APRIL 1976

- solid-state communications receivers 18
- designing circuits with op amps 26
- medium-frequency loop antennas 30
- ssb transceiver 48
- L, C, R bridge 54
- and much more...

programmable contest keyer
Now...more than ever---
the TEMPO line means solid value

Tempo VHF/ONE
the “ONE” you’ve been waiting for

No need to wait any longer — this is it! Whether you are already on 2-meter and want something better or you’re just thinking of getting into it, the VHF/ONE is the way to go.

* Full 2-meter band coverage (144 to 148 MHz for transmit and receive).
* Full phase lock synthesized (PLL) so no channel crystals are required.
* Compact and lightweight — 9.5” long x 7” wide x 2.25” high. Weight — About 4.5 lbs.
* Provisions for an accessory SSB adapter. 5-digit LED receive frequency display. 5 KHz frequency selection for FM operation.
* Automatic repeater split — selectable up or down for normal or reverse operation.
* Microphone, power cord and mounting bracket included.
* Two built-in programmable channels. All solid state. 10 watts output.
* Super selectivity with a crystal filter at the first IF and E type ceramic filter at the second IF. 800 Selectable receive frequencies. Accessory 9-pin socket. *$495.00

TEMPO SSB/ONE
SSB adapter for the Tempo VHF/One
* Selectable upper or lower sideband. Plug directly into the VHF/One with no modification. Noise blanker built-in. RIT and VXO for full frequency coverage. *$225.00

TEMPO CL146A
144 to 148 MHz coverage • Multifrequency spread of 2 MHz • 12 channel possible • Metering of output and receive • Internal speaker, dynamic microphone, mounting bracket and power cord supplied. A Tempo “best buy” at $239.00.

TEMPO CL220
As new as tomorrow! The superb CL-220 embodies the same general specifications as the CL-146A, but operates in the frequency range of 220-225 MHz (any two MHz without retuning). At $299.00 it is undoubtedly the best value available today.

SOLID STATE VHF LINEAR AMPLIFIER. 144-148 MHz. Power output of 100 watts (nom) with only 10 watts (nom) in. Reliable and compact.

TEMPO VH/FM AMPLIFIERS
Solid state power amplifiers for use in most land mobile applications. Increase the range, clarity, reliability and speed of two-way communications.

Most of the above products are available at dealers throughout the U.S.

TEMPO fmh
So much for so little! 2 watt VHF/FM hand held 6 Channel capability, solid state, 12 VDC. 144-148 MHz (any two MHz), includes 2 pair of crystals, built-in charging terminals for nicad cells, S-meter, battery level meter, telescoping whip antenna, internal speaker & microphone. *$199.00

TEMPO 6N2
The Tempo 6N2 meets the demands for a high power six meter and two meter power amplifier. Using a pair of Eimac 8874 tubes it provides 2000 watts PEP input on SSB and 1000 watts input on CW and FM. Completely self-contained in one small desk mount cabinet with internal solid state power supply, built-in blower and RF relative power indicator. *$795.00

The Tempo 2002... 2 meters only $695.00
The Tempo 2006... 6 meters only $695.00

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
816/679-3127

Prices subject to change without notice.
YOUR COMPLETE SATISFACTION is our goal! And here is the offer that proves it! Order any MFJ Product and try it. If you’re not completely satisfied, you may return it within 30 days for a full prompt refund (less shipping).

CW FILTER — Over 5000 now in use. 80 Hz bandwidth and steep sided skirts separate even the weakest signal from the QRM. Works with any receiver or transceiver. CWF-2BX, assembled and tested $27.95.

CMOS KEYER — State of the art design uses Curtis 8043 Keyer on a chip. Dot memory. Self completing dots and dashes. 8 to 50 wpm. Sidetone and speaker. Built in key. CMOS-8043, assembled and tested $39.95.

SSB FILTER — Here’s a new and different kind of single sideband filter. Unintelligible signals become readable as you slide the selectivity switch to optimize the audio bandwidth. SSB-2BX, assembled and tested $27.95.

FREQUENCY STANDARD — The MFJ-2WBX provides strong precise markers every 100, 50, 25 kHz well into the VHF region. Gated for positive identification. CMOS. Accurately determines receive/xmit freq. MFJ-200BX, assembled and tested $24.95.

QRP TRANSMITTER — Work the world on 5 watts, with this Transmitter on 40 meter CW. No tuning required. Short circuit proof. Switch selects crystal or VFO frequency control (crystals and VFO not included). Requires 12 VDC. MFJ-40T, assembled and tested $24.95.

QRP VFO — Companion VFO plugs directly into QRP transmitter above for stable variable frequency control from 7.0 to 7.2 MHz. Can be used with other xmtm. MFJ-40V, assembled and tested $24.95.

QRP POWER SUPPLY — This unit will eliminate receiver hum and chimp and buzz in your transmitted signal caused by power supply deficiencies. Delivers up to 1 Amp at 12 VDC. MFJ-12DC, assembled and tested $24.95.

SUPER LOGARITHMIC SPEECH PROCESSOR — Up to 400% more RF Power is yours with this plug-in unit. Plugs in between mic and xmt. Active filters concentrate power on those frequencies that yield max. intelligence. LSP-520BX, assembled and tested $49.95.

STATE-OF-THE-ART RECEIVER PRESELECTOR — Connected between your antenna and receiver, this preselector dramatically improves weak signal reception. (Increases signal 3 to 5 "S" Units.) MFJ-1030BX, assembled and tested $49.95.

Please add $2.00 per item for Shipping & Handling.

Warranty

All products manufactured by MFJ Enterprises are UNCONDITIONALLY GUARANTEED for a period of one year from the date of purchase. This means we will repair or replace free of charge any of our products which are defective for any reason. Why not let MFJ add that extra something to your station. Order today and see just what convenience and capabilities we can add to your life.

MFJ Enterprises

P. O. BOX 494(H) • MISSISSIPPI STATE, MISSISSIPPI 39762 • 601-323-5869

FREE CATALOG AVAILABLE. DEALER INQUIRIES INVITED.

More Details? CHECK-OFF Page 110
Stay tuned for future programs.

The HAL ST-6000 demodulator/keyer and the DS-3000 and DS-4000 KSR/RO series of communications terminals are designed to give you superlative TTY performance today—and in the future. DS series terminals, for example, are re-programmable, assuring you freedom from obsolescence. Sophisticated systems all, these HAL products are attractively priced—for industry, government and serious amateur radio operators.

The HAL ST-6000 operates at standard shifts of 850, 425, and 170 Hz. The tone keyer is crystal-controlled. Loop supply is internal. Active filters allow flexibility in establishing different tone pairs. You can select AM or hard-limiting FM modes of operation to accommodate different operating conditions. An internal monitor scope (shown on model above) allows fast, accurate tuning. The ST-6000 has an outstandingly high dynamic range of operation. Data I/O can be RS-232C, MIL-188C or current loop.

The DS-3000 and DS-4000 series of KSR and RO terminals provide silent, reliable, all-electronic TTY transmission and reception, or read-only (RO) operation of different combinations of codes, including Baudot, ASCII and Morse. The powerful, programmable 8080A microprocessor is included in the circuitry to assure maximum flexibility for your present needs—and for the future. The KSR models offer you full editing capability. The video display is a convenient 16-line format, of 72 characters per line.

These are some of the highlights. The full range of features and specifications for the ST-6000 and the DS series of KSR and RO terminals is covered in comprehensive data sheets available on request. Write for them now—and tune in to the most sophisticated TTY operation you can have today—or in the future.

HAL Communications Corp., Box 365, 807 E. Green Street
Urbana, Illinois 61801 • Telephone: (217) 367-7373

More Details? CHECK-OFF Page 110
10 programmable contest keyer
Howard F. Batie, W7BBX

18 solid-state communications receivers
John R. Megirian, K4DHG

26 741 op-amp circuit design
Courtney Hall, WA5SNZ

30 corner-fed loop antennas
Barry J. Kirkwood, ZL1BN

34 amateur radio's golden years
William I. Orr, W6SAI

40 circuits and techniques
James Fisk, W1DTY

44 microprocessors
David G. Larsen, WB4HYJ
Peter R. Rony
Jonathan A. Titus

48 80-meter ssb transceiver
Dr. W. J. Weiser, VE3GSD

54 universal LC, R bridge
John H. Ellison, W6AOI

58 troubleshooting by resistance measurement
Michael James

4 a second look
44 microprocessors

110 advertisers index
70 new products

40 circuits and techniques
58 novice reading

91 flea market
110 reader service

102 ham mart
58 repair bench

64 ham notebook
6 stop press
Now that 16-kilobit random-access memories are starting to appear on the market, it shouldn't be too long before we see some of these devices in amateur products. Its predecessor, the popular 4k RAM, evolved rather slowly because manufacturers were forced to switch from p-channel to n-channel designs to reduce cell size. Since 16k RAMs use the same basic technology, prices can be expected to race down the curve at a much faster pace -- some manufacturers are predicting the price will drop to less than $10 by early next year. Others see a much slower pace, with the magic $10 price at least three years away. All agree, however, that once it's in production, the 16k RAM will dominate the solid-state memory market well into the early 1980's.

One of the reasons the 16k memory will be with us for awhile (as opposed to the relatively short-lived 1k, 2k and 4k devices) is because the next level of RAM integration, 65,536 bits, is probably beyond the reach of the n-channel MOS process. In the 16k RAM each bit is squeezed into a site about one-thousandth of an inch square (0.025mm²) — about half the area required in 4k designs — by placing the cell's switching transistor and storage capacitor on top of one another instead of side by side as in the 4k layout. However, most researchers are convinced that the switched-capacitor or single-transistor cell used in present RAMs won't be good enough for 65k devices — it will probably peter out well short of 0.3 to 0.5 mil² (0.0005 inch² or 0.013mm²) cell sizes needed for the 65-kilobit chips. The innovations in technology and circuit design that will be needed to reach the 65k level, such as bit sharing, charge coupling, or multi-level memory planes, will resist quick translation into production devices.

Of the several options which show promise for 65-kilobit cell integration, attention is presently being focused on the charge-coupled device (CCD) technique that Texas Instruments has used to build an experimental RAM cell. Known among insiders as the no-transistor RAM, the device stores bits in switchable CCD capacitors implanted under the MOS gate. One reason the CCD approach is so attractive is that it lends itself to the same silicon-gate process used in 4k RAMs. The CCD memory cell, which meets the necessary size requirements for 65k integration, can switch as fast as a conventional MOS transistor so no speed is lost. More significantly, the CCD RAM requires only two access lines per cell: one for storage and a sense line for reading. This further reduces chip size (all of today's RAMs need three lines per cell). The question that remains is whether the CCD memory cell can be manufactured in large chips with high yields — if it can't, designers will have to come up with other designs or further develop semiconductor technology.

Although the new 16k random-access memories received a good deal of attention at this year's Solid State Circuits Conference in Philadelphia, a number of other new developments were described which will have great impact on future electronic circuitry. Among the new circuits are Fairchild's new 12L RAM which puts 4096 bits of bipolar memory on a single chip, a 16-bit minicomputer controller on a single chip from Toshiba, Intel's n-channel static RAM which breaks the 100-ns speed barrier, and a 4k static RAM from American Micro Devices which operates from 5 volts (a first at that density level). Also described was a continuously-charge-coupled random-access memory (C3RAM) from Siemens in Germany that shows promise for 65k integration. It all adds up to another exciting year for digital electronics.

Jim Fisk, W1DTY
editor-in-chief
the little surprise

The IC-22A has caused some pretty big surprises since it first started making waves in VHF-FM. Veteran operators have been delightfully surprised by its sophisticated styling and ease of operation; FM beginners, by its versatility, large number of possible channels, and its great value as a starter unit for FM transceiving; and all owners, by its unexcelled high quality construction and low maintenance problem record, ICOM traditions. The competition was in for a big surprise as it raced past everything in its field to become the most popular two meter crystal controlled radio on the market. Surprise. Surprise.

But the IC-22A’s best surprise is the little surprise, its price. The little radio with all the big surprises is also the best FM transceiver value available. Engineered for versatility and sophistication: priced within the reach of the most modest beginner. Whether the IC-22A is your first FM or your last, you're in for a little surprise.
EXCELLENT AMATEUR RADIO PR has resulted from Amateur Operators' extensive on-going contribution in Guatemala. For example, WB2JSM at the Hall of Science Radio Club in Flushing, N.Y. got coverage in both the New York Daily News and New York Times plus CBS TV nationwide exposure for what ended up as a 'round the clock message handling operation. The Red Cross put out an extremely laudatory press release on the Amateur's role in the disaster, and those Amateurs who called their local papers and broadcast stations found very receptive ears.

LONG ANTICIPATED RACES DOCKET has finally received FCC approval and in effect gives the Radio Amateur Civil Emergency Service to Radio Amateurs. In their Report and Order on Docket 19723 the Commissioners discontinued the requirement for RACES communications plans, FCC certifications and authorizations. It also permits RACES station Licenses to be issued directly to civil defense organizations, and provides for the shared use of all the Amateur frequencies by RACES on a first-come, first-served basis except during emergencies requiring invocation of the President's War Emergency Powers.

The new rule prohibits repeating the transmissions of an Amateur not authorized to operate on the 10-Meter Repeater Sub-Band andtolereplicatingtransmissionsofanAmateurnotauthorizedtooperateonthe28-MHz band.

10 METER REPEATERS will now be permitted according to an Order just released by the FCC. Inputs and outputs for in-band ten-meter machines must lie between 29.5 and 29.7 MHz, and cross banding to ten meters will be tricky since the rule change specifically prohibits repeating the transmissions of an Amateur not authorized to operate on the 28-MHz band.

AMATEUR EXTRA CLASS licensees who wish to have the Extra Class certificate should make a written request to the FCC Field Office at which they took the examination. Requests must include a photocopy of the Extra Class license — any requests that go to Washington or Gettysburg will be returned without action.

OSCAR ARTICLE by K3RXK in February Popular Mechanics is a beautifully presented, outstanding presentation of the Amateur space program. Highly recommended reading.

Too Much Power May be being used by as many as 95% of OSCAR users responding to the AMSAT Newsletter poll. Based on equipment and antennas reported, most users should cut back to avoid exceeding the design ERP levels. OSCAR Users Should Start checking 29510 during stateside passes for current news.

AMATEUR RADIO'S OLYMPIC PRESENCE in Guatemala is an outstanding example of the worldwide presence of Amateurs, and indicates what a major contribution the overall space program has made in Guatemala. It is unfortunate that the public's awareness has not been increased by this tremendous endeavor.

Two Major DX Conventions have settled on September meeting dates — DXPO 76 is set for September 25 in Reston, Virginia, and W9-DXCC will be September 11 in Chicago.
Denton Amplifies America

We took the most desirable and important features and engineered them into the all new Dentron Continuous Duty 160-10 meter amplifier.

160-10L Specifications

- **Size:** 7¼"Hx14½"Wx14"D
- **Weight:** 43 lbs.
- **Frequency Range:**
 - 1.8 MHz (1.8-2.5) 3.5 MHz (3.4-4.6)
 - 7 MHz (6.0-6.0) 14 MHz (11.0-16.0)
 - 21 MHz (16.0-22.0) 28 MHz (28.0-30.0)
- **Power Input:**
 - SSB 1200 P.E.P. Continuous
 - CW 1000 watt DC Continuous
 - SSTV 1000 watt DC input 25 minute continuous
 - RTTY 1000 watt DC input 25 minute continuous
 - TUNE 1000 watt DC input 15 minute continuous
- **Output Impedance:** 50-75 ohms Pi network wide range
- **SVWR:** not to exceed 2 to 1
- **Third-order Distortion:** Down at least 30 db

160-10L Features

- 160 thru 10 meters
- 1200 watts P.E.P. on SSB continuous
- 1000 watts DC on CW, RTTY or SSTV
- “On demand” Variable forced air cooling system
- Self contained continuous duty power supply
- 4-811A Triodes in Grounded Grid mounted in cooling chamber
- Compact, low profile, solid, one-piece cabinet, tube cooling chamber eliminates need for perforated cabinet.
- Covers MARS Frequencies without modifications
- Broadbanded input and output circuit
- 70 watt drive for maximum legal input

Another surprise from Dentron, but the biggest surprise of all is the price. Just $499.50 Post paid USA from Dentron Radio Co., Inc.

Also available from your favorite dealer.

All Dentron products are made in U.S.A.
either way is the right way

...they're both KENWOOD

the TR-2200A

Kenwood’s high performance portable 2-meter FM transceiver...completely transistorized, rugged and compact.

12 channel capacity. Built in telescoping antenna can be easily replaced, or stored in carrying case. Connector for external antenna also. External 12 VDC or internal ni-cad batteries, complete with 120 VAC battery charger. 146-148 MHz frequency coverage. 12 channels, 6 supplied. Battery saving “light off” position. Hi-Lo power switch (2 watts – 400 mW). Sensitivity: 0.5 uV or less/26 dB S+N/N. Built-in speaker. Size: 5-3/8”x2-5/16”x7-1/8”, 3-3/4 lbs. Complete with Dynamic mike, Q-T-S carrying case, all cables, speaker/headphone plug and 10 Ni-Cad batteries. Amateur net...$229.00.

the TR-7200A

Kenwood’s superb 2-meter FM mobile transceiver. Designed to withstand the most severe punishment while providing consistently excellent performance.

Packed with features like the PRIORITY function...Put your favorite crystals in channel 7, and the 7200A automatically returns to that frequency when it senses activity there. 146-148 MHz coverage, 22 channels, 6 supplied. Completely solid state. Voltage required: 13.8 VDC. Antenna impedance: 50 ohms. Frequency adjusting trimmers on every crystal. RF output power: 10 watts (or 1 watt at low power). Adjustable frequency deviation (factory set at ±5 kHz). Automatic VSWR protection. Receiver sensitivity less than .5 uV for 27 dB. Selectivity: 12 kHz/-6 dB and 24 kHz/-70 dB. Size: 7-1/16” W x 2-3/8” H x 9-7/16” D, 5-1/2 lbs. Complete with dynamic mike, DC power cord, mobile mount, mike hanger, auxiliary connector and external speaker plug. Amateur net...$249.00.

The perfect companion to the TR-7200A is the PS-5 AC/DC power supply. Together they provide an efficient and handsome base station. The PS-5 is complete with a digital clock and automatic time control feature built in. Amateur net...$79.00.
KENWOOD’S TS-700A finally fulfills the promise of 2-meters... more channels, more versatility, tunable VFO, SSB-CW and, best of all, the type of quality that has placed the Kenwood name out front.

- Operates all modes: SSB (upper & lower), FM, AM, and CW
- Completely solid state circuitry provides stable, long lasting, trouble-free operation
- AC and DC capability. Can operate from your car, boat, or as a base station through its built-in power supply
- 4 MHz band coverage (144 to 148 MHz) instead of the usual 2
- Automatically switches transmit frequency 600 KHz for repeater operation. Just dial in your receive frequency and the radio does the rest... Simplex repeater reverse
- Or do the same thing by plugging a single crystal into one of the 11 crystal positions for your favorite channel
- Outstanding frequency stability provided through the use of FET-VFO
- Zero center discriminator meter
- Transmit/Receive capability on 44 channels with 11 crystals
- Complete with microphone and built-in speaker
- The TS-700A has been thoroughly field-tested. Thousands of units are in operation throughout Japan and Europe

The TS-700A is available at select Kenwood dealers throughout the U.S. For the name of your nearest dealer, please write.
programmable contest keyer

A CW man's keyer featuring high memory capacity, operating convenience, and reasonable cost

A programmable memory keyer is a desirable asset in contest work. It can handle much of the repetitive work while you check dupes, fill out the log, or just take a break. The few programmable keyers on the market all have some desirable features, but they lack the capacity and automatic memory control necessary for smooth, high-speed contest operating. A programmable memory keyer is also needed that the average amateur can afford. The keyer described here has been designed to meet these needs.

Major design objectives included high memory capacity, low cost, and operating simplicity for both program and readout modes; manual, semiautomatic, or fully automatic operation; nonvolatile, nondestructive memory readout; and convenient size. The design is centered around the Intel P2102, a 1024-bit static programmable random access memory (PRAM) in a 16-pin package.* This IC was selected because it requires no refresh circuitry as do dynamic PRAMS, only a single +5 volt power supply is required, all inputs and outputs are fully TTL compatible, and it's readily available at reasonable cost.

description

The keyer (fig. 1) is designed so that manual operation with a paddle or bug will always override the mem-

*Intel, 3065 Bowers Avenue, Santa Clara, California 95051.

By Howard F. Batie, W7BBX, 12002 Chevoit Drive, Herndon, Virginia 22070
Fig. 1. Simplified block diagram of the programmable contest keyer designed by W7BBX. Features include iambic keying, four selectable 512-bit memories, built-in sidetone oscillator, and solid-state transmitter keying.

Oral readout. Operation is identical to that of a conventional digital iambic keyer when the memory section isn’t used. The popular clock and iambic keyer described by Garrett were modified slightly to interface with the memory. The synchronous clock begins at the instant the paddle is closed and runs for two clock pulses after character generation ceases. The self-completing characters are perfectly formed and spaced throughout the speed range, and character generation is jam-proof. Speed is continuously and smoothly variable from about 8 wpm to well above 60 wpm. The dot memory allows automatic insertion of a dot while holding the dash paddle closed. Similarly, a dash may be inserted while holding the dot paddle closed. Iambic operation allows alternate perfectly spaced dots and dashes to be generated when both paddle arms are simultaneously closed. An external manual key or bug can be used directly instead of the paddle and will control all keyer and memory readout functions.

Solid-state output keying for all inputs (paddle, external manual key and memory readout) is incorporated. The keyed output is directly compatible with most popular cathode-keyed and sidetone/vox actuated and grid-block-keyed transmitters; two output keying jacks, one for positive-keyed voltages up to +150 volts and one for negative-keyed voltages up to -150 volts, are simultaneously available on the rear panel. However, if your transmitter is cathode keyed and 100 mA or more flows through the keyed circuit, an external pass transistor or keying relay may be required. A twin-T audio oscillator and amplifier provide a sinusoidal sidetone waveform that drives an internal 8-ohm permanent-magnet speaker with sufficient audio to perform well in a moderate ambient noise environment. Volume is adjustable, and the pitch is variable from about 400 to 1500 Hz. The internal sidetone oscillator is activated only during the edit mode; that is, for off-the-air programming or checkout of a programmed message. During transmit, or while programming on the air, the transmitter sidetone oscillator would be used in the usual manner. If your transmitter doesn’t have an internal sidetone oscillator, a minor wiring modification to the function switch S1A terminals will permit the keyer’s internal sidetone oscillator to be used in both edit and transmit modes. The tuning position is incorporated for tune-up purposes.

Memory readout

With S5 in readout (fig. 1) and the stored message to be transmitted selected by S6, readout is initiated by depressing S2. This starts the clock, and the clock pulses are fed to the binary address generator (BAG), which includes nine tandem flip-flops. As the flip-flops cycle
fig. 2. Logic diagram of the keyer board for the programmable contest keyer. Designations 2-C, 2-L, etc., indicate connections to board 2 (fig. 3). S1 is a 3-pole, 4-throw shorting-type rotary switch. All resistors are 1/4 watt, 10%.

through 511 successive counts, their BCD output is applied to the nine address lines of the selected memory section, and the addressed information stored in each memory cell is automatically presented to the memory chip data out terminal. If desired, memory readout can be halted in mid message by depressing S2 again before completion of the entire readout sequence. Further memory readout is inhibited until S2 is again depressed;
memory readout will then continue from the point at which it was interrupted (semiautomatic operation). On the 511th clock pulse fed to the binary address generator, the BAG returns to all zeroes on the nine output

Depressing S4 during the first seven-eighths of the message readout sequence resets only the binary address generator to the message beginning, which is then automatically repeated. Thus, if “CQ TEST DE W7BBX/4”

Depressing S3 at any point in the message readout cycle stops the clock and resets all control functions and the binary address generator. Depressing S4 during the first seven-eighths of the message readout sequence resets only the binary address generator to the message beginning, which is then automatically repeated. Thus, if “CQ TEST DE W7BBX/4”

lines (end of program readout). The downward transition of the highest significant memory address line is unique and signifies “end of program,” or EOP. This EOP transition automatically stops the clock, and all control circuitry is simultaneously reset to begin another readout sequence when S2 is next depressed.

Rear-panel provisions are made for remotely starting the memory readout sequence. A separate spst switch in parallel with S2 at J5 can control both start and stop functions; for example, a simple foot switch can be used to free your hands for the paddle or logging. Alternatively, any external circuit that provides a negative-going TTL-compatible pulse can trigger readout. (One possible application might be synchronization to WWV for moonbounce, meteor scatter, or satellite relay operations.)

When the memory readout cycle is initiated, the green cycle indicator (11) lights continuously until 87.5% of the memory contents have been read out; at which point it begins to flash to indicate “nearing end of program.” When the message has been completely read out, the green light extinguishes. Depressing S3 at any point in the message readout cycle stops the clock and resets all control functions and the binary address generator. Depressing S4 during the first seven-eighths of the message readout sequence resets only the binary address generator to the message beginning, which is then automatically repeated. Thus, if “CQ TEST DE W7BBX/4”

An essential feature of a contest keyer is the ability of the paddle to override the memory readout to insert exchange number and/or signal reports in the middle of a programmed message (fully automatic operation). The memory interrupt feature allows you to manually break into any point of the memory readout cycle merely by activating either the paddle or external manual key during memory readout; memory readout is instantly interrupted and remains interrupted as long as manual keying continues. When manual keying stops, an adjustable 1-second delay is introduced by the memory restart delay before the keyer automatically allows memory readout to continue from the point at which it had been interrupted. Memory restart does not have to be manually commanded. Thus, a programmed contest message of “DE W7BBX/4 NR 599 VA BK” can be sent correctly by manually inserting the contest exchange number be-

Controls and receptacles on rear panel. Although not labelled, one jack is for grid-block keying; the jack labelled “to xmr key” is for cathode-keyed transmitters.
fig. 3. Memory circuit for the programmable contest keyer. Designations 1-L, 1-O, etc., designate connections to board 1 (fig. 2.)

Connections 3-F, 3-G go to the power supply, and 4-N, 4-O go to the remote control unit. S2, S3 and S4 are spst push buttons. S5 is a 3spdt toggle switch; S6 is a 2-pole, 5-throw rotary switch (shorting or non-shorting okay). All resistors are ¼ watt, 10%.
between NR and 599 during memory readout. Memory contents previously stored in the array are automatically prevented from being inadvertently transmitted while the memory is in a hold condition during manual keying.

memory programming

Placing S5 in the write position automatically programs a logic zero in the first cell, steps the binary address generator to the second cell, and causes the red cycle indicator (12) to light immediately, even though the clock is not yet running and nothing is being written into the memory register. The clock is started and programming begins automatically merely by activating the paddle. During the write sequence, the clock operates in a "semi-synchronous" mode: while keying normally with the paddle, operation is fully synchronous; if character generation ceases, the clock continues to run asynchronously through the remainder of the message capacity, and logic zeroes are programmed to erase any previously stored message.

The red cycle indicator begins blinking when 87.5% of the memory has been programmed and returns to steady red at the end of the programmable capacity; this reminds you to place S5 to the read position before initiating a readout sequence with S2, or again activating the paddle before a new memory register is selected by S6. Otherwise, the message contents just programmed might be erased.

With S5 in the write position, the write pulse generator is activated. The binary address generator "advance" pulses toggle the BAG on the leading edge of each positive-going pulse, while each trailing (falling) edge triggers the write pulse generator to provide the negative-going write pulse to the memory array. Thus, correct timing occurs for accurate memory cell selection and for writing into the selected cell the logic level that appears on the data-in line (keyer output) at the instant of the write pulse. S1 and S5 are independent, so the keyer may be programmed on the air (S1 in transmit mode) or off the air (S1 in edit mode).

power supply

Although the Intel P2102 has nondestructive memory readout (stored information is not lost during readout), loss of power to the memory chip causes loss of the entire stored information (the memory chip is volatile). To keep Murphy and his despicable laws out of the memory, a no-break trickle-charged nicad supply is recommended. Such a charger will preserve keyer memory contents for about 2 to 3 hours, which will eliminate reprogramming when your Field-Day generator runs out of gas. Completely discharged nicads will be recharged in about 20 hours.

remote operating control

Provisions can be made on the rear panel of the contest keyer to accommodate a remote operating control which can be conveniently placed next to your paddle or bug.* The remote unit controls those keyer readout functions which are most necessary during a contest: message selection, message start, message repeat, and message reset. Depressing any one of the four message select pushbuttons automatically selects that message, resets the memory to the message beginning and starts message readout. Since message selection is

* *Schematic diagrams for the power supply and remote-control unit will be sent to interested readers upon receipt of a stamped, self-addressed envelope.*
independent of the last message sent, successive selections of the same message immediately repeats that message from its beginning. A separate reset pushbutton is included to immediately stop the readout sequence.

The remote cabinet selected (LMB CR-531) is approximately 1x3x5 inches (2.5x7.5x1.3cm) and houses the five pushbuttons, the printed-circuit board and four optional panel lights which indicate the selected message. Connection to the keyer is made by a plug-in, shielded, 8-conductor cable. All power for the remote is derived from the keyer, and removal of the remote cable from the keyer does not affect keyer operation.

construction
Panel clutter was avoided by automating as many memory-control functions as possible. Most-used controls are on the front panel; others are mounted on the rear of the keyer. An LMB CO-3 enclosure was used. The circuit is mounted on three PC boards: one for the basic iambic keyer, output keying, and sidetone oscillator; one for all memory functions; and one for the power supply.

If desired, the keyer may be built without the memory board and used as a conventional iambic keyer and the memory may be added later. No keyer-board changes will be required and only four wires need be interconnected between keyer and memory board. The PC-board layout allows all memory-board wires and connections to be added without removing either keyer board or power supply from the cabinet.

A high degree of rf immunity is achieved by a) using TTL instead of CMOS devices, b) providing rf bypassing on all paddle and keying leads, and c) providing a grounding bond between cabinet sections. The keyer has been successfully kilowatt tested at a 3:1 vswr from 80 through 10 meters.

summary
The trade between performance, cost and circuit simplicity is sometimes difficult. For this project it was decided to opt for a capacity of four 512-bit messages and gain the advantages of paddle-programming and fully-synchronous operation at the expense of increased circuit complexity. This decision has been proved by the keyer’s flexible, reliable, and unconfusing operation. This keyer has been a most useful operating aid both at home and in the field under generator power (thanks to the nicads). I’d like to thank the members of the Potomac Valley Radio Club for their constructive comments, suggestions and support.

reference
When you buy Heathkit Ham gear, you continue a tradition established by thousands of Hams the world over. You get fine performing equipment that is designed for you to build, so you learn about your hobby as you contribute to it. And you save money in the process.

Best of all, you're dealing with a company whose reputation for fairness, honesty and outstanding customer satisfaction is the envy of the industry. When we say "We won't let you fail", we mean it! From the extensive troubleshooting and service guides in each of our manuals, to our technical consultant service, we strive to provide quality Ham products that perform better than any ready-mades. And the pride and satisfaction you get when you put it together yourself is a "built-in" bonus with every Heathkit product.

See the exciting line of Heathkit Ham Gear in our bright, new Spring Catalog! Mail postcard or coupon today!

Heath Company, Dept. 122-16
Benton Harbor, Michigan 49022

Over 400 easy-to-build kits including:
- Amateur, CB and SWL radio
- Stereo and Hi-Fi Components
- Test Equipment
- R/C Gear
- Marine, Aircraft, Automotive Accessories
- Color TV

FREE Heathkit Spring '76 Catalog. Send for it today.

Please send me my FREE Heathkit Catalog

Address:__________________________
Name:___________________________
City________________________State_______Zip_________

AM-329
design ideas for miniature communications receivers

A collection of miniaturized receiver circuits including the Minicom Mk III, a five-band converter, an 80-meter tuner and two complete i-f and audio systems.

I wrote my first article for an amateur publication in 1971. Writing was something I had always wanted to do but until then I had never gotten up enough courage to try it. After several weeks of writing, rewriting and drawing circuit diagrams, I felt I had something that might be accepted by the editor. When it was finally published I discovered what the real rewards were: letters came in from all over the country and from many DX locations. I not only had a great time answering all these people and swapping ideas with them, I made many new friends with whom I still correspond.

Of all the articles I've written since then, only my most recent one generated as much enthusiastic response as the first. Both of these articles discussed receivers and miniaturization; evidently this is a favorite topic with the majority of readers. If you found the Minicom interesting, read on.

The original Minicom packed a lot of performance into a small package, but even before the article had been published a new version was on my workbench. It packed even more performance into the same space and was called the Mk II. If you were among those who

Ray Megirian, K4DHC, Box 580, Deerfield Beach, Florida 33441
wrote to me regarding parts for the Minicom, you already know about the Mk II as an information package was made available to interested builders. Since then the Mk III has been devised and will be discussed here along with several other useful assemblies for ssb/CW receiver construction.

Minicom Mk III

My particular use for the Minicom has been as a tunable i-f for use with an external converter for all-band coverage up to 30 MHz. Several such converters have been built in very compact form so that, when teamed up with the Minicom assembly, it results in a very diminutive multi-band communications receiver.

Development of the Mk III receiver was undertaken for several reasons. First, I was interested to see if the receiver could be made smaller without resorting to techniques that would be impossible to duplicate. I also wanted to determine the feasibility of substituting varactor tuning for the three-gang tuning capacitor. If successful, the latter would not only eliminate a major hard-to-find component, it would make miniaturization a reality.

