MARCH 1976

- RTTY terminal unit 24
- WWVB signal processor 28
- improving vhf/uhf receivers 44
- microprocessors 54
- low-voltage power supply 58
- and much more . . .

survey of crystal oscillators
Henry Radio has the amplifier you want

Never before has one company manufactured such a broad line of amateur amplifiers, both vacuum tube and solid state, for HF, VHF and UHF; fixed station and mobile; low power and high power. Take your pick from 20 models...the world's finest line of amateur amplifiers.

2K-4...THE "WORKHORSE"
The 2K-4 linear amplifier offers engineering, construction and features second to none, and at a price that makes it the best amplifier value ever offered to the amateur. Constructed with a ruggedness guaranteed to provide a long life of reliable service, its heavy duty components allow it to loaf along even at full legal power. If you want to put that strong clear signal on the air that you've probably heard from other 2K users, now is the time. Move up to the 2K-4. Floor console or desk model...$995.00

3K-A COMMERCIAL/MILITARY AMPLIFIER
A high quality linear amplifier designed for commercial and military uses. The 3K-A employs two rugged Eimac 3-500Z grounded grid triodes for superior linearity and provides a conservative three kilowatts PEP input on SSB with efficiencies in the range of 60%. This results in PEP output in excess of 2000 watts. In addition, the 3K-A provides a heavy duty power supply capable of furnishing 2000 watts of continuous duty input for either RTTY or CW with 1200 watts output. Price...$1250.00

4K-ULTRA
The 4K-ULTRA is specifically designed for the most demanding commercial and military operation for SSB, CW, FSK or AM. The amplifier features general coverage operation from 3.0 to 30 MHz. Using the magnificent new Eimac 8877 grounded grid triodes, vacuum tune and load condensers, and a vacuum antenna relay, the 4K-ULTRA represents the last word in rugged, reliable, linear high power RF amplification. 100 watts drive delivers 4000 watts PEP input. This amplifier can be supplied modified for operation on frequencies up to about 100MHz. Price...$2950.00

TEMPO 6N2
The Tempo 6N2 brings the same high standards of performance and reliability to the 6 meter and 2 meter bands. Using a pair of advanced design Eimac 8874 tubes, it provides 2000 watts PEP input on SSB or 1000 watts input on FM or CW. The 6N2 is complete in one compact cabinet with a self-contained solid state power supply, built-in blower and RF relative power indicator. Price...$795

TEMP0 2002
The same fine specs and features as the 6N2, but for 2 meter operation only....$695.00

TEMP0 2006
Like the 2002, but for 6 meter operation....$695.00

TEMPO T-2000 LINEAR AMPLIFIER
The brand new T-2000 linear is the perfect companion for the Tempo ONE. It is compact, reliable, and priced right. Uses two Eimac 8873 grounded grid triodes cooled through a large heat sink. The T-2000 offers a full 2 KW PEP input for SSB operation and provides amateur band coverage from 80—10 meters. Provides a built-in solid state power supply, built-in antenna relay, a relative RF power indicator, and built-in quality to match much more expensive amplifiers. $795.00

K-2000 LINEAR AMPLIFIER
The new K-2000 is the perfect companion for Kenwood's TS-520...matched for style and circuitry. The same specifications as the T-2000...$795.00

TEMPO VHF/UHF AMPLIFIERS
Solid state power amplifiers for use in most land mobile applications. Increases the range, clarity, reliability and speed of two-way communications. FCC type accepted also.

TEMPO 100AL10 VHF LINEAR AMPLIFIER
Completely solid state, 144-148 MHz. Power output of 100 watts (nom.) with only 10 watts (nom.) in. Reliable and compact.

please call or write for complete information.
Discover Signals Normally Hidden ≥90 dB down and Fight Birdies.

This outstanding R&S Spectrum Analyzer with UHF tuner, Type EZF/EZFU will save you precious time in your signal evaluations and, it's a complete system... you need no other equipment.

FEATURES:
- Frequency Range: 6 kHz - 2.7 GHz
- Continuously variable crystal controlled tuning (no YIG oscillators are used)
- Frequency counter gives digital frequency calibration to 1 kHz
- Superimposed level line calibrated in dB, independent of gain setting and drifting — no recalibration
- Automatic identification of overdrive spurious signals
- Time domain display of AM & FM with demodulator output
- This is the first time a filter shape factor of 1 - 2.5 (or better) has ever been achieved in a Spectrum Analyzer; it provides unsurpassed resolution

Write or call for complete information and to schedule a demonstration.

World Leader in Test Inst. + Communications for Over 40 Years

ROHDE & SCHWARZ
14 Gloria Lane, Fairfield, N.J. 07006 • (201) 575-0750 • Telex 133310
Stay tuned for future programs.

The HAL ST-6000 demodulator and the DS-3000 and DS-4000 KSR/RO series of communications terminals are designed to give you superlative TTY performance today—and in the future. DS Series terminals, for example, are re-programmable, assuring you freedom from obsolescence. Sophisticated systems all, these HAL products are attractively priced—for industry, government and serious amateur radio operators.

The HAL ST-6000 operates at standard shifts of 850, 425, and 170 Hz. The tone keyer is crystal-controlled. Loop supply is internal. Active filters allow flexibility in establishing different tone pairs. You can select AM or hard-limiting FM modes of operation to accommodate different operating conditions. An internal monitor scope (shown on model above) allows fast, accurate tuning. The ST-6000 has an outstandingly high dynamic range of operation. Data I/O can be RS-232C, MIL-188C or current loop.

The DS-3000 and DS-4000 series of KSR and RO terminals provide silent, reliable, all-electronic TTY transmission and reception, or read-only (RO) operation of different combinations of codes, including Baudot, ASCII and Morse. The powerful, programmable 8080A microprocessor is included in the circuitry to assure maximum flexibility for your present needs—and for the future. The KSR models offer you full editing capability. The video display is a convenient 16-line format, of 72 characters per line.

These are some of the highlights. The full range of features and specifications for the ST-6000 and the DS series of KSR and RO terminals is covered in comprehensive data sheets available on request. Write for them now—and tune in to the most sophisticated TTY operation you can have today...or in the future.
<table>
<thead>
<tr>
<th>contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 crystal-controlled oscillators</td>
</tr>
<tr>
<td>24 DT-500 RTTY demodulator</td>
</tr>
<tr>
<td>28 WWVB signal processor</td>
</tr>
<tr>
<td>36 high-speed divide-by-n counters</td>
</tr>
<tr>
<td>40 off-the-air transmitter tuneup</td>
</tr>
<tr>
<td>44 vhf/uhf receivers — how to improve them</td>
</tr>
<tr>
<td>50 5/8-wavelength vertical antenna for two-meter fm</td>
</tr>
<tr>
<td>54 microprocessors — 8080 output instructions</td>
</tr>
<tr>
<td>58 high-performance bench power supply</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>march 1976</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a second look</td>
</tr>
<tr>
<td>102 advertisers index</td>
</tr>
<tr>
<td>91 flea market</td>
</tr>
<tr>
<td>97 ham mart</td>
</tr>
<tr>
<td>68 ham notebook</td>
</tr>
</tbody>
</table>
Recently there has been increased interest in the work of Nikola Tesla, one of the most remarkable inventors of all time, and a man who has rightfully been called the "father of radio" by some of his contemporaries. Born in Yugoslavia 120 years ago, Tesla arrived in America in 1884 with only four cents in his pocket and a letter of introduction to Thomas Edison. Edison immediately put the new immigrant to work in his New York laboratories, but the methods and temperament of the two men were fundamentally different, and the arrangement lasted less than a year. Tesla was a lone wolf, secretive, tried nothing which he had not previously thought out to the last detail, and believed that alternating current was the electrical power of the future. Edison, on the other hand, preferred to work by trial and error and was totally committed to the direct current which powered the incandescent lamps which he invented and his company lighted.

After leaving Edison's employ Tesla worked as a common laborer — the only job he could get — but his fortunes changed in 1887 when he persuaded some financiers to underwrite his own Manhattan laboratory. His multiphase ac machinery, the designs for which he had been carrying around in his head for five years, was built, tested, and patented before the end of the year. George Westinghouse, Edison's competitor, reportedly paid Tesla a million dollars for the patents, but after Tesla's death in 1943 a personal friend said that Tesla actually got only $200,000, and two-thirds of that went to his financial backers. Considering that practically all modern alternating-current machinery — generators, motors, converters, regulators and transformers — are based on early Tesla patents, the price was a pittance.

Tesla's best known invention is probably the Tesla coil, the high-frequency, air-core oscillation transformer which is still used in laboratories to demonstrate high-voltage phenomenon. The largest of these, which Tesla built in Colorado in 1899, was used to light 200 50-watt lamps at a distance of 26 miles without any connecting wires. Convinced of the possibility of wireless power transmission, Tesla began construction of his first demonstration plant on Long Island in 1904. Shortly after the massive, 187-foot octagonal tower was completed, however, he ran out of money and was forced to abandon the project. Since Tesla never revealed how large an area he intended to cover and he kept few notes, little is known about the installation. However, this and other of his works are receiving renewed interest from modern energy researchers.

Not so well known are Tesla's many inventions in the fields of lighting, turbine engineering, automation, high-frequency alternators, X-ray apparatus, induction heating, and radio communications. One of his neglected inventions, still unused, was a carbon-button lamp which gave twenty times more light, for the same amount of current, as Edison's incandescent filament lamp. He also described a system for detecting ships and other distant objects by aiming a powerful beam of short-wave impulses at them and picking up reflections on a fluorescent screen — a clear prophesy of the radar of the future.

Tesla first started working with high-frequency energy in the late 1880s, and at a lecture in 1892 he demonstrated wireless communications circuits which contained all the basic elements of those adopted several years later by Marconi and others. These circuits remained the same for all radio communications until the introduction of the transmitting electron tube nearly three decades later.

Believing that point-to-point communications was an obvious application of Hertz's own 1887 experiments, Tesla made no attempt to patent his very early wireless apparatus. He was primarily interested in developing a new and efficient method of wireless power transmission, and although he was never completely successful, he developed and patented some of the most advanced wireless apparatus of the day, apparatus which was eagerly adapted by others for more profitable purposes.

In 1915 Tesla sued Marconi for infringement of his patent rights. In the long and drawn out court battle that followed Tesla became more and more of a recluse, poverty stricken, moving from one hotel to another when he wasn't able to pay his bills. Ironically, shortly after his death the Supreme Court finally declared that Marconi's four-circuit wireless patent (his most important) was invalid — it was predated by the work of Tesla, John Stone, and Oliver Lodge. Both Stone and Lodge acknowledged that their inventions had been inspired by the earlier lectures of Tesla. Perhaps on this 120th anniversary of his birth Tesla will begin to receive some of the recognition he deserves — without his genius we would all be the poorer.

Jim Fisk, W1DTY
editor-in-chief
the little surprise

The IC-22A has caused some pretty big surprises since it first started making waves in VHF-FM. Veteran operators have been delightfully surprised by its sophisticated styling and ease of operation; FM beginners, by its versatility, large number of possible channels, and its great value as a starter unit for FM transceiving; and all owners, by its unexcelled high quality construction and low maintenance problem record, ICOM traditions. The competition was in for a big surprise as it raced past everything in its field to become the most popular two meter crystal controlled radio on the market. Surprise. Surprise.

But the IC-22A's best surprise is the little surprise, its price. Surprise. The little radio with all the big surprises is also the best FM transceiver value available. Engineered for versatility and sophistication: priced within the reach of the most modest beginner. Whether the IC-22A is your first FM or your last, you're in for a little surprise.
KENWOOD'S TS-700A finally fulfills the promise of 2-meters... more channels, more versatility, tunable VFO, SSB-CW and, best of all, the type of quality that has placed the Kenwood name out front.

- Operates all modes: SSB (upper & lower), FM, AM, and CW
- Completely solid state circuitry provides stable, long lasting, trouble-free operation
- AC and DC capability. Can operate from your car, boat, or as a base station through its built-in power supply
- 4 MHz band coverage (144 to 148 MHz) instead of the usual 2
- Automatically switches transmit frequency 600 KHz for repeater operation. Just dial in your receive frequency and the radio does the rest... Simplex repeater reverse
- Or do the same thing by plugging a single crystal into one of the 11 crystal positions for your favorite channel
- Outstanding frequency stability provided through the use of FET-VFO
- Zero center discriminator meter
- Transmit/Receive capability on 44 channels with 11 crystals
- Complete with microphone and built-in speaker
- The TS-700A has been thoroughly field-tested. Thousands of units are in operation throughout Japan and Europe.

The TS-700A is available at select Kenwood dealers throughout the U.S. For the name of your nearest dealer, please write.

Available at select Kenwood dealers throughout the U.S.

KENWOOD... the standard in amateur radio

TRIO-KENWOOD COMMUNICATIONS INC.
116 East Alondra / Gardena, California 90248

See the complete Kenwood line at any of the following authorized Kenwood dealers:

- Accetek, Inc.
 420 Laurent Rd, Greenville, S.C. 29607

- Astroecomel Radio Supply
 105 W Madison St, Amsterdam, N.Y. 12012

- Amateur Electronic Supply
 409 West Fourth Ave, Melbourne, Fl. 32901

- Amateur Electronic Supply
 1150 East Alondra, Cleveland, Ohio 44112

- Amateur Radio Center
 2905 N Second Ave, Tucson, Ariz. 85701

- Amateur Radio Supply Co.
 6713 S 13th Ave, South Seattle, Wash. 98106

- Associated Radio Communications
 8012 Conner, Overland Park, Kans. 66212

- Baldwin Amateur Center
 1241 First Ave, N.W. Waterstown, S.Dak 57013

- Center Radio Supply
 110 S 13th St, Billings, Mont. 59101

- Craig Radio Company
 Rte. One, Bryan South, Kittery, Me. 03904

- Derick Electronics
 714 West Komoto Broken Arrow, Okla. 74012

- Douglas Electronics
 1116 S Stapleton Corp. Chris. Tex. 78404

- Electronic Center
 127 Third Ave North, Minneapolis, Minn. 55401

- Electronic Distributors
 1900 Park St, Muskegon, Mich. 49441

- Electronic Exchange
 136 Main St, Swanton, Pa. 18654

- Electronic International Service Corp.
 11260 Elk St, Wheaton, Md. 20902

- Electronic Module
 601 N Turner, Nobles, N.Y. 80240

- Electronic Center
 2929 N Haskell, Dallas, Tex. 75204

- Excursion Communications
 65936 N Milwaukee Ave, Chicago Ill. 60664

- Gary Radio, Inc.
 8199 Claremont Mesa Blvd, San Diego, Calif. 92111

- Georgia Electronics
 133 Pennsylvania, Indianapolis, Ind. 46240

- Ham Radio Center
 8342 Blue Bluff Rd, St. Louis, Mo. 63132

- Ham Radio Outlet
 950 Harvest Ave, Burlingame, Calif. 94010

- Hammonds
 4093 Brownsville Rd, Travis Ave, Pa. 15907

- Harrisons Radio Corp.
 20 Smith St, Farmingdale, L.I., N.Y. 11735

- Henry Radio
 17241 Washington Blvd, Los Angeles, Calif. 90064

- Henry Radio
 651 Escondido Ave, Anaheim, Calif. 92801

- Henry Radio Company
 21 W Main St, Butler, Me. 64720

- Hobby Industries
 12891 Sylmar Blvd, North Hollywood, Calif. 91601

- Hoosier Electronics
 611 Haywood, In 40982

- JMS Distribution
 649 N Market St, York, Pa. 17404

- Kleinus Radio, Inc.
 6407 E. North Ave, Tacoma, Wash. 98403

- Marounds Electronics
 1168 W Kenmore Ave, Houston, Tex. 77002

- Mallory Supply Co.
 2780 W Main St, Salt Lake City, Utah 84115

- Portland Radio Supply
 12345 W Stark St, Portland, Or. 97207

- Professional Electronics
 1710 Joa St., Baltimore, Md. 21204

- Radio, Inc.
 100 South Main, Toledo Ohio 43611

- Radio Supply & Engineering
 85 Sheldon Ave, Detroit, Mich. 48201

- Sea Rose & Speaker Electronics
 1495 Wicks Blvd, Memphis, Tenn. 38108

- Silver Creek Electros
 744 Water St, Ketchikan, Al. 99901

- Sponge Electronics
 314 Lee St, Dayton, Ohio 45404

- Venture Electronics
 500 E Main St, Durham, N.Y. 27702

- Walker Radio
 2602 E Ashten, Fresno, Ca. 93712

* These are the only dealers authorized by Trio-Kenwood Communications, Inc. to sell and service Kenwood products.

When you get tired of compromises...
YES!
There is an antenna that your neighbors will love!

We know you're not going to believe your neighbors will like your new 20 meter beam; but just wait until they CAN'T see it.

The trim-tenna™ is designed for the discriminating amateur who wants fantastic performance in an environmentally appealing beam.

It's really loaded! Up front there's a 13 feet 6 inch director with precision Hy-Q coils. And, 7 feet behind is a 16 foot driven element fed directly with 52 ohm coax.

The trim-tenna™ goes up on your roof, tripod, or chimney as easily as a color TV antenna.

The difference in on-the-air performance between the trim-tenna™ and a full size 2 element beam is negligible. But oh the difference between the trim-tenna™ and that dipole, long wire or inverted Vee you've been using.

trim-tenna™ . . . 129.50 post paid U.S.A. from DenTron Radio or your favorite dealer.

- The secret is proper placement of factory sealed Hy-Q inductors
- Heavy gage seamless aluminum
- Light weight
- SWR less than 2:1 over the entire band

DenTron
Radio Co., Inc.
2100 Enterprise Parkway
Twinsburg, Ohio 44087
(216) 425-3173

More Details? CHECK—OFF Page 102
A NEW WARC TASK FORCE for "Research and Support" was announced by Chairman John Johnston as the first item of business at the January 20th WARC '79 meeting in Washington. This Task Force will be headed by Dick Baldwin and will supply (through ARRL) the basic working group support for Amateur Radio WARC preparation he had promised at the December meeting.

The Proposed Frequency Table was then reviewed by the Task Force chairman with no significant changes from those previously proposed (Prestop, February, 1976 issue). Asking and getting are different things, however. Other U.S. groups are reported to be after 3.9-4.0, 7.2-7.3, 146-148, and 220-225 MHz (see below), and broadcast would like to extend their a-m band upper limit from 1605 to 1805 kHz!

CB'S WARC MEETING on January 13th generated frequency recommendations of one MHz between 26-28; 5 MHz between 216-230 (220-225 MHz preferred), 10 MHz between 470-947 (around 900 MHz preferred), and 200 MHz between 15 and 25 GHz. Present Class-C (72 MHz) and Class-A (462/467 MHz) would remain unchanged.

SIGNING "MOBILE" OR "PORTABLE" with your call will never again be required if a just released Notice of Proposed Rule Making becomes part of the Amateur rules. Docket 20686 also proposes that the requirement for notifying the FCC before engaging in an extended period of portable operation be deleted.

Comment Due Date is February 27, with Reply Comments due on March 8. Though Docket 20686 would make it unnecessary to indicate portable or mobile operation, it would not prohibit such identification — a generally favorable Amateur response is expected, but such a rules relaxation could cause confusion in contests and for award programs.

FCC'S NEED FOR ENFORCEMENT "TEETH" highlighted FCC Chairman Richard Wiley's message to Congress in an appearance before the Senate Commerce Subcommittee January 20. He'd like to be able to double the size of the fines the Commission can levy, extend its authority to cover unlicensed as well as licensed radio operators since under the present rules unlicensed operators — principally CB violators — must be turned over to the Justice Department for prosecution after the FCC has tracked them down.

TRANSMITTER SPURIOUS OUTPUTS such as those previously reported from the Heathkit 2026 and early Multi-2000 are not the only problems facing buyers of vhf/uhf Amateur gear. Because of the potential interference to the many services using the higher frequencies, all receivers that tune above 30 MHz that are sold commercially must be FCC certified that they meet the limits on radiation specified in Part 15 of the rules.

Some Japanese imports have come in without Part 15 certification and reports are that some uncertified equipment is being sold currently on the Amateur market.

CANADIAN AMATEURS requesting reciprocal privileges no longer have to have a U.S. mailing address — the change, which also applies to CB licenses, is effective immediately.

UNLICENSED AMATEUR-LIKE ACTIVITY by the "HF gang" operating on ssb in the region between channel 25 and 27.5 MHz grows at an ever increasing pace. Latest report is that 10,000 each of HF- and HFA-series "calls" have been assigned to these illegal stations and they are now well into the HFB-numbers! With rumors abundant that Class-D CB expansion to 27.5 MHz is due out shortly, it's not at all unlikely that we'll soon find more of them than licensed Amateurs on the 10-meter band.

Amateurs Can Assist FCC in their efforts to cope with this illegal tide by reporting to the FCC any information they pick up listening to the HFBers that might help in identifying individual operators — some have been heard recently giving their complete street addresses for QSL purposes, and since their's is an entirely illegal operation, the restrictions concerning secrecy of communications do not apply. Reports can be sent to the Engineer In Charge of your nearest FCC Field Office, but better yet would be one of the four FCC Special Enforcement Facilities with a carbon copy to your local EIC. Write Supervisor, FCC SEF at P.O. Box 1588, Grand Island, Nebraska 68801; P.O. Box 65, Powder Springs, Georgia 30073; 2914 W. Edinger Avenue, Box 5126, Santa Ana, California 92701; or P.O. Box 36, Laurel, Maryland 20810.

HIRAN DOCKET proposing shared use of 420-450 MHz band by the off-shore oil rig radio location system has finally made it into the home stretch and will be out very soon. Reports are that despite strenuous Amateur and Citizens Division opposition HIRAN will get to share the band on a temporary, non-interfering basis as Docket 20147 had initially proposed.

RCA WILL STOP TUBE PRODUCTION and close its historic Harrison, New Jersey plant July 30th. However, RCA will continue to make some types overseas and buy others from other makers so does plan to continue as a major tube supplier for some time to come.
Now you can afford the best!
Free-standing or guyed,
Tri-Ex Towers stress quality.
All towers are hot dipped
galvanized after fabrication
for longer life. Each
series is specifically engi-
neered to HAM operator
requirements.

W Series
An aerodynamic tower
designed to hold 9 square
feet in a 50 mph wind. Six
models at different heights.

MW Series
Self-supporting when
attached at first section —
will hold normal Tri-Band
beam. Six models.

LM Series
A 'W' brace motorized tower.
Holds large antenna loads
up to 70 feet high.
Super buy.

TM Series
Features tubular construc-
tion for really big antenna
loads. Up to 100 feet.
Free-standing, with motors
to raise and lower.

THD Series
Very popular. Low Cost.
Holds Tri-Band antennas.
Eight models — all support 7
square feet of antenna
at full height in 70 mph
winds. Guyed.

Start with Top-of-the-Line
Tri-Ex Towers. At basic
prices. Write today, for your
best buy.
survey of crystal oscillators

A comprehensive review of many circuits with recommendations to help you choose the crystal oscillator best suited to your design needs

Crystal oscillators are fundamental to radio-communications equipment and, today, to many digital devices such as clocks, frequency meters, and some precision measuring instruments. Crystal-oscillator circuits abound, and design choice depends on the application and desired characteristics.

This article presents an overview of solid-state crystal oscillators, many of which have been gleaned from the literature. Unfortunately, many published circuits have unknown or little-understood characteristics, whereas others have inherent pitfalls that can trap the unwary. A major purpose of this article is to ferret out these questionable crystal-oscillator circuits and offer guidelines on what to expect if construction is contemplated.

Fundamental-frequency and overtone-frequency crystal oscillators are reviewed. Applications are presented for low- and high-frequency circuits, 1-MHz time-base clocks, TTL-compatible oscillators using ICs, variable-frequency oscillators (VXOs), oscillator-multipliers, and multichannel (switchable) oscillators. The article is prefaced with a short discussion on quartz-crystal resonant modes, which is necessary to an understanding of how these crystals operate in an oscillatory circuit.

It’s sometimes desirable to know something of the various crystal cuts for a particular application; such a discussion is beyond the scope of this article. References 1 to 8 contain suitable material; references 1 to 5 are particularly recommended.

One thing little appreciated about quartz crystals is that the crystal can oscillate in two resonant modes: parallel and series. The two resonant frequencies are separated slightly, typically 2 to 15 kHz. The series-resonant frequency is lower than the parallel-resonant frequency. Oscillator circuits are designed so that the crystal oscillates in one of these modes. Few articles note that a crystal specified and calibrated for use in a parallel-mode circuit may be satisfactorily used in a series-mode circuit if a capacitor equal in value to the circuit’s specified parallel-mode load capacitance (usually 20, 30, 50 or 100 pF) is placed in series with the crystal. Unfortunately, the converse isn’t true. The series-mode crystal will oscillate above its calibrated frequency in this case, and it’s usually impossible to pull it down sufficiently with capacitive loading.

Overtone crystals always operate in the series mode, usually on the 3rd, 5th or 7th overtone, and manufacturers usually calibrate the crystal at the overtone frequency, not at the fundamental frequency. Operating a crystal in the parallel mode and multiplying the frequency three or five times doesn’t produce the same result as operating the same crystal in the series mode on its third or fifth overtone. When ordering overtone crystals, avoid confusion and specify the frequency you want, not the apparent fundamental frequency!

For crystals used in parallel-resonant-mode oscillator circuits, the load capacitance must be specified, as stated above. Take into account device input capacitances, circuit capacitance across the crystal, and strays. A load capacitance of 30 pF is the most usual specified value. A trimmer is often used in parallel-mode circuits for exact frequency setting and is a desirable feature. When ordering crystals to be used in the series mode, a load capacitance is not specified.

Crystal oscillator circuits can be divided into two modes of operation: fundamental-frequency oscillators and overtone oscillators. Fundamental-frequency crystals cover the frequency range to 20 MHz, although fundamental-frequency crystals above 15 MHz are uncommon and very fragile. Fundamental-frequency crystals are usually specified for parallel-mode operation, but series mode can be requested. Low-frequency crystals, below 500 kHz, are often best operated in the series mode. Overtone crystals cover 15 to 150 MHz.

By Roger Harrison, VK2ZTB, 14 Rosebery Street, Balmain NSW 2041, Australia
Overtone crystals above 100 MHz are usually fragile and expensive but are handy for uhf oscillator-multiplier chains.

The choice of a circuit will depend on your application. Various applications will require sine-wave output, square-wave output or a harmonic-rich output, for example. Other applications may require an oscillator to accept crystals covering a wide frequency range or an oscillator to drive a TTL digital device.

In any crystal oscillator circuit it's desirable to have some means of setting or trimming the frequency and to be able to adjust the feedback, easily and in a noncritical manner, to limit crystal power dissipation. Being able to control the feedback has other advantages, as we shall see later. The most convenient way to adjust feedback is to vary resistors or capacitors. Coil taps and tickler windings don't provide the same ease of fineness of adjustment.

The permissible maximum power dissipation of crystals in the 1 to 20 MHz range, operating in the fundamental mode, is about 200 microwatts and is similar for overtone operation. Most low-frequency crystals, below 1 MHz, have a permissible maximum power dissipation of 100 microwatts and should be operated with a dissipation below 50 microwatts. Operating a crystal above or near this level degrades its stability, and the circuits chosen here avoid this problem by limiting the dissipation.

The equivalent crystal series resistance, which determines its activity, determines crystal power dissipation. The higher the series resistance, the lower the permissible power dissipation. Reference 5 gives a representative list for those interested. Using an 807 tube with 600 volts on the anode in a Pierce crystal oscillator is not recommended — you'll probably fracture the crystal. The main point to remember is that crystal oscillators are meant to provide a stable frequency source, not power output. Frequency stability, both short and long term, and crystal life are compromised when an oscillator is operated at an excessive power level. In all applications it's wise to use a regulated source of supply voltage.

aperiodic oscillators

These circuits don't use tuned circuits and can operate over a very wide frequency range. The only component that requires changing for a change in frequency is the crystal. This can be a very useful advantage, whether the circuit is used simply as a "crystal checker" or in some other application. For low-frequency crystals, tuned circuits tend to be bulky, and an aperiodic oscillator has a distinct advantage. However, such oscillators aren't without drawbacks. Some low-frequency crystals, particularly DT and CT cut, are prone to oscillation on unwanted modes.

When using an aperiodic oscillator, it's wise to check that the output is on the correct frequency and that no mode instability exists. With these crystals, the esr (equivalent series resistance) of higher-order oscillation modes is often less than the fundamental-mode esr. As a consequence, the crystal oscillates more readily in the undesired mode. One way around this problem in an aperiodic oscillator is to use a transistor with high small-signal gain at low frequencies that decreases rapidly above the desired operating frequency. In extreme cases, an oscillator with a tuned circuit may be necessary.

The circuit in fig. 1 is an aperiodic Butler oscillator. The basic circuit was first published in VHF Communications and has since appeared in various versions in other amateur publications. A similar circuit is discussed by M. Lane (see also fig. 3). The output of the circuit in fig. 1 is essentially a sine wave, although the second and third harmonics are not much attenuated. Reducing the Q2 emitter resistor increases the harmonic output. Reducing this resistor to about 1k will produce good harmonics to 30 MHz from a 100 kHz crystal. Being a Butler oscillator, it's a series-mode circuit. Oscillation is noncritical with supply voltage variation, although frequency stability is affected. A regulated supply is recommended for applications where stability is important.

As indicated, a variety of transistors may be used. For crystals above 3 MHz, transistors with a high gain-bandwidth product (f_T at least 100 MHz) are recommended. For crystals in the 50 to 500 kHz range, transistors with high low-frequency gain, such as the 2N3565 or BC549, are recommended. Low-frequency crystals, as mentioned before, have a permissible power dissipation limit of 100 microwatts, and amplitude limiting may be necessary. Low supply voltage, consistent with reliable starting, is one way of achieving this. The addition of diodes to the circuit, as in fig. 2, is probably a better

fig. 1. Aperiodic (Butler) oscillator; a series-mode oscillator with sine-wave output. Reducing R2 to about 1k will produce good harmonics to 30 MHz with a 100-kHz crystal. Transistors Q1, Q2 and Q3 are 2N918, 2N2222, 2N3563, 2N3564, 2N3693, 2N3694, 2N5770, AY1119, BC107, BC108, BC109, BC547, BC548, BC549, or SE1001.

fig. 2. Adding diodes to the circuit of fig. 1 limits oscillator amplitude and hence crystal power dissipation; starting performance is also improved.
cuit will oscillate with fundamental-mode crystals to at least 15 MHz with appropriate values of R1 and R2, as well as the appropriate transistors. As shown in the circuit, an emitter follower (or source follower) is recommended.

The aperiodic oscillator in fig. 3 is discussed by Lane, and comments similar to those above apply here. It is also slightly frequency sensitive to power-supply voltage variations. Load changes also affect frequency stability slightly despite the buffered output. A minimum load of 1 kΩ is desirable.

The two oscillator circuits just described are series-mode oscillators adapted to accept parallel-mode crystals. When using a known series-mode crystal, the trimming capacitance in series with the crystal should be replaced by a short circuit.

An aperiodic parallel-mode oscillator is shown in fig. 4. It’s a wideband dc amplifier, with the crystal providing feedback. A crystal operating in the parallel mode has a 180-degree phase reversal across it; consequently, here it provides positive feedback. The 3 to 30 pF trimmer from Q1 base to ground is for frequency setting. A buffer is recommended. The output is not a pure sine wave and the harmonic level is fairly high.

There are many other aperiodic oscillator circuits, but the three discussed here have proven to have repeatable characteristics. Most IC TTL oscillators are aperiodic, but their application is in digital equipment generally, and they are covered in a later section.

low-frequency oscillators

Crystals in the 50 to 500 kHz range are commonly CT or DT cut, but regardless of the cut, they require special considerations not encountered with the more common AT- or BT-cut crystals used in the high-frequency range. As mentioned previously, their Csr is usually high and they are prone to oscillating in a higher-order mode, usually at twice the fundamental frequency.

The circuit in fig. 5 has two advantages. It doesn’t require a tuned circuit and you have a choice of either sine- or square-wave output. For crystals in the 20 to 150 kHz range, 2N3565, 2N2920 or 2N2979 transistors are recommended to avoid mode-instability problems. Any of the other types listed are satisfactory for crystals in the 150 to 500 kHz range. Frequency stability and mode stability are good, and the circuit makes an excellent oscillator for troublesome FT241 crystals. If the crystal won’t start reliably, it probably has a high Csr. In this case increase R1 to 270 ohms and R2 to 3.3k. For square-wave operation, C1 is 1 µF or a standard value either side. Do not use an electrolytic capacitor. C1 is deleted for sine-wave operation. Harmonic output for sine-wave operation is quite low; the second harmonic is typically -30 dB or more.

