world or order direct from

SWAN ELECTRONICS
A subsidiary of Cubic Corporation
305 Airport Road, Oceanside, CA 92054
(714) 757-7525

DON'T LOSE IT HERE.
Everybody wants the ultimate ham station, but the only way most of us are going to get it is to start now and grow into it. And the best way to start is with our 700CX.

Then you'll have an excellent transceiver with 700 solid watts P.E.P. input of SSB power at the lowest cost per watt—about a buck—of any comparable equipment.

And when you're ready to add capability and features, plug in or hook up Swan accessory equipment for easy expandability. For instance, just plug in our 510-X crystal oscillator when you want extra frequency coverage. Want VOX? Plug in the Swan VX-2 and start talking, or hook up our FP-1 telephone patch in minutes.

And when you're ready for that big jump to all-the-law-allows, our 2000 watt P.E.P. input Mark II linear amp is waiting in the wings.

Add our complete selection of power supplies, microphones and other options and you've got everything you need for a full-house rig in matching specs and matching decor.

So your ham station will look and perform like it belongs together.

The 700CX is designed to handle problems like cross-modulation and front end overload. And you get all bands from 10 to 80 meters with selectable upper or lower sideband, AM, or CW with sidetone.

Get started on your dream rig today. See the 700CX and all of its accessories at your nearest Swan dealer. Use your Swan credit card. Applications at your dealer or write to us.

SWAN 700CX TRANSCEIVER.

IT'S THE WAY TO GROW.
the MPC1000 — super regulator

This versatile IC from Motorola provides up to 10 amps at any voltage to 35 volts — here are some typical applications

Just a few years ago a 5-volt, 10-amp, regulated power supply boasting 0.1 per cent regulation required many transistors, diodes and resistors. With the advent of power-regulator integrated circuits, the number of components has been reduced to less than a dozen. Now the Motorola MPC1000 reduces the complexity further as the need for an external pass transistor and associated current-limiting circuitry is eliminated.

While there are many applications where several 1-amp three-terminal regulators can be used, many applications simply require 10-amp capability from one regulator. For example, many solid-state power amplifiers require up to 10 amps at 28 volts with excellent voltage regulation to prevent generation of modulation products which result from changes in V_{cc}. Other uses include large digital projects such as counters, memories, and power supplies at a repeater site.

MPC1000 voltage regulator

The MPC1000 is a positive voltage regulator capable of providing up to 10 amps output current at any voltage to 35 volts. Certainly this device represents a further step in the development of voltage regulator ICs compared with the common 1-amp and 150-mA devices.

An additional feature of the MPC1000 is that it can be used in applications requiring negative voltages.

Since the MPC1000 can dissipate 100 watts, if you do require the full 10 amps you should choose a power transformer with a secondary voltage that doesn’t exceed...

By Gary L. Tater, W3HUC, 7925 Nottingham Way, Ellicott City, Maryland 21043
Table 1. Electrical characteristics of the Motorola MPC1000 high-power voltage-regulator IC.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range or Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, (V_{in})</td>
<td>+40 volts max</td>
</tr>
<tr>
<td>Output voltage, (V_{out})</td>
<td>+2 — +35 volts</td>
</tr>
<tr>
<td>Voltage reference, (V_{ref})</td>
<td>7.15 ± 0.35 volts</td>
</tr>
<tr>
<td>Output current, (I_L)</td>
<td>10 amps</td>
</tr>
<tr>
<td>Internal power dissipation at 25°C, (P_d)</td>
<td>100 watts</td>
</tr>
<tr>
<td>Quiescent current, (I_Q)</td>
<td>5 mA</td>
</tr>
<tr>
<td>Line regulation, (V_{in} = 12-15) volts</td>
<td>0.1% (V_{out})</td>
</tr>
<tr>
<td>Line regulation, (V_{in} = 12-40) volts</td>
<td>0.5% (V_{out})</td>
</tr>
<tr>
<td>Load regulation, (I_L = 0.1-4) amp</td>
<td>0.1% (V_{out})</td>
</tr>
</tbody>
</table>

ceed the output voltage from the IC by more than 10 volts. Table 1 lists the electrical characteristics needed to use the MPC1000.

The basic positive voltage regulator circuit for voltages below the reference voltage (7.15 ± 0.35 volts) for the MPC1000 is shown in fig. 1. For output voltages above 7 volts, the circuit in fig. 2 should be used. Each includes equations for choosing the three resistors that set the output voltage.

Both circuits require a 0.1 µF capacitor at the IC input. If the input to the pass transistor (case) and the input to the rest of the regulator (pin 6) are separated, each would require a 0.1 µF capacitor. Such a situation would arise when you wish to operate the series pass transistor at a lower voltage than the rest of the IC to minimize heat dissipation within the device.

The current-limiting resistor, \(R_{CC} \), typically runs from 0.66-0.066 ohms. If you have a resistance bridge, you can cut a length of wire to the exact resistance value by successively cutting off wire until that value is reached.

Table 2 lists information to approximate the length of wire needed. If you use this table, I recommend you cut the wire at least 50 percent longer than the calculated amount, then put a resistive load on the completed power supply. If your calculations were correct, the supply will immediately shut down. The short-circuit resistor can now be shortened by small increments until your current requirements are met. Although this procedure may require several cuts, it's the safest method to use if you don't have an instrument that measures low values of resistance.

Mounting

To realize the maximum ratings of this device, the MPC1000 should be mounted on a good heatsink. A simple heatsink mounting-hole pattern is shown in fig. 3A. I didn't have a 9/16-inch (14.5mm) punch, so I substituted a 5/8-inch (16mm) hole, which reduced the thermal path from the IC. A mica washer and socket are available from the manufacturer under the part number MK662.

If you want the regulator on the rear apron of a chassis to dissipate heat, a handy solution for making

Table 1. Electrical characteristics of the Motorola MPC1000 high-power voltage-regulator IC.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range or Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, (V_{in})</td>
<td>+40 volts max</td>
</tr>
<tr>
<td>Output voltage, (V_{out})</td>
<td>+2 — +35 volts</td>
</tr>
<tr>
<td>Voltage reference, (V_{ref})</td>
<td>7.15 ± 0.35 volts</td>
</tr>
<tr>
<td>Output current, (I_L)</td>
<td>10 amps</td>
</tr>
<tr>
<td>Internal power dissipation at 25°C, (P_d)</td>
<td>100 watts</td>
</tr>
<tr>
<td>Quiescent current, (I_Q)</td>
<td>5 mA</td>
</tr>
<tr>
<td>Line regulation, (V_{in} = 12-15) volts</td>
<td>0.1% (V_{out})</td>
</tr>
<tr>
<td>Line regulation, (V_{in} = 12-40) volts</td>
<td>0.5% (V_{out})</td>
</tr>
<tr>
<td>Load regulation, (I_L = 0.1-4) amp</td>
<td>0.1% (V_{out})</td>
</tr>
</tbody>
</table>

Table 2. Data for computing the length of wire for the short-circuit sensing resistor, \(R_{CC} \), in the regulator output circuit. Wire should be cut 50 per cent longer than lengths shown, then trimmed to obtain the required pass current.

<table>
<thead>
<tr>
<th>Copper wire size</th>
<th>Length (ft)</th>
<th>Resistance per 1000 ft (m) (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 (1.3)</td>
<td>15.5 (4.7)</td>
<td>4.096 (1.25)</td>
</tr>
<tr>
<td>18 (1.0)</td>
<td>10.0 (3.0)</td>
<td>6.510 (1.98)</td>
</tr>
<tr>
<td>20 (0.8)</td>
<td>6.6 (2.0)</td>
<td>10.35 (3.15)</td>
</tr>
<tr>
<td>22 (0.6)</td>
<td>4.0 (1.2)</td>
<td>16.46 (5.0)</td>
</tr>
</tbody>
</table>

Notes:

- Dimensions in inches (mm)
- NONINVERTING INPUT
- INVERTING CURRENT SENSE
- COMPENSATION CURRENT LIMIT
- NOTE CASE IS \(V_{in} \)
- fig. 3. Mounting-hole pattern, A, and base diagram, B, of the MPC1000 voltage-regulator IC. A 9-pin tube socket makes a good mount — but observe pin-number sequence.

Figures:

- fig. 2. The MPC1000 as a positive voltage regulator for voltages above the reference voltage, \(V_{ref} \).
- fig. 3. Mounting-hole pattern, A, and base diagram, B, of the MPC1000 voltage-regulator IC. A 9-pin tube socket makes a good mount — but observe pin-number sequence.
- fig. 4. High-current, 28-volt regulator for high-power rf applications.
contact to the pins is to use a 9-pin miniature tube socket. Fig. 3B shows a bottom view of the pin connections. Note that the pins are not numbered sequentially.

practical circuits

I needed a 28-volt, 7-amp supply to power an fm Skyphone that I had converted from 459 to 432 MHz CW for Oscar 7, so I built the circuit in fig. 4 first. I used a 30-volt transformer with a bridge rectifier, which

![fig. 5. A 5-volt regulator suitable for high-current applications.](image)

worked well when the short-circuit sensing resistor, R_{SC}, was adjusted properly. The initial shunt resistor was too long and caused the IC to shut down during key down. I removed two feet of wire from the homemade resistor, and the power regulator worked as advertised.

If you need several amps at 5 volts for a large TTL project, the circuit in fig. 5 should be useful. For a typical 8-digit frequency counter, which could require 3 or more amps, this one IC and its associated components could replace up to 4 three-terminal regulators.

![fig. 6. Regulator for providing +15 and -15 volts at 10 amps. T1 should supply 18-24 volts rms from each secondary winding.](image)

The circuit in fig. 6 illustrates another feature of the MPC1000: two can be used to produce negative and positive supply voltages. The example in fig. 6 shows a high-current supply with a positive and negative 15-volt output.

Clearly, the MPC1000 is a versatile IC that can provide a quality high-current regulated power supply for your projects.
Super Mast
Small in a big way.

For the low profile Ham operator.

It had to happen! The enormous success of Tri-Ex's original Sky Needle—by popular demand—has brought about the design of a miniature Sky Needle for the Tri-Band Beam. We call it Super Mast.

Shown here in its nested position at 21-feet, this Super Mast is supporting a three element 15 meter antenna & rotor assembly. Rush your order now. Visit or call your local Tri-Ex Tower dealer today. Price of this under-$300-tower, because of rising steel costs, is subject to immediate change. Order now and save!

7182 Rasmussen Avenue, Visalia, Calif. 93277
how to clean printed-circuit boards

Here are some straightforward methods for cleaning PC boards after you have installed the components

There are still many amateurs who despite the efforts in obtaining parts, build their own equipment. The use of solid-state devices makes it mandatory that, at one time or another, the assemblies be done on printed-circuit boards. There has been a good deal of information published in the amateur magazines pertaining to board fabrication — from the original artwork through to the final piece. This short article presents information on the final step in the process and provides some answers to that age old question, "Is a clean board really necessary?"

All of us have noted that commercially manufactured equipment shows no globs of rosin or other soils (if they are there, don't buy it). Since it costs something to obtain that result, we must assume that there is a good electrical reason -- as opposed to cosmetic -- for the added expense and there is. Further, there is an extensive military specification for board cleanliness. To fully appreciate the problem and its solution let’s talk a little about dirt. Since I have no intention of giving a chemistry lesson, suffice it to say that there are two kinds of soil that remain on circuit boards after you finish etching, drilling, inserting parts (also known as stuffing), and soldering. One is called polar or ionic and consists mainly of the residue from plating baths, etchants and, most important of all, residues of oil from your fingers. The latter is the most insidious. (As a point of information, it is an acknowledged industry fact that the residue from female fingers is different than that from male fingers). All the residues behave differently under varying climatic conditions. If your circuit board is to be used in a humid atmosphere -- and where is the place where there is no moisture in the air -- the finger soil should be cleaned off with a solvent that will dissolve ionic material. I’ll get into details in a moment because, as you will discover, we really need two different solvents for a perfect cleaning job.

The most noticeable residue found on PC boards and least potentially harmful is the hardened rosin residue of the flux. Rosin-based flux is a necessary evil used in all soldering operations. It is the best and safest remover of oxides of copper we have available and in order to make good solder joints the copper must be clean. Many claims have been made regarding so-called water soluble fluxes, which are highly active ammonium salts; I’m sure their use is advantageous in some instances, but I’m old fashioned and still prefer rosin-based systems. The residue from rosin-based fluxes is non-polar (non-ionic) and requires the use of non-polar or non-ionic solvents to dissolve it. Ionic residue can cause corrosion and shorting between conductors on a board because it can become conductive. On the other hand, rosin residues are insulators when dry and not decomposed; heat with humidity can cause rosin residues to decompose and become conductive.

How then can we insure that all our hard work will result in a working assembly over a long period of time under all conditions of environment? We clean the board with proper solvents using correct procedures. For the two types of soil there are two types of cleaner: polar and non-polar solvents. Water and alcohol are examples of polar solvents; chlorinated and flourinated hydrocarbons are examples of non-polar solvents. Trichloroethylene, trichloroethane, perchloroethylene and trichlorotrifluoroethane are some examples of non-polar solvents. Now that I have impressed you with a lot of fancy words, let’s get down to practical cases. It is definitely advisable to clean off your boards, and there are several sources for some of the mouth-crackers listed above. It is certainly not difficult to find water although it is industry practice to buy de-ionized water to reduce contaminating residue contained in tap water. The alcohol is not the drinking kind but ethyl or propyl alcohol; 80% strength rubbing alcohol available in drug stores is suitable. Remember, the finger soil you want to remove is usually not visible, so just clean off the board with a brush dipped in the alcohol.

Obtaining and using a non-polar cleaner is not much more difficult. Trichloroethane, the recommended cleaning agent (also known as Trichloroethane 1,1,1; By Budd Meyer, K2PMA, 6505 Yellowstone Boulevard, Forest Hills, New York 11375
chloroethene NU; VG), is available in electronic stores and from Miller-Stephenson* in spray cans. Not the least expensive way, but convenient. Freon TE is also available in spray cans. Another source, available in supermarkets in quart cans is Afta, a trichloroethylene-based household cleaner. Unfortunately trichloroethylene, as opposed to trichloroethane, can be hazardous if used improperly.

The methodology involved is to flood the area to be cleaned with clean solvent and scrub the area with a brush. I have found that the most effective method is to wet a local area, use a paste brush to scrub the area, then blow on the area or use a fan to assist in rapid evaporation. In industrial use the entire board is either immersed in a sump. Heating coils cause the volatile liquid to evaporate rapidly and become a "fog" just above the liquid. The boards are lowered into the fog and the condensate carrying the soil returns back to the sump. This allows the residues to eventually be separated from the fluid, which can be used many times after it has been cleaned up.

You must be cautioned that in recent years it has been discovered that chlorinated hydrocarbons wreak havoc with electrolytic capacitors. The most serious result is that the destruct phase doesn't occur until after many months or years of use. Avoid, with a passion, getting any of these solvents on or around the plugs (insulators) at the positive terminal of electrolytics. Alcohol won't cause any damage as far as is known — but neither will it clean up rosin residues. To emphasize how important this is, electrolytic capacitors that must be cleaned in trichlor now have an additional epoxy seal covering the positive end, and the manufacturers, having recognized the problem, are coming on line with new approaches to sealing the cans with new materials. Also be sure to keep trichlor away from polystyrene parts such as capacitors and trimmer capacitors. They will melt — literally! You should also be cautioned against using trichloroethylene in any place but a well ventilated area and to keep the amount of fluid coming into contact with skin to the barest minimum. If in doubt stick to trichloroethane.

Obviously, the ideal solution would be a mixture of polar and non-polar cleaners. These are available from solder manufacturers, usually under proprietary names, but unless you're willing to buy by the gallon, forget it. Localized cleaning is adequate for the small quantity boards amateurs have to make, and despite all the negative connotations noted above, it can be accomplished safely with care and common sense. Most of your cleaning will be on the copper side of the board away from the components. At the least, removing as much of the residues as possible results in a professional looking board, requires little effort, and will go a long way toward insuring reliability.

OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101. Specify when ordering. $3.95 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106. Specify when ordering. $4.50 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mw, depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz, Cat. No. 035104. Specify when ordering. $4.75 ea.

OF-1 OSCILLATOR
Resistor/capacitor circuit provides osc over a range of freq with the desired crystal. 2 to 22 MHz, OF-1 LO, Cat. No. 035108. 18 to 60 MHz, OF-1 HI, Cat. No. 035109. Specify when ordering. $3.25 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103. Specify when ordering. $4.50 ea.

DAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat No. 035107. Specify when ordering. $4.75 ea.

.02% Calibration Tolerance
EXPERIMENTER CRYSTALS
(HC 6/U Holder)

Cat. No. Specifications
031080 3 to 20 MHz — for use in OX OSC Lo
Specify when ordering $4.95 ea.
031081 20 to 60 MHz — For use in OX OSC HI
Specify when ordering $4.95 ea.
031300 3 to 20 MHz — For use in OF-1L OSC
Specify when ordering $4.25 ea.
031310 20 to 60 MHz — For use in OF-1H OSC
Specify when ordering $4.25 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102

More Details? CHECK-OFF Page 126
The Drake T-4XC transmitter
- Covers 10 thru 160 meters, 80 thru 10 meters, crystals furnished - Upper and lower sideband - 200 watts P.E.P. input on SSB and CW - Controlled carrier modulation for AM - VOX or PTT on SSB or AM, built-in-Adjust Pi-Network output - USB, LSB, AM and CW on all bands - 28-pole crystal-lattice filters for SSB selection - Transmitting AGC prevents flat-topping - Solid state permeability tuned VFO-Solid state HF crystal oscillator.

List price 599.95

The Drake C-4 station console
- 24 hr. digital clock - Solid state resettable timer - Station power control with eight 120 VAC and two 240 VAC receptacles, front panel controlled heavy duty power contractor - Equipment control switch changes exciters, receivers - Directional RF wattmeter with 200 or 2000 W full scale - Built-in-rotor control for Ham-M - Electronic phone patch gives const. xmt. input, works PTT, meet phone co. req. - Remote motor-driven coax switch selects from 5 antennas.

List price 419.00

The Drake R-4C receiver
- Covers 10 thru 80 meters (10 thru 160 meters with accessory crystals) - Linear permeability - tuned VFO - Electronic passband tuning - Notch filter and 25 kHz crystal calibrator - Crystal lattice filter - Three AGC release times - Modes of operation: SSB, CW, AM, RTTY, SSTV, 15 accessory crystal sockets provided - Product detector for SSB/CW, diode detector for AM.

List price 599.95

More exceptional ham radio values...

List price 599.95

Drake W-4 wattmeter - Covers 2 thru 30 MHz - 2000 watts continuous duty - Imp.50 ohms resistive - Insertion of wattmeter in line changes VSWR no more than 1.05 to 1 - Accuracy +5% of reading.

List price 72.00

Drake FS-4 frequency synthesizer - Provides the injection signal required for continuous frequency coverage on the Following Drake equipment: R-4 receivers, T-4X transmitters, SPR-4 receivers, and the 2-C receivers above 7 MHz.

List price 250.00

A word from Jim...

I'm sure it does not impress you to see a hundred different manufacturers trademarks listed beside our name and nothing in stock. At Long's Electronics we try to stock all of the items in the product lines we carry. So, call us toll-free 1-800-633-3410, and see if we can help you. We also service what we sell.

Sincerely,
Jim Long W4ZRZ

Call Toll-free
1-800-633-3410 for Long's Electronics price on any ham item

Long's Electronics
3521 10th Ave. N.
Birmingham, Alabama 35234

September 1976 59

More Details? CHECK-OFF Page 126
troubleshooting transistor circuits

In this installment of Repair Bench I’ll discuss troubleshooting of bipolar transistor circuits. The principal test equipment will be the VOM or VTVM and, if you prefer, a transistor tester. First let’s review some things about transistors that might affect servicing and troubleshooting.

preliminary considerations

In fig. 1A a stylized NPN transistor is shown with its base-to-emitter junction connected across a power supply that causes it to be reverse biased. In this condition, charge carriers will be drawn away from the region at the junction, creating a relatively wide depletion zone. This allows only a very small current to flow across the junction. In fig. 1B the base-to-emitter bias voltage is changed so that the base-emitter junction is forward biased. Charge carriers are repelled by the battery polarity and are driven toward the junction barrier. Here they can combine with oppositely charged carriers from across the junction.

Figs. 2A and 2B show proper forward-bias-voltage relationships for NPN and PNP transistors respectively. In an NPN transistor circuit the base is positive with respect to the emitter by approximately 0.7 volt for silicon and 0.2 volt for germanium types. PNP transistors have about the same values of voltage drop across the base-emitter junction, but it is of opposite polarity. On these transistors the base is more negative (or less positive) than the emitter. (Keep in mind that these polarities are relative quantities).

A PNP transistor, as in the example of fig. 3, is still correctly biased despite the fact that the voltages on the elements are positive with respect to ground. Since the base is at 9.3 volts and the emitter at 10.0 volts, the base

Table 1. Junction voltages to be expected in a normally operating transistor amplifier. Values for silicon devices are shown, followed by those for germanium (in parentheses). Readings 1 and 3 were taken with the minus meter probe on the emitter; reading 2 was taken with the minus probe on the transistor base.

<table>
<thead>
<tr>
<th>Junction</th>
<th>NPN</th>
<th>PNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Base-to-emitter</td>
<td>+0.7 (0.2)</td>
<td>-0.7 (0.2)</td>
</tr>
<tr>
<td>2. Collector-to-base</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>3. Collector-to-emitter</td>
<td>++</td>
<td>-</td>
</tr>
</tbody>
</table>

Joe Carr, K4IPV
will measure - 0.7 volt with respect to the emitter. Table 1 gives voltage levels to be expected in a normally operating transistor amplifier stage. These voltages may not hold, however, in control circuits (such as squelch) or pulse circuits where the transistor may be reversed biased in one mode or another.

dc voltage checks

Any transistor stage has several dc voltages of interest to the troubleshooter. You want to measure the voltage drop across the emitter and collector load resistors and the base-emitter bias voltage. From these measurements you should be able to spot most faults. Of course, a circuit diagram that shows correct values would be of immense use, but it's not always necessary if you know what "ballpark" levels to expect.

Perhaps the best method for learning the pattern of dc voltages that might be expected in the more common forms of transistor failure is the "case-history" approach. Assume that you have isolated the fault to a stage such as in fig. 4 using signal tracing, signal injection or some other technique. Make the dc voltage measurements shown circled in fig. 4. Note that the emitter voltage is zero. Unless somebody has successfully repudiated Mr. Ohm, you're safe in assuming that the emitter current is also zero. You can also conclude that the collector current is either zero or at a very low value, because the collector voltage is close to the source voltage: a level about $V_{cc}/2$ would be normal. Measuring the base-to-emitter bias voltage, you find 10.7 volts instead of 0.7 volt. These symptoms usually point to an open base-to-emitter junction in the transistor. An ohmmeter or transistor checker will tell the tale if you're still in doubt.

Fig. 5 shows another common defect and its voltage relationships. The emitter voltage is about 0.27 volt, which results in a very low emitter current. Since you again have a collector voltage (17.4 volts) almost equal to V_{cc} (18 volts), you can say that no significant collector-emitter current is flowing. The base-to-emitter voltage, however, is almost normal, so this junction is probably all right. In this case the collector-to-base junction is open.

A further common fault in transistor circuits is shown in fig. 6. Measurements show a low collector voltage equal or a voltage very close to the emitter voltage. This transistor probably has a collector-to-emitter short circuit. If enough power has been dissipated, this effect may cause collector and emitter resistors to burnout. This condition almost always occurs in class-A audio amplifiers.

transistor testers

Once you’ve decided that a particular transistor is suspect, you might wish to make further tests using one of the many transistor checkers on the market. Simple instruments that claim to measure transistor beta are available at low cost, both ready built and in kit form. Be aware that the really inexpensive checkers might be
too simple to give an accurate picture of the transistor's characteristics. The best transistor checker for ordinary service will provide some means for varying base current so you can determine whether the transistor base is able to control collector current.

An ohmmeter can be used as a transistor checker and can tell you quite a bit about the device under test. Certain precautions must be observed, however, as to the types of ohmmeters that are acceptable. Determine what type battery is used in the ohms section of your meter. If it's more than 1.5 volts, you may ruin as many transistors as you test! Some older instruments use battery voltages as high as 22.5 volts for the ohmmeter sections.

Alternatively, some modern fet voltmeters have an ohmmeter source voltage that is too low for use as a "Transistor tester." This is a double-edged situation, because a desirable feature of such instruments is that they can be used to make in-circuit resistance measurements without removing the semiconductor devices. It is this very feature, however, that eliminates the instrument as a transistor tester. The dc voltage across the ohmmeter probes is too low to forward bias the pn junctions.

Test each junction separately by measuring its resistance twice (fig. 7). Measure the resistance the second time with the probes reversed from the direction used on the first try. Transistor junctions can be viewed as pn diodes and will not pass current in both directions under normal circumstances, so a very high resistance should occur in one direction and a much lower resistance in the opposite direction.

Normally, the reverse-forward ratio should be greater than 10:1. Check both base-to-emitter and collector-to-base junctions in this same manner. On power transistors use the RX1 scale, and on small transistors use the RX100 and RX1000 scales. If too low a resistance scale is used on those small transistors you may blow the junction.

Collector-to-emitter leakage may be checked in the same manner. Make two readings and take the higher one as the leakage resistance. The higher the better, and if it approaches your ohmmeter's idea of "infinity" so much the better. While making this test, you can also ascertain whether the base can control collector current.

Connect the ohmmeter probes between collector and emitter. Next, short the base to the collector and note whether the resistance reading drops. If there is no response, reverse the probes and try again. If again there is no response, assume the transistor is dead.

which stage is bad?

Signal tracing or signal injection techniques may provide the answer. However, a high-amplitude signal from a signal generator, or a transient generated when connection is made, may shock excite the defective transistor into normal operation. A far better technique would be to use dc analysis initially, then use one of the more traditional techniques only if the dc test fails.

Dc signal tracing requires only a vtvm or high-impedance vom. Fig. 8 shows the transistor lineup in a typical vhf fm receiver. This unit uses npn transistors, so ground the voltmeter minus probe, then use the positive probe to measure the voltage at each emitter in succession. Loss of emitter voltage indicates an open transistor or some defect that causes bias to be removed. The dc level tells you "this is the bad stage," and from there you can ascertain what's wrong. A higher-than-normal...
emitter voltage, on the other hand, indicates a leaky or shorted transistor.

Rf amplifiers and some gain-controlled i-f amplifier stages may yield false negative results when this test is used because of agc action. If you can't disable the agc, try rocking the tuning dial back and forth while noting meter readings. The agc-controlled stage will show voltage variations as the dial is tuned across incoming stations. Although the agc can foul you up when troubleshooting, it can nevertheless be used to advantage. If the emitter voltage in this stage (or the collector voltage in some pnp rigs) varies as the dial is tuned across an active band, you can be pretty sure the defect is not between the antenna input terminals and the point where the i-f signal is sampled for the agc drive.

An S-meter can be used instead of a voltmeter as an overall check. Note whether the S-meter deflects normally as the receiver is tuned across the band. If it does then look elsewhere; if no S-meter deflection occurs, a problem exists within the agc loop.