Some time ago Motorola announced their MVAM-1 triple tuning diode and it was this item that encouraged me to go ahead with my investigation of an electronically-tuned Minicom. Although designed for tuning a broadcast-band receiver, a study of the MVAM-1 data sheet led me to believe that diode Q...
Fig. 4. Five-band converter for use with the Mk III communications receiver. In this design the 25-MHz crystal is used for both 10 and 15 meters. Complete coverage of the 10-meter band requires additional crystals. Inductors L1 and L2 are wound on 0.215” (5.5mm) diameter PC-mount coil forms with Carbonyl-E (red) cores. Molded rf chokes are used at L3.

Interior of the smaller receiver. The Mk III board assembly is mounted on standoffs to the sub-chassis (top). The converter is in the foreground and the power supply is on the rear panel.

would be high enough at 4 MHz to produce a pretty good receiver. The final results achieved with a breadboard receiver were quite satisfactory and led to the layout shown here. The board is 2.5 inches (65mm) wide by 3-7/8 inches (100mm) long. The Mk II is 3.75 inches (95mm) square. The schematic of fig. 1 shows the circuitry for the receiver which tunes from 3.5 to 4.0 MHz using approximately 80 percent of the tuning pot rotation. Tracking is good within these limits but starts to deteriorate at the extreme ends of the resistance element.

One big advantage of the diode tuning system is mounting flexibility. Since tuning is accomplished with a potentialmeter at the end of a three-wire cable, the receiver may be mounted anywhere in the cabinet without worrying about exact positioning or shaft alignment.

To make tuning easier, some sort of reduction drive is needed, just as with conventional tuning systems. Perhaps the reduction drives that are the easiest to find are the small Japanese vernier dials which have better than 7:1 reduction. The built-in stops which limit travel to 180 degrees can be eliminated by snipping off the stop pin, thus allowing continuous rotation.

Except for the mixer, which uses a Silicon General SG3402T IC, the circuitry of the Mk III is quite conventional. Good results with this mixer were achieved in the Mk II so it was used in the Mk III as well. The LM373H once again does a commendable job in the i-f section where two Murata SFD-455D ceramic filters provide selectivity. An LM380 replaces the MC1454 in the audio portion, adding the advantages of electrical and thermal overload protection. The bfo remains unchanged.

diode tuning

A few words about the MVAM-1 might be worthwhile at this point since that’s what the Mk III receiver is all about. The three diodes are wired with a common cathode lead and housed in a tiny four-pin plastic package. Typical capacitance at 1.0 volt reverse bias (Vr) and f = 1.0 MHz is 480 pF. The capacitance ratio is 15 (minimum) for reverse bias between 1 and 25 Vdc. The three diodes are matched within ±1.5 percent over the entire capacitance vs voltage range.
curve. Typical Q at \(V_R = 1.0 \) Vdc and \(f = 1.0 \) MHz is more than 500.

Because of the large capacitance rating of these diodes, it was possible to change the vfo configuration to a more drift-free design. This new vfo circuit drifts very little; so long as the receiver is operated in a relatively stable temperature environment, drift is practically nonexistent. The diode capacitance temperature coefficient could be a problem, however, if the receiver were operated under widely varying ambient temperature conditions. The diode capacitance temperature coefficient given in the data sheet is typically 435 ppm/°C at \(V_R = 1.0 \) Vdc and \(f = 1.0 \) MHz.

Another consideration requiring strict attention with diode tuning is voltage regulation. It stands to reason that, since the diodes are voltage-controlled devices, the source of control voltage must retain a high degree of stability. A simple zener diode is far from satisfactory in this application so an IC voltage regulator (MFC6030) was included on the circuit board to provide the needed regulation. With the values shown in fig. 1 the output is around 7 volts and the minimum input voltage to maintain regulation is 10 volts. Spare terminals on the circuit board allow access to this regulated voltage for use with other external circuits, if needed. On the board the regulator supplies power to both the vfo and bfo besides providing a stable control voltage for tuning purposes.

Standard 455-kHz transistor i-f transformers were stripped and used for coil forms as in all previous models of the Minicom receiver. If you’ve forgotten how to strip these devices, refer to the original Minicom article for details. Any of the transformers (white, yellow or black core) may be used for the bfo transformer after one simple modification. Unsolder the secondary (link) leads from the base pins and gently break off the wires where they disappear into the bobbin. Substitute a single-turn link wound over the existing coils using a piece of salvaged wire from the rf coils (see fig. 2). This change assures proper bfo injection level for the LM373.

multi-band converter

A suitable mechanical design for the converter proved to be the most difficult problem of all to solve. After numerous attempts it looked as if the converter would occupy as much space as the Minicom; this put a big dent in my miniaturization program. I finally solved the problem by using three separate circuit boards instead of one. The heart of the assembly is the bandswitch, around which everything else is built. The miniature bandswitch was a surplus item originally manufactured by Oak and has seven 1-inch (25mm) wafers, six of which were single pole, eight position devices. The seventh wafer had a weird switching arrangement which was of no use. Since only five poles were needed, this last deck plus one of the others were removed. The added space was taken up by two of the circuit boards and some suitable spacers. A shield was also installed between sections.

Unfortunately, these surplus switches were a one-time deal and I don’t know...
new tuners or front ends. At other times this sectionalized construction technique is the only one which will allow cramming everything into the available space. In either case, one of these i-f modules may be just what you need.

An inspection of the schematic in fig. 5 reveals that the circuit is identical to that used in the second half of the MK III. An LM373H IC with two Murata SFD-455D ceramic filters fulfills the requirements for i-f amplifier, detector and agc functions. The bfo is identical to the Mk III as is the LM380 used for the audio amplifier.

If desired, a noise blanker may be included ahead of the i-f input by making the circuit board slightly longer. In either case, the board is 1.75 inches (45mm) wide with a length of 3-3/8 inches (86mm) for the simple version and 4-5/8 inches (117mm) with the noise blanker.

The circuit for the noise blanker is similar to one used in a commercial Japanese two-meter ssb transceiver. A reader in West Germany, Earl Lagergren, sent me the circuit after reading my article on a solid-state noise blanker. Since this noise blanker circuit requires no special components and works at various i-f frequencies, I've included it here as a worthwhile addition to your potpourri of receiver circuits.

One of the complete receivers shown in the photos uses this tuner, the four-band converter and an i-f and audio system (described later). It is identical to the rf and mixer stages of the Mk II which some of you are familiar with.
The three-gang tuning capacitor is the same as that used in the original Minicom receiver. The two 22 pF padding capacitors for the rf and mixer tank circuits are mounted directly on the variable capacitor before it is installed on the board. These two sections also have built-in mica trimmers for tracking adjustment.

An extra stage of i-f was included on the tuner board to overcome the insertion loss of the ladder filter. A SG3402T IC is used in the mixer section; pin 6 must be removed before mounting the IC on the circuit board.

i-f and audio system

Some time ago I wrote an article describing a complete audio system for use in a communications receiver. This system consisted of a tunable filter, an audio agc system and a power output stage and drew pretty good response from readers. In the version shown in fig. 11 the i-f stages have been included along with the compressor and tunable audio filter. The notch function, however, has been deleted and the circuit has been modified for single supply operation.

In this circuit two op amps are used in the compressor and two more in the filter. Dual type N558V units were used and any of the equivalents from other manufacturers may be substituted. An LM380 is once again used for the audio output stage. The i-f portion is the same as all previous LM373 configurations except for the SFD-455D filters. Since I used this assembly in conjunction with the tuner which incorporates the ladder filter, the other units were not required.

The trimmer resistor in the audio filter may be very simply adjusted for proper operation. First set the trimmer for maximum resistance by turning the adjusting screw counter-clockwise. Then turn the frequency control to the high end and set bandwidth to sharp. Hold your ears, turn on the power and flip the filter switch to in. The filter should take off with ear-shattering feedback. Start turning the resistance trimmer clockwise until oscillation ceases (add an additional half turn for good measure). Throw the filter switch back and forth a few times to see how stable things are and adjust the trimmer some...
more if needed. The tuning range of the filter should cover from about 500 to 2000 Hz.

It should be pointed out that caution must be used when coupling into this assembly. Note that the i-f input goes directly to pin 2 of the LM373. A dc path must be avoided at this point to prevent damaging the LM373. When used with the 80-meter tuner described above, a coupling capacitor is provided on the tuner board to prevent shorting pin 2 to ground.

Printed-circuit layouts are provided here for all modules except the converter. This should make it easy to duplicate any of the assemblies. The main goal of this article, however, was to present the widest selection of proven and reliable circuits as possible in a single package so that the greatest number of readers could make use of at least one of them. There is nothing sacred about any of the circuits so if you feel like sneaking a piece from one and adding it to another, it will give you a chance to practice your skill at laying out new circuit boards.

No tuning or adjustment procedures will be covered since it is assumed that the cabinet is 3 x 5 x 6 inches (76 x 127 x 152 mm). The larger receiver uses the tuner, converter and i-f, audio filter and compressor board described above. It also has a built-in ac supply. Cabinet size is 3 x 6 x 7 inches (76 x 152 x 178 mm).

All of the circuits operate from 12-volt supplies and function well down to 9 volts or up to about 14 volts. The Mk III, however, includes a regulator requiring a minimum of 10 volts for proper operation. The copper border around all the circuit boards is the common or supply negative and should be grounded.

With the exception of the board containing the audio filter, the only external components are operating controls. In the case of the audio filter a resistor and capacitor are wired point to point between the front-panel controls.

fig. 11. Combined i-f, audio compressor, tunable audio filter and audio output system. Printed-circuit layout is shown in fig. 12.
This saves the extra leads that would be required for going back and forth from the board for these two items.

Before concluding, I should say something regarding parts. Some substitution is possible since there is nothing special about a 2N5227, a 2N3819 or a 2N5223. The 40673 and 40841 can be interchanged but not with the Signetics SD304. The silver mica capacitors should be small case sizes in most instances to fit the PC layouts. The ceramic bypass and coupling capacitors should be small, low-voltage discs. These, as well as 1/4-watt resistors, are readily available and should present no procurement problems.

If you are interested in purchasing some of the more elusive components such as ICs, filters or whatever, drop me a line with a self-addressed, stamped envelope and advise what and how many you need. If there is sufficient demand for particular items, I'll try to obtain what is needed.

references

missent ID

During intruder watching and observation of amateur signals, I’ve noticed a considerable number of RTTY transmissions that have ended with an inaccurately sent identification. In some cases, these IDs were repeated in the same incorrect manner on a later transmission. In one occurrence the signature was “W6MTM,” but W6MTM doesn’t have RTTY equipment. I recorded the audio signal on the mark side, then ran off an ink-line tape that clearly showed the five-letter call sign but with more than normal spacing between letters.

It appears that a local station had some rf getting into an IC identifier, causing problems. The operator bypassed the leads to the identification unit, which cleared up the problem. It would be well for anyone using an IC device to send his call and get help to listen to the resulting ID. It should be sent on full power and on every band on which the device is used. Only in that way can one be sure that the call always is sent correctly.

Bill Conklin, K6KA

simple circuit replaces jack patch panel

Shown in fig. 1 is my solution to the ever-present phone jack patch panel used in amateur RTTY stations. I became tired of the conventional panel with cords breaking, so after a little thought, I developed this circuit. The diodes provide the necessary isolation to allow the switch to select the loop desired for a particular piece of equipment.

Dr. Paul Lilly, K4STE

fig. 1. Simple jack patch panel replacement for RTTY stations. Diodes CR1-CR4 provide the necessary isolation. RTTY equipment (printer, keyboard, etc.) is connected to A terminals.
circuit design with the 741 op amp

The inexpensive 741 op amp IC is finding extensive application in electronics — here are some tips for using this versatile device in your own circuits.

For several good reasons, the 741 operational amplifier is enjoying wide popularity among amateur circuit designers. It is inexpensive and readily available; several mail-order supply houses are currently selling them for about 35 cents each. The 741 requires no external frequency-compensation networks, and this significantly enhances the ease with which it may be used in circuit development. However, there are several facts about 741s which, if known and understood, can minimize surprises and make their use more predictable.

Those unfamiliar with op-amp theory are referred to a rather extensive article that previously appeared in Ham Radio. That article covers general op-amp circuit design criteria as well as several specific applications. I will attempt here to concentrate on the peculiarities of the 741 and not duplicate material already presented.

![Fig. 1. Schematic symbol for the 741 op amp showing power supply and null pot connections. Connections to popular 8-lead minidip package are also shown.](image)

The 741 op amp is available in several different packages, but the TO-5 metal can, much like a transistor with eight leads, and the plastic eight-pin minidip package seem to be the most popular. I prefer the minidip because it easily plugs into a dual-inline IC socket. Two 741s can be inserted in a 16-pin IC socket.

Fig. 1 shows the schematic symbol for the 741 op amp with appropriate power supply and null pot circuitry. The null pot is used to set the dc output voltage to zero in certain situations; however, in many circuits it's not necessary to use a null pot. When the null pot isn't needed, just leave pins 1 and 5 open. Fig. 1 also shows the pin numbering and identification for the 741 minidip when viewed from the top. Either a notch at one end of the package, or a dot in one corner are used to index the pin numbers. The +V and -V pins are for power supply connections.

The maximum rated power supply voltages for the commercial version of the 741 are plus and minus 18 volts, but lower voltages may be used. Two 9-volt batteries will do nicely, but higher supply voltages will permit a larger output signal swing. Current drain will depend on load resistance and output signal amplitude, because the output circuit of the 741 is a class B complementary emitter follower. Under zero-signal conditions,

By Courtney Hall, WABSNZ, 7716 La Verdura Drive Dallas, Texas
however, the quiescent power supply current should be about 1 mA or less.

dc offset problems

Since the 741 is a dc amplifier, any dc voltage which exists between the two input terminals will be multiplied by the gain of the amplifier and can result in a large dc offset at the amplifier's output. This offset prevents maximum linear output signal swing. In some cases, the dc offset can force the output to its limit, and no signal will appear at the output.

The two input terminals of the 741 are connected internally to the two base leads of a bipolar transistor differential amplifier, fig. 2. Therefore, some transistor base biasing current must flow through each input terminal of the 741. This input bias current can be as high as 0.5 μA in the 741, but may be typically 0.1 μA or less. Ideally, the two input bias currents should be equal, but due to differences in transistors, they may differ by as much as 0.02 to 0.2 μA. This difference in input bias current is called input offset current.

To see how this input bias current can effect output offset voltage, consider the circuit of fig. 3. This amplifier is designed to have a voltage gain of 100 and an input resistance of 470k. Power supply and null circuits are omitted for clarity. Suppose the input bias current for both input terminals is 0.1 μA. The voltage drop across the 470k resistor connected to pin 3 will be 47 mV. At pin 2, however, most of the input bias current will flow through the 100 ohm resistor, because that is the path of least resistance. The voltage drop caused by 0.1 μA flowing through 100 ohms is only 10 μV, so the input bias current flowing through these resistors produces a dc voltage difference between pins 2 and 3 of nearly 47 mV. Since the gain of the amplifier is 100, the dc output level of the 741 will be 100 times 47 mV, or 4.7 volts under no-signal conditions. This is hardly a desirable situation.

The offset null adjustment pot (shown in fig. 1) can only compensate for about 15 mV, typically, of input offset, so it would be unable to correct for the 47 mV offset and bring the output level of the 741 back to zero.

To avoid such problems as this, it is good practice to arrange the circuitry so that each input terminal of the 741 sees approximately the same amount of resistance; this will minimize input offset due to input bias current.
Fig. 4 shows how a resistor may be added to accomplish this. With this circuit, the dc output level may be zeroed with the null pot, and voltage gain is still 100. Keeping all input resistors as small as possible also helps to reduce input offset, but when a high input resistance amplifier is needed, this is not feasible. In calculating the resistance that each input terminal sees, find the equivalent resistance that all the resistors connected to that input terminal would have if they were connected in parallel.

Another approach to the dc offset problem is to reduce the dc gain of the amplifier to unity while maintaining the ac gain at 100. Fig. 5 shows how to do this. Here the dc input offset due to input bias currents of 0.1 μA is 46 mV, but the dc gain of the amplifier is unity, so this will result in only 46 mV offset at the output. Such a small dc output level is insignificant in many cases, and the null pot would be omitted. The 5 μF capacitor should be a non-polarized type. Its value was selected to have a reactance of 100 ohms at 300 Hz, to produce a lower 3 dB cutoff point for the amplifier at this frequency.

bandwidth and slew rate

Fig. 6 shows a typical plot of the 741's open-loop voltage gain vs frequency. According to this graph, if you designed the feedback network so the op amp had a gain of one, the bandwidth would be 1 MHz. For a gain of 10, the bandwidth would be 100 kHz; with a gain of 100, the bandwidth would be 10 kHz, and so on. That's all well and good, but it's not the whole story when considering gain vs bandwidth tradeoffs.

Slew rate is another parameter of the 741 which requires consideration at the higher frequencies. It is a measure of how fast the output voltage can change; for the 741 it is typically 0.5 volt-per-microsecond. This means that if you design a 741 op amp circuit to have a voltage gain of one, its bandwidth will effectively be 1 MHz only if the signal level is kept small enough to comply with the slew rate limitation. Suppose you feed a 5-volt p-p sine wave signal into this gain-of-one amplifier and start increasing the frequency. At low frequencies, the output voltage would be 5 volts p-p, but by the time you get to 1 MHz, the output would be down to the order of 0.25 volt p-p. This is quite a drop with the input still at 5 volts p-p. Thus the bandwidth is effectively much less than 1 MHz, even though the gain is only one. Moreover, the apparent bandwidth will be a function of how large a signal you use to measure the bandwidth!

Fig. 7 shows a typical curve of 741 output voltage swing as a function of frequency. Below 10 kHz, output swing is determined by power supply voltage; above 10 kHz, however, output voltage swing falls off rapidly due to slew rate limitations.

Of course, slew rate directly controls rise and fall time in non-linear applications. If the power supply is two 9-volt batteries, then the output of a 741 would typically be able to swing between -7 and +7 volts. At a slew rate of 0.5 volt-per-microsecond, it would take 28 microseconds to rise or fall between these two levels.

Simple audio amplification is the most obvious use for 741 op amps, and reference 1 covers most of the other applications which come to mind. Fig. 8 shows how simple gain blocks can be cascaded to provide any desired amount of gain. In order to obtain a 10 kHz bandwidth for each 741 op amp, its gain is set at 100, which is equivalent to 40 dB. When two amplifiers hav-
fig. 8. In this circuit two 741 op amps have been cascaded to provide 80 dB of audio gain with bandwidth of about 300 Hz to 6 kHz.

When 10 kHz bandwidth are cascaded, the overall bandwidth drops to about 6.4 kHz; bandwidth of three stages would be 5.1 kHz. Null pots are not used as the dc output of each amplifier is typically less than 1.0 volt. Capacitor coupling should be used between each stage, however, to prevent the dc offset of the first amplifier from being amplified by the second.

If volume requirements are not too great, 741 op amps will drive a speaker at a comfortable room level. Fig. 9 shows a simple means of matching the output of the 741 to an 8-ohm speaker. If the peak-to-peak audio swing at the output of the 741 is 12 volts, the power into the primary of the output transformer will be about 36 mW. With larger, more efficient speakers, this is adequate for many applications. The 1.0 μF output coupling capacitor provides low-frequency cutoff of about 300 Hz. This capacitor should be a non-polarized type.

conclusions

One ground rule for using 741 op amps is to make both input terminals see the same amount of dc resistance. Another is that audio bandwidths for voice communication require that each 741 op amp stage have a gain not much more than 40 dB. Also, don’t expect much output signal swing above 10 to 30 kHz.

fig. 9. Method of coupling a 741 op amp to a speaker for applications where moderate speaker volume is required.

The 741 op amp is inexpensive, readily available, and easy to use, but, like everything else, it has its limitations. Knowing these limitations will help you decide when and where to use it.

reference

SWR-1 guards against power loss for $21.95*

If you’re not pumping out all the power you’re paying for, our little SWR-1 combination power meter and SWR bridge will tell you so. You read forward and reflected power simultaneously, up to 1000 watts RF and 1:1 to infinity VSWR at 3.5 to 150 MHz.

Got it all tuned up? Keep it that way with SWR-1. You can leave it right in your antenna circuit.

SWAN ELECTRONICS
305 Airport Road, Oceanside, CA 92054
(714) 757-7525

*FOB Oceanside, California
corner-fed loop antenna for low-frequency dx

Design data for a triangular loop antenna covering 80 through 10 meters

For those amateurs who can't erect a beam antenna for one reason or another, a triangular-shaped wire antenna provides a fair compromise. On these pages you'll find details of such an antenna that has given a good account of itself on all the high-frequency bands. It requires little more space than an inverted vee. However, the antenna does require some means of support that is at least 70 feet (21.3m) high. Advantages of the antenna are:

A. Feedline can be coax cable, TV twin lead, or open wire line.
B. Only one support is needed.
C. Vertical radiation angle seems to be quite low, which is needed for DX work.
D. Results on all bands (except 160 meters) appear to be better for long-haul DX than with the sloping dipole, or inverted vee, which is band limited.

triangular antennas

Several triangular wire antennas have been described. These are single-band antennas that are variations of the full-wavelength loop. Such antennas, when mounted vertically and excited at the center with second and other even-harmonic energy, radiate straight up -- not the best for DX work.

G3AQC conducted tests of loop antennas close to ground using vhf modeling techniques. He found that full-wave quad and delta loops mounted in the vertical plane with their highest points one-quarter wavelength above the ground, fed symmetrically with the feed point halfway along the base or at the apex, produced high-angle, horizontally polarized radiation and showed little superiority over a simple dipole or inverted vee at one-quarter wavelength height. These configurations are shown in fig. 1.

If a delta loop is inverted so that it has a flat top and its apex points down, as in fig. 2, a low-angle, vertically polarized lobe appears, which is omnidirectional in the horizontal plane. G3AQC gives details of a practical antenna of this type, which is said to perform well on all bands from 80 to 10 meters and to have a radiation resistance of around 200 ohms.

corner-fed loop

Even more interesting is the result obtained when a delta loop is fed at one end of the horizontal section, as

By Barry Kirkwood, ZL1BN, 11 Bromley Place, Auckland 6, New Zealand
fig. 1. Full-wave loops close to ground. Radiation pattern is little different from a dipole at 1/2 wavelength above ground.

In fig. 3. In this case the horizontally polarized radiation is suppressed. The signal is concentrated into low-angle, vertically polarized radiation. The radiation patterns are much the same for both upright and inverted loops; hence the upright delta loop seemed to be the configuration of choice since it required only a single supporting mast.

G3AQC gave no information on the performance of such an antenna on harmonic frequencies. Since the configuration looked attractive, I decided to try such a loop (270 feet, or 82.3m overall) as an all-band antenna.

A triangular 275-foot (83.6m) loop of insulated hookup wire was erected with the apex at 70 feet (21.3m), and the corners of the base were suspended by insulated cords to nearby trees at 15 feet (4.6m). The droop of the base section was within 10 feet (3m) of ground level at the lowest point, which was directly below the apex. Using a simple r-f bridge, the length of wire in the loop was adjusted for resonance slightly above 3.5 MHz, where the radiation resistance was 65 ohms. On the second harmonic (resonance in the 7-MHz band), radiation resistance was about 200 ohms and increased slightly on the higher bands, approaching 300 ohms on 28 MHz.

feed system

The antenna was fed with 300-ohm line. An antenna coupler of the Z-Match type was used to couple the line to the transmitter, as in fig. 4. The side of the line connected to the base of the antenna loop was grounded at the antenna tuner, mainly for lightning protection. (Little or no discernible change occurred in loading or performance on transmit or receive with the ground connection on or off.)

G3AQC states that this antenna is fundamentally unbalanced. If it is fed with coax line, the braid should be attached to the horizontal leg of the antenna.

The antenna can be fed with coaxial cable, twin lead, or open-wire line with minimal loss and moderate impedances occurring at the transmitter end of the line. An antenna coupler is recommended, not only for improved efficiency and harmonic reduction but to prevent out-of-band signals from overloading the receiver.

evaluation

Antenna evaluation is difficult because of the variables involved. The task is even more difficult because of the patchy band conditions that have prevailed since the loop was erected. The antenna is located on a typical suburban site, which is cluttered with buildings, small trees, and power lines. A low ridge is between my station and the major DX propagation paths: northwest to Europe and northeast to North America. Comparative results with other amateurs in Auckland when using other antennas at ZL1BN indicate that the location is only fair for DX on these paths, although it is quite good on the long path to Europe. The antenna is oriented along a line 110-290 degrees true, which puts it end-on to Rome and Lima and broadside to Alaska and South Africa.
On 80 meters, DX seems at least as good as with an inverted vee at the same apex height. Too few DX openings have occurred to evaluate directivity, although theoretically directivity should be almost omnidirectional on the long haul. At intermediate ranges, out to about 3000 miles (4800 km) the loop is clearly superior to anything ever used at this station.

On 40 meters performance appears superior to a ground plane used previously. Exceptionally good reports have been received both from Europe and the USA, especially under marginal conditions, which indicates that low angle propagation exists both broadside and end-on on this band.

Reports from South America have been good, but it’s possible that radiation is better in the direction away from the point of connection of the feedline. Signal strengths from the loop run about 3 dB below antennas of nearby amateurs using Yagis at 40 to 60 feet (12-18m) above ground. Signals are weaker broadside to the plane of the antenna. The answer might be to suspend a bisquare array or quad loop for 20 meters in the plane of the big loop. This combination could give good coverage on 20 meters and would be inexpensive and easy to install.

Poor band conditions have prevented an adequate evaluation of performance on 21 and 28 MHz. The relatively few contacts made indicate that the pattern is similar to that on 14 MHz with broad lobes off the ends of the loop and nulls on the sides.

No attempt has been made to try the loop on 160 meters. If the loop were opened opposite the feed point, it would resonate as a dipole on that band, but results would not be good, since the current point would be close to the ground. It might be better to open the horizontal leg of the loop so that the current point would be at the apex, and the other side of the feeder could be connected to a radial or counterpoise ground, as shown in fig. 5.

Another possibility might be to feed the lower geometric center with a single wire and work it against ground (fig. 6). According to Krause a half-wave loop fed in this way should show true resonance as a vertical quarter-wave antenna against ground without loading coils. All such experiments can be carried out at ground level.

references

Alpha Power—Linears designed for toughest amateur and commercial service
Alpha Power—Continuous duty at full ratings, even on FSK and SSTV
Alpha Power—Modern design for unequalled operating ease and versatility
Alpha Power—Contest-rugged, self-contained desk-top convenience
Alpha Power—An investment in long-term performance and enjoyment
... that's Alpha Power!
Choose one of these superb Alphas to match your interest and budget...

THE ULTIMATE—ALPHA 77D

- Extra robust, super deluxe
- 160 through 10 meter coverage
- 8877 Eimac ceramic triode
- Vacuum tuning & T/R relays
- Full break-in (QSK) system
- Whisper-quiet cooling

NO-TUNE-UP—ALPHA 374

- Bandpass and manual tuning
- 80 through 10 meters
- Maximum legal SSB power
- Full average KW DC, all modes
- 8874 Eimac ceramic triodes
- One cubic foot, 52 lbs.
- User-proven dependability

PRACTICAL POWER—ALPHA 76

- 160 through 10 meters standard
- Two plus kilowatts PEP SSB
- Full average KW DC, all modes
- Two 8874 Eimac triodes
- Maximum performance per dollar

Call or write ETO for illustrated literature, price and delivery information. Commercial and military users are invited to contact the factory for details of models 74C, 76C, and 77S.
Once upon a time, in an era seen through an opaque veil of memory, there existed a Golden Age of amateur radio. Forged in the boom-and-bust year of 1929, the period ran until December 7, 1941, when amateur radio was closed down “for the duration”.

These dozen years encapsulated important technical developments that form the basis of amateur radio today. The period opened with the demise of the battery-operated radio and closed with amateur radio into the developmental stages of vhf fm techniques, single sideband, double-conversion receivers and high-gain beam antennas. It was a period of confusion and technical advancement, with the shadows of the great depression and the coming World War always in the background.

It was during the Golden Years that the amateur population of the United States exploded (fig. 1). The number of amateurs jumped from 16,829 in 1929 to 54,502 in 1941, the greatest growth being in the years between 1929 and 1934. Before 1929, the American public was bemused by radio broadcasting, which reached the proportions of a craze. New radio stations were coming on the air daily, battery receivers and do-it-yourself kits were popular, and the general public adopted the new sport of radio listening much in the manner of later fads such as miniature golf and the hula hoop. However, by 1929 the broadcast craze was over. The battery radio had given way to the ac operated receiver, which was rapidly becoming a piece of household furniture instead of a seven-day wonder, and commercial broadcasting was a way of life. Until then amateur radio had been overshadowed in the public eye by broadcast listening (an immensely larger hobby) and had remained an esoteric retreat for a few dedicated individuals and eccentrics — a compact group shielded from the general public by their reticence, and by a widespread interest in broadcast reception.

Gradually the general public became aware of shortwave radio, due partly to the publicity given radio amateurs who pioneered the advance into the shorter wavelengths and led the way on long-distance, high-frequency communications. About the same time, international short-wave broadcasting was started by a few pioneering stations and the American public was thrilled to hear the sounds of Big Ben in London rebroadcast across the country via a transatlantic short-wave relay.

By Bill Orr, W6SAI, EIMAC Division of Varian, San Carlos, California 94070
At the depth of the great depression in 1932, with over one-third of the work force unemployed, young men with idle time on their hands discovered amateur radio and the exciting short waves. Almost overnight short-wave listening and amateur radio caught the public eye and boomed. Short-wave reception, a quick fad, was featured in weekly newspaper columns and the new radios of 1933, in their pristine cathedral-shaped cabinets, boasted at least one short-wave band on their multi-colored dials.

the radio amateur of 1930

The radio ham of 1930, probably unemployed, with little money and plenty of spare time, faced the serious problem of getting on the air at little or no cost to his flat wallet. His technical background was that of a high-school graduate, or a graduate of an electrical correspondence or trade school. Only a small percentage of amateurs were college engineering graduates. Many of the older radio amateurs, of course, worked in the radio industry or in broadcasting, but the just-licensed amateur did not seem to follow the pattern set by his elders.

The task of assembling a ham station was formidable. While many radio stores existed — many more than today — credit was unknown and all purchases were for cash. The price of components and equipment was staggeringly high considering the state of the economy. A high school graduate would be pleased to get a job paying $5 a week for 50 hours of work, and radio technicians, on the average, earned from $20 to $30 a week. Most radio components and tubes, however, cost more in 1930 than their modern counterparts do today! It was not until about 1934, when the radio industry geared up for large scale production of inexpensive household radios, that the cost of components dropped sharply.

Nevertheless, the newcomer was not without sources of radio parts. He scrounged from his friends, haunted the dusty back room of the local radio repair shop for castaway battery receivers, and took an occasional trip to the “radio row” of the nearest big town. With a free, broken-down battery receiver, a few used tubes and a cheap B-eliminator power supply he was ready to build his station and get on the air. Many of today’s old timers remember this adventure well. This is the story of how it was done, and the results.

1930 beginner’s transmitter

The development of the amateur receiver will be discussed at a later date, but here we’ll concentrate on a representative beginner’s transmitter of the early 1930s. One or two basic circuits were widely popular at that time, circuits that were easy and inexpensive to build

![Graph showing the growth of amateur radio population from 1929 to 1934.](image1.png)

![Diagram of a series-fed Hartley oscillator.](image2.png)
and sure-fire in operation. Both were single tube, oscillator-style transmitters.

The transmitter was designed around available parts and a good starting point was the readily obtainable, defunct battery receiver of the late twenties. During the lean years of the early 1930s the great majority of amateurs worked CW with a power input of 50 watts or less.

One of the most popular transmitter circuits of the time that was passed hand-to-hand among the newer amateurs was the simple series-fed Hartley oscillator, a simple one-tube transmitter that worked well with many of the triode receiving tubes then available for a few cents (fig. 2). The whole transmitter used only one tube and eight parts including the tube socket! This rugged and reliable circuit used inductive feedback coupling between the grid and plate of the tube to sustain oscillation. A very high-C tuned tank circuit minimized the effect of capacitance changes and provided dynamic stability to the oscillator. The simple components were firmly screwed to a heavy board which was isolated from the operating table so that any vibration caused by manipulation of the key would not be imparted to the oscillator. When run from a power supply that had reasonably good regulation, and used with a taut antenna that did not swing in the wind, the little transmitter sounded as good (or better) than some of today’s more sophisticated equipment.

and many amateurs enjoyed operating with a power level of only 5 or 10 watts. With luck, then, a beginner could join this group and have a lot of fun. The old battery receiver could be torn down for parts, and it was easy to buy a second-hand B-eliminator power supply that, for a dollar or less, would provide about 180 volts at 40 milliamperes. That would suffice for a 5-watt transmitter and a lot of amateur stations all across the U.S. could be worked with that power and a good antenna!

For a few more dollars a 300-volt power supply could be assembled from junk parts to provide the amateur with a real transmitter — upwards of 20 watts input. The possibilities were limitless!
A recreation of the famous 1930s Hartley transmitter is shown in the photograph of fig. 3. Built in 1976 with hard-to-find 1930 components, this rig has been on the air and has been used to work a number of stations on 80-meter CW. Using a 245 triode at 300 volts and 50 milliamperes plate current (15 watts input), the transmitter puts out a solid 7 watts with good stability. The 245 was a popular tube because it could often be obtained free, for a few cents used, or as a manufacturer’s “second” for 39 cents.