A somewhat simpler, parallel-mode, low-frequency oscillator is shown in fig. 6. It makes an excellent bfo for 455 kHz. Resistor R6 controls the feedback. If the oscillator won’t start, reduce the value of R6. Increasing the value of R6 reduces harmonic output, a very handy feature. However, at the reduced level of feedback, the oscillator can take up to 20 seconds to reach full output. Harmonic output can be reduced to better than -40 dB.

To produce an output rich in harmonics, bypass the transistor 100-ohm emitter resistor with a 0.1 µF capacitor. Output will rise to about 3 volts rms. Power supply voltage is best kept below 9 volts in this case. For crystals having a specified load capacitance of 30 or 50 pF, remove the 100 pF capacitor in series with the crystal.

Another simple circuit is shown in fig. 7. It has a minor disadvantage in that it requires a coil — usually a bulky component. No coil data is given, but proprietary prewound coils of the indicated inductance range are an excellent solution. This circuit allows a simpler arrangement than that of fig. 6, if switched crystals are desirable. The switch contacts should be inserted between C1 and L1 with each crystal having its own coil. Intercontact capacitance across the switch contacts should be low. Adjusting the slug in L1 pulls the crystal frequency.

The circuit of fig. 7 is basically a series-mode circuit. Parallel-mode crystals can be used by making C1 equal to the specified load capacitance as mentioned earlier. Performance is similar to the circuit of fig. 6; harmonic output is usually better than -30 dB. CT- and DT-cut crystals are usually used to cover 100 to 500 kHz. These

fig. 3. Aperiodic emitter-coupled oscillator (after Lane, reference 6). This circuit is somewhat frequency sensitive to power-supply voltage variations and load changes despite buffered output. Transistors Q1, Q2, and Q3 are 2N3646, 2N3013 or MPS3646.

fig. 4. Aperiodic parallel-mode oscillator. The trimmer capacitor sets the frequency. A buffer is recommended to overcome loading problems. Q1 and Q2 are 2N914, 2N916, 2N3565, 2N5770, BC109 or BC549.
crystals are prone to oscillating at twice their fundamental frequency; for this reason, the circuit in fig. 7 is recommended where such trouble may be experienced.

For crystals in the 40 to 100 kHz range, the +5-volt power supply is adequate. Feedback is dependent on the transistor and the power-supply voltage variations. Performance is not always repeatable. Starting performance varies greatly between fets of the same type and with various crystals.

1 MHz oscillators have many applications, such as frequency markers, clock oscillators and time-base references. The circuit in fig. 10 is recommended where a high-stability 1 MHz source is required. It has a basic stability of 1 part in 10^{-8} or better with supply variations and the usual atmospheric-temperature variations. Using an inexpensive, commercially available crystal oven, it can maintain a stability approaching 1 part in 10^{-8} per day. Harmonic output is low. The output level is about 2 volts peak-to-peak. A TTL-level output is readily obtained by driving a 7413 Schmitt trigger. The circuit originally appeared in Electronics.10

A simple, general-purpose, parallel-mode, 1-MHz crystal oscillator, fig. 11, uses circuit constants for fundamental crystals in the 800 kHz to 3 MHz range. Output is a sine wave at about 0.5 volt rms into a 1k load.

Harmonics are better than -35 dB down, although this is dependent on the transistor and the power-supply voltage used. Note that C1 differs for different crystal-load capacitances.

Integrated circuits are coming into increased use in communications equipment. Their versatility and performance present obvious advantages over discrete circuits. The circuit of fig. 12, which uses the LM375, an IC designed especially for oscillator applications, comes straight from the National Semiconductor Linear IC Data Book. I've found its performance to be very good. The application shown here is for a TTL-compatible output. A sine wave output is obtained by deleting the TTL input (pin 3) of the buffer, bypassing the limiting input (pin 2) with a 0.01 µF capacitor. Harmonic output is quite low.
of course, the same circuit as in fig. 6 but adapted to the high-frequency range. This circuit is recommended for noncritical applications where high harmonic output is desired. It particularly suits FT243 crystals, which may have a high esr. Stability is improved and harmonic level reduced when resistor R1 is increased. However, as noted previously, the circuit takes longer to reach full output.

The addition of a tuned circuit, as shown in fig. 13B, considerably reduces harmonic output. The tuned circuit should have a high unloaded Q for best results. With an unloaded Q of 50 and R1 of 3.9k, the second harmonic was 35 dB down. When a coil having an unloaded Q of 160 was substituted (R1 still 3.9k), the second harmonic decreased to -50 dB. Output voltage also increases with a high-Q coil. A link winding on the coil, or a capacitor from the transistor collector, can be used for output coupling. Tuning the coil pulls the frequency, but this adjustment is generally made only once and pulling is thus of little consequence. An output buffer is recom-

This is a parallel-mode oscillator. Load isolation with the buffer is extremely good; wide variations in load have negligible effect on frequency. Note the low output impedance of the buffer. The circuit constants given work with crystals between 800 kHz and 3 MHz. Output voltage depends on the power-supply voltage. When using the buffer in the linear mode, a supply of up to 24 volts can be used.

High-Frequency Oscillators

Modern crystals manufactured for fundamental operation between 3 and 20 MHz are generally AT cut, whereas the older FT243 crystals were generally BT cut. The AT-cut crystal has about an order-of-magnitude better temperature stability performance than the BT cut, but the latter produces thicker crystal blanks, which are far more robust, particularly at the upper end of the range. However, an oven-controlled BT-cut crystal has stability somewhat better than an AT cut crystal, even in an inexpensive commercial oven (see "Oscillator Topics" in reference 11).

The first circuit (fig. 13A) is described by Lane and has the advantage of not requiring a tuned circuit. It is,

fig. 6. Low-frequency oscillator with tuned circuit (after Foster and Rankin, reference 7). Recommended for GT-cut (surplus) crystals in the 40 to 100 kHz range or for hard-to-start DT-cut crystals. Series- or parallel-mode crystals may be used. Q1 and Q2 are 2N2979, 2N3565, 2N5770, BC107, BC109, etc.

...
stability is affected about 0.001% with supply variation between 5 and 10 volts. A temperature stability of \(+10\) ppm can be expected, as for fig. 13A, over the range 32° to 140°F (0° to 60°C).

The circuit in fig. 15 is suitable for crystals specified for operation in the series mode. Coil L1 is adjusted to set the frequency. Performance is similar to the circuit of fig. 14A. This circuit is otherwise known as the "impedance-inverting" circuit. To set it up and to ensure that the coil resonates near the crystal frequency, apply a short circuit across the crystal terminals and tune the coil until the output is close to frequency, then remove the short and tune L1 to set the correct frequency.

Under no circumstances should a tuned circuit be placed in the Q1 collector that resonates to the crystal frequency. The circuit may then oscillate as a tuned-base, tuned-collector oscillator not under control of the crystal. A tuned circuit on a multiple of the crystal frequency can be used for frequency multiplication, where

The lower the value, the lower the crystal power dissipation and the better the stability. Output will drop a little with lower values of R1. A temperature stability of 10 ppm can be obtained with this circuit.

Fet fundamental-frequency crystal oscillators derive directly from vacuum-tube technology. Figs. 17, 18 and 19 illustrate the use of fets. When using mosfets, gate bias is obtained by the diode from gate to ground, as in figs. 18 and 19. Figs. 17 and 18 are the familiar Colpitts oscillator. Harmonic output is low and depends on the fet used. Crystal power dissipation is reduced by reducing C1 capacitance.

Fig. 19 is a Miller oscillator that seems to provide improved performance over most circuits of this type. The circuit also illustrates the single-stage oscillator-
fig. 14. Another version of a fundamental-frequency, parallel-mode high-frequency oscillator requiring no tuned circuit (A). Circuit (B) delivers about twice the output than (A). TTL output can be obtained using the combination of (B) and (C). Q1 is a 2N3556, 2N3564, 2N3563, 2N5770, BC107, BC547, BF180 or BF200; Q2 is a 2N3478, 2N3932, 2N3933, 2N4259 or 2N5179. Other component values are shown at bottom right.

multiplier application. A tuned circuit resonating at a multiple of the crystal frequency can also be placed in the oscillator drain circuits of figs. 18 and 19. A temperature stability of 15 to 20 ppm can be expected from these circuits over the operating temperature range of the crystal (assuming use of the AT or BT cut). Parasitics can be troublesome with these circuits, as most fets have good gain well into the vhf range. A 10- to 47-ohm resistor in series with the gate lead, as shown in fig. 17, usually overcomes the problem.

![Fig. 14](image)

Table 1

<table>
<thead>
<tr>
<th>Crystal Frequency</th>
<th>C1 (pF)</th>
<th>C2 (pF)</th>
<th>C3 (pF)</th>
<th>R1 (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-10 MHz</td>
<td>1000</td>
<td>270</td>
<td>150</td>
<td>2.7k</td>
</tr>
<tr>
<td>10-15 MHz</td>
<td>100</td>
<td>220</td>
<td>680</td>
<td>15 turns</td>
</tr>
<tr>
<td>15-20 MHz</td>
<td>100</td>
<td>100</td>
<td>680</td>
<td>10 turns</td>
</tr>
</tbody>
</table>

*All inductors closewound with no. 33 (0.2mm) enamelled wire on ½" (6.5mm) diameter slug-tuned coil form.

Fig. 15. High-frequency oscillator circuit suitable for crystals specified for series-mode operation. Known as the "impedance inverting" circuit, its performance is similar to the circuit of fig. 14A. Q1 is a 2N3556, 2N3564, 2N3963, 2N5770, BC107, BC547, BF180, BF200 or SE1010.

Fig. 20 is a high-frequency version of the circuit in fig. 12, using the LM375 IC. Output voltage depends on the supply voltage. The circuit will oscillate with a supply voltage down to 4 volts. Tuning L1 will pull the crystal frequency, but this adjustment should not be used to trim the frequency. Tune L1 only for maximum output. If C3 is a 3 to 30 pF trimmer, it should be used to set the crystal to frequency. Again, harmonic output is low. Using a tuned circuit in the buffer output is likely to cause the circuit to oscillate of its own accord, uncontrolled by the crystal. Use a high-Q tuned circuit for L1/C1 if possible. Stability approaches the crystal speci-

fications; however, the circuit is sensitive to supply-voltage variations.

The buffer provides excellent load isolation and has a low output impedance. Fig. 21 is the series-mode version of the circuit in fig. 20. In this case L1 can be used to trim the crystal frequency. Similar comments apply for the other characteristics.

TTL IC oscillators

I've made brief mention of obtaining TTL-compatible outputs from crystal oscillators to drive digital circuitry (under 1 MHz oscillators). If the output level of an oscillator is sufficient, around 2 volts peak, a 7413 Schmitt trigger makes a good TTL-output buffer, as in fig. 10.

![Fig. 16](image)

Table 2

<table>
<thead>
<tr>
<th>Crystal freq (MHz)</th>
<th>C1 (pF)</th>
<th>C2 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-10</td>
<td>47</td>
<td>390</td>
</tr>
<tr>
<td>10-20</td>
<td>22</td>
<td>220</td>
</tr>
</tbody>
</table>

*Fig. 16. High-frequency crystal oscillator for series- or parallel-mode operation (A). A minimum-component version is shown in (B). The lower the value of R1, the lower will be crystal power dissipation and the better the stability. Q1 is a 2N918, 2N3564, 2N5770, BC107, BC108, BF115, BF180, BF200, SE1010 or equivalent. L1 resonates to crystal frequency with C1.
Another solution is illustrated in fig. 14, where oscillator output may be below 1 volt (but it must be at least 0.6 volt peak).

The combination of a discrete oscillator followed by a TTL buffer may, however, present problems where space is limited, although the circuits in fig. 14 can be made fairly compact. The LM375 IC provides one solution, although a tuned circuit must be used. For low cost and convenience or where space is at a premium, the common TTL gates can be pressed into service and, indeed, are in common use. Fig. 22 illustrates a common method of using a 7400 NAND gate as a crystal oscillator. Two gates are biased into their linear region and coupled as an oscillator with the crystal in the feedback path. A third gate is used as a buffer.

These three circuits (figs. 22, 23 and 24) are aperiodic and would certainly have applications where a high output, aperiodic oscillator is called for. They make excellent frequency markers. Temperature stability is somewhat worse than that of discrete circuits. If you need a very stable oscillator in your counter, you'll just have to make room for more circuitry.

The circuit of fig. 22 will accept crystals from 1 to 10 MHz. Some trouble may be experienced with crystals above this frequency. Occasionally, trouble may be had with unreliable starting performance, which is largely a function of the two bias resistors. Change their value up or down by using the nearest preferred value to see what effect it has. A wide variation should not be necessary. Frequency and starting performance are critically dependent on supply voltage.

Where it may be inconvenient to use a NAND gate, a NOR-gate oscillator can be substituted, using a 7402 or other TTL type, as shown in fig. 23. This circuit has performance similar to the circuit of fig. 22. Here, also, trouble may be experienced with starting: vary the gate bias resistors, as mentioned above.

The circuit in fig. 24 overcomes problems with poor

Table 1: Crystals for Aperiodic Oscillators

<table>
<thead>
<tr>
<th>Crystal Frequency (MHz)</th>
<th>C1 (pF)</th>
<th>C2 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-10</td>
<td>15-33</td>
<td>47-100</td>
</tr>
<tr>
<td>10-20</td>
<td>5-15</td>
<td>22-47</td>
</tr>
</tbody>
</table>

Fig. 17. Fundamental-frequency, parallel-mode oscillator using a crystal. The familiar Colpitts circuit is used. Q1 is a 2N3819, 2N5245, 2N5459, 2N5485, MPF102, or MPF104-106.

Fig. 18. Idem fundamental-frequency, parallel-mode oscillator using single-gate (A) and dual-gate (B) transistors. As in the circuit of fig. 17, harmonic output is low and depends on the device used.

Fig. 19. Fundamental-frequency, parallel-mode Miller oscillator illustrating single-stage oscillator-multiplier application. A tuned circuit resonating at a multiple of the crystal frequency can be placed in the drain circuit.

Fig. 20. A high-frequency version of the circuit of fig. 12, using the LM375 integrated circuit. L1-C1 is resonant at the crystal frequency. Coil L1 should be tuned for maximum output only, not to trim the crystal frequency. A tuned circuit is not recommended in the buffer output to avoid self-oscillation.

Fig. 21. Output circuit for the oscillator shown in the previous figure. The output is applied to the buffer, and the limiting circuit is connected to limit the output. The output is also applied to the LM375 integrated circuit.

Fig. 22. A tuned oscillator using a 7400 NAND gate as the oscillator. Two gates are biased into their linear region and coupled as an oscillator with the crystal in the feedback path. A third gate is used as a buffer.

Fig. 23. A NOR-gate oscillator using a 7402 or other TTL type. This circuit has performance similar to the circuit of fig. 22. Here, also, trouble may be experienced with starting: vary the gate bias resistors, as mentioned above.

Fig. 24. The circuit in fig. 24 overcomes problems with poor start-up and gives better performance. The circuit is shown in fig. 24.
starting performance and has a higher upper-frequency limit than those of figs. 22 and 23, approaching the limit of the NAND gate used. I've used this circuit successfully with crystals over the range 1 to 20 MHz and have experienced no trouble. It starts reliably every time, even with crystals having a high esr. I thoroughly recommend it. The circuit comes from K1P1L12 and is after Weggeman.13 For a good discussion on TTL oscillators I recommend both references.

When constructing oscillators using TTL ICs it's wise to bypass the power supply pin as close to the IC pin as possible. Keep the ground lead short, too.

overtone oscillators

Modern crystals manufactured for overtone operation are usually AT cut, although the BT cut is sometimes found. Take heed of the comments on overtone crystals in the introductory paragraphs of this article. All overtone circuits operate with the crystal in the series mode. Overtone crystals are calibrated at the overtone frequency, not the apparent fundamental.

An overtone oscillator should not require excessive drive for the crystal to oscillate on the overtone frequency and should have some provision separate from other circuit functions for setting the frequency. In addition, it should not be possible for the crystal to oscillate on subharmonics of the overtone frequency, or on the fundamental. Reliable starting is also desirable.

The Miller oscillator, fig. 25, using an fet, has the advantage of requiring minimum components but doesn't give reliable starting performance. L1 can be

fig. 21. Series-mode version of the circuit in fig. 20. L1-C1 is resonant at the crystal frequency; L1 can be used to trim the crystal frequency in this case.

<table>
<thead>
<tr>
<th>crystal freq (MHz)</th>
<th>C2 (pF)</th>
<th>C3 (pF)</th>
<th>C4 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-10</td>
<td>68</td>
<td>68</td>
<td>330</td>
</tr>
<tr>
<td>10-20</td>
<td>27</td>
<td>27</td>
<td>120</td>
</tr>
</tbody>
</table>

fig. 22. TTL NAND-gate crystal oscillator useful for applications requiring a high-output aperiodic oscillator. Crystals between 1 to 10 MHz can be used.

fig. 23. NOR-gate version of the circuit in fig. 22. Difficult crystal starting may occur in these TTL gate circuits, in which case the gate bias should be varied.

fig. 24. TTL crystal oscillator (after Weggeman, reference 13). Circuit overcomes poor crystal-starting problems and has a higher upper-frequency limit than the circuits of figs. 22 and 23.

fig. 25. Miller overtone oscillator circuit. Not recommended because of problems with frequency instability due to output load variations and unreliable crystal-starting performance. L1-C1 is tuned to the overtone frequency. Q1 is a 2N3819, 2N5245, 2N5485, MPF102, MPF104-106, or TIS88.
tuned to pull the crystal frequency but may not give enough range; output varies also. Apart from these difficulties, it's prone to oscillating on the fundamental or subharmonics of the overtone. Output load variations adversely affect the frequency. A simple circuit but not really recommended, as performance cannot be guaranteed.

The modified Colpitts overtone oscillator in fig. 26 is commonly encountered. Unlike the Miller circuit, reliable starting can be expected. It's suitable only for third-overtone crystals, as fifth-overtone crystals exhibit a much higher esr. Some third-overtone crystals having a high esr sometimes give trouble. Tuning L1 or varying the emitter resistor will pull the frequency, but output will vary. Feedback can be varied by changing C2. Harmonic output depends on the transistor used and the supply voltage. This circuit has the advantage of simplicity but is not recommended.

Fig. 27 illustrates a Pierce-type overtone oscillator. Note that a single-gate fet may be used. Crystal starting is sometimes unreliable and excess feedback may be required. No provision is made for setting frequency, but as in the previous two circuits, tuning L1 pulls the crystal. The comments on the circuits of figs. 25 and 26 also apply here.

When overtone crystal-oscillator circuits first appeared in the literature, they had a tendency to be somewhat complicated to avoid the problems discussed above. The following circuits are uncomplicated and reliable.

The circuit of fig. 28 provides all the desired characteristics with a minimum of components. Starting is reliable and crystal power dissipation is well below the allowable maximum. Increasing R1 increases crystal power dissipation. Stability is as good as that of a fundamental-frequency oscillator. This circuit is discussed in detail by Lane.

Coil L1 can be roughly set to frequency with no supply voltage by shorting the crystal and dipping L1 with a grid-dip oscillator. Apply power, and while monitoring the output frequency, tune L1 close to the marked crystal frequency. Remove the short and trim the frequency with the 3 to 30 pF trimmer. Tuning L1 will pull the crystal, but L1 does not require tuning following the initial setup. Harmonic output is low, usually

Fig. 26. Third-overtone crystal oscillator for 20 to 60 MHz (A) and a minimum-component version (B). Although commonly seen in the literature, it's not recommended for reasons discussed in the text. L1-C1 is resonant at the overtone frequency. Q1 is a 2N3563, 2N3564, 2N5770, BF180, BF200, or SE1010.

Fig. 27. Pierce-type overtone oscillator for 15 to 60 MHz. Not recommended for the same reasons discussed in connection with the circuits of figs. 25 and 26 (see text). L1-C1 resonates to the crystal frequency. Q1 is a 3N200, 3N209, 40673, 40841, BFS28, MP1121, MPF1131, or equivalent.

Fig. 28. Third-overtone oscillator for 15 to 65 MHz (A) and a minimum-component version (B). All the desirable characteristics for this application are provided in this circuit. Crystal starting is reliable and crystal power dissipation is well below the allowable maximum. Q1 is a 2N918, 2N3563, 2N3564, 2N5770, BF180 or BF200. L1 resonates at the crystal frequency with 22 pF (1 µH for 15 to 30 MHz; 0.5 µH for 30 to 65 MHz).
around ~40 dB, but depends on the transistor and the supply voltage.

A buffer is recommended. The circuit of fig. 29 is excellent, providing several volts of output. Output transformer T1 can be a standard 300Ω to 70-ohm vhf television balun or a homebrew balun. Alternatively, a single or double-tuned circuit can be used. L1 and the output tuned circuits must be well shielded and separated, otherwise instability may result. Q2 bias may need to be varied, depending on the transistor. Tune L1 for maximum output before trimming the crystal frequency. For multichannel operation, switching the crystal and trimmer is permissible, but leads must be kept very short.

The "impedance-inverting" circuit discussed by Foster and Rankin also has much to recommend it. This circuit is illustrated, for third-overtone crystals, in fig. 30. Performance is similar to the circuit of fig. 28. Coils L1 is used to trim the crystal frequency. The 560-ohm resistor across the crystal prevents oscillation on modes other than the overtone. This circuit readily adapts to a single-stage oscillator multiplier as we shall see later. It is more amenable to multichannel operation, as one side of the crystal is grounded. Note that if L1 is made too large oscillation on frequencies other than the overtone may occur.

Overtone crystals above 65 MHz are usually fifth- or seventh-overtone types. The circuit in fig. 31 is from Lane and is a variation of the circuit in fig. 28. The rf choke formed by L2, wound on a low value resistor, suppresses the lower resonances of the crystal, ensuring operation on the correct overtone. The comments on the circuit of fig. 28 also apply here. The buffer of fig. 29 is also recommended. The circuit in fig. 32 is a variation on the "impedance-inverting" oscillator from Foster and Rankin. Performance is similar to the circuit of fig. 31. Again, a buffer is recommended. The four circuits just described, figs. 28, 30, 31 and 32, are all slightly frequency sensitive to supply voltage variations, so a well-regulated supply is recommended.

The oscillator of fig. 30 can be readily adapted to a single-stage oscillator multiplier and has ready application in vhf converters. Good load isolation and low unwanted output levels are afforded by the circuit of fig. 33. The double-tuned circuit is the key to success here. Coils L2, L3 should be no more than critically coupled,

<table>
<thead>
<tr>
<th>Crystal freq (MHz)</th>
<th>C1 (pF)</th>
<th>C2 (pF)</th>
<th>C3 (pF)</th>
<th>C4 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-25</td>
<td>100</td>
<td>100</td>
<td>68</td>
<td>33</td>
</tr>
<tr>
<td>25-55</td>
<td>100</td>
<td>68</td>
<td>47</td>
<td>33</td>
</tr>
<tr>
<td>50-65</td>
<td>68</td>
<td>33</td>
<td>15</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-85 MHz: 7 turns no. 22 (0.6mm) or no. 24 (0.5mm) enameled, closewound on 3/16" (5mm) diameter form</td>
</tr>
<tr>
<td>85-110 MHz: 4 turns no. 22 (0.6mm) or no. 24 (0.5mm) enameled, on 3/16" (5mm) diameter form, turns spaced one wire diameter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 turns no. 34 (0.2mm) closewound on low-value 1/4-watt resistor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-85 MHz: 15 pF</td>
</tr>
<tr>
<td>85-110 MHz: 10 pF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-85 MHz: 150 pF</td>
</tr>
<tr>
<td>85-110 MHz: 100 pF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-85 MHz: 100 pF</td>
</tr>
<tr>
<td>85-110 MHz: 68 pF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-85 MHz: 15 turns no. 22 (0.6mm) closewound</td>
</tr>
<tr>
<td>85-110 MHz: 10 turns no. 28 (0.33mm) closewound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coils L2, L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4" (6.5mm) diam form</td>
</tr>
<tr>
<td>3/16" (5mm) diam form</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leads (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 turns no. 30</td>
</tr>
<tr>
<td>(0.25mm) closewound</td>
</tr>
<tr>
<td>8 turns no. 30</td>
</tr>
<tr>
<td>(0.25mm) closewound</td>
</tr>
<tr>
<td>6 turns no. 22</td>
</tr>
<tr>
<td>(0.6mm) closewound</td>
</tr>
<tr>
<td>7 turns no. 28</td>
</tr>
<tr>
<td>(0.3mm) closewound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 turns no. 28</td>
</tr>
<tr>
<td>(0.3mm) closewound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crystal freq (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-25</td>
</tr>
<tr>
<td>25-55</td>
</tr>
<tr>
<td>50-65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coils L1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3563, 2N3564, 2N3646, 2N5770, BF180, BF200 or SE1010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16" (5mm) enamelled, closewound</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>560Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wire diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3mm</td>
</tr>
</tbody>
</table>
which results in the best output for good harmonic rejection. All outputs, other than the multiple of the crystal frequency, are about -60 dB or greater. Tuning L2 and L3 pulls the frequency slightly, but as this is usually a once-only adjustment, it is of little consequence. L2 has a broad tuning characteristic because of Q1 loading,

\[
\text{crystal freq (MHz)} \quad L1 \quad R1 (\text{ohms})
\]

| 60-85 | 7 turns spaced 1/4" long | 3300 |
| 80-110 | 4 turns spaced 1/4" long | 1800 |

*Wound on 3/16" (5mm) diameter form with vhf slug, no. 22 (0.6mm) enamelled wire

whereas L3 tunes quite sharply. The circuit is ideally suited to fet mixers having local-oscillator injection into the gate. A word of caution: the connection between Q1 collector and tuned circuit L2/C4 must be kept extremely short, otherwise parasitic oscillations will occur.

\[
\text{L2, L3 60-90 MHz: 9 turns no. 22 (0.6mm) enamelled wire, closewound on 3/16" (5mm) diameter form with vhf slug}
\]

\[
\text{90-130 MHz: 6 turns no. 22 (0.6mm) enamelled wire, closewound on 3/16" (5mm) diameter form with vhf slug}
\]

Coil forms for L1, L2 are spaced 0.6" (15mm) apart and assembly shielded.

fig. 32. Another variation of the “impedance inverting” oscillator for 60 to 110 MHz fifth- or seventh-overtone crystals. Performance is similar to the circuit of fig. 30. Q1 is a 2N3563, 2N3564, 2N5770, BF180, BF200, or SE1010.

fig. 33. Overtone oscillator-multiplier adapted from the circuit of fig. 30. This version is applicable to vhf converters. It provides good load isolation and low unwanted output levels (refer to fig. 30 for component values).

This topic is well covered by Pat Hawker, G3VA, and Lane. A recent article with useful discussions and practical details on this subject is by Doug DeMaw, W1CER; see also reference 15. The greatest shift you can obtain from AT-cut fundamental-frequency crystals is about 1/500th of the crystal frequency. By far, one of the best circuits I’ve tried is that of fig. 34. It’s described by Lane and is recommended. Frequency stability is not compromised greatly, even at the extremities of the shift. Using a crystal manufactured for vxo operation, the maximum shift obtained using this circuit approaches the maximum obtainable; i.e., nearly 10 kHz at 5 MHz. Harmonic output is high, as this circuit is a variation of that in fig. 13. Resistor R, determines the feedback level and may have to be varied for best starting performance. Other
comments on fig. 13 apply here. However, problems will be experienced if a tuned circuit is used in the collector; the frequency shift is restricted.

The fet vxo in fig. 35 is commonly seen in the literature; this circuit is after DeMaw.1,4 He claims a similar shift to the circuit just discussed. In each case a buffer is recommended. (DeMaw also describes how to drive a tube grid from the buffer.) No two crystals will be shifted by the same amount; some provide more swing than others. Crystals especially manufactured for vxo operation are obtainable from some crystal manufacturers. Modern crystals perform well; FT243 crystals are generally poor. Those contemplating construction should read references 14 and 15.

Vxos should be built much the same as vfos to achieve best results. Don't use chassis-mounted crystal sockets. Mount the socket on insulating material to avoid stray capacitance. Better still, order crystals with flying leads rather than pins, and solder them directly into the circuit.

multichannel oscillators

In some applications, switching crystals to change frequency presents practical difficulties. Switching a dc circuit to make a frequency change is better and more convenient practice. Diode switching is one method (fig. 36). Each crystal should be individually trimmed. Difficulties do arise, as some crystals and oscillator circuits object to this method.

Another method is illustrated in fig. 37. Essentially it's a number of separate oscillators, each switched on in turn. Outputs are paralleled, both for dc and ac. If you want to switch crystals, circuits with one side of the crystal grounded are preferred.

references

6. M. Lane, "Transistor Crystal Oscillators to Cover Frequency Range from 1 kHz to 100 MHz," Australian Post Office Research Laboratories, Report 6513.
7. J. Foster and D. Rankin, "Quartz Crystal Oscillator Circuits," Hy-Q Electronics, 10-12 Rosella Street, Frankston, Victoria 3199, Australia. (Reprinted in *Electronics Australia*, November, 1972.)

ham radio

fig. 36. Diode-switching of a multichannel oscillator. Each crystal should be trimmed to frequency individually.

fig. 37. Another multichannel crystal-switching method using separate oscillators. Outputs are paralleled for dc and ac.
WORLD NEWS is breaking fast!

HEAR IT AS IT HAPPENS...

Get that news direct from the source of the action ... and listen to a world of music direct from the concert hall ... with a

DRAKE Short Wave RECEIVER

The R. L. Drake SSR-1 RECEIVER is great for short wave listening...

- 500 kHz to 30 MHz continuous—no extra crystals to buy • Direct reading dial with excellent calibration—dial your station, and there it is! • Product detector for SSB/CW • Built-in AC supply for 110/220 Volts, 50/60 Hz, and provision for internal battery pack for portable operation • Excellent Sensitivity • Telescoping whip antenna included • For reduced current drain on DC, dials do not light up unless red pushbutton on panel is depressed.

The performance, versatility, size and low cost of the SSR-1 make it ideal for use as a stand-by amateur or novice-amateur receiver, short wave receiver, CB monitor receiver, or general purpose lab receiver.

Now at your Dealer. Write for brochure on this and other Drake radio communications products.

R. L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 856-2421 • Telex: 288-017

See us at Dayton Hamvention

More Details? CHECK-OFF Page 102 march 1976 23
RTTY demodulator

Designed with the vhf operator in mind, the DT-500 provides all essential demodulator features at low cost.

The DT-600 RTTY demodulator described in an earlier issue of *ham radio* was designed to provide the best possible performance, on the high-frequency bands, that could be obtained at reasonable cost. However, for less critical applications, some of the DT-600 features may be eliminated, with a substantial cost reduction. DT-600 performance isn’t required on the vhf bands, for example, nor is its high performance required by the occasional RTTY operator who is on a tight budget.

The DT-500 will provide all the features normally required by the vhf operator and, with the exception of the DT-600, ST-6, and TT/L, will outperform almost all RTTY demodulators now in use on the high-frequency bands.

The CATC systems approach to demodulator design, which was described in reference 1, was applied to the DT-500. Thus the unit is easy to build, simple to interface with other equipment, and is relatively inexpensive.

The DT-500

The circuits in the DT-500 are identical to those in the DT-600. The only differences between the two demodulators are those circuits in the DT-600 that were not included in the DT-500. (The reader is referred to reference 1 for circuit descriptions and adjustment procedures). The input bandpass filter, keying lowpass filter, ATC, and antispace circuits were included in the DT-600 to contend with peculiarities encountered on the high-frequency bands. Adjacent channel interference, noise, selective fading, and CW interference are not usual problems on the vhf bands; hence appropriate circuits for these problems were not included in the DT-500.

Audio from the station receiver is introduced into the DT-500 at a 500-ohm input (fig. 1). The 1000 ohm resistor, R2, is a current limiter, and the two silicon diodes protect the limiter stage from excessive audio voltage. All other parts of the circuit are identical to the corresponding circuits in the DT-600.

By Robert C. Clark, K9HVW, 930 Chestwood Avenue, Tallahassee, Florida 32303
The power supplies (±12 volts and +170 volts) shown in reference 1 are also recommended for the DT-500. Several DT-500s and DT-600s may be operated from the same ±12-volt supply for increased cost effectiveness, but the regulator transistors should be replaced with IC regulators such as the LM 320-12 and the LM 340-12 to handle the required current.