A similar technique may be used to troubleshoot receivers that use pnp transistors, with modifications in procedure to account for the difference in transistor polarity. (In both cases assume that negative grounding is used — a fair assumption in most mobile equipment, but one possibly tinged with errors in some home equipment). In a pnp stage, connect the voltmeter positive probe to the B+ line and use the minus probe to measure the emitter resistor voltage drop (fig. 9). Most receivers use a fairly hefty electrolytic capacitor to decouple the B+ line; this component may often be used as a point of identification if no schematic is available. As in the case of npn stages, the voltage drop at the emitter resistor can give clues as to device malfunction.

The oscillator stage can be checked using dc analysis techniques as an indicator of oscillation (but not of oscillation frequency). Connect a voltmeter across the emitter resistor, using whichever procedure is applicable to the transistor polarity. Tune the dial from one end of the band to the other. The emitter-resistor voltage drop will vary as the dial is tuned. This change will be greater on general coverage-receivers than on amateur-band-only models; but, even in the latter, some change will be noted. In crystal oscillators, sometimes a change in emitter-resistor voltage drop will occur when the crystal is removed from the circuit. In either case, the change identifies oscillation.

caution note

Vacuum-tube test equipment is tolerant of some abuse, but transistorized equipment is not always so forgiving. Use of ungrounded ac-powered test equipment can easily generate both transient and steady-state voltage levels, which are quite capable of destroying transistors. Ground the cases of your test equipment. Two-wire power cords always identify ungrounded test equipment. For safety reasons it's wise to convert to three-wire power cords, in which the third wire is grounded to the chassis and cabinet. Of course, this only applies to equipment which is not ac/dc.

Grounded test equipment can create problems when troubleshooting, as in fig. 9, where the grounded case might be connected to the voltmeter minus probe. In that case, you must use either a battery-operated voltmeter such as a vvm or fetvm, or a voltmeter which, although ac powered, isolates both input probes from chassis. This, incidentally, seems to be the way many modern digital voltimeters are being made.

conclusion

The material presented here is intended for the average amateur who likes to service his own equipment. I've tried to cover the most likely problems that may be encountered. The procedures given should prove useful and will allow you to get back on the air as soon as possible without spending a lot of money for a repair bill.
Heathkit Transceivers

Read about these and all the other outstanding Heathkit Amateur Radio products in the NEW Heathkit Catalog. Yours FREE! Send coupon today!

Heath Company, Dept. 122-21
Benton Harbor, Michigan 49022
THE SB-104. Acclaimed as the world’s finest Amateur Transceiver. For features and operating convenience, for specifications and performance, you simply won’t find a better transceiver than the SB-104. Completely solid-state, totally broadbanded, TRUE digital readout with resolution to 100 Hz! Instant QSY - choose the band, dial the frequency, select your mode and go - no more preselector, load or tune controls. The transmitter delivers 100 watts output and, for QRP’ers, a front panel switch selects 1 watt out. The signal is clean and strong, with harmonic and spurious radiation below 2 μV, third order distortion down 30 dB and unwanted sideband suppression down 55 dB. Receiver sensitivity is 1 μV for 10 dB S+N/N; selectivity is 2.1 kHz at 8 dB down. There’s a 15 MHz WWV position on the bandswitch; 30 kHz per revolution spinner knob; tune button for loading linears; ALC/relative power/“S” meter and more. The SB-104 operates directly from a 12-volt electrical system; for fixed station operation, use the HP-1144 power supply.

KIT SB-104 ...$669.95
Fixed Station Power Supply. KIT HP-1144$89.95
Speaker and cabinet. KIT SB-604$29.95

THE HW-104. Broadbanded design for instant QSY at a new low price! Has the same outstanding features and specifications of the SW-104 above, but with calibrated dial and 3.5 MHz to 29.0 MHz amateur band frequency coverage. A built-in 100 kHz and 25 kHz calibrator assures dial accuracy to within 2 kHz, the dial is calibrated in 5 kHz increments with 15 kHz per knob revolution. The VFO uses the same basic circuitry as the SB-104 and provides extremely stable operation with less than 100 Hz/hr. drift after warm-up. Operates from a 12-volt electrical system, use the HP-1144 power supply for fixed stations.

KIT HW-104 ...$489.95
Speaker and cabinet. KIT HS-1661$19.95
KIT HWA-104-1, 10-meter accessory for coverage to 29.7 MHz.$16.95

THE HW-101. A truly exceptional Amateur radio value. Has the features you NEED for operating ease, convenience and versatility. 180 watts input PEP 170 watts input CW gives you the power you need for first-class operation. Receiver sensitivity is 0.35 μV for 10 dB S+N/N (SSB) and selectivity is 2.1 kHz minimum at 6 dB down. Has a stable FET VFO; PTT and VOX with anti-trip; triple action level control. The smooth dial drive has a 36-1 ratio and a built-in 100 kHz crystal calibrator lets you accurately calibrate the dial at 100 kHz intervals. A four-function front panel meter shows signal strength, ALC transmit voltage, relative power output or final cathode current. Has full controls, inputs and outputs, full 80-10 meter amateur band coverage. Operates fixed station or mobile with power supplies below.

KIT HW-101 ...$339.95
Fixed Station Power Supply. KIT HP-23B$57.95
Mobile Power Supply. KIT HP-138$84.95
400 Hz CW Crystal Filter. SBA-301-2$29.95

Prices and Specifications subject to change without notice.
interfacing a digital multimeter with an 8080-based microcomputer

This month we'll discuss the interfacing of an 8080-based microcomputer with a very versatile laboratory instrument, the Keithley model 160B digital multimeter with model 1602B digital output. We purchased this multimeter one year ago and found it to be an excellent example of what manufacturers can do to facilitate the interfacing of their instruments.

The Keithley model 160B is a general-purpose 3½-digit multimeter that can function as a dc voltmeter, dc ammeter, or ohmmeter. Twenty-six different ranges exist for the multimeter in its three modes of operation. The lowest range scales provide maximum readings of 1.999 mV, 19.99 nA, and 1.999 ohms. The 1.999 mV scale has an accuracy of ±0.1% of reading ±1 digit. Thus, a display reading of 1.000 mV will have an uncertainty of ±0.002 mV, or 2 µV. The highest possible readings associated with the three different modes of operation are 1200 volts, 1999 mA, and 1999 megohms, with the megohm reading accurate to only ±30%. This multimeter can be viewed as the digital complement of the ubiquitous multirange chart recorder.

The multimeter is basically a sophisticated analog-to-digital converter (ADC) that can handle most laboratory requirements for a digital data acquisition provided the data acquisition rate is no greater than one data point per second. Switching between the 26 different ranges is performed manually. We would expect that, in the future, such switching will be performed by a built-in microprocessor operating under the control of an external computer.

The basic point of this month's column is the full interface circuit, shown in fig. 1, between the Keithley model 160B and a small development 8080-based microcomputer. The two OR gates and the SN74154 decoder generate the three different device select pulses required to input data from the Keithley meter to the 8080 microcomputer. Note the input at pin 18 of the SN74154 decoder. This interface circuit takes advantage of the fact that all outputs from the 1602B digital output board are open collector and can be bussed together as in fig. 1. The noun, bus, can be defined as follows:

A path over which digital information is transferred, from any of several sources to any of several destinations. Only one transfer of information can take place at any one time. While such transfer is taking place, all other sources tied to the bus must be disabled.

Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Jonathan Titus is President of Tychon Inc., Blacksburg, Virginia.

By David G. Larsen, WB4HYJ, Peter R. Rony, and Jonathan Titus

Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Jonathan Titus is President of Tychon Inc., Blacksburg, Virginia.

The settling time of the multimeter is about two seconds. Although five data conversions can be made per second, it may take about one second for the precision of a typical data point to reach 0.1% or 0.2%.
Notice how pins 16, 12, and 10 on the Model 1606 are connected to the same input, D7, of the 8080 microcomputer. These three pins are said to be bussed together. Pins 35, 31, and 28 are bussed together to input D6; pins 17, 13, and 9 to input D5; pins 36, 32, and 27 to input D4; and so on. The eight inputs to the 8080, D0 through D7, comprise an eight-bit data bus over which information passes, one group at a time, from the Keithley multimeter to the 8080 microcomputer.

The eight inputs to the 8080, D0 through D7, comprise an eight-bit data bus over which information passes, one group at a time, from the Keithley multimeter to the 8080 microcomputer. A simple program that accomplishes the data transfer from the multimeter to the microcomputer is provided in Table 1. The entire data acquisition and movement of data to registers C, D, and E occurs in 21 microseconds, a time that is fast when compared to the rate of five conversions per second by the multimeter. Clearly, considerable time is still available to the microcomputer.

Table 1. Microcomputer program that demonstrates the acquisition of 20 bits of data over the eight-bit data bus between the Keithley multimeter and the 8080 microcomputer shown in fig. 1.

<table>
<thead>
<tr>
<th>10 memory address</th>
<th>instruction byte</th>
<th>mnemonic</th>
<th>clock cycles</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>333</td>
<td>IN 5</td>
<td>10</td>
<td>Generate device-select pulse that strobes the 10⁰ and 10¹ digits into the accumulator</td>
</tr>
<tr>
<td>001</td>
<td>005</td>
<td>—</td>
<td>—</td>
<td>Device code for strobe inputs 1 and 2</td>
</tr>
<tr>
<td>002</td>
<td>117</td>
<td>MOV C,A</td>
<td>4</td>
<td>Move accumulator contents to register C</td>
</tr>
<tr>
<td>003</td>
<td>333</td>
<td>IN 4</td>
<td>10</td>
<td>Generate device-select pulse that strobes the 10⁰ digit, the 10³ bit, and the overload and polarity outputs into the accumulator</td>
</tr>
<tr>
<td>004</td>
<td>004</td>
<td>—</td>
<td>—</td>
<td>Device code for strobe inputs 3 and 4</td>
</tr>
<tr>
<td>005</td>
<td>127</td>
<td>MOV D,A</td>
<td>4</td>
<td>Move accumulator contents to register D</td>
</tr>
<tr>
<td>006</td>
<td>333</td>
<td>IN 3</td>
<td>10</td>
<td>Generate device-select pulse that strobes the Flag, Flag, DP1, DP2, and DP3 outputs into the accumulator</td>
</tr>
<tr>
<td>007</td>
<td>003</td>
<td>—</td>
<td>—</td>
<td>Device code for strobe inputs 5 and 6</td>
</tr>
<tr>
<td>010</td>
<td>137</td>
<td>MOV E,A</td>
<td>4</td>
<td>Move accumulator contents to register E</td>
</tr>
</tbody>
</table>

At this point, 20 data bits are stored in registers C, D, and E. The microcomputer can now take this information and manipulate it in different ways. With the aid of the BCD digits and DP1, DP2, and DP3, it can determine the magnitude of the input decimal number. With the aid of the polarity input, the sign of the decimal number can be determined.

In the definition of a bus, it is indicated that only one transfer of information can take place at any one time. In Fig. 1, this transfer is accomplished with the aid of the three sets of two strobe inputs. When a logic 0 is applied at strobes 1 and 2, the BCD codes corresponding to the 10⁰ and 10¹ digits are transferred to the 8080 accumulator. The strobe signal for strobe inputs 1 and 2 is provided as a negative device-select pulse from channel 5 of the SN74154 decoder chip. In a similar manner, strobes 3 and 4 and also 5 and 6 permit the acquisition by the microcomputer of the remaining output data from the Keithley multimeter. In summary, three device-select pulses permit strobing twenty output bits of data from the multimeter to the microcomputer over a set of eight data bus lines labeled D0 through D7.

Some additional explanation of Fig. 1 is appropriate. Not shown in the figure are eight 4700-ohm resistors that are the pull-up resistors for the eight open-collector bus lines. One pull-up resistor is required for each of the eight data bus inputs. One end of the resistor is tied to +5 volts and the other end to the bus line. These resistors are not shown in the diagram because they can be added to the circuit board within the Keithley multimeter. The 8080 data bus normally employs an alternative bussing technique called three-state bussing. The interface circuit of Fig. 1 represents a marriage of the two bussing techniques, open-collector and three-state. The 4700-ohm resistors do add a load to the data bus, but this does not prevent other devices from being tied to the bus provided each bus connection in the other devices can sink, in the logic 0 state, the additional 1 mA current produced by the 4700-ohm pull-up resistor.

microcomputer seminars
An introduction to interfacing, programming, and applications.
The course so widely acclaimed at SAROC & DAYTON
For individuals interested in learning about microcomputers and how to get started in applying them to real-world situations.

BOSTON, MASSACHUSETTS
In conjunction with the 1976 New England ARRL Convention

An all-day program including:
What is a microprocessor? A Microcomputer?
Where do microcomputers fit? What are appropriate applications?
Microcomputer interfacing: a. Bus structure; b. Control signals; c. Data flow
Microcomputer memory: a. Types of memory: RAM, ROM, and PROM; b. ROM/RAM trade-offs
Microcomputer Input/Output: a. Device addressing; b. Control of Input/Output; c. Communication with the outside world
Microcomputer interrupts and flags: a. Hardware vs software; b. Advantages and disadvantages of interrupt schemes; c. Timing
Microcomputer software: a. As a replacement for hardware; b. Modular approaches
Microcomputer peripherals and I/O port implementation: a. UARTS and communications chips; b. FIFOs and buffer storage; c. PPI chips; d. I/O port chips
Microcomputer software development: a. Machine language; b. Assembly language and editor/assemblers
How do I get started?: a. Equipment and materials; b. Texts; c. Costs: projections of time and money

Your instructors — one or more of the following

David G. Larsen, WB4HYJ*
Instructor, Department of Chemistry, Virginia Polytechnic Institute & State University

Dr. Peter R. Rony*
Professor, Department of Chemical Engineering, Virginia Polytechnic Institute & State University

Mr. Jonathan A. Titus*
President, Nanotran Inc., (Microcomputer consulting firm), General manager, Tychon, Inc.

Mr. Christopher Titus
Consultant
*One of the authors of the famous Bugbook series

Dates & Location:
Friday, Sept. 10 and Saturday, Sept. 11
Statler Hilton Hotel, Park Square, Boston, Mass.

Fee: $25 plus $35 for required textbooks (A complete set of Bugbooks I, II, III, and III.)

To enroll: Send $60 along with your name, address and telephone number to HAM RADIO. Be sure to indicate your choice of dates. May we suggest you hurry as registration is limited.

Greenville, NH 03048 603-878-1441

fig. 1. Interface circuit for a Keithley Model 160B multimeter and an 8080-based microcomputer.

At the beginning of this column, we stated that the Keithley multimeter is an example of what manufacturers can do to facilitate the interfacing of their instruments. In this case, what Keithley did was to provide open-collector outputs for all 20 output pins on the model 1602B digital output board. The added cost was small compared to the added value of the instrument. We expect future instruments to be microcomputer oriented in the sense that data bus outputs will be provided to permit direct interfacing of the instruments to microcomputers through simple wire interconnections. We hope these columns will encourage manufacturers to provide minicomputer- and microcomputer-oriented digital outputs and document such outputs as well as Keithley has done with their model 160B.

references
The Altair™ kit-a-month plan allows you to own an Altair mainframe without taxing your pocketbook. Mits has made it easy for you to purchase an 8800a, 8800b or 680b computer in monthly installments where you receive components with each payment. There are no financial charges because we have made each monthly shipment a kit in itself. This will give you time to read up on computers and/or gain knowledge from friends.

We have set up an Altair kit-a-month payment desk to service your needs. When writing or calling the factory for information about your shipment or account, just refer to the "kit-a-month payment desk."
OWN YOUR 680b IN FIVE EASY PAYMENTS

1st month 680b Manuals, Main and Display PC Boards, and membership in users group
2nd month 680b Case and Power Supply
3rd month Parts for 680b Display Board
4th month Parts for 680b Main Board less Integrated Circuits
5th month 680b Chips

$93.20 plus $2.00 per month make your payments $95.20 per month and you have your complete kit in five easy payments. This plan gives you the full 680b with memory and I/O. The BAUDOT Option is still $42.00 extra and may be purchased with Time Payment #4 or #5. Remittance of $95.20 will start you on your way to owning your own computer.

Alaska, Hawaii, APO and FPO customers include $3.00 per month for Air Parcel Post charges instead of $2.00 for regular Parcel Post shipment. This would make your payment $96.20 per month. Canadian customers include $3.00 per each month for postage and handling fees.

NOTE: This plan does not apply to foreign sales other than Canada.

NEW ALTAIR 8800B
Available on Time Payment Plan

$105.00 payment per month plus $2.00 postage and handling for each kit makes an easy $107.00 per month to own the newest of the Altair processors.

Send in your first $107.00 money order and start receiving your 8800B Kit by August 1, 1976.

8800B Month #1 Manuals
#2 EC-18
#3 Power Supply Board & Parts
#4 Transformer
#5 Display Board & Parts
#6 Case
#7 Main Chips
#8 CPU Board & Parts less 8080A

Alaska, Hawaii, APO and FPO customers please include $4.00 for shipping charges (making $109 per month payments) for Air Parcel Post shipment. Otherwise, shipment will come Parcel Post, not insured.

Canadian customers must accept month #6 Emery Airfreight Collect. All other months must include $4.00 postage and handling making monthly payments of $109.00.

$79.00 / Month

ALTAIR 8800A TIME PAYMENT PLAN

8800A Time Payment #1 8800A Manuals and Users Group Membership
#2 EC-18, PC Board and Hardware
#3 8800A Power Supply Kit
#4 8800A Case
#5 CPU PC Board and Bag of Parts less the main chip
#6 Main Processor Chip
#7 Display Control Board and Parts

The price of the Altair 8800A mainframe is $539.00. Seven easy payments plus $2.00 per month for postage and handling charges make this plan equal $79.00 per month. Upon receipt of your first $79.00 payment you are on your way to owning your own 8080A basic computer system. A list of available compatible peripherals is enclosed to let you plan your system as you learn about your microprocessor. By 8800A Time Payment #7 you're ready to go.

Alaska, Hawaii, APO and FPO customers please include $4.00 for shipping charges (making $81 per month payments) for Air Parcel Post shipment. Otherwise, shipment will come Parcel Post, not insured.

Canadian customers must accept month #4 Emery Airfreight Collect. All other months must include $4.00 postage and handling making monthly payments of $81.00.
In order to smoothly and efficiently expedite your orders, we ask that you note the following helpful hints:

1. Send all payments other than BankAmericard or Master Charge in the form of a cashier's check or money order. Personal checks are acceptable, but clearance time will delay your order by 2-3 weeks.

2. The kit-a-month plan has been set up to proceed in order and we cannot deviate from that order. You can help us by noting with your payment what month you are on.

3. When calling or sending in orders, refer to your customer name on the original order and also your Mits order number.

4. If you change your address, keep your name as it is on the original order to keep records straight.

5. Please note special instructions for Alaska, Hawaii, APO, FPO and Canadian customers. If these are not followed, it could result in delays in processing your order.

6. The Kit-a-Month desk has been set up to help expedite your orders because of the overwhelming response we've had with previous time payment plans. Please feel free to use this service whenever you have questions. When writing letters to Mits, simply note “Kit-a-Month desk” on the outside of the envelope.

NOTE: Once you start the Kit-a-Month plan you are guaranteed the existing price at the time of your first order. You will not be affected by price increases.
DIGITAL DATA RECORDER
for Computer or Teletype Use
Up to 4800 Baud

Uses the industry standard tape saturation (NRZ) method to beat all FSK systems ten to one. No modems or FSK decoders required. Loads 8K of memory in 17 seconds. This recorder enables you to back up your computer by loading and dumping programs and data fast as you go, thus enabling you to get by with less memory. Great for small business bookkeeping. Imagine! A year's books on one cassette.

Can be software controlled. Comes complete with a software program used to test the units in production (8080). Manual includes software control hook up data and programs for 8080 and 6800.

SPECIFICATIONS —
MODEL CC7:
A. Recording Mode: Tape saturation binary (NRZ). This is not an FSK or Home type recorder. No voice capability. No modem. Runs at 2400 baud or less Asynchronous and 4800 baud Synchronous. Runs at 3.1/sec. Speed mechanically regulated ± .5% or better.
B. Two channels (1) Clock, (2) Data. Or two data channels providing four (4) tracks on the cassette. Can also be used for Bi-Phase, Manchester, etc.
C. Inputs: Two (2). Will accept TTY, TTL or RS 232 digital.
D. Outputs: Two (2). Board changeable from TTY, RS232 or TTL digital.
E. Erase: Erases while recording one track at a time. Record new data on one track and preserve three or record on two and preserve two.
F. Compatibility: Will interface any computer using a UART or ACIA board. (Altair, Sphere, IMSAI, M6800, etc.)
G. Other Data: 110-220 V - (50-60) Hz; 3 Watts total; UL listed; three wire line cord; on/off switch; audio, meter and light operation monitors. Remote control of motor optional. Four foot, seven conductor remoting cable provided.
H. Warranee: 90 days. All units tested at 300 and 2400 baud before shipment. Test cassette with 8080 software program included.

Also available — MODEL CC7A with variable motor speed which is electronically regulated. Runs 4800 baud Synchronous or Asynchronous. Recommended for quantity users who require tape interchangeability. Comes with speed calibration tape to set exact speed against 60 cycle line.

NEW — 8080 I/O BOARD with ROM
Permanent Relief from "Bootstrap Chafing"
This is our new “turnkey” board. Turn on your Altair or IMSAI and go (No Bootstrapping). Controls one terminal (CRT or TTY) and one or two cassettes with all programs in ROM. Enables you to turn on and just type in what you want done. Loads, Dumps, Examines, Modifies from the keyboard in Hex. Loads Octal. For the cassettes, it is a fully software controlled Load and Dump at the touch of a key. Even loads MITS Basic. Ends “Bootstrap Chafe” forever. Uses 512 bytes of ROM, one UART for the terminal and one USART for the Cassettes. Our orders are backing up on this one. #2SIO (R)

Kit form $140.00
Fully assembled and tested $170.00

Fill out form and send check or money

NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
201-561-3600

More Details? CHECK-OFF Page 126
THIS IS THE BIG YEAR for Amateur Radio!

- New FCC Regulations!
- New Licensing!
- New Technology!
- New Equipment!

COME TO THE BICENTENNIAL NEW ENGLAND ARRL CONVENTION AT BOSTON

THOUSANDS of DOLLARS IN PRIZES!

ANTENNAS! TOWERS! TRANSCEIVERS! MORE!

See and Operate:
- MICROPROCESSORS
- COMPUTERS
- 48 BOOTHS CRAMMED WITH EXHIBITS!

September 10 - 11 - 12 1976
at the newly, redecorated
STATLER HILTON HOTEL
Boston, Massachusetts

TWO GIANT PARKING GARAGES

Use the Money Saving DISCOUNT TICKET COUPON BELOW

REGISTRATION
(Required of everyone over 12)
$3.00 ($4 at the door)

SATURDAY NIGHT GOURMET
BONELESS CHICKEN BANQUET, $12.00
DANCE and SHOW
(Includes Tax and Tip)

BRIDGE TOURNAMENT
REGISTRATION (per person)
Saturday 1 to 4
$2.00

Make check or money order payable to F.E.M.A.R.A.
A.R.R.L. CONVENTION

BICENTENNIAL BOSTON
BUS TOUR (per person) SAT.
Includes admission fee, Bunker Hill Pavilion

FLEA MARKET PERMIT
(Permit valid both days)

FASHION SHOW & LUNCHEON
SUNDAY — includes admission and show at Victorian Boston Pavilion, gourmet luncheon served elegantly, Turn of the Century Fashion Show!!

Your Name ...
Call ...
Street ...
Town and State Zip

Mail with self-addressed stamped envelope to F.E.M.A.R.A. A.R.R.L. CONVENTION c/o George Stewart 17 Barnes Avenue East Boston, Mass. 02128

$4.75 adult ($3 children under 16)

$1.00

$7.25

Boston, Massachusetts
Great cost cutting ideas we've rejected for 20 years

Unplated hardware. We use a nickel-chrome plating that defies corrosion.

Cheaper stainless steel. Our 17-7PH steel whips bend 180° and return to perfect vertical.

Erratic coil winding. Tight, precisely wound coils are vital to maximum range.

Smaller set screws. Unlike some competitors, ours are rustproof stainless steel that stand up to a wrench.

Cost cutting ideas are fine... until they affect quality and performance. Don't settle for second best. Look for the stripes of quality.

the antenna specialists co.

©1976 by The Antenna Specialists Co.
fet-bipolar amplifiers

Dear HR:

I would like to comment on Irving Gottlieb’s article, “A New Look at Solid-State Amplifiers,” which appeared in the February, 1976, issue. The transconductance of all bipolar transistors is basically the same and equal to $1/r_e$, which explains why the specs sheets do not bother to mention it. The emitter resistance, r_e, has a value of 26 ohms at room temperature and 1 milliampere. This is because KT/q, the average energy of the current carriers, is 26 millivolts at this temperature. The bipolar G_m is thus $1/26$ or 38,461 micromhos. The author by some roundabout calculations arrives at an erroneous figure of 300,000 micromhos for the bipolar G_m because he made the false supposition that the gain of the fet is 4 in his fig. 1B. The gain of the fet is the transconductance multiplied by the load impedance which is the input impedance of the bipolar transistor in this instance. The bipolar input impedance is 26 times beta. For the transistor the author considered, beta (grounded-emitter current gain) is 300 or the input impedance is 26×300 or 7800 ohms. The fet gain is then 4000×7800 divided by a million or 31.2. If the erroneous 4 is removed from the author’s G_m^2 calculation and 31.2 substituted, the G_m^2 becomes $4000 \times 300/31.2$ or 38,461 micromhos.

The reader may conclude that the author’s fet-bipolar combination produces greater gain than can be realized from a cascade pair of bipolars. The author seems to duck this comparison except to indulge in the debasing rhetoric of the bipolar’s “current-hungry base-emitter junction,” etc. The gain of the author’s pair is 1200 times the output impedance in kilohms. Two bipolars would supply a first stage gain of $38,461 \times 7800 \times 10^{-6} = 300$ times while the second would have 38.46 times the kilohm output impedance. The total gain of the two bipolars is then 300×38.46 or 11,538 time the kilohm output Z. The gain superiority of the bipolar pair is thus 11,538/1200 or 9.615. We can then afford to lose 9.615 in a matching transformer to feed the “current hungry base” which means the impedance level can be $7800 \times (9.615)^2$ or 7800×92.45 which equals 721,096 ohms. Since the ordinary impedance levels are considerably less than this, the matching can be accomplished with less loss in gain and the bipolar combination will show a substantial superiority.

Since the author considered a bipolar type that is basically an audio transistor, I assume that his basic interest was at the lower frequencies. It should be pointed out, I believe, that as the frequency increases, vacuum tubes and fets can produce “current hungry inputs” of their own. This is because of negative feedback from common lead impedances and coupling capacitances. At 100 MHz, the input impedance of these majority-carrier devices may be no more than the bipolar’s and thus with the necessity to match removed, the bipolar’s superiority is even more telling.