A Cardwell receiving-type variable capacitor is used, and the tank coil is wound on a genuine bakelite form. The bypass capacitors are uncased mica units, rugged and reliable, but already going out of style as bakelite-cased capacitors came into vogue in 1930. Time to assemble and test the transmitter is about three hours, including giving the “breadboard” a coat of shellac.

The transmitter is keyed in the filament return circuit. Since no waveshaping is included, the keying is hard so the resultant waveform may distress a nearby amateur who is operating close to the frequency of the midget transmitter. Any attempt to include a keying filter should be approached with caution as softening of the keying tends to place a “yoop” on the signal. A slight amount of filtering, however, can be used to advantage without disturbing the crystal-like note of the transmitter.

The rf plate impedance of the 245 oscillator is about 3000 ohms. The L/C ratio of the plate tank circuit provides a Q of about 30. The circulating current in the tank circuit, therefore, runs about 6 amperes. The tank coil and leads to the variable capacitor are made with number-12 (2mm) wire to carry this amount of current. The oscillator runs well into the class-C region as the rms grid voltage is close to 140 volts. The μ of the 245 is 3.5 so a cutoff voltage of about 85 volts is required at a plate potential of 300 volts.

The simplest antenna for the little transmitter is a 66-foot (20m) end-fed Marconi, working against ground. A series-tuned circuit, consisting of a coil and capacitor (whose values are approximately the same as those in the main tank circuit) can be used. Alternatively, the same series-tuned circuit can be used to match into a coaxial feed system for a dipole or inverted-V antenna. At W6SAI, a simple 66-foot (20m) wire is used for contacts up and down the West Coast.

transmitter power supply

A bonanza existed for the penny-pinching 1930’s amateur in the flood of obsolete B-eliminator power supplies which were rendered useless by the advent of ac operated broadcast receivers. These units provided up to 180 volts dc at 30 to 50 milliamperes and were intended as a replacement for the messy and short-lived B-battery.

Reaching the market in quantity about 1926, the B-eliminator solved the rectifier problem by side-stepping the vacuum diode, going instead to a unique gas rectifier which required no filament. The B-H tube, designed and manufactured by the Raytheon Company was the answer, and multitudes of these tubes were available to the 1930 amateur for as little as five cents apiece in the storage bins on radio row (fig. 4).

The B-H tube operated on the principle of electron conduction in a gas. Basically, when a potential difference exists between two cool metallic surfaces separated by a gas, the few free electrons in the gas move toward the positive (anode) terminal at a rate which is depend-
The problem of building a gas rectifier tube that would work, and deliver reasonable life, was finally solved by a research team under the direction of Dr. Vannevar Bush at the Massachusetts Institute of Technology in 1924. A special, heat-treated alloy was used for two pin-point anodes, which were surrounded by the larger cathode (fig. 5). The "short-path principle" was used to provide a good insulating ring between the anodes and the cathode. This postulate states that a rarefied gas is an insulator between two areas in close proximity if other points exist in greater proximity. Thus, to provide a good insulating ring around the anodes and the cathode, the hat-shaped cathode was shaped so as to completely pass around the cathode supports to utilize the "short path" principle as an insulator. Since the discharge cannot pass between the areas in close proximity, only the points of the anodes are struck by the electrons, leaving the insulating material far enough away from the anode heat and the possible disintegrating effect of high temperature. A complete description of the BH tube appeared in the November, 1925, issue of QST.

A logical guess is that a patent problem existed in this area. Looking back, it appears that oxide-coated filaments were generally used by the Western Electric Company and thoriated tungsten filaments were used by RCA and their licensees. Since, by agreement, the Western Electric Company was not in the home-entertainment radio business, the possibility exists that the oxide-coated filament was denied RCA and one of the licensees (Raytheon) turned to the gas tube as the only alternative.

Regardless of the actual reasons, technical or otherwise, the first ac power supplies sold to the general public in large quantities used the Raytheon B-H tube and these, in turn, were obsoleted by the double diode, oxide-coated filament 280 rectifier tube which shortly became available through some mysterious inner workings of the infant entertainment electronics industry.

on the air

And so the amateur newcomer was finally on the air! The receiver, a two-stage job using a 201A detector and 201A audio amplifier, was also built from a defunct battery receiver and could be run from the same B-eliminator as the transmitter. An old automobile storage battery provided the filament power. Sometimes a pair of 199 tubes would be used in place of the 201As — then a no. 6 dry battery would suffice for filament power. With luck the whole station could be assembled for less than five dollars.

The results? Since most amateurs ran low power in those days, the 7-watt transmitter provided a good, workable signal. Looking back through old copies of QST reveals that many amateurs, with a transmitter of this type, worked hundreds of stations on 80 meters including contacts with Canada, Mexico and Alaska. Several W6 stations maintained schedules with New Zealand on 80 meters using 10-watt transmitters of this same general type. Some adventurous amateurs put the little Hartley transmitter on 40 and 20 meters and worked real DX, but the problem of drift and stability became onerous at those frequencies.

Building and operating a transmitter of this type is an adventure in itself: the search for authentic parts, the assembly and test, and on-the-air operation. When you tell a station you're working about the transmitter the usual reaction is one of amazement — amazement that such results can be obtained with such simple equipment. When you work an old-timer who remembers the little Hartley the reunion is dramatic and brings back a flood of memories.

So hats off and a silent salute to the beginning amateurs of yesterday, many of whom used the little Hartley, and many of whom are the engineers, innovators and industry leaders of today.

reference

KLM exclusive

2-way channel scan
plus 23 fixed channels

Now . . . continuous, sequential monitoring of your favorite four repeaters or fixed/mobile stations . . . safely conveniently . . . eyes on the road.

Four channel scanning both receive and transmit. A transmit control crystal, selected for simplex or repeater duplex as required, switches with each electronically-scanned position. Just flip the "manual" toggle and break in.

In addition . . . both Multi-11 and U-11 also give you 23 switchable, crystal controlled transmit and receive channels. Compare prices, operating features (many exclusive) of either transceiver with any other available. You'll find the KLM feature-per-dollar ratio very hard to beat.

- All solid-state . . . no tubes.
- Double conversion receiver.
- Two stage crystal filter.
- Two RF stages w/dual gate MOS FET.
- Fractional microvolt sensitivity.
- Sensitive squelch w/0.5uV threshold.
- RIT for receiver, ±5 kHz.
- Multi-function metering: Power out / "S" units. Also switchable to FM centering.

MULTI-11 TRANSCEIVER
Freq: 144-146MHz (or 146-148MHz)
Channels: 23, manually switchable, 4, auto-scan.
Freq control: Quartz crystals. External VFO or synthesizer input.
$325

MULTI-U-11
Freq: 420-452MHz (any 4MHz segment)
Channels: 23, manually switchable, 4, auto-scan.
Freq control: Quartz crystals. External VFO or synthesizer input.
$379

KLM electronics
17025 Laurel Road, Morgan Hill CA 95037 (408) 226-1780, (408) 779-7363

More Details? CHECK-OFF Page 110
low-noise two-meter preamp

There has been increased interest in weak-signal DX on 144-MHz recently, and some amateurs who have limited their vhf activity to fm for the past several years are rediscovering ssb activity on the lower sections of the band. Part of this renewed interest in vhf ssb is a result of the commercial multi-mode vhf rigs which are now available, and some is a direct spin-off from OSCAR. In any event, interest in vhf ssb and CW is growing, and in several parts of the country two-meter “activity” nights are being sponsored by local vhf groups to encourage ssb activity. (In the Northeast the two-meter activity night is on Monday evening, beginning about eight o’clock; calling frequencies are 144.110 and 145.010 MHz.)

While many two-meter operators are using modern solid-state converters, a great number have simply dusted off their old vacuum-tube converters and placed them back in service. Hence there is increased interest in low-noise preamplifiers. The two-meter mosfet preamp shown in fig. 1, which was presented at the New England ARRL Convention last fall by K2RTH, is a straightforward, easy-to-build design with a maximum noise figure of about 2 dB (1.7 dB typical). The complete preamplifier is built on a piece of copper-clad circuit board 4½ inches long by 2 inches wide (11.4 x 5.1cm). The transistor is mounted in a shield, also made from 1/16 inch thick circuit board, which is 1-3/4 inch (4.5cm) square. The preamp is assembled on the main board and all grounds are made by soldering directly to the copper foil (do not use ground lugs). All 470 pF bypass capacitors are also soldered directly to the copper foil with leads no more than 1/16 inch (1.5mm) long.

After the preamp is assembled and all circuit connections have been checked, connect 12 Vdc (maximum) and measure the current drain. It should be 9 to 11 mA. If higher than this, reduce the supply voltage slightly. If your low-voltage dc supply is not variable, you can install a resistor in series with the dc supply line (between C1 and and power supply) and adjust the resistance value for 9 to 11 mA total current drain.

Install the completed preamp in front of your two-meter converter and adjust the two 10 pF trimmers for maximum signal. Gain of the circuit should be about 18 dB and noise figure is 2 dB maximum, so it will really improve the performance of your receiving setup if you’re using an old tube-type preamp or converter. You can check the stability of the preamp by touching the transistor with your finger -- nothing should happen. If there’s any effect on the received signal when you touch the transistor, check for a bad bypass capacitor (or excessive capacitor lead length).

audio filters

As was pointed out to me recently by WA4KAC, the lowpass audio filter described by OD5CG in the January, 1974, issue of ham radio1 suffers from a loss of attenuation at frequencies beyond the frequency of “infinite” attenuation. This “hump” behavior is characteristic of m-derived filters.

Using the same number of inductors as the original (three), WA4KAC built the lowpass, pi-section filter shown in fig. 2 from the description given by W8YFB in the August, 1972, issue.2 In WA4KAC’s circuit a four-pole, double-throw switch provides the selection of two cutoff frequencies: 650 or 2000 Hz. The filter capacitors were matched to obtain the response shown in fig. 3. The use of two additional 1 μF capacitors for the CW section of the filter(W8YFB used only the two center 2 μF capacitors) results in a sharper cutoff in the CW position and less loss within the passband. With pi-section filters there is no loss of attenuation beyond the frequency of “infinite” attenuation — response continually decreases beyond the cutoff frequency. Cascading filters results in a sharper cutoff response.

OD5CG’s audio filter, however, has the advantages of using smaller values of capacitance and provides sharper frequency cutoff. His m-derived filter has an attenuation of 50 dB at 1.5 times the cutoff frequency (~3 dB point on the response curve), whereas the pi-section filter of fig. 2 has 50 dB attenuation at approximately 1.8 times

max gain of 18 dB and typical noise figure of 1.7 dB. L1 and L2 are each 3½ turns no. 18 (1.0mm) tinned, 3/8” (9.5mm) diameter, 1/2” (6.5mm) long, tapped 1 turn from cold end. Mosfet Q1, in order of preference, is a Mems54C, 3N159, 3N140 or 3N141. These are all unprotected dual-gate mosfets, so use care when handling them.
the cutoff frequency.

A very simple variable audio filter that can be used on both CW and ssb, submitted by KH6AQ, is shown in fig. 4. Although KH6AQ uses this filter with a tube-type audio power stage, a similar arrangement should be suitable for solid-state audio power stages.

dry cell life

Since the power provided by a dry cell is generated by a chemical reaction, and that reaction continues even when the battery is sitting on the shelf, dry cells begin losing power the moment they are produced. Furthermore, batteries discharge faster and faster as time goes on, and the warmer the storage temperature, the shorter the shelf life. Although D-size batteries shouldn’t lose more than about 15 per cent of their capacity during the first year after manufacture, smaller batteries (such as the 9-volt transistor radio batteries which are made up of six 1.5-volt cells) may lose 20 to 40 per cent of their charge in the first year. The more expensive alkaline batteries are less sensitive to temperature changes but their shelf life is only a little longer than ordinary carbon cells.

One way to extend the shelf life of dry batteries is to store them in a refrigerator (the chemical reaction slows at lowered temperatures). According to industry experts, new batteries which are placed in a freezer may retain most of their capacity for as long as three or four years. To keep the batteries dry they should be wrapped in plastic before putting them in the freezer — when they are removed from the freezer they should be left in the plastic wrapping until they have warmed up to room temperature. This prevents condensed moisture from forming on the outside of the battery.

replacing selenium rectifiers

Although there are direct silicon rectifier replacements for most popular vacuum-tube rectifiers, replacing selenium rectifiers in older electronic equipment poses more of a problem because operating data for these devices is seldom available. However there are two rules of thumb which can be used to determine the correct rating of a silicon diode replacement. The reverse voltage rating of selenium rectifiers is approximately 75 volts per plate. Thus a two-plate selenium rectifier has a voltage rating of 150 volts; three plates, 225 volts; four plates, 300 volts; etc.

The current rating of selenium rectifiers is determined by the area of the plates and is given approximately by the relationship

\[\text{current rating (mA)} = 450S^2 \]

where \(S \) is the length of one side in inches* (assumes square plates). Thus a selenium rectifier with plates which are 3/4 inch (19mm) wide are rated at 250 mA; 1 inch (25mm) wide, 450 mA; 1 1/4 inch (32mm) wide, 700 mA; etc. This is the maximum current the selenium rectifier can handle at 75 per cent efficiency (the efficiency of seleniums decreases with age). For added reliability, of course, you should choose a silicon replacement with ratings that exceed these calculated voltage and current values.

*In metric dimensions, the current rating in mA is given by \(70S^2 \) where \(S \) is the length of one side in cm.
12 to 6 volt converter

There is still a good deal of used VHF-FM equipment on the market which was originally designed for operation from 6-volt mobile power supplies. Although some amateurs have converted this equipment to 12 volts by rebuilding the power supply, an easier and less expensive solution for medium-powered gear is to build the simple 12 to 6 volt converter shown in fig. 5. With the devices mounted on a suitable heatsink the maximum output of this circuit is about 15 amperes. If the positive and common lines are isolated from the chassis, the circuit may be used with either negative- or positive-grounded mobile systems.

![Fig. 5. 12- to 6-volt converter suitable for operating low- and medium-powered 6-volt VHF-FM equipment from a 12-volt power supply.](image)

saving your mobile rig

There’s little you can do to prevent a thief from breaking into your car and ripping off your mobile rig, but you can slow him down a bit. Burglar alarms, for example, don’t prevent thefts — they’re only guaranteed to let you know that a theft has already taken place! Since most successful thieves can disarm an alarm in a matter of seconds, commercial auto burglar alarms are little more than an annoyance — they’re certainly not a deterrent. It may be more difficult for a professional thief to disarm a homebrew alarm that he knows nothing about, but since he can break into your car, rip it out your gear and be on his way within 20 or 30 seconds, alarms offer little protection. An alarm may scare off an inexperienced thief, but all too often the owner forgets (or forgets) to turn on the alarm when he leaves the car, or doesn’t even roll up all the windows and lock the doors.

When you get right down to it, aside from locking your mobile rig in a bank vault, there’s very little you can do to completely protect it from departing to points unknown. However, here is a circuit from *The Atlanta Ham* (published by the Atlanta, Georgia, Radio Club) which might help you to recover your mobile gear if it does get ripped off (see fig. 6). In almost all cases when the thief leaves your car with your rig he has your microphone, your Touch-Tone pad and the power cord from the fuseholder down. Unless, of course, you put your mike and Touch-Tone pad in the trunk (highly recommended). Usually the rig is simply ripped out, wires dangling. If you build this latch circuit into your rig, however, the thief has a radio that won’t push-to-talk when he does and, furthermore, transmits all the time. If you were thoughtful enough to put your mike in the trunk, whenever he attaches power the rig will put an unmodulated carrier on the air, making it easier to track him down. This is especially true in metropolitan areas where local FM operators have been advised to be on the lookout for your “speechless” FM transceiver.

If the circuit is carefully installed in your rig, and the new wiring is worked into the existing wiring harness, it’s unlikely that the thief will be able to locate the trouble. And even if you don’t recover the rig you may get some satisfaction out of the fact that the thief couldn’t get any use out of it and had to junk it!

While we’re on the subject of mobile radio gear, are you absolutely sure that your rig is covered by your auto insurance? Some amateurs who have lost their equipment to thieves discovered after the fact that the loss was not completely covered. With many mobile rigs now costing upwards of $500 or more, it’s comforting to know that any loss is completely covered. If you’re not sure, check with your agent, and make sure the extent of the coverage is in writing. You may be surprised to learn that your policy has only limited coverage — expensive items such as mobile radios and cameras may require additional coverage to be fully insured against loss.

European semiconductors

I have had a number of requests for information on the system used for numbering European semiconductors. Unlike the 2N-system used in the United States, the European numbering system gives a good deal of basic data without resorting to a transistor data book. In their system the first letter indicates germanium (A) or silicon (B), the second letter gives the general construction or application, and the remainder is the device serial number. For the second letter, C indicates an audio type (not power); D, audio power; E, tunnel diodes; F, small-signal rf; L, rf power; P, photosensitive; R, controlling and switching (not power); S, switching transistors (not power); T, switching and controlling devices with specified breakdown characteristics; U, power switching transistors; Y, power diodes; and Z,

![Fig. 6. SCR latch turns on your mobile rig when power is applied if external circuit is broken when the rig is stolen. External wires can be run under the dash so thief must cut them when removing the rig from your car. If the PTT relay doesn't have a protective diode across the coil, install one. The SCR is a 100 PIV, 1 amp device such as the 2N1595. SCRs such as the HEP R1003 (0.8 amp) or R1217 (4 amps) should also be satisfactory.](image)
zener diodes. For the serial number, three numerals are used for entertainment types; one letter — X, Y or Z — plus two digits indicate industrial types. The AF117, for example, is a small-signal germanium rf transistor for entertainment purposes; the BCZ11 is an industrial silicon audio transistor.

audio-frequency keyer for RTTY

Several readers have had difficulty obtaining the MOC1002 optical coupler which was used in the simple audio-frequency RTTY keyer described in the August, 1975, issue of *Ham Radio*. W2CQH faced this problem and solved it with the silicon pnp transistor switch shown in fig. 7. Author W2LTJ has also built this version of the circuit and reports that it works as well as the original which used the optical coupler. In his circuit W2CQH also used a short piece of miniature coaxial cable for the 1-turn output link — the outer shield is grounded only at the coaxial connector so the braid acts as a Faraday shield, eliminating any capacitive signal (and noise) pickup from the circuit.

fig. 7. W2CQH's modification of W2LTJ's simple audio-frequency keyer uses silicon pnp transistor switch instead of an optical coupler. Shield on 1-turn coaxial loop acts as Faraday shield.

keyer oscillator

Shown in fig. 8 is a circuit for a simple keyer oscillator submitted by KH6IHT and KH6IEL which they designed for autopatch use. Since the autopatch system in their repeater has a decoder bandpass from 2980 to 3060 Hz, R2 is adjusted to 3042 Hz for best results. However, R2 can adjust the output tone over a rather wide audio range for other applications. Two output options are available: speaker or microphone (the microphone input line must be shielded). R3 is adjusted for the required output/input level and may be replaced by a variable resistor, if desired. Normally-closed keyer contacts can also be connected between pin 7 of the NE555 and ground. A 9-volt transistor radio battery (NEDA 918) is recommended for the oscillator.

75A4 noise limiter noise

Some time ago W4ZKI mentioned to the editor that the 6AL5 noise limiter in Collins 75A4 receivers tends to be regenerative, contributing unwanted noise to the receiver. Since the noise limiter is not too effective on ssb or CW, and few operators use it, W4ZKI recommended that the circuit be disabled and the tube removed. This information was passed along to W9KNI who solved the problem very neatly by removing the 6AL5 and plugging in a jumper between pins 2 and 7. On my 75A4 this simple modification reduced the no-signal noise level by about 3 dB, a worthwhile improvement.

references

Ham Radio
generating input/output device-select pulses

The preceding column in this series on microcomputer interfacing discussed the 16-bit out instruction contained within the 78 instruction set of the 8080 microprocessor chip. The out instruction comprises two successive 8-bit bytes and can be written in binary notation as

$$11010011_2 \; \text{XXXXXX} X_2$$
in 8-bit octal code, 323$_8$ YYY$_8$
or in 8-bit hexadecimal code, D3$_{16}$ ZZ$_{16}$

A discussion of how you convert the 8-bit binary code into either octal or hexadecimal code can be found in reference 1. In the above notations, X XXXXXXXX$_2$ represents an 8-bit byte that can range in value from 00000000$_2$ to 11111111$_2$; YYY$_8$ represents a three-digit octal code that can range from 000$_8$ to 377$_8$; and ZZ$_{16}$ represents a two-digit hexadecimal code that can range from 00$_{16}$ to FF$_{16}$. A quick calculation will demonstrate that 11111111$_2$, 377$_8$, and FF$_{16}$ all represent the same 8-bit binary word.

The choice of a coding system is up to you. The binary code is awkward to write and difficult to remember. Octal code is used in the popular Digital Equipment Corporation PDP-8 and PDP-11 minicomputer software and is easy to remember. Hexadecimal code is a more natural code for an 8-bit binary word and is currently quite popular among microprocessor manufacturers.

We should emphasize the fact that the manner in which you write the code on paper will not affect the way in which the microcomputer will execute a program. Both octal and hexadecimal code must eventually be converted back to binary code, which is stored in successive 8-bit memory locations. The code conversion can be accomplished in several ways, e.g., by hand or by a computer program.

The second 8-bit byte, XXXXXXXX$_2$, in the 16-bit out instruction is the device code for the output device. As indicated in previous columns, 256 different devices can be addressed with the aid of such a code. The manner in which this is done is shown in full detail in fig. 1, which provides a device decoding circuit consisting of seventeen SN74154 TTL 4-line to 16-line decoder/demultiplexer IC's. Since this is a rather complicated circuit, we would first like to discuss the simpler decoding circuit shown in fig. 2.

The SN74154 IC is a 4-line to 16-line decoder that allows you to input any 4-bit binary word ranging from 0000$_2$ to 1111$_2$ and select any single output among sixteen different output channels labeled 0 to 15. G1 and G2 are the strobe or gating inputs to this chip; when they are both at logic 0, the SN74154 circuit is said to be enabled — it is operative, and one of the sixteen output channels, that which corresponds to the binary input at pins 20 to 23, is at logic 0. When either G1 or G2 is at logic 1, the SN74154 chip is said to be disabled — it is inoperative, and all sixteen output channels are at logic 1 irrespective of the binary input at pins 20 to 23.

The basic trick that the 8080 microcomputer employs is to enable the SN74154 chip for a very short period of time, 500 nanoseconds to be exact. This is done with the aid of a negative clock pulse at G1. This negative clock pulse, called IN or OUT in reference 1 or I/O R or I/O W in the Intel Corporation literature, is generated by the microprocessor chip with the aid of some additional circuitry. IN and I/O R refer to the 16-bit in instruction, whereas OUT and I/O W refer to the 16-bit out instruction that we are discussing here. During this 500 ns period of time the device code appears on the memory address bus and can be used as inputs to the SN74154 chip to select a desired output channel.

The memory address bus is a group of 16 output pins on the 40-pin 8080 IC (fig. 3). A bus can be defined as follows:

Bus: A path over which digital information is transferred, from any of several sources, to any of several destinations. Only one transfer of information can take place at any one time. While such transfer is taking place, all other sources that are tied to the bus must be disabled.

The important point here is that two types of informa-

By Jonathan Titus, Peter R. Rony, and David G. Larsen, WB4HYJ

Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Jonathan Titus is President of Tychon, Inc., Blacksburg, Virginia.

The subscript 2 indicates binary notation, a subscript 8 denotes octal code, a subscript 10 designates decimal notation, and a subscript 16 indicates hexadecimal code.
tion can appear on the 16-bit memory address bus: a) the 16-bit memory address for a memory location addressed by the 8080 microprocessor chip, or b) the 8-bit device code present in the second 8-bit byte of an \textit{in} or \textit{out} microprocessor instruction, but not both at the same time. The \textit{in} or \textit{out} microprocessor instruction requires 5 \(\mu s\) for execution, and the device code appears only during the last 1.5 \(\mu s\) of this time.

When the device code appears on the memory address bus, the bus is subdivided into two 8-bit bytes, each byte containing the address code. Thus, you have your choice of bits A-0 through A-7, or A-8 through A-15, for the device code. This 8-bit device code is connected directly to one or a group of SN74L154 decoder chips, as is shown in figs. 1 and 2. In fig. 2, only four of the eight device code bits are used, whereas in fig. 1, all eight device code bits are decoded into 256 different output or input device code negative clock pulses.

Each output device is addressed uniquely by the \texttt{OUT} function pulse and a corresponding 8-bit device code. The same is true for each input device; only the \texttt{IN} function pulse is employed instead of the \texttt{OUT} function pulse at the gating input G1 to the SN74154 chip. Each device-select pulse lasts for only 500 ns, the time that the SN74154 chip is gated at G1.

Fig. 4 provides a set of timing diagrams that summarizes the external consequences of the 16-bit \texttt{OUT} instruction:

- An 8-bit device code appears on the memory address bus, in this case the code for device 11010001\textsubscript{2} or 321\textsubscript{8}, for a period of 1.5 \(\mu s\).
- During this 1.5 \(\mu s\), an out function pulse is generated for a period of 500 ns.
- These nine output lines are used as inputs to the seventeen SN74154 IC circuit shown in fig. 1. This circuit generates a 500 ns negative device-select pulse for device 321\textsubscript{8}. All the remaining 255 outputs from the decoders remain at logic 1.

This device select pulse can be used to turn on the solid-state relay shown in the circuit in last month's column.

Reprinted with permission from \textit{American Laboratory}, December, 1975; copyright \textcopyright\ International Scientific Communications, Inc. Fairfield, Connecticut, 1975.
The program, which is analogous to one given previously, is simply:

<table>
<thead>
<tr>
<th>memory address</th>
<th>octal</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>323</td>
<td>Send device select pulse to device given by the following 8-bit device code</td>
</tr>
<tr>
<td>1</td>
<td>321</td>
<td>Device code for clear input to SN7474 flip-flop</td>
</tr>
<tr>
<td>2</td>
<td>166</td>
<td>Halt the microcomputer</td>
</tr>
</tbody>
</table>

For further information, please refer to last month's column.3

Fig. 4. A set of timing diagrams that depict the relationship of the OUT function pulse and the device code information appearing on the memory address bus. This information is applied to SN74154 decoder circuits such as those shown in Figs. 1 and 2.

In the above paragraphs, we have discussed the interfacing technique called accumulator I/O, which is also known as isolated I/O in the Intel Corporation literature.2 A much more exciting interfacing technique is memory I/O, which is also known as memory mapped I/O,2 in which an I/O device appears to the microcomputer CPU as a simple memory location. Without question memory I/O will be the most popular interfacing technique among all of the different microprocessor families. One important advantage of this technique is the considerable number of integrated circuit chips that have already been designed for memory I/O applications. Included among such chips are the 8255 programmable peripheral interface, the 8251 universal synchronous/asynchronous receiver/transmitter (USART), the MC6820 peripheral interface adapter, and the XC6850 asynchronous communications interface adapter. We shall discuss this alternative I/O technique next month.

References

DIGITAL DATA RECORDER
for
Computer or Teletype Use
Up to 4800 Baud

Uses the industry standard tape saturation method to beat all FSK systems ten to one. No modems or FSK decoders required. Loads 8K of memory in 17 seconds. This recorder enables you to back up your computer by loading and dumping programs and data fast as you go, thus enabling you to get by with less memory. Great for small business bookkeeping. Imagine! A year's books on one cassette.

Thousands are in use in colleges and businesses all over the country. This new version is ideal for instructional, amateur, hobby and small business use. Ideal for use by servicemen to load test programs. Comes complete with prerecorded 8080 software program used to test the units as they are produced. (Assembler)

SPECIFICATIONS:
A. Recording Mode: Tape saturation binary. No voice capability. No modem. 3" per sec.
B. Two channels (1) Clock, (2) Data. Or two data channels providing four (4) tracks on the cassette. Can also be used for NRZ, BI-Phase, etc.
C. Inputs: Two (2). Will accept TTY, TTL or RS 232 digital.
D. Outputs: Two (2), Board changeable from TTY, RS232 or TTL digital.
E. Erase: Erases while recording one track at a time. Record new data on one track and preserve three or record on two and preserve two.
F. Compatibility: Will interface any computer using a UART or ACIA board. (Altair, Sphere, M6800 etc.)
G. Other Data: 110/220 V, 50/60 Hz; 2 Watts total; UL listed #955D; three wire line cord; on/off switch; audio, meter and light operation monitors. Remote control of motor optional. Four foot, seven conductor remoting cable provided.
H. Warrantee: 90 days. All units tested at 110 and 4800 baud before shipment. Test cassette with 8080 software program included. This cassette was recorded and played back during quality control.

COMING SOON — IN KIT FORM
* Hexadecimal Keyboard — Load programs direct from keyboards’ 16 keys and verifying display. Does not use Computer I/O.
* I/O for use with Computer Aid or other digital recorders. Variable baud rate selectable on externally located unit by one knob. Can load computer or accept dumps without software. Turnkey Operation. For any 8 bit computer.
* Record/Playback Amplifier — Expanded version of our Computer Aid board for use with your own deck (cassette or reel to reel). Go to 9600 baud on reel to reel. Digital in, digital out, serial format.
* Interested in these? Send your name and address for brochure when released.

(EDUCASSETTE is our registered TradeMark)

Fill out form and send check or money order to:
NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
201-561-3600

NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
SHIP TO:

CARD NO. ZIP
EXPIRATION DATE

Data Recorder @ $149.95
Operating & Technical Manual (Schematics) @ $1.00
* New Products, No Charge

Please enclose $2.00 Shipping & Handling
N. J. Residents add 5% Sales Tax

More Details? CHECK-OFF Page 110

april 1976
integrated circuit

ssb transceiver

for 80 meters

The versatile LM373 IC is the heart of this single-band sideband transceiver that also features some novel diode switching of the signal path.

The increasing availability and sophistication of integrated circuits has prompted the publication of a number of solid-state transceiver designs. The transceiver design presented here uses readily available ICs and includes varactor tuning of the variable oscillator and transmitter buffer stages. The receiver's performance is enhanced by a dual fet cascade rf amplifier, and the transmitter provides about 8 watts output from an inexpensive rf power transistor.

circuit

Except for the varactor tuned oscillator (vto), bfo, rf amplifier, transmitter driver and final amplifier sections, all functions are performed by integrated circuits. With the exception of the B+ switching, which is accomplished with a single miniature relay, all other switching between receiver and transmit is done by high-speed 1N914 switching diodes. The transceiver's i-f frequency is 455 kHz, and the vto tunes from 3.045 to 3.545 MHz. Sideband selectivity is provided by a 455-kHz Collins mechanical filter.

Two MPF102 fets in cascade configuration with high-Q toroidal inductors serve at the receiver's rf amplifier (fig. 2). The first design attempts excluded an rf amplifier, but the LM373 used in the front end displayed such poor cross-modulation characteristics and overloaded so easily that an additional high-Q tunable rf stage was necessary. However, even with an rf preselector an occasional strong local station overloaded U1. To protect against this kind of interference a manual second rf gain control, consisting of R18 in a voltage dividing network to provide adjustable bias to pin 1 of U1, was included.

The received signal is fed through relay K1 to the dual fet rf amplifier, through another tuned circuit, and then to U1, a LM373 serving as both the second rf amplifier and the receiver mixer. The vto input is injected at pin 6 of U1 during receive, and the mixer output is then diode switched into pin 2 of U2, the common i-f amplifier (fig. 3).

In addition to serving as the receiver/transmitter i-f strip, U2 also functions as the receiver product detector. Sideband selectivity is provided by FL1, a 455 kHz Collins mechanical filter, inserted between pins 2 and 9 of U2. The LM373 adequately compensates for the filter insertion loss, and it does triple duty as the product detector when the 456.35 kHz bfo output is diode switched onto pin 6 during receive. The audio output of U2 is switched into the audio amplifier, U3, an MFC9010 IC capable of producing two watts of audio output with low distortion.

beat-frequency oscillator

The bfo is a rather conventional bipolar crystal oscillator coupled to a fet source follower by a miniature 455 kHz i-f transformer, T2 (fig. 4). The rf output is made adjustable (through R7A) so that the bfo injection voltage can be set for maximum carrier suppression. The bfo frequency is 456.35 kHz for lower sideband operation or 453.75 kHz for upper sideband.

variable oscillator

The variable oscillator is varactor tuned using a IN594 diode and incorporates an MPF102 fet source follower buffer (fig. 5). With the values given, the oscillator tunes from 3.045 to 3.545 MHz with the full excursion of potentiometer R8. The +12 volt source for the vto should be well regulated, preferably with a three-terminal 12 volt IC regulator such as the Fairchild 7812. In the transceiver I built, the vto output shifted frequency by a few hundred hertz when switched between receive and transmit, probably due to the difference in load resistances placed on the vto in the two modes. However, by adding R9 and associated circuitry, the receive and transmit frequencies may be synchronized.

By W. J. Weiser, M.D., VE3GSD, 98 Banstock Drive Willowdale, Ontario, Canada
transmitter circuits

A 741 operational amplifier is used at U4, the speech amplifier (fig. 6). A Motorola MC1496 is used as the balanced modulator after attempts with a LM373 proved unsuccessful. The circuit shown does an excellent job, despite its simplicity, and was borrowed from previous designs. The 456.35 kHz carrier oscillator signal is diode switched during transmit to U5, the balanced modulator, and the resulting double sideband output is switched into the common i-f amplifier U2. U2 passes the dsb signal through FL1 and mixes the filtered ssb output with the injected vfo frequency. The resultant 3.5 to 4.0 MHz ssb signal is finally switched during transmit to the chain of transmitter buffer and amplifier stages.