The DT-500 can also function as an extremely low-cost beginner's model. Motor control and mark-hold features may be eliminated by omitting op amps U3, U4, U5, and Q5, Q6. These features account for more than 50% of the components in the unit. If you wish to eliminate these functions for now, they may be added later as operating convenience and budget dictate. If the

In interfaces

As mentioned in reference 1, one of the prime concerns of the CATC-designed units is ease of interface with external equipment. Both the DT-500 and DT-600 provide open-collector outputs for data and control lines to interface with low voltage (particularly TTL) peripherals. It’s possible to use the open-collector outputs to drive a machine interface and hence keep the high-voltage loop and keyer within the printer. This approach can increase the ease of interconnecting equipment (all interconnecting cables are at low voltage), and at the same time greatly reduce the noise generated by the high-voltage keyer and radiated by the loop. Two machine interfaces, the DI-50 and the DD-350, are described here (a number of other interfaces, DI-30 logic-to-polar, DI-40 polar-to-logic, and a loop-to-logic interface have also been prepared).

DI-50 logic-to-loop interface. The DI-50 has its loop keyer floating (no ground in common with the logic portion of the circuitry) and hence may be inserted at any point in the selector-magnet loop. Fig. 3 is the schematic of the DI-50.

A logic zero at the base of Q4 causes Q4 to conduct

Figure 1. The DT-500 demodulator schematic. These circuits are identical to those in the DT-600 described in reference 1. The input bandpass filter, keying lowpass filter, ATC, and antispace circuits of the DT-600 have been omitted from the DT-500. Diodes marked with a G are germanium 1N270; diodes marked with an S are silicon 50 PIV unless otherwise noted.

Bandpass input filter from the DT-600 were added (externally), the DT-500 would outperform the ST-3, ST-4, ST-5 and ST-5A and would approach the performance of the ST-6 and DT-600.

As with the DT-600, the DT-500 is built on a single 6 x 4½-inch (152 x 114mm) board with a 22-pin edge connector. Fig. 2 shows board interconnections.*

*Double-sided circuit boards with plated-through holes are available from Data Technology Associates, Inc., Post Office Box 1912, Miami, Florida 33143. Send self-addressed, stamped envelope for information.
and supply current to the oscillator formed by Q1, Q2. The oscillator operates in the 800-kHz range. The 800-kHz energy is capacitively coupled (and hence decoupled for dc) through C4 and C5 to a bridge rectifier consisting of germanium diodes CR1-CR4. (As shown in fig. 4, the printer loop is in mark when a logic zero exists at the base of Q4 and in space with a logic one.) The rectified output is filtered by C6 and applied to the base-emitter junction of Q3, biasing the transistor into the conducting state. The bridge consisting of CR5-CR8 ensures that the high side of the loop is returned to the collector of Q6 for either the DT-500 or DT-600 through a two-conductor shielded cable, the other conductor connecting the open collector of Q1 (either DT-500 or DT-600) to the DI-50 logic input.

Q1 and Q2 should be a complementary pair such as the 2N3904 and 2N3906. Q4 could also be a 2N3906. Other components are not critical, but the low forward-voltage drop of the 1N270 is essential. Q3 should be a high-voltage transistor (300 volts) capable of 100 mA and 5 to 10 watts dissipation, such as the MPS-A42, 2N5656, or the DTS-702.

DD-350 selector magnet driver with motor control. The DD-350 (fig. 4) requires only a single-conductor shielded cable between the demodulator and the printer to control both the high-voltage keyer and the motor relay. Other features include a choice of input logic (mark = 0 or mark = 1) and open-loop operation during standby to reduce power consumption and heat.

Several optional input configurations may be implemented with U4C and U4D. If the mark output from the demodulator keyer (Q1 of DT-500 and DT-600) is a logic zero, as it is for the DT-500 and DT-600, then it is connected to H (fig. 4). However, data will not pass through U4D unless pin 13 is high. This condition may be accomplished by either connecting pin 13 to the positive supply through a 3.9k resistor, or by jumpering J1 and grounding either E or F. Then, either E or F may function as a disable terminal.

Suppose that the data (mark = 0) is connected to H, and F is grounded, enabling U4D. The data (mark = 0, space = 1) is inverted by U4D. A low (space) at pin 5 of the latch formed by U3A and U3B sets the latch (pin 6 high), which in turn enables U4A. The data passes through U4A and U4B. Pin 6 of U4B is high during mark, reverse-biasing CR1, allowing CR2 to conduct, and forward biasing Q1 (the high-voltage keyer). For space, pin 6 will be low, allowing current to flow through CR1 and removing the forward bias on Q1. At

fig. 2. DT-500 demodulator board inter-connections (A) and an alternative circuit for a single switch (B). The unit is constructed on a single 6x4½-inch (152x114mm) circuit board with a 22-pin edge connector.

fig. 3. The DI-50 logic-to-loop interface schematic. The loop output is floating (no common ground with the logic), hence it may be inserted at any point in the selector-magnet loop.

connected to the collector of Q3 and that the low side is connected to the emitter, through R7.

If motor control is desired with the DI-50, one side of the coil of a 12-volt relay (K1 in fig. 1) is connected to the 12-volt supply, which in turn powers the 5-volt regulator for the DI-50. The other side of the coil is connected to the collector of Q3 and that the low side is connected to the emitter, through R7.

If motor control is desired with the DI-50, one side of the coil of a 12-volt relay (K1 in fig. 1) is connected to the 12-volt supply, which in turn powers the 5-volt regulator for the DI-50. The other side of the coil is connected to the collector of Q3 and that the low side is connected to the emitter, through R7.

If motor control is desired with the DI-50, one side of the coil of a 12-volt relay (K1 in fig. 1) is connected to the 12-volt supply, which in turn powers the 5-volt regulator for the DI-50. The other side of the coil is connected to the collector of Q3 and that the low side is connected to the emitter, through R7.

If motor control is desired with the DI-50, one side of the coil of a 12-volt relay (K1 in fig. 1) is connected to the 12-volt supply, which in turn powers the 5-volt regulator for the DI-50. The other side of the coil is connected to the collector of Q3 and that the low side is connected to the emitter, through R7.

If motor control is desired with the DI-50, one side of the coil of a 12-volt relay (K1 in fig. 1) is connected to the 12-volt supply, which in turn powers the 5-volt regulator for the DI-50. The other side of the coil is connected to the collector of Q3 and that the low side is connected to the emitter, through R7.

If motor control is desired with the DI-50, one side of the coil of a 12-volt relay (K1 in fig. 1) is connected to the 12-volt supply, which in turn powers the 5-volt regulator for the DI-50. The other side of the coil is connected to the collector of Q3 and that the low side is connected to the emitter, through R7.
long as the level on the input line continues to alternate, C2 is discharged with every space. If, however, the level remains in the mark condition for 30 seconds, without a transition to space, then C2 charges to the point where U1 triggers. The output pulse (pin 3) goes from high to low, resetting U3C, U3D. As the latch is reset, the motor relay is released, turning off the motor, and the forward bias on Q4 is removed, allowing C5 to charge. In three seconds U2 triggers, with the output pulse (pin 3) resetting the U3A, U3B latch and disabling U4A (forcing the loop to space).

Assume the DD-350 has been in standby. When the first character is transferred from the demodulator to the DD-350, the latches are set, the motor starts, and the printer receives the data. As long as the data continues, with less than 30 seconds between characters, the motor continues to run and the characters are printed. When a character has not been received in 30 seconds, the motor shuts down, and three seconds later (to give the machine time to stop), the loop opens to reduce current consumption and heat. The DD-350 will return to the active state immediately with the next character received.

Of course, if Q1 of the DT-500 or DT-600 is connected so that all mark-hold features inhibit the data (jumper C to 2), no data will reach the DD-350 while mark-hold is maintained. The time delay and standby functions of both demodulators prevent data from being transferred (for instance on noise or CW), as does the antispace function of the DT-600. Hence, all features of either demodulator, with the exception of the particular choice of the motor delay, will be preserved by the DD-350 with only a single-conductor shielded cable connecting the demodulator and the DD-350.

The high-voltage keyer transistor has requirements similar to the transistor described with the DI-50. Note that this keyer stage must be connected in the ground return of the loop supply with the positive side of the loop connected to D.

of course, if Q1 of the DT-500 or DT-600 is connected so that all mark-hold features inhibit the data (jumper C to 2), no data will reach the DD-350 while mark-hold is maintained. The time delay and standby functions of both demodulators prevent data from being transferred (for instance on noise or CW), as does the antispace function of the DT-600. Hence, all features of either demodulator, with the exception of the particular choice of the motor delay, will be preserved by the DD-350 with only a single-conductor shielded cable connecting the demodulator and the DD-350.

The high-voltage keyer transistor has requirements similar to the transistor described with the DI-50. Note that this keyer stage must be connected in the ground return of the loop supply with the positive side of the loop connected to D.

A future article will describe the CATC SELCOM. The SELCOM is a device, based on the universal asynchronous receiver/transmitter (UAR/T), which regenerates distorted RTTY signals, provides for speed changes between the data rate of the RTTY signal and the speed of the printer, and provides a parallel data output for decoding RTTY characters. The decoding and control portions of the SELCOM are also suitable for tone decoders as used in vhf autopatch units. A mini-SELCOM featuring call-letter enable, four-N disable, and two functions for the control of external equipment will also be featured.

references

ham radio
An increasing number of amateurs are using digital counters to determine transmitter frequency in the vhf and uhf region. This technique requires extremely accurate time-base frequencies if the readouts are to be meaningful. The low-cost frequency counters amateurs often use usually don't have accurate time-base crystal circuits; thus obtaining accurate readings with economy counters can be tedious. The time base must be monitored constantly against a primary frequency standard and warm-up time for ovens can be annoying. The answer is not to compare your counter time base with a primary standard but to use the primary standard itself as a time base by linking up with a Bureau of Standards station at Boulder, Colorado.

If WWV is selected, propagation delays will cause timing problems that affect accuracy. Station WWVB is a better choice. Its 60-kHz carrier ensures good accuracy and freedom from shortwave propagation delays. WWVB is the most powerful of the NBS stations (16 kW effective radiated power) and its timing signals are accurate to 2 parts in 10^{-11} or better. WWVB's signal received in rural Wisconsin is solid night and day, season to season, except for a slight diurnal effect at local sunrise and sunset. WWVB's signal strength is 500 μV or more throughout the U.S. except for the upper East Coast, lower Florida, and northwestern Washington, where signal strength is 100 μV.

By Harold Isenring, W9BTI, 10850 Amy Belle Road, Colgate, Wisconsin 53017
The following paragraphs explain how to amplify WWVB's 60-kHz carrier, eliminate the nonessential information on that carrier, and use the resultant output in conjunction with your frequency counter to obtain a precision frequency standard.

preliminary checks

A test setup with receiver, loop antenna and 60-kHz preamp was built to determine the feasibility of this idea. I recommend building the loop and preamp first to determine if WWVB's signal strength is adequate at your location. The dimensions of the loop I built (fig. 1) were determined by the size of my attic opening. The large loop size accounted for the great success with WWVB reception. However, my attic location introduced some problems. The attic temperature range was 132°F (70°C), which severely detuned the uncompensated winding within the loop. Severe sensitivity and selectivity losses resulted. The loop now is in my basement, where temperature excursions are only 10°F (6°C) and reception is more than adequate.

The preamplifier (fig. 2) can be operated temporarily by connecting it to a 20-volt power supply capable of supplying at least 4 mA. Apply the 20 volts to J1 in series with a 1000-ohm, 1/2-watt resistor. After amplification by the loop preamp the signal is a pure 60-kHz sine wave and can be observed at test point 1 with an economy oscilloscope.

The modulation on WWBV's carrier is capable of controlling a sophisticated digital clock. This modulation is in the form of a 10-dB decrease in carrier strength once each second. Further clock information is provided by varying the length of time the carrier is reduced in amplitude each second. The carrier modulation is useless for the project described here and must be removed as it causes an accuracy problem with the final signal.

Another problem is caused by the fourth harmonic of the horizontal scanning amplifiers in local television sets. When operating on monochrome reception this signal is 15,750 Hz times four, or 63 kHz. Black and white is rare

Processor top view. Divider chain is immediately behind front panel switch. RF amplifier, limiter, and zero-crossing detector are at upper left; power transformer is at right.
nowadays, but color broadcasts produce an interference frequency of 15,734.264 Hz times four, or 62,937 kHz. This signal beats with WWVB’s carrier resulting in a 2.937-kHz beat note. The beat note is not pure because the interfering signals from television sets are rich in harmonics. There are two ways of eliminating this problem: providing 60-kHz receiver selectivity and careful placement of the loop antenna.

WWVB carrier-level shift

The WWVB 60-kHz signal was amplified to a level sufficient to operate a squaring circuit and TTL logic. The WWVB 10-dB carrier reduction, even though still of sufficient amplitude to operate TTL logic, created a new problem. At nearly every 10-dB carrier reduction a frequency shift occurred. If you count the number of cycles of the full-power carrier for one second, 60,000 will result. Also, if you count the frequency of the reduced-amplitude carrier, 60,000 will result. However, since the carrier power decreases every second, and the duration of the decrease varies in length to impart binary information, a counter will count the frequency as more or less than 60,000. This phenomenon occurs because the squaring circuit turns on and off at a certain point on a sine wave. The squaring circuit turned on at a rising voltage of 0.6 and off at a falling voltage of 0.6. As shown in fig. 3, 0.6 volt occurs at a different point in time depending on carrier power. Since the duration of the shift in carrier power is quite variable, the resulting frequency in the scheme also varied.

Simple and complex limiters were tried in an effort to eliminate the 10-dB carrier-level shift within the receiver. A Bishop limiter was both economical and very effective.² A scope observation of the limiter output showed no noticeable change in level, but the counted output showed a -138 to +12 Hz error. There had to be another way.

Further observation of the signal revealed an interesting fact: the zero crossings of the sine waves were always coincident, no matter what the amplitude. So why not count the zero crossings? A search for a suitable zero-crossing detector resulted in the trial of an operational
amplifier. It was a fair detector but its output was not a usable square wave, because op amps are too slow when used in this type of service. An LM311 comparator (fig. 4) was tried with great results; the output was a beautiful square wave. Removal of the limiter further proved that the LM311 was a true zero-crossing detector. (The limiter was retained in the final circuit, however, to correct for possible fading and lightning static.) You'll need a scope with good low- and high-frequency response to observe the square waves within the processor.

Now that we have an accurate and usable 60-kHz square wave, it must be divided down for use as a gate for a counter. A 7490 counter IC connected in a divide-by-six configuration provides a 10-kHz square wave. Five more type 7490 ICs connected as divide-by-ten circuits provide 1-kHz, 100-Hz, 10-Hz, 1-Hz and 0.1-Hz outputs. If your counter has a MacLeish count gate and control logic, you can eliminate one divide-by-ten circuit or switch it out with S2.3

The last division by ten is done within your counter by a very necessary multiple-function stage that can't be eliminated. The elimination of one 7490 stage will decrease the 5-volt circuit current by 27 mA, and to maintain 5-volt zener current you'll have to increase R20 to 93 ohms at 5 watts and R19 to 71 ohms at 5 watts (fig. 4). You may decide, however, to retain the 7490 stage if you want to use the processor for tasks other than gating a counter; after all, 7490s no longer cost $16.00 each! If your counter uses RTL logic in its divider chain (MC790 etc.), it will be necessary to use an interface device. An npn silicon transistor connected as in fig. 6 will act as a buffer between the 5- and 3.6-volt systems.

A phone jack with an spst switch attached must be

fig. 4. Schematic of rf amplifier, limiter, zero crossing detector, divider chain and power supply.
fig. 5. Modification of the two most popular counter crystal oscillator divider chain circuits to accommodate a processor jack.

mounted at the rear of your counter. Connect it as shown in figs. 5 or 6. Those who have built counters will have no qualms about drilling holes, and those with manufactured counters should have no worries either if their work is skillfully done; it's the botched-up appearance of electronic equipment that hurts its resale value!

When the plug from the processor is inserted into the counter, the crystal oscillator divider chain is interrupted and the processed WWVB signal gates the counter. If the processor output is set at one second, and the counter input is connected to the 60-kHz square wave at test point 4, 60,000 Hz will appear on the counter readout. This is a great test for the health of your counter's gating circuit. Now pull out the plug, allowing your counter to run on its own time base. The readout probably will not be exactly 60,000 Hz at that time.

Many loop designs are available. I chose the one most difficult to build: the double copper shielded type that has immunity to capacitively coupled noise. However, a large loop wound on a simple wooden frame, popular with the broadcast radios of the 1920s, would be fine. A long ferrite loopstick was also tried; it worked but required more gain in the preamp.

Construction details are shown in fig. 1. Obtain two pieces of soft copper tubing at a plumbing supply store. One piece should be ½ inch (12.7mm) ID by 171 inches (4.34m) long. The other, 1 inch (2.5cm) ID by 170 inches (4.3m) long. Before bending into a circle with a 27-inch (70cm) radius, the smaller-diameter tube must be inserted into the larger tube. The small tubing must touch the outer tube at only one spot: the entrance to the preamp box. To prevent a short between the tubes anywhere within the circle, the inner tube is suspended within the outer by liberal use of short lengths of automobile heater hose.

Pieces of hose 2 inches (5cm) long are secured at both ends with masking tape to prevent migration from their 12-inch (30cm) intervals during insertion into the larger tube. After carefully forming into a 54-inch (1.4m) diameter circle, you will have to position the inner tube with a mallet. Easy does it! One end should protrude 3/4 inch (17mm), the other 1/4 inch (6mm).

The end with the shortest protrusion is inserted 5/8 inch (15.8mm) into a 1-1/8-inch (29mm) hole punched into one end of the preamp box (see fig. 7). The other end is inserted into a 1-3/8-inch (35mm) hole at the opposite end of the preamp box. This end is insulated by two blocks of fiberglass, formica, or bakelite. The other end is sweat-soldered to the zinc-plated steel box. For this you'll need a torch or a very large soldering iron because the copper is a great heatsink. The inner and outer tubes are connected together at this point with a copper washer soldered in place. Install the insulators after everything cools down. Two large terminal strips with a minimum of 52 lugs total are bolted to the sides of the preamp box.
A 190-inch (4.8m) length of 50-conductor telephone cable was used as the loop inductance. This cable, which is used to connect phones in business offices, seems to be available in short lengths as scrap everywhere. Forty-four of the conductors were connected in series using the terminal lugs within the preamp box. The remaining six conductors were connected in series and used as a low-impedance tertiary winding to couple the high-impedance loop to the low-impedance preamp input. Use care as you connect the cable in series. Use an ohmmeter and observe the cable color coding. One shorted turn can render the loop completely useless.

Forty-four turns of wire resulted in too much inductance, as the coil was easily tuned down as far as 30 kHz. The winding was split in half and both halves paralleled, which resulted in 22 turns of 2.275 mH inductance with a dc resistance of 4.4 ohms. The stray capacitance and a 2500 pF trimmer tuned it to 60 kHz.

final assembly

The amplifier components, circuit board, test jacks, coax connector and loop trimmer may now be mounted. The finished loop will stand alone, supported by the preamp box. Two wire loops are soldered to the upper part of the loop so that cords can be attached to prevent it from falling over if accidently bumped. The processor and the power supply for the entire system are mounted in a 5-1/4 by 3 by 5-7/8-inch (13.3 by 7.6 by 15cm) equipment cabinet.

The hand-wired circuit layout isn’t critical. Three convenient test-point jacks make testing and tuneup easy. The limiter time delay capacitor is mounted on plugs so it can be disconnected during alignment. The 1000-pF disc capacitors, C25, C26, C27, C28 eliminate diode radiation into local vhf receivers. To be 100% effective, these capacitors must be soldered to the diodes with as short a lead length as possible.

tuneup

After a thorough wiring check connect the preamp and processor with a length of coaxial cable. Any small-diameter coax can be used. This cable also supplies the 10 volts dc for the preamp. Power supply regulation is important. The 10-dB carrier swing and logic dividers tend to modulate the dc supply and may cause a problem in another stage. So be sure that the zener diodes are truly clamped at 5 and 20 volts and that their power dissipation is not approached or exceeded. This can come about because of the wide range in power transformer outputs available to builders.

Signal generators for 60 kHz aren’t readily available, so a portable television set may be used as a temporary signal source. Place the television set, which is receiving a clean signal from any local channel, near the 60-kHz loop. Attach an oscilloscope to test point 1 and set its time base to the range that includes 10 to 30 kHz. Tune the loop trimmer and the slug in L3 until a sine wave trace appears. If everything is working well, you are now tuned to about 63 kHz, the fourth harmonic of the television horizontal scanning frequency. The third and fifth harmonics must be avoided. It is sometimes possible to tune homemade loops to 46.65 or 78.75 kHz by accident. If the television set is too close the system may overload as you tune to resonance. It’s wise to keep moving the television set farther away as the scope trace increases. Rotating the loop to a partial null is also helpful.

Now turn the television set off. If the loop is oriented for maximum signal from Boulder, Colorado, you should see a weak sine wave with its characteristic one-second dip in amplitude on the screen. Don’t forget you’re tuned about 3 kHz too high in frequency. Now retune the loop and L3 for maximum using WWVB as a signal source. If the sine wave does not have the one-second dip, one or both of two things are happening. First, there may be a television operating close by — maybe a neighbor’s set. Second, the preamp may be oscillating. If the latter is the case, readjust regeneration capacitor C8 until the signal is reduced to the point where the one-second flutter starts. If the preamp continues to oscillate, reverse the tertiary loop winding. The trace, on a well-focused scope, should be a fine single line writing a 60-kHz sine wave. A fuzzy line wider than normal indicates interference from a local television set.
Repositioning the loop so that the interference is at a null while WWVB's signal is maximum is quite successful. I can coexist with the local color television set even though it's only 30 feet (9m) away. System selectivity allows me to live with local television interference. Better than 3-kHz selectivity is not too hard to obtain with three tuned stages at 60 kHz. This will be quite evident when transformer T1 is resonated. Attach the scope to test point 3 and remove time delay capacitor C14. Tune the slug in T1 for maximum. (This is a little difficult because of the one-second flutter.) You only have a second, but it can be done with a little practice. Adjust the gain control at this point for a maximum undistorted sine wave. Reconnect time delay capacitor C14, and within four to six seconds the sine-wave flutter will stop, indicating successful limiter operation.

If your efforts have been successful, you now have a source of accurate timing intervals and frequencies. Although the original intent was to build an accurate time base, the instrument's output may be multiplied for use as a local frequency standard. A 1-MHz output is easily obtained with solid-state multipliers.

references
DELUXE REPEATER AUTO PATCH

The auto-patch your club will be proud to own. It's complete in every aspect. Two 1-4 digit access codes, one 1-4 digit disconnect, dial-in capability, "1", "0" and editing features, automatic disconnect ID by-pass, audio monitor, keyboard, digital readout, plus many other features. Send for literature. Rack mount only.

RAP-101 Sh. Wt. 15 lbs. $949.00

DATA-TONE DECODERS — TTD-12 & TTD-16

The TTD-12 (TD-16) is a complete 12-digit (16-digit) Data Tone decoder. It uses the latest Phased Locked Loop technology to provide an extremely compact, low-power receiver. The TTD-12 accepts the standard 7 out of 8 (the TTD-16 accepts 2 out of 8) tone frequencies, providing a valid single code output. Standard outputs are available with TTL, relay and single tone output. Simple and reliable selective signaling capability. They are ideally suited for remote control purposes where unattended operation over radio links, private lines or the telephone network are required.

TTD-12L TTD-16L $89.50 wired TTD-12R TTD-16R $109.50 wired

AUDIO AUTOMATIC GAIN CONTROL AMPLIFIER

Is your tone decoder having problems due to input variations? If so, eliminate these and other problems caused by weak, strong or varying input signals. The AAGC-1 will take signal levels between 50 mV to 5 Volts and feed a clean rock stable signal to your decoder for perfect operation. Give your decoder a chance to decode properly with our AAGC-1 amplifier.

Shipping Weight 3 oz. $24.50 wired

AUTOMATIC DATA TONE DIALER

Automatic mobile telephone dialing is now available. With the push of a single button you can automatically dial up to six separate 7-digit numbers. All solid-state micro-power: COS-MOS design. Automatic PTT operation. Programmable to send telephone number only, access code plus telephone number or telephone number plus an identification number. Low profile dash mount, easy installation. Compatible with most radio equipment. Available with keyboard for manual dialing of numbers. Manual operation provides automatic PTT operation with 1/2 second transmitter hold.

AD-6 Without keyboard 99.50
AM-6 With keyboard 119.50
Factory programming of numbers $7.50.

DATA TONE PADS

Standard size 12 and 16 digit Data Tone Pads. Automatic PTT operation with 1/2 second transmitter hold. Self powered via internal 9V battery. Audio and PTT outputs, TTP-1 and TTP-2 also have low volume audio monitor for tone copying. Automatically dialing of tones to microphone. Zero quiescent current. Operating temperature -20°F to +150°F. R. F. proof.

TTP-1 16 digit 3" x 5½" x 1½", Sh. Wt. 2 lbs. $99.50
TTP-2 12 digit 3" x 5½" x 1½", Sh. Wt. 2 lbs. $99.50

DATA TONE TO DIAL PULSE CONVERTER

Convert standard 0-9 Data Tone digits to Bell System compatible dial pulse code. Completely solid state. Includes static shift, Phased Locked Loop anti-falsing Data Tone decoder, large capacity 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and re-dial function. & and # digits are decoded and provided for remote control purposes. Available as p.c. board or rack mount.

DPC-121 P.C. Board $195.00
DPC-121R Rack Mount $285.00

ANTI-FALSING DATA TONE DECODER

Now, a true anti-falsing decoder/receiver. Virtually immune to high noise or audio falsing. Twelve or 16 digit capability. Completely solid state, uses latest Phased Locked Loop decoding. Single 5-volt power supply. Heavy duty transistor output. Available as p.c. board or 13" rack mount.

TTD-126-12 12 digit P.C. $149.95 Rack $219.95
TTD-126-16 16 digit P.C. $169.95 Rack $239.95

REPEATER AUTO PATCH

It's complete — a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dialing capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.

RAP-2 P.C. $99.50 Rack $149.50
Sh. Wt. 2 lbs. Sh. Wt. 8 lbs.

DELUXE P.C. KEYER

In either a 5 volt TTL or a 9 volt C-MOS version this new modular type IC keyer can be easily adapted to your own custom package or equipment. Versatile controls allow wide character weight varia-
tions, speeds from 30 to 50 w.p.m. plus volume and tone control. Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuitry. With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.

TTL Keyer Wired $19.95; Kit $14.95
C-MOS Keyer Wired $24.95; Kit $19.95

DELUXE RECEIVER PREAMP

Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signal with a Data Preamp.

<table>
<thead>
<tr>
<th>FREQ. (MHz)</th>
<th>USE</th>
<th>STAGES</th>
<th>GAIN DB</th>
<th>NF IB</th>
<th>KIT</th>
<th>WIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 to 148</td>
<td>SINGLE</td>
<td>20</td>
<td>2.5</td>
<td>$9.50</td>
<td>$12.50</td>
<td></td>
</tr>
<tr>
<td>1 thru 30</td>
<td>HF BROADBAND</td>
<td>19-36</td>
<td>3</td>
<td>$17.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Others Available.

Order Today — Send for Free New Catalog

DATA SIGNAL, INC.
2403 COMMERCE LANE
ALBANY, GEORGIA 31707, 912-883-4703

More Details? CHECK-OFF Page 102

march 1976
Many articles in the amateur magazines have described frequency synthesizers for use in two-meter fm transceivers. Most generate a harmonic of a crystal-controlled reference frequency by a voltage-tuned oscillator (VTO or VCO) locked to the proper frequency by a programmable frequency divider (divide-by-n counter) and a device that provides a control voltage proportional to the phase difference between the divided-down signal and the reference frequency. The voltage is amplified and used to tune the oscillator to the right spot.

The reference frequency is made equal to the desired channel spacing. For instance, 146.94 MHz is the 4898th harmonic of 30 kHz. If we had a divide-by-4898 circuit and an accurate 30-kHz reference frequency, no great problem would exist in making a stable exciter for an fm transmitter. If we had a switch to make the reference-frequency harmonic anything we wanted between 4867 and 4933, we could do business on any of those fm channels. One difficulty is that such counters (those made from low-priced parts) don’t work at very high frequencies. This article describes a counter that goes about as high as possible — at least for fifteen dollars’ worth of ICs. It also explains why you can’t go higher.

presettable counter IC specifications

In the manufacturers’ applications notes I’ve seen, the highest frequency quoted was 25 MHz for a device with a specified test at 8 MHz. Other literature quotes 22 and 13.5 MHz for input frequencies to the programmable counter portion. However, the Hewlett-Packard HP-8660A synthesized signal generator uses several preset counters operating in the 20- to 30-MHz region. I made a partial copy of the instruction-book circuit. The HP-8660A uses 8290s and 74H logic; I used SN74196s (which were listed in the surplus ads) and Schottky-clamped 74S logic, which I had on hand. It turned out that both were faster than those used in the original.

circuit description

The logic diagram of my circuit is shown in fig. 1. For a three-stage version merely leave off the last decade; maximum frequency remains the same. Details of the first two stages are shown in fig. 1. The counters are preset to, say, 5555. Following the load pulse, which is negative-going on a line that’s normally high, the input frequency is counted until the count gets to 9997 (the terminal count). The next clock pulse triggers the auxiliary flip-flop, again enabling the load pulse (two cycles long), getting us back to zero. The total count is 10,000 minus 5555, or 4445 (10-kHz output for 44.5-MHz input).

First I tried the parts barefoot (partially wired in) to make sure they were as advertised. The SN74S112 went

By Hank Cross, W100P, 111 Birds Hill Avenue, Needham, Massachusetts 02192
up to 160 MHz in a simple divide-by-two setup. The SN74196s operated as decade counters (the data input pins 3, 4, 10 and 11 grounded) went up to 70 MHz — no problem.

To find out if the unit is working correctly requires enough precision to spot one missing pulse in 10,000. I used either a digital synthesizer or a signal generator and counter for the input signal (-1 to plus 13 dBm sine wave worked okay) and a counter on the output. And of course a calculator is needed. (Lots of digits blinking around.) I found that the divide-by-4445 unit first became a divide-by-4447 then a divide-by-4450 counter as the input frequency was increased until the first-bit de-

fig. 1. High-speed four-decade presettable counter. "Out" pulse (positive) is 30 ns long at 55 MHz. "Monitor" pulse is 20% duty cycle at about 10 kHz. Input is -1 to +13 dBm sine wave.

coding wasn't quite fast enough. The 3- and 4-decade versions had about the same maximum count frequency, so I wouldn't expect trouble from adding a fifth decade. One SN74196/8290 (so marked) lost counts when used in the first stage above 28 MHz, but it worked okay in the third. The TI SN74196s went to 56,451.5 with the right numbers. I borrowed some Signetics 82S90s; with these in the first three stages the maximum frequency was 60.89 MHz but was 56 MHz with only one (in the first stage).

There will be some problems at other values of preset, but so far I haven't investigated them, as I haven't figured out how to make 10,000 tests quickly. When the VCO loop is complete and the switch is wired in I'll go looking for trouble. Either the counter reads the same number as the switch or it doesn't.

Both 7 and 15 have the three-ones pattern in the first three binaries; but an SN74196 does not count to 15, and in any case it would get to 7 first because it's an up counter. The same is true for a 9; two ones are enough to decode a 9. The pattern fills in from the right: the last decade hits 9, then the next, and the next. Four counts later QCs of the first decade is 1; on the sixth count QA is 1; and one count later the QA terminal goes high, about 10 ns later than the input clock's down-going transition. (Both the SN74196 and the SN74S112 work on the negative-going edge of the clock pulse — here it's pretty much a sine wave.)

The best choice for fast action is an SN74S11 positive-AND gate, which gives positive output for all-positive inputs. The pulse, delayed another 4.5 ns by the gate, is applied to the J input of the SN74S112/113/114

To make a presettable counter (either up or down counter) work at high frequency we must do two things:

1. Recognize the terminal count and set up the flip-flop before the next cycle of the input frequency.
2. Make a load pulse long enough to ensure that all counters are preset to the right number and the transients have died out. For the SN74196, the book specifies 20 ns; mine was 30 ns at 55 MHz.

To recognize the terminal count, 9997, we look for a 7 in the first decade (0111) and nines (1001) in the rest.

how to go fast
dual flip-flop. The specified setup time (J positive before clock transition) is 3 ns, so the total is 17.5 ns, a full cycle at 57 MHz. (The numbers seem to check out.)

Compared with the Q_A output we have an extra 17 ns at Q_B and 52 ns at Q_C, to say nothing of 122 ns for the Q_A of the second decade; so there is only one critical time delay here. If we had used 8 instead of 7 there would have been more problems. A 930 DTL gate does very well for the other decades (see fig. 1).