J.A. Worcester
Worcester Electronics Laboratory
Frankfort, New York

To begin with, it is not correct to say that the transconductance of all bipolar transistors is 1/26 milliohms, or 38,461 micromhos. If this were so, we would have long ago had a single “universal” transistor, rather than the thousands of types now extant. To bring this statement into a plausible ballpark, one would have to modify it as follows: “All bipolar transistors tend to develop the parameter of transconductance at the rate of 38,461 micromhos per milliampere of emitter current.” Thus, we can expect to see evidence of my “alleged” 300,000 micromhos with the practically-reasonable emitter (and collector) current of about 7.5 milliamperes. Inasmuch as the silicon transistor tends to develop higher transconductance per milliampere than do germanium devices, one might obtain a transconductance of 300,000 micromhos with even less current, say in the vicinity of five or six milliamperes. (The current dependency of r_e, and therefore, transconductance, is clearly explained in the seventh edition of the General Electric Transistor Manual, pages 45 and 46, under “Emitter Diffusion Resistance, r_e’

Nowhere did I infer any intention to operate the bipolars at one milliampere. Hopefully, my bias networks will enable operation in the five to ten milliampere region. In the event the experimenter does not initially attain such operation, he can very easily bring it about by changing any one of the three emitter-base biasing resistors. The reason I mention this is that these inexpensive silicon-transistors often have beta tolerances as great as five to one. However, in a sample quantity of ten 2N3565s I found that seven of them had betas exceeding 250. So, I feel that my “nominal” beta of 300 is not atypical. Because of the current dependency of transconductance, you will find power transistors with transconductances on the order of 500 mhos!

With regard to my phraseology in which I refer to “current-hungry base-emitter junctions”, I view such a description as apropos when one compares the input circuits of bipolars with field-effect transistors. This is especially true when one recognizes that to obtain high transconductance from a bipolar transistor, it is necessary to operate at relatively high current levels – and this always tends to lower the input im-
pedance. It is no trick at all to operate fets with gate-source resistors in the tens or hundreds megohm range. This is not readily done with bipolars because of their “current-hungry base-emitter junctions.”

Mr. Worcester introduces an interesting point in his discussion of transformer coupling. I acknowledge that transformers do enable one to recover some of the loss in power gain that usually accompanies RC-coupled bipolar stages. Perhaps, somewhat arbitrarily, I decided to exclude the use of transformers in my article. The reason underlying this decision was that the average amateur does not have ready access to such transformers. Also, there can be a lot of headaches associated with coupling transformers. I wanted to provide an easy means of rolling one’s own workhorse amplifiers.

I agree with Mr. Worcester that at sufficiently high frequencies, even “infinite input-impedance” devices display dissipative, and other conductive effects. It is true that most of the applications I envisaged involved audio and low rf frequencies, say to several MHz. Of course, even here, it behooves one to choose his devices carefully. I hope I have provided the readers with reasonable fets and bipolars insofar as concerns frequency capability.

I think Mr. Worcester will find that during the past five years or so, the major semiconductor vendors have included transconductance data in their specs. Below is a sample from Delco literature pertaining to their triple-diffused silicon power-transistor, the 2N5157. RCA, Motorola, and GE provide similar curves. Sometimes, however, the word “transconductance” is not used; the manufacturers merely depict collector current vs base-emitter volts with collector volts and temperature held constant.

Summarizing I contend that my numbers were reasonable, and that the fet would develop a voltage gain of about four because it “sees” approximately one-thousand ohms of bipolar input impedance. Moreover, the bipolar develops a beta of 300, together with a transconductance of 300,000. However, it operates between five and ten milliamperes, not at one milliampere. I also concede that there are application areas where the fet-bipolar combo does not necessarily provide the best solution.

Irving M. Gottlieb, W6HDM

old-time television

Dear HR:

Your well-researched article on television in the February, 1976, issue of ham radio was fascinating, although the results of K4TWJ’s attempts to bring back 1925 TV to the amateur bands were a bit disconcerting. Apparently we haven’t come as far on the road to deregulation as we thought.

Allow me one correction on your etymology: “Television” does not mean transmission of pictures over wires any more than “telescope” means seeing the stars by wires. Tele- is from the Greek and means “far off.” Mr. Jenkins was entitled to call the new medium whatever he wanted, but he was no more correct in his naming than AT&T.

Joe Moell, WA6JFP
Fullerton, California

low-definition television association

Dear HR:

One of our members has sent me a copy of the article “50 Years Of Television,” which appeared in the February, 1976, issue of ham radio. Clearly, American readers are not all up to date with developments outside the United States in the field of low-definition television (LDTV).

In 1971 I started LDTV experiments in collaboration with S. Kujawinski of Nottingham, unaware that Chris Long of Victoria, Australia, was working along similar lines at the same moment. A paragraph in the British magazine Wireless World, brought us into contact early in 1972. This magazine item revealed that Chris Long, in collaboration with Dan Van Elkan, VK3UI, had broadcast 48-line TV on the shortwaves on January 30, 1972, the first Australian LDTV broadcast since 1929. On the basis of this contact, I started a search for other correspondents and was so successful that on April 26, 1975, a formal LDTV society was formed. The Association is dedicated to revising the techniques of the 1930s on an improved basis as a serious amateur activity.

Perhaps British experience of the LDTV period was less disillusioning than the brief U.S. experience. This may be explained by the support given at the time by the giant BBC organization, the provision of an efficient carrier-borne synchronization system, powerful transmitting stations of huge range, daily programs, top-line nationally-known entertainers, and perhaps even the choice of a vertical scanning system. Certainly, to judge by the views expressed in the ham radio article, the cessation of the 30-line BBC-Baird system in late 1935, after six years, caused more consternation and anger in the U.K. than the corresponding termination in the U.S.A.

Although I can vaguely remember the old system as a boy, most of our members have only read about it in books, and our younger members (still at school) view it as the very latest thing with none of those “old-fashioned” cathode-ray tubes to worry about. The nostalgia mentioned in your article is almost totally absent here (in Europe and Australia). Our system is regarded as highly practical, relevant to present needs, and with synchronous sound, a valuable communication medium.

Members work on any standards they prefer, but for communication purposes the “Nottingham” standards have become widely accepted as a judicious compromise between the requirements of bandwidth and pictorial detail in the context of what can be achieved by reasonably skilled “kitchen table” engineers. Significantly, many of our members are ex-sstv enthusiasts or experimenters with a foot in each camp. The low cost of LDTV equipment and the “live” nature of the images are a tremendous attraction. No broadcasts
have yet been made in the U.K. (most members preferring closed-circuit experiments or “teletape” correspondence through the post, the extra stereo track providing the sound) but it should not be long before the once-familiar ululation is again on the air, if only on vhf.

For the information of your readers, the preferred standards of the LDTV Association are as follows: Lines, 32, vertical, with upward spot movement; Frame speed, 12½ per second; Aspect ratio; 3 vertical by 2 horizontal; Line pulses, blacker than black, 5 to 10% of line length (no frame synchronization pulses are employed, except for special purposes, e.g., closed-circuit usage); Tape standards, speed, 19 cm (7½ inches) per second; Sense, no signal equals black; Tracks, numbers 1 and 4, video, numbers 2 and 3, sound.

The LDTV Association is still welcoming new members and hopes to have representation in most European countries by the end of 1976.

D.B. Pitt
Chairman, LDTV Association
Nottingham, England

oscar communicators use excessive power

Dear HR:

After many nights and mornings of hearing Oscar 6 shut down because of overload and having myself “sucked out” of both Oscar 6 and 7 on numerous occasions, I feel that I must write to you in hopes that you will help me to make my thoughts known.

I am getting disgusted with the amateurs who completely disregard AMSAT's recommended power levels to hog the satellites for their own use or prevent others like myself, who try to stay close to the suggested power levels, from using the satellites. Face it, guys, you have no more right to use the satellites than anyone else. I imagine that you really do not care about how all that extra ERP affects the satellites’ translators and power systems. One day you may find to your amazement that one of the birds does not work any longer.

The fellows in the AMSAT organization have done all of us a great favor in getting the birds into orbit in the first place. Let's not blow a good thing. If I were AMSAT and saw how the satellites are being abused, I would think twice about orbiting another Oscar, especially if it were as tremendously advanced as the proposed Phase III satellite.

So please, satellite users, refrain from using excessive ERP; it is not needed. If you are trying to access the birds with around 150 watts ERP and do not hear your downlink signal, you need to do one or more of the following:

1. Determine if you are really transmitting within the translator’s receiver passband.
2. Find out just where your transmitter signal would appear on your receiver tuning dial.
3. Check to see that your antenna is pointing in the right direction.
4. Improve your receiver setup.

Notice that none of the above items includes increasing your effective radiated power.

Watson R. Gabriel, Jr., WB4EXW
Kernersville, North Carolina

DT-600 RTTY demodulator

Dear HR:

I always enjoy the projects and the informative articles published in ham radio. I just ordered a PC board from Data Technology Associates for the DT-600, and was very pleasantly surprised by the quality of the material and the amount of documentation enclosed with the board. They should receive a medal. And, believe it or not, the demodulator worked the first time I turned it on.

Rick Hall, K5GZR
Bellaire, Texas

two-meter frequency synthesizer

Dear HR:

I am writing to express appreciation for the extremely sensible two-meter synthesizer circuit published in the January, 1976, issue of ham radio. I hope to add this to my accumulating list of projects.

It is rather obvious that the state of the art dictates either a digital dial readout or outright synthesization, in the transmitting and receiving systems. Toning a bit with the basic control arrangement as a master control for transmitting, a couple of possibilities suggested themselves:

1. Providing a heterodyne crystal to present 140 to 144 MHz, feeding a decade divider, and thus affording the span from 14.0 to 14.4 MHz in 1 kHz increments.
2. Dividing again by two would present 7.0 to 7.2 MHz in 0.5 kHz increments, making a beautiful 40-meter CW unit.
3. Using the original 144 to 148 output, decade dividing to 14.4-14.8, and additive-heterodyning with 6.6 MHz would give 21.0-21.4 in 1 kHz steps.
4. Using the mode suggested in 2 above, and heterodyning the 7.0-7.2 with 5.2 MHz would give 1.8 to 2.0 MHz in 0.5 kHz steps.
5. Maintaining the original 144-148 output, subtractive mixing with 116 MHz would give 28.0-32.0 in 10 kHz steps for complete 10-meter coverage.

With the possibility of additional amateur bands becoming available after 1979, making just about everything but the “modifiable” Heath SB-104 broadband rig obsolete, I believe that a synthesizer useable as a master frequency control, whether it includes the necessary combinations for receiving or not, would be most welcome. My own training, skills and available time do not permit me to do much more than indulge in random periods of very wishful dreaming. I have a few bits and pieces of VHF engineering two-meter gear, and am convinced that they would blend perfectly with the basic synthesizer system to make a truly state-of-the-art transceiver for fm and CW operation.

Lee Clough, W5GQV
Texas State Technical Institute
Waco, Texas

ssvt reporting system

Dear HR:

In October, 1966, ssvt pioneer Copthorne MacDonald obtained permission to experiment with ssvt on amateur radio and on Navy MARS. Since that time considerable effort has gone into technical improvement but not much
ALPHA POWER
IS IN THREE CLASSES BY ITSELF

ALPHA 77D
IS 'THE ULTIMATE'
- Runs cold and whisper-quiet at maximum legal power, any mode, with No Time Limit [NTL] and lots of reserve.
- Tunes 10-160 meters (3-30 MHz continuous).
- Full vacuum relay QSK (CW break-in) standard.
- Basic design proven in toughest commercial and amateur service since 1970.
- 1/3 the size of any amplifier of comparable power; easy to handle & ship. ALPHA 77D is the standard of excellence around the world.
$2995 U.S.; built on order. Contact ETO for schedule.

ALPHA 374
IS SUPER CONVENIENT
- The smallest and lightest of all true [NTL] kilowatts at only 0.9 cubic ft. and 52 pounds.
- No-tune-up operation 10-80 meters, thanks to factory-pretuned bandpass filters, yet built-in controls allow manual antenna matching and amplifier 'tweaking' when necessary for maximum efficiency and power output.
- Thoroughly proven performance and durability through more than two years' worldwide contest, DX, FSK, SSTV, and general use. $1395 U.S.; prompt delivery from factory stock.

ALPHA 76
SETS THE VALUE STANDARD
- An honest, rock-crusher [NTL] kilowatt in all modes, like the ALPHA 374. You can lock the key at a full d-c kilowatt and leave town... if you have a very husky dummy load!
- Full coverage 10-160 meters - no other [NTL] kilowatt linear (except a '77D) covers 160.
- Standard 48 pound plug-in transformer (1.5 KVA CCS) itself outweighs some so-called 'kilowatt' amplifiers. (The only way we know to make any true [NTL] kilowatt lighter than the '76 is to use special tape-wound Hipersil® transformers like those standard in the ALPHA 77D and 374, and optional in the '76.)
$895 U.S.; factory stock.

Every ALPHA HF Linear Amplifier has a combination of quality and convenience features that's available in no other true kilowatt d-c, 2+ KW PEP linear amplifier: • modern, rugged ceramic grounded-grid triode tubes; • silver-plated copper tubing main tank coils; • a 1.5 KVA CCS (or larger) plug-in transformer; • full-cabinet, ducted air cooling; • self-contained desk-top convenience; and a full year of free factory service for any defect. NEW! Expert factory demonstration, advice, sales, and service is conveniently available in the Midwest and in Southern California. Write or phone ETO direct for full information, illustrated brochure, and personal service.

ETO
EHRHORN TECHNOLOGICAL OPERATIONS, INC.
BROOKSVILLE, FLORIDA 33512 (904) 796-1428
progress has been made in instituting a suitable reporting system. One of the projects of the Navy Marine Corps MARS SSTV Specialty Network, which was established in 1972, has been the development of a practical reporting system for general use.

The time-tested R-S-T system was a logical place to start. With readability (R), signal strength (S) and video quality (V) we came up with R-S-V. Several variations of designating the quality of video were tested, commencing with nine gradations. These were soon discarded as too cumbersome. Ken Wood, Jr., K611S and NNN0OXJ, eliminated all of the extraneous data and suggested a system that contains the key information you need 95% of the time.

This system has been in use for about two years with very good results on the Navy Marine Corps MARS SSTV Specialty Network which meets at 2100Z on Saturday and Sundays on 13975.5 kHz. It permits many reports to be made quickly and if you are so inclined you can make a chart of the reports and have a record of two-way propagation between a large number of stations scattered over a large geographical area.

The video reporting system varies from conventional R and S in that picture quality is not progressive. It is possible for a V3 picture to be better than a V4 picture. The system is as follows:

- V5 Closed circuit quality pictures
- V4 Good pictures with multipath
- V3 Good pictures with interference
- V2 Readable pictures with multipath and interference
- V1 Mostly unreadable—loses sync-pictures interrupted.

This system is good for reporting radio and video reception on OSL cards, on voice or by video pictures and is particularly valuable for nets or contests where time is of the essence.

Thomas F. Pollock, WB6ZYE
Coordinator
U.S. NAVMARCORS MARS SSTV Specialty Network

European vhf-fm repeaters

Dear HR:

In presstop last year HR report editor W9JUV gave advice to those hams going to Europe to bring their portable two-meter equipment along with the appropriate crystals for repeater use. As we are using totally different channels for repeaters in Region I, compared to Region II, it might be interesting for your readers to know the correct channel numbers and the input and output frequencies for the European repeaters. Below is a short list which is self explanatory. In addition I can tell you that the international (within Region I) mobile/portable calling frequency is 145.500 MHz and the international mobile/portable traffic frequency is 145.550 MHz. In addition, there are twelve traffic frequencies on two meters (designated S21 through S33).

Gunnar Eriksson, SM4GL
Falun, Sweden

<table>
<thead>
<tr>
<th>European vhf-fm repeater channels.</th>
<th>in</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0 145,000–145,600</td>
<td>433,000–437,600</td>
<td></td>
</tr>
<tr>
<td>R1 145,025–145,625</td>
<td>433,025–437,625</td>
<td></td>
</tr>
<tr>
<td>R2 145,050–145,650</td>
<td>433,050–437,650</td>
<td></td>
</tr>
<tr>
<td>R3 145,075–145,675</td>
<td>433,075–437,675</td>
<td></td>
</tr>
<tr>
<td>R4 145,100–145,700</td>
<td>433,100–437,700</td>
<td></td>
</tr>
<tr>
<td>R5 145,125–145,725</td>
<td>433,125–437,725</td>
<td></td>
</tr>
<tr>
<td>R6 145,150–145,750</td>
<td>433,150–437,750</td>
<td></td>
</tr>
<tr>
<td>R7 145,175–145,775</td>
<td>433,175–437,775</td>
<td></td>
</tr>
<tr>
<td>R8 145,200–145,800</td>
<td>433,200–437,800</td>
<td></td>
</tr>
<tr>
<td>R9 145,225–145,825</td>
<td>433,225–437,825</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>European two-meter traffic channels.</th>
<th>in</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>S21 145,025</td>
<td>S28 145,700</td>
<td></td>
</tr>
<tr>
<td>S22 145,050</td>
<td>S29 145,725</td>
<td></td>
</tr>
<tr>
<td>S23 145,075</td>
<td>S30 145,750</td>
<td></td>
</tr>
<tr>
<td>S24 145,100</td>
<td>S31 145,775</td>
<td></td>
</tr>
<tr>
<td>S25 145,125</td>
<td>S32 145,800</td>
<td></td>
</tr>
<tr>
<td>S26 145,150</td>
<td>S33 145,825</td>
<td></td>
</tr>
<tr>
<td>S27 145,175</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microprocessor definitions

Dear HR:

I wish to note a peculiar inconsistency in the definitions given by Rony et al in their February, 1976, microprocessor article. On page 51, they correctly define “synchronous operation” as “operation of a system under the control of clock pulses.” Yet, immediately above that, they define “synchronous computer” to mean “a digital computer in which all ordinary operations are controlled by equally-spaced signals from a master clock.” In fact, as implied by the definition of “synchronous operation,” there is no requirement for any synchronous machine to use equally-spaced clock pulses. Similarly, their definition of “synchronous states” . . . in which the performance of a sequence of operations is controlled by equally-spaced clock signals . . .”

Again, while most (but certainly not all) synchronous machines use equally-spaced clock pulses, there is no switching-theoretical requirement for them to do so. (I believe that practical considerations almost invariably weigh on the side of using equally-spaced clock pulses).

Perhaps part of the explanation for this discrepancy lies in the fact that the correct definition of “synchronous operation” references the authors’ Bugbook III, while the inaccurate definitions of “synchronous computer” and “synchronous” reference Graf’s Modern Dictionary of Electronics. Rony et al bear partial responsibility for Graf’s error by printing it, especially when they put it next to their own correct definition. This is not much ado about nothing: a misunderstanding of such fundamentals can foster much confusion; your readers depend on your accuracy, and you owe them no less.

E. Douglas Jensen
Sr. Principal Engineer
Computer Systems Research
Honeywell

Mr. Jensen is entirely correct in his observation: there is no switching-theoretical requirement for equally spaced clock pulses in synchronous machines. The definition given for a synchronous computer applies to most existing computers, minicomputers, and microcomputers, and therefore should be a valid working definition for most individuals. The definition emphasizes the rule, rather than the exception. A more general definition would be as follows:

Synchronous computer

A digital computer in which all ordinary operations are controlled by clock pulses from a master clock.

Peter R. Rony
David G. Larsen
Jonathan A. Titus
Hy-Gain multi-band vertical amateur antennas are entirely self-supporting. They require no towers or guys and go up in just a few square feet yet they offer remarkable performance. Their omnidirectional pattern means no rotator is required. Hy-Gain verticals go up easily with just a few hand tools and their cost is surprisingly low.

See your Hy-Gain dealer for the antennas that give you the performance you want, take minimum space and have your kind of price. Hy-Gain verticals.

18HT 6-80 meters.
The only vertical antenna on the market offering multi-band performance without traps. The Hy-Gain 18HT utilizes a unique stub decoupling system to maximize efficiency, frequency stability and band isolation. It also offers a 50 ohm input impedance for all bands. Maximum legal power rating on all bands. It is entirely self-supporting and requires no guys.

Heavy duty, slotted, taper swaged, aircraft quality aluminum with full circumference compression clamps is used for radiators. The 24' tower is all rugged, hot-dip galvanized steel and all hardware is iridited for corrosion resistance. Special hinged base for easy raising and lowering. Order No. 182

18AVT/WB 10-80 meters.
The Hy-Gain 18AVT/WB gives you true wide-band performance in limited space. This antenna is rated in excess of maximum legal power 10-40 meters and up to 1 KW PEP on 80 meters. Entirely self-supporting, requires no guys. All tubing is slotted, taper swaged, aircraft quality aluminum with full circumference compression clamps. Order No. 193

14AVQ/WB 10-40 meters.
The Hy-Gain 14AVQ/WB uses the same trap design as the famous Hy-Gain Thunderbird beams. 3 separate air dielectric Hy-Q traps with oversize coils for superb stability and 1/4 wave resonance on all bands. Automatic band switching.

An extremely low angle of radiation is utilized for superior DX performance. Taper swaged, slotted aircraft quality aluminum tubing. Entirely self-supporting, no guys required. Recessed SO-239 connector prevents moisture damage. 12' heavy duty mast support bracket. Roof mount with Hy-Gain 14RMQ kit. Order No. 384

12AVQ 10, 15 and 20 meters.
The 12AVQ also uses Thunderbird design air dielectric traps for exceedingly stable performance and true 1/4 wave resonance on all bands. The 12AVQ has a 14' antenna tower with Hy-Gain 14RMQ kit. Recessed SO-239 connector prevents moisture deterioration. 12' heavy duty mast support bracket.

Order No. 366

18V 10-80 meters.

High performance air dielectric traps, high quality construction and low cost make the 18V an exceptional value. Easily tuned to any 10-80 meter band by adjusting feed point at the base inductor.

All aircraft quality, slotted, taper swaged aluminum with full circumference compression clamps. Self-supporting, requires no guys.

12" heavy duty mast bracket. Roof mount with Hy-Gain 14RMQ kit. Easily portable. Order No. 193

HY-GAIN VERTICAL ANTENNA SPECIFICATION COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>18HT</th>
<th>18AVT/WB</th>
<th>14AVQ/WB</th>
<th>12AVQ</th>
<th>18V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. power input</td>
<td>1 KW AM</td>
<td>1 KW AM</td>
<td>1 KW AM</td>
<td>1 KW AM</td>
<td>250 watts AM</td>
</tr>
<tr>
<td></td>
<td>2 KW PEP</td>
<td>2 KW PEP</td>
<td>1 KW PEP (on 80)</td>
<td>1 KW PEP</td>
<td>500 watts PEP</td>
</tr>
<tr>
<td>VSWR</td>
<td>2:1 or less</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 ohms</td>
<td>50 ohms</td>
<td>50 ohms</td>
<td>50 ohms</td>
<td>50 ohms</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>18'</td>
<td>13'6"</td>
<td>18'</td>
<td>18'</td>
<td></td>
</tr>
<tr>
<td>Shipping Weight</td>
<td>96.7 lbs.</td>
<td>10.7 lbs.</td>
<td>8.2 lbs.</td>
<td>7 lbs.</td>
<td>4.6 lbs.</td>
</tr>
<tr>
<td>Mast Diameter</td>
<td>None required</td>
<td>1 1/4"</td>
<td>1 1/4"</td>
<td>1 1/4"</td>
<td>1 1/4"</td>
</tr>
</tbody>
</table>

Hy-Gain Electronics Corporation 8601 Northeast Highway Six; Lincoln, NE 68505
Distributed in Canada by Lectron Radio Sales 211 Hunter Street; Peterborough, Ontario
IC-230 mods: adding splinter channels

The ICOM IC-230 is a frequency-synthesized two-meter fm transceiver capable of operating on sixty-seven channels spaced 30 kHz apart, from 146.010 to 147.990 MHz. Four spare crystal sockets are provided to add 40 splinter channels. Each crystal adds ten channels spaced 30 kHz apart. The first of the four crystals are selected by placing the 146/147 switch in the 146 position and the 100 kHz switch in the A position. That is, 146.AX, where X is any of the ten positions of the 10-kHz switch.

The second crystal is selected with the B position of the 100-kHz switch; i.e., 146.BX. In a like manner, the last two crystals are selected with the 147.AX and 147.BX positions. The only difficulty is that the ten crystals associated with each crystal are selected according to a strange coding scheme of the 10 kHz switch. The lowest-frequency channel is selected with the 1 position of the 10-kHz switch, and each successively higher-frequency channel is selected according to the following scheme: 1, 4, 7, 0, 3, 6, 9, 2, 5, 8. Thus, the highest-frequency channels of the first splinter crystal would be selected by placing the controls to 146.A8.

You can select any number of crystals to give you any particular splinter channel. I have my favorite set of crystal frequencies to give complete coverage of all repeater splinters plus all direct splinter channels. If you don’t want to spring for all four crystals for complete coverage, you can select your own. The formula for calculating the lowest frequency channel to the ten channels provided by a crystal is

$$f_x = \frac{f_L - 21.965}{9}$$

where \(f_x\) is the crystal frequency (MHz) and \(f_L\) is the desired lowest channel frequency (MHz). For example, if you want ten additional channels beginning at 146.415 MHz (the lowest direct splinter channel frequency), the crystal frequency would be \((146.415 - 21.965)/9 = 13.82778\) MHz. When you install this crystal you’ll add ten channels, from 146.415 to 146.685 MHz.

A decoding chart (table 1) is provided for using these crystals. When ordering crystals, be sure to specify 0.0025%, 20 pF in HC-25/U holders.

Automatic offset switching

When operating the IC-230 two-frequency transceiver, it is necessary to change the A/B switch to offset the transmitter either 600 kHz below or above the receiver frequency. Since most all “600-kHz low” repeaters are 146 MHz machines and most all “600-kHz high” repeaters are 147 MHz
tuning aid for the sightless

This audio tuning device is uncomplicated by connections other than those required to sample transmitter or exciter output at the coax transmission line. It uses no batteries and may be switched off after maximum rf output is determined. The circuit may also be used as a tone generator for monitoring CW keying; another possible use is a monitor for determining the condition of your transmission line (e.g., a short circuit between center conductor and shield).

The circuit is shown in fig. 2. A high-resistance voltage divider samples rf from the coax. The rf is rectified by a diode. This rectified voltage, which varies during transmitter tuning, is fed to a form of relaxation oscillator. Output varies in tone pitch as a function of voltage on the line: low voltage causes a high-pitch tone and high voltage causes a low-pitch tone, which indicates maximum transmitter or exciter output. The tone indication is similar to a dip in transmitter plate current.

The input voltage divider uses about 1 watt for 100 watts into a 50-ohm line. For higher power, the divider may be switched to higher values. For 1 kW, the input resistor should be about 100k, 2 watt. The schematic shows a voltage divider suitable for 100 watts output.

The 1N34 diode feeds about 2 volts to the transistor emitter, which draws less than 2 mA at maximum transmitter output. Any audio-type transistor may be used. If an npn device is used, diode connections should be reversed. The transformer is from a 5-watt transistor amplifier. Base and collector connections to the transformer can be reversed for needed feedback voltage. The color code on the transformer I used is: green to collector, red to base. The other connections in the collector circuit are: green/white to brown; brown/white and blue to ground. The transformer windings measure 22 ohms dc (high impedance); the other two, in series aiding, are each 4 ohm dc. Any transformer with similar resistance measurements should work. Audio output can be heard several feet from high-impedance phones.