The ssb signal at the output of U2 is extremely weak and requires a number of stages of linear amplification to reach an rf voltage capable of driving the final amplifier, Q9. The output from U2 is first amplified by varactor-tuned buffer U6, also an LM373; the output of U6 in turn excites pre-driver Q7; its output is tuned to the center of the 80-meter phone band by C5 and link coupled through L3 to the driver transistor, Q8, a 2N3553 bipolar transistor (fig. 7).

Several transistor types seem to work well in the driver stage (of which the 2N2102 is the least expensive). An adjustable voltage-dividing network utilizing a 3.6 volt zener regulator biases the final into the linear range (fig. 8). The driver’s output is link coupled via L15 to a 4 MHz lowpass filter.

The final amplifier, Q9, is a 2N5993 rf power transistor. This device is intended for CW and fm use and was reluctantly forced into linear service because I happened to have one available. A rather elaborate zener-regulated bias network was needed to operate this device in a reasonably linear fashion. The collector tuned circuit is similar to that of the driver stage.

The rf output passes through another low impedance lowpass filter which attenuates the harmonic output and also provides an impedance match for a 50-ohm load.

control circuits

All B+ voltages in the transceiver are switched through a single 4pdt relay. One pole switches +12 volts between the receive and transmit switching diodes, and also between the rf amplifier and U1 (on receive) and the speech amplifier, balanced modulator, and transmitter driver amplifiers on transmit. A second set of contacts switches +12 volts from a separate supply to the transmitter final amplifier stage on transmit. The remaining two poles function as an antenna T-R switch and as the receiver offset tuning disable.

construction

The heart of the transceiver is built on an 8x10 inch (20x25cm) single-sided copper-clad circuit board. The board is pre-drilled and hand etched to incorporate all circuits and components except the vfo, audio amplifier, speech amplifier and final amplifier; these are built as small sub-modules on boards which are mounted with L-brackets onto the main circuit board.

The vfo is mounted in a small aluminum enclosure. The 2N5993 final amplifier is built on a small circuit board with the rf power transistor mounted on a 2x5 inch (6.3x15.2cm) finned heatsink which is bolted flush with the phenolic side of the circuit board. A shield
separates the final amplifier stage from the main circuit board.

All tuning controls are mounted on aluminum brackets secured directly to the main circuit board's front edge. Finally, the main board is mounted with standoffs to a 10x12x2 inch (25.4x30.5x5.1cm) aluminum chassis. All tuning controls are brought out through the front panel by shaft couplers and universal joints. The output meter is mounted on the front panel; the gear drive assembly was harvested from an old ARC-5 receiver and is mounted on the right side of the panel as the vto tune control.

receiver alignment

The vto was aligned first. Inductor L8 is adjusted so that the desired frequency range of 3.045 to 3.545 MHz occurs at the extremes of rotation of R8. A grid-dip meter and general-coverage receiver were helpful in this

fig. 2. Receiver front end uses cascade fet's and LM373 IC amplifier.

fig. 3. Common IF amplifier, filter, product detector/transmitter mixer stage. By applying +12 volts to the T or R terminal, the various inputs and outputs are switched by 1N914 diodes. FL1 is a 455 kHz Collins mechanical filter.
alignment. The bfo requires no adjustment and can be easily checked for oscillation with a vtm and rf probe.

The receiver is easily adjusted by tuning in a strong local signal and alternately adjusting trim pot pairs R3, R4 and R5, R6 for maximum signal strength. Final peaking is accomplished with C1, C4, and the rf tune and receiver tune capacitors.

transmitter alignment

To begin the transmitter alignment, first check the operation of the speech amplifier by monitoring its output with a pair of headphones. Next, loosely couple pin 7 of U2 to a receiver tuned to the transceiver's frequency. A clear, crisp ssb signal should be heard. To null the carrier, adjust R11 for minimum carrier, while at the same time setting R7, the bfo output level adjust, to obtain maximum carrier suppression possible with adequate signal gain.

Shift the receiver coupling to L13, and place a number 42 pilot lamp across that inductor as a dummy load. Set the vto to 3.8 MHz and peak the buffer tune control (R12) and the pre-driver tune control (C5) for maximum signal at the receiver.

Remove the pilot lamp from L13 and place it across L15, coupling this stage to the receiver. Adjust R14 for about 5 to 10 mA of quiescent collector current at Q8. Then tune capacitor C6 for maximum signal strength in the receiver and maximum lamp brilliance.

To tune the 2N5993 linear amplifier, Q9, place a 10 watt, 50 ohm resistive dummy load across the antenna output, very loosely coupling this to the receiver and an oscilloscope. The easiest way to adjust the bias of Q9 is to monitor the modulation envelope on the oscilloscope while adjusting potentiometers R15 and R16 for the best ssb oscilloscope pattern and cleanest audio. In my transceiver, the quiescent collector current of Q9 was on the order of a few hundred milliamperes.
The transceiver is easy to tune and operate, and it puts out a good ssb signal. Its modular design and construction make troubleshooting less frustrating and alignment simple. Although, with 7 to 8 watts output, this is really not a QRP rig (according to the purists), it cannot compete with higher powered stations. However, by using good operating skill, tempered with patience, the operator will be rewarded with many contacts.

For those whose resources are unlimited, an rf power transistor specifically designed for linear ssb service could be substituted for the 2N5993 used at Q9. A 2N5992 would deliver about 10 watts PEP with a 12 volt supply, while a 2N5070 or a 40936 would deliver about 25 watts PEP using a 28 volt collector supply.

I wish to thank Charles Hill, W5BAA, whose article and personal communications helped in the formulation and design of this ssb transceiver.

references

I wish to thank Charles Hill, W5BAA, whose article and personal communications helped in the formulation and design of this ssb transceiver.

fig. 7. Buffer, pre-driver and driver stages.

fig. 8. Final amplifier stage. The 2N5993 works well in this circuit, although not intended for linear service. Other transistor types may be substituted for increased output and linearity.
WE ARE PROUD THAT EVERY ATLAS TRANSCEIVER AND ATLAS ACCESSORY IS MADE IN AMERICA! We think the American worker, and our employees in particular, are the most talented, hardest working people in the world. The quality of Atlas transceivers and our very competitive prices are the proof of this.

OUR PHENOMENAL 8 POLE LADDER FILTER that gives Atlas transceivers such superior selectivity was designed by Bob Crawford, an American engineer, and is manufactured exclusively for us in Phoenix, Arizona.

OUR PRINTED CIRCUIT BOARDS, and R.F., I.F., and A.F. plug-in boards that make servicing your Atlas transceiver fast, easy and inexpensive are made right here in Southern California.

THE SOLID STATE CIRCUITRY of our transceivers is based on designs by Les Ernshaw formerly ZL1AAAX, widely recognized as one of the foremost solid state radio engineers in the world, and founder of Southcom International located in Southern California. Southcom is one of the leading manufacturers of commercial and military radio equipment sold throughout the world. Atlas transceivers' immunity to overload and cross modulation from strong signals is nothing short of fantastic, and is a result of the advanced state-of-the-art designs by Les, and licensed to Atlas by Southcom.

WITH ALL DUE RESPECT TO THE FOREIGN ORIGIN OF A FEW OF THE COMPONENTS, every Atlas transceiver is designed and manufactured right here in our plant at Oceanside, California, U.S.A.

We think it is fitting that in this year, 1976, the 200th birthday of our nation, that each of us give at least equal consideration to products MADE IN AMERICA. Not only because they are Made in America, but because, like our Atlas products, they are simply a much better value!

SEE YOU AT SAROC KULIMA IN AUGUST

ATLAS AMATEUR RADIO EQUIPMENT:
210x or 215x .. $649.
(With noise blanker installed $689.)
AC Console 110/220V $139.
Portable AC Supply 110/220V $ 95.
Model DD6 Digital Dial $199.
Plug-in Mobile kit $ 44.
10x Osc. less crystals $ 55.
Noise Blanker, for plug-in installation $ 48.

For complete details see your Atlas dealer, or drop us a card and we'll mail you a brochure with dealer list.
universal
L, C, R bridge

Here's a useful instrument for test equipment that won't strain your imagination, credulity, or pocketbook. The idea isn't new; in fact it's of about the same era as the Wheatstone bridge. But for some reason, it seems to have been overlooked by the amateur fraternity. Known as the Maxwell bridge, it provides in one instrument the capability of measuring inductance, capacitance, and resistance.

Ohmmeters and capacitance meters are available in all price ranges. But not generally available (or familiar) to amateurs is a means of readily measuring inductance between 1 µH and 1 henry. The investigation of inductance bridges narrowed to the Maxwell bridge as by far the simplest, and also revealed its flexibility for resistance and capacitance measurements. The advantages of the Maxwell bridge are minimum number of components, calibration simplicity, measurement simplicity, driving-frequency independence, and measurement accuracy.

Most other bridges in common use have more than one reactive element as compared to one in the Maxwell bridge. Over a fixed range, R_2 (see fig. 1) can be calibrated to read inductance values directly; and at a specified fixed driving frequency, R_1 can be calibrated to read Q directly. In addition, R_3 and R_4 can be calibrated initially over their variable ranges by means of standard resistors. All measurements are direct products or quotients of direct readings. In the derivation of the basic equations for bridge balance, it is found that $2\pi f$ appears on both sides of the equation and cancels, with the result that bridge measurements are not affected by the driving source frequency. Finally, the nulls are unmistakable so that if the resistance arms are $\pm 1\%$, the worst-case error would be approximately 3%, with the probability being 8 to 1 that the error would be less.

Referring to fig. 1, which is the setup for inductance measurement, and neglecting for the moment the potentiometer across the transformer, the equation for balance is $L_X = R_4 \times R_C \times C_b$, where L is in millihenries, R in kilohms and C in microfarads. For the series resistance of L, $R_X = R_4 \times R_C$ divided by R_b. Then $Q = 2\pi f L$ divided by R_X. Note that if L_X were vanishingly small, leaving R_4; and if C_b were removed, the bridge would be a straightforward Wheatstone type for resistance measurements with the same resistance balance equation as above. If a standard inductance is used in place of L_X, an unknown capacitor in the position of C_b can be measured. For this measurement, $C_x = L_{\text{standard}}$ divided by the product of R_a and R_c, with the units the same as for the inductance measurement. The series resistance of a capacitor is usually so small and the Q so large as not to be determinable with this bridge.

construction

All you need for layout and wiring is shown in the photo and the schematic. (The calibration curve in the photo was made because of nonlinearity in the low-resistance end of R_1, in fig. 1.) I recommend a Bud 7x5x3 inch (17.8x12.7x7.6cm) Minibox, which is about the smallest space into which you can squeeze the parts. Partition a 2-inch (5.1cm) space at one end to hold the signal-driving source, which consists of the

By J. H. Ellison, W6AOI, 1720 Holly Avenue, Menlo Park, California 94025
transformer, the IC and its components, and the switch and battery. The IC is a Signetics NE555 connected as an astable oscillator running at approximately 1000 Hz with the R and C values shown. The IC draws 6.5 mA. The battery is a 9-volt transistor battery. The transformer is a small audio type to provide dc isolation. Try to stay in a 3 to 1 ratio or less, but don’t go down to the transistor interstage size. The pin jacks for the plug-in parts are Cinch-Jones with an all-Nylon body. For pins to match, find some plugs from any old Command set and saw out miniature banana-type pins by the handful.

The IC puts out a square wave at approximately 40% duty cycle, and you want some inductance to round off that square wave with its high harmonic content. Run the transformer secondary leads through a hole in the partition and connect them to the small pot, whose rotor is grounded. This arrangement is called a Wagner ground, a method for balancing stray internal capacitances to ground to get a perfect null. A first balance is made with R_d and R_b, then the Wagner ground is adjusted to deepen the null. Usually only one adjustment is required, then the R_a and R_b balance is perfect.

Bridge accuracy will depend on the linearity of R_d and R_b, and the success you have in finding dial plates with graduations that match the angular range of your pots. If you can’t match the two, the alternative is to make your own calibrated dial plates. The difficulty is that no uniformity exists among manufacturers in the angular range covered by the resistance winding. It goes without saying that the pots must be wire-wound to ensure reliable calibration and resetting. I found some surplus 1.75-inch-diameter (4.4cm) precision pots made by Technology Instruments, Acton, Massachusetts, and dial plates labeled “Powerstat” made by Superior Electric, Bristol, Connecticut, which matched exactly. You should be so fortunate!

Other manufacturers with models approximating these are Spectrol, Helipot Division of Beckman Instruments, CTS Corporation, Clarostat, and Mallory. Mallory has an inexpensive model designated MG, which might be satisfactory if you make your own calibrated dial plates. You’ll find that the angular measurement of the resistance windings will range from 255 to 335 degrees, depending on construction. It’s desirable, although not necessary, that the pots be metal enclosed to provide shielding. This shielding adds about 15 pF capacitance across the windings, which is equivalent to more than a megohm at the bridge driving frequency and may be neglected for all practical purposes. The phone jack should be insulated from the case, and for best sensitivity high-impedance phones should be used.

standards

You’ll need resistance standards to plug into the R_c position and capacitance standards to plug in the C_b. You’ll need resistance standards to plug into the R_c position. The minimum resistances will be 10, 100, and 1000 ohms, and minimum capacitances will be 0.01, 0.1, and 1.0 μF. Juggling the formulas will show that you can cover the same inductance range with different combinations of R_c and C_b, but the inductor series-resistance range will be different. For example, a C_b of 0.1 μF and an R_c of 100 ohms will cover the inductance range of 1.0 to 10 mH and a series resistance range of 10 to 100 ohms. A C_b of 1 μF and an R_c of 10 ohms will cover the same inductance range, but the resistance range will be 1 to 10 ohms.

If you can’t get a distinct null, you have the wrong combination of C_b and R_c. You can work out other R and C combinations to expand the bridge range. You should make a table of combinations with the corresponding L_x and R_y ranges.

Using the plug-in method for C_b and R_c provides the greatest versatility and most compact bridge size. If you used internal switching systems, you’d add considerable mechanical complexity and stray capacitive coupling. Some of the components are external to the enclosure and are internal, which adds to mutual shielding. No proximity hand effects should occur when balancing the bridge.

The standards mentioned will cover inductances between 10 μH and 1 henry, with corresponding resistance ranges between 1 and 1000 ohms. For capacitance measurements between 10 pF and 10 μF, you’ll need a 1 mH standard and two additional resistance standards, which you can calculate. These same resistance standards will be useful in making resistance measurements, which can be determined with much greater accuracy than with an ohmmeter.

A final word: an unavoidable interaction exists between the reactance and resistance balances. Care must be taken to ensure a complete null to avoid measurement errors. If the approximate R_y is known beforehand, correct measurements are expedited.
Some GOOD REASONS for going to Drake TR-4C:

Super-stable Drake PTO...
no need to chase the guy down the band

Excellent linearity—
1 kHz
Direct Dial Readout
No need to interpolate from knob skirt

Highly effective solid state
full gating Noise Blanker
not just a simple noise limiter;
17 transistors, 4 diodes

Calibration remains the same
in switching between modes
(USB to LSB, SSB to CW, etc.)

TR-4C FEATURES

- 80 thru 10 Meters Frequency Coverage
- 1 kHz dual concentric dial
- Excellent PTO Stability
- Full Gating Noise Blanker Optional
- Transceive or Separate PTO
- Wide Range Receiving AGC
- Calibration constant mode to mode
- 300 Watts PEP Input on SSB
- Shifted-Carrier CW 260 watts input
- Upper and Lower Sideband all bands
- Superb Receiver Overload and Cross-Mod characteristics
- VOX or PTT
- Output Impedance Adjustable with pi-net
- Traditionally high resale/trade-in value and excellent customer service

R.L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017

See us at Dayton Hamvention
Both the R-4C and T-4XC cover extra 500 kHz ranges throughout the HF spectrum. Additional crystals, which are front panel selectable, provide new bands as they are needed such as those discussed for 10, 18, and 24 MHz.

The excellent performance of the system makes weak signal DXing on 160 meters a pleasure.

Both units employ the famous Drake PTO for super stability and 1 kHz direct dial readout. Calibration remains the same when switching between modes.

With the proper use of the passband tuning, notch filter, and eight-pole crystal lattice filter (SSB supplied, five others for AM, CW, and RTTY available as accessories), the R-4C gives outstanding results in severe QRM as compared to fixed selectivity systems.

Complete transceive capability using either PTO is provided, with spot signal for zero beating.

The C-4 integrates a myriad of functions together, including phone patch, rotor control, remote motor controlled antenna switch, master station control, wattmeter, and many others.

SPECIAL NOTICE

The grand prize at the 1976 ARRL National in Denver will be a Drake C-Line. These units will be a special collectors' issue, each with a special number "SC 1976" to commemorate the bicentennial year.

For more information on this and other Drake products, please contact:

R. L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017

See us at Dayton Hamvention
troubleshooting by resistance measurement

In addition to the signal tracing, signal injection and voltage measurement techniques which I have discussed in previous columns, troubleshooting by resistance measurement is another basic technique which can be used to pinpoint circuit problems. One of the best arguments for resistance troubleshooting, of course, is safety. You can check out many of the stages in your transmitter, for example, without any lethal voltages applied, and when you must work on high-voltage power supplies, resistance troubleshooting is the only method which is recommended.

A few amateurs will contend that resistance measurements don’t give the complete story because some components in a high-voltage circuit that check out okay by resistance measurement may break down under stress. That’s true, but you can usually spot these problems by visual inspection — they smoke, or arc. Some short circuits occur in transmitters only after high voltage and drive have been applied, so resistance or voltage measurements are of little use, but once again, you can usually safely track down the difficulty by a visual inspection and the process of elimination.

Resistance troubleshooting can be done with a simple volt-ohm-milliammeter or vom, and most amateurs have one. In addition to being relatively inexpensive, rugged, and simple to operate, the volt-ohmmeter doesn’t have to be plugged into the power line so it’s completely portable. Some of the new solid-state electronic volt-ohmmeters are also portable, but they’re considerably more expensive and can sometimes give erroneous readings when used in operating rf equipment.

There are any number of good quality volt-ohm-milliammeters on the market which are suitable for amateur use, ranging from miniature, imported models that sell for less than $10 to more accurate instruments which go for $100 or more. Although many of the pocket-size meters are good investments, if most of your troubleshooting is done on the workbench, you’d probably be better off with a larger vom with an easy-to-read 4 or 5 inch (10-13cm) scale. Insist on dc accuracy of at least 2%, and don’t be misled by the fact that 1% resistors are used in its construction. The use of 1% resistors doesn’t necessarily mean that the readout is very accurate — the meter movement itself may be non-linear.

Other features to look for are 20,000 ohms/volt sensitivity (minimum) and a meter protection circuit. Some meters are completely burnout proof, and you pay extra for this premium, but it might save you money in the long run. The meter shown in the photographs, a Triplett Model 60, is both burnout proof and shockproof, so I should never have to replace it. (It once got knocked off my bench on to the concrete floor and sustained absolutely no damage.)

When selecting a vom the most important factor is accuracy. Dependable ohmmeter measurements are not much use if you can’t read them accurately, and you can’t begin to interpret their meaning unless the measurements are accurate. Following are four suggestions which will help you to obtain accurate measurements with your ohmmeter:

1. Calibrate the instrument before using it. Place the vom in the position you’re going to use it, standing upright or lying down, with the function switch in the off or dc voltage position, and with the test leads plugged in but not shorted together, make sure the meter needle rests exactly on the zero mark at the left edge of the scale. You may have to adjust the mechanical zeroing screw that is just below the meter face (see fig. 1). If it’s been awhile since you’ve made the zero adjustment you

fig. 1. Before making any resistance or voltage measurements, make sure the meter needle is zeroed. If it’s not, adjust the mechanical zeroing screw just below the meter face on the front of the vom. This adjustment shouldn’t be required very often, but you should always check the mechanical zeroing before you use the instrument.
2. Zero ohms adjust. Turn the function switch to the ohms position and short the two test leads together. The needle should move up to full scale (since the ohms scale reads from right to left, zero ohms is at full scale). If the pointer doesn’t line up with the zero ohms marker, adjust the zero ohms control on the front panel of the instrument (see fig. 2).

3. Range switch. For accurate resistance measurements the range switch should be set so the meter operates in the upper two-thirds of the resistance scale. This is because the resistance scale is non-linear and the scale on the left edge is compressed, making it difficult to read accurately. Moving the range switch up one or two positions will move the needle toward the right into a portion of the scale where the calibration marks are further apart.

4. Properly interpolate the scale reading. Most errors in resistance measurements are due to simple technician error in properly multiplying the ohms scale reading by the multiplier indicated by the range switch. It’s pretty easy to drop a zero (or add one) and end up with the wrong measurement. When the pointer is on the left side of the scale you’ll have zeroes in the scale reading as well as in the multiplier, so be particularly careful and use scratch paper if you’re unsure.

series resistance circuits

Before you can troubleshoot an electronic circuit with resistance measurements you have to recognize the different kinds of resistance paths which you may find in an actual circuit. There are dozens of resistors in practically every electronic circuit and, in addition to resistors, there are a number of other components which will show readings on an ohmmeter such as transformer windings, electrolytic capacitor leakage, forward and backward resistance of semiconductor diodes, vacuum tube filaments and, of course, transistors.

One of the tricks of resistance troubleshooting is finding resistance paths that aren’t where they should be, or paths that have too little (or too much) resistance. To do this you’ll have to learn how to spot the resistance paths on a schematic diagram, and how to figure out where and what they should be at different points in the chassis wiring.

Simple series resistance paths, such as those shown in fig. 4, are both the easiest to spot and the simplest to analyze. It would be difficult to mistake the A-B path shown first — it’s 1000 ohms between points A and B. In the second series path the 1000 ohms between A-B adds to the 1500 ohms between points B-C for a total resistance of 2500 ohms. The third series path, between points A-D, is also pretty easy, adding up to 7200 ohms.

It’s important to recognize in the simple series circuits of fig. 4 that adding the B-C and C-D resistance paths had no effect on the A-B resistance. In all three
cases an ohmmeter connected to points A and B would indicate 1000 ohms. You can add as many series resistors as you want and A-B will remain at 1000 ohms.

Another important point concerning series resistances is that you can measure each of the individual paths independently (B-C or C-D, for example) and the other series paths will not interfere with the reading. You can also directly measure path A-C if you wish (2500 ohms), or a path A-D (7200 ohms).

Resistance paths don’t necessarily have to be drawn in a straight line to be in series. An example is shown in fig. 5. An ohmmeter connected between points A and D measures the A-D path directly; the resistance is 4200 ohms. None of the other resistances in the circuit has any effect on path A-D because they are not in series with it (or shunted across it). The same thing is true about path A-L. In this series circuit only the resistance between points A and L have a bearing on the resistance of the path — it can be measured directly by simply connecting the ohmmeter leads to points A and L (9000 ohms). The resistances in paths B-G and C-D are ignored because they’re not in series with path A-L. If you’re in doubt, trace path A-L: A to B, to C, to H, to J, to K, to L.

Now consider the path from F to K (9500 ohms). It goes from F to E, to B, to C, to H, to J, to K. An ohmmeter connected between F and K measures only that path, and indicates 9500 ohms. None of the other paths in the circuit have any effect because they are not in series with path F-K.

Suppose you were troubleshooting a circuit like fig. 5 and measured 8000 ohms between B and J. The schematic shows series resistances totaling 6000 ohms in the B-J path. At least one of the resistors has changed value and you have to determine which one it is. One way to find the answer is to individually measure each resistance. Since there are several resistors in the circuit, that can take a fair amount of time. A better way is to work your way through the circuit from one end to the other. Leave one ohmmeter lead on B and move the other lead from J to H. If the reading drops to 4000 ohms it means that path H-J is at fault. If the reading only drops to 6000 ohms, however, it means that H-J is okay and the trouble is in the B-H path. One more measurement should locate the bad resistor.

Those are the basic principles of troubleshooting around series resistance circuits. There are plenty of series resistance circuits in electronic equipment, and as long as the resistors are in series, tracking down trouble is pretty easy. If the resistors are in parallel, however, as will be discussed next, the task is a bit more difficult — at times it can be downright confusing.

parallel resistors

Three very simple parallel resistance paths are shown in fig. 6, but you’re not likely to find anything as simple as this in any electronic equipment. Nevertheless these simple circuits are a good starting point. So far as an ohmmeter is concerned, the path between points A and B is merely path A-B. As you can see from the diagram, however, it isn’t nearly that simple because there are actually two resistance paths in the first two circuits (A-B and C-D) and five actual resistance paths in the third.

The resistance of path A-B is 500 ohms because the resistance of two parallel resistances of the same value is half the resistance of either resistance by itself, (similarly, the parallel resistance of three equal-value resistors is one-third the value of one resistance, and the parallel resistance of four equal-value resistors is one-fourth the value of one resistance, etc.). This is another way of saying that resistances in parallel add inversely. A general equation which can be used to calculate the parallel resistance of any number of resistors, of any value, is

\[
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \cdots + \frac{1}{R_n} \tag{1}
\]

where \(R_T\) is the parallel resistance and \(R_1, R_2, R_3, \ldots\) are the values of the resistors in each of the parallel branches. If only two resistors are in parallel, eq. 1 can be rewritten into the form

\[
R_T = \frac{R_1 \cdot R_2}{R_1 + R_2}
\]

Although it may not be immediately obvious by looking at the parallel resistance formulas, whenever a resistance is added in parallel to a circuit, it always lowers the resistance between two points. In fact, the parallel resistance is always less than the lowest resistance in any branch of the parallel path. The C-D path in fig. 6 shows a situation where one branch of the parallel circuit has much lower resistance than the other. Calculated by the parallel resistance formula, path C-D has a resistance of 130.4 ohms. This would be the resistance measured between points C and D with an ohmmeter.

If you should run into this circuit in a bench test, consider what it means if you measure path C-D and find
a reading of 150 ohms. You can assume the 1000-ohm resistance has opened up or has changed value to some extremely high resistance (in general, if a parallel resistance is 100 times higher than the other resistor in the circuit, it will lower the parallel resistance by approximately 1%). Conversely, if you check path C-D with your ohmmeter and find that it measures 1000 ohms, the 150-ohm resistor is at fault.

To check the use of the parallel resistance formula, calculate the resistance between points E and F in fig. 6. Your answer should be 281.32 ohms. If you remove the 47k resistance and run through the calculation again, you'll find the parallel resistance of the circuit has increased only slightly, to 283.02 ohms. This is because the 47k resistance is nearly 100 times greater than the smallest resistance in the circuit.

One of the problems with parallel resistance paths in electronic equipment is that they are seldom as obvious as those in fig. 6. In practice parallel resistance circuits may have branches all over the chassis, and they are often arranged in rather strange shapes as shown in fig. 7. At first glance, for example, path A-B looks like a simple 500-ohm path. Since B is connected to C, however, resistance A-B is actually in parallel with resistance A-C for a total parallel resistance of 333 ohms. Connect an ohmmeter between points A and B (or between A and C) and this is what it would indicate.

Now consider the D-E-F resistance path in fig. 7. Although the two resistors appear in series, they're really not by virtue of the fact that D is connected directly to F. Any current which enters the circuit at D flows through both resistors to reach E. An ohmmeter connected at points D and E measures the combined parallel resistance of the two and indicates 519 ohms.

Now that you're looking for sneak parallel paths it should be easy to sort out the parallel resistors in path H-K. Points G, J and K are electrically the same so the three resistors are in parallel, and an ohmmeter connected between points H and K would measure 239 ohms.

These simple parallel resistance hookups are illustrated primarily so you won't overlook a parallel resistance connection just because it isn't obvious. In many circuits, in fact, many of the hidden parallel resistance paths are through other types of components and don't actually appear on the schematic as resistance paths. In every case, however, any parallel resistance path always lowers the ohmmeter reading to a value less than the lowest value in any branch of the parallel path. If you forget that one simple fact, resistance troubleshooting can be very confusing — remember it, and you can use this technique to pin down some very elusive faults.

series-parallel resistors

In most electronic circuits you won't find only series or parallel resistance, but a combination of the two. A few of the possibilities are shown in fig. 8. In the first circuit paths A-B and C-D are in series with the two-branch parallel path, B-C. To find out what resistance to expect if you connected your ohmmeter between points A and D, first calculate the resistance of path B-C; it's 500 ohms. Therefore, the total resistance from A-D is 200 + 500 + 200, a total of 900 ohms.

The second series-parallel circuit in fig. 8 is slightly more complicated, but it's not difficult to figure out if you look at it carefully. The path from E to G is made up of two parallel branches, both of which have more than one series resistance. To calculate the parallel resistance of path E-G, first add the series resistance in each of the parallel paths E-F-G and E-J-K-L-G, calculate the parallel resistance, and then add the series resistance. Examples are given in the text.

fig. 8. These series-parallel resistance networks are more like those which you will find in real circuits. To figure out the total path resistance first calculate the equivalent parallel resistance, then add the series resistance. Examples are given in the text.

The third series-parallel circuit in fig. 8 looks even more complex, but if you study it carefully for a moment you'll see that it's quite easy to figure out the total resistance between any of the points of the circuit. Path M-P, for example, is a simple series path equalling 900 ohms. None of the other resistors in the circuit have any effect because they're not in series or parallel with that path. Path M-S, however, has a parallel branch which must be considered (O-R is in parallel with Q-T-R); 1600 ohms in parallel with 3000 ohms or 1043 ohms parallel resistance. The total resistance between points M and S is

\[800 + 500 + 1043 + 100 = 2443 \text{ ohms} \]
This is what your ohmmeter would measure if it were connected across M and S.

There is one other resistance path to consider in this circuit: M to V. In this circuit path Q-R-U is in parallel with path Q-T-U (3600 ohms in parallel with 1000), for equivalent parallel resistance of 783 ohms. Therefore, the total series resistance between M-V is

\[800 + 500 + 783 = 2083 \text{ ohms} \]

hidden resistance paths

There are two components which will most likely give you false ohmmeter readings: semiconductors and electrolytic capacitors. Since electrolytics are used for power supply filters and decoupling, they are spread throughout any electronic circuit, so it's pretty hard to avoid them and their dc leakage currents which register as resistance on your ohmmeter. In solid-state equipment many of the coupling capacitors are also electrolytic types (as opposed to paper or plastic capacitors used in vacuum-tube circuits), and these can give you a lot of grief if you don't know what you're looking for. Bipolar transistors also give problems because each of the junctions looks like a diode to your ohmmeter, with greater resistance in one direction than in the other.

Fortunately capacitance leakage paths and semiconductor resistance paths follow certain patterns. If you know the patterns you won't be fooled -- even if you are fooled at first it shouldn't take you too long to get back on the right track. Here are a few of the patterns to keep in mind:

1. **Diode action** can usually be checked by simply reversing the ohmmeter leads. Consider the circuit of fig. 9. Suppose the resistance reading from the 12 Vdc terminal to ground (power off, of course) measures about 150 ohms. It looks like filter capacitor C1 has shorted.

 To check, move the test lead to the junction of R1-C1 -- a very low resistance there seems to confirm that capacitor C1 is shorted. Before you jump to conclusions, however, reverse the test leads and repeat the measurement. The low reading will probably disappear. Why? Because the internal battery of the ohmmeter has forward biased the rectifier diodes, causing them to provides a low-resistance path to ground through the transformer center tap.

 fig. 9. Simple solid-state power supply. Measured resistance from the 12 Vdc terminal to ground may be lower than expected because of a hidden path to ground through forward-biased rectifiers.

 Whenever the negative side of the ohmmeter battery (sometimes the black test lead, but not always) is connected to the cathode end of a semiconductor diode and the positive lead is connected to the anode, the ohmmeter reads the diode's forward resistance (usually less than a few ohms). Reversing the test leads reverse biases the diode and measures the diode's back resistance which is typically 100k or more. Therefore, if you find a resistance path which is much lower than it apparently should be, reverse the test leads to make sure a semiconductor diode (or bipolar transistor) isn't causing the lowered resistance reading.

2. **Transistor leakage** can cause the same sort of measuring problems as diodes because both the base-collector and base-emitter junctions are, in essence, diodes so a transistor junction that is forward biased by the ohmmeter battery looks like a low-resistance path. Consider the circuit of fig. 10 where an npn transistor is used in a typical rf mixer circuit. Suppose you connect your ohmmeter across resistor R2 to measure it. Instead of the expected 2700 ohms the meter reads about 50 ohms and you figure R2 has changed value. If you reverse the meter leads, however, you measure about 2100 ohms.

 fig. 10. Rf mixer circuit using a bipolar transistor. There are many hidden resistance paths in this circuit which can be confusing if you're not aware of them.

The reason the ohmmeter indicated 50 ohms in the first case, of course, is because the base-emitter and base-collector junctions were forward biased, so the base-emitter junction resistance (about 50 ohms) provided a parallel path to ground through the 270-ohm emitter resistor, R3, and the forward-biased base-collector junction provided a path to ground through L2. When the test leads are reversed the two transistor junctions are reverse biased and your ohmmeter measures the parallel resistance path provided by R1 and R2 (about 2125 ohms).

When checking npn transistor circuits remember that the base-emitter (or base-collector) junction is forward biased when the base is positive and the emitter (collector) is negative. In pnp transistor circuits the two junctions are forward biased when the base is negative and the emitter (collector) is positive.