If the gates enable the J input in good time, the SN74S112 toggles on clock number 9998. Q goes up and

```
fig. 2. Nines-complement encoder (one decade; NAND gates used as NORs). The first decade should be tens complement (preset 6 for 4, not 5), which is easily done by a wiring change at left.
```

Q down, working the set (PR) input of the second section, so its Q goes down. This output is the load input of all four decades. On count 9999 the first section returns to normal. On count 0000 the second section returns to normal, ending the load pulse. At 57 MHz this is two periods (35 ns) less 5 (the extra time for the direct set to work), or 30 ns. The load pulse extends into the first count period by 5 ns, but this doesn't seem to make any difference.

some device advice

My experience with available devices used in high-speed counters is presented below for those interested in what to expect. The TI SN74196, Motorola MC4016, and TI SN74192 are examined.

Up counters are easier to decode and are more difficult to preset than down counters such as the MC4016 and SN74192. The SN74196 presents some problems. Preset coding is by nines-complement (9 minus the desired number). The best switch to use is called “complement-of-nines-complement,” but these seem hard to come by. For a few digits, an encoder from 10-point to nines complement (or any other code) can be made with four gates per decade using two 930s, as in fig. 2. A BCD nines-complement converter can also be made using gates, inverters, and an exclusive-OR per decade.

The SN74196 uses external terminal-count decoding and the counters are nonsynchronous. On the other hand, it operates as a preset counter beyond 50 MHz.

The MC4016, designated as a divide-by-n down counter, has other problems. It costs as much as an 82S90. Its Q_A delay, although not specified, is about 20 ns. Its Q_B delay is high, and its built-in zeros detector is not usable in the first decade. Its maximum frequency is probably less than 35 MHz with all possible circuit tricks employed. Early decoding should probably be done on “4.” Three flip-flops would be required.

The most popular down counter is the SN74192. Its price is right; a BCD or (preferably) a BCD-complement switch presets it; it has built-in terminal count decoding (“borrow”); and the counters are quasi-synchronous. Time delay at the Q outputs is specified, although delay is longer for a 1-0 transition.

BCD down counting means that either the first bit goes high or zero, or that two bits change together, which involves a 1-0 change thus limiting decoding speed. Minimum decoding delay of the SN74192 is about twice that of the SN74196. So the maximum frequency of the SN74192, based on book data, would probably be no more than 28 MHz; however, I haven’t made any circuit measurements in this regard.

construction

I made tests on a circuit wired on a 3677-2 Vector board. This board costs more than the ICs, with its socket. I used Cambion sockets for ease in swapping counters. The Vector board has 1/4-inch (6mm) wide strips for B+ and ground. I used several CS13 tantalum-slug bypass capacitors between the two buses at strategic points. Wiring was no. 22 (0.6mm) solid hookup wire. I found no layout or grounding problems. All unused inputs were connected to V_{CC} through a 1k resistor. You’ll never find out what’s going on without a high-speed dual-trace scope; however, once it’s going, you’re all set.

The input circuit in fig. 1 worked better than several fancier “trigger” circuits. Note that a resistor between the input and output of an SN74S11 provides positive feedback. Without the resistor the circuit may oscillate with no input signal; adding positive dc feedback makes it a trigger with hysteresis. The whole counter draws less than 300 mA at 5 volts.

Something that hits 10-kHz multiples at 48 MHz has obvious application on two meters. That’s the next step.
WE ARE PROUD THAT EVERY ATLAS TRANSCEIVER AND ATLAS ACCESSORY IS MADE IN AMERICA! We think the American worker, and our employees in particular, are the most talented, hardest working people in the world. The quality of Atlas transceivers and our very competitive prices are the proof of this.

OUR PHENOMENAL 8 POLE LADDER FILTER that gives Atlas transceivers such superior selectivity was designed by Bob Crawford, an American engineer, and is manufactured exclusively for us in Phoenix, Arizona.

OUR PRINTED CIRCUIT BOARDS, and R.F., I.F., and A.F. plug-in boards that make servicing your Atlas transceiver fast, easy and inexpensive are made right here in Southern California.

THE SOLID STATE CIRCUITRY of our transceivers is based on designs by Les Ernshaw formerly ZL1AAAX, widely recognized as one of the foremost solid state radio engineers in the world, and founder of Southcom International located in Southern California. Southcom is one of the leading manufacturers of commercial and military radio equipment sold throughout the world. Atlas transceivers' immunity to overload and cross modulation from strong signals is nothing short of fantastic, and is a result of the advanced state-of-the-art designs by Les, and licensed to Atlas by Southcom.

WITH ALL DUE RESPECT TO THE FOREIGN ORIGIN OF A FEW OF THE COMPONENTS, every Atlas transceiver is designed and manufactured right here in our plant at Oceanside, California, U.S.A.

We think it is fitting that in this year, 1976, the 200th birthday of our nation, that each of us give at least equal consideration to products MADE IN AMERICA. Not only because they are Made in America, but because, like our Atlas products, they are simply a much better value!

SEE YOU AT SAROC HAWAIIAN!

ATLAS AMATEUR RADIO EQUIPMENT:

- 210x or 215x .. $649.
 (With noise blanker installed $689.)
- AC Console 110/220V $139.
- Portable AC Supply 110/220V $95.
- Model DD6 Digital Dial $199.
- Plug-in Mobile kit ... $44.
- 10x Osc. less crystals .. $55.

For complete details see your Atlas dealer, or drop us a card and we'll mail you a brochure with dealer list.

417 Via Del Monte • Oceanside, CA 92054 • Phone (714) 433-1983
On-the-air tune up is becoming more frequent. These ideas will help you avoid this illegal practice.

Amateurs have recently increased the practice of tuning up on the air, which has reached such a level that it's often impossible to work a DX station or participate in a net. Many tune-up signals are weak, but others are far stronger than the desired signal. Such practices are not only annoying, they're also illegal. An excerpt from the International Telecommunications Union regulations (693) states in part "All stations are forbidden to carry out...unnecessary transmissions...the transmission of superfluous signals and correspondence...and the transmission of signals without identification."

Observation and inquiry show that three factors are involved in the development of on-the-air tune up practices: the characteristics of modern transmitting equipment, lack of knowledge about corrective steps, and the "me first" approach too common today. This article is devoted to the second factor, corrective steps, with some discussion of the reasons why they are necessary.

One of the characteristics of many modern commercially built exciters, transceivers, and linear amplifiers is that they lack dial scales. Some may have a mark at 9, 12, and 3 o'clock, or even at every hour position, but many are blank. As a result, it's almost impossible to preset operating controls with any degree of accuracy. The only way to obtain proper performance is to tune up with reference to meter readings. Since amateurs want full output, it's no wonder that on-the-air tuneup has become so common.

The solution to this problem is simple -- install useful dials. Here, useful means a dial that can be read to about one degree of arc or so. It certainly means one that's large enough to get your fingers on, is easy to read, and has no backlash. For many controls it also means a vernier knob.

Most users of commercially built equipment have put up with the lack of useful dials from fear of spoiling equipment resale value. This shouldn't be a worry, because it isn't necessary to change appearance, drill holes, or take other steps that will reduce resale value. Also no great amount of work is necessary. On most transmitters or amplifiers only three controls are involved: typically drive, tune and load. A couple of hours of work should take care of most cases.

The simplest approach is to remove the old knobs and replace them with dials having calibration marks close enough to be useful, typically 0-100 over an arc of 180 degrees. Many styles are available in junk boxes, surplus outlets, and stores. However, it's difficult to find small dials with the necessary calibrations. If you're fortunate enough to obtain such dials, put the removed knobs in a cloth bag and tie it inside the equipment where it won't get lost. This saves no end of trouble when it's time to sell or trade.

Another simple approach is to install a calibrated dial plate under the control mounting nut. These plates were

By Robert P. Haviland, W4MB, 2100 South Nova Road, Box 45, Daytona Beach, Florida 32019
common for many years but are scarce now. They can be made using dry-transfer kits similar to those for lettering, or the center portion of a piece of polar graph paper, suitably lettered, can be used to give calibrations each 2 degrees. Dial plates can also be hand drawn. Best appearance is obtained by making the drawing several times full scale then reducing it photographically.

Both these methods have one disadvantage: they don’t have vernier action. Small vernier dials are usually available from Radio Shack, Olson or Lafayette in 1½, 2, and 3 inch (3.8, 5.1, and 7.6cm) sizes. These dials can be mounted on a false panel section using countersunk screws. The assembly can be held in place by the control nut or by an adjacent nut as shown in fig. 1; by bending around the edge of the panel; or by a drilled hole hidden by the original knob. QST’s “Hints and Kinks” contain other mounting ideas.

Another method, which involves considerable work but which offers the opportunity to obtain a “custom station,” is to make a complete dummy front panel. Custom features such as combinations of equipment, special lettering, engraved calls, and so on can be had by this method. It’s a good method for organizing the clutter of auxiliary controls that most stations accumulate. Whatever the method used, an additional item needed is a setting log or card giving the proper setting of each control for each preferred frequency or for band segments on the low frequencies and bands on the high frequencies. Plastic envelopes are convenient for these logs.

antenna tuner

The ability to return to a known dial setting is a big help but doesn’t fully compensate for another characteristic of modern transmitters and amplifiers, the fact that they’re designed to work into a 50-ohm load with an swr no greater than 2:1. An easy way to see how restrictive this can be is to consider the effect of antenna Q. The Q will be around 70 for a typical close-spaced Yagi on 7 MHz. The response will be nominally within 3 dB for a change of ±50 kHz. However, the Q response curve must be multiplied by a factor, k, which takes into account the allowable swr. The way this factor varies with swr is shown in fig. 2. The maximum range of transmitter adjustment is used up with a frequency change of only ±37 kHz. Even with low-Q antennas such as a wide-spaced Yagi with a Q of around 7, where the transmitter adjustment range covers 350 kHz or so, there will be measurable difference in transmitter performance with a frequency shift of 30 kHz. No wonder on-the-air tuneup has become so common!

If we look at the reason for this, we find that the
culprit is the reactance caused by operating away from resonance. For example, the resistance and reactance values for a typical dipole are shown in table 1. For a one-per cent change in frequency, (70 kHz at 7 MHz), the radiation resistance changes by about 6 ohms, or less than ten per cent. The reactance change is over six times as large numerically.

The solution to the problem introduced by this reactance change is simple — use an antenna tuner. Furthermore, since antenna reactance causes most of the swr change, we can use a single variable element. The other antenna tuner elements can be fixed. The improvement possible by this reactance control method is evident from fig. 3. The upper curve is the swr expected with a typical wire dipole fed with a 50-ohm line. The swr reaches 2:1 for a one-per cent change in frequency. By simply cancelling the reactance, the swr seen by the transmitter changes to the lower curve. Its minimum swr is now lower, reaching 1.0; and 2:1 is reached only after a 5% per cent frequency change. Note that the minimum swr occurs at a different frequency as far as the transmitter is concerned. Note also that the swr on the line does not change: it reaches about 7:1, causing increased voltage across the line, which may cause breakdown with small line and high power. The high swr also causes a small increase in line loss, usually entirely negligible. The

gain in frequency flexibility is far more important than these small problems.

The easiest way I've found to attain this single control action is shown in fig. 4. The pi network is conventional, with the arms continuously adjustable. The difference is in its use. L, C1 and C2 are preset to the band used and only C1 varied as frequency is shifted within the band. The indication for proper adjustment is a zero reading on the reflected power meter, which is an ARRL Handbook meter with only the reflected power elements connected. C1 is first preset to the table value, then adjusted as required when transmission begins. For a matched load, proper adjustment occurs with the reactance of each arm equal to the line impedance. This also gives the element values for a switched arm network.

dummy load

Good dials and a single-control matching unit are a big help in solving the tune-up problem, but it's still comforting to know that everything is tuned up on the nose. We can have this capability without radiating by adding another element — a dummy antenna automatically inserted into the transmitter output when the

transmitter tune control is activated. A circuit for this is shown in fig. 5. The diodes prevent interaction between the external relay and the internal circuits. The switch allows the test signal to be radiated, primarily to determine initial matching network settings.

The dummy antenna can be a commercial or kit unit, but the large units rated at 1 kW are not needed in this service provided that tuneup is held to the few seconds needed to touch up preset controls. A dummy antenna isn't hard to build; the basic components are a handful of resistors. The following discussion is based on use of Allen-Bradley resistors. Units of other manufacture may be satisfactory, but the rating values should be secured from the manufacturer.

A 2-watt A-B resistor of the twenty-per cent series is rated for a continuous load of 2 watts for 100,000 hours when the resistor is mounted with 1-inch (2.5cm) leads and has a body temperature of 212°F (100°C): this occurs when the ambient is 122°F (50°C). The life rating increases by a factor of ten for a 122°F (50°C) reduction in body temperature. The allowable load increases by 40 per cent for a 10:1 reduction in life. For short-term loads the resistors, for the same mounting, ambient and life, are rated at 44 watt-seconds; i.e., 44 watts for one second.

Suppose one of these resistors is used as a dummy antenna for a five-second tune-up checks. Over a ten-year period, if used ten times a day, the load would be applied for about 50 hours total. Since the required life

![fig. 3. Typical swr for dipole antenna with and without corrective steps.](image_url)

![fig. 4. Antenna tuner for reactance compensation.](image_url)

table 1. Impedance of a typical dipole antenna.

<table>
<thead>
<tr>
<th>per cent</th>
<th>resistance (ohms)</th>
<th>reactance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>47</td>
<td>-95</td>
</tr>
<tr>
<td>47</td>
<td>53</td>
<td>-76</td>
</tr>
<tr>
<td>48</td>
<td>59</td>
<td>-38</td>
</tr>
<tr>
<td>49</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>71</td>
<td>+38</td>
</tr>
<tr>
<td>51</td>
<td>77</td>
<td>+76</td>
</tr>
<tr>
<td>52</td>
<td>83</td>
<td>+95</td>
</tr>
</tbody>
</table>

42 march 1976
under load is so short, the load can be increased accord-
ingly. Also, the resistor body temperature can be
decreased by mounting the resistor on heavy fins that
touch the ends of the body and by immersing the fins
and resistors in cooling oil. The body temperature will
then be essentially ambient, certainly no greater than
122°F (50°C).

As a result of these steps, the power input can be
increased by 1.4 times for the reduction in temperature,
and 1.44 times for the acceptable reduction in life, or by
5.35 times. The rating is now 10.6 watts continuous, or
47 watts for five seconds. Ten 510-ohm resistors in
parallel will dissipate 470 watts for five seconds; easily
full output for a 600-watt-input transmitter of the type
that runs at full output on tune, and ample for a 1 kW
unit that tunes at 50 per cent of full output. Forty resis-
tors will handle a maximum legal input transmitter.

![Fig. 5. Circuit for dummy-load control during tune up.](image)

A dummy load designed in this fashion is shown in
the photo. The container is a one-quart paint can. Fins
are copper. The 2-watt resistors are separated by three
body diameters in each direction, and are staggered for
good oil circulation. The cooling oil is light mineral oil,
but transformer oil or hydraulic fluid are usable; mineral
oil is odor and stain free. The unit shown is eight years
old and has been used for tests up to 30-seconds dura-
tion with a 500-watt-input transmitter, repeated until
the can became quite warm. Actually the rating method
above seems to be quite conservative, since the change in
resistance in this period has been much less than the
10-20 per cent expected.

the operator

With these three aids in place it's now possible to get
on the air, correctly tuned up, without causing the
slightest interference. The steps are:

1. Set the exciter, final amplifier and tuning dials to the
logged settings for the band.
2. Activate the tune control, placing the transmitter on
the dummy antenna, and touch up the tuning if readings
aren't normal.
3. Start transmitting, observing the antenna tuner re-
lected-power meter; adjust the antenna tuner if needed.

These steps will result in the maximum possible signal
and will also make life more pleasant for others on the
channel.

SWR-1 guards against power loss
for $21.95

If you're not pumping out all the
power you're paying for, our little
SWR-1 combination power meter
and SWR bridge will tell you so. You
read forward and reflected power
simultaneously, up to 1000 watts RF
and 1:1 to infinity VSWR at 3.5 to 150
MHz.

Got it all tuned up? Keep it that
way with SWR-1. You can leave it
right in your antenna circuit.
what's wrong with amateur vhf/uhf receivers — and what you can do to improve them

How many times have you heard the expression, "If you can't hear them, you can't work them?" Well, this old saw pretty well sums up one of the biggest problems faced by amateur vhf and uhf operators. The culprit usually turns out to be the receiver or converter.

A complete treatment of the subject of vhf and uhf converters would require a lengthy article which is beyond the scope of this column. Therefore, I will limit my remarks to a general nature and, wherever possible, use references for more detailed information. Furthermore, I will only direct my remarks toward vhf/uhf converters: I'll leave the i-f or tunable receiver up to the user. Hopefully the remarks in this column will stimulate some interest in upgrading your converters, and will make your vhf/uhf operating more enjoyable.

general converter problems

The primary problems with most vhf/uhf converters are high noise figure, spurious responses, gain compression and "intermods" or IMD (intermodulation distortion), poor stability, and burnout. I'll briefly describe each of these problems, suggest some cures, and finally, recommend some tests to measure converter performance.

High noise figure is a symptom of almost every vhf or uhf converter I have ever measured. Principal causes (disregarding defective components for the moment) are high noise figure in the preamplifier, low preamplifier gain, high conversion loss in the mixer, and high i-f noise figure. Combinations of the above problems are also prevalent — the overall effect is poor sensitivity.

Spurious responses are also quite common in vhf and uhf converters. Unfortunately, instead of eliminating the spurious problem, most operators learn to live with it. Typical causes are insufficient filtering in the rf and local oscillator circuits, poor choice of intermediate frequency, and instabilities in either the preamplifier, oscillator, or frequency-multiplier stages. The overall result is the appearance of undesired signals in the frequency range of interest.

Intermodulation distortion and gain compression are usually caused by insufficient dynamic range at some point in the converter or i-f. The most likely culprits are poor linearity or excessive rf gain, or both. The requirements for low noise figure enhance the problem since rf gain and lower device operating currents are necessary. The usual result is the appearance of undesired signals which cannot be eliminated unless attenuation is placed ahead of the converter.

Poor stability, like spurious responses, is a problem many vhf/uhf operators learn to live with. It almost goes without saying that the i-f following the converter must be stable. The usual causes of instability are the oscillator circuit (and its components), the power supply, and the physical surroundings of the oscillator. Poor stability will cause the received signal to drift or rapidly change frequency.

Burnout is a perennial problem which has increased with the widespread use of solid-state devices. It can be caused by electrical discharge (such as lightning), high rf signal levels, or improper power supplies — anything that overstresses the devices used in the converter. The typical result is a dead converter without any prior warning.

Before discussing any specific circuit recommendations, I would like to give my usual pitch for the modular approach to vhf/uhf converter design where virtually every stage or function in the converter occupies a separate chassis or enclosure. There are many advantages to this system. First of all, modular converters are easy to work on because you can work on one circuit at a time — none of the other circuits is affected. Why build a new local oscillator chain every time you build a new converter or preamplifier? Furthermore, optimum performance of each module can be attained on your bench before you test the circuit in your converter. Shielding between stages is virtually assured with separate modules so crosstalk is vastly improved. Finally, if any module fails, it can usually be rapidly bypassed so operation will not be completely curtailed or severely degraded.

The primary disadvantages to the modular approach to vhf/uhf converter design are size, complexity and cost. However, if optimum performance is your goal, the advantages far outweigh these shortcomings. Just think how easy it will be to try out a new preamplifier or mixer if you use the modular system. All it takes is a simple substitution of modules, a one- to two-minute operation. If the change is not productive, the converter can be restored to its original configuration in seconds. You no longer have to build a complete new converter just to evaluate a new circuit.

A block diagram of a typical vhf/uhf converter is shown in fig. 1. If you use the modular approach, up to ten individual modules units could be used, but usually some units such as the crystal oscillator and frequency multipliers can be combined in one module.

recommendations

The overall noise figure of a well designed vhf con-
short thereby increasing dynamic range. A suitable i-f preamp- mixer will be discussed later in this column. The typical version loss and poor i-f noise figure. A suitable low loss

If the mixer has a 5 dB noise figure, for example, 15 dB of preamplifier gain would be desirable for minimum noise figure; 11 dB gain would be sufficient for a high

As pointed out earlier, spurious responses are quite common in vhf/uhf converters. Careful choice of the i-f is a very important determining factor in this regard. Generally speaking, 28-30 MHz is an optimum choice. Lower intermediate frequencies are more susceptible to i-f breakthrough and increase the complexity of filtering out the image frequency. Reference 3 provides some good guidelines for choosing an i-f. Image rejection of at least 30 dB should be a minimum goal.

Filtering of the rf and local oscillator circuits should be carefully considered since insufficient filtering will enhance spurious responses. Proper filtering of the local oscillator is seldom given adequate attention in most amateur converters, and subjects the mixer to additional

Dynamic range converter. Notes on calculating gain and noise figure are contained in the appendix of reference 1. Reference 1 also discusses the benefits of low noise preamplifiers and illustrates recommended circuits and devices.

Although it has been stated many times in the past, it should be reiterated that maximum gain and lowest noise figure are rarely coincidental in preamplifiers. In addition, the input filter to a converter should be a low-loss, single resonator type such as a quarter-wavelength coaxial cavity because any loss ahead of the converter will be added directly to its overall noise figure. Multiple-resonator input filters should be avoided because the input mismatch to a typical low noise figure preamplifier may cause the input tuning to change, thereby increasing the noise figure.

Quarter-wavelength input filters should be tuned for minimum vswr into a well matched 50-ohm load. Then they should be connected to the preamplifier with a short connection (such as a coaxial adapter) and never be retuned. Retuning a filter after it has been connected to a preamplifier frequently results in increased insertion loss unless precision noise figure measurements are used.

Other sources of high noise figure are high mixer conversion loss and poor i-f noise figure. A suitable low loss mixer will be discussed later in this column. The typical i-f used by most vhf/uhf operators is a commercial 28- to 30-MHz communications receiver. It is not unusual to find that the noise figure of such a receiver is as high as 10 or 20 dB! Therefore, it is recommended that a low noise figure preamplifier be placed ahead of the receiver. This will also reduce the need for high preamplifier gain, thereby increasing dynamic range. A suitable i-f preamplifier is discussed in reference 2.

As pointed out earlier, spurious responses are quite common in vhf/uhf converters. Careful choice of the i-f is a very important determining factor in this regard. Generally speaking, 28-30 MHz is an optimum choice. Lower intermediate frequencies are more susceptible to i-f breakthrough and increase the complexity of filtering out the image frequency. Reference 3 provides some good guidelines for choosing an i-f. Image rejection of at least 30 dB should be a minimum goal.

Filtering of the rf and local oscillator circuits should be carefully considered since insufficient filtering will enhance spurious responses. Proper filtering of the local oscillator is seldom given adequate attention in most amateur converters, and subjects the mixer to additional

Interstage and local-oscillator filters should preferably have multiple resonators (tuned circuits) to enhance selectivity. Losses of 1 to 2 dB are usually tolerable since there is generally adequate gain available to compensate for filter losses. Interdigital filters are preferred for uhf while comb-line and helical resonator types are preferable for vhf.

A fundamental oscillator frequency of 90 to 125 MHz is recommended for all converters for 144 MHz and above. Lower frequency oscillators generally cause more spurious frequencies, are more difficult to adequately filter, and can cause unwanted reception of television and fm broadcast signals. A suitable oscillator circuit is shown in fig. 2 and will be discussed later in this article.

Frequency doublers are preferred for multipliers since they are more efficient (especially the push-push type), more stable, and easier to filter. Frequency triplers, however, are acceptable when the output is below 300 MHz. Typical doubler circuits are shown in fig. 3.

Another cause of spurious outputs in vhf/uhf converters is instability in preamplifiers and local-oscillator/multiplier stages. Care should be taken to adequately decouple and shield all circuits in the local-oscillator chain to prevent this type of instability. The modular approach is a definite benefit in this regard.

Intermodulation distortion

Gain compression and intermodulation distortion are particularly prevalent in most of the vhf/uhf converters I've seen. Gain compression is simply the lack of dynamic range with a signal at the input. Intermodula-

Fig. 1. Block diagram of a typical vhf or uhf converter. The blocks marked with an asterisk are not necessary if high dynamic range and moderate noise figure are desired. The frequency multiplier is needed only in those cases where local-oscillator injection is above about 125 MHz (the upper limit for recommended overtone crystals).
tion distortion, which must not be confused with spurious responses, is the result of mixing the harmonics of one or both of the two input signals which in turn generate other frequencies within the desired passband. This is caused by non-linearities, either in or ahead of the mixer, and has been well documented.\(^7\)\(^8\)

First of all, you must insure that only the desired signals enter the converter. This can usually be accomplished with narrowband filters at the converter input and throughout the rf paths as discussed previously. If the undesired signals are too strong or too close to the input frequency, additional precautions must be taken.

The mixer is usually the major source of IMD difficulty since it is essentially a non-linear device and sees all input signals that remain after filtering and preamplification. The best solution to mixer-generated intermods is to use a mixer which has good dynamic range. Bipolar transistors are extremely poor in this regard and should be avoided at all cost. Fets, including the dual-gate mosfet types, are good at vhf but are poor performers above 300 MHz.

The double-balanced mixer is recommended since it generates fewer spurious responses than single-ended or single-balanced designs. The fet double-balanced mixer is recommended for operation below 300 MHz because it has good dynamic range and conversion gain.\(^9\) For all around versatility, however, the Schottky-diode double-balanced mixer is hard to beat since inexpensive units (less than $7.00 in single quantities) cover the frequency range from 5 to 500 MHz and present 50 ohms at all ports. The circuit of one popular type is shown in fig. 4.

For best intermodulation performance the Schottky double-balanced mixer should have sufficient local-oscillator injection (10 to 20 milliwatts) and all ports should be properly terminated. The recommended procedure is to use a 3 to 6 dB resistive attenuator on the local-oscillator port (with a commensurate increase in local oscillator power), and a well matched i-f preamplifier on the i-f port, preferably with a diplexer. This subject is thoroughly discussed in reference 9. An extension of this technique would be to use one of the high dynamic range double-balanced mixers. They require even higher local oscillator power but the higher mixer outputs may cause the i-f to generate intermodulation products so their use may not necessarily justify the added expense.

The gain problem is a whole, separate subject. I have noticed all too often that far too many preamplifier stages are used ahead of the mixer. Generally speaking, two stages, (one preamplifier and one postamplifier) should be more than sufficient, even for the lowest noise receiver. Gains ahead of the mixer totalling 30 dB or more are definitely undesirable. High gain rarely contributes any worthwhile performance benefits and decreases the dynamic range of the receiver.

The linearity of the postamplifier (the amplifier stage after the mixer) is also very important. As a general rule of thumb, this stage should operate with a collector (or drain) current of four to five times the corresponding current of the preamplifier. This is necessary because the signals present in this stage are typically 10 to 15 dB higher (gain of the preamplifier less loss of the filter) than at the receiver input so the postamplifier is more susceptible to non-linearities. It may be worthwhile to note that for each dB of extra gain ahead of the mixer the intermodulation distortion increases by 3 dB! If lowering the gain ahead of the mixer causes i-f problems (poor noise figure, etc.), a postamplifier can be added after the mixer.

Stability

Frequency stability can sometimes be a problem. The principal causes of drift are the actual oscillator circuit, its components, and, in particular, the crystal. Only high quality components and overtone crystals should be used. Inexpensive crystals should not be used. Inexpensive crystals frequently generate spurious outputs, noise, and drift. Drive levels to the crystal should be kept to a minimum commensurate with reliable performance. Frequency-pulling components such as trimmer capacitors should be avoided at all costs as they will seriously degrade the stability and spurious performance of even a good high-Q crystal. The crystal should be allowed to operate at its natural series-resonant frequency, and the oscillator power supply should be regulated. A recommended circuit is shown in fig. 2.

Needless to say, heat-generating devices such as vacuum tubes should not be located near an oscillator because they will seriously affect stability. Furthermore, all oscillator components should be rigidly mounted to prevent any mechanical instabilities.
Burnout has increased with the use of higher power transmitters and solid-state converters. All circuits, as a minimum, should use an "idiot" diode (a diode in series with the power supply as in figs. 2 and 3). They prevent damage due to polarity reversals and lower cross-talk. Regulated power supplies for solid-state equipment are highly recommended and inexpensive due to the ready availability of three-terminal voltage regulators. A power supply which is used for relays should never be used to power a solid-state circuit because relay coils induce large voltage spikes on the power supply line during switching operations. It shouldn't be necessary to mention it, but never operate a circuit at voltages or power dissipation above the manufacturer's maximum specifications.

Other forms of burnout are excessive rf input or transients. The ordinary coaxial relays that are used by vhf/uhf amateurs often have only 30 to 40 dB isolation between the transmit and receive ports. If you're running a high power transmitter (500-600 watts output) this means that up to 0.5 watt of rf power can be impressed across the receiver input.

One simple cure to this problem is to use an additional lower power relay in series with the receiver for additional isolation. Another solution is to use a limiter ahead of the preamplifier. Even a single silicon or hot-carrier diode across the base-to-emitter junction of a bipolar transistor will help (see fig. 5). Germanium or back-to-back diodes across the input line should be avoided since they frequently turn on too early and can also generate spurious responses from out-of-band signals.

Out of band transients and excessive rf can usually be eliminated with a good input filter as discussed previously. It is not uncommon to see volts of rf energy on the transmission line from a vhf/uhf antenna which is near a high-frequency transmitter such as a 10-80 meter amateur station.

Lightning is also a real problem. If two relays are used (as described above), they can be connected so the preamplifier input is terminated in a 50-ohm dummy load when the receiver is not in use (see fig. 6). A short-circuit or open return may cause a preamplifier to oscillate. This oscillation could also cause damage to the device and may generate local, self-caused interference.

Another possibility for lightning protection is a high-pass filter which is designed with a cutoff frequency which is 10% to 50% below the band of interest (see fig. 7). Since most of the energy in a lightning strike is concentrated below 50 MHz a highpass filter will provide a measure of protection against nearby electrical storms.

fig. 4. The Anzac MD108 double-balanced mixer is useful over the frequency range from 5 to 500 MHz and is recommended for amateur vhf/uhf converters. This device is priced at $7.00 in small quantities (plus postage) and is available direct from the manufacturer, Anzac Electronics, 39 Green Street, Waltham, Massachusetts 92184.

However, there is virtually no protection against a direct hit!

testing and evaluation

There's no question that noise figure measurement is the most important test of converter performance and must be performed if proper operation is desired. As pointed out in reference 1, the measured noise figure may be optimistically low if a 5722 noise diode is used. The gas-discharge tube or hot-cold test are recommended above 400 MHz. The silicon diode noise generator is recommended only for optimizing the noise perform-

fig. 3. Two frequency doubler circuits which are recommended for use with vhf/uhf converters. The circuit in (A) is suggested for inputs in the range from 90 to 120 MHz. The doubler in (B) is recommended for inputs in the range from 180 to 220 MHz. The 2N914 diode in series with the power supply lead is the "idiot" diode discussed in the text.
ance of a converter—it can't be used for quantitative measurements.

The primary things to look for when evaluating converter noise figure are poor image rejection and nonlinearities in the i-f and detector. One good test is to compare your converter or preamplifier with another one (preferably one with a known noise figure) and note the difference. You can get a good idea of how well your converter measures up and absolute numbers are not necessary. For more information on the subject of noise figure, references 12 and 13 are recommended as starting points.

It's not easy to test for spurious responses but the simplest test is to substitute and/or bypass modules in

fig. 5. Simple limiter circuit is helpful in reducing burnout problems in preamplifier input stages. Diode CR1 is a low capacitance (1.0 pF maximum) silicon or hot-carrier diode such as the Hewlett-Packard 5082-2810.

ation of the undesired signal is usually necessary before corrective action can be taken. If you are fortunate enough to have access to a spectrum analyzer, spurious troubles can be quickly pinpointed.

If you use the modular approach, gain compression and intermod performance are easily checked without expensive test equipment. All you need is a coaxial type attenuator in the 10 to 15 dB range. If this is not available, 100 feet (30m) of RG-58/U coaxial cable is acceptable (at 432 MHz this represents approximately 12 dB attenuation).

The test procedure is to connect the attenuator between various stages of the receiver to see where the problem is being generated. If the attenuator is placed after the preamplifier and the problem persists, the preamplifier is probably the source of the difficulty. If the problem goes away, however, it's probably being generated further down the chain and a similar test of the mixer is required.

Once you have pinpointed the problem it can be dealt with accordingly. It may even be desirable to have a built-in system for switching in additional attenuation ahead of the mixer if the offending signal is not always present (such as a local television transmitter, etc).

Converter stability can best be tested by using a stable crystal calibrator with known stability. A variable voltage supply on various converter circuits can provide

clues to the source of stability problems. A heat gun or hair dryer can be used to check for thermal instabilities.