D.H. Atkins, W6VX

HW-202 lamp replacement

To decrease the time and trouble of transceiver disassembly, try the idea shown in Fig. 3 the next time the dial light on your HW-202 fails. This lamp provides good illumination and has a prolonged life. Use caution when breaking glass on a burned-out bulb.

H.C. McDonald, W5UNF/6
SpecComm Introduces THE DYNAMIC DUO!

SC1800M 'SPECTRUM CHANALYZER'

Our new CMOS P.L.L. Synthesizer, makes it possible to fully synthesize your 5 Wt. Spec Comm 5601512 modular portable — (Or, Drake, Kenwood, or other portables — as well as almost any other mobile/fixed 2M transceiver!) Current draw is only 45 mA — Not the usual 500-900 mA. Wt.: 1.3 lbs. Size: 1.4x6.8".

FEATURES
- 1800 Channel combinations! 145-148 MHz in 5 KHz steps
- Automatic 1600KHz xmit. offsets. +2 opt. offsets, + Direct, + Reverse modes
- Exclusive Programmable 'Memory Channel' — push a button to "store" your current channel, in the computer-like memory. Flick a switch to return to the 'Memory Channel' later!
- Unique '6th' xmit mode — Transmit on the Memory Chan. & Rcv. on a switch-selected freq.
- Work anysplit!
- Super clean output
- Fast, convenient "Lever-Wheel" switches. (Lighting Option Avail.) Only $225.00 at your dealer soon.

DON & BOB'S SUPER BUYs

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY GAIN TH6DXX</td>
<td>$192.00</td>
</tr>
<tr>
<td>TH3MK3, 3 ELEMENT BEAM, 20, 15, 10</td>
<td>$160.00</td>
</tr>
<tr>
<td>MOSLEY CLASSIC 33</td>
<td>$179.00</td>
</tr>
<tr>
<td>GREAT BUYS ON 204BA, 402BA</td>
<td>$15.95</td>
</tr>
<tr>
<td>BN86</td>
<td>$129.00</td>
</tr>
<tr>
<td>CDE HAM-II ROTOR</td>
<td>$218.00</td>
</tr>
<tr>
<td>18HT HY TOWER</td>
<td>$218.00</td>
</tr>
<tr>
<td>TRI-EX W SERIES TOWERS (FOB CALIF.)</td>
<td>$19.95</td>
</tr>
<tr>
<td>ROHN 250 TOWER & ACCESSORIES</td>
<td>$230.00</td>
</tr>
<tr>
<td>Belden 8214 RG-8/U FOAM COAX</td>
<td>$23.95</td>
</tr>
<tr>
<td>Belden 8237 RG-8/U</td>
<td>$19.95</td>
</tr>
<tr>
<td>8 WIRE ROTOR CABLE</td>
<td>$14.95</td>
</tr>
<tr>
<td>AMPHENOL PL-259</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

Books
- SWAN SWR-1 | $18.95
- ELECTRA BEARCAT 101 | $319.00
- HY-GAIN 18AVT-WB VERTICAL plus 100 ft. of Belden RG-8U Coax | $100.00

ALL PRICES FOB HOUSTON CALL TODAY FOR ITEMS NOT LISTED

MADISON ELECTRONICS SUPPLY, INC.
1508 McKinney AVENUE HOUSTON, TEXAS 77002
713/658-0268 Nites 713/497-5683

SPECTRUM COMMUNICATIONS
BOX 140HR, WORCESTER, PA 19490
215-584-6469

DEALER INQUIRIES INVITED

. . . AND THE SCR1000 2M FM REPEATER -- So Advanced, It's Destined To Become An Industry Standard!

- Full Metering
- Front panel AF Level & Timer controls
- Lighted Pushbuttons for control/test functions/status indicators
- CMOS control logic & timers
- Built-in IDer & AC Supply
- Exclusive Hot Carrier Diode Receiver front end
- 30 Wts. out
- Provisions for Autopatch, Remote Control, etc.
- Auto-switchover to emergency power, etc.

For the group that demands the finest! Introductory price $799.95 Sold Factory Direct only.

6 digit AUTOMOTIVE CLOCK KIT complete with a CRYSTAL TIMEBASE accurate to .01 percent, 12 volts d.c. operation — built in noise suppression and voltage spike protection. Readouts blank when ignition is off — draws 25 mA in standby mode. Has .3 in. readouts. Use it in your car or for all applications where a battery-operated clock is needed. Approximate size 3" x 3.5" x 1.75"

WITH BLACK PLASTIC CASE $34.95 ppd. WITHOUT CASE $29.95 ppd. ASSEMBLED AND TESTED $45.95 ppd.

CMOS CRYSTAL TIMEBASE KITS with .01 percent accuracy, 5-15 v.d.c. operation. Draws only 3 mA at 12 volts. Single I.C. — very small size — the P.C. board is 7/8" x 1-5/8". Choose a main output of 50 or 100 Hz., 60 Hz., 500 or 1000 Hz., or 1 Hz. Several related frequencies are also available on each board, in addition to the main ones listed above. Be sure to specify the Frequency you want. All kits are $10.95 ppd.

Flyer available —

NEXUS TRADING CO.
Box 3357 San Leandro, Ca 94578

More Details? CHECK-OFF Page 126
Trio-Kenwood has announced a new addition to its line of amateur radio equipment, the TS-820 “Pacesetter.” Some features of this new rig are i-f shift, rf speech processing, digital readout (optional), digital hold (for the readout), rf monitor, monoscale vfo dial, PLL circuitry, rf negative feedback, RTTY, 160 through 10 meter coverage, vox controls, and rf attenuator. Probably the most unusual feature of the TS-820 is the use of a phase-lock filter in the local oscillator circuit, resulting in a very clean injection signal to the mixer. Speech processing is achieved at the rf level and is adjustable from zero to 50 dB through the use of a single, front-panel control.

A complete line of accessories will be available for the TS-820 including a plug-in digital kit, dc-dc converter (for mobile operation), 500 Hz CW filter, deluxe remote vfo, MC-50 microphone, two-meter transverter, and more.

The new TS-820 transceiver sells for $830.00 and is available from Trio-Kenwood Communications, Inc., 116 E. Alondra, Gardena, California 90248. Write for more information or use check-off on page 126.

all-mode active audio filter

The QF-1 “infinitely variable” filter from Autek Research is designed to combat shortwave interference with features never available to the amateur before. Peak, notch, and lowpass positions, all continuously adjustable over the range 250 to 2500 Hz, are provided for use in all communications modes.

The lowpass position rejects ssb and a-m hiss and splatter; the notch position rejects whistles, CW and carriers. The peak position provides superior CW reception with adjustable frequency for easy peaking, and bandwidth continuously variable from 50 Hz to flat. Skirts are steep and exceed 80 dB.

The notch tracks the peak frequency and is continuously variable from very wide to very narrow via the selectivity control. Notch depth is to 70 dB. The QF-1 drives a speaker or phones with room-filling volume (1 watt) and also includes a 117-Vac supply so there are no batteries to replace. It works with any receiver or transceiver by simply plugging it into the headphone jack. No impedance matching is necessary.

Selling for $54.65 postpaid, the QF-1 includes eight IC op amps plus power amplifier and metal cabinet. Order direct, or write for brochure to Autek Research, Box 5127E, Sherman Oaks, California 91403.

high power broadband isolator

Telewave, Inc. has recently introduced a new series of high power, broadband isolators which feature exceptionally low prices and require no tuning.

The T-1004 series operates in the 400 to 512 MHz bands and provides 30 dB of isolation over a 20 MHz bandwidth with only 0.3 dB insertion loss. The unit provides 60 dB isolation using two junctions and can be shipped standard single junction (30 dB), dual junction (60 dB), and triple junction (90 dB) in one module which eliminates cables and allows for extremely low insertion loss. All loads are removable and can be supplied in powers from 25 through 400 watts.

For more information contact Telewave, Inc., at 2166 Old Middlefield Way, Mountain View, California 94943 (415) 988-4400 or use check-off on page 126.

electronic keyer

Palomar Engineers has introduced a new IC keyer that takes less space on your operating table than the old semi-automatic mechanical key. The new keyer sends semiautomatic, full automatic, self completing, dot memory, iambic, or as a straight key. It has built-in sidetone oscillator and speaker, volume and speed controls, weight adjustment and battery holder. Any desired speed from 5 to 50 wpm can be selected while you send.

The IC keyer will key any transmitter, whether grid-block, cathode keyed or plate keyed, up to 500 volts and up to one ampere keyed current. Keying contacts are silver and withstand heavy surge currents and voltage spikes. The built-in paddle is fully adjustable for spacing and tension. A diecast metal case provides full rf shielding.

The clip-in 9-volt transistor battery will power the keyer for about 75 hours of normal operating, making the keyer ideal for portable operation. At the
home station, a lantern battery will last for about two years.

The keyer sells for $87.50 postpaid in the U.S. and Canada (California residents add sales tax). For more information write to Palomar Engineers, P.O. Box 455, Escondido, California 92025 or use check-off on page 126.

push-to-talk microphone

New from Astatic is the D104 Silver Eagle microphone with push-to-talk efficiency. The push-to-talk bar has been added to the D104 "grip-to-talk" desk stand for convenience. A slide lock clamp provides easy "no hands" transmission.

Factory wired for universal hook-up application, the Silver Eagle can be converted to electronic or relay operation. The microphone is wired with an open audio line on receive and comes with a coil cord with single-conductor shielded plus 4 unshielded. Switching requirements are determined by the proper hook-up at the cable plug end. All external parts, including the base, are chrome plated.

Information on the D104 microphone can be found by writing Astatic, Conneaut, Ohio 44030, or by using the check-off on page 126.

ARRL electronics data book

The new ARRL Electronics Data Book has been written for all technical levels from the beginner to the graduate engineer. Edited by Doug DeMaW, W1CER, it contains a compilation of essential data which is normally scattered among several reference books that an amateur or professional person would maintain in his library.

Among the many subjects treated in depth are RF Circuit Data, L, C and R Networks, Broad- and Narrow-Band Transformer Design, Modern Filter Design, Antennas and Feed Systems and a Catalog of Practical Solid-State Circuits. All chapters include pertinent simple equations with examples worked out to illustrate how the solutions are obtained. The section on transformer design deals mainly with toroidal broadband components of the conventional and transmission-line varieties. Schematic and pictorial diagrams are furnished for each transformer type. The chapter on modern filter design covers two- and three-pole Butterworth derivations for most of the frequencies of interest to amateurs. Tables of practical filter values are also included.

This book is an essential adjunct to the Handbook and other ARRL technical publications. Soft cover, 8½ x 11 inches (21x28cm), 128 pages. $4.00 in the U.S.A. and Possessions, $4.50 elsewhere. Order your copy from Ham Radio Books, Greenville, New Hampshire 03048.
INTRODUCES THE VERSATILE NEW

HR-312

More Channels...at the flip of a switch
Unlock the unique mode switch and 12 channels become 144

.25 μV Sensitivity plus 75 db adjacent channel selectivity and 70 db image rejection

More Power Out
35 watts nominal with a minimum of 30 watts across the band

... for a lot less
$269.00

THE FM LEADER

2 METER 220 MHz
6 METER 440 MHz

A new "Turnkey" I/O board is now available for 8080 microprocessors. The user is now able to turn on his computer and "go." All bootstraps, loads, dumps and edits are in a 512-byte ROM on the I/O board.

The board utilizes a UART to interface with a terminal and a USART to interface with one or two cassettes to make a complete computer operating system. Just type in what you require and the ROM executes the program.

The Turnkey I/O board is available in kit form for $140 or for $170 assembled and tested from National Multiplex Corporation, 3474 Rand Avenue, Box 288, South Plainfield, New Jersey 07080 or use the check-off on page 126 for more information.

A low-cost, pocket-sized, multifunction test instrument known as the model LP-1 Multi-Family Logic Probe is available for digital applications from Continental Specialties Corporation. The LP-1 combines the functions of a pulse detector, pulse stretcher and memory circuit, allowing amateurs to get an instant picture of static and dynamic circuit conditions with most popular logic families. LP-1's ability to detect pulses as short as 50 nanoseconds, coupled with its stretching and latching ability, means that one-shot, low-rep-rate, narrow pulses — nearly impossible to see, even with a fast scope — are now easily detectable and visible.
The user simply connects the clip leads to the circuit's power supply, sets the logic family switch to the proper position (TTL/DTL or CMOS) establishing the correct logic level for the family under test and touches the probe tip to the circuit node. Two level detector LEDs plus a blinking pulse detector LED display signal activity at the node under test. At high frequencies, LP-1 will also indicate whether or not signals are symmetrical.

High input impedance on both DTL/TTL and CMOS modes virtually eliminates loading problems in the circuit under test, and input impedance is constant for both logic 1 and 0 states. The LP-1 sells for $44.95.

For more information, use the check-off on page 126 or contact Continental Specialties Corp., 44 Kendall Street, Box 1942, New Haven, Connecticut 06509.

solderless breadboard kit

Proto-BoardR-6, a low-priced solderless breadboard kit, is available from Continental Specialties Corporation. This compact kit can be assembled in minutes and offers six 14-pin DIP IC capacity for basic breadboarding, testing and building applications.

The PB-6 includes one QT-47S solderless breadboarding socket, two QT-47B bus strips, four 5-way binding posts, a metal ground and base plate, rubber feet, all nuts, bolts, and screws, plus complete easy-assemble instructions.

The PB-6 lets the user test and build circuits without soldering or patch cords; all interconnections between components are made with common no. 22 AWG hook-up wire. Measuring 6 inches long by 4 inches wide (15cm x 10cm), the PB-6 sells for $15.95 from local distributors or direct from Continental Specialties Corporation, 44

you're carefree
when you know you've got the very best!

Larsen Külrod® antennas

Repeater or simplex, home station or mobile, 1 watt or 50...what really counts is the intelligence that gets radiated. Jim Larsen, W7DJZL found that out years ago when he was both hamming and running a two-way commercial shop. That's when he started working with mobile antennas...gain antennas that didn't waste power in useless heat.

Today, thousands and thousands of Larsen Antennas are being used. We call it the Larsen Külrod® Antenna. Amateurs using them on 2 meters, on 450 and six call them the antenna that lets you hear the difference.

Larsen Külrod Antennas are available for every popular type of mount. For those using a 3/4" hole in their vehicle we suggest the LM mount for fastest, easiest and most efficient attachment.

For the 3/8" hole advocates there's the JM mount...fully patented and the first real improvement in antenna attaching in 25 years.

And for the "no holes" gang there's the unbeatable MM-LM...the magnetic mount that defies all road speeds.

Send today for data sheets that give the full story on Larsen Külrod Antennas that let you hear the difference and give you carefree communications.

Illustrated...Larsen JM-150-K Külrod Antenna and mount for 2 meter band. Comes complete with coax, plug and all mounting hardware. Easy to follow instructions. Handles full 200 watts.

*Külrod...a registered trademark of Larsen Electronics.

Larsen Antennas
11611 N.E. 50th Ave. • P.O. Box 1686 • Vancouver, WA 98663 • Phone: 206/573-2722
In Canada write to: Canadian Larsen Electronics, Ltd.
1340 Clark Drive • Vancouver, B.C. V5L 3K9 • Phone: 604/254-4936

september 1976 [89]
See us for all your Amateur Radio needs.

- 143 to 149.99 MHz in digitally dialed 5 KHz steps without buying a single crystal! 142 MHz coverage optional.
- 25 Watts RF output
- 25 uV 12 Db, S/N ratio sensitivity
- Completely independent transmit/receive frequency control, yet simplex with the flip of a single switch.
- Includes dynamic microphone and mobile mounting bracket

AMATEUR NET $650.00

NEW PRODUCTS!

- REPEATER AUTOPATCH AND CONTROL
 3 digit access, single digit disconnect.
 ACG with 30 Db dynamic range on all inputs and outputs. Just connect repeater Rcvr, TX, ider, Touch-Tone line and power.
 Size 9 1/4" x 4 1/4" $199.95 Assembled

- REPEATER AND RTTY CW IDENTIFIER
 254 bit capacity allows you to send your call plus other desirable information.
 Easily programmed.
 Size 6" x 4" $62.50 Assembled

- TOUCH-TONE KEY BOARD
 Positive snap-action push-button switches!
 No need to worry about long finger nails.
 No more mis-dialing because of intermittent switch contacts.
 Standard touch-tone format.
 Size 2 1/8" x 2 1/8" $94.40

- COMING SOON... the P.A.D. The PROGRAMABLE AUTOMATIC DIALER. Send for more information.

CFP COMMUNICATIONS . . .

WELCOMES MAIL ORDERS ON:

ATLAS
CUSH CRAFT
DENTRON
HUSTER
ICOM
SENTRY
STANDARD
TELEPORT
TEN TEC
TELEPHONE
VHF
YAESU

Mastercharge & BankAmericard orders shipped UPS (Continental USA) prepaid. Write us for TRADE IN QUOTES!

Looking for a special piece of used equipment? Send SASE for our used equipment list. See us for all your Amateur Radio needs.

Jim Beckett W2KJT Manager
Bryant Hazemag, W82LNV Sales
Dave Finn, W2CFP Owner

Kendall Street, P.O. Box 1942, New Haven, Connecticut 06509; 351 California St, Box 7809, San Francisco, California 94104. For more information use check-off on page 126.

National TTL Data Book

A new TTL Data Handbook describing National Semiconductor's complete line of bipolar logic devices has just been published. The new handbook gives full specifications and electrical performance characteristics on standard 54/74 TTL, low-power 54L/74L, high-speed 54H/74H, ultrahigh-speed Schottky 54S/74S, low-power Schottky 71LSB1LS, Series 9000 TTL, Series 10,000 ECL, and Series 930 DTL. An industry cross reference guide and a functional index are also included, as well as package outlines. The TTL Data Handbook may be obtained by sending a $4 check (California residents add 6% sales tax) to the Marketing Services Department, National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, California 95051.

concealable antenna mount

A steel antenna mount which stops radio antenna theft, trademarked Tuk-A-Way, has just been introduced. Sold as an accessory for citizens-band radio, mobile radio and car telephone users, Tuk-A-Way installs easily on the trunk lip of most car models, and provides complete antenna concealment inside the trunk when not in use. It accepts antennas designed for either roof or trunk mounting.

Tuk-A-Way offers three essential benefits for car radio and telephone users: the added protection against theft; the convenience which allows use of automatic car washes and covered parking facilities; and the elimination of...
paint chipping and scratching or permanent holes in the roof or trunk by use of a clamp for installation.

For durability, the antenna mount is constructed of 12-gauge, cold-rolled steel, and is coated with zinc chromate. The hinge is of stainless steel and is spot-welded to the clamp to provide positive ground contact. In addition, the hinge is fitted with a stop which holds the antenna suspended and off the trunk floor while storing, allowing for short-range reception from inside the trunk.

Tuk-A-Way is available for $15.95 from Deep South Marketing Corp., 2828 Telephone Road, Houston, Texas 77023.

Logic Monitor

Logic Monitor 2, a digital test instrument incorporating a fully isolated power supply and selectable trigger threshold which matches the precise characteristics of the logic family under test, has just been introduced. The LM-2, which lists at $125.00, consists of two units; a connector/display unit which clips over the IC, and a power-supply module, which contains the precision reference power supply and logic family selector switch. Because it simultaneously displays 16 channels of information, it can show the user far more than an oscilloscope, and it's always automatically in synchronization.

LM-2's self-contained power supply means that there is no loading of a circuit under test, avoiding the problem of logic level shifts, false triggering and power-supply loading which sometimes occurs with other types of equipment.
I I I
accurate. The computer program was of the world. Plan your operating for come thru. These are just a few ways CompulProp can increase your enjoyment of ham radio.

Yes indeed!

It's been doing it for years. Trouble is, only big corporations and government communicators could afford it. Not anymore.

May we introduce you to CompulProp... computerized DX predictions.

Now you can have computer print-outs of precise times of band openings to your favorite parts of the world. Plan your operating for maximum DX. Know what hours of the day that "rare one" will come thru. These are just a few ways CompulProp can increase your enjoyment of ham radio.

CompulProp is a monthly computer print-out to 8 major DX areas of the world. And it's 90% accurate. The computer program was originally developed over many years by the government Office of Telecommunications. This multi-million dollar data base is now available to you via CompulProp.

Main Electronics is making these monthly computer predictions available on a special introductory offer.

You can receive a FREE print-out to any one of eight DX areas of the world by simply filling out and mailing the coupon below. You will also receive full details on how to obtain a subscription to CompulProp.

Start planning your DX NOW!

Main Electronics is making these computer predictions available on a special introductory offer.

COMPETITIVELY PRICED!

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC-300</td>
<td>$49.95</td>
</tr>
<tr>
<td>EPC-444-B</td>
<td>$32.95</td>
</tr>
<tr>
<td>LA-144</td>
<td>$39.95</td>
</tr>
</tbody>
</table>

ALL PRODUCTS FULLY ASSEMBLED, TESTED AND WARRANTED. PRICES INCLUDE ALL POSTAGE FEES WITHIN THE USA. FOREIGN ORDERS ADD $1.00 TO COVER POSTAGE & HANDLING.

In use, the LM-2 visually displays gate inputs rising and falling, passing pulses from circuit to circuit. Flip-flops may be seen changing states; decoders and encoders can be seen accepting and re-coding information.

Further information on the LM-2 can be obtained from Continental Specialties Corp., 44 Kendall Street, Box 1942, New Haven, Connecticut 06509, or by using the check-off on page 126.

hand-held ssb transceiver

The MM-2C is a hand-held, single-channel ssb transceiver recently introduced by Northern Radio Company of Seattle, Washington. Rated at 5 watts peak envelope power, the MM-2C operates in the 1.6-10 MHz range. It's completely solid state and is powered by self-contained rechargeable batteries. The transceiver can be used with a variety of antennas and is protected against antenna mismatch. A temperature-compensated crystal oscillator assures optimum frequency stability between -22 and 122°F (-30 and 50°C).

The MM-2C transceiver is ideally suited for applications requiring portable communications capability in areas where the range with hand-held vhf fm equipment is limited by terrain or dense foliage. Although the unit is specifically designed for longer-range portable communications required by industries such as Petroleum, Mining, Geological, and Forestry, it is also suitable for amateur radio applications. For more information contact Northern Radio Company, 4027 21 Avenue West, Seattle, Washington 98199, or use check-off on page 126.

short circuit

Much to our embarrassment, the so-called NASA speech filter which appeared in *circuits and techniques* in the June issue did not originate from NASA, but from a jokester who published the circuit in a French amateur radio magazine in April, 1971. The only clue to the spoof, which we didn't catch, was the name of the NASA engineer who supposedly developed the circuit — Schertz — which is German for joke. The only thing the circuit does provide a very large insertion loss.
IN PERFORMANCE
The word is getting around. There is simply no better processor available for general purpose computer work than the Motorola MC6800. This memory oriented processor is easier to program and makes possible more efficient, shorter and faster running programs than the old fashioned bus oriented processors. Have you been convinced that machine language, or assembler programs are only for the experts? Well not with a modern 6800 based computer. Anyone can learn very quickly with this simple straightforward hexadecimal notation processor. When you add to these advantages the unique programmable interfaces and the Mikbug® ROM you truly have a "benchmark" system.

Mikbug® eliminates the tedious and time consuming job of loading the bootstrap program from the switch console each time the computer is turned "On". With Mikbug® this is automatic and you simply don't have switches or status lights. It has been said (not by us) that a switch console is essential for "hardware development," (perhaps they meant "hardware debugging"). Anyway the SwTPC 6800 system has no need for either. This is a fully developed, reliable system with no strange habits. All boards have full buffering for solid noise immune operation. One crystal type clock oscillator drives everything, processor interfaces and all; so there are no adjustments and no problems.

FOR VALUE
The SwTPC 6800 in its basic form comes complete with everything you will need to operate the computer except an I/O device. This may be either a teletype of some kind, or a video terminal. You get a heavy duty anodized aluminum case, a 10 Amp power supply large enough to power a fully expanded system, a mother board with seven memory/processor slots and eight interface slots, a 2,048 word static memory and a serial control interface. This kit is now only $395.00. It was introduced at $450.00, but when processor prices went down we reduced the price of the kit accordingly.

As an owner of our 6800 computer you will get copies of our newsletter with helpful information and software listings. We have a library of software including all the common computer games and our fantastic BASIC. This is available to you for the cost of copying, you don't have to buy anything to get this material.

What more could you want? Pay a visit to our nearest dealer and see the 6800, plus our new cassette interface, graphics terminal and printer. He will be happy to demonstrate our system and to supply you with a 6800 that will fit your exact needs.

Mikbug® is a Motorola Trademark

SwTPC 6800
Computer System
with serial interface and 2,048 words of memory. $395.00

Southwest Technical Products Corp.
219 W. Rhapsody
San Antonio, Texas 78216

The Computer Store, 820 Broadway, Santa Monica, Calif. 90401, (213) 451-0713
Cyberdux, Microcomputer Applications, 1210 Santa Fe Dr., Encinitas, Calif. 92024 (714) 279-4189
The Micro Store, 634 South Central Expressway, Richardson, Texas 75080 (214) 231-4088
ELS Systems, 2209 N. Taylor Rd., Cleveland Heights, Ohio 44112 (216) 249-7820
Microcomputer Systems Inc., 344 S. Dale Mabry Ave., Tampa, Florida 33606, (813) 879-4301
William Electronics Supply, 1863 Woodbridge Ave., Edison, N.J. 08817 (201) 985-3700
Computer Mart of New York, Inc., 314 Fifth, New York, N.Y. 10001 (212) 279-1048
The Byte Shop Computer Store #1, 1363 El Camino Real, Mountain View, Calif. 94040, (415) 969-5464
The Byte Shop Computer Store #2, 3400 El Camino Real, Santa Clara, Calif. 95051, (408) 249-4221
A-VID Electronics Co., 1655 E. 28th Street, Long Beach, Calif. 90806 (213) 426-5526
Computer Warehouse Store, 584 Commonwealth Ave., Boston, Massachusetts 02215 (617) 261-1100
The Computer Workshop Inc., 11308 Hounds Way, Rockville, Ind. 20852 (301) 468-0455
The Computer Store, Inc., 120 Cambridge Street, Burlington, Mass. 01803 (617) 272-8770
Marsh Data Systems, 5405 B. Southern Comfort Blvd., Tampa, Florida 33614 (813) 886-9890
Midwest Enterprises Inc., 815 Standish Ave., Westfield, New Jersey 07090 (212) 432-2066
The Milwaukee Computer Store, 6916 W. North Ave., Milwaukee, Wi 53213 (414) 259-9140
Control Concepts, P.O. Box 272, Needham Heights, Mass. 02194
American Microprocessors, Equipment & Supply Corp. at Chicagoland Airport, P.O. Box 515, Prairie View, Illinois 60069 (312) 634-0076
The Computer Room Inc., 3938 Beau D'Rue Dr., Eagan, Minn. 55122, (612) 452-2547
Computertware, 830 First St., Encinita, Calif. 92024 (714) 436-9119
Atlanta Computer Mart, 5091 B Buford Highway, Atlanta, Ga. 30340 (404) 321-4399
SWAN METERS HELP YOU GET IT ALL ON

Keep things in tune for a song.