3. **Electrolytic capacitors** have leakage currents which the ohmmeter reads as resistance. The leakage resistance of most electrolytics is in the range of 50 kilohms or so, so learn to allow for it when you're checking resistances along power supply lines. One clue to hidden resistance circuits which are caused by electrolytic capacitors is
that the resistance reading tends to increase if the test prod remains on the point. This is because the ohmmeter battery is charging the capacitor, and as the capacitor nears full charge it draws less current, which the ohmmeter interprets as a higher resistance. Reversing the test leads will cause most electrolytics to instantaneously measure as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.

Hidden resistance paths which are drawn elsewhere on the schematic can also cause erroneous resistance measurements. If you were to measure the resistance from the plate of V1 to ground in fig. 11 you might expect to find an infinite reading. Instead you find a low resistance measurement as short circuits, but if the leads are left in place the capacitor will once again begin to charge and the meter pointer will move up scale to 50 kilohms or so, the normal leakage resistance of the capacitor.
Mini-Mitter II modifications

The Mini-Mitter II is no longer available in kit form. American States Electronics is now building an assembled MM-2C for sale primarily to government agencies for approximately $600.00. I was able to pick up a used unit with a broken whip antenna. The following is offered on replacing the antenna together with some data on replacements for in-house brand ICs and transistors.

The stock antenna is 65 inches (1.65m) long. The manufacturer reports that his supplier no longer makes this length rod and has substituted a smaller one, as found in CB sets. No replacements are available. Lafayette Radio in their latest catalog lists a 67½-inch (1.7m) antenna (stock no. 99F32070), which is the only close replacement I’ve found. The base diameters differ, but replacement can be accomplished as follows:

1. Cut off the heat-shrink tubing covering the loading coil. Be careful not to nick any turns of the coil.
2. Two screws will be exposed, which hold the antenna rod and collar. Remove these two screws and pull off antenna and collar.
3. The collar is soldered to the antenna rod. Clamp the rod in a vise, heat the collar with a torch, and remove.
4. To accommodate the Lafayette rod, the collar must be bored out to 0.375 inch (1cm). Resolder the new antenna to the bored-out collar and reassemble to the loading coil.
5. Obtain a piece of 1½-inch (3.8cm) heat-shrink tubing to fit over the coil.

Finding tubing this large may be the hardest part of the whole job.

Equivalents for the Mini-Mitter house-brand ICs and transistors are listed below:

- FE5245 to 2N4416
- A158C to HEP737
- ASE77 to TRW PT2677B
- ASE400 to RCA 3020A
- ASE401 to RCA 3021
- ASE408 to RCA 3028A

ASE’s latest transceiver is the model MM-2C. Apparently there have been some modifications to decrease standby current drain in the audio output circuit and to increase transmitter output power. Perhaps a reader with a newer unit might comment on this.

Charles King, K1ETU

overvoltage protection

Most solid-state electronic equipment in use today specifies an input voltage of 13.8 Vdc ±15%. This represents a range of 11.475 to 15.525 Vdc. If the series element in the regulated power supply short circuits, the entire output from the rectifier (typically 18 to 30 Vdc) will appear at the input to your equipment. Few semiconductor circuits in popular use can withstand such abuse.

The crowbar (overvoltage protection circuit) shown in fig. 1 can be added easily to your power supply or automobile electrical system for just a few dollars. It will detect any overvoltage condition and immediately shut down the supply voltage before it fries your equipment.

Operation is simple. When \(V_{\text{out}} \) reaches a set value (determined by \(Z \)), the scr gate triggers, conducting heavily, and the fuse blows. This circuit has the advantage of not loading the regulator should the scr fire because of some transient condition. More important, the fuse immediately opens because of the short circuit condition. This fast-turn-off feature is important, because the time required to open a fuse is a function of the load current, fig. 2. A typical 10-watt transceiver may draw 2 to 3 amps on...
transmit but only a tenth or so of this value in receive, permitting a potentially damaging situation.

To check the crowbar, temporarily install a 500-ohm resistor in the scr anode circuit (fig. 3). Increase output voltage to the maximum desired and check to see if the scr fires properly, which will be indicated by a sudden voltage increase as measured across the 500-ohm resistor.

![fig. 3. Test circuit for checking crowbar.](image)

If necessary change Z or add diodes in series (germanium 0.3 V or silicon 0.6 V) to obtain the desired trip voltage. When all is well, remove the resistor. The scr will conduct until power is removed from the circuit. This circuit is analagous to buying insurance: you may never use it, but you may be sorry someday without it.

Ed Pacyna, W1AAZ

R-392 receiver mods

The R-392 receiver is hot, stable, and provides full coverage between 0.5 and 30 MHz. However, the compromises involved in modifying it for 28 Vdc on filaments and plates need shaping up. Here are some suggestions.

First bring out the plate and filament leads separately. The receiver is happier with somewhat more than 24 volts on the plates, between 30 and 35 volts. Build a supply that will provide over 30V from a bridge rectifier. Filter the supply with 3000μF or more (the receiver tolerates 2 to 4 V of hum). Power the entire receiver this way first. The tubes in my set withstood 37 V for a few hours. Next add a dropping resistor (2 ohms, 20 watts) to the filament lead. Leave the plate lead on the higher voltage.

The audio output tube has to go. This tube pulls a total of 1.3 watts, plate and filament. The designers must have known it had to go: the manual shows a plug-in transistor substitute.

fig. 4. Simple audio replacement for V608.

However, their substitute uses 15 components including four transistors and two transformers. A better substitute is shown in fig. 4. Use a single Darlington power transistor with no extra heatsink; connect the collector to existing pin 8, emitter through 22 ohms to existing pin 2 and ground, and base to existing pin 1. Bias the Darlington with 27k to pin 2 and ground and 470k to pin 5 (+28 V, formerly the screen supply). Build this assembly on an octal plug. Adjust the 470k resistor to obtain 0.2 to 0.7 V across the 22-ohm resistor.

An improved circuit is shown in fig. 5. A LED makes an excellent 1.5 V zener — much better than a zener at low current. I used 10k to a LED to obtain 1.5 V and 47k from the LED to the Darlington base. That’s a total of five components. The dropping resistor in the power supply can now be increased to 4 ohms. You have removed 16 watts from the filament string.

Next we operate on the detectors. V602, V603 are 12AU7s with filaments in series. They are used as four diodes for detectors and agc. Pull out V603 and insert two germanium diodes into the socket holes, one with anode to pin 1 and cathode to pin 3 (see fig. 6), and the other with anode to pin 6 and cathode to pin 8. The set should work, even with V602 dead. Insert two more diodes in the same places on V602 socket to get the squelch rectifier and agc working again.

You can now increase the power-supply dropping resistor to about 8 ohms, and the filament string will have decreased from 3 to just over 2 amps. The radio has now become practical, and you haven’t had to take the chassis apart. The next step should involve fet substitutes, a very practical possibility with only 30 volts on the plate bus.

N. J. Thompson, KH6FOX

Selecting white noise diodes

Several articles have appeared in *ham radio* on how to build an rf noise bridge for measuring antenna impedance. The following method for finding a suitable noise diode is the utmost in simplicity. The equipment needed is a variable voltage supply between 5 and 10 volts, a variable resistor box or potentiometer, and your communications receiver. If you don’t have a variable power supply, use a 9-volt battery. However, if you wish to know more about the characteristics of each diode, a variable supply will be needed and each diode can be catalogued. The test setup is shown in fig. 7.

fig. 5. Improved audio replacement.

fig. 6. V602 and V603 replacements.

fig. 7. Setup for testing “noise generator” zener diodes.

Turn on your communications receiver and run a short antenna wire to within a few inches of the diode under test, apply 9 volts to the diode with a series resistor of about 10k to 40k. If no noise is heard, reverse the diode polarity. When the noise has been maximized for the range of 7% to 9 volts, use
an ohmmeter to measure the total resistance of the variable resistor plus the fixed resistor. About ten percent of the diodes tested gave an output sufficient to produce a roar from the receiver loudspeaker, and the optimum resistance was 33k.

With a variable power supply you can optimize and catalog each diode for voltage and resistance. I selected my diodes for the noise bridge using 9 to 7½ volts at some given resistance, which provides the greatest use of a 9-volt battery.

Lloyd Jones, W6DOB

goral oscillator notes

The Goral crystal oscillator circuit described by Don Stoner in ham radio* appears to be excellent in many respects. I have found, however, that the proper value of C2 in fig. 4 of the original article is a critical function of the capacitance for which the crystal is calibrated. Crystals for the GE Progress Line, for example, are ground to operate into a 10-pF load and will not oscillate on their proper frequency using 20 pF as the value of C2. Data on two different crystals for a GE Progress Line receiver are shown in fig. 8. A value of 12 pF for C2 is more suitable as it allows the crystal to be netted using an 8-pF trimmer capacitor at C1. The data also illustrate the wide frequency range over which the oscillator will operate when different values of C1 and C2 are used.

Robert E. Cowan, K5QIN

simple crystal oven

This unit can be added to existing equipment, such as a frequency counter, that uses a crystal oscillator as a reference frequency. It provides proportional rather than on-off control. All components are mounted on the crystal with several advantages. All heat produced (2 watts maximum) is used in maintaining the crystal temperature, so power consumption is low. All oven components except the trimpot operate at the crystal temperature, aiding stability. Parts layout and schematic are shown in fig. 9.

Installation is simple. Note that the TO-5 transistor case is at ground potential. The crystal socket and a simple tie around the foam insulation are sufficient support because of the light weight.

The thermistor, which was from a transistor amplifier bias circuit, is about 1k at room temperature. Values much different from this might require circuit changes. For correct operation the current through the thermistor (about 1 mA) should be much more than the base current of transistor Q1 (0.1 mA). Q1 and Q2 should have low leakage currents. If Q2 is a silicon type, increase the 150-ohm resistor to 680 ohms.

The supply voltages may be available in the existing equipment power supply, and maximum drain is only 200 mA. An unregulated voltage higher than 9 volts would require higher-value heating resistors. Power transistor Q2 supplies some of the heat when the operating temperature is reached and proportional control occurs.

Temperature stability depends on the 5-volt supply and the efficiency of the foam insulation, which can be attached neatly with masking tape. Some heat unavoidably leaks through the crystal socket.

The oven should operate a little above the maximum temperature expected inside the equipment, which should be well ventilated. Set the trimpot so the current from the unregulated supply is about 30 mA with the equipment at maximum temperature. My unit reaches operating temperature in 5 to 10 minutes, depending on the ambient temperature.

P. H. Mathieson

notes on 3-400Z, 3-500Z filament circuits

The popular 3-400Z and 3-500Z zero-bias triodes used in cathode-driven amplifiers require 5 volts for the filament supply. A pair will draw 29 amps of filament current. This relatively high current can lead to a series of problems all having the same net result: low filament voltage from excessive resistance somewhere in the filament circuit. Let's assume that in the filament circuit an undesired resistance of only 0.01 ohm is caused by a poor solder connection. At 29 amps, this resistance will result in a voltage drop of 0.29 volt. It will also result in 8.4 watts being dissipated as heat in the already poor connection.

The practical result of this situation was seen in a commercially made amplifier using a pair of 3-400Zs. After about a year of operation, the amplifier gradually started losing output power. The problem has all the appearances of one
or both tubes going bad. The amplifier was upended for a close examination of the filament circuit. The connections from the filament choke had the appearance of cold solder joints. A voltmeter check (performed with the high voltage disabled) showed less than 4.5 volts on the filaments, measured right at the tube pins. A voltage drop of more than 0.1 volt was measured across each of the four solder connections for the filament choke. Enough heat had been generated to soften the solder at each connection. When the four connections were cleaned and resoldered, 5 volts were measured at the tube filaments. Not only was the lost power regained; the amplifier actually put out more power than it had when brand new! In this case the connections were marginal from the start, and enough heat had been generated to continue oxidizing the solder, resulting in a slow deterioration of the connections until finally there was a noticeable degradation in performance.

Every soldered connection in the filament circuit is a potential source of trouble in this regard as are the pressure contacts between tube pins and socket. So if your amplifier has lost some of its pep, check the filament voltage at the tube socket before investing in new tubes. A good solder connection should have no appreciable voltage drop across it, even at 29 amps, but there may well be a drop of 0.1 volt or more across each half of the filament choke, depending on wire size. Prolonged operation with low filament voltage can result in a loss of some of the filament emission. Should this occur, it may be restored by operating the tube at normal filament voltage with no drive or plate voltage for about an hour.

If it appears that the filament has burned out, try resoldering the filament pins and you may be pleasantly surprised. It’s not unheard of for the tube pin to develop a poor solder connection and open up completely. Another tube problem that occasionally occurs is a filament-to-grid short. If this happens while the tube is still in warranty, of course it should be returned to the manufacturer for a replacement. Even if the tube is out of warranty, the situation is not necessarily hopeless. Often it’s possible to burn out the short by discharging a large capacitor through it. Measure the resistance from each end of the filament to the grid. Use the filament pin that gives the lower reading, which will allow more current to flow and is more likely to melt the short. One 3-400Z was successfully repaired in this manner four times using a fully charged 2500 μF 200-volt capacitor. Each time this was done, no doubt some of the thin wires in the grid structure were damaged. On the fifth occasion the filament burned out, but the need to purchase a new tube was successfully delayed for over a year.

John E. Becker, K9WEH

New Hardware for Learning Digital Electronics

Now there’s a new hardware system for teaching yourself digital electronics. It’s designed to complement our top selling Bugbook I & II. Bugbooks cover everything from simple gates to shift registers. And now we’re offering all of the hardware you’ll need to complete the experiments.

You’ll get all required “outboards” in kit form, including the power, logic, switch, seven segment readout, clock, LED lamp monitor, and dual pulser outboards. A jumper package and starting IC package. And the E&L SK-50 solderless breadboarding socket. All for only $67.50. If you need Bugbooks I & II, they’re an additional $16.95 for the set. All postage and shipping is prepaid anywhere in the continental U.S. Send your check or money order today.

CIRCUIT DESIGN, INC.

Division of E&L Instruments

P.O. Box 24

Shelton, Conn. 06484

Please send me your new hardware package (#IS-4K) learning digital electronics. My $67.50 is enclosed.

Please send me Bugbooks I & II (#IS-SW). $16.95 is enclosed for them.

Name ____________________________

Address ____________________________

City ___________ State ____ Zip ______

Please enclose check or money order. Shipments will be prepaid.

April 1976
WILSON "WE-224" MOBILE

SPRING SPECIAL

$209.95

FEATURES

1. 24 Channel Operation
2. One priority Channel
3. Selectable 1 or 10 Watts Out
4. 10.7 Monolithic Filter Installed
5. 455 KHz Ceramic Filter
6. Numerical Read-out on each Channel
7. Built-in Adjustable "Tone- Burst" Generator
8. Front Panel Tone Burst Control
9. Accepts Wilson 1402 & 1406SM Xtsis
10. Individual Trimmer Capacitors for both TX/RX
11. Moist Front End
12. Helical Resonator
13. High VSWR Protection Circuit
14. Reverse Polarity Protection Circuit
15. NBFM - 15 KHz Channel Separation
16. External Speaker Jack
17. Built-in Speaker
18. Dynamic Microphone Included
19. Mobile Mounting Bracket Included
20. Frequency Range 144-148 MHz
21. 63/"W x 21/"H x 9"D
22. Weight: 5 lbs.
23. Power Requirements:
 Source: 13.8 VDC ± 10%
 Transmit: 1.6A
 Receive: 0.4A

SPECIAL INCLUDES:

A. WILSON "WE-224"
B. MOBILE MIKE
C. MOUNTING BRACKET
D. 146.52/52 SIMPLEX CRYSTAL
E. TWO PAIR TX/RX CRYSTALS OF YOUR CHOICE.

SPRING Special on
Wilson Hand Held 220 and 450

2202 SM

FREQUENCY RANGE 220 - 225 MHz
1. 6 Channel Operation
2. Individual Trimmers on all TX/RX Crystals
3. All Crystals Plug In
4. 12 KHz Ceramic Filter
5. 10.7 and 455 KHz IF
6. 3 Microvolt Sensitivity for 20 Db Quieting
7. Weight: 1 lb. 14 oz. less Battery
8. Battery Indicator
 Size: 4 7/8 x 1 3/4 x 2 7/8
 Switchable 1 & 2.5 Watts Output
 @ 12 VDC
9. Current Draw: RX 14 MA TX 500 MA
10. Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL

$239.95

INCLUDES

1. 2202 SM
2. Flex Antenna
3. 223.50 Simplex Installed

4502 SM

FREQUENCY RANGE 420 - 450 MHz
1. 6 Channel Operation
2. Individual Trimmers on all TX/RX Crystals
3. All Crystals Plug In
4. 12 KHz Ceramic Filter
5. 10.7 and 455 KHz IF
6. 3 Microvolt Sensitivity for 20 Db Quieting
7. Weight: 1 lb. 14 oz. less Battery
8. Battery Indicator
 Size: 4 7/8 x 1 3/4 x 2 7/8
 Switchable 1 & 1.8 Watts Output
 @ 12 VDC
9. Current Draw: RX 14 MA TX 500 MA
10. Unbreakable Lexan Case
11. Microswitch Mike Button
12. Built-in Antenna Switch

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL

$279.95

INCLUDES

1. 4502 SM
2. Flex Antenna
3. 446.00 Simplex Installed

HAND HELD ACCESSORY SPECIALS

NOTE:
ACCESSORY SPECIAL PRICE AVAILABLE ONLY AT TIME OF RADIO PURCHASE

DESCRIPTION

BC1 - BATTERY CHARGER $29.95
BP - I.C-CAD BATTERY PACK 10.95
LC1 - 1402 LEATHER CASE 8.50
LC2 - LEATHER CASE FOR 1408, 2202, 4402 8.50
SM5 - SPEAKER MIKE FOR 1402 AND 1405 34.95
TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED 34.95
TX1 - TOUCH TONE PAD INSTALLED (With Perchase) 49.95
XP1 - 16.7 MONOLITHIC IF XTL FILTER INST. 8.95
CRYSTALS: TX OR RX (Common Freq. Only) 3.00

LC1 - 1402 LEATHER CASE
LC2 - LEATHER CASE FOR 1408, 2202, 4402
SM5 - SPEAKER MIKE FOR 1402 AND 1405
TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED
TX1 - TOUCH TONE PAD INSTALLED (With Perchase)
XP1 - 16.7 MONOLITHIC IF XTL FILTER INST.
CRYSTALS: TX OR RX (Common Freq. Only)

SPRING Special on
Wilson Hand Held 220 and 450

2202 SM

FREQUENCY RANGE 220 - 225 MHz
1. 6 Channel Operation
2. Individual Trimmers on all TX/RX Crystals
3. All Crystals Plug In
4. 12 KHz Ceramic Filter
5. 10.7 and 455 KHz IF
6. 3 Microvolt Sensitivity for 20 Db Quieting
7. Weight: 1 lb. 14 oz. less Battery
8. Battery Indicator
 Size: 4 7/8 x 1 3/4 x 2 7/8
 Switchable 1 & 2.5 Watts Output
 @ 12 VDC
9. Current Draw: RX 14 MA TX 500 MA
10. Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL

$239.95

INCLUDES

1. 2202 SM
2. Flex Antenna
3. 223.50 Simplex Installed

4502 SM

FREQUENCY RANGE 420 - 450 MHz
1. 6 Channel Operation
2. Individual Trimmers on all TX/RX Crystals
3. All Crystals Plug In
4. 12 KHz Ceramic Filter
5. 10.7 and 455 KHz IF
6. 3 Microvolt Sensitivity for 20 Db Quieting
7. Weight: 1 lb. 14 oz. less Battery
8. Battery Indicator
 Size: 4 7/8 x 1 3/4 x 2 7/8
 Switchable 1 & 1.8 Watts Output
 @ 12 VDC
9. Current Draw: RX 14 MA TX 500 MA
10. Unbreakable Lexan Case
11. Microswitch Mike Button
12. Built-in Antenna Switch

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL

$279.95

INCLUDES

1. 4502 SM
2. Flex Antenna
3. 446.00 Simplex Installed

HAND HELD ACCESSORY SPECIALS

NOTE:
ACCESSORY SPECIAL PRICE AVAILABLE ONLY AT TIME OF RADIO PURCHASE

DESCRIPTION

BC1 - BATTERY CHARGER $29.95
BP - I.C-CAD BATTERY PACK 10.95
LC1 - 1402 LEATHER CASE 8.50
LC2 - LEATHER CASE FOR 1408, 2202, 4402 8.50
SM5 - SPEAKER MIKE FOR 1402 AND 1405 34.95
TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED 34.95
TX1 - TOUCH TONE PAD INSTALLED (With Perchase) 49.95
XP1 - 16.7 MONOLITHIC IF XTL FILTER INST. 8.95
CRYSTALS: TX OR RX (Common Freq. Only) 3.00

LC1 - 1402 LEATHER CASE
LC2 - LEATHER CASE FOR 1408, 2202, 4402
SM5 - SPEAKER MIKE FOR 1402 AND 1405
TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED
TX1 - TOUCH TONE PAD INSTALLED (With Perchase)
XP1 - 16.7 MONOLITHIC IF XTL FILTER INST.
CRYSTALS: TX OR RX (Common Freq. Only)
Wilson Electronics Corp.

FACTORY DIRECT ONLY

1402SM
HAND HELD
2.5 WATT
TRANSCEIVER
144-148 MHz
$164.95

1405SM
HAND HELD
5 WATT
TRANSCEIVER
144-148 MHz
$239.95

SPRING SPECIAL

FEATURES

1402 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 IF and 455 KC IF
- .3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 14 oz.
- less Battery
- S-Meter/Battery Indicator
- Size: 8 7/8 x 1 7/8 x 2 7/8
- 2.5 Watts Minimum
- Output @ 12 VDC
- Current Drain RX
- 14 MA TX 500 MA
- Microswitch Mike Button

1405 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- .3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 14 oz.
- less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 5 Watts Minimum
- Output @ 12 VDC
- Current Drain: RX
- 14 MA TX 400 MA
- (lw) 900 MA (SW)
- Microswitch Mike Button
- Unbreakable Lexan® Case

Optional Touch-Tone Pad Shown

Can be Modified for MARS or CAP

10 Day Money Back Guarantee
90 Day Warranty

TO: WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NEVADA 89103
(702) 739-1931

SPRING SPECIAL DIRECT SALE ORDER BLANK

2202 SM @ $239.95... 4502 SM @ $269.95... WE-224 @ $199.95... 1402 SM @ $164.95... 1405 SM @ $239.95.
Accessory Special Prices Available Only at Time of Radio Purchase.

BC1 @ $29.95. BP @ $10.50. LC1 @ $8.50. LC2 @ $8.50.
SM2 @ $24.95. TE1 @ $34.95. (SPECIFY FREQUENCY)

TTP @ $49.95. XF1 @ $8.95. TX or RX XTALS @ $3.00 ea. INSTALL XTALS @ $7.50/Radio.

EQUIP TRANSCEIVER AS FOLLOWS: XTALS A. B. C. D. E. F.

ENCLOSED IS __

CHECK MONEY ORDER MC BAC

CARD # ___________________________ EXPIRATION DATE ________________

NAME ___________________________ ADDRESS ___________________________

CITY ___________________________ STATE _______ ZIP_____________________

SIGNATURE ______________________

SHIPPING & HANDLING PREPAID FOR SPRING SPECIAL

VALID ONLY APRIL 1 THRU 30, 1976

HOURS NEVADA RESIDENTS ADD SALES TAX

april 1976 69
VHF Engineering has just announced two VHF fm transmitter kits for 144 and 220 MHz, the TX-144B and TX-220B. These new kits offer state-of-the-art design using pre-wound coils, epoxy-glass circuit board, temperature-compensated crystal trimmer, and have a nominal output of 1.5 watts.

Both construction and tune-up have been simplified through the use of pre-wound coils and tune-up test points, making these units one-evening projects. Special tools or equipment are not required. Only a low-wattage soldering iron, solder, wire cutters, and long-nosed pliers are needed for construction. Tune-up requires only a VOM, a small light bulb, and a channel option. Companion receiver kits and power amplifier kits are available so that the average amateur may build his own VHF fm transceiver at a very nominal cost. These units may be ordered directly from VHF Engineering, 320 Water Street, P.O. Box 1921, Binghamton, New York 13902 or from one of their many dealers throughout the country. The TX-144B and TX-220B kits sell for $29.95 each plus shipping. New York State residents should add sales tax.

programmable-memory keyer

If you’re a contest operator you’ll be interested in the MK-75 keyer by Brown and Simpson Engineering of Ontario, Canada. The MK-75 features design innovations especially tailored for serious competition work. The best features of the Accu-Keyer and the TO-type keyer have been incorporated into the MK-75, making it easy to use for those familiar with either of these keying methods.

The MK-75 features self-completing characters, dot/dash memory (iambic), as well as automatic letter and word spacing. A sidetone oscillator is also provided, with volume and tone controls. Speed range of the MK-75 is 5-65 wpm.

The MK-75 memory is quite versatile. To program a message, you place the READ/WRITE switch in WRITE position, press any one of the four quadrant buttons with its LED display, key in your message, and return the switch to READ position. To read a message, just press a quadrant button.

Suppose you wish to enter an insert into the preprogrammed message. Merely program the first part of the message as described above, press the INSERT button, program the remainder of the message, and return the READ/WRITE switch to READ. The memory stops at the point where you wish to insert the message and waits while you insert the message manually. The memory then finishes the preprogrammed message after your insert.

The MK-75 includes many other features such as insert-function bypass, disable or delay of automatic restart capability, instant message interrupt, and message editing.

These are only the basic operations of the MK-75: the user’s manual has more detailed information. Price is $249.00, which includes shipping and handling in the U.S.A. and Canada. More information is available from Brown and Simpson Engineering, 17 South Edgeley Avenue, Scarborough, Ontario, Canada M1N 3K9, or use check-off on page 110.

rf power and swr meter

The model C1277 broadband power/swr meter by Werlatone is an inexpensive instrument for amateur use in the hf and vhf range. The C1277 covers 27 to 450 MHz continuously and features dual power-range scales for 15 and 50 watts. A unique broadband coupler provides a useful bandwidth approximately eight times greater than previously available. No plug-in units or separate indicators are required. Wattmeter accuracy is ±10% when used with a 50-ohm antenna system. Sensitivity for swr measurements is less than 5 watts. ICAS power capability is 50 watts CW, 27 to 200 MHz; 25 watts CW, 200 to 300 MHz, and 15 watts CW, 300 to 450 MHz. Single-sideband power capability over the entire range is 50 watts maximum.

The model C1277 is attractively packaged in a 4x4x5 inch (10x10x12.5cm) enclosure and is equipped with a two-color, wide-view meter. The wideband directional coupler, which is weather-tight, may be removed from the enclosure for remote location.
No other environmental protection is needed.

The wattmeter is an in-line instrument and is a useful addition to your station for monitoring transmitter and antenna performance. Amateur net price of the model C1277 is $89.50. If you'd like more information, write to Werlatone, Inc., Brewster, New York 10509, or use check-off on page 110.

semiconductor curve tracer

Hickok's new model 440 curve tracer, with exclusive *Insta-Beta* display, dynamically tests all types of semiconductors under actual conditions — in or out of circuit. Used with any scope having an external horizontal input, it generates calibrated characteristic curves that can be accurately scaled right from the screen. It safely tests jfets, mosfets, diodes, zeners, transistors, UJTs and SCRs — silicon or germanium, power or signal.

Insta-Beta takes the guesswork out of transistor beta and fet parameter calculations. In the transistor mode, *Insta-Beta* displays a single, full range I_C/I_B curve from which ac and dc beta can be instantly determined without interpolation. This curve also shows beta linearity at a glance. In the fet mode, *Insta-Beta* displays the entire transfer curve including pinch-off voltage, full-on current, and active portion for easy calibration of transconductance.

In normal semiconductor testing, a variable step control provides characteristic curve displays with up to ten steps per family (steps of base current for transistors and steps of gate voltage for fet).
THE FM LEADER

2 METER 220 MHz
6 METER 440 MHz

FEATURING THE...

HR-2B

The Master in 2 Meter FM
Positive performance at a practical price makes our HR-2B tops on 2 meters. Individual trimmer capacitors give bull’s-eye accuracy for working repeaters or point-to-point. The .35μV sensitivity and Hi/Lo power switch insure your hearing and being heard... clearly and reliably... the Regency way.

12 Channels
15 Watts
$229.00 Amateur Net

...AND THE

HR-440

UHF—The Ultimate in FM
440 is fresh... it’s new... and with our HR 440 you can use UHF without using-up your budget. So, pioneer some new ground! Put a compact HR 440 under your dash or at your desk. It’s the best way to usher yourself into UHF.

12 Channels
10 Watts
$349.00 Amateur Net

decoder ic

The SC-427 is a new decoder chip available from Scarpa Laboratories in a standard 16-pin DIP which accepts TTL conditioned inputs from a seven-segment display driver and converts them back onto a BCD output.

The device was designed to take advantage of the powerful computing capability of low-cost calculator chips which, in their present form, dead end into a visual digital display. By converting back into BCD format, the engineer is able to break out this extraordinarily economical data-reduction ability into useful computer, controller, time-clock or print-out functions. The unit can also be used to interface LSI clock chips to computers, controllers or printers.

The TTL-Schottky device operates from a single 5 volt supply and has a conversion speed of 25 nanoseconds, thereby requiring only one device for multiplexed displays. For more information, write to Scarpa Laboratories, Inc., 46 Liberty St., Metuchen, New Jersey 08840, or use check-off on page 110.

fets). Maximum sensitivity of 1 volt per division is especially useful for measurements in the semiconductor threshold or turn-on region.

Controls are logically arranged on the front panel and use color coding and fast set-up marks where applicable. A handy pull-out card provides ready reference information for calibration, set-up and operation of the instrument.

For more information on the Model 440 Curve Tracer contact Tom Hayden, Instrumentation & Controls Division, Hickok Electrical Instrument Company, 10514 Dupont Avenue, Cleveland, Ohio 44108 or use check-off on page 110.

Regency ELECTRONICS, INC. 7707 Records Street Indianapolis, Indiana 46226

© 1976
vhf transverter

The new Europa B from Solid State Modules is a linear transmit and receive converter from 28-30 MHz to 144-146 MHz or 50-52 MHz and is suitable for use with either a transceiver or separate receiver/transmitter. It is ideal for Oscar operation as well as normal tropo work. A crystal switch and extra crystal can be installed to extend the frequency coverage. Although designed primarily for ssb operation, the Europa B will receive and transmit any mode which the hf equipment is capable, ssb, a-m, fm, FSK or CW.

The receiver converter is broadbanded to cover the entire vhf band without any tuning. It uses dual-gate mosfets for optimum sensitivity, gain and low cross-mod. The noise figure is 2 dB; converter gain is 30 dB. The transmit converter uses tubes to provide high power, good linearity and high rejection of spurious signals. Power input is 200 watts (50% efficiency, minimum), drive requirement, 200 mW. An optional ac power supply is available.

For more information on the new Europa B Vhf Transverter, write to Solid State Modules, 1624 Kaweloka Street, Pearl City, Hawaii 96782, or use check-off on page 110.

fm scanning receiver

Tennelec, Incorporated, is now offering an improved version of their Memoryscan fm scanning receiver, the Memoryscan MS-2. With this receiver you can monitor up to 16 low/high vhf and uhf channels without buying expen-
NOW ... from KLAUS RADIO

Kenwood's TS-700A

This is the 2-meter rig you've been hearing about. Forty-four channels, tunable VFO, SSB-CW plus that hard-to-beat Kenwood quality.

Features:
- 144 to 148 MHz coverage - SSB (upper & lower), FM, AM, and CW - Solid State Circuitry - Complete with mic and built-in speaker - operates on 120/220V, 50/60 Hz or 12-16V D.C. - Size: 278 (w) x 124 (h) x 320 (d) mm. - Wt: 11 Kg.

All this and much, much more for .. $700.00 ppd. in U.S.A.

The Yaesu FT-221

is something else. One beautiful 2 meter Transceiver for Mobile or Base Station Duty. Here's another winner to own.

Features:
- 144 to 148 MHz band coverage - SSB (upper & lower), AM, FM or CW - operates on 120/220V, 50/60 Hz or 13.5V D.C. - 11 crystal channels per band segment equals 88 channels - Built-in speaker - Size: 200 (w) x 125 (h) x 295 (d) mm. - Wt: 8.5 Kg

Lots of Performance and Quality for $679.00 ppd. in U.S.A.

Send SASE NOW for detailed info on these systems as well as on many other fine lines. Or, better still, visit our store Monday thru Friday from 8:00 a.m. thru 5:00 p.m.

KLAUS RADIO Inc.
8400 N. Pioneer Parkway, Peoria, IL 61614
Jim Plack WB9BGS — Phone 309-691-4840

A portable high-sensitivity frequency counter designed specifically for telecommunications applications was recently introduced by the Fluke Counter Division. This all-new frequency counter, Fluke model 1920A, incorporates many new and innovative features including advanced LSI/MOS circuitry which makes a major contribution to the counter's exceptional electrical specifications while permitting a significant reduction in the unit's size and weight.

The 1920A features a nine-digit LED display, sensitivity to 15 mV, AGC standard, and a frequency range from 5 Hz to 520 MHz. Optional internal prescalers to 1000 MHz and 1250 MHz cover uhf television, 900-MHz telecommunications, and TACAN/DME.