Burnout is very difficult to evaluate since most burnout tests are, by nature, catastrophic. Sufficient to say that if you have followed all of the previous recommendations, you have done about all you can do.

final remarks

The intent of this writeup is not to frighten you but to get you to try your hand at improving your own vhf or uhf converter. You will probably find that even if only one circuit is improved it will be worthwhile. Whenever you replace or modify a circuit you should always check the noise figure to make sure that the change resulted in an improvement—you may find that it was a move in the wrong direction!

I would like to once again reiterate that the use of quality components and the modular approach to vhf/uhf converter design will quickly pay for itself in terms of performance, versatility, and numbers of stations worked. It will also spur you on to trying new circuits and devices as they rapidly become available in today's highly volatile communications industry.

references

8. J. F. Fisk, W1DTY, "Recover Noise Figure, Sensitivity and Dynamic Range—What the Numbers Mean," ham radio, October, 1975, page 8.
12. L. N. Anciaux, WB6NMT, "Accurate Noise Figure Measurements at VHF," ham radio, June, 1972, page 36.

fig. 7. Simple 50-MHz high-pass filter to decrease the effects of lightning and high-frequency interference. Keep all leads as short as possible to prevent circuit losses.

C1, C2 62 pF miniature capacitor
L1 0.08 μH, 4 turns no. 20 (0.8mm), air core, 1/8" (6.5mm) diameter, turns spaced one wire diameter

ham radio
Make money in your spare time. Start a business or a new career!

Learn Communications/CB at home, the NRI way!

Two-way, citizen's band radios are selling faster than the manufacturers can turn them out. That means countless career jobs in installations, CB design and maintenance. Start training now at home, to qualify for one of those openings ... the professional NRI way.

Get your own 500 Channel digitally-synthesized VHF Transceiver.
The NRI Complete Communications Course teaches you to service and adjust two-way radio including CB equipment, using your own digitally-synthesized 500 Channel VHF Transceiver and AC power supply. Mounted in your car or used as a base station, the "designed for training" Transceiver gives you the only fully-up-to-date 220 MHZ equipment for complete training in professional commercial communications; you get "hands-on" experience that puts your course theory into practice.

The complete program includes 10 training kits with your own electronics "discovery" Lab, a new Antenna Applications Lab, and an Optical transmissions system. 48 lesson texts, CMOS digital frequency counter, and a TVOM.

A wide choice of careers for trained men.
The NRI Complete Communications Course covers AM and FM Transmission Systems, Radar Principles, Marine Electronics, Mobile Communications, Aircraft Electronics and digital electronics including frequency synthesizers. You will qualify for a first-class radiotelephone FCC license within six months after graduation or you get your money back.

Over a million men have trained the NRI way.

Send for the free NRI catalog and discover why more than a million men have chosen the NRI way. Read about the "bite-size" lessons, self-pacing, and "power-on" training.

There's no obligation and no salesman will call.

If coupon is missing write to: NRI Schools, McGraw-Hill Continuing Education Center, 3939 Wisconsin Avenue, Washington, D.C. 20016

Rush the free catalog of my choice (select only one, please). No salesman will call.

- Communications with CB
- Complete Communications Electronics · FCC Licenses · Aircraft Electronics · Mobile Communications
- Amateur Radio
- Basic and Advanced Courses
- Industrial & Business Electronics
- Digital Computer Electronics · Electronic Technology · Basic Electronics · Math for Electronics
- TV · Audio Servicing
- Choose from 5 courses
- Appliance Servicing
- Homeowner & Professional Repair
- Automotive Mechanics· Master automotive Technician · Tune-Up and Basic Repairs
- Auto Air Conditioning
- Refrigeration
- Basic Air Conditioning Servicing · Master Course in Air Conditioning, Refrigeration & Heating

NRI SCHOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, Washington, D.C. 20016

APPROVED FOR CAREER STUDY UNDER GI BILL
Check for details

Name ___________________________ Age ________
(Please Print)
Street ____________________________
City/State/Zip ____________________

Accredited Member National Home Study Council

Rush the free catalog of my choice (select only one, please). No salesman will call.

March 1976 49
5/8-wavelength vertical antenna for two meters

An easy-to-build antenna that provides a theoretical 3-dB gain over a quarter-wave groundplane

After operating two-meter FM mobile for some months I decided to operate from my home and built a vertical 5/8-wavelength antenna. Comparison with a 1/4-wavelength groundplane showed improved performance. I was able to work repeaters with the 518-wavelength vertical that I couldn't work with the groundplane. The antenna described here has been in operation since April, 1973. It's only 25 feet (7.6m) above ground. The lowest VSWR obtained was 1.1 at 146 MHz, and the highest was 1.5 at 147 MHz. The antenna was made from junk-box parts and a discarded television antenna. Power levels of 100 to 150 watts can be handled safely. Greater power can be used by changing the series capacitor (fig. 1) to a variable capacitor with air dielectric, such as the APC type.

Construction isn't critical and parts are easily obtained. The coil-support ceramic spacer and capacitor were obtained from a surplus military radio. The plastic weather cover was acquired from a local supermarket. You'll need an electric drill, drill bits as shown in the detail drawings, a 10-32 (M5) tap and holder, and a tapered reamer to make the 5/8-inch (16mm) diameter hole for the SO-239 connector. A bench vise is handy to bend the aluminum support bracket (fig. 2). The U-bolts were purchased from a local radio-TV parts dealer.

The assembled antenna is shown in fig. 1; details for making the support bracket, vertical radiator, and ground radials are given in figs. 2 through 4. Stainless steel hardware should be used if available. I used only three screw sizes to assemble the antenna: 4-40 (M3) for mounting the SO-239 connector, 6-32 (M3/5) for mounting the radials, and 10-32 (M5) for the coil support section. The 10-32 (M5) threaded stud at the top of the coil support was made from a 1½ inch (38mm) long screw with the head removed. A lug, lock washer, and nut are installed at the top of the support bracket and another lug on the screw nearest the coil support holding the SO-239 connector.

After assembling the parts described above, wind a coil of 9 turns using number 10 or 12 AWG (2.6 or 2.1mm) solid enamelled copper wire around the coil support. Solder the coil ends to the mast and U-bolts. The U-bolt nearest the coil is used for tuning. The assembly is held together by using a 4-40 (M3) screw for the support bracket and another lug on the screw nearest the coil support holding the SO-239 connector.

By Ed Spadoni, W1RHN, 91 Tower Street, Dedham, Massachusetts 02026
the vertical radiator until it's tight. A capacitor-adjustment hole is made through the side of the plastic cover by aligning a scriber or centerpunch opposite the capacitor adjusting screw and penetrating the plastic cover. The hole should be about 3/8 inch (6.5mm) diameter.

tuning

I used my ICOM IC-20 and a Bird vhf directional wattmeter to adjust the antenna for lowest vswr. With power applied to the antenna, I adjusted the capacitor with a nonmetallic alignment tool for the lowest reflected power on the wattmeter, using a test frequency of 146.52 MHz. If you don’t have a vhf swr bridge or directional wattmeter, a field-strength meter can be used as an indicator. When using this method, adjust the capacitor for maximum output.

final comments

As with all vertical antennas, this 5/8-wavelength antenna is omnidirectional. However, it has approximately

3 dB gain over a ¾-wavelength groundplane and is an excellent antenna for all-around operation. With it I can consistently acquire repeaters 50 to 60 miles (80 to 96km) away. Under good conditions contacts 100 to 200 miles (160 to 320km) away have been made, both through repeaters and in the simplex mode.

fig. 2. Support bracket details. Dimension A and holes marked with an asterisk are sized to fit available U-bolts. Material is 1/8" (3mm) aluminum.

fig. 3. Construction details for the vertical radiator. Material is aluminum tubing, 7/16" (11mm) OD, 1/16" (1.5mm) wall. Solid aluminum rod, if available, will provide sturdier construction and will avoid need for making end plugs to seal top. The end plug fits flush with the end of tubing and is held in place by “dimpling” with a center punch.

fig. 4. Radial element construction details. Install end plug flush with tubing, then drill 11/64" (4.5mm) holes (“dimple” plug in place before drilling).
Whether you choose the SB-104, or the HW-104, you’re getting one of the finest Amateur transceivers you can buy at any price. And because you build them yourself, you get a feel for the equipment you simply can’t duplicate with ready-made units.

100% solid-state construction including finals ...totally broadbanded circuitry for instant QSY without pre-selector, load or tune controls ... switchable 100 watts/1 watt out06 \mu V typical sensitivity ... super-clean operation thanks to reduced cross-mod and IM distortion ... specs that show what state-of-the-art is all about ... and styling second to none!

The SB-104 offers true digital frequency readout with resolution to 100 Hz on all bands, and complete frequency coverage from 3.5 MHz through 29.7 MHz without accessories.
Kit SB-104, Shpg. wt. 31 lbs. 669.95

The HW-104, for $130 less, brings you the same broadbanded circuitry as the SB-104, but it has an easy-to-read circular tuning dial, and 3.5 to 29.0 MHz coverage (to 29.7 MHz available with HWA-104-1 accessory). It’s one of the best price/performance combinations available in Amateur Radio today.
Kit HW-104, Shpg. wt. 31 lbs. 539.95

Reviews and articles in the major Amateur magazines have consistently praised the 104’s because of their advanced circuitry, reliability and sheer operating pleasure! If you’re serious about Amateur radio, you owe it to yourself to find out more about the 104’s. For complete descriptions and specifications, order the new FREE Heathkit catalog. Send coupon today!
Station of the Art...

The SB-104 with sophisticated station accessories. Unquestionably, some of the finest Amateur gear you can own.

Clockwise from top:

SB-104 Transceiver:

SB-230 Conduction-Cooled Linear: 1200 PEP SSB: 1000 watts CW from less than 100 watts drive. Also 400 watts for SSTV and RTTY.
Kit SB-230, Shpg. wt. 40 lbs. 339.95

SB-614 Station Monitor: CRT indicates signal quality. Also RF envelope and Trapezoid displays. For SSB, CW and AM to 1 kW; 80-6 meters.
Kit SB-614, Shpg. wt. 17 lbs. 139.95

SB-634 Station Console: 24-hour clock, 10-minute ID timer, RF wattmeter, SWR bridge, phone patch.
Kit SB-634, Shpg. wt. 14 lbs. 179.95

SB-644 Remote VFO: For split transmit/receive on SB-104. Not for HW-104.
Kit SB-644, Shpg. wt. 10 lbs. 119.95

Fixed Station Power Supply. Fits inside accessory speakers of SB-104 and HW-104. 120/240 VAC, 60/50 Hz.
Kit HP-1144, Shpg. wt. 28 lbs. 89.95

Station Speakers: 5x7", 3.2 ohm speakers response-tailored to SSB. With cable, connectors and cabinet.
Kit SB-604, For SB-104 Shpg. wt. 8 lbs. 29.95
Kit HS-1661, For HW-104 Shpg. wt. 5 lbs. 19.95

Useful options for both the SB-104 and HW-104:

SBA-104-1, Noise Blanker, Shpg. wt. 1 lb. 26.95
SBA-104-2, Mobile Mount. Shpg. wt. 6 lbs. 36.95
SBA-104-3, 400 Hz CW Crystal Filter, Shpg. wt. 1 lb. 39.95

FREE!

New Heathkit Catalog

Over 400 Easy-to-Build kits including Amateur and SWL gear, test instruments, automotive and marine electronics, digital clock and weather monitors, stereo hi-fi, color TV. Send for yours today!

More Details? CHECK-OFF Page 102
8080 microcomputer output instructions

In the microprocessor column last month we discussed different types of simple input/output (I/O) devices and provided a listing of general principles of interfacing that apply to a wide variety of computers. This month, we would like to explain how software or computer instructions cause an I/O device to operate.

controlling power with a microcomputer

The I/O device that we shall choose for our discussion is the optically isolated solid-state ac relay. These relays can control any ac power device within the output current ratings of the relay. Shown in fig. 1 are typical solid-state relays which are available at prices ranging from $5 to $20 in small quantities. These relays permit a single TTL output signal of logic 0 or logic 1 to control up to 10 amperes of 220 Vac power (the Hamlin model 7522 relay shown at the top center of the photograph). Internally each relay contains a light-emitting diode, a light-sensitive transistor, a power triac, and a transparent dielectric optical path that isolates the digital and power circuitry and can withstand a voltage difference of at least 1000 volts.

With the aid of a suitable program, the microcomputer and SN74154 decoder can generate individual device select pulses that either clear or set the SN7474 flip-flop. To clear the flip-flop, and thus turn on the ac power device, only a single 500 ns pulse is needed. The flip-flop output, Q, will remain at logic 0 until a single 500 ns pulse is applied to the preset input, at which time the ac device will turn off.

It should be noted that any simple open collector gate or inverter can be used as the buffer between the output of the flip-flop and the input of the solid-state relay. Suitable choices would be the SN7401 or SN7403 2-input NAND gates, a SN7405 inverter, or a SN7409 2-input AND gate.

the output instruction

We shall discuss the subject of microcomputer instructions in considerable detail in subsequent columns. To summarize such discussions, there are 78 different instructions for the 8080 microprocessor chip, and a total of 256 variations of these instructions. Each instruction contains a single 8-bit instruction code, which indicates which type of operation or group of operations the microcomputer will execute. Some instructions contain two or three 8-bit bytes that are present in successive memory locations. A byte is defined as a group of eight contiguous bits occupying a single memory location.1 Thus, 8080 microprocessor instructions are either 8, 16, or 24 bits long, with the first eight bits always being the instruction code.

The out instruction is a 16-bit instruction that consists of two successive 8-bit bytes located in successive memory locations. The first byte, in binary code, is always 110100112. The second byte can be any 8-bit binary number from 000000002 to 11111112 (the subscript 2 denotes a binary code); this is the device code of

By Peter R. Rony, David G. Larsen, WB4HYJ, and Jonathan Titus

Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Jonathan Titus is President of Tychon Inc., Blacksburg, Virginia.
the specific output device that will receive eight bits of data from the accumulator. The instruction can be summarized as follows:

\[11010011_{2} \]

Generate a device-select pulse, with the aid of an 8-line-to-256-line decoder circuit, to allow an 8-bit data byte present in the accumulator to be sent to the desired output device. The contents of the accumulator remain unchanged.

simple program

The simplest program that incorporates the \textit{out} instruction is probably the one given below:

<table>
<thead>
<tr>
<th>memory address</th>
<th>instruction byte</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11010011</td>
<td>Send device-select pulse to device given by following 8-bit device code</td>
</tr>
<tr>
<td>1</td>
<td>00000001</td>
<td>Device code for clear input to SN7474 flip-flop</td>
</tr>
<tr>
<td>2</td>
<td>0111100100</td>
<td>Halt the microcomputer</td>
</tr>
</tbody>
</table>

An 8080 microcomputer operating at a clock rate of 2 MHz will execute this program in 8.5 \(\mu s \). The ac power device will remain on once the program has been executed. To turn off the device, a slightly different program is required:

<table>
<thead>
<tr>
<th>memory address</th>
<th>instruction byte</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11010011</td>
<td>Send device-select pulse to device given by following 8-bit device code</td>
</tr>
<tr>
<td>1</td>
<td>00000001</td>
<td>Device code for preset input to SN7474 flip-flop</td>
</tr>
<tr>
<td>2</td>
<td>0111101000</td>
<td>Halt the microcomputer</td>
</tr>
</tbody>
</table>

The ac power device will turn off after the second instruction byte in the program and remain off after the microcomputer halts. A more practical program requires additional instructions. Several such programs can be found in reference 1. Many of them have the following basic form:

<table>
<thead>
<tr>
<th>memory address</th>
<th>instruction byte</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>11010011</td>
<td>Turn solid state relay \textit{on}, i.e., send device-select pulse to the device given by the following 8-bit device code</td>
</tr>
<tr>
<td>24</td>
<td>00000001</td>
<td>Device code for clear input to SN7474 flip-flop. When the flip-flop is cleared, the solid-state relay turns \textit{on}</td>
</tr>
</tbody>
</table>

This section of the program may have various decision points that determine whether or not the solid-state relay is turned off. Typical decisions include

- Has sufficient time elapsed?
- Has the antenna reached its correct azimuth?
- Is the temperature of the final amplifier too high?
- Is the vswr too high?

<table>
<thead>
<tr>
<th>memory address</th>
<th>instruction byte</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>11010011</td>
<td>Turn solid state relay \textit{off}, i.e., send device-select pulse to the device given by the following 8-bit device code</td>
</tr>
<tr>
<td>110</td>
<td>00000001</td>
<td>Device code for preset input to SN7474 flip-flop. When the flip-flop is set, the solid-state relay turns \textit{off}</td>
</tr>
</tbody>
</table>

Keep in mind that a memory address contains sixteen bits. When we write "memory address 0" we really mean the memory address corresponding to the following 16-bit binary word: 00000000 00000000. Note that we have split the sixteen bits into two parts, the most significant eight bits and the least significant eight bits. These are called the HI (or H) and LO (or L) memory addresses, respectively.

With the aid of the above program, the solid-state relay shown in fig. 2 will turn on and off according to various decisions made by the program. A typical microcomputer-controlled system could easily have several such relays.

fig. 2. A typical I/O circuit for a power ac device such as a fan, heater, motor, or antenna control.

In a more orderly and systematic treatment of the 8080 microprocessor, you would probably introduce the 8080 instruction set prior to the discussion of any particular instruction, such as the out instruction described this month. Since we do not believe that you are willing to wait four months until we get to the out instruction, we have decided to treat it first. Next month we will provide a simple microcomputer program that generates device-select pulses to turn a device such as an antenna rotator or a fan on or off.

The authors will present a two-day seminar on microcomputers at the Virginia Polytechnic Institute and State University Extension Center in Reston, Virginia sponsored by Virginia Polytechnic Institute and State University Extension Division on March 12-13, 1976, and a five-day short course on digital electronics (with some discussion of microcomputer interfacing) sponsored by the American Chemical Society and Virginia Polytechnic Institute and State University, in Blacksburg, Virginia, on March 21-26, 1976. Two one-day seminars on microcomputers (sponsored by ham radio magazine) will be given at the Dayton Hamvention, Dayton, Ohio, on April 23-24, 1976.

*The fee for the one-day seminar is $50 and includes $35 worth of books. Since the seminars are limited to 100 persons, early registration is recommended. For details write to ham radio, Greenville, New Hampshire 03048.

bibliography

Ham radio
Now there's a new hardware system for teaching yourself digital electronics. It's designed to complement our top selling Bugbooks I & II. Bugbooks cover everything from simple gates to shift registers. And now we're offering all of the hardware you'll need to complete the experiments.

You'll get all required "outboards" in kit form, including the power, logic, switch, seven segment readout, clock, LED lamp monitor, and dual pulser outboards. A jumper package and starting IC package. And the E&L SK-50 solderless breadboarding socket. All for only $67.50. If you need Bugbooks I & II, they're an additional $16.95 for the set. All postage and shipping is prepaid anywhere in the continental U.S. Send your check or money order today.

CIRCUIT DESIGN, INC.
Division of E&L Instruments
P.O. Box 24
Shelton, Conn. 06484

- Please send me your new hardware package for learning digital electronics. My $67.50 is enclosed.
- Please send me Bugbooks I & II. $16.95 is enclosed for them.

Name ________________________________
Address ________________________________
City __________________ State ______ Zip ______

Please enclose check or money order. Shipments will be prepaid.

More Details? CHECK-OFF Page 102
high-performance bench power supply at low-performance cost

In today's solid-state world, the variable low-voltage bench power supply is an absolute necessity for the serious experimenter. In fact, an axiom might well be that no matter how many bench supplies you have, you are always one short. And except for those amateurs who are fortunate enough to have acquired commercial power supplies, most of us are probably still using units which were built years ago and which go down to perhaps 4 or 5 volts because a reference supply would have been needed to enable the main supply to go to zero.

The relatively new RCA CA3130 operational amplifier makes possible a highly regulated power supply whose output will approach zero without a separate internal reference source. As shown in fig. 1, this op amp comprises both mos and bipolar transistors on a monolithic chip. It features a gate-protected input stage which has an input impedance of 1.5 million megohms and which is rated for typical input bias currents of 5 picoamperes. It also operates from a single power supply. Best of all, the single-unit price is less than $2.00.

A power supply utilizing the CA3130 in a regulator circuit described in reference 1 has been constructed. It provides a regulated output of 0 to 40 volts at better than one ampere, and incorporates fold-back short-circuit protection. Load regulation is 0.1 percent, and line regulation is 0.02 percent for a 10-percent line-voltage change. Total noise and ripple output is less than 200 microvolts rms.

The CA3130, four discrete transistors, an inexpensive transistor array IC, and a bridge rectifier constitute the entire semiconductor complement, at a total cost of under $11.00. Furthermore, all of the devices are available from your friendly RCA Solid State distributor, if you specify the equivalent RCA type 44002 diodes in lieu of the 1N4002s indicated in fig. 2.

* A complete parts kit for this power supply is being made available in conjunction with this article. For ordering information and prices, write to Dentron Radio Co., Inc., 2100 Enterprise Parkway, Twinsburg, Ohio 44087, or telephone (216) 425-3173.

By Robert S. Stein, W6NB1, 1849 Middleton Avenue, Los Altos, California 94022

The complete circuit of the power supply is shown in fig. 2. In this unit, T1 is a surplus transformer having a 36-volt, 2-ampere secondary. However, you can use any transformer you wish, up to 40 volts, by selecting the values of two resistors (more about this later).

The operating and reference voltages for U2, the CA3130, are established by U1, a CA3086 transistor array, which is shown in block form to simplify the schematic. A stable, low-impedance, temperature-compensated source of reference voltage is provided at pin 14 of U1. Voltage adjust control R7 determines the output voltage by setting the amplitude of the reference voltage which is applied to the inverting input (pin 2) of U2. In turn, the output of U2 supplies the base of driver transistor Q3, which controls the base current of the Darlington pair (Q1 and Q2), and hence the series pass resistance.

Let's assume that the output from the power supply starts to increase, either because of an increase in ac line voltage or a decrease in dc load current. A proportional increase appears at the junction of resistors R13 and...
R15, and is applied to the non-inverting input (pin 3) of U2 through R14. The resultant increase in output current from U2 causes an increase in the collector current of Q3, reducing the drive to the base of Q2 and increasing the collector-to-emitter resistance of Q1. Thus the output voltage is reduced by the closed loop until it is reestablished at the value set by R7. The entire correction takes place almost instantaneously, abetted by the high gain of the op amp (approximately 110 dB) and of the loop. Conversely, if the output voltage starts to decrease, an equivalent but opposite reaction maintains the output constant.

Short-circuit protection is provided by Q4. The base-to-emitter voltage of Q4 is the voltage which appears across the base-emitter junction of Q1 plus the voltage drop, caused by the load current, across parallel resistors R8 and R9. When this voltage exceeds a predetermined value established by potentiometer R11, Q4 conducts and diverts current from the base of Q1, thereby limiting the short-circuit current to a safe value (approximately 500 milliamperes) and saving the series-pass transistor.

To quickly reduce the output voltage to zero when primary power is switched off, a double-pole double-throw switch is used. One pole of S1 is the conventional primary ac switch; the other pole discharges the filter capacitors through R16 when the switch is in its off position. A 50-volt meter is incorporated to monitor the output voltage.

Returning to the function of U1, let's examine the configuration of its transistors. Fig. 3A shows the actual circuit arrangement, while fig. 3B shows the functional circuit. Transistors QA and QB are each connected to form a zener diode, and are connected in series to provide a regulated 14-volt supply for U2.

Transistor QE is configured as a constant-current
generator whose base bias is dropped from the collector potential by \(Q_c \) and \(Q_D \). The latter is connected as another zener diode, while \(Q_c \) provides temperature compensation by virtue of its arrangement as a forward-biased silicon diode. This entire circuit, operating from the regulated 14-volt line, establishes a stable reference-voltage source of approximately 8.3 volts at the collector of \(Q_E \).

A portion of this voltage is applied, via \(R6 \) and \(R7 \), to the inverting input of \(U2 \) and serves as the reference for the regulator circuit.

transformer

Since it is unlikely that anyone else would have a transformer identical to the one I used in my supply, a brief discussion of the transformer is warranted. Obviously, the first requirement is that the secondary be rated for at least the maximum amount of current you expect to draw; one ampere is recommended.

The secondary voltage can be anything between 15 and 40 volts. The choice depends on the maximum dc output that you want, which will be about 5 volts less than the unregulated dc developed across filter capacitor \(C1 \). A good transformer will supply unregulated dc equal to 1.4 times the secondary rms voltage at no load, and about 1.3 times the secondary rms voltage at full load.

Using these figures as the starting point, calculate a value for resistor \(R1 \) which will drop the estimated no-load dc voltage to 14 volts at a current of 10 milliamperes. \(R15 \) will probably also require a change from the value shown in fig. 2, but this can best be done after the power supply is built and working.

voltage and current metering

Although only the voltmeter shown in fig. 2 is really necessary, it is often convenient to be able to measure the load current without having to hook up an external meter. Fig. 4 shows a simple circuit using a milliammeter and a three-position switch to allow measurement of output voltage and measurement of load current in two ranges. In order to keep the total current from passing through the switch contacts, the voltage drop across the overload-sensing resistors (\(R8 \) and \(R9 \)) is measured, with the meter indicating the equivalent current through the resistors. The values of \(R_A \), \(RMA \), and \(RV \) depend on the ranges desired, the full-scale meter current, and the meter resistance; the method of calculating these values is covered in the appendix.

construction

The housing and construction of the power supply is a matter of personal preference. Naturally, for bench use, switch \(S1 \), pilot light \(DS1 \), meter \(MI \), voltage control \(R7 \), the output terminals, and meter switch \(S2 \) (if used) should be on the front panel. Current adjust potentiometer \(R11 \) can be a screwdriver-adjust or pc-board type, since it is set once and then forgotten.

Transistors \(Q1 \) and \(Q2 \) must be mounted on a husky heatsink — the larger the better. Remember that \(Q1 \) passes the full load current, and dissipates power equal to this current times the voltage drop between collector and emitter. This can exceed 40 watts at low output voltages, which is a lot of heat to dissipate. Be sure to use insulators between the heatsink and the transistors.
and to apply a thin film of silicone heat-transfer compound to each side of the insulator.

Most of the other parts are mounted on the printed-circuit board shown in figs. 5 and 6, or can be hard-wired on a piece of perf board. The pc board has been designed to accept standard available parts. R11 is a thumbwheel-type control, such as a Mallory MTC23L1 or CTS X-201-R202B. The 2.5k Radio Shack 271-228 may also be used.

![Component layout of the printed-circuit board.](image)

If you use the perf board, remember one thing: be certain to connect the negative terminal of filter capacitor C1 directly to the negative side of the rectifier bridge. None of the other negative returns is critical, but must not be between the capacitor and the rectifier. Failure to wire this or any other high-current power supply in the prescribed manner will result in excess ripple in the output.

Adjustment and test

After all wiring has been checked, set voltage adjustment control R7 to minimum and current adjustment potentiometer R11 to mid-range. Apply ac power and monitor the output voltage while rotating the voltage adjustment control to maximum. The output voltage should increase smoothly. If it reaches a maximum before the control is fully rotated, the value of R15 must be increased. On the other hand, if the desired maximum output voltage cannot be reached, R15 must be decreased. In either case, small changes in R15 will permit full rotation of the voltage adjustment control over the desired voltage range.

Reduce the output voltage to zero and connect a load resistance to the power supply (in series with an external ammeter if you have incorporated only the voltmeter) which will draw approximately one ampere at any output voltage over 5 volts. Monitor the load current and gradually increase the output to one ampere. If you cannot obtain enough current, readjust pot R11 slightly. Check the output voltage as the load resistance is disconnected and reconnected; there should be no discernable voltage change.

Once more reduce the output voltage to zero and set R11 for minimum resistance between the base of Q1 and the base of Q4. Disconnect the load resistance and short-circuit the output terminals if you have built the ammeter circuit into the power supply. Otherwise connect an external ammeter (1 amp or more) directly across the output terminals. Slowly increase the setting of the voltage adjustment control, and adjust R11 for a short-circuit current between 450 and 500 milliamperes.

Finally, check the value of R1 by measuring the voltage across it under no-load conditions, and calculate the current flowing through it. The calculated current should be approximately 10 milliamperes. If it is over 11

Fig. 6. Component layout of the printed-circuit board. R_A, R_MA, and R_V are part of the optional metering circuit shown in fig. 4, and may be omitted if that circuit is not used. Note that provisions have been included for incorporating two parallel resistors for both R_A and R_MA, as discussed in the text. J signifies a wire jumper.
TIRED?
Of Not Knowing Who You’re Picking Up On Your Scanner?

ANGRY?
When You Don’t Understand The Lingo?

FRUSTRATED?
Because You Keep Buying The Wrong Crystals

SMILE!
ACTION FREQUENCIES
IS HERE!

Yes, the all-new, all up-to-date directory of emergency frequencies, ACTION FREQUENCIES, is available now to get you out of those monitoring blues, and back enjoying hours of real life excitement.

WHAT’S DIFFERENT ABOUT OUR BOOK?

ACTION FREQUENCIES—
• Contains the most accurate, up-to-date data on Police, Fire, Special Emergency and Local Government radio licenses available on the market.
• Has simple, easy-to-read instructions which will make you an expert in minutes.
• Includes a list of the lingo and the codes must widely used by emergency radio licenses and CB'ers with their definitions.

SO, GET INTO THE ACTION.
Available at your dealer or write to: Action Radio, 817 Silver Spring Ave., Silver Spring, Md. 20910. PRICE: $5.45 each plus $1.00 each for postage and handling. (Maryland residents add $.25 each to cover sales tax). Please refer to section number when ordering.

Section
2. N.Y., Penn.
3. Del., Md., D.C., W. Va., Ohio
4. Va., N.C., Ky., Tenn.
5. S.C., Ga., Ala., Fla.
7. Mich., Ill., Ind.
11. Calif.

or less than 9 milliamperes, change R1 to obtain a value of current closer to 10 milliamperes.

That completes the project. If you want to check the regulation, you will need a digital or differential voltmeter, since a 0.1-percent change is measured in millivolts. Noise and ripple output can be checked with either a high-sensitivity scope or with a good ac electronic voltmeter, such as a Hewlett-Packard 4000D, capable of reading 1 millivolt full scale. If you have test equipment of this type, have at it. Otherwise, forget about it and make a new addition to your bench — you can always use one more power supply.

appendix

Calculation of resistance values for R_A, R_{MA}, and R_Y in fig. 4 must be based on the following known factors: the exact parallel resistance of R_B and R_9, the internal resistance (R_{in}) of the meter, and the full-scale meter current (I_{m}). The meter characteristics generally are known or can be measured. However, the parallel resistance of R_B and R_9 must be accurately known or measured on a bridge (not calculated from the nominal resistance values), or an external ammeter must be used for calibration.

The value of R_Y can be calculated from the equation

$$R_Y = \frac{E_{d} - (I_{m}R_{in})}{I_{m}}$$

where E_{d} is the desired full-scale voltage.

The value of R_A (or R_{MA}) is determined by the equation

$$R_A = \frac{(I_{L}R_{8.4}) - (I_{m}R_{in})}{I_{m}}$$

where I_{L} is the load current corresponding to full-scale meter current and $R_{8.4}$ is the parallel resistance of R_B and R_9.

As an example, assume that the meter ranges in fig. 4 are to be obtained with a 1-mA meter having an internal resistance of 100 ohms.

Using the preceding equations,

$$R_A = \frac{50 \times 0.001}{0.001} = 49.900 \text{ ohms}$$

$$R_A = \frac{(5 \times 4.1) - (0.001 \times 100)}{0.001} = 1950 \text{ ohms}$$

$$R_{MA} = \frac{(5 \times 4.1) - (0.001 \times 100)}{0.001} = 105 \text{ ohms}$$

The meter will be sufficiently accurate if one-percent resistors are used to obtain these values. However, if the actual resistance of R_B and R_9 in parallel was not known, and the nominal value was used to calculate the values of R_A and R_{MA}, the current ranges may be off by 5 to 10 percent, depending on the actual resistances of R_B and R_9. This can be improved if a more accurate ammeter is available. Instead of using the calculated values of R_A and R_{MA}, use one-percent resistors which are approximately ten percent higher than the calculated values.

Then connect the external ammeter in series with a load and compare the currents read on the external and internal meters. You can expect the internal meter to read low. Increase its reading by connecting a composition resistor in parallel with R_A (or R_{MA}). Start with one that has about ten times the resistance of the one-percent resistor, and keep trying different values until the two meters agree.

You can select any meter ranges that you feel are convenient, and then change the meter scale accordingly. I have found that the markings on most scales can be erased with a pink (not white girl) pencil-type typewriter eraser. New numbers can then be applied, using rub-on transfers.

reference

Everybody wants the ultimate ham station, but the only way most of us are going to get it is to start now and grow into it.

And the best way to start is with our 700CX.

Then you'll have an excellent transceiver with 700 solid watts P.E.P. input, the SSB power at the lowest cost per watt—about a buck—of any comparable equipment.