Our SWR-3 SWR meter and FS-1 field strength meter help you make sure you've got it all on the air and going in the right direction. Both are pocket sized with easy-on-the-pocket prices. Use your Swan credit card. Applications at your dealer or write to us.

SWR-3 SWR Meter. Why bother with big, bulky meters when this one does the job just as well? Measures 1:1 to 3:1 SWR from 1.7 MHz to 55 MHz with all the accuracy you need. $10.95

FS-1 Field Strength Meter. Get field strength readings just about anywhere with this fit-anywhere meter. Telescoping antenna, level adjust knob, 1.5 MHz to 200 MHz, 0-10 relative scale meter. $9.95

NEW!

TIMEOUT TIMER
Adjusts 10 sec. to 3 min. 2.5 pulse d.c. output.
Model TG-970 $7.95 assembled, $6.50 kit, p&p.

1000HZ TONE IC oscillator for use with TG-970. Drives your speaker. Model TG-3 $4.50 assembled, $4.00 kit, p&p.

PAD INTERFACE
Use with W.W., etc. Touch tone phone. Carrier hold delay with indicator; LED pilot; variable pad gain, hold delay and pad-mic isolation. Zener regulated. Sinks 500 ma.
Model TT-980 $23.95 assembled, $19.95 kit, p&p.
Use with NC dry contacts (wh/olu & whi.
heads).

Model TT-979 $20.50 assembled, $18.50 kit, p&p.
Use with NC dry contacts (wh/olu & whi.
heads).

BURGLAR ALARM
Auto or home, armed from inside. Warning tone on re-entry. Triggered SCR output. Gimmick proof;

ALDELCO SEMI-CONDUCTOR SUPERMARKET

RF DEVICES
2N3375 3W 400 MHz 5.50 2N6080 4W 175 MHz 4.40
2N3966 1W 400 MHz 99 2N5081 10W 175 MHz 8.45
2N5689 3W 175 MHz 4.75 2N6082 7W 175 MHz 10.95
2N5690 10W 175 MHz 7.80 2N6083 30W 175 MHz 12.30
2N5991 25W 175 MHz 10.95 2N6084 40W 175 MHz 16.30

HEAVY DUTY RECTIFIERS
200 Volt 10 Amp D88 8.50
200 Volt 20 Amp D89 12.50
400 Volt 2 Amp Silicon Rectifier RCA 15 for $9.99
1000 Volt 2 Amp Silicon Rectifier RCA 10 for $9.99
10,000 Volt Silicon Rectifier, 65 ma. 2.95

ALDELCO KITS
Digital Clock Kit, Hours, Minutes & Seconds. Large Half Inch LED readouts. Elapsed time indicator. 12 hour format with 24 hour alarm. Sneaky feature: AM/PM indicator, Power Supply, power fail indication. Complete with wood grain cabinet. $23.95

LOGIC PROBE KIT. LED INDICATORS $14.95

LEDs
Jumbo Reds. Long or Short bulb. 6 for $1.00
Jumbo Orange, Green, Clear Red or Green. 5 for $1.00
209 Series: Green, Orange, Yellow or Red. 5 for $1.00
15W or Micro Red. 5 for $1.00

ZENERS
5N475 to 1N759 400 Fuses ex. 25 1N4748 to 1N4764 1 35 10 assorted zener diodes unmarked 1.99

TC1068 5.65 TTL's
MPSA17 90 7400 20 7492 80
2N5995 99 7407 20 7490 80
MPF 102 FET 45 7403 20 7492 80
2N304 or 2N3006 10.99 7404 25 7421 60
2N4985 or 2N4908 40 7406 25 7423 1.10
FET 70IB D47 45 7411 25 7454 20
4063 RCA FET 40 7407 45 7484 20
7412 or 1N5914 FET/DIP 5 7411 20 7466 1.75
755 Timer 75 7413 .85 7417 1.35
556 (Dual 556) 31.75 7430 20 7481 3.99
200 Volt 25 Amp Bridge $10.00 7432 50 7492 1.50
1N514 to 1N524 10 for $9.99 7442 1.10 7493 1.45
IN914 to 1N916 10 for $9.99 7442 1.10 7493 1.45
1N914 to 1N916 10 for $9.99 7442 1.10 7493 1.45

We quote on any device at any quantity. All items postpaid. 5% off min. order. Send stamp for catalog. NYS add tax.

Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished. Regularly $70.00. Now, over 30% discount (only $49.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax. Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmericard accepted

D-D ENTERPRISES
Dept. A, P.O. Box 7776
San Francisco, CA 94119

ALDELCO
2291H Babylon Trpk., Merrick, NY 11566
516-278-4956

TIMEKITS
Dept. N, Box 22277, Beachwood, Ohio 44122

94 september 1976

More Details? CHECK-OFF Page 126
5/8 Wave
Vertical Ground Plane
Model DI-2A

Power Rating: 1 KW AM/CW,
2 KW P.E.P. SSB, input
to final amplifier.
Gain: 3.4 db. compared to
¼ wave ground plane.
Frequency Range: adjustable from
144 to 148 MHz., with custom
features for 150 to 170 MHz.
VSWR: 1.5/1 or better at
resonance.
Vertical Element: Plastic
coated aluminum to reduce
static noise caused by
electrically charged rain.
Radial Elements: four heavy-duty
aluminum rods 3/16 inch OD.
Assembled Height: 4 feet, 2 inches,
weighing only 2 pounds.
All stainless steel mounting
hardware.

5/8 Wave
Mobile Vertical
Model MM-144

Power Rating: 250 watts AM/CW,
500 watts P.E.P. SSB, input to
final amplifier.
Gain: 3.4 db. compared to
¼ wavelength.
Frequency Range: 144 to 148 MHz.
Adjustable tuning for exact
frequency of your choice.
VSWR: 1.5/1 or better
at resonance.
Whip Material: tapered, 46 inch,
17-7PH stainless steel.
Will bend 180° and return without
setting.
Matching System: series-resonant,
shunt-feed system.
Assembled Height: 4 feet, 5 inches
with base mount and shock spring.
ANNOUNCING SCS’s NEW HF-10-100L for use with

HF-10-100L AMPLIFIER
Frequency Range 3-30 MHz
Input Power 10 W Nom., 5-20 W PEP range
Output Power 100 W Nom., ± 2 dB across band, 200-250W PEP output
Input Impedance 50 Ω nom., adjustable to match exciters range under 2:1 across band
Output Impedance 50 Ω nom., up to 3:1 VSWR acceptable with little degradation
Current Drain 16 A nom., 20 A supplied recommended at 13.6 VDC
Power Supply 13.6 VDC recommended for best results, 11-14 VDC acceptable positive or negative ground
Pre-amp 18 dB gain across entire HF band, 15 dB typ at 50 MHz, 3-4 dB NF
Size 19.1 x 16.5 x 8.9 cm wt 1 1/2 Kg
The high level of quality of workmanship and performance will make the HF-10-100L very popular in short order. Now being used by West Coast Amateurs. Includes built-in low pass filter which cuts off at 35 MHz. User to supply additional low pass filters for bands below 15 meters. Class AB operation insures proper linearity and min. distortion.

HF-10-100L $219.95
Other models also available for HF — UHF
SEE YOUR FAVORITE DEALER OR ORDER DIRECT FROM:
SCS SPECIALTY COMMUNICATIONS SYSTEMS, INC.
8160 Miramar Rd., San Diego, CA 92126 • Louis N. Anciaux, WB6NMT, (714) 271-6310

PRACTICE DRIVING SAFETY & OPERATING EFFICIENCY WITH A PATENTED MAGNETIC SAFETY MIKE
$39.95 NET
AT YOUR DISTRIBUTOR
or P. P. From Factory.
Ohio Residents Add Sales Tax.

When ordering specify Hi or Low impedance. Less mike plug. Write for literature.

CLOSE OUT SPECIAL
• REFERENCE DATA FOR RADIO ENGINEERS
We have just purchased the complete inventory of the recently superseded 5th edition of REFERENCE DATA FOR RADIO ENGINEERS. Here is a unique opportunity to own copies of this outstanding reference book at a very attractive price.

A must for any serious amateur. In 45 chapters it covers not only every area of basic radio theory, but also goes into such modern areas as micro-miniature electronics and space communications. Probably the most complete reference of this type. Sales of over 350,000 testify to its wide acceptance. 1,196 pages, hard-bound.

Was $23.00
Order 20678
Now Only $14.95
ORDER BY PHONE 800-258-5353
HAM RADIO
GREENVILLE, NH 03048

More Details? CHECK—OFF Page 126
KLM antennas penetrate the pile-ups!

KLM... big, broad, super-performance line of beam antennas with the same "take charge" Big Stick leverage from forty meters to seventy centimeters! Covers the whole band. Cleaner patterns and lower VSWR are attributable to sophisticated designs featuring multiple driven elements, optimized between-element spacings and KLM's custom insulators.

Every KLM antenna... HF through UHF... is a carefully crafted product engineered for maximum mechanical strength consistent with low weight... is corrosive-resistant with stainless steel hardware and 6063-T832 aluminum... uses high strength, low-loss insulation materials and castings.

Don't be second best in HF or VHF contests, Oscar, Moon bounce, tropo... penetrate the pileups with KLM antennas!

KLM 70 CENTIMETER ANTENNAS

The fine series of UHF antennas consists of 6, 14 and 27 element high gain, broad coverage antennas (6 and 14 element types are rear mountable). All antennas (except the 432-16-LB cover 420-450 MHz without need for tuning. These are ideal, maximum gain antennas for point-to-point or repeater control applications. An available long boom 12' model, optimized at 432 ± 2MHz, is particularly desirable for EME and DX communications. Eight of these beams, using KLM high efficiency couplers are comparable to a 128 element, extended, expanded collinear array.

A typical antenna: (KLM-420-470-14)
Elements: 14.
Gain: 11.5db (dipole reference)
Beam width: 18 degrees @ 3db points.
Dimensions: Boom: 1' (25.4mm).
Elements 4/4 (9.5mm)

KLM 20 METER MONOBANDER

Do you operate both phone and CW and so are forced to compromise with higher VSWR on one or the other mode? Not with this KLM 20 meter monobander! Multiple driven elements and other KLM design exclusives, give broad-band action, low VSWR over 13.9 to 14.4MHz, F/B (and sides) ratio is excellent, gain is exceptionally high (9.75 dipole reference). Impedance is 200 ohms balanced (matched w/KLM's 4:1 4KW p.e.p. balun (optionally available). Assembly is simple and fast.

Other KLM beams for 40, 15 and 10 meters feature dual driven elements for high gain, F/B ratio and low VSWR over both phone and CW band sections. Also, a 7 elements log periodic w/26' turning radius, 30' boom (3', 76 mm) D that gives continuous coverage, 10-30MHz!

Makes an excellent NO TRAP, 20-15-10 meter beam with gains equivalent to long boom, 3 element Yagi. Matches 50 ohm line w/4KW p.e.p. balun (supplied).

5 full size elements: Boom: 42', 3' (76mm).D.
Turning radius: 28' Wgt: 65 lbs. (29.4KG)

NEW ELEVATION ROTATOR

Model KR-500

Use for OSCAR 6-7, Moonbounce, etc. Medium duty w/ electrical brake/limit switches. 1 min./360 degrees. Rugged ... weatherproof. Attractive direction indicator.

KLM electronics

17025 Laurel Road, Morgan Hill CA 95037 (408) 226-1780, (408) 779-7363

More Details? CHECK-OFF Page 126

September 1976
NEW Technical Approach
VOMAX SBP-3 Split Band Processor

SPEECH PROCESSOR FEATURES:
- Low Distortion
 (typically 5%)
- SSB Compatible
- Integrated Circuits
- Speech Enhancement
- Adaptive Filtering Technique
- Impervious to RF Feedback
- Automated Level Control
- Visual Level Indicators
- Optimized Speech Band Width
- Mobile or Base Station Installation
- Dynamic Range 60 dB (virtually overload-proof)
- One Year Warranty-Money Back Guarantee

Made in U.S.A. with Computer-Grade Boards and Components $179.50

MAXIMILIAN ASSOCIATES
BOX 223
SWAMPSCOTT, MA 01907

ANTENNA BALUN KIT
ONE KILOWATT - STILL $5.00
'Z' ratios 1:1 or 4:1

Also use as Transformer

to match other 'Z' ratios

Will match Mobile Verticals

Ask for free 'Data-Flyer' on Ferromagnetic Materials

AMIDON
Assoiciates — 12033 OTSEGO STREET, NORTH HOLLYWOOD, CALIF. 91607

Call us...
We are ready to serve you...

WIRE CONCEPTS INC.
201-227-1751
198 Passaic Ave.,
Fairfield, N.J. 07006

FOR AMATEUR USE
50 OHM JACKETED HARDLINE
- very low loss per 100 ft.
- improved receiver sensitivity
 .45 dB to 50 MHZ
 .90 dB to 146 MHZ
 1.90 dB to 450 MHZ
 4.20 dB to 1296 MHZ
- longer life

SALE 45¢ per foot

GEM-QUAD FBRE-GLASS
ANTENNA FOR 10, 15, AND 20 METERS

Two Elements $129.00
Extra Elements $90.00
Price is F.O.B. Transcona
INCLUDES U.S. Customs Duty

KIT COMPLETE WITH
*SPIDER
*AOWS
*WILE
*BALUN KIT
*BOOM WHERE NEEDED

WINNER OF MANITOBA DESIGN INSTITUTE
AWARD OF EXCELLENCE

Buy two elements now — a third and
fourth may be added later with little
effort.

Enjoy up to 8 db forward gain on DX,
with a 25 db back to front ratio and
excellent side discrimination.

Get a maximum structural strength
with low weight, using our "Tridetic" arms.

GEM QUAD PRODUCTS
Box 53
Transcona, Manitoba
Canada R2C 2Z5
Tel: (204) 866-3338

2 METER CRYSTALS IN STOCK
FOR THESE RADIOS ON
STANDARD ARRL REPEATER FREQUENCIES

Drake TR-22
Kenwood TR-2200
Genave
Icom/VHF Eng.
Ken/Wilson
Regency HR-2A/HR212/
Regency HR-2B
S.B.E.
Standard 146/826
Standard Horizon
Clegg HT-146
Temp FMH
Lafayette HA-146
Midland 13-505
Heathkit HW-2021
Heathkit HW-202

Send for free frequency list and order blank to:

KENS CO
COMMUNICATIONS INCORPORATED
29 Independence Ave. Quincy, MA 02169
Phone (617) 471-6427

More Details? CHECK-OFF Page 126
IF YOU ARE ON 144, 220 OR 432 AND HAVE WORKED A REPEATER...

It was probably this one.

The RPT 144B, RPT 220B and RPT 432 are self-contained — all solid state machines. Conservatively rated, high quality components, assures EXCELLENT RELIABILITY. Careful consideration has been given to both interfacing and control flexibility.

RPT 144B or RPT 220B Kit ... $465.96
RPT 432B Kit ... 515.95
RPT 144B or RPT 220B factory wired and tested 695.95
RPT 432B factory wired and tested 795.95
RPT 50B soon to be announced N.A.
RPT 28B soon to be announced N.A.

WORK ALL repeaters with
our new SYNTHESIZER II

The Synthesizer II is a two meter frequency synthesizer. Frequency is adjustable in 5 KHz steps from 140.00 MHz to 149.995 MHz with its digital readout thumb wheel switching. Transmit offsets are digitally programmed on a diode matrix, and can range from 10 KHz to 10 MHz. No additional components are necessary!

Kit $169.95 Wired and tested $239.95

Export prices slightly higher.
RATES - Non-commercial ads 10¢ per word; commercial ads 40¢ per word both payable in advance. No cash dis- counts or agency commissions allowed.

HAMFESTS - Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Re- peat insertion of hamfest ads pay the non-commercial rate.

COPY - No special layout or ar- rangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio can not check each copy. The correctness of material limited to cor- rectness of claims made. Liability for错误由作者个人负责.

SEND MATERIAL TO: - Flea Market, Ham Radio, Greenville, N. H. 03048.

LOOKING FOR USED GEAR? - Buyers & Sellers radio brokerage has the equipment you want at the right price. Call our Ham Gear Hot line - 617-536-8777 - Monday-Friday, 9-5.

STOP - don't junk that television set. ASE manu- factures the world's most complete line of television picture tubes. Over 1700 types. Most types immediate delivery. Tubes for Old or New TV's, black & white and color. 2 year factory warranty. Lowest prices anywhere. Allied Sales & Engineering, Inc., Dept. 22, Pimento, IN 47866. Telephone 812-495-6555.

ETCHED CIRCUITS - glass epoxy, drilled and plated. $2.50/square inch. Send artwork to Ready Circuits, P. O. Box 34, Pinesdale, Mont- ana 59841.

COMPUTER HOBBISTS! Bargain hunt and sell via VHF! 12 issues/year - $3.75. Free sample issue from: ON-LINE. 24695 Santa Cruz Hwy., Los Gatos, CA 95030.

P. C. TRIMPOTS. 100, 500, 1k, 2.5k, 5k, 10k, 25k, 50k, 100k, 500k, 1M. Available. 4/$1.00. Package, 1 ea. of above $2.50. Add $2 postage. Free catalog. NuData Electronics, 104 N. Emerson St., Mt. Prospect, IL 60056.

MANUFACTURERS, DISTRIBUTORS, DEALERS! - The Memphis Hamfest had 3,300 registrations last year and many more are expected this year! Saturday and Sunday, October 2 & 3, at State Technical Institute, Interstate 40 at Memphis Road. Security, motels, restaurants: a great location for a great event! Contact Harry Simpson, W5DFS, P.O. Box 406, 9410 Walhampton, Louisville, KY 40222.

DESK CONSOLE CABINET for your equipment. Build your own. Design drawings, and photo- graph $4.75. Bill Morris, W5RSC, P. O. Box 411, Lubbock, TX 79408.

RUBBER STAMP, name/call/QTH $2.50 ppd. (CA residents add tax). LWM Press, Box 22161, San Diego, CA 92122.

PORTA-PAK the accessory that makes your mobile really portable. $39.95 and $39.95. Dealer inquiries invited. P. O. Box 67, Somers, Wis. 53171.

NOT C.B. decals. 1 x 2 inches, black over white, plastic, weatherproof, peel and stick. Great for tailgates, cars, trucks, trailers, etc. Sold in quantities of 6 and 12. We buy Collins, Drake, Swan, etc. SSB & FM. Associated Radio, 12 Conser, Overland Park, KS 66204. 913-381-5901.

THE POPULAR CUA 64-12 by Heights Light, permanently beautiful aluminum towers

THE MOST IMPORTANT FEATURE OF YOUR ANTENNA IS PUTTING IT UP WHERE IT CAN DO WHAT YOU EXPECT. RELIABLE DX - SIGNALS EARLIEST IN AND LAST OUT.

ALUMINUM - Complete Telescoping and Fold-Over Series available Self-Supporting Easy to Assemble and Erect. All towers mounted on hinged bases. And now, with motorized options, you can crank it up, down, or fold it over, from the operating position in the house. Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

ALSO TOWERS FOR WINDMILLS RATES

GEORGIA LIGHTING MANUFACTURING CO.

In Almont Heights Industrial Park Almont, Michigan 48003
DUPLExER & CAVITY KITS... Now available for you fully assembled and tuned!

- UPGRADE YOUR REPEATER WITH A RF TECHNOLOGY DUPLEXER.
- ALL DUPLExERS AND CAVITIES ARE TEMPERATURE COMPENSATED WITH INVAR® AND MEET ALL COMMERCIAL STANDARDS.
- ONLY TOP QUALITY MATERIALS SATED AVAILABLE TO YOU AT A SAVINGS UPGRADE YOUR REPEATER.

Mod. 82-3...6 cav., 2 mtr., insertion loss 0.6 db with isolation 100 db typical; pwr. 350 w. Kit $349 ea.—Assembled $439.

Mod. 4220-3...4 cav. 220 MHz insertion loss 0.6 db with 80 db isolation typical; pwr. 350 w. Kit $249 ea. —Assembled $329.

Mod. 4440-3...4 cav. 440 MHz, insertion loss 0.6 db with 80 db isolation typical; pwr. 350 w. Kits $249 ea. —Assembled $329.

Mod. 30 Cavity Kits: 2 mtr. $65 ea., 220 MHz $65 ea., 440 MHz $65 ea.; 6 mtr. $115 ea. Add $15 for Assembled Kit.

Also available: 6 mtr., 4 cav. Kit $399-Assembled $499, 2 mtr. 4 cav. Kit $249-Assembled $329, 440 MHz TV Repeater Duplexer

Only hand tools are necessary to assemble Kits!

Send your order to: Distributor: TUFTS RADIO, 386 Main St., Medford, Mass. 02155. Phone (617) 395-8290.

(Technical Support: John Deering, Box 789, 100 Tilton Road, Peabody, Mass. 01960.)

Flea Market

TECH MANUALS For Govt. surplus gear — $6.50 each: SP-602RF, AN/BSA/UI, PRC-8, 10. Thousands more available. Send 50c (for) each for 22-page list. WH70, 7216 Roanne Drive, Washington, DC 20021.

NEW CANADIAN MAGAZINE. “Electronics Work Shop,” $5.00 yearly, sample $1.00. ETCOB. INC. P.O. BOX 785, MONTREAL, H3C 2W2.

MODERN 60 MIN. CODE CASSETTES. Novice 0-5 wpm, progressive 5-13 wpm, General 13-15 wpm, Extra 20-22 wpm. $3 each, 4/10, Royal, Box 2174, Sandusky, Ohio 44870.

SSB TRANSCEIVER Transom SB1-2 with matching speaker, power supply & DC supply. $175. Lafayette HA-1500 6 meter transceiver. $500, MTV. Dwyer OAK, 60 Sunset Ave., Salder, L. I., N. Y. 11784.

COMPLETE LINE KLM, CushCraft, Covercraft dust covers. SCS amplifiers, Regency, Triex Towers. Call or write Radios Unlimited. 86 Balch Ave., Encinitas, CA 92025. (714) 747-0374.

WANTED: Motorola channel elements TLM-1081, TLM-1082, TLM-1083, KIVTY. Box 165, West Groton, Mass. 01472.

SALE: Model 28 ASR’s. KSR’s repubs - key-boards - prnters parts - all recert for hams. All in excellent condition. A.D.M. Communications, Inc., 1322 Industrial Avenue, Escondido, Ca. 92025. (714) 747-0374.

MOTOROLA HT220, HT200, Pageboy, and other popular 2M FM transceivers (Standard. Regency, etc.) service and modifications performed at reasonable rates. WA4FRV, (804) 727-8403.

WANTED: 1296 or other transceiver this band. Must be good condition. M. Ferris, 4205 Beulah Drive, Los Angeles, Cal. 90101.

TRAVEL-PAK QSL Kit — Send call and $25; receive your call sample kit in return. Samco, Box 203, Wynantskill, N. Y. 12198.

WANTED: Car telephones and mobile telephone parts, head, cables, etc. Greg Hyman, 87 Yonkers Ave., Yonkers, N. Y. 10701, 714-476-4330.

TELL YOUR FRIENDS about the BIG NEW Ham Radio Magazine!
AMATEUR RADIO AT ITS BEST

IT'S ALL AT YOUR SUPERMARKET OF AMATEUR VALUES
Write for your free catalog, call, stop by (we're only minutes away from Chicago's loop) or

SEE US AT:

RADIO EXPO '76 . . . Gray's Lake, IL . . . Sept. 18-19
CLEVELAND, OHIO . . . Sept. 11
FINDLEY, OHIO . . . Sept. 12
LOUISVILLE, KENTUCKY . . . Sept. 26

SPECTRONICS, INC.
1009 GARFIELD
OAK PARK, IL. 60304
312-848-6777
TELEX 72:8310

HOURS
STORE HOURS:
Mon-Thurs 9:30-6:00, Fri. 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.
sparks

speakers

PIONEER - 2 1/4" dia. Round Speaker, 7/8" deep, 16.3 ohms, 0.3 watts, $1.15 ea. ppd.

3 inch 4 ohm VC Speaker frame speaker 0.3 watt with 4 mounting holes. $14.55 each ppd.

oval speaker

2" x 4" x 1/8" deep, 80 ohms, $1.75 ea. ppd.

unpotted toroids

2 1/2 lb. Spec. 44 Myh 5/2.$95 ppd.

turning meters

Blue tinted plastic body, 0 to 5 mfd., 1 mfd. scale. 200, 1/10" W x 1/4" H x 1/4" D. $2.52 ea. or 4/$6.95 ppd.

carbon trimmers

Miniature 1/4" watt units for limited-space applications. PC type terminals. Max 500 volts. Ohm ratings are:

- 200, 2000, 7000, 1000, 15000, 7000
- 30 ea. or 5/$13.55 ppd.

new mini

Imported vertical pots (1/4", 1/2", 3/4", 1"")(40, 1000, 25k, 5k, 50k ohms. Slot adj. Also 5k Horiz. Price: 5 for $1.20 ppd.

miniature snap action switches

- SPST - 5000 AC, 1/4" x 1/4", 500 ea. or 3/$1.55 ppd.
- SPST O. Cherry Mfg. Co. 15A, 15A, 125V AC, 1/4" x 1/4", 500 ea. or 3/$1.35 ppd.
- SPST N.C. Acre "250" 15A, 125V AC, 1/4" x 1/4", 500 ea. or 3/$1.35 ppd.

spst slide switches

(Red) Made by Stackpole - 40A, 125V A.C. 35c ea. ppd.

transistor and relay assembly

- consists of (2) MJE3055 transistors (10 amp, 90w, 1000v, 10 v p-n-p type mounted in "U" channel and (2) 1/16D) XTL CAN RELAYS, DPDT, 28v, 80000, 1.5 amp contacts mounted on PC board with $2.85 ea. ppd.

NEW

3 1/8 inch miniature affair for clips. Bright vinyl red or black. Nickel plated 9 for $1.00

icapitors

back in stock once again

3000 MFD @ 20 Volt. Capacity is as above.

80 or 3 for $2.25 ppd.

3000 MFD @ 20 Volt. Capacitors. Same size as above. 80 or 3 for $2.00 ppd.

ALSO 3000 MFD @ 50 Volt. 95c ea. or 3/$2.65 ppd.

crl disc capacitors

- .1 mfd, 10V 1/16" dia., long leads.

- $1.00 ppd.

NEW SIZES

- Vertical mount PC board potentiometers

American made (CRL) ceramic sizes:
- 25k, 10K ohms, 5/1000 each
- CTS Blue wheel. Values: 750, 1K, 1.5K, 3K, 50K, 100K, 0.5M, 1M ohms.

SEND STAMP FOR BARGAIN LIST PENNSYLVANIA RESIDENTS - ADD 6% ALL ITEMS P.P.D. USA

Canadian orders $5.00 add $1.00 to cover additional mailing costs. UPS requires your street address.

m. weinshenker

electronic specialties Box 353, Irwin, Pa. 15642

flea market

icom

22A, DV-21, Heath P.S. mint $252 or will trade. Oscar, P. O. Box 306, Durand, Mich. 48429.

manuals

For most ham gear, 1939/70. List $1.00. Send SASE (or 25c) for quicky, if you know what you want. W2JKR, Box H864, Council Bluffs, Iowa 51501.