Direct and prescaled inputs are color-coded to match their corresponding function switches to facilitate operation, while the large, seven-segment nine-digit LED display incorporates full leading zero suppression, automatic an-
nunciation, overflow and a self-check mode which lights all digit segments.

Measurement delays have been eliminated in the 1920A through a “rapid-access gate” which free runs in the absence of input signals to be in a position to open the gate for the selected gate time as soon as a signal is sensed. An auto-reset circuit initiates a new measurement every time any front panel switch is activated, ensuring that the first measurement obtained is always correct.

In addition to normal frequency measurements, a burst function switch is provided, permitting the measurement of rf bursts having a duration of 2 ms or more. To avoid erroneous reading, the display is automatically reset to zero if the burst width is less than the gate time selected. An optional resolution multiplier is available which coherently multiplies audio tone signals by 1000, providing a resolution of 0.001 Hz in 1 second.

The 1920A frequency counter is backed by Fluke’s full warranty and coast-to-coast service, and is priced at $859, FOB Buffalo, New York. For more information, write to John Fluke Mfg. Co., Ltd., Counter Division, Post Office Box 1094 Station D, Buffalo, New York 14210, or use check-off on page 110.

QSL display album

To organize, display and protect your QSL cards, Ace Art Company offers the NuAce QSL Card Display Album. Available in blue, black or ginger binder, the album has 23 chrome steel rings which hold up to 25 pages or 150 cards. Crystal clear pages of durable vinyl give protection from handling, dampness, and fading. Each page has 3 pockets sized 3-7/8 x 7 inches (9.8 x 17.8 cm) and will hold six cards back to back. (Also available is a two-pocket page with 5-5/8 x 7-inch pockets (14.3 x 17.8 cm) for oversize cards, and a one-pocket page sized 12 x 7 inches (30.5 x 17.8 cm).

The binder and 10 pages holding 60 QSL cards may be purchased for $5.95 (plus $1.50 shipping and handling) from Ace Art Company, Inc., 24 Gould Street, Reading, Massachusetts 01867. Extra vinyl pages are 49 cents each.
Coming next month — new SBP-3

NEW technical approach for increased talk power (typically 12 dB)

SPEECH PROCESSOR FEATURES:
- low distortion (typically 5%)
- SSB compatible
- integrated circuits
- speech enhancement
- adaptive filtering technique
- impervious to RF feedback
- dynamic range 60-dB (virtually overload-proof)
- optimized speech bandwidth
- automatic level control
- visual level indicators
- use between microphone and transceiver
- mobile or base station installation
- one year warranty-money back guarantee

see it and the designer at the Dayton Hamvention — April 1976

INQUIRIES INVITED!

MAXIMILIAN ASSOCIATES

BOX 223

SWAMPSCOTT, MA 01907

NOW AVAILABLE U.S.A.

THE WORLD RECORD

(ONE MILLION MILES PER WATT)

JOYSTICK VFA SYSTEM

160 thru 10M — BC & Full SW Coverage

TRANSMIT — RECEIVE

The incredible (patented) 7/8" Long Antenna Direct air mail from England — Fast Service — No Middlemen!

ONLY RP GIVES YOU BOTH

PLUS

- SUPER ACCURACY (.0005%)
- FULL 2M FM COVERAGE

144-148 MHz

WORKS WITH MOST FINE AMATEUR OR COMMERCIAL GRADE RADIOS

MFA-22 SYNTHESIZER

PRICED $325

PLUS $5 Ship.

SEND FOR FULL DETAILS

SEND SASE for flyer. Featuring Electronic component and kits available.

HAL-TRONIX

P. O. Box 1101 • Southgate, Mich. 48195

(313) 285-1782

SEE YOU AT DAYTON IN APRIL

TUNE IN THE SPIRIT OF 76

ARRL NATIONAL CONVENTION

DENVER, JULY 16, 17 & 18

1976 ham radio

Bigger & Better with MORE for everyone

YOUR BEST BUY IN KITS

ANALOG-DIGI-LAB

Features 3 Regulated power Supplies, 3 Output wave forms, 8 digital level switches. No bounce pulser switches.

8 LEDs with drivers, 1 AP Super strip, Easily constructed. Designed by RETS Electronic Schools.

1st time offer $139.00

Discrete basic clock kit $16.95

Function Generator Kit $10.95

Send SASE for flyer. Featuring Electronic component and kits available.

FREQUENCY COUNTER

7 Digit 0-300 MHz Freq. Counter $99.00

7 Digit 0-500 MHz Freq. Counter $139.00

Cabinet accessory package available for above $24.95

DVM available about March

Cheapy Clock Kit $12.95

Electronic Dice Kit $10.95

76 April 1976
Add the amateur radio mobile antenna to the list of things successfully automated for our increasing comfort.

The Swan Model 742 Triband Mobile, the only automatic amateur radio antenna, eliminates coil changing, tap adjusting, switch flicking and all the rest of mobile antenna inconvenience.

Now for the first time ever you just sit behind the wheel and change from 20 to 40 to 75 meters while your 742 automatically loads itself for each band—perfectly.

Rated at 500 watts P.E.P., the new antenna is one of a complete line of advanced amateur radio antennas and antenna accessories by Swan. All designed to help you put maximum power where you want it.

Model 742 automatic triband mobile antenna. $79.95.
Only from Swan. Where else?

Dealers throughout the world
or order direct from

SWAN
ELECTRONICS
A subsidiary of Cubic Corporation
Home Office:
305 Airpor Road • Oceanside, CA 92054
Take your 2-meter hand-held everywhere with a Hy-Gain 2-meter flex antenna 144-148 MHz.

Replace your cumbersome whip with a high performance flex antenna from Hy-Gain. They're so short and flexible you can take your 2-meter hand-held everywhere with ease. These rubber duckies are tough enough to take almost any kind of abuse. A special vinyl coating completely insulates the continuously loaded element. It won't crack, break or split, no matter how you bend it. Hy-Gain flex antennas cannot be shorted accidentally. They are completely impervious to weather and corrosion, designed with the same expert care that produces our superb military and commercial antennas.

Whether your 2-meter hand-held is one of the fine commercial units or one you built by hand, a Hy-Gain flex antenna will let you take it wherever you go . . . with the performance you want.

Available in three connector types pre-tuned for optimum performance.

Order No. 274 BNC or “snap” fitting. Fits Tempo, Wilson, Ken Product, Clegg, and other with BNC connector.

Order No. 275 For SO-239. Fits Drake and Motorola.

Order No. 269 5/6 x 32 stud. Fits Motorola, GE, Johnson, RCA, Comco, and Standard.

Hy-Gain Electronics Corporation
8601 Northeast Highway Six • Lincoln, NE 68505

1976 Hy-Gain
Hy-Gain 270
2-meter antenna.

A great mobile that’s also a great base.

The same state-of-the-art qualities that make the Hy-Gain 270 antenna a great 2 meter mobile, make it a great 2 meter base.

Hy-Gain design has eliminated hard tuning, high VSWR and poor pattern due to irregular ground plane. The 270’s slim mobile configuration makes it ideal for apartment or urban installations where space is at a premium.

Fiberglass 270 develops gain through the use of 2 stacked 5/8 wave radiators with a self-contained 1/4 wave decoupling system. Gain that helps reach distant repeaters.

Since the antenna and feedpoint are sealed in fiberglass, the Hy-Gain 270 delivers top performance year after year without corrosion loss.

Get all the 2 meter base you need, for the price of a 2 meter mobile. The great Hy-Gain 270.

- 6db gain
- 250 watt rated
- 144-148 MHz
- VSWR less than 1.5:1 at resonance, 6 MHz bandwidth
- 96” high
- Completely factory tuned
- 50 ohm input impedance
- Complete with 18’ coax and PL-259

For information on Hy-Gain 2 meter and other amateur products contact your Hy-Gain distributor or write.

Hy-Gain Electronics Corporation: 8601 Northeast Highway Six; Lincoln, NE 68505; 402/464-9151; Telex 48-6424
CRYSTAL FILTERS

and

DISCRIMINATORS

K.V.G.

10.7 MHz FILTERS, 8 POLE
XF107-A 14kHz NBFM $40.60
XF107-B 16kHz NBFM $40.60
XF107-C 32kHz WBFM $40.60
XF107-D 36kHz WBFM $40.60
10.7 MHz FILTERS, 4 POLE
XM107-S04 14kHz NBFM $18.95
10.7 MHz FILTERS, 2 POLE
XF102 14kHz NBFM $7.95

SOCKET (for XM107-S04) type DG1 $1.50

VHF CONVERTERS UHF

RF Freq. (MHz) MFc 50 MFc 144 MFc 220 MFc 432 MFc 1296
Power 12V D.C. 1 1/4 x 1 3/4 x 4 1/4 + connectors

NBFM $23.20

XM107-S04 14kHz NBFM $18.95

XD107-01 50kHz NBFM $23.20

Exp. Inquiries Invited

Shipping 75c per filter

UHF PRE-SELECTOR FILTERS

MODEL PSF432 PSF1296
FREQ. RANGE 420-450 MHz 1250-1340 MHz
RIPPLE TYP. 0.1dB PEAK 0.15dB
I. L. TYP. 0.1dB PEAK 0.2dB
CONNECTORS BNC TNC
IN/OUT IMPEDANCE 50 OHMS 50 OHMS
Shipping $34.95

$34.95

146 ↔ 440 FM TRANSVERTER

Use your 2 meter FM Transceiver on the 440 MHz band with the addition of the FM140 TRANSVERTER. No changes required to your 2 meter Transceiver. Connect FM140 in place of regular 2 meter antenna. Connect 2 M and 440 antennas (also 12 v) to FM140. Change bands automatically with switch on FM140.

Price $179.95 — Shipping $2.00

Repeater Groups write for details. Application note available.

SPECTRUM INTERNATIONAL, INC. P. O. BOX 1084 CONCORD, MASS. 01742 U.S.A.

DON & BOB

NEW GUARANTEED BUYS

CDE HAM II ROTOR $129.00
BELDEN 8448 ROTOR CABLE 14¢/ft.
CDE-44 ROTOR $104.00
CALL FOR SUPER PRICES ON: HY-GAIN TH6DXX, 18AVT/WB, 18 HT HIGH TOWER, MOSLEY CLASSIC 33, TRI-EX W SERIES TOWERS.
RAYTHEON 811A (SEALED CARTONS) $15.00/pair
QUOTE TS-520; 210X — WRITE FOR ITEMS NOT LISTED.

PRICES FOB HOUSTON. TEXAS RES. ADD 5% STATE SALES TAX.

CALL FOR FAST QUOTES!!

MADISON

ELECTRONIC SUPPLY, INC.

1508 McKinney AVENUE

HOUSTON, TEXAS 77002

713/224-2668

Nites 713/497-5683

ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.
- Powered by 6-16vdc, unregulated
- Microminiature in size to fit made all mobile units
- Internal and portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustable potentiometer
- Low distortion tone output
- Available in AEA tone frequencies: 67.0 Hz-203.5 Hz
- Compact immunity to RF
- Removable polarity protection built-in

29.95 each

COMMUNICATION SPECIALIST:

K-1 FIELD REPLACEMENT, K-1 FIELD, FREQUENCY DETERMINING ELEMENTS

$6.00 each
HOW TO SAVE HUNDREDS OF DOLLARS ON PARTS. PAINLESSLY.

STRETCH YOUR BUDGET FURTHER WITH DESIGN MATE 2
Precision function generator lets you test all kinds of equipment, with 1Hz-100kHz signals. Low-distortion sine waves, high-linearity triangle waves, fast-rise-time square waves. Five decade ranges, accurate to 5% of dial setting, with variable 100mV-10V P-P output and constant 600-ohm impedance. At $64.95, it's a lot of signal for very little money.

SAVE MONEY AND TIME WITH DESIGN MATE 1
This precision all-in-one unit combines a solderless plug-in breadboarding system with a built-in better-than-1% regulated variable 5-15V supply and 0-15V voltmeter. Gives you everything you need to design and test circuits faster than you ever could before. Saves money by eliminating lead damage and heat damage to components. Lets you re-use parts over and over again, to save even more. All for just $49.95.*

SAVE MORE MONEY AND TIME WITH DESIGN MATE 3
Accurate R/C bridge helps you use "bargain" components. Quickly and easily measures resistance 10 ohms—10 meg, capacitance 10pF-1uF—both in decade ranges to within 5% of dial setting. Simple, 2-control operation and positive LED indication make measurements in seconds. At $54.95, it pays for itself in no time.

At CSC, we've developed a family of ingenious Design Mate™ test equipment that gives you professional quality and precision at very unprofessional prices. Each unit can save you money—and time—in a number of interesting ways. For more information on these, or any other CSC products, see your dealer or write for our catalog and distributor list.

CONTINENTAL SPECIALTIES CORPORATION

More Details? CHECK-OFF Page 110
PORTABLE PLEASURE from STANDARD... SRC-146A SPECIAL with your choice of
- Rubber antenna
- Leather case
- Ni-cads
- Charger
- Remote mike
- Speaker mike
- Extra crystals
- PL, tone burst and TT pad
Put together your own package...
then call or write for the ERICKSON deal!

HOURS: 9:30 - 9 Mon. & Thurs.; 9:30 - 5:30 Tues., Wed. & Fri.; 9 - 3 Sat.
Open more than 50 hours a week to serve you better

ERICKSON COMMUNICATIONS, INC.
5935 North Milwaukee Ave., Chicago, IL 60646
(312) 631-5181
We Service What We Sell

GREGORY ELECTRONICS
The FM Used Equipment People.

WANTED

REWARD (Finder's Fee)
For Information Leading to the Capture of: Used FM Two-Way Radios made by General Electric, Motorola and R.C.A.
We're Interested in Buying...

CALL or WRITE
GREGORY ELECTRONICS CORP.
245 Rt. 46, Saddle Brook, N.J. 07662
Phone: (201) 489-9000

TPL for an Economy Price?
THAT'S RIGHT!
introducing the ECONO-LINE

Model Input Output Typical Frequency Price
702 5-20W 50-90W 10in./700ut 143-149 MHz $139.00
702B 1-4W 60-80W 1 in./700ut 143-149 MHz $169.00

Now get TPL COMMUNICATIONS quality and reliability at an economy price. The new Econo-Line gives you everything that you've come to expect from TPL at a real cost reduction. The latest mechanical and electronic construction techniques combine to make the Econo-Line your best amplifier value. Unique broad-band circuitry requires no tuning throughout the entire 2-Meter band and adjacent MARS channels. See these great new additions to the TPL COMMUNICATIONS product line at your favorite amateur radio dealer.

For prices and specifications please write for our Amateur Products Summary.

TPL COMMUNICATIONS INC.
1324 W. 135TH ST., GARDENA, CA 90247 (213) 536-9814

Canada: A.C. Simmonds & Sons Ltd., 285 Yorkland Blvd., Willowdale, Ontario M2J 1S8
Export: EMEC Inc., 2350 South 10th Ave., Hollywood, Fla. 33020

More Details? CHECK-OFF Page 110
THE TIGER

15% Savings on Gas

A Capacitive Discharge Ignition system absolutely guaranteed to improve your auto's operation and gas mileage.

No rewiring necessary. Engine cannot be damaged by improper installation. Either of these models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil & distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.

Write for free booklet that not only is the BEST description of CDIs, but also explains the need for such a system. Current prices assured till July 1, '76.

D-D ENTERPRISES
P. O. Box 7776
San Francisco, CA 94119

POLY PAKS CELEBRATES THE BICENTENNIAL WITH A "ONE-CENT" EDITION

HONEST ABE

SALE

Order by Cat. No. 419193 & Type No. below

2 METER CRYSTALS
IN STOCK

2 METER CRYSTALS
IN STOCK

FOR THESE RADIOS ON
STANDARD ARRL REPEATER
FREQUENCIES:

- DRAKE - TR-22
- GENAVE
- ICOM/VHF ENGINEERING
- KEN/WILSON
- REGENCY HR-2A/HR-212
- HEATHKIT HW-202
- REGENCY HR-28
- S.B.E.
- STANDARD 146/826
- STANDARD HORIZON

Send for free frequency list and order blank to:

KENS CO
COMMUNICATIONS INC.
DEPT. 10476
BOX 469, QUINCY, MA. 02169
PHONE: (617) 471-6427

POLY PAKS
P.O. BOX 480, SPRINGFIELD, MA. 01104

MINIMUM ORDER — $5.

Phone: (617) 343-6429

More Details? CHECK-OFF Page 110
This beautiful Walkie-Talkie Kit is easy to build and can be assembled in one weekend. You save hundreds of dollars by building it yourself. The HT-144B offers exceptional performance at a budget price.

- 3 Watts minimum
- 4 Channels
- 35uV for 20dB of quieting
- Low battery drain . . . less than 10 Ma
- Now you can build a commercial quality walkie talkie at home at half the price.
- Designed with a ham in mind. Average assembly time, just 10 hours.
- Small and handy, yet large enough to be assembled with conventional tools.
- Attractive, scratch resistant textured finish. diodes. Small with purchase of $29.95
- HT-144B RECEIVER SPECIFICATIONS: SENSITIVITY better than .35uV for 20db quieting. SQUELCH THRESHOLD better than .25uV. STABILITY .002 typical (depends on crystal).
- ADJACENT CHANNEL REJECTION 60 db. SPURIOUS RESPONSES down 70db. FIRST IF 10.7 Mhz SECOND IF 450 Khz. FILTER 4 pole monolithic 10.7 Mhz crystal. DISCRIMINATOR pre-tuned ceramic 455 Khz. BANDWIDTH 15 Khz at 3db points. CRYSTAL 45 Mhz parallel at 20pf. CRYSTAL FORMULA receive 1.8mhz, Transmit 144mhz.
- TRANSMITTER SPECIFICATIONS: OUTPUT 2 watts minimum. 3 DB BANDWIDTH 2 Mhz typical. STABILITY .002 typical (depends on crystal). SPURIOUS outputs down 30db or better. MODULATION true FM with varactor in crystal circuit. NETTING separate trimmers for each channel. DEVIATION adjustable to 7 KHz. AUDIO limiter and active low pass filter. MICROPHONE speaker type. CRYSTAL 18 Mhz parallel at 20pf.
- MULTIPLICATION FACTOR frequency times active low pass filter. MICROPHONE speaker type. CRYSTAL 18 Mhz parallel at 20pf.
- HT-144B TRANSMITTER SPECIFICATIONS: OUTPUT 2 watts minimum. 3 DB BANDWIDTH 2 Mhz typical. STABILITY .002 typical (depends on crystal). SPURIOUS outputs down 30db or better. MODULATION true FM with varactor in crystal circuit. NETTING separate trimmers for each channel. DEVIATION adjustable to 7 KHz. AUDIO limiter and active low pass filter. MICROPHONE speaker type. CRYSTAL 18 Mhz parallel at 20pf.
- MULTIPLICATION FACTOR frequency times 8. CURRENT DRAIN 500 ma typical.

LIMITED OFFER
Now an even better buy . . .

$129.95 includes Walkie Talkie Kit, 1 set of crystals for 146.52 simplex and rubber duck antenna. Battery charger included free with purchase of $29.95 half amp NICAD Pack.

ORDER FORM

<table>
<thead>
<tr>
<th>Item</th>
<th>Price Each</th>
<th>Quantity</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-144B Walkie Talkie</td>
<td>$129.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubber Duck Antenna</td>
<td>No Charge*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystals (pair) 146.52</td>
<td>No Charge*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Volt NICAD Battery</td>
<td>$29.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery charger (for HT-144B)</td>
<td>No Charge**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*With purchase of HT-144B Walkie Talkie **With purchase of HT-144B Walkie Talkie and NICAD Battery

More Details? CHECK-OFF Page 110

Stop at our booth at the Dayton Hamfest . . . Register for free drawing.

VHF engineering
DIVISION OF BROWNIAN ELECTRONICS CORP.
320 WATER ST. • P.O BOX 1921
BINGHAMTON, N.Y. 13902 • 607-723-9574
We would like to share the message and joy of Christ risen this Easter.

INFO-TECH MODEL 60
RTTY TO VIDEO CONVERTER
A self contained system that converts marks and spaces from your TU to a composite video signal to drive your monitor or converted TV. SILENTLY
- Operates at 60, 66, 75 and 100 wpm
- Manual letters shift control
- Selectable letters shift on space control
- Automatic CR and LF
- RS 232 and Loop compatible
- Video display 8 Lines of 32 characters each (16 Lines optional)
- Self contained power supply
- Automatic Scrolling
- Price $299.50 (8 Line Video)
- $329.50 (16 Line Video)
- Accessory TU (3 Shift) available late April $175.00
- Converter prices include prepaid freight in continental USA

INFO-TECH, INC.
20 Worthington Drive
St. Louis, Missouri 63043

Oderec by the earth there was a great earthquake for the Angel of the Lord descended from Heaven, and came and rolled back the stone from the door.

And the Angels said to the women, "Fear not, for I know that ye seek Jesus who was crucified. He is not here; for he is risen as he said. Come see the place where the Lord lay."

Then the eleven disciples went to Galilee...and when they saw him they worshipped him: but some doubted. And Jesus came and spoke to them saying, "All power is given to me in Heaven and in earth. Go ye therefore and teach all nations baptizing them in the name of the Father, Son and Holy Spirit, and lo, I am with you always, even to the end of the world."

Matthew 28, 2-20

Glade Valley School Radio Session
17th Year — July 31 thru August 13, 1976

Restructuring is coming!
Get that license now!

Let the experienced staff from the Glade Valley School Radio Session help you solve that license problem. Whether you are looking for your General, Advanced or Amateur Extra ticket they will help you in every way with their carefully prepared program to get the license you are looking for.

Have a "Vacation with a Purpose" at this beautiful location in the Blue Ridge Mountains. A highly qualified staff and excellent facilities combine to make license study a pleasant memorable experience.

C. L. PETERS, K4DNJ, Director
P. O. Box 458, Glade Valley, N. C. 28627
Please send me the Booklet and Application Blank for the 1976 Glade Valley School Radio Session.

Name ___________________________ Call ___________________________
Address __________________________ City/State/Zip __________________________

INFO-TECH, INC. 2100 Enterprise Parkway
20 Worthington Drive Twinsburg, Ohio 44087
St. Louis, Missouri 63043 (216) 425-373

ElectroSpace Systems, Inc.
320 Terrace Village
Richardson, Texas 75080
Telephone (214) 231-9303

Sold at Amateur Radio Dealers or Direct from ElectroSpace Systems, Inc.

More Details? CHECK-OFF Page 110
Dayton HAMVENTION
April 23–24–25, 1976

- Fabulous PRIZES
- GIANT Flea Market
- Exhibits
- New Products
- Technical Sessions
- ARRL and FCC Forums
- Special Group Meetings
- Ladies Programs
- Awards
- Transmitter Hunts

- GRAND BANQUET Saturday Evening (Special Prizes)

If you have registered within last 3 years you will receive a program and information brochure to be mailed March 8.

For special motel rates and reservations call (513) 277-1325, 6 to 10 P.M. EST.

Write Dayton HAMVENTION, P.O. Box 44, Dayton, OH 45401 for information.

See You at the World's Largest Ham Convention

We're Fighting Inflation
No Price Rise for '76

FOR FREQUENCY STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS
Frequency Standards
100 KHz (HC 13/U) $4.50
1000 KHz (HC 6/U) $4.50
Almost all CB sets, TR or Rec $2.50
(CB Synthesizer Crystal on request)
Amateur Band in FT-243 ea. $1.50
80-Meter $3.00 (160-meter not avail.)
For 1st class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.
Data Tone to Dial Pulse Converter
Convert standard 0-9 Data Tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-falsing Data Tone decoder, large capacity 64 digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and recall function.
* # digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting.

DPC-121 P.C. Board $195.00
DPC-121R Rack Mount $285.00

Anti-Falsing Data Tone Decoder
Now a true anti-falsing decoder/receiver. Virtually immune to high noise or audio falsing. Twelve or 16 digit capability. Completely solid state, uses latest Phased Locked Loop decoding. Single 5-volt power supply. Heavy duty transistor output. Available as p.c. board or 19" rack.

TTD-126-12 12 digit P.C. $149.95 Rack $219.95
TTD-126-16 16 digit P.C. $169.95 Rack $239.95

Repeater Auto Patch
It's complete - a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dialing capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack mount available.

RAP-2 P.C. $149.50 Rack $245.00

Deluxe P.C. Keyer
In either a 5 volt TTL or a 9 volt C-MOS version this new mod- ule type IC keyer can be easily adapted to your own custom package or equipment. Versatile controls allow wide character and weight variation, speeds from 3 to 50 w.p.m. plus volume and tone control. Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuits. With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.

TT-1 Keyer Wired $19.95 Kit $14.95
C-MOS Keyer Wired $24.95 Kit $19.95

Deluxe Receiver Preamp
Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Built in the weakest signal with a Data Preamp.

FREQ. (MHz) USE STAGES GAIN dB NF dB KIT WIRED
SINGLE 20 2.5 $9.50 $12.50
144 to 148 2 METER DOUBLE 40 2.5 $10.50 $24.50
1 thru 30 HF BROADBAND 19-36 3 — $17.95
Others Available.

Deluxe Receiver Preamp

Order Today — Send for Free New Catalog

DATA SIGNAL, INC.
2403 COMMERCIAL LANE
ALBANY, GEORGIA 31707, 912-883-4703

More Details? CHECK-OFF Page 110
Flea Market

BRAND NEW CARTRIVISION COLOR VIDEO RECORD-PLAYER ELECTRONIC UNIT. Contains power supply with adjustable regulated outputs of ±10 to ±18 VDC. (-15 VDC in 1/4 amps). Third output is 9 VDC at 3 amps. Perfect for CMOS, TTL, Op-Amps and Microprocessors. Contains over 900 parts with extremely long leads. Includes 182 transistors, IC's, diodes, and FET's, numerous resistors, capacitors, and delay lines. (One 63.5 microsecond, precision, quartz, acoustically coupled delay line which stores one line of TV). Transistors will operate in Heathkit TV's. Schematics and parts list supplied. Reference received upon request. $19.95 + $1.00 shipping. $3 for cash COD. Radiocraftsman Company, Inc., P. O. Box 369, Madison, Alabama 35758. Money back guarantee.

REGENCY TMR-1H RECEIVER CASE comes complete with front panel controls, power plug, and mobile mount brackets. Makes a quick case for any mobile ham project. 12/95 $25.00. Avel Electronics P.O. Box 4072 Rochester, New York 14610.

SIGNS/REPAIRS. K6BE. 415-548-1889.

CANADIAN JUMBO SURPLUS and Parts Catalogs. Bargains Galore. Send $1. ETCO-HR, Box 9, 49811, P.O. Box 242, Pimento, Iowa 52766. Telephone 512-495-655.

FOR SALE: Model 19 Teletype, table & original supplies. Operational, $125.00 no shipping. Tempo SHW 2m, $150.00; Drake TM 260, $175.00; Drake M1, $200.00; Bearcat pocket scanner low/VHF, $75.00; Bearcat scanner low/VHF, $150.00. All parts with operation details, operating excellent. Kenwood TS 520, $500.00; Eico 435 scope, $150.00; Eico 579 sine-print generator, $25.00; Heath-Schlumberger counter SM-1205, $125.00; Heath 16100 automatic scaler, $75.00; Olympus and others references $175.00. All operated, excellent with manuals. Wm. O. Starks, K5CO, 118 West 12th, Anderson, Indiana 46011, (317) 643-9080 (evenings).

SPECIAL RADIO MODEL. Equipped with large specially constructed contact points. Keys any amateur transmitter with ease. Sends Manual, Semi-Automatic, Full Automatic, Dot Memory, and Iambic MODES. Other keyer. Has built-in sidetone speaker, speed and volume controls, BATTERY OPERATED. Heavy shielded die-cast metal case. FULLY ADJUSTABLE contact spacing and paddle tension. The perfect paddle touch will AMAZE you.

Every amateur and licensed operator should know how to order the IC KEYER, EASY TO LEARN. Sent anywhere on receipt of price. Free brochure sent on request. Send check or money order. IC KEYER $87.50 postpaid in U.S. and Canada. IC KEYER LESS PADDLE $67.50. Add $4.00 sales tax in California.

NEW! IC KEYER

The World's Greatest Sending Device

Adjustable to Any Desired Speed

Now available from Palomar Engineers - the new Electronic IC KEYER. Highly prized by professionals because it is EASIER, QUICKER, and MORE ACCURATE.

It transmits with amazing ease. CLEAR, CLEAN-CUT signals at any desired speed. Saves the arm. Prevents cramp, and enables anyone to send with the skill of an expert.

Price: $87.50 postpaid in U.S.

SPECIAL COMMUNICATIONS ENGINEERS

Box 455, Escondido, CA 92025

Phone: (714) 747-3343

RATES Non-commercial ads 10¢ per word. commercial ads 40¢ per word payable in advance. Rates subject to change. Advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. J. 03048.

NEW WESTERN ELECTRIC TOUCH TONE PADS (35NIA) 12-button, 10 wire/2 channel, $12.00 each + $1.00 shipping, handling. Calif. residents add 7% sales tax. P. O. Box 8205, Four Corners, New Mexico 87401.

ARRL HANDBOOKS WANTED: 1st, 5th, 6th and 8th editions to complete my collection. Highest prices paid for copies in good condition. Also need 13th and 14th editions of the RADIO HANDBOOK. Have many early Handbooks, Icom manuals, etc. Trade. Send SASE for list. Jim Fisk, WIDY, Ham Radio, Greenville, N. J. 03048.

ELECTRONIC PARTS. 1000V 1A diodes 10/$1.00, 15/$1.50. 700V, 7402 $1.00. 20% postage. SASE brings catalog. N. D. Electronics. 204 N. Emerson, Mt. Prospect, Illinois 60056.

STOP don't junk that television set. ASE manufactures the world's most complete line of television picture tubes. Over 1700 types. Most types immediate delivery. Tubes for Old radio publications and Handbooks for sale or trade. Send SASE for list. Jim Fisk, WIDY, Ham Radio, Greenville, N. J. 03048.

SCOTCH MAGNETIC TAPE for instrumentation. 3M838. (NASA qualified). Unopened - Unused - Excellent condition. $6.00 list, now $3.00. Write for list of surplus communication equipment catalog. Wayne D. Russell, 9140 Walton, Miami, Kentucky 40022.

KLM PRODUCTS. Larsen antenna. Icom, police and fire scanners. Send for prices. Not given over the phone. Send SASE. Electronics, 61 Bellot Road, Ringwood, N. J. 07456.

LEARN CODE IN A FEW DAYS with audio reflex method of teaching letters, numbers, punctuation. One hour cassette $7.00. Guardian, 20 E Main St., Ramsey, N. J. 07446.

CHARTS AND PRINTS - available for the CCW. Contains charts for various frequencies, quad antenna, etc. Price $2.00. (Minimum order 25) W. L. Shabada, 211 E. 7th St., Houston, Texas 77002.

FOR SALE: Audio repeat insertions of hamfest ads will be inserted daily until name is dropped off. Material should be typewritten or clearly printed and mailed with the skill of an expert.

 COPY No special layout or arrangements available. Material should be typewritten or clearly printed and mailed with the skill of an expert.
For only $39.95

Our new FG-2 Function Generator kit gives you all five of the most useful waveforms for design and testing at one fourth the cost of previous similar instruments. Thanks to improved IC's the FG-2 now features amplitude stability of ± 1 db over any range, sine wave distortion of less than 1% from 20 Hz. to 20,000 Hz., and an output of 4.0 Volts peak-to-peak with adjustable offset. The offset selector lets you put the positive peak, negative peak, or the center of the waveform on DC ground. The DC coupled circuit keeps the waveforms in exactly the same position no matter what the level control setting.

Gray impact plastic case 5% x 6% x 2%. 115 Volts 60 cycle power supply included.

FG-2 Function Generator Kit shipping weight 3.0 lbs.............$39.95 Pd

SEND FOR OUR NEW 1976 CATALOG

listing this and other unique kits

"FREE"

by simply circling our number on the reader service card.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION
DEPT. H
219 W. Rhapsody
San Antonio, Texas 78216

BUY-SELL TRADE. Write for free mailer, give name, address, call letters. Complete stock of major brands, new and reconditioned equipment. Call us for best deals. We buy Collins, Drake, Swan, etc. SSB & FM. Associated Radio 6012 Conner, Overland Park, KS 66204 913-381-5901.

TRADE: R-1051/URR for T-857/U, WA6FAD, 529 Bonita, Pleasanton, California 94566.

DIGITAL COUNTER/DISPLAY BOARD: Tired of wiring up dozens of ICs to build the display for a frequency counter or voltmeter? Now you can use the MCG 41C Digital Event Counter Board. Features a 3 MHz (typical) CMOS counter with latches driving 0.3" LED displays. Board is 4 x 2 x 1/2" with a 12 pin edge connector used for all inputs. Completely assembled $35.00. Also available, the MCG 101 Lab type voltage regulator board with variable voltage and current limit controls. Also features a "LED" current limit indicator. Only two additional components are required to complete a DSC VDC, 2000 MA power supply. Write Mid-Continent Communications Company, P.O. Box 4407, Kansas City, Missouri 64127.

TRAVEL-PAK QSL KIT — Send call and 25¢ receive your call sample kit in return. Samco, Box 203, Wynnystark, N.Y. 12198.