And when you're ready to add capability and features, plug in Swan accessory equipment for easy expandability.

For instance, just plug in our 510-X crystal oscillator when you want extra frequency coverage. If your kind of traffic calls for separate transmit and receive frequencies, our 508 VFO is made for your station. Want VOX? Plug in the Swan VX-2 and start talking. Or hook up our FP-1 telephone patch in minutes.

And when you're ready for that big jump to all-the-law-allows, our 2000-watt P.E.P. input Mark II linear amplifier is waiting in the wings.

Add our complete selection of power supplies, microphones and other options and you've got everything you need for a full-house rig in matching specs and matching decor.

So your ham station will look and perform like it belongs together.

With the 700CX you'll never be troubled by things like cross-modulation and front-end overload because the design is excellent. All bands from 10 to 80 meters with selectable upper or lower sideband, AM, or CW with sidetone.

Get started on your dream rig today. See the 700CX at your nearest Swan dealer or order direct from our factory.

700CX Champion Transceiver $649.95
117-XC 110V AC Power Supply $159.95
(includes Speaker and Cabinet)
117-X 110V AC Power Supply $114.95
(less Speaker and Cabinet)
510-X Crystal Oscillator $67.95
508 External VFO $269.95
VX-2 Plug-In VOX $44.95
FP-1 Telephone Patch $64.95
Mark II Linear Amplifier $849.95
(complete with 110/220 VAC power supply and tubes)

Dealers throughout the world or order direct from

Swan Electronics
A subsidiary of Cubic Corporation

Home Office: 305 Airport Road • Oceanside, CA 92054
Telephone: (714) 757-7525
The 280 series.
No-nonsense, no-corrosion 10-80 meter mobile antennas from Hy-Gain.

Now from Hy-Gain, a new concept in tip-changing Ham antennas. The 280 series is designed with no-nonsense, one piece fiberglass masts and tough, one piece baked fiberglass coils. You get maximum power handling capability, minimum heat drift, and no loss to corrosion. Yet, it's lighter than aluminum and just as strong.

All five coils are mandrel wound for absolutely consistent performance, imbedded in fiberglass, then baked to make them impervious to weather. Tough ABS end caps and solid brass coil fittings keep performance in, corrosion out.

Whips are 17-7 ph stainless, the finest antenna steel, and are literally indestructible in normal use.

Nominal 52 ohm impedance on all bands. Any coax length will work. Heavy duty, chrome plated mast and whip fittings. 3/8" x 24 base stud fits all standard mounts.

(A) 80" bumper mount mast Model 276
(B) 36" cowl or deck mount mast Model 277
(C) 10 meter coil/antenna Model 280
(D) 15 meter coil/antenna Model 281
(E) 20 meter coil/antenna Model 282
(F) 40 meter coil/antenna Model 283
(G) 75/80 meter coil/antenna Model 284

Quick disconnect unit Model 531
Fold over adaptor Model 409
Standard stainless spring Model 492
Heavy duty bumper mount Model 415
Flush body mount Model 499
Extra heavy duty stainless spring Model 511

Hy-Gain Electronics Corporation; 8601 Northeast Highway Six, Lincoln, NE 68505; 402/464-9151; Telex 48-6424
Manufacturers and distributors of more than 300 fine broadcast communications products.
With Hy-Gain's 273 2-meter J-pole all you pay for is performance.

The 273 is a high performance, all driven, stacked dipole array, vertically polarized. It has everything you need for maximum efficiency 2-meter broadcast or repeater use. Everything but a mast.

Because many 2-meter arrays are mounted on existing structures, we've left out the mast and passed the savings on to you.

The 273 mounts easily on 1½" to 2" conductive/non-conductive masts or tower legs for directional or omnidirectional use. Unique center fed phasing and matching harness for perfectly parallel phase relationship and low angle of radiation. Moisture, condensation and corrosion protected.

The entire antenna is at DC ground for static elimination and lightning protection. Perfect 52 ohm coaxial feedpoint. Heavy duty worm gear mounting clamps and high impact styron insulators included.

Power 1 KW P.E.P., 250 watts AM
VSWR at resonance 1.2:1
Impedance 50 ohms
Produces gain over 1/2 wave dipole

Hy-Gain Electronics Corporation 8601 Northeast Highway Six; Lincoln, NE 68505; 402/464-9151; Telex 48-6424
Branch Office and Warehouse 6100 Sepulveda Blvd., #322; Van Nuys, CA 91401; 213/785-4532; Telex 65-1359
Distributed in Canada by Lectron Radio Sales, Ltd.; 211 Hunter Street West; Peterborough, Ontario
CRYSTAL FILTERS

and

DISCRIMINATORS

by

K.V.G.

9.0 MHz FILTERS

Model	Frequency (kHz)	Cost
XF9-A | 2.5 | $31.95
XF9-B | 2.4 | $48.95
XF9-C | 3.75 | $48.95
XF9-E | 5.0 | $48.95
XF9-M | 0.5 | $32.45
XF9-NB | 0.5 | $62.95

9.0 MHz CRYSTALS (Hz/25/u)

Model	Frequency (kHz)	Cost
XF900 | 9000.0 | $8.80
XF901 | 9999.5 | $8.80
XF902 | 9001.5 | $8.80
XF903 | 8999.0 | $8.80

7490 .36 ea. 10 for 3.00

7400

MPF121

J FETs

MPF102

$6.00

JFET Dual gate $1.98

MPF105/2SN5459

$9.60

3N140 Dual gate $1.95

MPF107/2SN5486

$12.95

3N141 Dual gate $1.86

MPF121

VHF RF $1.40

FETs

MMV432

Frequency Range	Output (MHz)	Input (MHz)	Input Power, at maximum input
20 W. | 30 W. | 2.5 W. | 35 W. |
14 W. | 23 W. | 12 W. | 20 W. |

VHF VARACTER TRIPLETs UHF

MODEL 4X6C

50 HZ—250 MHZ $270.00

BARGAIN SQUARE

SEND FOR FREE CATALOG

Please add 40¢ for shipping

CIRCUIT SPECIALISTS CO.

Box 3047, Scottsdale, AZ 85257

SPECTRUM INTERNATIONAL, INC.

P. O. BOX 1084 CONCORD, MASS. 01742 U.S.A.
Let us send you a Mark Sensing Order Kit!

Our **Priority Crystal Processing**, using a Mark Sensing order system, will expedite your orders for International Crystals and EX Kits. It makes ordering simple, faster and error free as possible. Send us your name, street address, city, state, zip. We will mail you a kit containing a pre-punched “customer address” card along with M/S order cards.

WRITE TO:
ICM M/S Dept. P.O. Box 32497
Oklahoma City, Okla. 73132

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders.
another look at the fm channel scanner for the Heath HW202

The scanner adaptation article by Ken Stone, W7BZ, in the February, 1975, issue of ham radio was a good one. (The original article, by K2ZLG, appeared in the February, 1973, issue.) I'd like to add some words on my experience with this circuit.

I wanted to have the scanner and the tone-burst encoder mounted inside the HW202 without the inconvenience and add-on appearance of outboard hardware. So I made the circuit board shown in fig. 1 for the scanner, which fits inside the HW202 just under the tone-burst encoder and just above the speaker.

Parts are hard to get in this area. The 7445 was replaced with a 7441, and all outputs were connected so the unit would scan in both directions. The 2N4140s were replaced with 2N2222s. The LEDs were cemented into small holes punched on either side of the tone-burst encoder knobs. Two of the same colored wires, about 8 inches (20.3cm) long, were soldered as close as possible to the LEDs.

A notch was made on the upper side of the hole where the tone-burst encoder shaft passes through the metal plates behind the knobs. This notch allowed enough room for the wires to pass over the switches and through the holes without binding. With the tone-burst encoder remounted, an area about 2-1/8 by 1-3/4 inches (54 by 45mm) was available for mounting a PC board for the scanner.

All scanner components were first mounted on a breadboard and all wiring was connected without cutting off any excess. This breadboard version was a good idea, because initial checks indicated some problems — the LEDs didn't agree with the channels below them. Make sure you check out the circuit before you button it up.

The PC board shown in fig. 1 looks somewhat unorthodox, but when nobody is around to tell you how, you do the best you can. Note that the letter J appears several times in the PC-board illustration. This means that a jumper must be connected between the points shown. Make sure you install the jumper under the 7441 before you mount the device, otherwise you'll have to install an insulated jumper on the foil side. Also note that pin 10 must be clipped from the 7490 or it can't be mounted. Finally, leave wire lengths longer than necessary to facilitate knob removal of the tone-burst encoder.

Bill Biser, K7PYS

variable, low-cost power supply for transistor work

If you like to work with transistors and ICs, troubleshoot transistor radios, receivers, walkie-talkies, or are tired of buying batteries for low-power experimental work, this variable power supply may be the answer.

As this is a simple, low cost, one-evening project, only the essential features are described. You may want to add refinements of your own which will make the power supply more responsive to your own specific needs. Although I made no measurements of the output regulation, it appears adequate for the intended purposes.

The heart of this power supply are ac adapter units which are also known as battery eliminators, solid-state dc power supplies, power converters, etc. These adapters can be found at flea markets, hamfests and junk shops at bargain prices. I paid fifty cents each for mine. One unit alone could have been used in the circuit of fig. 3 although two are preferable for 12 or 18 volts output.
and binding posts are mounted on the front panel. The duplex wall outlet is installed on the chassis from underneath. Since most of the ac adapters have plugs integrally molded into the housing, they can be plugged directly into the duplex outlet on the chassis. The output of the power supply I built is about three-quarters of a watt with voltage control from zero to 18 Vdc.

A word about the meters. Although I used 50 Vdc and 300 mA meters I had in my junk box, a 0-20 Vdc voltmeter and a 0-100 or 0-200 milliampere meter would be preferable.

Howard Stark, WA4MTH

microwave frequency doubler

As spectrum space becomes more and more valuable, amateurs are forced to explore the communication possibilities of the microwave bands. Klystrons and other exotic devices have been available since the late forties for use as high as 12 GHz with modifications, but there are few components available for the next higher amateur band (24 GHz), either surplus or commercial. This article describes a simple frequency doubler to get from 12 GHz to 24 GHz in one noncritical step. The step is made with an ordinary point-contact diode, a 1N23.

As most amateurs are aware, if a diode is driven by an alternating current source, harmonics will be generated but the strength falls off with increasing harmonic number. Here only the second harmonic is used which is 13 dB down from the fundamental. The third harmonic is an additional 20 dB down so it can be ignored (or filtered out if you are a purist).

The diode cartridge is mounted in an untuned waveguide section as illustrated in fig. 4. The input waveguide is a short section of WR-90 guide, 1 by 0.5 inch (2.54 by 1.22cm) nominal. The output guide is type WR-62, 0.7 by 0.35 inch (1.78 by 0.89cm) nominal. By the way, the WR classification gives the largest inside dimension of the guide. For example, the inside width of WR-90 is 0.9 inches; the inside width of WR-62 is 0.622 inches.

The only dimensions which should be adhered to closely in the construction of the doubler is the spacing of the diode from the shorted ends of the waveguides. The tolerance here is ±0.04 inch (±1mm).

In use, an 12-GHz klystron, such as an X-13, is connected to the input flange and 24-GHz energy will exit the output port. As previously mentioned, the system loss for a drive level of 100 mW is 13 dB. The fundamental is down 23 dB. The diode presently being used has withstood 350 mW of drive for over 200 continuous hours with no degradation in performance.

John Franke, WA4WDL
Wilson Electronics Corp.

"FACTORY DIRECT ONLY"

WILSON "WE-224" MOBILE

SPRING SPECIAL

$199.95

FEATURES

1. 24 Channel Operation
2. One priority Channel
3. Selectable 1 or 10 Watts Out
4. 10.7 Monolithic Filter Installed
5. 455 KHz Ceramic Filter
6. Numerical Read-out on each Channel
7. Built-in Adjustable "Tone-Burst" Generator
8. Front Panel Tone Encoder Switch
9. Accepts Wilson 1402 & 1405SM Xtal
10. Individual Trimmer Capacitors for both TX/RX
11. Mosfet Front End
12. Helical Resonator
13. High VSWR Protection Circuit
14. Reverse Polarity Protection Circuit
15. NBFM - 15 KHz Channel Separation
16. External Speaker Jack
17. Built-in Speaker
18. Dynamic Microphone Included
19. Mobile Mounting Bracket Included
20. Frequency Range 144 - 148 Mhz
21.6 x 10 x 9.0
22. Weight: 5 lbs.
23. Power Requirements:
 Source: 13.5VDC ± 10%
 Receive: 45A
 Transmit: 2.6A (10W), .7A (1W)

SPECIAL INCLUDES:
A. WILSON "WE-224" MOBILE
B. MOBILE MIKE
C. MOUNTING BRACKET
D. 146.52152 SIMPLEX
E. TWO PAIR TX/RX CRYSTALS OF YOUR CHOICE.

SPRING Special on
Wilson Hand Held 220 and 450

2202 SM
FREQUENCY RANGE 220 - 225 MHz
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- 3 Microvolt Sensitivity for 20 Db Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 3/4 x 2 7/8
- Switchable 1 & 2 Watts Output @ 12 VDC
- Current Drain: RX 14 MA TX 500 MA
- Microswitch Mike Button
- Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL
$239.95

INCLUDES
1. 2202 SM
2. Flex Antenna
3. 223.50 Simplex Installed

4502 SM
FREQUENCY RANGE 420 - 450 MHz
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- 3 Microvolt Sensitivity for 20 Db Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 3/4 x 2 7/8
- Switchable 1 & 1.8 Watts Output @ 12 VDC
- Current Drain: RX 14 MA TX 500 MA
- Microswitch Mike Button
- Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL
$269.95

INCLUDES
1. 4502 SM
2. Flex Antenna
3. 446.00 Simplex Installed

HAND HELD ACCESSORY SPECIALS

DESCRIPTION SPECIAL PRICE
BCH - BATTERY CHARGER 29.95
RF - NICAD BATTERY PACK 10.95
LC1 - LEATHER CASE 8.50
LC2 - LEATHER CASE FOR 1402, 2202, 4502 8.50
SM2 - SPEAKER MIKE 10.7 MONOLITHIC IF XTL FILTER INST. 8.95
CRYSTALS: TX OR RX 3.00
TE1 - SUR-AUDIBLE TONE ENCODER INSTALLED 24.95
TTP - TOUCH TONE PAD INSTALLED 43.95
XFI - 10.7 MONOLITHIC IF XTL FILTER INST. 8.95
COMMON FREQ. ONLY 2.00

NOTE: ACCESSORY SPECIAL PRICE AVAILABLE ONLY AT TIME OF RADIO PURCHASE

90 Day Warranty
10 Day Money Back Guarantee

SPECIAL INCLUDES:
A. WILSON "WE-224" MOBILE
B. MOBILE MIKE
C. MOUNTING BRACKET
D. 146.52152 SIMPLEX
E. TWO PAIR TX/RX CRYSTALS OF YOUR CHOICE.

COMMON REPEATER FREQUENCY MONEY BACK

SPECIAL INCLUDES:
A. WILSON "WE-224" MOBILE
B. MOBILE MIKE
C. MOUNTING BRACKET
D. 146.52152 SIMPLEX
E. TWO PAIR TX/RX CRYSTALS OF YOUR CHOICE.

COMMUNITY REPEATER FREQUENCY MONEY BACK

SPECIAL INCLUDES:
A. WILSON "WE-224" MOBILE
B. MOBILE MIKE
C. MOUNTING BRACKET
D. 146.52152 SIMPLEX
E. TWO PAIR TX/RX CRYSTALS OF YOUR CHOICE.
TO: WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NEVADA 89103
(702) 739-1931

SPRING SPECIAL DIRECT SALE ORDER BLANK

1402 SM + $164.95
2.5 WATT TRANSCEIVER
144-148 MHz

FEATURES

1402 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In.
- 12 KHz Ceramic Filter
- 10.7 IF and 455 KC IF
- .3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 14 oz. less Battery
- S-Meter/Battery Indicator
- Size: 8 7/8 x 1 7/8 x 2 7/8
- 2.5 Watts Minimum Output @ 12 VDC
- Current Drain RX 14 MA TX 500 MA
- Microswitch Mike Button

1405 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In.
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- .3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 5 Watts Minimum Output @ 12 VDC
- Current Drain: RX 14 MA TX 400 MA
- Microswitch Mike Button
- Unbreakable Lexan® Case

Optional Touch-Tone Pad Shown
Can be Modified for MARS or CAP
10 Day Money Back Guarantee
90 Day Warranty

Accessory Special Prices Available Only at Time of Radio Purchase.

BC1 @ $29.95
BP @ $10.50
LC1 @ $8.50
LC2 @ $8.50
SM2 @ $24.95
TE1 @ $34.95
TTP @ $44.95
XF1 @ $8.95
TX or RX XTALS @ $3.00 ea. INSTALL XTALS @ $7.50/Radio.

EQUIP TRANSCEIVER AS FOLLOWS: XTALS A.

C. D. E. F.

ENCLOSED IS □ CHECK □ MONEY ORDER □ MC □ BAC

CARD # _______________________ EXPIRATION DATE _______________________

NAME _______________________ STATE _______ ZIP _______

ADDRESS _______________________

CITY _______________________ ZIP _______

SIGNATURE _______________________

SHIPPING & HANDLING PREPAID FOR SPRING SPECIAL

VALID ONLY MARCH 1-31, 1976

NEVADA RESIDENTS ADD SALES TAX

TO: WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NEVADA 89103
(702) 739-1931

SPRING SPECIAL DIRECT SALE ORDER BLANK

2202 SM @ $239.95.
4502 SM @ $269.95.
1402 SM @ $164.95.
1405 SM @ $239.95.
WE-224 @ $199.95.

Accessory Special Prices Available Only at Time of Radio Purchase.

BC1 @ $29.95.
BP @ $10.50.
LC1 @ $8.50.
LC2 @ $8.50.
SM2 @ $24.95.
TE1 @ $34.95.
TTP @ $44.95.
XF1 @ $8.95.
TX or RX XTALS @ $3.00 ea.
INSTALL XTALS @ $7.50/Radio.

EQUIP TRANSCEIVER AS FOLLOWS: XTALS A.

C. D. E. F.

ENCLOSED IS □ CHECK □ MONEY ORDER □ MC □ BAC

CARD # _______________________ EXPIRATION DATE _______________________

NAME _______________________ STATE _______ ZIP _______

ADDRESS _______________________

CITY _______________________ ZIP _______

SIGNATURE _______________________

SHIPPING & HANDLING PREPAID FOR SPRING SPECIAL

VALID ONLY MARCH 1-31, 1976

NEVADA RESIDENTS ADD SALES TAX
Ham it up for $3.95.

Amateur crystals 144.0 - 148.00 only for this trim price, plus 25c per crystal for handling and postage. Florida residents add 4% sales tax. Send frequencies, make and model when ordering. Our price includes most gear on our free Parts List. For equipment not listed, we'll provide prices on request and slice up something special. Master Charge and Bankamericard telephone orders accepted. No C.O.D.s.

Savoy Electronics Inc.
P.O. Box 5727, Fort Lauderdale, Florida 33310
305/563-1333
Manufacturers of Quality Quartz Crystals Since 1937

POLICE CALL

FREQUENCIES/CALL LETTERS/AREAS OF OPERATION
- Police
- Ambulance
- Rescue Squad
- Fire
- Paramedic
- Government

COMPLETELY REVISED & EXPANDED: 30,000 ADDITIONS & CHANGES

1976 Edition (Green Cover)

- 9 VOLUMES NOW AVAILABLE

- PRICE: $3.95 per volume, plus postage and handling

- 5.00 per volume for first class or
 - 30 per volume for fourth class
 - New Jersey residents - add 25c sales tax per volume.

- VOLUME 1 Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont
- VOLUME 2 Delaware, Maryland, New Jersey, Pennsylvania
- VOLUME 3 Ohio, Michigan
- VOLUME 4 Illinois, Indiana, Kentucky, Wisconsin
- VOLUME 5 Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota
- VOLUME 6 District of Columbia, Florida, Georgia, North Carolina, South Carolina, Virginia, West Virginia
- VOLUME 7 Alabama, Arkansas, Louisiana, Mississippi, Oklahoma, Tennessee, Texas
- VOLUME 8 Arizona, Colorado, Idaho, Montana, New Mexico, Nevada, Utah, Wyoming
- VOLUME 9 California, Oregon, Washington

Bonus Features
- Operating Details of Many Major Systems
- FCC Allocation List of 1800 Frequencies

SPECIAL: All 9 Volumes $39.00 (Includes 1st Class Postage)

Send Money Order or Check to

POLICE CALL
LEBANON, NEW JERSEY 08833

ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.
- Powered by 6-Volt, unregulated
- Micro-miniature in size to fit inside all mobile units and most portable units
- Built-in package, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Infinite level adjustment potentiometer
- True distortion free output
- Available in all 51A tone frequencies, 67.0 Hz-205.5 Hz
- Certifiable immunity to RF
- Resistor polarity protection built-in

$29.95 each

Wired and tested, complete with K-1 element

communications specialists
P.O. BOX 923
MARLY, CALIFORNIA 92651
(714) 958-3021

K-1 FIELD REPLACEABLE, PULSING FREQUENCY DETERMINING ELEMENTS
$5.00 each

SPECIAL: All 9 Volumes $39.00 (Includes 1st Class Postage)

Send Money Order or Check to

POLICE CALL
LEBANON, NEW JERSEY 08833

More Details? CHECK-OFF Page 102
The new T40 fm transmitter strip from Hamtronics, Inc., features crisp, clear, symmetrical modulation, is compatible with carbon or transistorized dynamic microphones and has separate microphone gain and deviation controls for proper modulation setup. It also has sufficient shielded tuned circuits to minimize harmonics and spurs.

The exciter module is designed primarily for two meters; a tripler/driver is available for 450 MHz; other frequencies such as 50, 220 MHz, and the commercial frequencies are available on request. Output power is adjustable up to 200 mW with a power control pot. This level is sufficient to drive the companion power module, and it is also useful as a QRP signal around town or for repeater input. The T40 is also well suited for use as a multi-channel fm signal generator or as a control or supervisory link. The exciter module may also be used on CW for the low ends of the 144 and 432 bands.

The T40 has eleven channels, with ground-on diode switching suitable for using with receiver control lines if desired. Sockets are provided for standard, series-resonant 12-MHz HC-25/U crystals, which are readily available. Separate, multi-turn vernier coils allow individual adjustment of each channel frequency.

The assembled G-10 PC board measures 3x7-1/2x1 inch (7.6x19x2.5cm). It is designed to slide into vertical grooves in the companion cabinet. It may also be standoff mounted in your own package or mounted on the rear of a rack panel. The unit is powered by +13.6 Vdc at 70 mA.

The new T80 rf power modules employ the new “rf modules” recently introduced by TRW and others. These bricks are like magic compared to the tricky and sometimes unstable discrete power amplifiers commonly in use today. The bricks are self-contained, take 200 mW drive and amplify up to a level of 20-25 watts on 2 meters or 13-15 watts on 432-450 MHz. There are no external tuned circuits to fuss with. There isn’t any tuning at all! Believe it or not, you simply connect the exciter and antenna to the brick, add 13.6 Vdc, and you’re on the air with instant power.

Hamtronics has packaged the bricks with the necessary decoupling components, connection facilities and heatsink and sell the unit all assembled and tested so you have no worry about what you are getting into. Features include vswr protection, no tuning, stability under all normal conditions including vswr, clean output signal, low power drain, and easy installation. The T80 is especially well suited for repeater service since it is unaffected by changes in antenna impedance due to weather.

Input power is 13.6 Vdc at 2.4 amp, depending on drive level and frequency band. Efficiency is 30-50%. Connections for power and rf signals are provided through a PC board which butts up to the leads of the rf power module. Both are mounted to a heavy heatsink. The heatsink may be attached to the rear panel of the companion cabinet with the power amplifier mounted inside the rear panel, if desired, or it may be mounted to suit your installation. All you need do is attach your coax cables and power lead and you’re on the air.

For uhf operation, the T20 uhf tripler/driver module is available to interface between the T40 exciter and the uhf power module. Housed on a PC board, it requires about 200 mW of drive at 2 meters to provide 200 mW output at 432-450 MHz.

Price of the T40 exciter module kit is $39.95. The T80 rf power module is $79.95, wired and tested. A companion cabinet is available for $24.95. The T20 tripler/driver module kit for 450 MHz is $19.95. For complete information, including an illustrated catalog, send an SASE to Hamtronics, Inc., 182 Belmont Road, Rochester, New York 14612.

instant-weld adhesive

Need a third hand when building equipment? Oneida's new Six-Pak of industrial-strength alpha cyanoacrylate adhesive is available in one-ounce dispensers. Up to 11,400 one-drop applications are possible from this new package of dispensers.

Standard Six Paks come with an assortment of five Instant-Weld formulas; however, you may specify the assortment of your choice. The five formulas are designated by label colors: red, blue, yellow, green, and white. Red label sets the fastest. It bonds many materials in about three seconds, including plastics, rubber, ceramic, or glass.

Thousands of items and materials can be quickly and permanently bonded with Instant-Weld. If you have an unusual bonding problem, write Oneida Electronic Manufacturing, Inc., attention Mr. Dalton Smith, 138 West 7th street, March 1976.
QSL bureau for novices

Here’s good news for novice amateurs who would like to save money on sending and receiving QSL cards. Jim Isham, W8TX X, operates a novel QSL bureau that works like this: For only $2.00 per year, a novice may send him as many QSL cards as he wishes, and Jim will remail them. All novice amateurs are asked to keep a self-addressed stamped envelope on file with W8TX X to expedite the remailing system.

When a novice subscribes to Jim’s service, Jim will send the novice a card with a code number, which must be included in all future mailings. The code is different for each subscriber. At the end of the year’s subscription, the novice subscriber will be sent another card, which tells him the year is up and asks if he wishes to subscribe to the service for another year.

Considering the present postal rates for sending cards individually this service looks good indeed. If postal rates increase, savings will be even more. Write to Jim Isham, W8TX X for further details. His address is Box 1111, Benton, Harbor, Michigan 49022.

lowpass TVI filter

Television interference, even from modern transmitting equipment, is still a problem in many areas. A well-designed lowpass filter properly installed in an amateur transmitter can prevent or substantially reduce television

STATE-OF-THE-ART RECEIVER PRESELECTOR

The new MFJ 1030 BX receiver preselector sets a new standard of performance! It dramatically improves weak signal reception, significantly reduces out-of-band signals, and reduces image response. You’ll be able to clearly copy weak, unreadable signals. (Increases signal 3 to 5 “S” units). Its strong signal handling ability allows you to reduce your receiver RF gain. This results in reduced receiver cross modulation and overloading in presence of strong signals while still maintaining excellent signal to noise ratio. Since most receivers are entirely adequate below 10 MHz, the pre-selector is optimized to cover the 10 to 30 MHz region. Simply connect between antenna and receiver or between transmit-receive relay and receiver input of any transceiver. A 9 volt transistor battery provides months of operation.

Look at these special features from MFJ

- Uses protected dual gate MOSFET for ultra low noise, high useful gain and strong signal handling ability
- Gain is 20 dB minimum, typically 25 dB.
- Noise figure is less than 2.5 dB.
- Two high Q double tuned circuits.
- This filter, when used as a preselector, reduces image response. You’ll be able to clearly copy weak, unreadable signals. (Increases signal 3 to 5 “S” units). Its strong signal handling ability allows you to reduce your receiver RF gain. This results in reduced receiver cross modulation and overloading in presence of strong signals while still maintaining excellent signal to noise ratio. Since most receivers are entirely adequate below 10 MHz, the pre-selector is optimized to cover the 10 to 30 MHz region. Simply connect between antenna and receiver or between transmit-receive relay and receiver input of any transceiver. A 9 volt transistor battery provides months of operation.

Order Now - NO RISK - 30 Day Money Back Guarantee - or send for FREE brochure

SUPER LOGARITHMIC SPEECH PROCESSOR

MODEL LSP-520BX

UP TO 400% MORE RF POWER is yours with this plug-in unit. Simply plug LSP-520BX into the circuit between your microphone and transmitter and your voice suddenly is transformed from a whisper to a DYNAMIC OUTPUT.

Look what happens to the RF Power Output on our NCX-3. It was tuned for normal SSB operation and then left untouched for these “before” and “after” oscillograms.

Fig. 1 SSB signal before processing. See the high peaks and the low valleys. Our NCX-3 is putting out only 25 watts average power.

Three active filters concentrate power on those frequencies that yield maximum intelligence. Adds strength in weak valleys of normal speech patterns. This is accomplished through use of an IC logarithmic amplifier with a dynamic range of 30dB for clean audio with minimum distortion.

This unit is practically distortion-free even at 30dB compression! The input to the LSP-520BX is completely filtered and shielded for RF protection.

Size is a mere 2 3/16H x 3 3/2W x 4D. Money back if not delighted and ONE YEAR UNCONDITIONAL GUARANTEE. Order now or write for BROCHURE.

LSP-520BX $49.95

LSP-520BXII $59.95

This unit includes all the features outlined above and then some. A Rotary function switch, an alternate 4 pin mic jack, and a beautiful 3-5/8” x 5-9/16” Ten-Tec enclosure are the bonuses included in this option. ADD $2.00 SHIPPING & HANDLING.

Here’s another product from the beautiful MFJ line: SSB FILTER

This filter, packaged very much like the Speech Processor above, allows you to select the optimum audio bandwidth to drastically improve readability.

MFJ ENTREPRISES

P. O. BOX 494(H) • MISS. STATE, MS 39762
avionic test-equipment kits

Radio Systems Technology has announced a new line of avionic test equipment. This equipment, designed to give the ham-pilot the capability of bench service of VHF Nav Com transceivers and Marker Beacon receivers, is available for the first time anywhere in kit form. Four separate kits allow the test bench to power 12-volt radios and accurately synthesize navigation and communication signals as well as measure transmitter and audio outputs. All kits may be powered from 110 volts ac, 12 volts dc or internal 9 volt batteries, and are supplied with rod antennas for use as ramp test sets.

The RST-721 Communications Test Set is designed to check all inputs and outputs of vhf communication transceivers for correct operation. This unit is a composite rf and audio wattmeter, voltmeter, ammeter, percentage modulation meter, vswr meter, microphone test set and crystal-controlled 122.8 MHz signal generator. Rf and audio 10-watt dummy loads are built-in. The RST-721 Test Set sells for $98.50.

The RST-711 Navigation (VOR-LOC) Test Set is designed to test vhf navigation receivers for correct operation. This unit is a crystal-controlled 108.0 and 108.1 MHz signal generator modulated with four major OMNI signals or LOC signals together with pulsed interference. The R. L. Drake Company has added a new lowpass filter, the TV-3300-LP, to their line of television interference filters. The TV-3300-LP provides more than 80 dB attenuation above 41 MHz and will handle 1 kilowatt maximum input below 30 MHz. More information? Write R. L. Drake Company, 540 Richard Street, Miamisburg, Ohio 45342, or use check-off on page 102.
or continuous IDENT tone. A front panel rf level attenuator allows receiver sensitivity to be checked. The unit sells for $97.50.

The RST-701 Marker Beacon Test Set is a crystal-controlled 75 MHz signal generator modulated with any of three marker tones, Fan, Outer or Middle Marker. A front panel attenuator selects the desired rf level for checking sensitivity. The RST-701 sells for $69.50.

The RST-601 is a 12 volt bench regulated power supply which has the capability of simulating battery high limit voltage, nominal, and low limit voltage. Also included on the RST-601 chassis are microphone and headphone jacks, built-in speaker, and three parallel connectors for transceiver interconnection. The unit sells for $85.00.

The RST-601, 701, 711 and 721 may be purchased as a complete Bench Test Set for $330.00. For further information, write to Radio Systems Technology, P.O. Box 23233, San Diego, California 92123, or use check-off on page 102.

precision frequency comparators

The Dynatron Company has announced two frequency comparators intended for use in calibrating crystal oscillators against television network atomic standards. The comparator generates a vertical rainbow bar on the screen of a color television receiver. The rate of color change of the bar indicates the phase difference between the crystal oscillator output and the network color subcarrier. Frequency calibrations to within a few parts in 10^{10} take just a few minutes.

This calibration scheme, based on techniques and circuits developed by the National Bureau of Standards, is supported by the monthly publication of the network offset frequencies in the NBS Services Bulletin.

The DyCo Model 175 accepts input of 2.5, 5 or 10 MHz while the Model 175-1 accepts 1, 5 or 10 MHz. Price of the Model 175 is $99.95 while the Model 175-1 sells for $109.95. For more information contact the Dynatron Company, Post Office Box 48822, Los Angeles, California 90048, or use check-off on page 102.
Put your best fist forward.