ALL 73 MAGAZINES

From start to date - make offer. JRC, KIIRC, 21 Ellen St., Norwalk, Conn. 06851.

15,000 pieces of equipment from 1850 tele- graph instruments to amateur and commercial transmitters of the past. W2AN. Write for information. Antique Wireless Assn., Main St., Hope Valley, R.I. 02832.

collins kw-22, pm-900

3012B, $425.

IC22, $150. Crystal pairs, 6 IC30, 6 crystal pairs, $250. Excellent condition. Original cart. 1732 W. Point, Shreveport, La. 71104

SIDESWIPER

only $13. Airmailed USA. Kungsimport, Box 257, Kungsbacka, Sweden.

free catalog

LEDs, strobe lights, UARTS, memories, RF transistors, microphones, IC's, relays, rechargeable batteries, pioneer, Precision, capacitors, digital thermometers, unique components, Channely's. Box 27038, Denver, Colo. 80227.

PC's. Send large S.A.S.E. for list. Semtronics, R.F. Box 14, J. Belaire, Ohio 44306.

heath hw-7

mint, built by engineer, shipped UPS, $60. Original schematic, WGR, Grundy county, Iowa 50638.

fight tvi

with the RSO Low Pass Filter. For brochure write to Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada, M1S 3R4.

yaesu owners

Send a dollar (creditable towards dues) for August issue of Newsletter containing detailed chart of US replacements for FT-101 transistors. Or join us! All 1976 newsletters plus savings via our Purchasing Service. Still only $5, International Fox Tango Club, Lake Dora Drive, W. Palm Beach, Fl. 33411.

teletypewriter parts, gear, manuals, samples

- manuals, tapes, tapes, tapes. Box 8873, Ft. Lauderdale, Fl. 33310. Buy parts, late machine. $35.

qsrls

- BROWNE W3CJ - 3035B Lehig, Allentown, Pa. 18103. Samples with cut catalog 50c.

exclusively ham teletype 21st year

- RFT Journal, articles, news. DX, HF, classified ads. Sample 35c. $1.50 per year, Box 837, Royal Oak, Michigan 48068.

oscar 7, sbb-cw transmit converters

- For 28 or 50 MHz output at 1 watt. Solid state, for 12 volt supply, 35 watt solid state crystal. Available for this converter. Units designed and built by W3CJI. Use with VHF-HF Communications, 53 St. Andrew, Rapid City, S.D. 57701.

your ad

Belongs here too. Why not send it in today.

coming events

MENPHIS IS BEAUTIFUL IN OCTOBER! The Memphis Hamfest, bigger and better than the 3,500 who attended last year, will be held at State Technical Institute, Interstate 40 at Macoupin Road, on Saturday and Sunday, October 2 and 3. Demonstrations, displays, MARS meetings, flea market, free give-aways, Hamfest. Quality room, informal dinners, XYL room. Many outstanding prizes. Dealers and distributors welcome, too! Contact Harry Simpson, W4SOF, Box 27015, Memphis, Tenn. 38127, phone 901 358-5707.

hamfest

- Springfield, Illinois! First. Sangamon Valley Radio Club invites everyone. Sunday, September 19. 10 A.M. to 4 P.M. Admission $1.33. Good food and beverages all day. For further information: Lillian Abbott, 1424 Main Street, Cincinnati, Ohio 45210

test equipment

SW-5

$87.50

The SW-5 is a remote controlled RF switch with indicator lights telling which antenna is in use. It will handle 4 kW PEP and more. Remote switch is housed in weather tight hinged box. A six wire #18 cable is required to operate the SW-5. Ham M control cable works fine up to 3000 watts. Necessary for longer distances. Remote switch operates off 28 VDC built in power supply. No visible effects on SWR. Zero dB insertion loss. Not recommended above 30 MHz. Standard unit is equipped with UHF connectors but BNC, N, NH, C connectors are available at additional charge. Models available are SW3, 4, 5, 6, 7, 8, 9. Also heavy duty 10Kw units. Special switching systems are available. Tell us your needs.

antenna mart

Box 1010 ISU Station

Ames, IA 50010

Phone: 515-292-7114
Alive with activity at both ends of the band! Be a part of the total 2 Meter picture with the Cush Craft Twist Antenna. Actually two, easily assembled, 10 element yagis in one — the vertical elements are cut for the high end, the horizontal elements for the low end, and separate feed lines are used. The A147-20T is tailored to meet the demands of the operator who enjoys the best of both worlds — FM and SSB/CW.

A147-20T $47.50

Extend your horizon — Explore the exciting new world of amateur satellite communications using low power with our multi-polarized Twist Antennas. All models include phasing harness for selectable linear or right/ left circular polarization. Two of these Twists may be mounted on the A14T-MB mounting boom which is complete with a pre-drilled plate for a readily available mast-through rotator.

Face this challenging frontier — Become a Specialist!

A144-10T $32.50 A432-20T $45.00
A144-20T $47.50 A14T-MB $13.95

PERFORMANCE ARRAYS . . .

Enjoy fade-free contacts on VHF/UHF with Twist Antennas and Arrays. Excellent for scatter and other long-haul techniques. Double your effective radiated power by stacking two Twists, or quadruple ERP by stacking four Twists. Arrays are easily assembled for your special communications requirement. Write for stacking and phasing harness details concerning amateur and commercial frequencies.

Dependable communications — Now Yours!

IN STOCK WITH DISTRIBUTORS WORLDWIDE

Cushcraft CORPORATION

621 Hayward St., Manchester, N.H. 03103

More Details? CHECK-OFF Page 126
This Month's Specials

NEW
Fairchild VHF Prescaler Chips

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 40290</td>
<td>12.5v, Ft. Typ. 50MHz 2 watts</td>
<td>$2.48</td>
</tr>
<tr>
<td>2N2857</td>
<td>1.85 2N6408</td>
<td>$0.45</td>
</tr>
<tr>
<td>2N3437</td>
<td>1.70 2N6802</td>
<td>$0.65</td>
</tr>
<tr>
<td>2N4072</td>
<td>1.50 2N6602</td>
<td>$1.95</td>
</tr>
<tr>
<td>2N4947</td>
<td>1.20 2N6403</td>
<td>$1.75</td>
</tr>
<tr>
<td>2N5179</td>
<td>1.65 2N6404</td>
<td>$0.80</td>
</tr>
<tr>
<td>2N5286</td>
<td>4.60 MFI31</td>
<td>$1.60</td>
</tr>
<tr>
<td>2N5924</td>
<td>15.70 MCM100</td>
<td>$2.50</td>
</tr>
<tr>
<td>2N5925</td>
<td>10.35 MMT2857</td>
<td>$2.50</td>
</tr>
<tr>
<td>2N5627</td>
<td>20.70</td>
<td></td>
</tr>
</tbody>
</table>

RF TRANSISTORS

New

RCA 40290 12.5v, Ft. Typ. 500MHz 2 watts min. at p. in 0.5 watts $2.48

TUBES

JFQ 19.95 6146/2829A $5.95
75G3 4.60 6310 $5.50
4Q150C 18.00 6661 $1.05
4Q130A 15.00 6620 $1.25
4C250B 24.00 6601 $1.05
4C250F 22.00 6939 $1.50
2X15 25.00 7064 $1.75
7250T/160L 22.00 8072 $2.00
691 7.87 813 $1.50
813 19.00 8156 $1.95
813 9.45 8156 $0.50
6621 6976 $1.95
4652/6042 9.95 6D16 $1.50
6B9A 12.70 7289/2829A $2.50

J U S T A R R I V E D !

These radios have just been pulled out of service. Set up for approx. 150,000,000. Comes with all tubes included. No accessories. Prices include tax.

TUBES

JFQ 19.95 6146/2829A $5.95
75G3 4.60 6310 $5.50
4Q150C 18.00 6661 $1.05
4Q130A 15.00 6620 $1.25
4C250B 24.00 6601 $1.05
4C250F 22.00 6939 $1.50
2X15 25.00 7064 $1.75
7250T/160L 22.00 8072 $2.00
691 7.87 813 $1.50
813 19.00 8156 $1.95
813 9.45 8156 $0.50
6621 6976 $1.95
4652/6042 9.95 6D16 $1.50
6B9A 12.70 7289/2829A $2.50

Just Arrived!

These radios have just been pulled out of service. Set up for approx. 150,000,000. Comes with all tubes included. No accessories. Prices include tax.

FMhz electronics

2543 N. 32ND STREET
PHOENIX, ARIZONA 85008
PH. 602-957-0786
KENWOOD GIVES YOU A CHOICE FOR 2-METER SSB

KENWOOD'S TV-502 TRANSVERTER PUTS YOUR TS-520 OR TS-820 ON THE 2-METER BAND...SSB AND CW. SIMPLY PLUG IT IN AND YOU'RE ON THE AIR

OR GO ALL THE WAY WITH THE BEST...THE TS-700A

Ever tried 2 meter SSB or CW? How about the OSCAR satellite? Tune the band with a VFO instead of fixed channel crystals and experience DX-ing on VHF. In fact, there's a VHF QSO party coming up on September 11 thru 13. FMers improve your scores...beginners try it for the first time. You don't need a big antenna to do it either...anything from a coat hanger to --- ?? The OSCAR satellites (6 & 7) are waiting for you too! Or go exotic with meteor scatter or tropospheric ducting. The "Sky is the limit" on VHF SSB and CW.

TRIO-KENWOOD COMMUNICATIONS INC.
116 EAST ALONDRA/GARDENA, CA 90248

KENWOOD...pacesetter in amateur radio
R-X NOISE BRIDGE

Learn the truth about your antenna.
Find its resonant frequency.
Adjust it to your operating frequency quickly and easily.

If there is one place in your station where you cannot risk uncertain results it is in your antenna.

The Palomar Engineers R-X Noise Bridge tells you if your antenna is resonant or not, and if it is not, whether it is too long or too short. All this in one measurement reading. And it works just as well with ham-band-only receivers as with general coverage equipment because it gives perfect null readings even when the antenna is not resonant. It gives resistance and reactance readings on dipoles, inverted Vees, quads, beams, multiband trap dipoles and verticals. No station is complete without this up-to-date instrument.

Why work in the dark? Your SWR meter or your resistance noise bridge tells only half the story. Get the instrument that really works, the Palomar Engineers R-X Noise Bridge. Use it to check your antennas from 1 to 100 MHz. And use it in your shack to adjust resonant frequencies of both series and parallel tuned circuits. Works better than a dip meter and costs a lot less. Send for our free brochure.

The price is $39.95 and we deliver postpaid anywhere in U.S. and Canada. California residents add sales tax.

Italy write JTVTT, P.O. Box 27, 22063 Cantu. Elsewhere send $42.00 (U.S.) for air parcel post delivery worldwide.

Fully guaranteed by the originator of the R-X Noise Bridge. ORDER YOURS NOW!

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025
Phone: (714) 747-3343

flea market

GREATER SYRACUSE New York Hamfest, Sunday, October 9, 1976, 9 to 6 p.m. at the Syracuse Auto Auction Bldg (Rt. 11, 4 miles so. of Syracuse). Tickets $1.50 before Octo-
ber 1st; $2.00 at door. Lafayette Apple Festival same day — transportation by bus. Info & tickets from: R.A.G.S., Box 88, Liverpool, N. Y. 13088.

Pennsylvania Hamfest, September 19, 1976, Harrisburg. At the Park’s Night Parking Garage, 200 Block Walnut St., Harrisburg. Registration $3.00 per ham. Talk-in 146.18 WR3AVY 94/94. Info from WR3AVY or WA3AYX.

DXPO 76, McLean, Virginia Ramada Inn (Tysons Corner Mall) — easy access from Interstate 495. September 25 & 26. The most complete DX Convention ever planned. To get correct mailing list write: Rose Lamb, WA3NGS, Rt. 1, Box 297, White Plains, MD 20695. For details on complete DX Technical Session: Paul Rinaldo, K4YKB, 1524 Springvale Ave., McLean, VA 22101.

1976 ARRL DAKOTA DIVISION CONVENTION, October 1 & 2, sponsored by St. Paul Radio Club. Location is the beautiful, new St. Paul Civic Center, 143 W. 4th St., St. Paul, MN. Biggest & best convention planned, since every aspect of the show — prizes, awards, forums, technical sessions and more. Write St. Paul Radio Club, P. O. Box 30113, St. Paul, MN 55137. Registration before Sept. 12 is $4.50, after the $12.00.

Midwest ARRL Convention, October 8, 9, & 10 in Omaha. Holiday Inn Convention Center at 72nd & Grover Sts., Omaha. Write AKSARBEN Amateur Radio Club, P. O. Box 1173, Omaha, NE 68101.

Adrian, Michigan Hamfest, September 26, 1976 at the Lenawee County Fairgrounds. 8 a.m. to 3 p.m. Tickets $1.50 advance; $2.00 at gate. Flea market, large display area. Talk-in 46-46-52-94 MHz. WB2QKE.

Shelby, North Carolina Hamfest, Sept. 4 & 5. Display and demonstration of OSCAR 6 & 6 "on" for this event. Amsat station will operate both days. Jim Stewart, WA4AVM, for details.

WR1ACT — Worked All Counties Award. SASE to WR1ACT, South Shore Repeaters Association, Box 284, East Milton, MA 02168 for rules.

Peoria, Illinois. Hamfest September 19 at the Exposition Center, 1250 E. Boughton Rd., just west of University Ave.). Activities for entire family. Swap, prizes, evening camping & dinner available for Sat. 18th. Advance tickets $1.50 from WA9SCA, Earl R. Kimsey, RDF 1, Hanna City, IL 61536.

Stolen Equipment

DRAKE M-12 & mounting bracket SN 11144. Stolen on evening of June 17 from James R. Johns, 24 Fairview Dr., Middletown, NJ 07748 (201) 842-8403.

TR2C-CN SN 850278 & SWAN 350 SN C47925 from MK Electronics at Northwoods Plaza shopping center, St. Ann, Missouri, June 24. If you have information please contact WR2KE at 1150 Staffler Rd., Bridgewater, NJ 08807.

Factory Mail-Order Catalog

Electronic Equipment & Kits

- Standard-Time Receiver
- Digital Wall Clock
- BCD Calendar Clock
- Digital Desk Clocks
- Panel Mount Clocks
- Digital Stop Clocks
- Audio Compressors
- Security Alarms
- Transistor Curve Generator

The unique 36-page CEI factory-direct catalog completely describes each product with technical specifications, photos, schematic diagram, and detailed "how-it-works" information. For a free copy (outside U.S. send $1) write:

CEI
CARNELL ELECTRONICS, INC.
P. O. Box 727 □ Upland, Calif. 91786
Phone 714 985-1540

Here They Are!

Transformers

110 V pri, 10.5 V, 1.5 amp & 12 v 1 amp sec. $3.00
110 V pri, Dual 36 V C.T. sec. @ 3 amps $6.00
110 V pri, 35 V 1/2 amp sec. $2.50
L.E.D.'s

High Dome: Red 8/3600
Green 6/1000
Yellow 1/1200
TIL 31 Infrared L.E.D.'s $1.00 each
LED panel mounts $12/500
Capacitors

5 pf @ 15 V $1.00
330 pf @ 15 V $1.00
1000 pf @ 5 KV $1.00
180 pf @ 5 KV $1.00
1 mfd @ 50 V $1.00
Electrolytics

1000 mfd. @ 6.3 V 6/1000
220 mfd. @ 16 V 6/1000
Dynamic Mike Cartridge $10.00 each
2 1/2%, 1000 V PIV Diodes $3.00
Line Cord Strain Reliefs

25/4.00
5.8 M.H. Chokes

15/1.00
9 V Battery Clones

8/1.00
Prime NE-2 Neon Bulbs

8/1.00
10 K mini pots

3/1.00
6.3 V Cartridge with pig tails

10/1.00
LT-300 Headphones; boom & dynamic mike; $30.00
600 ohm earpieces $10.00
Trim Pots

Miniature style: 5 K 5/1.00
10 K 5/1.00
C.T.S. style: 5 K 5/1.00
10 K 5/1.00
Orders over $5 will be shipped prepaid in continental USA

Use "Check-Off" for complete product catalog.

Hosfelt Electronics
2610 SUNSET BLVD.
STEBENVILLE, OHIO 43925
Phone 614 264-6464

More Details? CHECK—OFF Page 126
"They don't make 'em like they used to..."

(lucky for you, if your next HF transceiver is a TRITON)

The new ultra-modern fully solid-state TRITON makes operating easier and a lot more fun, without the limitations of vacuum tubes.

For one thing, you can change bands with the flick of a switch and no danger of off-resonance damage. And no deterioration of performance with age.

But that's not all. A superlative 8-pole i-f filter and less than 2% audio distortion, transmitting and receiving, makes it the smoothest and cleanest signal on the air.

The TRITON IV specifications are impeccable. For selectivity, stability and receiver sensitivity. And it has features such as full CW break-in, pre-selectable ALC, off-set tuning, separate AC power supply, 12 VDC operation, perfectly shaped CW wave form, built-in SWR bridge and on and on.

For new standards of SSB and CW communication, write for full details or talk it over with your TEN-TEC dealer. We'd like to tell you why "They Don't Make 'Em Like They Used To" makes Ham Radio even more fun.

TRITON IV $699.00

ACCESSORIES:
Model 240 One-Sixty Converter...$ 97.00
Model 244 Digital Readout 197.00

Model 245 CW Filter$ 25.00
Model 249 Noise Blanker 29.00
Model 252G Power Supply 99.00
Model 262G Power Supply/VOX .. 129.00

TEN-TEC
SEVIERVILLE, TN. 37862

EXPORT: 5715 LINCOLN AVE.
CHICAGO, ILLINOIS, 60646
No Price Rise for ’76

FOR FREQUENCY STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS

- **Frequency Standards**
 - 100 KHz (HC 13/U).......................... $4.50
 - 1000 KHz (HC 6/I)............................. $4.50
- **Almost all CB sets, TR or Rec**
 - (CB Synthesizer Crystal on request)
- **Amateur Band in FT-243**
 - ea. $1.50
 - 80-Meter.................. $3.00 (160-meter not avail.)

For 1st class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.

BINAURAL SYNTHESIZER FOR CW AND FM XMT KITS

<table>
<thead>
<tr>
<th>Frequency Standards</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 KHz (HC 13/U)</td>
<td>$4.50</td>
</tr>
<tr>
<td>1000 KHz (HC 6/I)</td>
<td>$4.50</td>
</tr>
<tr>
<td>CB Synthesizer</td>
<td>$2.50</td>
</tr>
<tr>
<td>Amateur Band in FT-243 ea.</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

CRYSTAL SPECIALS

- Frequency Standards
 - 100 KHz (HC 13/U).......................... $4.50
 - 1000 KHz (HC 6/I)............................. $4.50
- Almost all CB sets, TR or Rec
 - (CB Synthesizer Crystal on request)
- Amateur Band in FT-243
 - ea. $1.50

FM XMT KITS

- 2M, 150MW EXCITER.................................... $39.95
- 432-450 MHz TRIPLER................................... $19.95
- 20W PA, WIRED.. $79.95

SEND SASE FOR CATALOG, INCL. RCVRs, PREAMPS, CONV., ETC.

a NEW antenna principle

PROVEN IN EXACTING TESTS AND MANY YEARS ON THE AIR AT W6MBH — KFAST — K8VRM

THE LITTLE GIANT BEAM ANTENNA

A COMPLETELY NEW ANTENNA

Here is an ultra compact beam antenna which can be tuned to any frequency between 7.0 and 14.5 MHz. Weighing only 16 lbs, this antenna may not outperform a full sized beam but it sure will give you your share of DX and stateside contacts. Will handle 1 KW over a 100 KHz bandwidth.

- Fully weather proof
- Mounts easily on TV masting
- Hi-Q, attenuates harmonics
- Comes assembled & tested

LITTLE GIANT MODEL 100X1000-40

Other models available for 10, 15, & 20 meters

Little Giant Antenna Labs, Box 245, Vaughnsville, Ohio 45893

Subsidiary “Apollo Products” Village-Twig Co.

419-646-3495

PROVEN IN EXACTING TESTS AND MANY YEARS ON THE AIR AT W6MBH — KFAST — K8VRM

THE LITTLE GIANT BEAM ANTENNA

A COMPLETELY NEW ANTENNA

Here is an ultra compact beam antenna which can be tuned to any frequency between 7.0 and 14.5 MHz. Weighing only 16 lbs, this antenna may not outperform a full sized beam but it sure will give you your share of DX and stateside contacts. Will handle 1 KW over a 100 KHz bandwidth.

- Fully weather proof
- Mounts easily on TV masting
- Hi-Q, attenuates harmonics
- Comes assembled & tested

LITTLE GIANT MODEL 100X1000-40

Other models available for 10, 15, & 20 meters

Little Giant Antenna Labs, Box 245, Vaughnsville, Ohio 45893

Subsidiary “Apollo Products” Village-Twig Co.

419-646-3495
318. rmgla
30
5/8" wave – $38.50
Specify, 2 meters, 220, 460.
1/4 wave – $18.50
310-003
Model 310-001: Standard Key, nickel plated hardware, no switch – $6.65.
Model 310-003: Standard Key, nickel plated hardware, with switch – $8.25.
Model 320-001: Standard Heavy Duty Key with nickel plated hardware, no switch – $8.20.
Model 320-003: Same as 001 except with switch – $9.35.
Model SSK-1 CO-300 practice set with key $18.50

Larsen Antennas
Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp
5/8 wave – 58.50
Specify, 2 meters, 220, 460.
1/4 wave – 11.50
322-001
SSK-1

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.

Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp

Larsen Antennas

Radio Electronics
386 Main St., Medford, MA 02155
Phone 617-395-8290

A PL-259.Coaxial Plug5.80
B SO-239.Coaxial Receptacle ...68
C M-159.Coaxial Right Angle Adapter 2.95
D PL-759.Coaxial Junction 1.31
E UG-175U. Adapter for RG-8/U 25
DM Double Male Plug 1.60

DENTRON

160-10AT SUPERTUNER™
Want an antenna tuner to match everything between 160 and 10 meters, handle full legal power and matches your 52 ohm transmitter to a random wire antenna. 10-10 AT is yours for only $59.50

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.

DENTRON

Larsen Antennas

Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp

Larsen Antennas

Radio Electronics
386 Main St., Medford, MA 02155
Phone 617-395-8290

A PL-259.Coaxial Plug5.80
B SO-239.Coaxial Receptacle ...68
C M-159.Coaxial Right Angle Adapter 2.95
D PL-759.Coaxial Junction 1.31
E UG-175U. Adapter for RG-8/U 25
DM Double Male Plug 1.60

DENTRON

160-10AT SUPERTUNER™
Want an antenna tuner to match everything between 160 and 10 meters, handle full legal power and matches your 52 ohm transmitter to a random wire antenna. 10-10 AT is yours for only $59.50

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.

DENTRON

Larsen Antennas

Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp

Larsen Antennas

Radio Electronics
386 Main St., Medford, MA 02155
Phone 617-395-8290

A PL-259.Coaxial Plug5.80
B SO-239.Coaxial Receptacle ...68
C M-159.Coaxial Right Angle Adapter 2.95
D PL-759.Coaxial Junction 1.31
E UG-175U. Adapter for RG-8/U 25
DM Double Male Plug 1.60

DENTRON

160-10AT SUPERTUNER™
Want an antenna tuner to match everything between 160 and 10 meters, handle full legal power and matches your 52 ohm transmitter to a random wire antenna. 10-10 AT is yours for only $59.50

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.

DENTRON

Larsen Antennas

Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp

Larsen Antennas

Radio Electronics
386 Main St., Medford, MA 02155
Phone 617-395-8290

A PL-259.Coaxial Plug5.80
B SO-239.Coaxial Receptacle ...68
C M-159.Coaxial Right Angle Adapter 2.95
D PL-759.Coaxial Junction 1.31
E UG-175U. Adapter for RG-8/U 25
DM Double Male Plug 1.60

DENTRON

160-10AT SUPERTUNER™
Want an antenna tuner to match everything between 160 and 10 meters, handle full legal power and matches your 52 ohm transmitter to a random wire antenna. 10-10 AT is yours for only $59.50

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.

DENTRON

Larsen Antennas

Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp

Larsen Antennas

Radio Electronics
386 Main St., Medford, MA 02155
Phone 617-395-8290

A PL-259.Coaxial Plug5.80
B SO-239.Coaxial Receptacle ...68
C M-159.Coaxial Right Angle Adapter 2.95
D PL-759.Coaxial Junction 1.31
E UG-175U. Adapter for RG-8/U 25
DM Double Male Plug 1.60

DENTRON

160-10AT SUPERTUNER™
Want an antenna tuner to match everything between 160 and 10 meters, handle full legal power and matches your 52 ohm transmitter to a random wire antenna. 10-10 AT is yours for only $59.50

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.

DENTRON

Larsen Antennas

Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp

Larsen Antennas

Radio Electronics
386 Main St., Medford, MA 02155
Phone 617-395-8290

A PL-259.Coaxial Plug5.80
B SO-239.Coaxial Receptacle ...68
C M-159.Coaxial Right Angle Adapter 2.95
D PL-759.Coaxial Junction 1.31
E UG-175U. Adapter for RG-8/U 25
DM Double Male Plug 1.60

DENTRON

160-10AT SUPERTUNER™
Want an antenna tuner to match everything between 160 and 10 meters, handle full legal power and matches your 52 ohm transmitter to a random wire antenna. 10-10 AT is yours for only $59.50

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.

DENTRON

Larsen Antennas

Larsen Antennas to fit Any Mobile Unit
Magnetic Mount or Gutter Clamp

Larsen Antennas

Radio Electronics
386 Main St., Medford, MA 02155
Phone 617-395-8290

A PL-259.Coaxial Plug5.80
B SO-239.Coaxial Receptacle ...68
C M-159.Coaxial Right Angle Adapter 2.95
D PL-759.Coaxial Junction 1.31
E UG-175U. Adapter for RG-8/U 25
DM Double Male Plug 1.60

DENTRON

160-10AT SUPERTUNER™
Want an antenna tuner to match everything between 160 and 10 meters, handle full legal power and matches your 52 ohm transmitter to a random wire antenna. 10-10 AT is yours for only $59.50

NEW ENGLAND'S FRIENDLIEST HAM STORE
Open 9 AM to 9 PM
Mon. – Sat.
By the only test that means anything... on the air comparison... this array continues to outperform all competition... and has for two decades. Here's why...

Telrex uses a unique trap design employing 20 HiQ 7500V ceramic condensers per antenna. Telrex uses 3 optimum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL 7.

Telrex Laboratories
AUXON PARK, N.J. 07866 USA

- SIX LED'S VISIBLE FROM FRONT WITH 92 HOLE TO DRILL. EASY TO INSTALL. - ONLY 35 COLOR-CODED WIRES TO CONNECT. - NO WIRES TO CUT AUTOMATICALLY STOPS SCANNING WHEN SIGNAL IS RECEIVED, OR YOU MAKE A MANUAL RESET INTERFERENCE WITH NORMAL OPERATION EASILY ADJUSTED. COMPLETELY ASSEMBLED, TESTED AND GUARANTEED.

ONLY $24.95
PLUS $1.00 SHIPPING
Georgia Residents add 5% Sales Tax.