MODERN 60 MIN. CODE CASSETTE — Novice 0.5 MHz, Pro 200 and 1500 MHz, each $3.00 each, $6.00 for both, Extra 20-22 MHz, $3 each, 1-4 GHz, $10, both together, send check, box 2174, Sandusky, Ohio 44870.

CUSTOM EMBROIDERED EMBLEMS, your design, low minimum. Embroiders, Dept. 709, Littleton, New Hampshire 03561.

WANTED: One to three 74573. P. Munro, P. O. Box 84, Lowell, IN 46356.

QRP TRANSMATCH for HW7, Ten-Tec, and others. Send for details to Peter Mehan Communications, 19 Loretta Road, Waltham, Mass. 02154.

MOTOROLA HT250, HT300, Pageboy, and other popular 2M FM transceivers (Standard, Regency, etc.) service and modifications performed at reasonable rates. W4AFF, (804) 727-8403.

SIDESWIPPER only $13. Airedale USA, Kungsimport, Box 257, Kungsholmen, Sweden.

TOROIDS: 88 qty, $3.00/5 ppr, HT-32, $300. Teltype equipment; parts. SASE for list. Gallets, 342 Columbus, Trenton, N. J. 08609.

MOBILE IGNITION SHIELDING provides more range with no noise. Used on most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Evens Engineering, 930 Marine Dr., Port Angeles, WA 98362.

This Month's Specials

NEW

Fairchild VHF Precalcer Chips

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101FC</td>
<td>High Speed Dual 5-4 Input</td>
<td>$12.50</td>
</tr>
<tr>
<td>110050C</td>
<td>1 GHz Counter Divide By 5 $74.35</td>
<td></td>
</tr>
<tr>
<td>110052M</td>
<td>1 GHz Counter Divide By 5 $110.50</td>
<td></td>
</tr>
<tr>
<td>110066C</td>
<td>1 MHz Precalcer 750 MHz D Type $12.70</td>
<td></td>
</tr>
<tr>
<td>112400C</td>
<td>Dual TTL VCM</td>
<td>$2.60</td>
</tr>
<tr>
<td>114400C</td>
<td>Phase Freq. Detector</td>
<td>$2.60</td>
</tr>
<tr>
<td>11580C</td>
<td>ECL VCM</td>
<td>$4.53</td>
</tr>
<tr>
<td>11700C</td>
<td>600 MHz Flip/Flop With Reset $12.30</td>
<td></td>
</tr>
<tr>
<td>118300C</td>
<td>1 GHz 288/156 Precalcer</td>
<td>$29.90</td>
</tr>
<tr>
<td>119080M</td>
<td>650 MHz ECL/TTL Precalcer</td>
<td>$16.00</td>
</tr>
<tr>
<td>119080M</td>
<td>650 MHz ECL/TTL Precalcer</td>
<td>$24.60</td>
</tr>
<tr>
<td>119101C</td>
<td>650 MHz ECL/TTL Precalcer</td>
<td>$16.00</td>
</tr>
<tr>
<td>119101M</td>
<td>650 MHz ECL/TTL Precalcer</td>
<td>$24.60</td>
</tr>
<tr>
<td>15950H03C</td>
<td>250 MHz Precalcer</td>
<td>$9.50</td>
</tr>
<tr>
<td>15950H03M</td>
<td>250 MHz Precalcer</td>
<td>$16.55</td>
</tr>
<tr>
<td>15951H01C</td>
<td>250 MHz Precalcer</td>
<td>$9.50</td>
</tr>
<tr>
<td>15951H01M</td>
<td>250 MHz Precalcer</td>
<td>$16.50</td>
</tr>
</tbody>
</table>

RF TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA 40209</td>
<td>12.5V, F. Type, 500W, 2 watts</td>
<td>$2.48</td>
</tr>
<tr>
<td>2N2857</td>
<td>85W</td>
<td>$1.85</td>
</tr>
<tr>
<td>2N3370</td>
<td>85W</td>
<td>$1.75</td>
</tr>
<tr>
<td>2N3606</td>
<td>85W</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N4072</td>
<td>85W</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N2222</td>
<td>85W</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N2117</td>
<td>85W</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N2222</td>
<td>85W</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N2590</td>
<td>85W</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N3904</td>
<td>85W</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N4401</td>
<td>85W</td>
<td>$1.25</td>
</tr>
<tr>
<td>2N3904</td>
<td>85W</td>
<td>$1.05</td>
</tr>
<tr>
<td>2N4401</td>
<td>85W</td>
<td>$1.25</td>
</tr>
</tbody>
</table>

TUBES

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12B1</td>
<td>50W</td>
<td>$3.50</td>
</tr>
<tr>
<td>12G1</td>
<td>50W</td>
<td>$3.25</td>
</tr>
<tr>
<td>12D1</td>
<td>50W</td>
<td>$3.25</td>
</tr>
</tbody>
</table>

NEED HELP?

Our crew at SAGAL ELECTRONICS has the experience and the product lines to solve your communications needs not only in the amateur field, but also in two-way radio. Our sales engineers welcome your inquiries. Sagal Electronics, Inc.

15450 S. 32nd Street
Phoenix, Arizona 85008
Phone: 602-957-0786

More Details? CHECK—OFF Page 110
GOODIES FROM “THE FM PEOPLE”

U43GGTs

WE HAVE JUST GOTTEN A LIMITED SUPPLY OF HI BAND, 30 WATT T-POWER MOBILES. CONVERTIBLE TO 2 METERS WITH MOBILE ACC GROUP.

|$99.00 + shipping |

MOTORX

R43MST . . . 4 FREQ, 30 WATT, ALL SOLID STATE, 12V MOBILE. SET UP ON 94 & 16/76. WITH ACCS. $395.00 + shipping

R43MST . . . SAME AS ABOVE SET UP ON 94 SIMPLEX ONLY $379.00 + shipping

PUBLIC ADDRESS AMPS

50 WATT SOLID STATE MOBILE PA AMPS. UNUSED SURPLUS. COMPACT WITH MIC BUT NO SPEAKERS.

|$39.95 + shipping |

SHOP WITH CONFIDENCE FOR ALL YOUR AMATEUR NEEDS

OVER THE YEARS WE HAVE ACQUIRED THE REPUTATION OF BEING “THE FM PEOPLE” . . . WE STILL ARE PLUS MUCH MORE. Below you will find a small reprint out of our 1976 BUYERS GUIDE. Now you can shop with confidence for all your amateur needs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4RTV 40-10 verl</td>
<td>$79.95</td>
</tr>
<tr>
<td>MO1 Mobile mast</td>
<td>$15.95</td>
</tr>
<tr>
<td>MO2 Mobile mast</td>
<td>$15.95</td>
</tr>
<tr>
<td>RM15 10 meter resonator</td>
<td>$11.75</td>
</tr>
<tr>
<td>RM20 20 meter resonator</td>
<td>$11.75</td>
</tr>
<tr>
<td>RM40 40 meter resonator</td>
<td>$15.95</td>
</tr>
<tr>
<td>RM75 70 meter resonator</td>
<td>$15.95</td>
</tr>
<tr>
<td>RM80 80 meter resonator</td>
<td>$15.95</td>
</tr>
<tr>
<td>RM205 Hi power resonator</td>
<td>$19.25</td>
</tr>
<tr>
<td>RM405 Hi power resonator</td>
<td>$23.50</td>
</tr>
<tr>
<td>RM75S Hi power resonator</td>
<td>$28.95</td>
</tr>
<tr>
<td>RM80S Hi power resonator</td>
<td>$28.95</td>
</tr>
<tr>
<td>CG144 6 db, 2 M. FM mobile</td>
<td>$26.75</td>
</tr>
<tr>
<td>SF-2 2 Mtr, 3 db, 3/8" thread</td>
<td>$12.75</td>
</tr>
<tr>
<td>SSM2 Ball mt</td>
<td>$13.50</td>
</tr>
<tr>
<td>OD1 Quick disconnect</td>
<td>$11.75</td>
</tr>
<tr>
<td>G6-144 2 meter 6 db base</td>
<td>$52.95</td>
</tr>
<tr>
<td>100-33 Code Cse: Jr 0-8WPM, Rec</td>
<td>$3.95</td>
</tr>
<tr>
<td>100-T Code Cse: Jr 0-8WPM, Cass</td>
<td>$4.95</td>
</tr>
<tr>
<td>101-33 Code Cse: Sr. 0-18WPM, Rec</td>
<td>$7.50</td>
</tr>
<tr>
<td>101-T Code Cse: Sr. 0-18WPM, Cass</td>
<td>$8.95</td>
</tr>
<tr>
<td>CPS-WT Code Osc, .wired</td>
<td>$21.95</td>
</tr>
<tr>
<td>LN2 Lo Pass 200 W</td>
<td>$6.95</td>
</tr>
<tr>
<td>OCMK CPO transistorized</td>
<td>$12.50</td>
</tr>
<tr>
<td>OCMK 2CPO transistorized wired</td>
<td>$18.50</td>
</tr>
<tr>
<td>PCLP NUVIS preamp 2-54 Mhz</td>
<td>$39.00</td>
</tr>
<tr>
<td>PLF GET preamp 2-54 Mhz</td>
<td>$44.00</td>
</tr>
<tr>
<td>PT Xvwr preamp 2-54 Mhz</td>
<td>$38.95</td>
</tr>
<tr>
<td>Hy Gain</td>
<td>$5.95</td>
</tr>
<tr>
<td>E1 End insulator, pair</td>
<td>$3.95</td>
</tr>
<tr>
<td>TH3JR 3 el. Triband, 750 W PEP</td>
<td>$144.50</td>
</tr>
<tr>
<td>215B 15 element, 2 meter beam</td>
<td>$67.00</td>
</tr>
<tr>
<td>BN55 Fittite balun</td>
<td>$15.95</td>
</tr>
<tr>
<td>Hy Quad 1015/20 M., 2 el. quad</td>
<td>$216.00</td>
</tr>
<tr>
<td>27N BNC Rubber Duckie, 2 Mtr</td>
<td>$9.00</td>
</tr>
<tr>
<td>270 Mobile 6 db, 3/16" mig</td>
<td>$39.95</td>
</tr>
<tr>
<td>29 6 element, 2 meter Yagi</td>
<td>$37.00</td>
</tr>
<tr>
<td>68B 6 element, 6 meter beam</td>
<td>$89.95</td>
</tr>
<tr>
<td>2BGQ 60/40 meter trap doubl</td>
<td>$48.95</td>
</tr>
<tr>
<td>5 DBQ 50-10 trap doubl</td>
<td>$79.95</td>
</tr>
<tr>
<td>12AVQ/10/15 vertical</td>
<td>$47.00</td>
</tr>
<tr>
<td>14AVQ/20-10 meter vertical</td>
<td>$67.00</td>
</tr>
<tr>
<td>1AVT/15/10-10 meter vertical</td>
<td>$97.00</td>
</tr>
<tr>
<td>2BMT/10-220 Mhz preamp</td>
<td>$199.95</td>
</tr>
<tr>
<td>2BMT/10-220 Mhz preamp</td>
<td>$199.95</td>
</tr>
<tr>
<td>200A 4 element, 40 meter beam</td>
<td>$179.95</td>
</tr>
<tr>
<td>402BA 2 element, 40 meter beam</td>
<td>$188.95</td>
</tr>
</tbody>
</table>

SEE YOU AT THE DAYTON HAMVENTION

SPECTRONICS, INC.

1009 GARFIELD
OAK PARK, IL 60304
312-848-6778
TELEX 72:8310

HOURS

STORE HOURS:
Mon-Thurs 9:30-6:00, Fri. 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.

More Details? CHECK-OFF Page 110
There is a page of text from a catalog or advertisement that includes various items for sale. The text is not entirely legible due to the constraints, but it appears to be related to electronics and electrical components. The items listed include Transformers, Germanium Diodes, Power Cords, and other electronic parts and accessories. The catalog seems to be aimed at hobbyists or professionals in the field of electronics, offering parts for building or repairing equipment. The text is fragmented and contains various prices and specifications for the items. The overall impression is of a detailed list of products with technical details and pricing information.
Your holiday includes:
- Attendance at the SAROC Hawaiian Convention, Saturday, August 28.
- Seven nights at Del Webb's fabulous KUIMIKA RESORT HOTEL and COUNTRY CLUB On Oahu's North Shore.
- Roundtrip air transportation, double occupancy in hotel room and SAROC Advance Registration just $300 per person. Limit 2 pieces of luggage per person. Tax and gratuity included.
- $100 deposit by June 1, 1976, full payment by July 10, 1976.
- SAROC Advance Registration $3.00, with Saturday Banquet $10 per person.

Write for further details

SAROC

BOX 945, BOULDER CITY, NEVADA 89005
NEW KITS

LOGIC PROBE KIT. Use with CMOS, TTL, DTI, RTL, HTL, HCMOS, and almost all IC types. A must for anyone engaged in circuit testing. Continuous use won't hurt unit. $8.95.

VARIABLE REGULATED POWER SUPPLY KIT. Kit includes all components, power transistors, resistors, etc. 0-50V, 0-5mA. Short circuit proof with electronic current limit. 115V AC. $39.95. (Includes components worth over $50.00.)

FIXED REGULATED POWER SUPPLY KITS. Two kits included. High current, low voltage. Use as power supply to test circuits. Available in 5V, 12V, 24V, 48V. $39.95 each.

These kits are designed for professionals. They are complete, in contrast to some small kits now available. They do not include any additional kits. Please add $10 per kit for postage and handling.

TRANSISTORS (PNP)

2N4401 TYPE RF Amp & Driver (10/16V)

2N3904 TYPE RF Amp & Driver (10/16V)

2N3906 TYPE RF Amp & Driver (10/16V)

2N3904 TYPE RF Amp & Driver (10/16V)

2N3906 TYPE RF Amp & Driver (10/16V)

2N3904 TYPE RF Amp & Driver (10/16V)

APRIL SPECIALS:

2N3935 M repetitive to 200 MHz. $3.95.

2N3936 M repetitive to 200 MHz. $5.95.

2N3937 M repetitive to 200 MHz. $8.95.

2N3938 M repetitive to 200 MHz. $11.95.

2N3939 M repetitive to 200 MHz. $14.95.

2N3940 M repetitive to 200 MHz. $17.95.

2N3941 M repetitive to 200 MHz. $20.95.

2N3942 M repetitive to 200 MHz. $23.95.

2N3943 M repetitive to 200 MHz. $26.95.

2N3944 M repetitive to 200 MHz. $29.95.

LINEAR ICs:

308 Micro Power Op Amp (10/50 MHz) $1.00

309 Voltage Regulator 5V (10/50 MHz) $2.50

310 Voltage Regulator 5V (10/50 MHz) $5.00

311 Voltage Regulator 5V (10/50 MHz) $10.00

312 Voltage Regulator 5V (10/50 MHz) $15.00

313 Voltage Regulator 5V (10/50 MHz) $20.00

314 Voltage Regulator 5V (10/50 MHz) $25.00

315 Voltage Regulator 5V (10/50 MHz) $30.00

DUAL TRANSISTORS:

2N701 M repetitive to 200 MHz. $1.95

2N702 M repetitive to 200 MHz. $3.95

2N703 M repetitive to 200 MHz. $5.95

2N704 M repetitive to 200 MHz. $7.95

2N705 M repetitive to 200 MHz. $9.95

FETs:

K CHANNEL LOW NOISE

2N4651 TYPE RF Amp & Switch (10/16V)

2N4652 TYPE RF Amp & Switch (10/16V)

2N4653 TYPE RF Amp & Switch (10/16V)

2N4654 TYPE RF Amp & Switch (10/16V)

2N4655 TYPE RF Amp & Switch (10/16V)

CUSTOMER SERVICE:

410-872-1234

500-255-1234

600-356-1234

700-456-1234

800-567-1234

900-678-1234

RF COMMUNICATIONS

has immediate openings for Electronic Project Engineers and Design Engineers experienced in HF, SSB, VHF/UFH – FM communications equipment, or both.

Call or write
Ken Cooper, W2FLZ
(716) 244-5830

ADVANCED ELECTRONICS

41381 B, WOODSIDE, CA 94066

Tel. (415) 851-0456
Support the AMSAT Team That Brought Us OSCAR 6 and 7
Since November 1974, Amateur Radio has had not one, but two long-life OSCAR satellites available for use by the international Amateur Radio community.

AMSAT is now developing Phase III spacecraft, intended for much higher orbits. AMSAT Phase III promises to be a considerable step forward beyond OSCAR satellites launched to date, making possible reliable communications over transcontinental distances for hours at a time.

Please write now to find out how you can help make this possible.

AMSAT Membership Dept., P. O. Box 27, Washington, D.C. 20044.

MODSET: precision modulation measurements for AM-SSB, 0.2 to 300 MHz, $29.50 (Kit: $19.50)
D. R. CORBIN MFG. CO.
P. O. Box 44, North Bend, Ore. 97459

DIPOLE: antenna connector
HYQUE (rq)-1) dipole connector has 1/4 in. BNC socket, mounted on 7 m of RG-8, $1.50. DIY-QHE-150-165, $1.65

BUDWIG MFG. Co. P. O. Box 57H, Ramona, CA 92065

WANTED FOR CASH
Other tubes and klystrons also wanted. See HR last issue for other equip. required.

The Ted Dames Company
308 Hickory Street Arlington, N.J. 07032
(201) 998-4246 Nites (201) 998-6475

If you want a microcomputer with all of these standard features...

- 8080 MPU (The one with growing software support)
- 1024 Byte ROM (With maximum capacity of 4K Bytes)
- 1024 Byte RAM (With maximum capacity of 2K Bytes)
- TTY Serial I/O
- EIA Serial I/O
- 3 parallel I/O's
- ASCII/Baudot terminal compatibility with TTY machines or video units
- Monitor having load, dump, display, insert and go functions

- Complete with card connectors
- Complete factory assembled and tested
- Not a kit
- Optional accessories: keyboard/video display, audio cassette modem interface, power supply, ROM programmer, and attractive cabinet...plus more options to follow.

The HAL MCEM-8080. $375

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us...and how far it can take you in your applications. That's why we'd like to send you our card—one PC board that we feel is the best-valued, most complete microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessor-based terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp.
Box 365, 807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

FAST SCAN AMATEUR TELEVISION EQUIPMENT

- SOLID STATE
- BROADCAST QUALITY PERFORMANCE
- FOR TECHNICAL DATA AND PRICING, WRITE TO:

APTRON LABORATORIES BOX 323, BLOOMINGTON, IN 47401

MODSET: precision modulation measurements for AM-SSB, 0.2 to 300 MHz, $29.50 (Kit: $19.50)
D. R. CORBIN MFG. CO.
P. O. Box 44, North Bend, Ore. 97459

DIPOLE: antenna connector
HYQUE (rq)-1) dipole connector has 1/4 in. BNC socket, mounted on 7 m of RG-8, $1.50. DIY-QHE-150-165, $1.65

BUDWIG MFG. Co. P. O. Box 57H, Ramona, CA 92065

WANTED FOR CASH
Other tubes and klystrons also wanted. See HR last issue for other equip. required.

The Ted Dames Company
308 Hickory Street Arlington, N.J. 07032
(201) 998-4246 Nites (201) 998-6475

If you want a microcomputer with all of these standard features...

- 8080 MPU (The one with growing software support)
- 1024 Byte ROM (With maximum capacity of 4K Bytes)
- 1024 Byte RAM (With maximum capacity of 2K Bytes)
- TTY Serial I/O
- EIA Serial I/O
- 3 parallel I/O's
- ASCII/Baudot terminal compatibility with TTY machines or video units
- Monitor having load, dump, display, insert and go functions

- Complete with card connectors
- Complete factory assembled and tested
- Not a kit
- Optional accessories: keyboard/video display, audio cassette modem interface, power supply, ROM programmer, and attractive cabinet...plus more options to follow.

The HAL MCEM-8080. $375

...then let us send you our card.

HAL Communications Corp. has been a leader in digital communications for over half a decade. The MCEM-8080 microcomputer shows just how far this leadership has taken us...and how far it can take you in your applications. That's why we'd like to send you our card—one PC board that we feel is the best-valued, most complete microcomputer you can buy. For details on the MCEM-8080, write today. We'll also include comprehensive information on the HAL DS-3000 KSR microprocessor-based terminal, the terminal that gives you multi-code compatibility, flexibility for future changes, editing, and a convenient, large video display format.

HAL Communications Corp.
Box 365, 807 E. Green Street, Urbana, Illinois 61801
Telephone (217) 367-7373

FAST SCAN AMATEUR TELEVISION EQUIPMENT

- SOLID STATE
- BROADCAST QUALITY PERFORMANCE
- FOR TECHNICAL DATA AND PRICING, WRITE TO:

APTRON LABORATORIES BOX 323, BLOOMINGTON, IN 47401
We've moved to larger quarters to better serve you. Please contact our Dealer nearest you!

Apache Auto Machine & Parts
8252 N. Central
Phoenix, AZ 85022

Gary Radio
2199 Clairemont Mesa Blvd B45 Westown Rd.
San Diego, CA 92117

Antenna King
29136 S. Crenshaw Blvd.
Torrance, CA 90505
(Excl. LA area)

Quinton Electronics
1000 S. Bosan Ave.
San Diego, CA 92152

Microcom
14908 Sandy Lane
San Jose, CA 95124

Wallys
1190 Galileo St.
Concord, CA 94520

Floyd C. Whipple
208 E. Simpson St.
Lafayette, Colo. 80026

Discount Electronic Supply
1 Financial Plaza
Harford, CT 06410

James M. Homan
411 Cleveland St.
Cincinnati, OH 45211

Teletronics, Inc.
1590 Carfield St.
Oak Park, IL 60304
(Excl. Illinois)

Tuttle Radio Electronics
368 Main St.
Meriden, CT 06451

Westcom
10088 Morado Dr.
Cincinnati, OH 45239

Maggiore
Electronic Laboratory
355 E. Main St.
San Jose, CA 95111

Prime
Electronic Supply
1 Financial Plaza
San Diego, CA 92101

Tufts Radio Electronics
411 Cleveland St.
Cranston, RI 02921

Remote Radio Supply Co.
6213 13th Ave.
Seattle, WA 98106

Belleair
Electronic Supply
5200 Belleair Blvd.
Belleair, FL 33741

Shortwave Shop
3233 Spencer Hwy.
Pasadena, TX 77501

Amateur Radio Supply Co.
6213 13th Ave.
Seattle, WA 98108

Earl Lagergren
D-8034 Unterpfaffenhofen
HornthalstraBe
B-W Germany

Ivo, Hannes Bauer KG
HerrnschalskaBe 6
P.O. Box 2307
86 Bamburg, W. Germany

Bakor
'La Merrenie'
27310 Decantes
Buxer, France

O.-P. Electronics
Bogkloven 7
Kraghavn
4600 NVStning
Giv, 0812, Denmark

Juan Cerdan Soto
Maestrazgo
Barcelona, Spain

Visit our booth at:
ARRL SW Div., Tucson, Apr. 9-11
Dayton Hamvention, Dayton, Apr. 23-25

Specialty Communications Systems
8150 Miramar Road
San Diego, CA 92126
Louis N. Anciaux, WB6NMT
(Dealer inquiries invited.)

714-271-6310

PORTA-PAK, INC.
P.O. BOX 67
SOMERS, WI 53171

PORTA-PAK
RIPPED OFF?

Do not keep it with you. Or lock it in the trunk. PORTA-PAK enables you to do this easily. Only one connection. Your mobile antenna.

PORTA-PAK is attractively finished in black and white and in the logo. And it's for durability and last-

ing good looks.

The Deluxe PORTA-PAK features an accessory battery with no free electrolyte to spill. A charger and plug-in are included. It's portable.

Model stock includes:
- REGENCY 6056
- BTL 875N 6W 25 WTS
- MICRO-GO LINE
- GENAVE: ALL MODELS

Heatmkt WH 202
ICO 230 and 232 MIDLAND STANDARD

DELUXE PORTA-PAK
$49.95
ADD $1.00 PER UNIT FOR SHIPPING AND HANDLING
ARRL CONVENTION
N. Y. STATE
1976
WRITE:
21 - 23
MAY
50 HZ - 250 MHz

MODEL 4X6C
50 HZ - 250 MHz

'70.00

300 and 500 MHz PRESCALERS
FREQUENCY STANDARDS
MARKER and PEAKING GENERATORS
POWER SUPPLIES AMPLIFIERS

WRITE FOR FREE CATALOG

Phone: 405-273-9024

K-ENTERPRISES
1401 N. Tucker
Shawnee, Okla. 74801

HUGE INDOOR
AND OUTDOOR
FLEA MARKET

SEE LATEST
EQUIPMENT
BY THE NATION'S
LEADING
MANUFACTURERS

AWARDS BANQUET

HOTEL HEADQUARTERS
ROCHESTER MARRIOTT
ROUTE 15 AT THRUWAY
EXIT 46

HAMFEST LOCATION
MONROE COUNTY
FAIRGROUNDS

ROUTE 15A AND
CALKINS ROAD
ROCHESTER, N. Y.

WRITE:
ROCHESTER HAMFEST
BOX 1388
ROCHESTER, N. Y. 14603

OR CALL:
716-271-1460 DAYS ONLY

BELDEN
The most respected name in the electronic wire
and cable industry. Here's just a few of
their interesting and hard to find cables:

#8216
RG 174/U Miniature 100" Dia. 50 Ohm. Coax.
100 Ft. / $4.75
500 Ft. / $24.75

#8000
14 ga. Stranded Copperweld Antenna Wire.
75 Ft. / $3.54
100 Ft. / $4.38
1000 Ft. / $39.60

#8235
300 Ohm Twin Lead, rated at 1 Kw. (RF) to 30 MHz.
Atten: 0.8 dB. 100 Ft. at 100 MHz.
100 Ft. / $4.80
500 Ft. / $24.00

#8210
72 Ohm Twin Lead, rated at 1 Kw. (RF) to 30 MHz.
Atten: 3 dB. 100 Ft. at 100 MHz.
100 Ft. / $18.00
250 Ft. / $35.80

#8018
8 ga. Aluminum Ground Wire. Cut to length. Sold in
multiples of 50 feet. 50 Ft. / $1.97

#8491
6 Foot Coiled Mike Cord. 4 Conductors. 2 - shielded.
2 - unshielded. 100% shield coverage. $5.12 each

#8448
8 Conductors Rotor Cable. 2 - ga. 6 - 22 ga. The
cable recommended by CDE for their Ham II, Ham III,
and TR-44 Rotors.
9.25 / Ft.
100 Ft. / $15.45
250 Ft. / $34.05

We'll send you a complete Belden Catalog and Price List with any
$50.00 order. JUST ASK FOR IT.

MALLORY
PTC - 205
Equivalent to HEP 170
(Now HEP RO 170)

The "Do Everything" 2½ Amp. 1,000 Volt Diode.
10 / $2.50
100 / $20.00

40673's FET
40673's FET

We ship UPS whenever possible. Give street address. Include
enough for postage, excess refunded in cash. Florida resi-
dents include 4% Tax.
GOT YOURS YET?

WESTMINSTER, MARYLAND HAMFEST. The Potomac Area VHF Society will hold their annual hamfest on Sunday, May 2, 1976, at the Agricultural Center. Admission, $1.00. Hours: 9 a.m. to 5 p.m. Registration, $5.00. Talk-in 146.94/64 and 146.52 MHz. Details, call Bob Mitting, 214-342-3647, 1312 W. Main St., Franklin, PA 16323.

HUMPP MOUNT, that is. Lock Your Mobile Radio to this solid stand and relax.
- Cannot be pivoted loose - Special mounting bolts, screws, and trimmers nuts prevents removal regardless of force applied except with keys provided.
- Bumps hump mount adjustable brackets and wrap around lock.
- Tempered steel no-pick lock - chrome plated finish - quality construction prevents picking or cutting.
- Beautifully finished in black wrinkle.
- Send us height and width of your radio.
- Satisfaction Guaranteed.

Dealer Inquiries Invited!

Hump Mount
Price: $29.95

ORDER TODAY FROM:

Pruitt Enterprises
Nat'l Manufacturer's Representative
Box 41484
202-478-1273

GREAT COMPARES...COMPARE PRICES!

No Comparison!
Hey! We started it all with the Amazing Logarithmic SPEECHPROCESSOR

CHECK THIS WAVEFORM!

MODEL 60A

MOC INPUT

MODEL 60A (WIRE)

MODEL 60A (KIT)

P.C. BOARD KIT (200-15AK)

$29.95

$23.95

$14.95

ADDITIONAL ORDER AT DIRECT ORDER. PA. RES. ADD 6% TAX.
ORDER DIRECT or write for FREE brochure and name of nearest dealer.

MORE DETAILS? CHECK-OFF Page 110

Stolen Equipment

STOLEN: HR-2 Regency 2 mtr, Transceiver. SN 043578. "Stolen from WB6SUX/2, 303-473-4186, 3410 N. Prospect St., Colorado Springs, CO 80907.

STOLEN: SBE Linear Systems Inc. SBE-340 Transceiver with 340-346 speaker and power supply. SN 511112, base station. CB Call sign 1CB, CO 80161. RF/10 meter, hi & lo band. Courier # COF 75, 5/1. Please call 303-476-8909. Address is 245 S. Laramie Ave., Denver, CO 80210.

FLEA MARKET

NORTHERN PENNSYLVANIA Swapfest. May 1, Crawford County Fairgrounds, Meadville. Free Admission. $1 to display. Flea market begins at 9 a.m. Hours: 9 a.m. to 5 p.m. Registration, $5.00. Commercial displays welcome. Details, call W9ZLO, 717-393-5555.

F.M. BASH, DAYTON, OHIO, April 23, 1976, on the Friday night of the Dayton Hamvention. This is a social evening for all hams and their ladies. Doors open at 9 p.m., hall closed at 11 p.m. Free admission. Free snacks, C.O.D. bar, live entertainment by personality Bob Rinder (WA2ROG), and the group. 11 p.m. door prize drawing will feature a Clegg FM-DX and other prizes. A new location: the Dayton Biltmore Towers, (First and Main St. 45402) will accommodate the crowd and allow 3 alternate routes to the Presentation Center. Reserve your empty position at the Dayton Biltmore Towers, (First and Main St. 45402) will accommodate the crowd and allow 3 alternate routes to the Presentation Center. Reserve your empty position at the Dayton Biltmore Towers, (First and Main St. 45402) will accommodate the crowd and allow 3 alternate routes to the Presentation Center. Reserve your empty position at the Dayton Biltmore Towers, (First and Main St. 45402) will accommodate the crowd and allow 3 alternate routes to the Presentation Center.
If DenTron had been there, Ben's SWR would have been 1:1.

The initiative and inventiveness of Ben Franklin is still alive in America today at Dentron Radio.

Pictured here Ben uses a Dentron Doublet fed with 470ohm balanced line to our world famous SuperTuner. The SuperTuner and Doublet, as well as all Dentron products are made in the USA by American craftsmen.

Denton
SuperTuner
$129.50 post paid in USA
From Dentron Radio or your favorite dealer

Denton
All Band Doublet
$24.50 post paid in USA
Ham Radio’s guide to help you find your local Amateur Radio Dealer

California

HENRY RADIO
931 N. EUCLID AVE.
ANAHEIM, CA 92801
714-772-9200
The world’s largest distributor of Amateur Radio equipment.

HENRY RADIO CO., INC.
11240 W. OLYMPIC BLVD.
LOS ANGELES, CA 90064
213-477-6701
The world’s largest distributor of Amateur Radio equipment

HAM RADIO OUTLET
999 HOWARD AVENUE
BURLINGAME, CA 94010
415-342-5757
Northern California’s largest new and used ham inventory.

M-TRON
2816 TELEGRAPH AVENUE
OAKLAND, CA 94609
415-763-6262
We service what we sell.

Colorado

C W ELECTRONIC SALES CO.
1401 BLAKE ST.
DENVER, CO 80202
303-573-1386
Rocky Mountain area’s complete ham radio distributor.

Illinois

KLAUS RADIO, INC.
8400 NORTH PIONEER PARKWAY
PEORIA, IL 61614
309-691-4840
Let us quote your Amateur needs.

SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312-848-6778
Chicagoland’s Amateur Radio leader.

Indiana

HOOSIER ELECTRONICS
P. O. BOX 2001
TERRE HAUTE, IN 47802
812-238-1456
Ham Headquarters of the Midwest. Store in Meadow Shopping Center.

Kansas

ASSOCIATED RADIO
8012 CONSER P.O.B. 4327
OVERLAND PARK, KS 66204
913-381-5901

Massachusetts

TUFTS RADIO ELECTRONICS
386 MAIN STREET
MEDFORD, MA 02155
617-399-8280
New England’s friendliest ham store.

Michigan

AUDIOLAND
36633 SOUTH GRATIOT
MT. CLEMENS, MI 48043
313-791-1400
All major brands, new/used equipment & accessories.

ELECTRONIC DISTRIBUTORS
1960 PECK STREET
MUSKEGON, MI 49441
616-726-3196
Communication specialists for over 37 years.

PURCHASE RADIO SUPPLY
327 E. HOOVER
ANN ARBOR, MI 48104
313-668-8696 or 668-8262
We still sell Ham parts!

MINNESOTA

ELECTRONIC CENTER, INC.
127 THIRD AVENUE NORTH
MINNEAPOLIS, MN 55401
612-338-5881
ECl is still your best buy.

Missouri

HAM RADIO CENTER, INC.
8342 OLIVE BLVD.
P. O. BOX 28271
ST. LOUIS, MO 63132
800-325-3636
Call toll free.