To be one of the best fists on the air, all you need is a little practice and the HAL 2550 Keyer and its precision-built companion, the FYO Key.

The 2550 features a triggered clock pulse generator, sidetone monitor, iambic keying and dot memory. There’s an optional tailor-made ID too.

Many amateurs remember the famous FYO Key, a key infinitely adjustable to every fist. Now it’s back again, better than ever, and available only from HAL. The 2550 Keyer and the FYO Key make a great combination. So to put your best fist forward, send today for a detailed brochure on these two great products.

HAL Communications Corp., Box 365, 807 E. Green Street Urbana, Illinois 61801 Telephone: (217) 367-7373

Dayton HAMVENTION
April 23–24–25, 1976

- Fabulous PRIZES
- GIANT Flea Market
- Exhibits
- New Products
- Technical Sessions

- ARRL and FCC Forums
- Special Group Meetings
- Ladies Programs
- Awards
- Transmitter Hunts

- GRAND BANQUET Saturday Evening (Special Prizes)

If you have registered within last 3 years you will receive a program and information brochure to be mailed March 8.

For special motel rates and reservations call (513) 277-1325, 6 to 10 PM EST.

Write Dayton HAMVENTION, P.O. Box 44, Dayton, OH 45401 for information.

See You at the World’s Largest Ham Convention.
DIGITAL DATA RECORDER
for
Computer or Teletype Use
Up to 4800 Baud

Uses the industry standard tape saturation method to beat all FSK systems ten to one. No modems or FSK decoders required. Loads 8K of memory in 17 seconds. This recorder enables you to back up your computer by loading and dumping programs and data fast as you go, thus enabling you to get by with less memory. Great for small business bookkeeping. Imagine! A year's books on one cassette.

Thousands are in use in colleges and businesses all over the country. This new version is ideal for instructional, amateur, hobby and small business use. Ideal for use by servicemen to load test programs. Comes complete with prerecorded 8080 software program used to test the units as they are produced. (Monitor)

COMING NEXT MONTH — IN KIT FORM

* Hexadecimal Keyboard — Load programs direct from keyboards' 16 keys and verifying display. Does not use Computer I/O.
* I/O for use with Computer Aid or other digital recorders. Variable baud rate selectable on externally located unit by one knob. Can load computer or accept dumps without software. Turnkey Operation. For any 8 bit computer.
* Record/Playback Amplifier

Expanded version of our Computer Aid board for use with your own deck (cassette or reel to reel). Go to 9600 baud on reel to reel. Digital in, digital out, serial format.

* Interested in these? Send your name and address for brochure when released. (EDUCASSETTE is our registered TradeMark)

Fill out form and send check or money order to:
NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
201-561-3600

Data Recorder @ $149.95
Operating & Technical Manual (Schematics) @ $1.00
* New Products, No Charge

Please enclose $2.00 Shipping & Handling
N.J. Residents add 5% Sales Tax

NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
SHIP TO:

CARD NO. ZIP
EXPIRATION DATE

march 1976
CALL 212-468-2720 BETWEEN 9:00 AM AND 4:00 PM MONDAY THROUGH FRIDAY
196-23 JAMAICA AVE. HOLLIS, N.Y. 11423

Vanguard Now Has the World's Largest Selection of Frequency Synthesizers from $129.95
Send No Money. We ship C.O.D. Order by Phone and Save Time.

We ship open account only to U.S. and Canadian government agencies, universities and selected AAA rated corporations.

Available for Air Force, Fire, Police and Amateur Frequencies

Check these features:
- Smallest size of any commercially available Vanguard synthesizer — only 3-3/4" x 3-3/4" x 7".
- Excellent spectral purity since no mixers are used.
- 99.995% (5 parts per million) accuracy over the temperature range of -10 to +60 C.
- Immune from supply line voltage fluctuations when operated from 11 to 16 volts D.C.
- Up to 8000 channels available from one unit. Frequency selected with thumbwheel switches.
- Available from 5 MHz to 369.995 MHz with up to 40 MHz tuning range and a choice of 1, 5 or 10 kHz increments (subject to certain restrictions depending on the frequency band selected).
- Top quality components used throughout and all ICs mounted in sockets for easy servicing.
- All synthesizers are supplied with connecting hardware and impedance converters or buffers that plug into your crystal socket.

Vanguard frequency synthesizers are custom programmed to your requirements in 1 day from stock units starting as low as $129.95 for transmit synthesizers and $139.95 for receive synthesizers. Add $20.00 for any synthesizer for 5 kHz steps instead of 10 kHz steps and add $10.00 for any tuning range over 10 MHz. Maximum tuning range available is 40 MHz but cannot be programmed over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless the I-F is greater than 10.7 MHz and uses low side injection. Tuning range in all cases must be in increments starting with 0 (i.e. — 140.000 — 149.995 etc.).

The output frequency can be matched to any crystal formula. Just give us the crystal formula (available from your instruction manual) and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.

Call 212-468-2720 between 9:00 am and 4:00 pm Monday through Friday
196-23 JAMAICA AVE. HOLLIS, N.Y. 11423

Solid State Modules
2050 KOMO MAI DRIVE
PEARL CITY, HAWAII 96782
PHONE (808) 455-2282

This unit is a linear transmit and receive converter from 10 meters to 2 meters, suitable for use with either a separate transmitter and receiver or transceivers.

Any transmissions made fed into the unit is retransmitted on 2 meters. When used with YAESU MU5EN or YAESU MU5ESN this unit takes its power directly from the accessory socket on the H.F. equipment.

Used in conjunction with other gear, the required voltages may be taken from the H.F. equipment or a separate power supply may be used. This unit is used with either a separate transmitter and receiver or transceivers.

Specifications:
- Dual Gate MOSFETS in the receive converter.
- Bipolar transistor Transmit power amplifier.
- 200 W P.E.P. input.
- Transmitter drive requirement only 100 mW.
- Receive converter gain - 30dB.
- Size: 9" x 4-3/4" front panel 4-1/2" deep.
- Power supply requirements:
 1. 500 - 800V at 250 ma.
 2. 350 - 1000V at 70 ma.
 3. 12.6V cr. 1.8 amp.

The Europa-8 ON-OFF switch switches the YAESU MU5EN H.F.P.P.A. Heaters ON and OFF automatically.

Introductory Price: $279.95 less tubes Tubes Required: 63-6360 1-5894
Total price with tubes $299.95
Dealer Inquiries Invited
Low Noise and Miniature VHF Pre-amps available.

More Details? CHECK-OFF Page 102
HOW'S YOUR BIRD??

WATTMETER THAT IS . . . IF YOU HAVE BEEN HAVING DIFFICULTY LOCATING THE WATTMETER JUST RIGHT FOR YOU OR IF YOU CAN'T FIND THE CORRECT ELEMENT FOR YOUR MODEL 43, YOU MAY HAVE BEEN LOOKING IN THE WRONG PLACES. OUR LARGE INVENTORY OF MOST COMMON ELEMENTS LETS YOU GET WHAT YOU WANT WHEN YOU NEED IT. GIVE US A CALL FIRST FOR YOUR BIRD NEEDS.

MODEL 43
$100.00

ELEMENT TABLE 1 SUFFIX H $35.00 ea.
SUFFIXES A, B, C, D, E $32.00 ea.

ALSO AVAILABLE . . . MODEL CC1, CARRY CASE FOR MODEL 43 $20.00
EC-1, CARRY CASE FOR XTRA ELEMENTS $12.00

ANTENNA TIME IS JUST AROUND THE CORNER
WHEN THE WEATHER GETS NICE IT IS TIME TO THINK ANTENNAS. WE STOCK ALL POPULAR MODELS FROM MAJOR MANUFACTURERS. EVERYTHING FROM A 40 METER BEAM TO A UHF TWIST FOR OSCAR.

SPECIAL PRICES AVAILABLE ON FULL ANTENNA PACKAGES

GOODIES FROM "THE FM PEOPLE"

HT200 HOUSINGS
We have a limited supply of the plastic housings with controls & wiring harnesses for the UHF HT200 radio. If you have just the boards or a really grubby HT here’s your chance to have a really pretty HT.
$29.00 EA.

HI BAND STRIPS
30 Watt “G” series transmit strips. Use 6146 final. Your imagination is the only limit to the number of uses.
2 FOR ONLY $14.95

CARRIER SQUELCH
We have the kits to convert your tone and voice Pageboy I to carrier squelch. Available for both UHF and VHF models.
$29.95 EA.

HT PARTS
We carry one of the largest stocks of HT220 parts and options around. If it’s for an HT, give us a try.

HT220 NICADS
We still have a good supply of used nicads for the HT220, Omni radio. They have been charged up and checked out. Well worth the price. Buy a couple for spares.
$10.00 EA.

EARPHONE
We have limited quantity of external earphones with cord and micro plug that will work with just about any HT or pager. Professional style made to sell for many times our price.
$3.95 EA.

SEE YOU AT THE DAYTON HAMVENTION

SPECTRONICS, INC.
1009 GARFIELD
OAK PARK, IL. 60304
312-848-6778
TELEX 72:8310

HOURS
STORE HOURS:
Mon-Thurs 9:30-6:00, Fri, 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.

march 1976
The ORIGINAL high performance, non-ringing, no loss CW Filter, Model CWF-PBX, is still available. Over 5000 in use now! Enthusiastic Amateurs can't say enough for this easily used accessory which pulls in those weak signals and completely separates them from the QRM.

This CW Filter is often imitated but never duplicated.

The RAZOR SHARP SELECTIVITY offered by the CWF-2BX is indicated in this curve giving its response characteristics. The 80 Hz bandwidth along with extremely steep sided skirts make even the weakest signals stand out.

Plugs into any receiver or transceiver. Drives phones or connect between receiver audio stage for full speaker operation. (00 400 (000 4000 FREQUENCY)

Drastically reduces all background noise. No audible ringing. No impedance matching. No insertion loss. 8 pole active filter design uses IC's. Bandwidth: 80 Hz, 110 Hz, 180 Hz (selectable). Skirt rejection: at least 60 db down at one position selectivity switch) $18.95 $27.95 Dealer Inquiries Invited

Center frequency: 750 Hz 9 volt transistor radio battery provides months of operation. 400 Hz or 1000 Hz center frequency available. Add $3.00 UNCONDITIONALLY GUARANTEED for one year from date of purchase.

MFJ Enterprises, P. O. Box 494, Miss. State, MS 39762, (601) 323-5889

C-METER

$39.95

Direct Reading Capacitance Meter
- Reads from 100 Pf to 1 MFD
- Linear Scale
- Internal 9V battery lasts 1 year
- Fully assembled and tested

Special with purchase of C-Meter: Clock For Only $20. ppd

WEBER Electronics 1 Elmcrest Terrace, Norwalk, CT 06850 203-853-4716

CFP Announces...

WE ARE NOW YOUR AUTHORIZED DEALER FOR THE YAESU LINE.

CFP COMMUNICATIONS
DIV. OF CFP ENTERPRISES
211 NORTH MAIN STREET
HORSEHEADS, NEW YORK 14845
PHONE: 607-739-0187

FLASH: 1976 GREAT LAKES AREA HAMFEST

and Michigan State ARRL Convention AT
Muskegon Community College
MARCH 20, 1976

Come early — Wolf Hong initiation Friday evening — also Hospitality Room at the Ramada Inn. Registration begins 8:00 A.M. Saturday. Technical Forums — Net Meetings — ARRL Forum — SWAP & SHOP — SPECIAL ATTRACTIONS.

Call WABGVK Convention Coordinator 616-722-1378

or write:
MUSKEGON Area Amateur Radio Council P. O. BOX 691 MUSKEGON, MICHIGAN 49443

More Details? CHECK-OFF Page 102
HERE ARE THE BUYS FROM GENAVE

GTX-100

1 1/4-Meter FM
100 Channel Combinations—12 watts
Separate controls for independent transmit and receive frequency selection. Pre-selected paired frequency lock allows one knob operation. Backlit.

Down from $199.95 $149.95
(Incl. 223.5 MHz)

GTX-600

6-Meter FM
100 Channel Combinations—35 watts
Separate controls for independent transmit and receive frequency selection. Pre-selected paired frequency lock allows one knob operation. Rear panel external speaker jack. Optional mic gain control and sub-audible tone mod possible.

Down from $199.95 $149.95
(Incl. 52.525 MHz)

IN STOCK

NOW...GENAVE STOCKS MOST COMMON 2-M CRYSTALS FOR IMMEDIATE DELIVERY

These crystals can be used in most makes that employ the following circuitry:

Transmit:
12 times for use in 32 pf capacitance circuits

Receive:
3 times for 10.7 MHz IF in 32 pf capacitance circuits (low side)

PS-1 Tone Encoder Pad for plug-in installation on most amateur transceivers $59.95

TE-2 Tone Encoder Pad for installation on most Hand-Helds $49.95

Non-standard crystals $6.50 each

For factory crystal installation add $8.50 per transceiver.

ACCESSORIES FOR GTX-1 and GTX-1T

PS-18N Optional Nicad battery pack $39.95

PS-2 Charger for GTX-1(T) battery pack $39.95

GLC-1 Leather carrying case $12.95

TE-III Tone Encoder (for use with GTX-1) $49.95

Use This Handy Order Form

4141 Kingman Dr., Indianapolis, IN 46226
(317-546-1111)

NAME AMATEUR CALL

ADDRESS CITY STATE & ZIP

Payment by: □ Certified Check/Money Order □ Personal Check □ C.O.D. Include 20% Down Note: Orders accompanied by personal checks will require about two weeks to process. 20% Down Payment Enclosed. Charge Balance To:

BankAmericard # Exp. Master Charge # Interbank # Expires

Sub-Total: $ TOTAL: $ (minimum order $12.00)

IN residents add 4% sales tax.
CA residents add 6% sales tax.
All orders shipped post-paid within continental U.S. (allow 8 weeks delivery.)

CLIP OUT AND ORDER NOW

More Details? CHECK-OFF Page 102

march 1976
STEP UP TO TELREX
Professionally Engineered Antenna Systems
Single transmission line “TRI-BAND® ARRAY”

MONARCH
TB5EM/4KWP

By the only test that means anything... on the air comparison... this array continues to outperform all competition... and has for two decades. Here's why... Telrex uses a unique trap design employing 20 HiQ 7500V ceramic condensers per antenna. Telrex uses 3 optimum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL 7.

HEATH HW and SB KIT OWNERS
Do you want a sidetone filter which is completely compatible with your gear and offers up to 70 dB improvement over the original filter? We have it!

SUPERFILTER MK-II
2100 Hz 6 dB Bandwidth
3100 Hz 60 dB Bandwidth
3800 Hz 90 dB Bandwidth
110 dB Ultimate Rejection

Look at the graph - compare your present filter with our "Frustration resolver"... then order one or write for more details!

ONLY $125.00 DELIVERED IN U.S.A.

SIGNAL MANAGEMENT SCIENCES
Long Green, Maryland 21092 U.S.A.

FROM SOUND TO SIGHT
NOW - SEE MORSE CODE DISPLAYED - AUTOMATICALLY - AT SELECTED SPEED -
One easy connection from your speaker to the Alpha-Numeric Display of your Code Reader CR-101. Displays all letters, numbers, punctuation. Operating speed 5-50 WPM. Easy to use teaching aide. Handicapped persons can learn new skills. CR-101 large .6 in readout - $225.00. CR-101A has smaller .2 in readout - $195.00.
TU-102 TTY interface provides CR, LF, figures and letter automatically - $85.00. 6 Month Guarantee all Parts and Labor.

ATRONICS BOX 77, ESCONDIDO, CA 92025

Call me at (714) 745-1971

WORK THE WORLD!!!

CW TRANSMITTER
ALL SOLID STATE—MODEL 50
160, 80, and 40-M Plug-In Coils (included)
Built-In 120 VAC Supply
Built-In Antenna Relay
Full Break-in Keying
Crystal Control

OVERALL SIZE: 3 3/4" x 5 1/2" x 9 1/4" D
ORDER DIRECT or write for FREE BROCHURE and name of nearest dealer.

MODEL 50K (KIT)........ $49.95
ADD-ON OPTIONS:
SIDETONE, 200-21K (KIT) $ 5.95
KEYER, 200-22K (KIT) $13.95

MODEL 50W (WIRED)........ $69.95
ADD-ON OPTIONS:
SIDETONE, 200-21W (WIRED) $ 6.95
KEYER, 200-22W (WIRED) $18.95

ADD $2.10 SHIPPING & HANDLING, U.S.A.

THE WORLD AT YOUR FINGER-TIPS! SEND ORDER TODAY!
(PA, Residents Add 6% Sales Tax).

PHONE: 814-432-3647
BOX 182A • FRANKLIN, PA 16322

ALDELCO SEMI-CONDUCTOR SUPERMARKET

SILICON TUBE REPLACEMENTS

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Current</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N549</td>
<td>45VDC</td>
<td>150mA</td>
<td>25 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>30VDC</td>
<td>150mA</td>
<td>30 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>25VDC</td>
<td>150mA</td>
<td>40 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>20VDC</td>
<td>150mA</td>
<td>50 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>15VDC</td>
<td>150mA</td>
<td>60 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>10VDC</td>
<td>150mA</td>
<td>70 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>5VDC</td>
<td>150mA</td>
<td>80 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>2.5VDC</td>
<td>150mA</td>
<td>90 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>1.25VDC</td>
<td>150mA</td>
<td>100 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>0.5VDC</td>
<td>150mA</td>
<td>110 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>0VDC</td>
<td>150mA</td>
<td>120 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-0.5VDC</td>
<td>150mA</td>
<td>130 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-1VDC</td>
<td>150mA</td>
<td>140 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-1.5VDC</td>
<td>150mA</td>
<td>150 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-2VDC</td>
<td>150mA</td>
<td>160 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-2.5VDC</td>
<td>150mA</td>
<td>170 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-3VDC</td>
<td>150mA</td>
<td>180 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-3.5VDC</td>
<td>150mA</td>
<td>190 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-4VDC</td>
<td>150mA</td>
<td>200 MHz</td>
</tr>
</tbody>
</table>

2 AMP EPOXY BRIDGE RECTIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Current</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N549</td>
<td>45VDC</td>
<td>150mA</td>
<td>25 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>30VDC</td>
<td>150mA</td>
<td>30 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>25VDC</td>
<td>150mA</td>
<td>40 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>20VDC</td>
<td>150mA</td>
<td>50 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>15VDC</td>
<td>150mA</td>
<td>60 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>10VDC</td>
<td>150mA</td>
<td>70 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>5VDC</td>
<td>150mA</td>
<td>80 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>2.5VDC</td>
<td>150mA</td>
<td>90 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>1.25VDC</td>
<td>150mA</td>
<td>100 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>0.5VDC</td>
<td>150mA</td>
<td>110 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>0VDC</td>
<td>150mA</td>
<td>120 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-0.5VDC</td>
<td>150mA</td>
<td>130 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-1VDC</td>
<td>150mA</td>
<td>140 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-1.5VDC</td>
<td>150mA</td>
<td>150 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-2VDC</td>
<td>150mA</td>
<td>160 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-2.5VDC</td>
<td>150mA</td>
<td>170 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-3VDC</td>
<td>150mA</td>
<td>180 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-3.5VDC</td>
<td>150mA</td>
<td>190 MHz</td>
</tr>
<tr>
<td>2N549</td>
<td>-4VDC</td>
<td>150mA</td>
<td>200 MHz</td>
</tr>
</tbody>
</table>

Wow! QUALITY 2 M. XMITTER

- 2 Channel Operation
- Frequency Range 144-146 MHz
- 1 Watt P.F. - 2 watts typ. - Output 10dB above 1 W.
- 50 Ohm RF Output Impedance
- 6x Multiplication Factor
- Narrow Band FM ± 5 KHz
- Closed Balanced Emitter Output Transistor
- Size 3 3/4" L x 1 3/4" W x 1 1/2" H
- Tested & Fully Assembled (Less stand)
- $32.50 price includes all postage fees

ELPROCON
DEPT. DS • 1907 W. CAMPBELL
PHOENIX, ARIZONA 85015

84 Fibre march 1976
More Details? CHECK-OFF Page 102
Listed below is a Complete Mini-catalog from one of Amateur Radio's largest bookstores. Whatever your interest in Amateur Radio or Digital electronics you're going to find just the title you need in this list.

NEW BOOKS
- **RADIO HANDBOOK - 19th Edition** Closeout Special Just $9.50
- **REFERENCE DATA FOR RADIO ENGINEERS - New 6th Edition** by ITT Staff
 - Just released, this latest update is one of the most comprehensive reference books around for radio and electronics engineers everywhere. Covers everything from Digital Computers to Semiconductors. 1250 pages. Hardcover. List $30.00 HR Special Only $28.00
- **H-1AM NOTEBOOK, Volume I** by J. Fisk, WIDT
 - Contains Ham Radio's popular Ham Notebook, plus a number of new and improved books. No duplication of Volume I: Everything from Antennas to Receivers. Only $4.95
- **H-1AM NOTEBOOK, Volume II**
- **MICROELECTRONICS**
 - Covers many important references and charts. Prices: $3.95
- **BUGBOOKS**
 - The exciting series that have been leading the way into the exciting world of Microprocessors and Microcomputers. 280 pages. Price: $4.50
- **THE ARRL ANTENNA BOOK** Revised, extensively revised. Covers all theory and practical applications. Price: $4.00
- **ALL ABOUT CUBICAL QUAD** by William I. Orr, W6SAI
 - Lists thousands of DL and QRP antennas, with all the information you need to build and adjust your quad. Only $3.95
- **BEAM ANTENNA HANDBOOK** by William L. Orr, W6SAI
 - For many years this has been the bestseller on beam antennas. It covers all types of antennas, the subject, both theory and practice. Only $4.95
- **HAM & CB ANTENNA DIMENSIONS & CHARTS** by David M. Noll, W3FOJ
 - A handy booklet with all the dimensions you need for Amateur dipole, verticals, beams, quads, inverted-V's and other types of antennas. Vital to any antenna experimenter. Only $2.25

FM & VHF BOOKS
- **FM & REPEATERS** by The ARRL Staff
 - Everything is covered. Chapters include: mobile and base repeater antennas, receivers and antennas for mobile and base, and FM terminal equipment. Sections treat alignment and troubleshooting. If you operate FM you need this book. Just $3.00
- **THE COMPLETE FM 2-WAY HANDBOOK** by Clayton L. Hallmark
 - Covers all types of users of 2-way VHF FM equipment, including amateurs, public service, and business. Includes important references and charts. Prices: $6.95
- **RADIO HANDBOOK - NEW 20TH EDITION** by William L. Orr, W6SAI
 - Covers VHF for both newcomers and the old-timers. Includes such subjects as VHF FM, Satellites, TV, VHF antennas, public service, business, and many others. Just $5.95
- **THE RADIO AMATEUR'S VHF MANUAL** by Edward P. Tilton, W1HDQ
 - This well known ARRL Manual gives a thorough treatment of VHF. It covers history, theory, and equipment for the VHF Bands. Also discussed are antennas and test equipment. FM is very well covered. Only $4.00

CALLBOOKS
Here are the latest 1976 Editions
- **1976 CALLBOOK**
 - Lists, approximately 280,000 in the US and its possessions plus many other important contacts. Just $13.95
- **1976 FOREIGN CALLBOOK**
 - Nearly 250,000 amateurs throughout the World (except the United States) — a vital reference. Please add $1.00 per callbook. Only $12.95

RSCB BOOKS
Those ever popular books from the Radio Society of Great Britain. Each volume is very thorough and includes a special chapter giving the equivalents for British vacuum tubes and transistors.
- **AMATEUR RADIO TECHNIQUES, 5th Edition** by J. F. Hawker, G3WA
 - Perhaps the most outstanding yet least known title we offer, this book has something for everyone. This is an idea book and you will find interesting items on every page. From Antennas to Semi-Condutors. Just $6.95

AMATEUR RADIO AWARDS
A listing of all the major international operating awards. Describes over 55 awards including full details, plus instructions for applying. Also includes valuable DX operating data. Just $4.95

TELEPRINTER HANDBOOK by D. L. Goacher, G3NN
- **New Low Price**
- **J. G. Denney, G3MT**
- **AMATEUR RADIO REFERENCE BOOK** by E. R. Emery, G3GH
 - The most complete compilation of radio, television, electronic, charts, graphs, formulas and design data anywhere. Invaluable to anyone building or repairing. Just $3.95

TEST EQUIPMENT FOR THE RADIO AMATEUR by H. L. Gibson, W6WSI
- This beautiful hardbound volume includes chapters on how to build test equipment, chapters on how to use test equipment, plus chapters on the theory of test equipment.
- **TELEVISION INTERFERENCE MANUAL** by B. Priestly, G3JMO
 - Covers transmitter design, audio breakthrough, testing and much more. Much technical background to help you understand this very involved. Written to cover British standards, but easily converted to American use. Just $3.50

COOKBOOKS
Here are those famous "How-to-do-it" books particularly designed for the active experimenter.
- **IC OP-AMP COOKBOOK** by Walter Jung
 - Covers general purpose and special purpose devices. Contains useful applications and circuits. Prices: $6.95
- **TTL COOKBOOK** by Don Lancaster
 - A complete hit. Covers the background you need to use these devices. Great stress on the practical side. Just $8.95
- **RTL COOKBOOK** by Don Lancaster
 - Although RTL is largely out of use by now, this book still covers much valuable digital IC background and is recommended. Only $5.50
- **ACTIVE FILTER COOKBOOK** by Don Lancaster
 - The latest Cookbook. A practical manual with everything you need to select and build the best filter for your application. Only $14.95

CLOSE OUT SPECIAL
REFERENCE DATA FOR RADIO ENGINEERS - 5th Edition
Here is your chance to buy a copy of this world famous reference book at an unbelievably low price. We have just pur chased the complete inventory of the 5th edition and you can purchase one for a price much less than its original selling price. This super complete reference covers virtually all phases of communications in an invaluable guide for the experimenter, student or engineer. Don't miss this outstanding opportunity. 1196 pages — Hardcover
- **Original List $23.00**
- **Now Just $14.95**

Ham Radio
Greenville, NH 03048
Please send the books I have checked above. Enclosed is $_____ to cover these books plus 25¢ per volume shipping and handling.

Name ____________________________
Address ____________________________
City _______________ State ____________
Zip _______________________________

Save Time — Use Your MasterCard or BankAmericard and order by phone 603-878-1441
NEW SSB & CW FILTER

The NEW DE-150 CW/SSB filter virtually eliminates QRM & QRN on both CW & SSB. Features include 100 hz CW filters, 1500 hz SSB filters, 3 watt audio amp., and built in AC supply. $39.95. Other CW & SSB filters are available.

INCREASE YOUR TALK POWER 10 TIMES

Our NEW DE-125 compressor easily gives 10 db or more of speech compres- sion without distortion al- lowing you to cut through QRM & QRN. Features include voice tailored re- sponse for added punch and solid state switching for long battery life. Requires two 9V batteries (Not in- cluded) $59.95.

NEW POWER SUPPLIES

The NEW DE-110 digital and linear integrated circuit supply has outputs of +15 V at 100 ma, -15 V at 100 ma, and 5 V at 1 A. $59.95. One year warranty and 15 day return privilege. Add $2 per order for shipping and handling. Other equipment is available. Write for new catalog.

The NEW DE-112 regulated supply has an output of 12 VDC at 1 A for solid state equipment. $24.95.

1/2 and 1/2 watt ± 5% RESISTORS

Values from 10 ohm through 1 M 32 values from 1, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, & 82. 4r each, 5 per value. Add 50c for ship- ping. Quantity discounts & assortments are available.

YOUR BEST BUY IN KITS

ANALOG-DIGI-LAB

Features 3 Regulated power Supplies. 3 Output wave forms. 8 digital level switches. 2 no bounce pulse switches. 8 LEDs with drivers. 1 AP Super strip. Easily constructed. Designed by RETS Electronic Schools. 1st time offer. $139.00

Discrete basic clock kit $16.95
Function Generator Kit $10.95

Send SASE for flyer. Featuring Electronic component and kits available.

HAL-TRONIX

P. O. Box 1101 • Southgate, Mich. 48195
(313) 285-1782
SEE YOU AT DAYTON IN APRIL

DYNAMIC ELECTRONICS, INC.

P. O. Box 1131 • Decatur, AL 35601

WANT SOMETHING REALLY SMALL AND EFFICIENT?

Then you want the antenna that's known around the world
for it's small size and superior performance.
The Mini-Products Multiband HYBRID QUAD

MODEL HQ-1

$109.50

If not stocked by your dealer order direct. We pay shipping in USA. Send for free catalog of other models and more data.

FAST SCAN AMATEUR TELEVISION EQUIPMENT

• SOLID STATE
• BROADCAST QUALITY PERFORMANCE
• FOR TECHNICAL DATA AND PRICING,
WRITE TO:

APTRON LABORATORIES BOX 323, BLOOMINGTON, IN 47401

LOOKING FOR PARTS?

We stock variable capacitors, induc- tors, and lots more.

IN STOCK: J. W. MILLER, MILLEN, B & W. JOHNSON, HAMMARLUND, and others.

Johnson 220-203 28 µh Roller Inductor $33.50 ppd.

Send First Class Stamp for Flyer

G. R. WHITEHOUSE & CO.
10 Newbury Dr. Amherst, N. H. 03031

SST T-1 RANDOM WIRE ANTENNA TUNER

All band range (500-10 meter) with most any random length wire. 200 watt power capacity. Ideal for portable or home operation. A must for Field Day. Size: 2 x 44 x 21/2. Built in mean tone up indicator. Guaranteed for 90 days. Compact, only 31/4" x 21/2" x 21/2". Weight: only 22.5 oz. (Ask Sales Tax in Calif.)

SST ELECTRONICS, P.O. BOX 1, LAWNCILE, CA 90260

FREE CATALOG

HARD-TO-FIND PRECISION TOOLS

Lists more than 2000 items - pliers, tweezers, wire strippers,Kuromo systems, relay tools, optical equipment, tool kits and cases. Also includes ten pages of useful "Tool Tips" to aid in tool selection.

- JENSEN TOOLS
417 N. 44th Street, Phoenix, Ariz. 85018
RATES: Non-commercial ads 10¢ per word; commercial ads 40¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS: Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat HAMfest ads pay the non-commercial rate.

COPY: No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio can not check each advertisement for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE: 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

MUSKEGON AREA AMATEUR RADIO COUNCIL 10th Annual Flea Market State Convention on Saturday, March 20, 1976 at the Muskegon Community College. The Market will begin at 8:00 a.m. with setup features: Net Meetings; Technical Forums; Compete in college dining facilities open all day. Parking free. Friday evening, March 19, at the Muskegon Ramada Inn. Ham hospitality for Eye-Ball QSO's and free libation. A Wouf Hong innitiation midnight Friday at the Ramada for ARRL members. Further information from Hank Riekab WABGVK, Box 691 Muskegon, Michigan 49443.

Selling 5% OVER COST OFFER for Elema/Varian tubes, ham and commercial gear, etc. Ted Dames, W2KUW, 308 Hickory St., Arlington, VA 22207.

NEW JERSEY KNIGHT RAIDERS VHF Club's auction and flea market Saturday, March 20th, St. Joseph's College, Millville, Dept. 140, Dept. 198, Hackett Street, East Rutherford. Free admission, free parking, refreshments available. Talk-in on 146.52 and 146.94. Hours open 11 AM. Free flea Market tables; $5.00/full table, $3.00/half table; no charge in advance by writing Knight Raiders VHF Club, K2DEL, P.O. Box 1054, Passaic, New Jersey 07055.

 MANUALS: for most ham gear made 1940/65, special, earlier. Send SASE for specific titles. Hobby Industry, W0JJK, Box H-646, Council Bluffs, Iowa 51501. 616-722-1376.

ARRL HANDOUTS WANTED. 1st, 5th, 6th and 8th editions to complete my collection. Highest prices paid for copies in good condition. Send SASE for list. Jim Fisk, WIDTY, Ham Radio, Greenville, NH 03048.

STOP don't junk that television set. Send $5.00 for a ham radio handbook and free back issue of Ham Radio for sale or trade. Send SASE for list. Jim Fisk, WIDTY, Ham Radio, Greenville, NH 03048.

$8-104 OWNERS CLUB — Expanding its horizons to include the HW-104 and the new Heath 2 meter equipment. Newsletter, builders guides, modifications and other services on current Heathkit amateur equipment. Send SASE for details to Chuck Harrison, RD 2 Box 1, North Stonington, CT 06359.

COMPUTER HOBBIESTS! Bargain hunt and sell via ON LINE, 18 issues-$2.76. Free sample issue from: ON LINE, 24695 Santa Cruz Hwy., Los Gatos, CA 95030.

LEARN CODE IN A FEW DAYS with audio reflex method of teaching letters, numbers, punctuation. One hour cassette only $7.00. Guardian, 20 E. Main St., Ramsey, N. J. 07446.