DESIGNED BY
WB4QDB/LARRY SANDLIN

SANDLIN ELECTRONICS ENGINEERING
P.O. Box 3499
MARTINEZ, GEORGIA 30907
TELEPHONE: (404) 863-5852

SUPER CRYSTAL
THE DELUXE DIGITAL SYNTHESIZER!!

MFA-22 DUAL VERSION
- Transmit and Receive Operation: All units have both Simplex and Repeater Modes
- Accurate Frequency Control: .0005% accuracy
- Stable Low Drift Outputs: 20 Hz per degree C typical
- Full 2 Meter Band Coverage: 144.00 to 147.99 MHz, in 10KC steps
- Fast Acting Circuit: 0.15 second typical setting time
- Low Impedance (50 ohm) Outputs: Allow long cable runs for mobiles
- Low Spurious Output Level: Similar to crystal output

Prices MFA-22
Shipping $3.00 extra

SEND FOR FREE DETAILS
R* Electronics
BOX 1001H
CHAMPAIGN, ILL. 61820

HW-202 OWNERS

the indispensable BIRD 43
THRUNLINE® WATTMETER

Read RF Watts Directly.
0.45-2300 MHz, 1-10,000 watts ±5%. Low Insertion VSWR — 1.05.

Authorized

BIRD DISTRIBUTOR
WEBSTER COMMUNICATIONS
115 BELLARMINE
ROCHESTER, MICHIGAN 48063
(313) 375-0420

*T.M. of BIRD ELECTRONIC CORP.
FIRST
Make this comparison:
The GTX-1 gives the high quality performance that compares with Motorola, GE, RCA or any other hand-helds that sell for $700 or more.

THEN
Check these features:
- Small: only 8"x2.6"x1.28"
- Appearance: slim silhouette all black metal
- Serviceable: easy access to separate receive and transmit circuit boards
- PLUS: 6 pole xtal filter for superlative receiver operation
- and: trimmers on receive and transmit xtiles: standard 10.7 MHz 1st IF.

and specs:
Rec. Sens.: 2uV for 12 db
SINAD... Adjacent channel rejection: ±30 kHz 55 db
Spur. Resp.: more than 65 db
Audio Output: 500 mw
Power Output: Hi 3 w, Lo 1 w
Audio Quality: Distortion free, crisp, clear receive and transmit.

NOW
Look at the Price:

GTX-1
2 Meter 6 channel
Hand-Held (without encoder)
$249.95
(Bat. Not Incl.)

GTX-1T
with Built-In Tone Encoder
$299.95
(Bat. Not Incl.)

GENAVE stocks most common 2-M
Xtiles for immediate delivery

Use This Handy Order Form

GENAVE stocks most common 2-M
Xtiles for immediate delivery

GTX-1
2 Meter 6 channel
Hand-Held (without encoder)
$249.95
(Bat. Not Incl.)

GTX-1T
with Built-In Tone Encoder
$299.95
(Bat. Not Incl.)

ACCESSORIES FOR GTX-1 and GTX-1T

More Details? CHECK-OFF Page 126
ANNOUNCING
The Midwest's Newest
Amateur Radio Dealer

MIDCOM ELECTRONICS, INC.
2506 S. BRENTWOOD BOULEVARD
ST. LOUIS, MISSOURI 63144
Phone (314) 961-9990

AMATEUR RADIO SALES AND SERVICE

We Stock:
Atlas
Brown Bros. Keys
Collins
Drake
Hustler
Hy-Gain

PLUS MANY OTHER LINES

ANTENNA SUPERMARKET, PO Box 338, Dept H, Chambersburg PA 17201
DIPOLE AND WIRE ANTENNA KITS, complete with HI-Q BALUN, 100' rope, copper antenna wire and insulators.
80/40/20/15 parallel dipole $36.95 160 short, 130' length $36.95
40/20/15 parallel dipole $30.95 80 short, 63' length $31.95
80/20 trap dipole $41.95 40 short, 33' length $28.95
20/15 trap dipole $36.95 Single band models from $24.95

VERTICALS — complete with Universal Mounting Base, Folds to 5' for Easy Transport, Hvy. Duty Aluminum Tubing.
20/15 trap, 13' hgt. $29.95 160 compact 23' hgt. $44.95
40/20/15 trap 22' hgt. $44.95 80 compact 20' hgt. $39.95
80/40/20 trap 30' hgt. $69.95 40 compact 15' hgt. $34.95
80/40/15 trap 20' hgt. $99.50 20/15/10 full size vertical 29.95
10 meter cov. for above add 9.95

TO ORDER — Include $1.95 shipping ($2.95 West Coast) 24 hour shipment. 30 day guarantee. For Info: SASE or 1st Class Stamp.

Sensational price! Superb quality!

Hufco

BARRY ELECTRONICS
HAM HEADQUARTERS
WANTED FOR CASH. 61BT, 800T, 10551, T-827, PRC74, ARCI02, ARCI34. Cash or trade for new ham gear.
Top Trades given on your used Collins gear! Fair Dealing since 1938! Write for best deals! Expert inquiries expertly handled. Hours: Mon.-Fri. 9:00-6:00, Sat. 10:00-5:00. We buy unused tubes, vac- um variables and rotors for cash. Send your list to:

Barry Electronics
512 BROADWAY, NY, NY 10012
212-925-7000

CURTIS KEYER CHIP $24.95
8043: IC only, 50-up group rate $7.95
8043-t, IC, PCB, Manual $84.95
8043-S, Semi-kit $49.95
Add for air postage and handling $1.50 (See Feb75 CD, AAR 75 HR, Feb Radio Handbook 74)
KB4200 Keyboard Keyer (Oct 74 QST) $549.95
EK4200/KM4200 Keyer/Memory (Oct 73 QST) $439.95
EK430 CMOS Keyer (Feb 76 QST) $124.95
HS460 ICS-6150 $259.95
Curtis Electro Devices Inc.
1048 E. 109th St., Chicago, Ill. 60628

Shortwave Listening
1976 World Radio TV Handbook - $10.95
Gated 1000/100/50/25/10 kHz Calibrator - $54.00
Barlow Wadley & R.L. Drake Receivers
1976 "Confidential" Frequency List - $5.45

GILFER, Box 239, Park Ridge, NJ 07656

MODSET: precision modulation measurements for AM-SSB, 0.2 to 300 MHz, $29.50 (Kit: $19.50)

D. R. CORBIN MFG. CO.
P. O. Box 44, North Bend, Ore. 97459

LEARN RADIO CODE
THE EASY WAY!
Based on modern psychological technology. This course will take you beyond 13 WPM in LESS THAN HALF THE TIME!
$9.95
Album contains three 12" LP's
2 1/2 hr. instruction Available in Cassette also for only $10.95.

Epsilon Record
508 East Washington St., Arcola, IL 61910

114 september 1976

More Details? CHECK-OFF Page 126
Learn to service Communications/CB equipment at home with NRI's Complete Communications Course

Career opportunities are opening up fast for the man trained in communications.

The field of communications is bursting out all over. In Citizens Band alone, class "D" licenses grew from 1 to over 2.6 million in 1975, and the FCC projects about 15 million U.S. CB'ers by 1979. That means countless careers in design, installation and maintenance. Start training now, the NRI way, to get your FCC license and qualify for one of these openings.

Learn on your own 400-channel, digitally-synthesized VHF Transceiver.

The NRI Complete Communications Course teaches you to service and adjust all types of two-way radio equipment (including CB), using the one unit that is best equipped to train you for CB, Commercial, and Amateur communications: a digitally-synthesized 400-channel VHF transceiver and AC power supply. This 2-meter transceiver gives you "Power-On" training. Then we help you get your FCC Amateur License with special instructions so you can go on the air.

The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Also included are: your own electronics Discovery Lab, an Optical Transmission System, CMOS Digital Frequency Counter, and TVOM. The course covers AM and FM Transmission Systems, Radar Principles, Marine, Aircraft, and Digital Electronics; and Mobile Communications. You must earn your first class radio telephone FCC license or you get your money back.

CB Specialist Course now available

NRI now offers a special course in CB Servicing. You get 37 lessons, 8 reference texts, your own CB Transceiver, AC power supply and multimeter...for hands-on training. Also included are 14 coaching units to make it easy to get your commercial radio telephone FCC license—enabling you to test, install and service communications equipment.

Over a million men have enrolled with NRI

Send for the free NRI catalog and discover why more than a million men like yourself have chosen the NRI way the right way to get ahead. Read how you learn from bite-size lessons, progressing at your own speed to your FCC license and then into the communications field of your choice. There's no obligation and no salesman will call.

Send coupon now for FREE NRI catalog

If coupon is missing, write to: NRI Schools, McGraw-Hill Continuing Education Center, 3939 Wisconsin Avenue, Washington, D.C. 20016

Rush the free catalog of my choice (select only one, please). No salesman will call.

\[\square\] Complete Communications Electronics with CB
 - FCC Licenses
 - Aircraft, Mobile, Marine Electronics
\[\square\] CB Specialist Course
\[\square\] Amateur Radio
 - Basic and Advanced
 - Industrial and Business Electronics
 - Digital Computer
 - Electronics
 - Electronic Technology
 - Basic Electronics
\[\square\] TV/Audio Servicing
 - Choose one course
 - Appliance Servicing
 - Homeowner & Professional Repairs
 - Automotive Mechanics
 - Master Automotive Technician
 - Tune-Up and Basic Repairs
 - Auto Air Conditioning
 - Heating & Conditioning & Refrigeration

\[\square\] Check box for details.

Name __________________________ Age __________________________
Street __________________________
City/State/Zip: __________________________

[Addressed] NRI Approved Under GI Bill if taken for career purposes.

Accredited Member National Home Study Council

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, Washington, D.C. 20007

September 1976
<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Address</th>
<th>Phone</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LONG'S ELECTRONICS</td>
<td>3521 TENTH AVE. NORTH</td>
<td>800-633-3410</td>
<td>Call us Toll Free to place your order</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIRMINGHAM, AL 35234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>HAM RADIO OUTLET</td>
<td>999 HOWARD AVENUE</td>
<td>415-342-5757</td>
<td>Northern California's largest new and used ham inventory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BURLINGAME, CA 94010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HENRY RADIO</td>
<td>931 N. EUCLID AVE.</td>
<td>714-772-9200</td>
<td>The world's largest distributor of Amateur Radio equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANAHEIM, CA 92801</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HENRY RADIO CO., INC.</td>
<td>11240 W. OLYMPIC BLVD.</td>
<td>213-477-6701</td>
<td>The world's largest distributor of Amateur Radio equipment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOS ANGELES, CA 90064</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-TRON</td>
<td>2811 TELEGRAPH AVENUE</td>
<td>415-763-6262</td>
<td>We service what we sell.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OAKLAND, CA 94609</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QUEMENT ELECTRONICS</td>
<td>1000 SO. BASCOM AVENUE</td>
<td>408-998-5900</td>
<td>Serving the world’s Radio Amateurs since 1933.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAN JOSE, CA 95128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>C W ELECTRONIC SALES CO.</td>
<td>1401 BLAKE ST.</td>
<td>303-573-1386</td>
<td>Rocky Mountain area’s complete ham radio distributor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DENVER, CO 80202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>GRICE ELECTRONICS</td>
<td>320 EAST GREGORY</td>
<td>904-434-2481</td>
<td>Your Gulf Coast Drake & Kenwood dealer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PENSACOLA, FL 32502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5935 NORTH MILWAUKEE AVE.</td>
<td>312-631-5181</td>
<td>Headquarters for all your Amateur Radio needs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHICAGO, IL 60646</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KLAUS RADIO, INC.</td>
<td>8400 NORTH PIONEER PARKWAY</td>
<td>309-691-4840</td>
<td>Let us quote your Amateur needs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PEORIA, IL 61614</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPECTRONICS, INC.</td>
<td>1009 GARFIELD STREET</td>
<td>312-846-6777</td>
<td>Chicagoland’s Amateur Radio leader.</td>
</tr>
<tr>
<td>Indiana</td>
<td>HOOSIER ELECTRONICS</td>
<td>P. O. BOX 2001</td>
<td>812-238-1456</td>
<td>Ham Headquarters of the Midwest.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TERRE HAUTE, IN 47802</td>
<td></td>
<td>Store in Meadow Shopping Center.</td>
</tr>
<tr>
<td>Kansas</td>
<td>ASSOCIATED RADIO</td>
<td>8012 CONSER P.O.B. 4327</td>
<td>913-381-5901</td>
<td>Amateur Radio's Top Dealer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OVERLAND PARK, KS 66204</td>
<td></td>
<td>Buy — Sell — Trade.</td>
</tr>
<tr>
<td>Kentucky</td>
<td>COHOON AMATEUR SUPPLY</td>
<td>HIGHWAY 475</td>
<td>502-886-4535</td>
<td>Ten-Tec dealer — Call 24 hours for best deal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRENTON, KY 42286</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dealers - You Should Be Here Too! Contact HamRadio today for complete details.
Amateur Radio Dealer

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION
CONCORD, NH 03301
603-224-9961
Icom & Yaesu dealer.
We service what we sell.

New Jersey

ATKINSON & SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since "55".

New Mexico

JIM'S TV AND ELECTRONICS
805 N. FIRST
GRANTS, NM 87020
505-287-8148
Stocking Icom. Sales & service open 6 days.

New York

ADIRONDACK RADIO SUPPLY, INC.
185 W. MAIN STREET
AMSTERDAM, NY 12010
518-842-8350
Yaesu dealer for the Northeast.

CFP COMMUNICATIONS
211 NORTH MAIN STREET
HORSEHEADS, NY 14845
607-739-0187
Jim Beckett, WA2KTX, Manager
Dave Flinn, W2CFP, Owner

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-682-3869
Drake, Atlas, Ten-Tec, Midland,
Hy-Gain, Mosley in stock

HARRISON
"HAM HEADQUARTERS, USA"
ROUTE 110 & SMITH STREET
FARMINGDALE, L. I., N. Y. 11735
516-293-7990
Since 1925...Service, Satisfaction,
Savings. Try Us!

Ohio

UNIVERSAL SERVICE
114 N. THIRD STREET
COLUMBUS, OH 43215
614-221-2335
Give U.S. a try when ready to buy.

Oklahoma

RADIO STORE, INC.
2102 SOUTHWEST 59th ST.
(At 59th & S. PENNSYLVANIA)
OKLAHOMA CITY, OK 73119
405-682-2929
New and used equipment — parts and supply.

Oregon

OREGON HAM SALES
409 WEST FIRST AVENUE
ALBANY, OR 97321
503-926-4591
Yaesu dealer for the Northwest.

Pennsylvania

ARTCO ELECTRONICS
302 WYOMING AVE.
KINGSTON, PA 18704
717-288-8585
The largest variety of crystals
in N. E. Penn.

ELECTRONIC EXCHANGE
136 N. MAIN STREET
SOUDERTON, PA 18964
215-723-1200
New & Used Amateur Radio
sales and service.

"HAM" BUERGER, INC.
68 N. YORK ROAD
WILLOW GROVE, PA 19090
215-659-5900
Communications specialists.
Sales and service.

HAMTRONICS, INC.
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same location for 25 years.

South Dakota

BURGARDT AMATEUR CENTER
124 FIRST AVE. N.W. P.O. BOX 73
WATERTOWN, SD 57201
605-886-7314
America's most reliable Amateur
Radio Dealer — Nationwide!

Texas

ALTEC COMMUNICATIONS
1800 S. GREEN STREET
LONGVIEW, TX 75601
214-757-2831
Specializing in ham equipment for
the Ark-La-Tex.

TECO ELECTRONICS SUPER STORE
1717 S. JUPITER ROAD
GARLAND, TX 75040
800-527-4612
Call Toll Free for Service Today!

Virginia

ARCADE ELECTRONICS
7048 COLUMBIA PIKE
ANNANDALE, VA 22003
703-256-4610
Serving Maryland, D.C., and Virginia
area since 1962.

Washington

AMATEUR RADIO SUPPLY CO.
6213 13TH AVE. SO.
SEATTLE, WA 98108
206-767-3222
Amateur center of the Northwest.

Wisconsin

AMATEUR
ELECTRONIC SUPPLY, INC.
4828 WEST Nd du LAC AVENUE
MILWAUKEE, WI 53216
414-442-4200
Open Mon & Fri 9-9, Tues, Wed,
Thurs, 9-5:30, Sat, 9-3.
BULLET ELECTRONICS
P. O. BOX 1465
LAKE WORTH, FLA. 33460

NOW AVAILABLE IN KIT FORM
6:1, 4:1 and 1:1 Baluns
- Frequency Range 3-30 MHz
- 2 KW Rating
- Lightning Protection Built In

All Prices Postpaid in USA / Add Shipping outside USA
Shipping Wt. 1 lb.
[California Residents Add 6% Sales Tax]

6:1 Assembled - 22.95
Kit - 16.95
1:1 & 4:1 Assembled - 16.95
Kit - 11.95
Case Only - 7.95
Core Only - 3.50

FIVE NINE PLUS
3402 Campus
Claremont, Ca 91711
(714) 621-1658

Antenna Products for the Amateur

SUB-AUDIBLE GENERATOR
for FM
- Inexpensive multi tone system
- Compatible with PL-CG-QC
- Low distortion sine-wave
- Adjustable frequency (98-230 Hz), lower available
- Rugged, plastic encased with leads, easy to mount
- Input 5.18 VDC unregulated
- Excellent stability

Price $19.95
Calif. res. add 6%
Freq. set at factory $5.00 extra
Send for more information

WORLD RECORD 6-BAND ANTENNA
won W6TYP QRP ARC 1,000,000 miles/watt award.

THE JOYSTICK VFA
160 thru 10 plus MARS, BC & SW
TRANSMIT-RECEIVE
Only 7-6" long, with ATU, easily assembled. Air Mail from UK manuf., take advantage of exh. rates and save!
SYSTEM 'A' $69.90
250 w. p.e.p.
SYSTEM 'J' $91.33
500 w. p.e.p. (improved Q on receive)
SEND MASTER CHARGE NUMBER OR CHECK OR ASK FOR BROCHURE
Partridge (HR) Electronics Ltd.
Broadstairs, Kent, England
G3CED Phone Thanet 62535 G3VFA

FAST SCAN AMATEUR TELEVISION EQUIPMENT
- SOLID STATE
- BROADCAST QUALITY PERFORMANCE
- FOR TECHNICAL DATA AND PRICING,
 WRITE TO:
APTRON LABORATORIES BOX 323, BLOOMINGTON, IN 47401

SPECIAL ASSORTMENTS
8 oz. of useful electronics hardware.
Also flat & lock washers. ALL NEW.
$1.89

CAPACITOR ASSORTMENTS
We bought a huge quantity of various electrolytic values. All are 15 to 50 volt units from 20 to 1000 mfd. TRUST US!
Assortment 12/1.00

9V BATTERY CLIPS
Fits standard 9 volt batteries
12/1.00

SPECIAL LIMITED QUANTITY
Large 30VCT transformer @ 12 amps! Super for power supplies or battery chargers.
$16.95 UPS shipping paid

2N3904 TRANSISTORS
SPECIAL THIS MONTH ONLY (PNP SILICON)
12/1.00
SWAN METERS HELP YOU GIVE IT YOUR ALL

SWR Bridge for 21.95

Our little dual meter SWR bridge indicates relative forward power and SWR simultaneously. The unit is capable of handling up to 1000 watts and will indicate 1:1 to infinity.

VSWR from 3.5 MHz to 150 MHz on 100 microampere meters. Ideal for mobile or home operation with low in-line insertion loss.

Use your Swan credit card. Applications at your dealer or write to Swan.

NEW

500/50 MHz FREQUENCY COUNTER

FEATURES
- 8 Digit Display
- Large 3" LED Readouts
- Automatic Dp Placement
- Resolution to 1 Hz
- High Input Sensitivity
- Automatic Input Limiting
- Input Diode Protected
- Selectable Gate Times, 1 ms and 1 sec. Provision for 10 sec.
- High Stability 10 MHz Crystal Time Base
- Plug-in Time Base
- Plug-in Prescaler

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50 MHz</th>
<th>500 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Z</td>
<td>1 Meg/20pf</td>
<td>50 ohm</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>30 mv @ 50 MHz</td>
<td>150mv @ 500 MHz</td>
</tr>
<tr>
<td>Range</td>
<td>10 Hz to 50 MHz</td>
<td>10 Hz to 500 MHz</td>
</tr>
<tr>
<td>Power</td>
<td>120v RMS to 10 MHz</td>
<td>2.5V</td>
</tr>
<tr>
<td>Time Base</td>
<td>10 MHz Xtal</td>
<td>2 ppm 15°C to 55°C</td>
</tr>
<tr>
<td>Size</td>
<td>8.8" x 8.5" x 2.8" (223 x 203 x 71.1 mm)</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>3 lbs, 10 oz. (1.46 kgs.)</td>
<td></td>
</tr>
</tbody>
</table>

Kits include all parts, drilled and plated PC boards, cable, switches, hardware and a complete instruction manual including calibration instructions. Factory assembled units are tested and calibrated to specifications.

PRICES

<table>
<thead>
<tr>
<th>Item</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz Kit</td>
<td>CTR-2-50K</td>
<td>$199.95</td>
</tr>
<tr>
<td>500 MHz Kit</td>
<td>CTR-2-500K</td>
<td>$249.95</td>
</tr>
<tr>
<td>50 MHz Factory Assembled</td>
<td>CTR-2-50</td>
<td>$289.95</td>
</tr>
<tr>
<td>500 MHz Factory Assembled</td>
<td>CTR-2-500</td>
<td>$349.95</td>
</tr>
</tbody>
</table>

Please add $2.00 shipping.

CASH FOR 2-WAY FM RADIO

MOTOROLA, GE, RCA, ETC. EQUIPMENT

MOBILES, BASES, PORTABLES, MOBILE TELEPHONES, Repeaters, REMOTE CONTROLS, TONE EQUIPMENT, 2-WAY TEST EQUIPMENT

Operational Units Only
Commissions/Finders Fees

CAL-COM SYSTEMS INC.
701-51A KING'S ROW, SAN JOSE, CALIF. 95112
Telephone 24 Hours 408/998-4444

SYNTHESIZERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our 1/3 page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS
196-23 JAMAICA AVENUE
HOLLIS, N. Y. 11423
1/2 PRICE SALE!

Regardless of size of order

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>$749</td>
</tr>
<tr>
<td>7401</td>
<td>$749</td>
</tr>
<tr>
<td>7402</td>
<td>$749</td>
</tr>
<tr>
<td>7403</td>
<td>$749</td>
</tr>
<tr>
<td>7404</td>
<td>$749</td>
</tr>
<tr>
<td>7405</td>
<td>$749</td>
</tr>
<tr>
<td>7406</td>
<td>$749</td>
</tr>
<tr>
<td>7407</td>
<td>$749</td>
</tr>
</tbody>
</table>

FOR THE FIRST CLASS FCC LICENSE

CIE will help you pass the government-administered First Class FCC License exam... broaden your career opportunities in electronics. In-depth electronics career training to help you add to your technical skills and knowledge, prepare for valuable First Class FCC License at the same time. Basic and advanced training. Study at home, spare time, fully accredited career courses.

Send today for Free FCC License booklet and school catalog. GI Bill info on request. For your convenience, we'll try to have a school rep contact you. No obligation, Write CIE — Cleveland Institute of Electronics, Inc., Dept. WHM-02, 1776 East 17th Street, Cleveland, Ohio 44114.

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201 440-8787.

SPACE ELECTRONICS CO., div. of Military Electronics Corp. 35 Ruta Court, S. Hackensack, N.J. 07606

THE EASY $25 COUNTER KIT!

An easy-to-build 50mHz (6-digit) Frequency Counter for a measly $25! Standard easy-to-find parts, tool. (Unlike other kits.) Any Radio Shack has them. Uses 7 segment LED readouts — no scarce Nixie tubes! No tricky crystal oven, either!

Kit includes a classy cabinet with front panel, PC boards, hardware, instructions, and diagrams. A proven design! An unbeatable offer!

Write or call today!
P.O. Box 357, Dept. 56, Provo, UT 84601 (801) 375-8566

QUALITY

USED TEST EQUIPMENT

TEKTRONIX

Oscilloscopes
Plug-ins
Signal generators
Probes

HEWLETT PACKARD

Meters
Probes

For a catalog, write: PTI Div. 16, P.O. Box 8699, White Bear Lake, Mn, 55110

Two kit contains
S995

ADDITIONAL STAMPS

P.O. BOX 507
PROCTOR, MINN.

POSTAGE & HANDLING

16 CENT STAMPS

M-TECH

ENGINEERING, INC.

SPRINGFIELD, VIRGINIA 22153

(703) 544-9912

1ST CLASS FCC LICENSE

CIE will help you pass the government-administered First Class FCC License exam... broaden your career opportunities in electronics. In-depth electronics career training to help you add to your technical skills and knowledge, prepare for valuable First Class FCC License at the same time. Basic and advanced training. Study at home, spare time, fully accredited career courses.

Send today for Free FCC License booklet and school catalog. GI Bill info on request. For your convenience, we'll try to have a school rep contact you. No obligation, Write CIE — Cleveland Institute of Electronics, Inc., Dept. WHM-02, 1776 East 17th Street, Cleveland, Ohio 44114.

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201 440-8787.

SPACE ELECTRONICS CO., div. of Military Electronics Corp. 35 Ruta Court, S. Hackensack, N.J. 07606

FIRST CLASS FCC LICENSE

CIE will help you pass the government-administered First Class FCC License exam... broaden your career opportunities in electronics. In-depth electronics career training to help you add to your technical skills and knowledge, prepare for valuable First Class FCC License at the same time. Basic and advanced training. Study at home, spare time, fully accredited career courses.

Send today for Free FCC License booklet and school catalog. GI Bill info on request. For your convenience, we'll try to have a school rep contact you. No obligation, Write CIE — Cleveland Institute of Electronics, Inc., Dept. WHM-02, 1776 East 17th Street, Cleveland, Ohio 44114.

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201 440-8787.

SPACE ELECTRONICS CO., div. of Military Electronics Corp. 35 Ruta Court, S. Hackensack, N.J. 07606

NEW MULTI-BAND ANTENNA

Guaranteed

Hubert Foss, 80 V.E. Plus and 50 B. Bands, Built-in balun. 1 X 30 dB rating. Job to 100 feet horizontal. Available to kit form or assembled. Kit box 150-00. Call us in CA, Key Box 201-00, call kit in CA. Available in Kit and Kit PL25, LSU, and EVP-399 OR other kit in USA. Universal Radio Co. Dept. WHM-02, 1776 West, Cleveland, Ohio 44114. Order direct. Master Charge accepted. Telephone (216) 371-2132. Send stamp envelope for information.

QUALITY

USED TEST EQUIPMENT

TEKTRONIX

Oscilloscopes
Plug-ins
Signal generators
Probes

HEWLETT PACKARD

Meters
Probes

For a catalog, write: PTI Div. 16, P.O. Box 8699, White Bear Lake, Mn, 55110

The easy $25 counter kit!

An easy-to-build 50mHz (6-digit) Frequency Counter for a measly $25! Standard easy-to-find parts, tool. (Unlike other kits.) Any Radio Shack has them. Uses 7 segment LED readouts — no scarce Nixie tubes! No tricky crystal oven, either!