New Jersey

ATKINSON & SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since “55”.

New York

ADIRONDACK RADIO SUPPLY, INC.
185 W. MAIN STREET
AMSTERDAM, NY 12010
518-842-8350
Yaesu dealer for the Northeast.

CFP COMMUNICATIONS
211 NORTH MAIN STREET
HORSEHEADS, NY 14845
607-739-0187
Jim Beckett, WA2KTJ, Manager
Dave Flinn, W2CFP, Owner

HARRISON “HAM HEADQUARTERS, USA”
ROUTE 110 & SMITH STREET
FARMINGDALE, L. I., N. Y. 11735
516-293-7990
Since 1925 . . . Service, Satisfaction, Savings. Try Us!

Ohio

UNIVERSAL SERVICE
114 N. THIRD STREET
COLUMBUS, OH 43215
614-221-2335
Give U.S. a try when ready to buy.

Oregon

OREGON HAM SALES
409 WEST FIRST AVENUE
ALBANY, OR 97321
503-926-4591
Yaesu dealer for the Northwest.

Pennsylvania

ARTCO ELECTRONICS
302 WYOMING AVE.
KINGSTON, PA 18704
717-288-8585
The largest variety of crystals in N. E. Penn.
COMMUNICATIONS SPECIALISTS
FOR OVER 37 YEARS

Chuck — WBUCG, invites you to come in and see and
OPERATE the latest in ham gear including:
Collins, Drake, Kenwood, Ten-Tec, Atlas, Swan, Tempo, Hallicrafters,
Regency, Icom, Standard, Sonar, Midland, ETO, Dentron, CDE, Venus,
Millen, B & W, Hy-Gain, RCA, Amerco, and most all others. ANTENNAS by:
Hy-Gain, Mosley, Telrex, KLM, Newtonics, Swan, Cushcraft, Larsen,
A/S, Slinky, Savoy. TOWERS by: Universal, Heights, Spaulding, Rohn,
Tri-Ex, Tristo, E-Z Way.

NEW
BANK CARDS
AMERICAN EXPRESS
SCOTTISH AMERICAN EXPRESS
SWAN REVOLVING CREDIT
RENCH REVOLVING CREDIT
HOURS: 8:30-5:30 — SAT. 9:00-4:00

TERMS
TRADES

ELECTRONIC DISTRIBUTORS, Inc.
1960 PECK ST., MUSKEGON, MICH. 49441
TEL. (616) 726-3196 TELEX 22-8411

South Dakota
BURGHARDT AMATEUR CENTER
124 FIRST AVE. N.W. P.O. BOX 73
WATERTOWN, SD 57201
605-886-7314
America's most reliable Amateur
Radio Dealer — Nationwide!

Texas
ALTEC COMMUNICATIONS
1800 S. GREEN STREET
LONGVIEW, TX 75601
214-757-2831
Specializing in ham equipment for
the Ark-La-Tex.

Virginia
ARCADE ELECTRONICS
7048 COLUMBIA PIKE
ANNANDALE, VA 22003
703-256-4610

Washington
AMATEUR RADIO SUPPLY CO.
6213 13TH AVE. SO.
SEATTLE, WA 98108
206-767-3222
Amateur center of the
Northwest.

You Can't Beat The System!
The SPEC COMM 2M FM Modular System

SC512 - 12 CHAN.
SC560 - 6 CHAN.

See us at Dayton!

Write for information on our High Performance REPEATER RCVR. & XMTR. BOARDS.
Send for Data Sheet on SC512/560 Transceivers & Accessories,
Available through Dealers — Or Factory Direct.
DEALER INQUIRIES INVITED.

SPECTRUM COMMUNICATIONS
Box 140 HR - WORCESTER, PA 19490 (215) 584-6469

More Details? CHECK—OFF Page 110
CFP COMMUNICATIONS...

welcomes you to the following Hamfests:
April 3 — Tompkins County Radio Club Auction, Ithaca, N. Y.
April 10 — Southern Tier Hamfest, Johnson City, N. Y.
April 23-25 Dayton Hamvention, Dayton Ohio
May 22 — Western New York Hamfest, Rochester, N. Y.

Look for our display and/or the CFP "Minnie Winnie" (except Dayton — We’re “just visitin’” there this year.)

See us for all your Amateur Radio needs.

SASE will get our list of used Amateur Equipment.
NEW - See us at same location for CUSTOM MOLED PLASTIC SIGNS.

SASE or 1st Class Stamp. HORSEHEADS, NEW YORK 14845

PHONE: 607-739-0187

104 W. CAMPBELL
PHOENIX, ARIZONA 85015

WOW! QUALITY 2 M. XMITTER

The Cube

• 2 Channel Operation
• Frequency Range 144-148 MHz
• 1 Watt Min: 2 watts typ: Power Out. @ 12.5vdc
• 50 Ohm RF Output Impedance
• BxY Multiplication Factor
• Narrow Band FM ± 5 KHz
• Rugged Balanced Emitter Output Transistor
• Size 3½" L x 1½" W x 1" H
• Tested & Fully Assembled (Less stalk)
• $32.95 price includes all postage fees

ELPROCON
DEPT. DS - 1907 W. CAMPBELL
HORSEHEADS, NEW YORK 14845

T-1 RANDOM WIRE ANTENNA TUNER

All band operation (100-30 meter) with most any random length wire: 200 watt power capability. ideal for portable or home operation. A must for Field Day. Size 5" x 4" x 2.25. Built in neon turn-on indicator. Guaranteed for 90 days (compact — easy to use, only $29.95 postpaid. Add Sales Tax in Cali.)*

SST ELECTRONICS, P.O. BOX 145, LAKEVILLE, CA 92030

VHF/ UHF CONVERTERS PREAMPS

Ten meters through 542 MHz. A post card will bring our full 1976 Catalog.

JANEX LABORATORIES
260 NW POLK AVE
CORVALLIS, OREGON 97330
Telephone: 503-757-1134

104 in april 1976
Vanguard Now Has the World's Largest Selection of Frequency Synthesizers from $139.95

Send no Money. We Ship COD. Order by Phone and Save Time.

The Grabbers!

6-Digit Counters!

$69.95

(30MHz)

$119.95

(250MHz)

We have a whole wonderful line of unbelievable counters starting at $45.95! All counters are also available factory wired and tested. Drop us a line or give us a call today.

Hufco P.O. Box 357, Dept. 22, Provo, Ut. 84601—(801) 375-8666

Vanguard Frequency Synthesizers are custom programmed to your requirements in 1 day from stock units starting as low as $139.95 for receive and transmit synthesizers. Add $20.00 for any synthesizer for 5 kHz steps instead of 10 kHz steps and add $10.00 for any tuning range over 10 MHz. Maximum tuning range available is 40 MHz, but cannot be programmed over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless the i-f is greater than 10.7 MHz and uses low side injection. Tuning range in all cases must be decades starting with 0 (i.e. — 140.000 — 149.995 etc.). The output frequency can be matched to any crystal formula. Just give us the crystal formula (available from your instruction manual) and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.

Vanguard Labs

Call 212-468-2720 between 9:00 am and 4:00 pm Monday through Friday

196-23 Jamaica Ave. Hollis, N.Y. 11423

New from NRI Home training in Amateur Radio

NRI, leader in Communications, Television, Electronics and TV-Radio home training, now offers the first in Amateur Radio courses, designed to prepare you for the FCC Amateur License you want or need.

Don't lose your favorite frequency

The FCC has said "either-or" on licensing, but to pass Advanced and Extra Class exams, you need the technical guidance as offered by NRI. NRI Advanced Amateur Radio is for the ham who already has a General, Conditional or Tech Class ticket. Basic Amateur Radio is for the beginner and includes transmitter, 3-band receiver, code practice equipment. Three training plans offered. Get all the facts. Mail coupon. No obligation. No salesman will call on you.

NATIONAL RADIO INSTITUTE, Washington, D.C. 20016

Mail Now

NATIONAL RADIO INSTITUTE

Washington, D.C. 20016

Please send me information on Amateur Radio training.

Name

Age

Address

City State Zip

ACCREDITED MEMBER NATIONAL HOME STUDY COUNCIL

April 1976
We were able to obtain a very good price on these goodies so are passing the savings along to you.

GENERAL ELECTRIC TRANSISTORIZED PROGRESS LINE
(commonly called TPL)
- All transistor receiver
- All transistor exciter
- Transistor power supply
- Trunk mount for easy installation

HIGH BAND TPLs:
Model RES7JC6 Thirty watts output in the 152 to 172 MHz frequency range. Two frequency transmit and receive. Less noise, but cables, relay, speaker and control head included. Regularly $225.00 but for April only $125.00 each!

SIX METER BAND TPLs:
Model RES7JBI One hundred watts out in the 25 MHz Complete Kit $149.95; 200 MHz Complete Kit $169.95; 600 MHz Complete Kit $219.95

Terms: All items are sold as is. If not as described return within 10 days of receipt, shipping charges prepaid. All items shipped freight collect. Ill. residents must add 5% sales tax. Accessories do not include antennas, relays, crystals or reeds.

 DuPAGE FM INC.
P.O. Box 1, Lombard, Ill. 60148 (312) 627-3540

RCA SUPERCARFONES
for TWO METER USEAGE (348 to 174 MHz)
- Transistor receiver and exciter
- Standby battery drain only 200 mA
- NO CONVERSION NEEDED FOR USE ON TWO METER AMATEUR BAND. Receiver sensitivity factory rated at .35 microvolts for 12 dB SINAD; accessories included. Regularly $275.00; April only $175.00 each.

QUANTITIES ARE LIMITED — PLEASE SPECIFY A SECOND CHOICE
ORDERS MUST BE RECEIVED BEFORE APRIL 30, 1976

NEW 600 MHZ COUNTER — $219.95

25 MHz Basic Counter becomes either a 200 MHz or a 600 MHz Frequency Counter with built-in pre-scalers.

These complete kits include all parts, drilled & plated PC Boards, cabinet, switches, hardware and a complete instruction manual.
- Input Zi: 1 megohm (25 MHz)
- Resolution to 0.1 Hz
- Crystal controlled time base
- Selectable gate times

NEW REG PWR SUPPLIES
DE-111 gives 13.6V @ 1A
DE-110 gives 15V @ 1A & 5V @ 1A & 1A $59.95
DE-6010 antenna covers 80-10 meters. Complete with 100 lead in & balun. $79.95 1/4 & 1/2 W 5% RESISTORS 4 ea. 5V SCHNEPFLING
HAM CLUB DISCOUNTS

125 Hz Crystal Filter For Drake R-4C
Cuts QRM. Ideal for DX and Contest Work. Does what no audio filter can do. A must for CW operators who want the best. 125 Hz @ -60 db. 60 MHz
Sherwood Engineering CF-125/F $125.00
For orders between March 15 and May 1, 1976. Add $2 for shipping.

10 day return privy. Add $1.50 shipping. Price $123.50. 3A $131.75. For orders between March 15 and May 1, 1976. Add $2 for shipping.

ECONOMY VOLT 1.5 AMP REG. POWER SUPPLY KIT $15
Fixed voltage for TTI & HXK all major brands. Transformer isolation & fused. Prewired power switch, led line and dual regulator output. 5% Stability, 0.05 Ripple, 1A $20.00
M-SIK kit & instructions $25.00
M-SIK kit & instructions $25.00

WANT SOMETHING REALLY SMALL AND EFFICIENT?

Then you want the antenna that's known around the world for its small size and superior performance. The Mini Products Multiband HYBRID QUAD

2 ELEMENTS 11 ft.
2 BOOM LENGTH 54 INCHES
WEIGHT 15 POUNDS
WIND SURVIVAL 75 MPH
BANDS COVERED 6,10,15 & 20
1200 WATTS PEP
FEED LINE 50 OMMS

DuPAGE FM INC.
P.O. Box 1, Lombard, Ill. 60148 (312) 627-3540

Terms: All items are sold as is. If not as represented return for exchange within 5 days of receipt, shipping charges prepaid. All items shipped freight collect. Ill. residents must add 5% sales tax. Accessories do not include antennas, relays, crystals or reeds.

NEW 600 MHZ COUNTER — $219.95

25 MHz Basic Counter becomes either a 200 MHz or a 600 MHz Frequency Counter with built-in pre-scalers.

These complete kits include all parts, drilled & plated PC Boards, cabinet, switches, hardware and a complete instruction manual.
- Input Zi: 1 megohm (25 MHz)
- Resolution to 0.1 Hz
- Crystal controlled time base
- Selectable gate times

NEW REG PWR SUPPLIES
DE-111 gives 13.6V @ 1A
DE-110 gives 15V @ 1A & 5V @ 1A $59.95
DE-6010 antenna covers 80-10 meters. Complete with 100 lead in & balun. $79.95 1/4 & 1/2 W 5% RESISTORS 4 ea. 5V SCHNEPFLING
HAM CLUB DISCOUNTS

125 Hz Crystal Filter For Drake R-4C
Cuts QRM. Ideal for DX and Contest Work. Does what no audio filter can do. A must for CW operators who want the best. 125 Hz @ -60 db. 60 MHz
Sherwood Engineering CF-125/F $125.00
For orders between March 15 and May 1, 1976. Add $2 for shipping.

10 day return privy. Add $1.50 shipping. Price $123.50. 3A $131.75. 10 day return privy. Add $1.50 shipping. Price $123.50. 3A $131.75. For orders between March 15 and May 1, 1976. Add $2 for shipping.

ECONOMY VOLT 1.5 AMP REG. POWER SUPPLY KIT $15
Fixed voltage for TTI & HXK all major brands. Transformer isolation & fused. Prewired power switch, led line and dual regulator output. 5% Stability, 0.05 Ripple, 1A $20.00
M-SIK kit & instructions $25.00
M-SIK kit & instructions $25.00

WANT SOMETHING REALLY SMALL AND EFFICIENT?

Then you want the antenna that's known around the world for its small size and superior performance. The Mini Products Multiband HYBRID QUAD

2 ELEMENTS 11 ft.
2 BOOM LENGTH 54 INCHES
WEIGHT 15 POUNDS
WIND SURVIVAL 75 MPH
BANDS COVERED 6,10,15 & 20
1200 WATTS PEP
FEED LINE 50 OMMS

DuPAGE FM INC.
P.O. Box 1, Lombard, Ill. 60148 (312) 627-3540

Terms: All items are sold as is. If not as represented return for exchange within 5 days of receipt, shipping charges prepaid. All items shipped freight collect. Ill. residents must add 5% sales tax. Accessories do not include antennas, relays, crystals or reeds.
TIRE OF CRANKING?

$195

MOTORIZE YOUR TOWER WITH OUR ELECTRIC HOIST/Winch
- EASILY INSTALLED
- STURDY RELIABLE
- 1/2-TON LOAD HANDLING CAPACITY

TOWTEC CORP, Dept. H-3
118 ROSEDALE RD.
YORKERS, NY 10710
Tel: (914) 779-8542

IF YOU DON'T HAVE OUR CATALOG YET, SEND SASE!

PREAMP, FM RCVR & XMT KITS, CUSSHCRAFT & LARSEN ANTENNAS, STANDARD XCVRS.

FAST MAIL & PHONE SERVICE

182 BELMONT RD., ROCHESTER, NY 14612

GROTH-Type

COUNTS & DISPLAYS
YOUR TURNS
- 99.99 Turns
- One Hole Panel Mount
- Handy Logging Area
- Spinner Handle Available

Case: 24"h x 14"l x 3"d
Model TC2: Skirt 2-1/8", Knob 1-5/8"
Model TC3: Skirt 3", Knob 2-3/8"

R. H. BAUMAN SALES
P.O. Box 122, Itasca, ill. 60143

ALDELCO SEMI-CONDUCTOR SUPERMARKET

RF DEVICES
2N3735 3W 400 MHz... 5.50
2N3866W 400 MHz... 9.99
2N4041 1W 400 MHz... 5.25
2N5930 10W 175 MHz... 7.85
2N6691 25W 175 MHz... 15.95

HEAVY DUTY RECTIFIERS
200 Volt 100 Amp D08... 5.50
200 Volt 250 Amp D08... 8.50
400 Volt 2 Amp Silicon Rectifier RCA... 15 for $9.99
1000 Volt 2 Amp Silicon Rectifier RCA... 10 for $9.99
10,000 Volt Silicon Rectifier RCA... 2.95

SILICON TUBE REPLACEMENTS
2N6073 Replaces 805, 806A, 3828... 9.90
2N2222 Replaces 5D4, 5D6, 807... 5.25
5717 Replaces 873... 28.50

STUD RECTIFIERS
2 AMP EPOXY BRIDGE RECT.
50 Volt 40 Amp... 99 190 Volt... 25
100 Volt 40 Amp... 1.90 290 Volt... 35
200 Volt 40 Amp... 1.59 490 Volt... 45
400 Volt 40 Amp... 1.79 690 Volt... 55

ZEPTES
110 VAC or 117/50 400 Mv ex. 25 114721 to 114764 1 w. 35
10 assorted zero diodes unmarked... 1.98
2N2222 or 2N2907... 10.99
2N2365... 9.90 400 Vol 24 1475... 80
2N3131... 9.50 401 Vol 24 1490... 80
2N2926 NPN... 10.99 403 Vol 24 1492... 80
2N2904 or 2N3006... 10.99 404 Vol 25 1411... 80
2N496 or 2N6108... 35 405 Vol 25 1412... 1.10
F1001 FET... 99 406 45 1416... 1.75
F1002 FET... 99 407 45 1415... 1.75
471 or 70F 1P DIS... 25 411 30 1416... 1.75
555 Timer... 75 413 85 1417... 1.25
555e... 175 430 20 1418... 9.90
200 Volt 25 Amp Bridge... 49 437 50 1419... 1.50
100V 1419... 1419... 10 for 99 442... 1419... 1413... 1.45

We quote on any device at any quantity. All items posted. $5.00 min. order. Send stamp for catalog. NYS add tax.

WEBSTER RADIO

Everything from Set to Signal!

2602 E. Ashlan, Dept. H
Fresno, Calif. 93726
(209) 224-5111

TEST EQUIPMENT

All equipment listed is operational and conditionally guaranteed. Money back if not satisfied—equipment being returned must be shipped prepaid. Include check or money order with order. Prices include UPS or motor freight charges.

BALL VAC TV spec, effects gen... $425
BECKMAN 7550A Counter Freq conv
10 1000mHz... 125
BOOnton 91C RF VTVM to 600mHz... 115
BOOnton 191A G mtr to 300mHz... 325
BOOnton 202AG FM Sig gen... 246mHz... 125
DEI TDU to 250mHz video display... 45
GR54C Audio microvolter... 65
GR281A Twin T imp bridge to 40mHz... 165
GR1302A Audio Osc, 0-100mHz... 75
HP185A Scope sampling to 1 GHz... 85
Xstr rise time vert. pulse in... 335
HP205A Audio Gen, 02-20kHz... 175
input and output meters... 35
HP211A Sq wave gen. ... 10. Us, width... 35
HP430 Microwave Pwr mtr... 35
HP430C Rack mt. version Hp430C... 35
HP540B Transfer Osc. to 12 GHz... 115
HP515B 161B Digital clock/rcdr... 295
HP608D T510 Std sig gen 10-200mHz calibrated... 395
HP803A VHF Ant. bridge 50-500mHz... 95
HP1750A Vert. amp. for HP1750... 125
MEAS. 80 Std Sig Gen 240mHz... 225
PRD 907 Sweep Gen 40-900mHz... 95
SINGER SS8 Sideband spec anal... 685
TEK 181 Time mark scope... 45
TEK 555 Dual beam 10MHz scope... 525
less plug ins... 185
TS 47B Mill mtr, 80 Sig gen... 185
TS 505 Std VTVM RF to 500mHz... 65

For complete list of all test equipment send stamped, self-addressed envelope.

HAL Communications Corp., Box 365, 807 E. Green Street
Urbana, Illinois 61801 • Telephone: (217) 367-7373

Put your best fist forward.

To be one of the best fists on the air, you all need is a little practice and the HAL 2550 Keyer and its precision built companion, the FYO Key.

The 2550 features a triggered clock pulse generator, sidetone monitor, iambic keying and dot memory. There's an optional tailor-made ID too.

Many amateurs remember the famous FYO Key, a key infinitely adjustable to every fist. Now it's back again, better than ever, and available only from HAL. The 2550 Keyer and the FYO Key make a great combination.

So to put your best fist forward, send today for a detailed brochure on these two great products.

ALDELCO

P.O. Box 341H, Lyndebro, N.Y. 11563

PHYSICALLY IMPOSSIBLE TO ACTUALLY BE SEEN. OBSCURED BY INCREDIBLE VOLUME. INCREDIBLE ACOUSTIC QUALITY.
Dependability

THAT'S WHAT YOU GET FROM SENTRY CRYSTALS.

Because Sentry communication crystals are the most stable, reliable crystals available. Anywhere. At any price.

Sentry crystals are made to the latest state-of-the-art specifications from the finest quartz. And they’re gold-plated for long-term reliability.

Since Sentry has the largest semi-processed crystal bank in the world, we can custom-make crystals for any rig. Any frequency. Faster than anyone else in the business.

We process our orders quickly and efficiently, too. And we stand behind our work. With solid guarantees.

Maybe that’s why people who count on communications count on Sentry.

Send for our complete 1976 catalog. It’s just $1.50, deductible from your first order. It may be one of the best communications investments you’ll ever make.

Sentry Manufacturing Company
Tuned-in to Quality
Crystal Park, Chickasha, Oklahoma 73018

Phone: 405/224-6780
TWX 910-630-6425

Sentry

Continental Specialties Proto Boards

FREE DL747 Digital Readout with purchase of every PB-6 or PB-100

PROTO BOARD 6

The PB-6 lets the user test and build circuits without soldering or patch cords; all interconnections between components are made with common #22 AWG hook-up wire. This quality breadboarding kit includes 650 component tie points at less than $7.5 each. It measures 14 long by 4 wide. Designed especially for Breadboard Microprocessor Circuits.

$13.95

PROTO BOARD 100

A low cost, big 10 IC capacity breadboard kit with all the quality of QT sockets and the best of the Proto Board series. complete down to & up to, bolt and screw included. 2 QT-3SSS Sockets; 1 QT-35R Bus Strip; 2 5-way binding posts; 4 rubber feet 10 screws, bolts, and easy assembly instructions.

$19.95

Postpaid — Continental U.S.A.

HOSFELT ELECTRONICS
224 OPAL BLVD., STEUBENVILLE, OHIO 43925 Phone 614 264-6644

PARTS PANIC!!

Having parts problems such as Minimum Orders, Unanswered Letters, Uninterested Suppliers, Too Much Time at Flea Markets?

Let G. R. Whitehouse & Co., the New Parts Specialists solve your problems.

NOW IN STOCK

Air Wound Chokes — Couplings — Knobs — Receiving Variables

From

Mullen - E. F. Johnson - Barker & Williamson - JW Miller - Hammarlund

Send First Class Stamp for Flyer

G. R. WHITEHOUSE & CO.
10 NEWBURY DRIVE, AMHERST, N. H. 03031

“THE PARTS FINDERS”

IRON POWDER TOROIDS

Chart showing all per 100 turns

<table>
<thead>
<tr>
<th>CORE SIZE</th>
<th>MIX 2 5-30MHZ</th>
<th>MIX 4 16-30MHZ</th>
<th>MIX 12 60-300MHZ</th>
<th>SIZE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-200</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>12</td>
<td>.95</td>
</tr>
</tbody>
</table>

Ferrite beads 28-500 MHz $2.00 Doz.
Wideway chokes 20-500MHz 96 Ea.

Specify core size and mix. Pack and ship 50C USA & Canada. Air parcel post delivery worldwide $10.00. 4 percent tax in Calif. Send for free brochure.

DUPLEXER KITS

PROVEN DESIGN. HUNDREDS SOLD IN US, CANADA, EUROPE. CONSTRUCTION WELDED ALUMINUM IRIDIUM & SILVER PLATED. SEE JAN. 74 QST RECENT EQUIPMENT. ALL PARTS PROFESSIONAL QUALITY EVERYTHING SUPPLIED. NO SPECIAL TOOLS RECEIVER & TRANSMITTER CAN BE USED FOR TUNE UP.

MOD. 62-1 & 6 CAVITY 135-165 MHZ POWER 250W ISOLATION GREATER THAN 100 db 600 kHz INSERTION LOSS .9 dB MIN TEMP STABLE WIDER RANGE PRICE $349.00

MOD. 42-1 6 CAVITY SAME AS 6 CAVITY EXCEPT ISOLATION GREATER THAN 80 db 600 kHz INSERTION LOSS .6 db MAX. PRICE $249.00

NORTH SHORE RF TECHNOLOGY
Exclusive Distributor CUFFS Radio
386 MAIN ST., MEDFORD, MA 02155
617-395-0280

CONTINENTAL SPECIALTIES

THE THIS IS YOUR BIG CHANCE!

BUY $50 WORTH; THEN PICK $50 WORTH FREE!

OTHER ORDERS: $10+ Orders take 5% Discount; $30+ Orders take 10% Discount

74500 Series 745157 1.95
c/\(C0409\) 1.25 555H 5.50 501H 3.95 506N 14.00 531N 5.95
c/\(C0405\) 1.42 571AY 1.95 500N 1.95 510N 4.75 531N 6.95
c/\(C0401\) 2.50 523 2.10 501H 3.50 523N 11.00 5312N 10.00
c/\(C0400\) 2.50 542 2.20 501H 3.50 523N 11.00 5312N 10.00
c/\(C0400\) 2.50 542 2.20 501H 3.50 523N 11.00 5312N 10.00
c/\(C0400\) 2.50 542 2.20 501H 3.50 523N 11.00 5312N 10.00

1. Add $50e for postage & handling on orders under $10.
2. All items guaranteed.
3. Send SASE for Bargain Flyer.
4. SEND YOUR ORDER ALONG WITH CHECK OR MONEY ORDER TO: WEIRNU, P.O. BOX 942, COLO, I02C 9224 (Calif. residents include 6% tax).
RAOIO AMATEUR
Lake Bluff. Ill. 60044

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.00 shipping and handling per Callbook.

NOW is the time to order YOUR
976 callbook

Don’t wait until 1976 is half over. Get your new Callbooks now and have a full year of the most up-to-date QSL information available anywhere.

The new 1976 U. S. Callbook has over 300,000 W & K listings. It has calls, license classes, names and addresses plus the many valuable back-up charts and references you have come to expect from the Callbook.

Specialize in DX? Then you’re looking for the new, larger than ever 1976 Foreign Callbook with over 225,000 calls, names and addresses of amateurs outside of the USA.

On dealer shelves NOW!!

RAOIO AMATEUR
Lake Bluff. Ill. 60044

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.00 shipping and handling per Callbook.
Get your QSL cards out of the shoe box and into an organized file. The QSL Organizer. A sturdy file box measuring a full 13" x 11" x 4" and divided into 16 indexed compartments. Shipped completely assembled.

Mail to: QSL Organizer, 12757 Woodford Way, Bridgeton, MO 63044

Use your Master Charge* or BankAmericard Master Charge* Bank Americard

Account no. ____________________________
Interbank no. ____________________________

Find above your name

Good through ____________________________

Print Name ____________________________
Address ____________________________
City ____________________________
State ___________ Zip ________

April 1976

Tear off and mail to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

*Please contact this advertiser directly.
Limit 15 inquiries per request.
HERE ARE THE BUYS FROM GENAVE

GTX-100

1¼-Meter FM
100 Channel Combinations—12 watts
Separate controls for independent transmit and receive frequency selection . . . Pre-selected paired frequency lock allows one knob operation . . . Backlighted.

Down from $199.95 $149.95
(Incl. 223.5 MHz)

GTX-600

6-Meter FM
100 Channel Combinations—35 watts
Separate controls for independent transmit and receive frequency selection . . . Pre-selected paired frequency lock allows one knob operation . . . Rear panel external speaker jack . . . Optional mic gain control and sub-audible tone mod possible.

Down from $199.95 $149.95
(Incl. 52.525 MHz)

IN STOCK NOW . . . GENAVE STOCKS MOST COMMON 2-M CRYSTALS FOR IMMEDIATE DELIVERY

These crystals can be used in most makes that employ the following circuitry:

Transmit:
12 times for use in 32 pf capacitance circuits

Receive:
3 times for 10.7 MHz IF in 32 pf capacitance circuits (low side)

Use This Handy Order Form

4141 Kingman Dr., Indianapolis, IN 46226
(317+546-1111)

NAME ____________________________ AMATEUR CALL ________
ADDRESS __________________________________ CITY ________
________________________________ STATE & ZIP ________

Payment by: [] Certified Check/Money Order [] Personal Check [] C.O.D. Include 20% Down
Note: Orders accompanied by personal checks will require about two weeks to process.
20% Down Payment Enclosed. Charge Balance To:
[] BankAmericard # ________ Expires ________ Interbank # ________
[] Master Charge # ________ Expires ________

Sub-Total: $ ________
TOTAL: $ ________

(payment by certified check or money order)

IN residents add 4% sales tax; CA residents add 6% sales tax.
All orders shipped post-paid within continental U.S. (allow 4-8 weeks delivery.)

More Details? CHECK-OFF Page 110

April 1976
OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101
Specify when ordering.
Price $3.95 ea.

OF-1 OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OF-1, Lo, Cat. No. 035108. 20 to 60 MHz, OF-1, Hi, Cat. No. 035109
Specify when ordering.
Price $3.25 ea.

EX CRYSTALS
IHC 6/U HOLDER
Cat. No. Specifications
031080 3 to 20 MHz — For use in OX OSC Lo Specify when ordering $4.95 ea.
031081 20 to 60 MHz — For use in OX OSC Hi Specify when ordering $4.95 ea.
031300 3 to 20 MHz — For use in OF-1L OSC Specify when ordering $4.25 ea.
031310 20 to 60 MHz — For use in OF-1H OSC Specify when ordering $4.25 ea.

MXX-1 TRANSISTOR
RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106
Specify when ordering.
Price $4.50 ea.

SAX-1 TRANSISTOR
RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103
Specify when ordering.
Price $4.50 ea.

PAX-1 TRANSISTOR
RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mW, depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz, Cat. No. 035104
Specify when ordering.
Price $4.75 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107
Specify when ordering.
Price $4.75 ea.
Something new from Yaesu

FT-221
VHF Mobile/Base Station
2 Meter Transceiver

Here is a compact, versatile transceiver designed for the active 2 meter enthusiast. The FT-221 features all mode operation—SSB/FM/CW/AM—with repeater offset capability. Advanced phase lock loop circuitry offers unsurpassed stability and clean spurious free signals. Modular, computer-type construction offers reliability and ease of service. Preset pass band tuning provides the optimum selectivity and performance needed on today's active 2 meter band. Join the fun on FM, DX, or OSCAR, with the FT-221 transceiver—another winner from the world's leader in amateur communications equipment.

Features

- Complete 144-148 MHz coverage in 8 band segments—11 crystal channels per band segment. (11 xtal = 88 crystal controlled channels)
- SSB output 12 watts PEP—FM/CW output 14 watts—AM output 2.5 watts
- Dual rate, concentric VFO dial drive with better than 1 kHz readout
- Three way metering: S-meter, power output, and FM discriminator
- Built-in AC & DC power supplies and speaker
- Built-in tone burst—adjustable 1500-2000 Hz

See your Yaesu dealer or write:
Yaesu Musen USA Inc., 7625 E. Rosecrans, No. 29, Paramount, California 90723

Yaesu Musen USA Inc.,
613 Redna Terrace, Cincinnati, OH 45215
Eastern Service Center
The Drake L-4B's not-so-secret ingredient.

EIMAC 3-500Z triodes.

The good guys at Drake are proud to tell you about their L-4B linear amplifier. They won't hide the fact that precision design insures continuous operation at one kilowatt power input on CW, AM and RTTY; and two kilowatts PEP on SSB. You won't have to ask twice about the L-4B's features like the transmitting AGC circuit to control exciter gain, the standby switch or the built-in RF directional wattmeter.

Our point? Drake doesn't keep it a secret that the L-4B's high efficiency class B grounded grid circuit uses EIMAC 3-500Z zero bias triodes. EIMAC's performance reputation is a much publicized plus. Use of the 3-500Zs simplifies the circuitry, provides 1,000 watts plate dissipation and turns driving power into maximum output power.

To find out more about the reason Drake's first choice is EIMAC, or to ask about our design flexibility to meet individual applications, drop us a line or call. We have no secrets.

Contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070, (415) 592-1221. Or any of the more than 30 Varian Electron Device Group Sales offices throughout the world.
YOU CAN... build some of the finest electronic products around! See how easy it is in our new FREE 96-page catalog...

FILL IN COUPON AND MAIL TODAY

YES! Please rush me my personal copy of the NEW Heathkit Catalog

Please send a catalog to my friend

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE NEW HEATHKIT CATALOG

FREE! mail coupon now

The world's largest catalog of superior electronic products in easy-to-build, money-saving kit form:

- Hi-fi Components
- Color TV
- Amateur Radio
- Test Instruments
- Digital Clocks and Weather Instruments
- Auto, Marine and Aircraft Accessories
- Radio Control Equipment

SEND FOR YOURS NOW!
Send for the world’s largest electronics kit catalog... FREE!

Complete descriptions of over 400 money-saving electronic kits you can build yourself. Everything from lamp dimmers to color TV, all with our world-famous assembly manuals that guide you every step of the way.

PUT STAMP HERE
The Post Office will not deliver mail without postage

HEATH COMPANY
BENTON HARBOR MI 49022