Kit includes a classy cabinet with front panel, PC boards, hardware, instructions, and diagrams. A proven design! An unbeatable offer!

Write or call today!
P.O. Box 357, Dept. 56, Provo, UT 84601 (801) 375-8566
If you want a microcomputer with all of these standard features...

- 8080 MPU
- (The one with growing software support)
- 1024 Byte ROM (With maximum capacity of 4K Bytes)
- 1024 Byte RAM (With maximum capacity of 2K Bytes)
- TTY Serial I/O
- EIA Serial I/O
- 3 parallel I/O's
- ASCII/Baudot terminal compatibility
- With TTY machines or video units
- Monitor having load, dump, display, insert and go functions
- Complete with card connectors
- Comprehensive User's Manual, plus Intel 8080
- Complete factory assembled and tested
- -not a kit
- Optional accessory: keyboard/video display, audio cassette modem interface, power supply, ROM programmer, and attractive cabinet... plus more options to follow

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us... and how far it can take you in your applications. That's why we'd like to send you our card—one card that we feel is the best-valued, most complete microcomputer you can buy. For details on the MCEM-8080, write today. Well also include comprehensive information on the HAL-DS-3000 KSR microprocessor-based terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp.
Box 365, 807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

Tycol Communications

products for "Your" specialized amateur equipment needs

KLM, LarSEN & ARCoS

NEW

KLM Antennas

- **412 MHz converters**
 - 432 MHz KW Amplifiers
 - **$795** Orders are accepted.

KLM VHF/UHF Amplifiers

- Complete line of Class C & linear to 100W output

LarSEN

- Complete line of mobile
 - VHF/UHF antennas

KLM Echo 70 CM

- The only 432 MHz SSB/CW synthesized on the market.
 - Excellent for OSCAR 7/Wade B
 - **$495 in stock**

ADVA

Electronics

Box 4181 B

Woodsie, CA 94062

Tel. (415) 851-0455

ADVANCED COMMUNICATIONS

301-831-7086

ADVANCED COMMUNICATIONS

301-831-7086

ADVANCED COMMUNICATIONS

301-831-7086

ADVANCED COMMUNICATIONS

301-831-7086

ADVANCED COMMUNICATIONS

301-831-7086
NEW

from the

RSGB

VHF-UHF MANUAL

3rd Edition

by D. S. Evans, G3RPE & G. R. Jessop, G6JP

Here is the most comprehensive and up-to-date book on VHF & UHF ever prepared for the Radio Amateur.

In over 400 pages it thoroughly covers such topics as receivers, transmitters, space communications, filters, antennas and FM. Included is a major new section on Microwave work.

This latest edition is a handsome hardbound book and is sure to become the standard reference for anyone involved in the world above 30 MHz.

ORDER BY PHONE 800-258-5353

ONLY $12.95

HAM RADIO

GREENVILLE, N. H. 03048

BOOKS BY PHONE

CALL TOLL FREE

800-258-5353

Almost all popular Amateur Radio Books available for immediate shipment.

HAM RADIO

GREENVILLE, NH 03048

YOUR BEST BUY IN KITS

ANALOG-DIGI-LAB

Features 3 Regulated power Supplies. 3 Output wave forms. 8 digital level switches. 2 no bounce pulse switches. 8 LEDs with drivers. 1 AP Super strip. Easily constructed. Designed by RETS Electronic Schools.

1st time offer...$139.00

Clock Kit (complete less case)..............$12.95

Function Generator Kit$10.95

FREQUENCY COUNTER

7 Digit 0-300 MHz Freq. Counter $99.00
7 Digit 0-500 MHz Freq. Counter $139.00
8 Digit 0-30 MHz Counter with Options...$99.00
8-30 MHz Prescaler for 8 Digit Counter..............$19.95
0-500 MHz Prescaler for 8 Digit Counter..............$39.95
8 Digit Counter

Cabinet accessory package available for all of the above

Anyone of the above kits available pre-assembled for an additional $50.00.

HAL-TRONIX

P. O. Box 1101 • Southgate, Mich. 48195
(313) 285-1782

STOP MOBILE RIP-OFFS

ORDER YOURS TODAY or write for further info.

PRUITT ENTERPRISES

Box 41H, Tonopah, NV 89049 702-402-3473

REPROGRAMMABLE MEMORY KEYER

ONLY $169.95

The MX-1 Memory Keyer features a reprogrammable 1024 bit MOS memory for storing up to 60 characters. Automatic stop allows manual insertion of messages stored in memory. Messages can be interrupted and continued. Perfect character and word spacing.棠k keyer with dot and dash memories. 120 VAC and 12 VDC operation.

Write for more information

Add $1.50 for postage. Wts. res. add 4% sales tax

DGM ELECTRONICS

787 BRIAR LANE, BELOIT, WIS. 53511
TS-1 MICROMINIATURE ENCODER-DECODER

- Available in all EIA standard tones 67.0Hz-203.5Hz
- Microminiature in size, 125x2.0x.65" high
- Hi-pass tone rejection filter on board
- Powered by 6-16vdc, unregulated, at 3-9ma.
- Decode sensitivity better than 10mV RMS, bandwidth ±2Hz max., limited
- Low distortion adjustable sine wave output
- Frequency accuracy, ±25Hz, frequency stability ±1Hz
- Encodes continuously and simultaneously during decode, independent of mike hang-up
- Totally immune to RF

Wired and tested, complete with K-1 element

$59.95

K-1 field replaceable, plug-in, frequency determining elements

$3.00 each

COMMUNICATIONS SPECIALISTS

P.O. BOX 153

BREA, CALIFORNIA 92621

(714) 998-3021

NEW! ATRONICS Visual Code Reader

Kit $149

Model KCR101

Ready Made

Model KCR101 S225

USE YOUR BANKAMERICAN

Now you can have the famous Atronics Code Reader, that displays decoded Morse Code signals visually, in kit form. Assembly is simple, and can be completed in as little as 5 hours. Complete, step by step, illustrated instructions are included.

Buy Factory Direct & Save! Send for Free Literature Today.

ATRONICS

P.O. Box 77, Escondido, CA 92025 Call (714) 745-1971

FREE CATALOG

HARD-TO-FIND PRECISION TOOLS

Lists more than 2800 items: filers, tweezers, wire strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Also includes ten pages of useful "Tool Tips" to aid in tool selection.

VHF/UHF CONVERTERS PREAMPS

Ten meters through 432 MHz. A post card will bring our full 1976 Catalog.

JANDEL LABORATORIES

3312 S.E. VAN BUREN BLVD.

CORVALLIS, OREGON 97330

Telephone: 503-757-1134

IRON POWDER TOROIDS

<table>
<thead>
<tr>
<th>CORE SIZE</th>
<th>MIX 2</th>
<th>MIX 3</th>
<th>MIX 4</th>
<th>MIX 5</th>
<th>MIX 6</th>
<th>MIX 7</th>
<th>MIX 8</th>
<th>MIX 9</th>
<th>MIX 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-200</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>5.0</td>
<td>2.5</td>
</tr>
<tr>
<td>T-106</td>
<td>85</td>
<td>70</td>
<td>50</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>T-80</td>
<td>85</td>
<td>65</td>
<td>45</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>T-68</td>
<td>75</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>T-50</td>
<td>75</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>T-25</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
<td>2.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF FERRITE TOROIDS</th>
<th>MIX 1</th>
<th>MIX 2</th>
<th>MIX 3</th>
<th>MIX 4</th>
<th>MIX 5</th>
<th>MIX 6</th>
<th>MIX 7</th>
<th>MIX 8</th>
<th>MIX 9</th>
<th>MIX 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-240</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>5.0</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>F-125</td>
<td>110</td>
<td>90</td>
<td>70</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>F-87</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>F-50</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>F-37</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>F-23</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5.0</td>
</tr>
</tbody>
</table>

ATRONICS CODE READER

- Displays letters, numbers, and commonly used punctuation visually as Morse Code signal is received.
- Operating speed 5 to 50 WPM at selected speed.
- All Solid State

More Details? CHECK-OFF Page 126

TOTAL

September 1976 Page 123
WANT SOMETHING REALLY SMALL AND EFFICIENT?

Then you want the antenna that's known around the world for its size, small and superior performance...

The Mini-Products multiband HYBRID QUAD.

MODEL HQ-1

$109.50

If not stocked by your dealer order direct. We pay shipping in USA. Send for free catalog of other models and more data.

SSB & CW FILTERS

Loaded with features such as 100 Hz CW filters, 1500 Hz SSB filters, & 3W AF Amp. Filter plugs into RCVR phone jack & SPKR plugs into filter. 12-18 VDC PWR.

- DE-1028 SSB Filter $39.95
- DE-1038 CW & SSB $48.95
- DE-1048 CW Filter $37.95

Other filters are available*

*For Ham or CB Radio use

Dynamic Electronics, Inc. P. O. Box 896
Hartselle, AL 35640

SUMMER SPECIALS

MOTOROLA, SOLID STATE MONITOR RECEIVER

MO-CNB

1101A, 30-40 MHz 12 V.D.C. and 110 VAC all transistorized, single freq. receiver with A.C. power cord. May be used as a single tone alerting receiver (decoder presently on 2250 Hz). Can also be used as a mobile (12 volt Neg. GND.) with the addition of D.C. power cable NKN6123A (available from Motorola). For tuning from 30-42 MHz, add $98.00

MOTOROLA 450 MHz "MK" I.M.T.S.

12 frequency dial control heads (less mounting bracket) $75.00

Power Control cable for above unit $25.00

1976 ARRL FLORIDA CONVENTION

SHERATON SAND KEY HOTEL NOVEMBER 6 and 7

REAL Convention with Exhibits, Tech. Sessions, FCC exams, Forums, QCWA, Floradores, AWA, MARS; a real "how to" Convention. Family fun tours to area attractions, with the Sheraton Hotel your playground on the Gulf of Mexico. Saturday eve banquet with ARRL President Dannals, W2TK.

Tickets: $3 adv., speci'l, Banquet $9. Full info on reservations and facilities, contact: FGCARC Convention, P. O. Box 157, Clearwater, FL 33517.

TIRED OF CRANKING?

MOTORIZE YOUR TOWER WITH OUR ELECTRIC HOIST/WINCH

EASILY INSTALLED

STURDY RELIABLE

IN USE ON E-Z WAY, HEIGHTS, TRI-EX, TRISTAO, ROHN, ETC.

TOWTEC CORP., Dept. H-4
119 ROSEDALE RD.
YONKERS, NY 10710
Tel: (914) 779-4142

GREGORY ELECTRONICS

The FM Used Equipment People.

SPECIAL SUMMER SALE

- **ELEMENT LENGTH**: 11 ft.
- **BOOM LENGTH**: 54 INCHES
- **WEIGHT**: 15 POUNDS
- **WIND SURVIVAL**: 75 MPH
- **BANDS COVERED**: 6, 10, 15 & 20
- **1200 WATTS P.E.P.**
- **FEED LINE**: 50 OHMS

DE-1026 SSB

$39.95

DE-1036 CW & SSB

$48.95

DE-1046 CW Filter

$37.95

DE-112A

$24.95

DE-112 gives 13.6V @ 1A

DE-112A gives 13.6V @ 3A

DE-110 Tripple Power Supply supplies regulated 5, 9 & 15V @ 100 ma. & -15V @ 100 ma.

SPECIAL SUMMER SALE

DEALER INQUIRIES INVITED
FORUMS WITH JOHN JOHNSTON, CITIZENS TV, QCWA, FCC DISPLAYS & $5000 CAMP AREA

$5000 FLEA MARKET

Sept. 18-19 '76

Don't miss it!

FOR INFO & TICKETS WRITE: EXPO, BOX 1014, ARLINGTON HEIGHTS, IL 60006

"MINI-PORTABLE" DIPOLE KIT
Mounts vertical or horizontal - Electrical ½ wave length
For mast, windowsill, boat, mobile home, or auto
Quick erect - Up to 500 watt PEP
Tunable tip rod - 15' approximately length
40 or 20 meter band models
MOBILE $3.95
ENCLOSURES * Wired with clear, easily lighted W.E. pad (ready to use) $49.95
12ME
BASE $6.95
12BE

VIDICONS
TOP QUALITY AT LOW, LOW PRICES

8823/8844
20PE13A
8929/20PE19
7735A
7262A
7038
20PE11
only
$29.50 ea.*

8507
8541A only $61.95 ea.*

Fully Guaranteed in Factory Sealed Cartons!

Terms: Check with order
Add $2.00 for shipping charges.

KING PRODUCTS
(Dealer Inquiries Invited)
P. O. BOX A. LOMITA, CA 90717 • (213) 534-4402

8758A only $42.00 ea.*
Advertisers

Check-off

...for literature, in a hurry — we'll rush your name to the companies whose names you "check-off".

Place your check mark in the space between name and number. Ex: Ham Radio, 234.

INEX

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenwood</td>
<td>341</td>
</tr>
<tr>
<td>King</td>
<td>977</td>
</tr>
<tr>
<td>Larson</td>
<td>078</td>
</tr>
<tr>
<td>Little Giant</td>
<td>011</td>
</tr>
<tr>
<td>Long's</td>
<td>468</td>
</tr>
<tr>
<td>Lyle</td>
<td>373</td>
</tr>
<tr>
<td>MFJ</td>
<td>082</td>
</tr>
<tr>
<td>Madison</td>
<td>431</td>
</tr>
<tr>
<td>Main</td>
<td>452</td>
</tr>
<tr>
<td>Maximilian</td>
<td>438</td>
</tr>
<tr>
<td>Micro. Seminar *</td>
<td>479</td>
</tr>
<tr>
<td>MidCon</td>
<td>495</td>
</tr>
<tr>
<td>MinProducts</td>
<td>395</td>
</tr>
<tr>
<td>MITS</td>
<td>231</td>
</tr>
<tr>
<td>Mobiliers</td>
<td>238</td>
</tr>
<tr>
<td>Mosley</td>
<td>480</td>
</tr>
<tr>
<td>M-Tech</td>
<td>357</td>
</tr>
<tr>
<td>National Multi.</td>
<td>396</td>
</tr>
<tr>
<td>N. R. I.</td>
<td>397</td>
</tr>
<tr>
<td>Nat. Semi.</td>
<td>223</td>
</tr>
<tr>
<td>Nexus</td>
<td>454</td>
</tr>
<tr>
<td>Northern</td>
<td>486</td>
</tr>
<tr>
<td>Northshore RF</td>
<td>296</td>
</tr>
<tr>
<td>Optoelectronics</td>
<td>352</td>
</tr>
<tr>
<td>P T I</td>
<td>470</td>
</tr>
<tr>
<td>Palomar</td>
<td>093</td>
</tr>
<tr>
<td>Parkridge</td>
<td>439</td>
</tr>
<tr>
<td>Pico</td>
<td>482</td>
</tr>
<tr>
<td>Poly Pak</td>
<td>096</td>
</tr>
<tr>
<td>Porta-Pak</td>
<td>274</td>
</tr>
<tr>
<td>Pruitt</td>
<td>365</td>
</tr>
<tr>
<td>IR</td>
<td>098</td>
</tr>
<tr>
<td>Radio Expo</td>
<td>147</td>
</tr>
<tr>
<td>Regency</td>
<td>102</td>
</tr>
<tr>
<td>Sandlin</td>
<td>471</td>
</tr>
<tr>
<td>Satellite</td>
<td>443</td>
</tr>
<tr>
<td>Southwest</td>
<td>263</td>
</tr>
<tr>
<td>Tech.</td>
<td>263</td>
</tr>
<tr>
<td>Space</td>
<td>107</td>
</tr>
<tr>
<td>Spec. Comm.</td>
<td>318</td>
</tr>
<tr>
<td>Spectronics</td>
<td>191</td>
</tr>
<tr>
<td>Spec. Comm.</td>
<td>366</td>
</tr>
<tr>
<td>Spec. Int.</td>
<td>108</td>
</tr>
<tr>
<td>Swan</td>
<td>111</td>
</tr>
<tr>
<td>TPL</td>
<td>240</td>
</tr>
<tr>
<td>Telemetry</td>
<td>483</td>
</tr>
<tr>
<td>Ten-Tec</td>
<td>367</td>
</tr>
<tr>
<td>Timelink</td>
<td>482</td>
</tr>
<tr>
<td>Towee</td>
<td>320</td>
</tr>
<tr>
<td>Tri-Ex</td>
<td>116</td>
</tr>
<tr>
<td>Tufts</td>
<td>321</td>
</tr>
<tr>
<td>Tycor</td>
<td>475</td>
</tr>
<tr>
<td>Universal Radio</td>
<td>444</td>
</tr>
<tr>
<td>VHIF</td>
<td>121</td>
</tr>
<tr>
<td>Vanguard *</td>
<td>043</td>
</tr>
<tr>
<td>Webrick</td>
<td>423</td>
</tr>
<tr>
<td>Webster Radio</td>
<td>255</td>
</tr>
<tr>
<td>Weinschenker</td>
<td>122</td>
</tr>
<tr>
<td>Whitehouse</td>
<td>379</td>
</tr>
<tr>
<td>Wilson</td>
<td>123</td>
</tr>
<tr>
<td>Wire Concepts</td>
<td>476</td>
</tr>
<tr>
<td>Yatea</td>
<td>127</td>
</tr>
</tbody>
</table>

Limit 15 inquiries per request.

September 1976

Please use before October 31, 1976

Tear off and mail to:

HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03048

There's nothing like it!

RADIO AMATEUR Callbook

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.

The U. S. Callbook has nearly 300,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you can expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 250,000 calls, names and addresses of amateurs outside of the USA.

Order from your favorite electronics dealer or write direct for your free catalog:

RADIO AMATEUR Callbook INC

Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044
DATA-TONE KEYBOARDS
- Five Styles
- Slimness — 0.050"*
- Positive Tactile Feedback
- Positive Audio Feedback
- Keyboards are designed, fabricated and guaranteed by Data Signal

SIZES:
- 2¼" x 3¼"
- 1½" x 2¼"
- 2¾" x 1¾"
- 2¼" x 2¼"

Any Style Keyboard $8.50

DATA-TONE ENCODERS
RF Proof Choice of Five Keyboards
Cmos IC Encoder Single Tone Capability
Sub-Miniature HC-43 Crystal Lowest Cost
Easy Installation

SELF-CONTAINED
Complete 12 or 16 digit encoders for mounting directly to hand held portables. All electronics included within keyboard, includes LED and adjustable output control. Only ¼" thick. Select style when ordering.

DTM $49.50

SUB-MINIATURE MODULE AND KEYBOARD
The smallest encoder, allows for mounting encoder inside hand held portable, while 0.050" thick keyboard mounts on portable. Assembled for quick installation. Select style keyboard when ordering.

SME $29.50

DO-IT-YOURSELF KITS
Ala-cart encoders are here, now buy the parts and build your own DATA-TONE Encoder. Parts come with complete set of instructions and schematics.

Keyboard, Your choice of styles $8.50
Digital IC Encoder with 1-MHz, HC-43 Crystal $13.50
P.C. Board with all resistors, capacitors, etc. $2.50
(*FREE with purchase of keyboard, encoder and crystal.)

AUTOMATIC DATA TONE DIALER
Automatic mobile telephone dialing is now available. By the push of a single button you can automatically dial up to six separate 7-digit numbers. All solid-state micro-power COS-MOS design. Automatic PTT operation. Low profile dash mount, easy installation. Available with keyboard for manual dialing of numbers. Manual operation provides automatic PTT operation with 1½ second transmitter hold.

AM-6 $19.50

Factory programming of numbers $7.50.

DATA TONE PADS

TTP-1, 2 $9.50

DATA TONE TO DIAL PULSE CONVERTER
Convert standard 0-9 Data Tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-falsing Data Tone decoder, large capacity 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function.

* and # digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting.

DPC-121 P.C. Board $195.00
DPC-121R Rack Mount $285.00

ANTI-FALSING DATA TONE DECODER
Now, a true anti-falsing decoder/receiver. Virtually immune to high noise or audio falsing. Twelve or 16 digit capability. Completely solid state, uses latest Phase Locked Loop. Single 5-volt power supply. Heavy duty transistor output. Available as p.c. board or rack mount.

TTL-126-12 12 digit P.C. $149.95 Rack $219.95
TTL-126-16 16 digit P.C. $169.95 Rack $239.95

REPEATER AUTO PATCH
It's complete — a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dial-in capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.

RAP-2 P.C. $99.50 Rack $149.50

DELUXE C-MOS P.C. KEYER
Complete C-MOS keyer in kit form, or wired, just right for your personal enclosure. Versatile controls allow wide character weight variations, speeds from 5 to 50 words per minute, volume and tone control. Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuitry. With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.

C-MOS Keyer Wired $24.95; Kit $19.95

DELUXE RECEIVER PREAMP
Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the week's signal with a Data Preamp.

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>USE</th>
<th>STAGES</th>
<th>GAIN dB</th>
<th>NF dB</th>
<th>KIT</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 to 148</td>
<td>2 METER</td>
<td>SINGLE</td>
<td>20</td>
<td>2.5</td>
<td>$9.50</td>
<td>$12.50</td>
</tr>
<tr>
<td>1 thru 30</td>
<td>HF BROADBAND</td>
<td>19-36</td>
<td>3</td>
<td>—</td>
<td>$17.95</td>
<td></td>
</tr>
</tbody>
</table>

Other Available.

DATA SIGNAL, INC.
2403 COMMERCE LANE
ALBANY, GEORGIA 31707, 912-883-4703

Order Today — Send for Free New Catalog
SSB Signal Before Processing. The weak valleys and high peaks give a low average power output, resulting in a real lack of punch.

SSB Signal After Processing. The once weak valleys are now strong peaks giving up to a 400% increase in average power output. The result is a signal full of punch with power to slice through QRM.

TWO MODELS TO CHOOSE FROM — PLUGS BETWEEN YOUR MICROPHONE AND TRANSMITTER

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSP-520BX</td>
<td>$49.95</td>
</tr>
<tr>
<td>LSP-520BX II</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

LSP-520BX. 2-3/16 x 1-1/4 x 4 inches. Uses 9 volt battery. RF protected. 3 conductor, 1/4" phone jacks for input and output.

LSP-520BX II. Same as LSP-520BX but in a beautiful 2-3/16 x 1-1/4 x 4 inch Ten-Tec enclosure with uncommitted 4 pin Mic jack, output cable, rotary function switch.

NEW

MFJ-16010 ANTENNA TUNER
- All bands 160 thru 10 meters
- Matches almost any random length of wire to any Transceiver or Transmitter
- Rated at 200 watts RF Output to handle virtually any transceiver running barefoot
- Ultra compact 2-3/16 x 3/4 x 4 inches
- Matches low and high impedances by interchanging input and output
- SO-239 coaxial connectors
- Unique wide range, high performance, 12 position tapped inductor. Uses two stacked toroid cores
- High quality specially designed variable capacitor
- Heavy duty construction
- All aluminum cabinet

$39.95

CMOS-8043 ELECTRONIC KEYER
- Uses Curtis 8043 Keyer IC
- Built-in key
- Dot memory
- Iambic operation with external squeeze key
- 8 to 50 WPM
- Side-tone and speaker
- Volume, tone, weight controls
- Solid State Keying ±800 volts max
- Uses 4 penlight cells
- 2-3/16 x 3/4 x 4 inches.

$49.95

CMOS-8043 ELECTRONIC KEYER
- Uses Curtis 8043 Keyer IC
- Built-in key
- Dot memory
- Iambic operation with external squeeze key
- 8 to 50 WPM
- Side-tone and speaker
- Volume, tone, weight controls
- Solid State Keying ±800 volts max
- Uses 4 penlight cells
- 2-3/16 x 3/4 x 4 inches.

$49.95

MFJ-1030BX RECEIVER PRESELECTOR
- Clearly copy weak unreadable signals (increase signal 3 to 5 "S" units)
- More than 20 dB low noise gain
- Separate input and output tuning controls give maximum gain and RF selectivity to significantly reject out-of-band signals and reduce image responses
- Dual gate MOS FET for low noise and strong signal handling abilities
- Completely stable
- Optimized for 10 through 30 MHz
- Uses 9 volt battery
- Beautiful Ten-Tec enclosure
- 2-3/16 x 3/4 x 5-9/16 in.

$49.95

NEW

CFW-2BX SUPER CW FILTER
- By far the leader. Over 5000 in use. Razor sharp selectivity. 80 Hz bandwidth, extremely steep skirts (See Response Curves).
- No ringing
- Bandwidth: 80 Hz, 110 Hz, 180 Hz (selectable)
- Skirt rejection: at least 60 dB down one octave from center frequency for 80 Hz bandwidth
- Center frequency 750 Hz
- Drastically reduces all background noise (up to 15 dB improvement in S/N ratio)
- 8 pole active filter uses ICs
- 9 volt transistor battery provides months of operation
- 400 Hz or 1000 Hz center frequency option available. Add $3.00
- Size: 2-3/16 x 3/4 x 4 inches.

$27.95

CFW-2BX SUPER CW FILTER
- By far the leader. Over 5000 in use. Razor sharp selectivity. 80 Hz bandwidth, extremely steep skirts (See Response Curves).
- No ringing
- Bandwidth: 80 Hz, 110 Hz, 180 Hz (selectable)
- Skirt rejection: at least 60 dB down one octave from center frequency for 80 Hz bandwidth
- Center frequency 750 Hz
- Drastically reduces all background noise (up to 15 dB improvement in S/N ratio)
- 8 pole active filter uses ICs
- 9 volt transistor battery provides months of operation
- 400 Hz or 1000 Hz center frequency option available. Add $3.00
- Size: 2-3/16 x 3/4 x 4 inches.

$18.95

CFW-2PC
- wired PC board

CFW-2PC
- kit PC board

$15.95

ORDER TODAY. MONEY BACK IF NOT DELIGHTED. ONE YEAR UNCONDITIONAL GUARANTEE.

ORDER BY MAIL OR CALL 1-601-323-5669 AND CHARGE IT ON

Please add $2.00 per item for Shipping and Handling

MFJ ENTERPRISES
- P. O. BOX 494(H) • MISSISSIPPI STATE • MISSISSIPPI 39762
The Model FT-301D is a precision-built, all solid-state, compact high performance transceiver of advanced design. All circuits are fully transistorized with ICs and FETs for reliability. A wide-band tuning system with preset pass band tuning combined with wide-band amplifier eliminates final amplifier tuning for band change. Also available as an option is an automatic CW identifier (programmable).

Whether you judge it on price, performance or operational features, the FT-301D comes out a winner!
Amateurs who build their own equipment go EIMAC.

Building HF or VHF power amplifiers? You'll find them described in detail in both the ARRL Handbook and the Radio Handbook. And you'll find that EIMAC tubes are the overwhelming choice of expert equipment designers for 1.8 to 1296 MHz service.

The Radio Handbook features a deluxe amplifier using the 3-1000Z for HF service plus other HF or VHF designs built around the 3-500Z, 4CX1500B, 8877 and the 8874. The ARRL Handbook describes a multiband HF amplifier using the 8877, plus other designs featuring the 3-500Z, 8873, 4CX250B and 3CX100A5. And there's plenty of information about design and construction of transmitting equipment using EIMAC power tubes in both handbooks.

For tube information, contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.