STOLEN 2M FM transceiver from my car on December 9, 1975 in Cleveland, Ohio. IC-250, serial no. 4503095. Reward paid for return of radio. Contact Fred H. Nye, Jr., WARNXT, 31497 Hilliard Blvd., Westlake, OH 44145.

NOVICE, GENERAL AND CODE COURSES are available at the Harrison, New York School of Continuing Education. 10 two hour sessions one evening a week. Contact George Buchanan WB2FXV, (914) RO-1483.

REGENCY TMR-1 RECEIVER CASE comes complete with transformer, speaker, front panel controls, power plug, and mobile mounting bracket. Makes a great case for any mobile ham project. $72.99. Avco Electronics P.O. Box 4072 Rochester, New York 14971.

MICROPROCESSORS AT DAYTON. Don't miss Ham Radio's exciting one day Microprocessor Seminar to be held on both Friday, April 23 and Saturday, April 24. Taught by professionals. Widely acclaimed as one of the outstanding events of this year's SAROC. Full details in display ad in next issue of Ham Radio, Greeneville,TN 03048. 603-878-1441.

WANTED 33 ASR TELETYPE Must work perfectly. Price, condition, serial number. Brian WABGW, Box 1, Laurel Bay, SC 29902.

THE 21ST ANNUAL HAM AUCTION. America's Largest, Saturday, March 13, 1976, at Lucas County Recreation Center, Toledo, Ohio. Auction fees 10% fee. Flea market: commerical, displays, prizes, 8:00 a.m. to 5:00 p.m. $1.50 advance, $2.00 after. March 1st. Send SASE. Talk In 146.52. Toledo Mobile Radio Association, Box 273, Toledo, Ohio 43696.

SELL: C.30 slix channels crystals installed Picture tubes, nearly all types Immediate delivery. Tubes for Old TV's, black and color. 2 year warranty. Lowest prices anywhere. Tubes and 1975 RARS 1976 ANNUAL HAMFEST. April 11. For further details, contact W2SCF, 1940/65, Waseca, MN 56093.

HOMEOWNERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Brainard, Minn. 55913.

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Brainard, Minn. 55913.

LEARN CODE IN A FEW DAYS with audio reflex method of teaching letters, numbers, punctuation. One hour cassette only $7.00. Guardian, 20 E. Main St., Ramsey, N. J. 07446.

REGENCY TMR-1 RECEIVER CASE comes complete with transformer, speaker, front panel controls, power plug, and mobile mounting bracket. Makes a great case for any mobile ham project. $72.99. Avco Electronics P.O. Box 4072 Rochester, New York 14971.

MICROPROCESSORS AT DAYTON. Don't miss Ham Radio's exciting one day Microprocessor Seminar to be held on both Friday, April 23 and Saturday, April 24. Taught by professionals. Widely acclaimed as one of the outstanding events of this year's SAROC. Full details in display ad in next issue of Ham Radio, Greeneville, TN 03048. 603-878-1441.

WANTED 33 ASR TELETYPE Must work perfectly. Price, condition, serial number. Brian WABGW, Box 1, Laurel Bay, SC 29902.

THE 21ST ANNUAL HAM AUCTION. America's Largest, Saturday, March 13, 1976, at Lucas County Recreation Center, Toledo, Ohio. Auction fees 10% fee. Flea market: commercial, displays, prizes, 8:00 a.m. to 5:00 p.m. $1.50 advance, $2.00 after. March 1st. Send SASE. Talk In 146.52. Toledo Mobile Radio Association, Box 273, Toledo, Ohio 43696.

SELL: C.30 six channels crystals installed Picture tubes, nearly all types Immediate delivery. Tubes for Old TV's, black and color. 2 year warranty. Lowest prices anywhere. Tubes and

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Brainard, Minn. 55913.

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Brainard, Minn. 55913.

LEARN CODE IN A FEW DAYS with audio reflex method of teaching letters, numbers, punctuation. One hour cassette only $7.00. Guardian, 20 E. Main St., Ramsey, N. J. 07446.

REGENCY TMR-1 RECEIVER CASE comes complete with transformer, speaker, front panel controls, power plug, and mobile mounting bracket. Makes a great case for any mobile ham project. $72.99. Avco Electronics P.O. Box 4072 Rochester, New York 14971.

MICROPROCESSORS AT DAYTON. Don't miss Ham Radio's exciting one day Microprocessor Seminar to be held on both Friday, April 23 and Saturday, April 24. Taught by professionals. Widely acclaimed as one of the outstanding events of this year's SAROC. Full details in display ad in next issue of Ham Radio, Greeneville, TN 03048. 603-878-1441.

WANTED 33 ASR TELETYPE Must work perfectly. Price, condition, serial number. Brian WABGW, Box 1, Laurel Bay, SC 29902.

THE 21ST ANNUAL HAM AUCTION. America's Largest, Saturday, March 13, 1976, at Lucas County Recreation Center, Toledo, Ohio. Auction fees 10% fee. Flea market: commercial, displays, prizes, 8:00 a.m. to 5:00 p.m. $1.50 advance, $2.00 after. March 1st. Send SASE. Talk In 146.52. Toledo Mobile Radio Association, Box 273, Toledo, Ohio 43696.

SELL: C.30 six channels crystals installed Picture tubes, nearly all types Immediate delivery. Tubes for Old TV's, black and color. 2 year warranty. Lowest prices anywhere. Tubes and

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Brainard, Minn. 55913.

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Brainard, Minn. 55913.
flea market

Canadian Jumbo surplus and parts catalogs. Bargains! Calendar, $1. ETO-HR, Box 741, Montreal "A" H3c 2V2.

ROCHESTER Hamfest 1976 is Saturday, May 22. Your name added to mailing list or information — write: Rochester Hamfest, Box 1988, Rochester, NY 14602.

COLLINS R-390A $500. 514S military version edge lit front panel $600. Both mint condition and just aligned. David Ross Box 1502, San Luis Obispo, CA 93406, 805-541-0794.

PORTA-PAK the accessory that makes your mobile really portable. $59.95 and $39.95. Dealer inquiries invited. P. O. Box 67, Somers, Wisc. 53171.

MOTOROLA HT220, HT200, Pageboy, and other popular 2M FM transceiver (Standard, Regency, etc.) service and modifications performed at reasonable rates. WAFRYR, (802) 272-8403.

KENTUCKY Ham-O-rama — Sunday, May 30 (Memorial Day Weekend) at Boone County Fairgrounds, Burlington, Kentuck. 10 minutes south of Cincinnati, Ohio near I-75. Prizes forums, XYL trips, flea market. Tickets $1.50 advance. Info: NKARC, P.O. Box 31, Fort Mitchell, Kentucky 41017.

PC BOARD negatives made photographically from your or magazine's art work. Now obtain professional results quickly simply. 4 x 5, $3.00 or SASE for information. WA4FRY, 101239 Apache Road, Richmond, Virginia 23235 804-273-0841.

BUY-SELL-TRADE. Write for free mailer, give name, address, call letters. Complete stock of major brands, new and reconditioned equipment, call us for best deals. We buy Collins, Drake, Swan, Etc. SSB & FM. Associated Radio 8012 Conser, Overland Park, KS 66204 913-381-5901.

TRAVEL-PAK QSL KIT — Send call and 25¢; receive your call sample kit in return. Samco, Box 203, Wynantskill, N. Y. 12198.

MOD U-LINE CABINETS type used for ST-6. All sizes available. More info? Send SASE NuData Electronics, 104 N. Emerson, Mt. Prospect, IL 60056.

MODERN 60 MIN. CODE CASSETTES. Novice 0.5 wpm, Progressive 5-13 wpm. General 13-20 wpm. Extra 20-22 wpm. $3 each, 4/$1. Royal, Box 2174, Sandusky, Ohio 44870.

MOTOROLA HT-220 6-freq. Slimline, two nicads charged. $90 or offer. Howard Warcher, WB9YMO, 1500 School Street, Calumet, Mich. 49913.

QRP TRANSMATCH for HW7, Ten-Tec, and others. Send stamp for details to Peter Meach Associates, 19 Benetta Road, Waltham, Mass. 02154.

BUY NOW AND SAVE! — Introductory offer of the MOC 103 dual regulated power supply. Features two independent supplies in one low profile enclosure. Each supply provides 0.36 VDC and variable current limiting from 20-250 MA with LED's used for indicating a current limit condition. Individual supplies may be connected in series or parallel. Voltage and current is displayed on a flush mounted analog meter. Now only $65.00 assembled. Regulator board with instructions for building a 200-2000 MA single supply is available separately for $170.00. Postage and handling not included. For more information write Mid-Continent Communications Company, P. O. Box 4407, Kansas City, Missouri 64127.

INFO-TECH INC. 63017

INFO-TECH MODEL 30 MORSE TO VIDEO CONVERTER

Converts received Morse code from your receiver to a video printout on your TV. NO OTHER DEVICES REQUIRED.

FEATURES:

- No critical adjustments
- Attaches to any CW receiver with B.F.D. and 3 to 600 ohm audio
- Simple LED tuning indicator
- Unique P.L.L. front end input filter for superior selectivity
- Automatic frequency and weight adjust. for optimum reception
- Simple connection to your TV's video input with excellent clarity
- Prints 8 lines, for a total of 256 characters
- Text shifts upwards as message continues with automatic carriage return and line feed
- Will accept parallel ASCII with strobe for micro computer applications
- Built in AC power supply
- RTTY interface available with or without video board to drive your page printer (extra charge)
- Price $299.50 delivered in continental USA

WRITE FOR BROCHURES

P. O. BOX 84 CHESTERFIELD, MISSOURI 63017

VHF & UHF FM RCVR KITS
- More for your money!
- Commercial type design!
- Ideal for repeaters, monitors

COMPARABLE FM TRANSMITTERS NOW AVAILABLE, ALSO PREAMPS, CONVERTERS, SCANNERS, TEST EQ.

SEND SASE FOR FULL CATALOG

hamtronics, inc.

182 BELMONT RD., ROCHESTER, NY 14612

MILITARY SURPLUS WANTED

Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201-440-8767.

SPACE ELECTRONICS CO. div. of Military Electronics Corp. 35 Ruta Court, S. Hackensack, N. J. 07606

BIRD WATTMETERS ELEMENTS & LOADS AUTHORIZED DISTRIBUTOR

WEBSTER COMMUNICATIONS 115 Bellarmine, Rochester, Mich. 48063 313-375-0420

TUNE IN THE SPIRIT OF 76 DENVER JULY 17 & 18

ARTICULATION EQUIPMENT

FOR ADDITIONAL INFORMATION AND RESERVATIONS WRITE TO: APRIL NATURAL CONVENTION, INC. 2200 SOUTH QUINN, DENVER, COLORADO

NEED TROURIDIES?

we have 'em, too!... and they cost less!
(See our other ad — This issue)

G. R. WHITEHOUSE & CO.

10 NEWBURY DRIVE AMHERST, N. H. 03031

march 1976 More Details? CHECK—OFF Page 102
Restructuring is coming!
Get that license now!
Let the experienced staff from the Glade Valley School Radio Session help you solve that license problem. Whether you are looking for your General, Advanced or Amateur Extra ticket they will help you in every way with their carefully prepared program to get the license you are looking for.
Have a “Vacation with a Purpose” at this beautiful location in the Blue Ridge Mountains. A highly qualified staff and excellent facilities combine to make license study a pleasant memorable experience.

C. L. PETERS, K4DNS, Director
P. O. Box 458, Glade Valley, N. C. 28627
Please send me the booklet and Application Blank for the 1976 Glade Valley School Radio Session.

Name
Address
City/State/Zip

We’re Fighting Inflation
No Price Rise for ’76

FOR FREQUENCY STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS
Frequency Standards
100 KHz (HC 13/U) $4.50
1000 KHz (HC 6/U) 4.50
Almost all CB sets, Tr or Rec $2.50
(CB Synthesizer Crystal on request)
Amateur Band in FT-243 ea. $1.50
Ham Bands 4/$5.00
80-Meter $3.00 (160-meter not avail.)
For 1st class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.

Div. of
Bob Whan & Son Electronics, Inc.
2400 Crystal Dr.
Fl. Myers, Fla. 33901
All Phones: (813) 936-2397
Send 10¢ for new catalog

THE FM LEADER

2 METER 220 MHz
6 METER 440 MHz

FEATUREING THE...

HR-2B The Master in 2 Meter FM
Positive performance at a practical price makes our HR-2B tops on 2 meters. Individual trimmer capacitors give bull’s-eye accuracy for working repeaters or point-to-point. The .35µV sensitivity and Hi/Lo power switch insure your hearing and being heard... clearly and reliably... the Regency way.

...AND THE

HR-440 UHF—The Ultimate in FM
440 is fresh... it’s new... and with our HR 440 you can use UHF without using-up your budget. So, pioneer some new ground! Put a compact HR 440 under your dash or at your desk. It’s the best way to usher yourself into UHF.

12 Channels
10 Watts
$349.00 Amateur Net

JAN CRYSTALS

© 1976 Regency ELECTRONICS, INC. 7707 Records Street
Indianapolis, Indiana 46226

march 1976 PR 89

More Details? CHECK—OFF Page 102
FREE CATALOG lists hundreds of items included in Giant Stock Reduction Sale.

Here's your chance to equip your Ham Shack with a very professional level of equipment at FABULOUS SAVINGS!

This Month's Special
DEI Select Display Unit, Model TDU-4 — 30 MHz center frequency — Bandwidth is 3 MHz.

New in factory cartons
$295.00

Other Display Units include TDU-3, Nems Clarke/Vitra Model SBU-200 — Center free, 30 or 21.4 MHz (Specify) — New and Used — Prices range $95 - $295.

TEKTRONIX
Scope Sale

Here's a partial list of our reconditioned and FULLY GUARANTEED scopes. Prices are for Main Frame. See below for partial listing of vertical amps. (TABLE)

MODEL 216 $495.00
MODEL 217 $495.00
MODEL 218 $595.00
MODEL 221 $695.00
MODEL 228 $695.00
Vertical Amps (purchased above) $500

L Plug in $14.00
CA Dual Trace $255.00
M Four Trace $255.00
Others $65.00 & up

Flea Market

2 METER CRYSTALS IN STOCK

FOR THESE RADIOS ON STANDARD ARRL REPEATER FREQUENCIES:

- DRAKE — TR-22
- GENAVE
- ICOM/VHF ENGINEERING
- GEN
- KEN/WILSON
- REGENCY HR-2A/HR-2B
- HEATHKIT HW-202
- REGENCY HR-2B
- S.B.E.
- STANDARD 146/826
- STANDARD HORIZON

Send for free frequency list and order blank to:
KENSCO COMMUNICATIONS INC.
DEPT. 10376
BOX 469, QUINCY, MA. 02169
PHONE: (617) 471-6427

HAM RADIO CLUB NEEDS EQUIPMENT — St. Johns Univ., Jamaica, N.Y. 11439.

GREATER BALTIMORE HAMBOREE, Sunday, April 4th at Calvert Hall College, Goucher Blvd, and LaSalle Road, Towson, Maryland 21204 (1 mile south of Exit 28 Beltway, Interstate 695) Prizes, flea market, registration $2.250 tables inside gym. Over 1000 attended last year, Info: Contact Brother Gerald Malisev, SW5VC at the above address.

ROCK RIVER HAMFEST: April 25, Amboy, Illinois. Lee Co. 4-H Center, Jct. 30 & 52. Same place as last year. For further details see hamfest calendar. $1.00 advance, gate $2.00. Write Carl Karlson, W9ECK, Nacusa, Illinois.

DRAKE TR4 TRANSCEIVER, RV4 remote VFO, and AC1254. Reedy, 175 Beacon St., Boston, MA 02116.

COLOR VIDEO TAPE RECORDER plays up to 100 minutes of video. Brand new $250. TV camera, B/W for above VTR or may be used separately, brand new $150. Above ideal for SSTV, ATV, or home use. Video Tapes: $6. Sony Color Video Monitor $350. New sharp Color Receiver/monitor $400. Cartwright owners: get on mailing list for coming newsletter. Stamp to: W6LYL, 5853 Herma St., San Jose, Calif. 95123.

ARE YOU READING HR REPORT? Here is Amateur Radio’s only national full coverage weekly publication. It’s the one that keeps the well informed well informed. Just $15.00 for 52 issues via first class mail. HR Report, Greenville, NH 03048.

WANT 2M CRYSTALS FOR GENAVE. WAGGER, 3241 Eastwood Rd., Sacramento, Calif. 95821.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Estes Engineering, 950 Marine Dr., Port Angeles, WA. 98362.

T.V. — SERIOUS EXPERIMENTERS — R.C.A. military image orthicon system, camera, sync unit, power supply, 7” monitor, 600 lines resolution. Info: Peter S. Gerry, 34 Newcomb Dr., New Providence, N. J. 07974.

NEW CANADIAN MAGAZINE, “Electronics Work Shop!” $10.00 a year. Sample $1.00. ETCOB, Box 741, Montreal, H3C 2V2.

25TH DAYTON HAMVENTION at HARA Arena, April 23, 24, 25, 26. Technical forums, exhibits, and huge ham market. Program brochures mailed March 8th, to those registered within past three years. For accommodations or advance flyer, write Hamvention, P. O. Box 44, Dayton, Ohio 45401.

TRADE: R-198/URF for T-887/URF. WASFAD, 528 Benita, Pleasanton, California 94566.

HAM radio clubs can get free brochure by calling (703) 938-3350.

200 MHZ COUNTER

25 MHz Basic Counter becomes 200 MHz with built-in prescaler. These complete kits include all parts, drilled & plated PC Boards, cabinet, switches, hardware & a complete instruction manual.

- 8 Digit LED Display
- Resolution to 0.1 Hz
- Xtal controlled time base
- Selectable gate limits
- Input Z: 1 megohm (25 MHz) 50 ohms (200 MHz)
- Sensitivity: 50mV (25 MHz) 200 mV (200 MHz)

25 MHz Complete Kit $149.95
200 MHz Complete Kit $169.95

500 MHZ PRESCALER

Extend the range of your preset frequency counter to measure through 500 MHz (typically 525 MHz). Works into any standard counter rated for 5 MHz or higher. A must for work on 2 meters, 432 MHz and commercial high bands.

- 150 mv sensitivity
- Input overload protection
- 50 ohm input Z
- Small size
- 2 1/2" x 2 1/2" x 1 1/2"
- BNC connectors
- D.I.Y. kit $39.95

Prescaler shipped assembled, tested and ready to operate. Complete with line cord power supply. Call or write for details on these products. Add $2.00 shipping/handling in U.S.A.

DAVIS ELECTRONICS

636 Sheridan Dr., Tonawanda, N. Y. 14150
716/874-5848

the action and adventure in amateur radio:
WORLD RADIO - monthly publication
trial subscription next 2 issues $1
2120 28th St.
Sacramento, CA
95818 — W6AJY

IRON POWDER TOROIDS

Chart showing useful per 100 turns

<table>
<thead>
<tr>
<th>MIX 3</th>
<th>5-30MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX 6</td>
<td>0-50MHz</td>
</tr>
<tr>
<td>MIX 12</td>
<td>60-200MHz</td>
</tr>
<tr>
<td>SIZE</td>
<td>CM (OD)</td>
</tr>
<tr>
<td>U20</td>
<td>1.00</td>
</tr>
<tr>
<td>U10</td>
<td>2.00</td>
</tr>
<tr>
<td>U5</td>
<td>3.00</td>
</tr>
<tr>
<td>U1</td>
<td>4.00</td>
</tr>
<tr>
<td>U05</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Ferrite beads 30-500 MHz $2.00 Doz.
Wideband chokes 20-500MHz 95c Ea.
Specify core size and mix. Pack and ship 50c USA & Canada. Air parcel post delivery worldwide $2.00 per percent tax in Calif. Send for free brochure.

PALOMAR ENGINEERS

BOX 455 ESCONDIDO, CA 92025

More Details? CHECK—OFF Page 102
Pedestrian Portable? FM or SSB or both — To mate with the IC-202, or your old FM HT, new goodies from SCS.

Sidekick Linear Portable System — 3 watts in, 30 watts out $219.95

And NEW Amps for FM and SSB modes:

2M3-30L, 3 watts in, 30 watts out $109.95
2M3-140L, 3 watts in, 140 watts out $199.95

NEW! 6 Meter Amp. Model 6M10-100L, 10 watts in, 100 watts out $169.95

And for easy carrying:

DX 'J' Collapsible for 2 meters, including cable (specify connector) $34.95

Write now or contact your nearest dealer!

Specialty Communications Systems
4519 Narragansett Avenue
San Diego, CA 92107

LOUIS N. ANCEAUX, WB6NMT
(Dealer inquiries limited.)

714-222-8381

35 WATT 2 METER FM TRANSCEIVER

FACTORY DIRECT
$645.00 complete, including domestic shipping

SYNTHESIZED

143.5 to 148.5MHz in 5KHz STEPS

Phone toll free today for descriptive literature on the FM-DX and other CLEGG products.

CLEGG
208 Centerville Road, Lancaster, PA 17603
Toll free sales & services - Phone (800) 233-0250
In Pa. call (717) 299-7221 (collect)

STOCK UP ON IC'S NOW!
BUY $50 WORTH; THEN PICK $50 WORTH FREE!

Jan. & Feb. Ads Still In Effect

For Complete Parts Listing
Send SASE to:
WEIRNU
P. O. BOX 942
COLTON, CALIF. 92324

WANT TO KEEP YOUR MOBILE RADIO?

Study These Features on SHUR-LOK
Hump Mount ... THEN LOCK THAT PRECIOUS RIG!

$2995

U.S. PAT. #3410122

nie Patent

Plus $2.00 Shipping and Handling.

Dealer Inquiries Invited.
For info on other models, see last issue of Ham Radio or write.

ORDER TODAY FROM:

Pruiitt Enterprises
Nat'l Manufacturer's Representative
BOX 41H3
TONOPAH, NV. 89049
702-482-3473

Copyright © 1976 by pruitt enterprises

More Details? CHECK—OFF Page 102
The popular CUA 64-12 by Heights Light, permanently beautiful ALUMINUM towers

THE MOST IMPORTANT FEATURE OF YOUR ANTENNA IS PUTTING IT UP WHERE IT CAN DO WHAT YOU EXPECT. RELIABLE DX — SIGNALS EARLIER IN AND LAST OUT.

ALUMINUM Complete Telescoping and Fold-Over Series available Self-Supporting Easy to Assemble and Erect All towers mounted on hinged bases

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.

Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

ALSO TOWERS FOR WINDMILLS

BRAND NEW CARTERVISION COLOR VIDEO RECORDER-REPRODUCER ELECTRONIC UNIT. Contains a power supply with adjustable, regulated outputs of ± 10 to ± 18 VDC. (15 VDC @ 1/2 amp) Third output is 10 VDC at 3 amps. Perfect for CMOS, TTL, Op-Amps and MICROPROCESSORS. Contains over 900 parts with extremely long leads. Includes 182 transistors, IC's, diodes, and FET's, numerous resistors, capacitors, crystals, inductors, varicaps and delay lines. (One 63.5 microsecond precision, quartz, acoustically coupled delay line which stores one line of TV.) Transistors will operate in HEATHKIT TV's. Schematics and semiconductor cross reference supplied upon request. $19.95 * $15.00 shipping. 5x4 for brochure. Madison Electronics Company, Inc., P. O. Box 369, Madison, Alabama 35758. Money back guarantee.

MOULTYRIE AMATEUR RADIO KLU 15th annual hamfest, April 25, Wyman Park, Sullivan, Illinois. Antenna dealer market. Advance ticket sales by mail only, $1.25 or $1.50 at gate. Write: MARK, P. O. Box 327, Mattoon, Ill. 61938.

FIGHT TVI with the RSO Low Pass Filter. For brochure, write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. MIS 334.

ANNOUNCING NEW KLM LINE — FM xcvrs — Multi 7-22 channel and 1 private channel $299.00. Multi 11, 23 channel and 4 channel scan $355.00. Multi UU 11/23 channel and 4 channel scan $379.00. More 2 mtr amps, 200 amps, 432 and 890 mtr amps (with UJ8) $679. Echo II, Echo 70cm. Also Alpha Amps. Larsen ants., Regency, Tennelec. Call or write for discounts. Also package deals on KLM xcvrs with amps. 201-962-4695. Norwid Electronics, 61 Bellot Rd., Ringwood, N. J. 07456.

TELETEYPE PAPER NEW. Fresh from the mill! 4½" rolls white or canary. For all friction Teletypewriter machines. $2/0 case of 12. Buy 5 cases, only $18 each. ZTY-RTTY Paper Co., Box 147, Conemaugh, PA. 15417.

ANTED: Inoperative Collins R930A to repair and maintenance of my R-390A. Ed Wagner, 1018 Birch Haven Cir., Monona, Wis. 53716.

TELETEYPE EQUIPMENT FOR SALE for beginners and experienced operators. RTTY machines, parts, supplies. Special beginners package consists of Model 15 page printer and THS-TG demodulator, $125.00. Atlantic Superol Sales, 700 Naukati Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349.

JOHNSON KW MATCHBOX with SWR $175. 3BE-34, mike, vox, calib., new cabinet, recent factory alignment $260. I'll pay shipping. WAGDCW, 4804 Huron, San Diego, Ca. 92117.

QLS CARDS — Something completely different. Nothing even close to it on the market! Samples: 25¢, WOUTT, Box 11710, Garland, TX 75040.

BUY — SELL — TRADE Transmatch and amplifier components. New Johnson 229-203 inductor for Ultimate transmatch $28, and used air variable capacitors, counterpoles, vacuum variable capacitors, UCS-300 $15, power tubes, sockets, chimes. Send postcard for list of components. Dennis Hoffman, Box 236, Pemberton, N. J. 08680.

TELETYPewriter PARTS, gears, manuals, supplies, tape, tord. $50 (coin) for large list. W31HD, 7218 Roanne Dr., El Paso, TX 79925.

IMMEDIATELY AVAILABLE several Collins 7553C receivers in factory cartons, regularly $1200, now only $959.00 each. Hammarlund VQ-177. solid state HAM BAND/general coverage receiver mint, at $325. Send self addressed stamped envelope for list of used gear to: HJC Electronics, 8214 E. Sprague, Spokane, WA 99208. Phone 509-924-3243.

TELL YOUR FRIENDS about the BIG NEW Ham Radio Magazine!

FOR ALL MODES! AT LAST! An "infinitely-variable" active audio filter for operators who demand the best reception in all modes. Adjust its frequency CONTINUOUSLY from 250 to 2500 Hz in all 3 positions. Instantly zero-in on signals or optimize responses. Peak filters,此文 by quality, etc. with selectivity variable from a super-narrow 50 Hz to flat! Reject whistles, CW, etc. with a deep, adjustable-width notch. Reject SSB, AM, FM hiss and slobber in the sharp-cut-off lowpass position. Don't confuse the QF-1 with simple designs. It has 80 skirts, notch to 70 db, 8 IC op amps and a 1 watt spkr. amp. No batteries to replace. Just plug into your phone jack! Ready to improve your Yaesu, Collins, Swan, Drake, S1, Tempo, Atlas, Kenwood, etc.—any cvr or cvrf made!

Model QF-1 "The Finest" $115. VHF $145.95.

Model QF-2 Basic filter board less per ampp., etc. to 50 VDC. Install in cvr. instructions $32.95.

SHIPPING: Add $1.70 in U.S. or $2.70 in Canada. Add 10% outside U. Amer. (Airmail). 1 yr. warranty.

FREE BROCHURE AVAILABLE!
New England's Friendliest Ham Store - "Stop by and see us".

TUFTS
RADIO ELECTRONICS
386 Main Street, Medford, Mass. 02155

L

25

Ibr

549

50

T41D.

25-54 MHz, 12 volt, less cables, control head, Shlp
wt 65 Ibs. $39.95

CABLES, control head make for above
unlts 410 95

of 10 rolls - Ship wt. 12 lbs.

We Buy Surplus Stock - send S.A.S.E. For
Lacast Sale Sheet - Above Prices FOB
Harr~sbuq.

FRANK ELECTRONICS

THE BEST LIST: & BALLS & SELLERS

THE BIG LIST

BMRS & SELLERS

617-536-8777

Govt. SURPLUS
ELECTRONIC
EQUIPMENT
CATALOG

New ITEMS . . . New BARGAINS! FREE UPON REQUEST! If you haven't received our new Cata-
log, write for free copy today. Address: Dept. HR

SPECTRONICS INC.

PERSONALIZED SERVICE FOR ALL YOUR AMATEUR NEEDS

New Equipment
Transmitters
Receivers
Keyers

Used Equipment
Publications
OSCAR Antennas
Coax

FM Transceivers
Preamps
Mobile Antennas
Beams

TEN-TEC
SEVIERVILLE, TENNESSEE 37862
EXPORT 5715 LINCOLN AVE
CHICAGO, ILLINOIS 60646

SSB...CW...FM...80-10...VHF...UHF

PERSONALIZED SERVICE FOR ALL YOUR AMATEUR NEEDS

New Equipment
Transmitters
Receivers
Keyers

Used Equipment
Publications
OSCAR Antennas
Coax

FM Transceivers
Preamps
Mobile Antennas
Beams

SPECTRONICS INC.
1000 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

More Details? CHECK-OFF Page 102

march 1976
Transformer Riot

- **6.3 Volt 1 Amp Transformer, Fully Shielded.**
 - 3/4" x 1/4"
 - 5 each per pd.
 - **$1.68 each.**

- **Transformer, 115 VAC primary, 18 volt, 5 arcy.**
 - $1.68 each.
 - **12 volt Primary.**

- **Transformer OUTPUT TRANSFORMER—6.3 Volt 1 Amp Transformer. Fully shielded.**
 - $1.40 ea.
 - **8 ohm secondary.**

- **TRANSISTOR OUTPUT TRANSFORMER—6.3 Volt 1 Amp Transformer. Fully shielded.**
 - $1.40 ea.
 - **8 ohm secondary.**

- **94 CRL Primary. 8 ohm secondary.**
 - **88MHY.**
 - With Full Leads—33 for $1.22 ppd. Valued at $1.60 ea.
 - **SPST N.C.**

- **AMERICAN MADE POWER CORD. 6 foot cable is**
 - **3 inch 4 ohm VC Square dia. Round Speaker.**
 - **3 inch 4 ohm VC Square dia. Round Speaker.**
 - **3 inch 4 ohm VC Square dia. Round Speaker.**

- **1 Amp with tap at 6.3.**
 - **1 Amp. Secondary #2: 6.3.**

- **Send Check or Money Order for**
 - **$1.00 to cover additional mailing costs.**

Flea Market

- **PC's, Send large S.A.S.E. for list. Semiconotics, Rt. 33, Box 1, Belleair, Florida 33786.**

- **DIGITAL COUNTER/DISPLAY BOARD—Tired of wiring up dice? Try IC's to build the display for a frequency counter or voltmeter? Now you can use the M.C.C. 102 41/2 Digit Event Counter Board. Features a 3 MHz (typical) CMOS counter with latch. Operating 0.3 LED displays. 4" x 2" with 12 position connector used on all inputs. Completely assembled for $35.00. Also available, a Dual Regulated lab power supply with variable voltage and current limit of 0-250VDC and 20-250mA each section. Supply wired and tested $15.00. The Regulator board used in above supply is also available for building 200-2000ma single supply. 8.50. Postage and handling not included. For more information write Mid-Continent Communications, P. O. Box 4467, Kansas City, Missouri 64127.**

- **IC-230, Brand new, Sale samples, never used.**
 - **$399. KCTC, 516-295-0587.**

- **FREE CATALOG. LID. Microphones, nicads, IC's, relays. 2000 items, 50 transistor and switchers.**
 - ** capit. World's Smallest, Deep.**
 - **18 volt, 5 arcy.**

- **18 volt, 5 arcy.**
 - **12 volt.**

- **160.**
 - **65 cent ea.; 5/$2.55.**

- **3 inch 4 ohm VC Square dia. Round Speaker.**
 - **6.3 Volt 1 Amp Transformer. Fully shielded.**
 - **6.3 Volt 1 Amp Transformer. Fully shielded.**

- **Send Check or Money Order for**
 - **$1.50 to Metal rapping receipt of -BE 3 extra.**

SLINKY!

- **a lot of antenna in a little space**
 - **NEW Slinky® dipole! With helical loading radiates a good signal at 1/10 wavelength long!**
 - **$87.40**

The SW-5 is a remote controlled RF switch with indicator lights telling which antenna is in use. When not in use, KW PEP and more. Remote switch switch is housed in weather tight hinged box. A six wire #18 cable is required to operate the SW-5. Harm control cable works fine up to 150. Heavier cable necessary for longer distance. Receivers operate off 28 VDC built in power supply. No visible effects on SWR. Zero DB insertion loss. Not recommended above 30 MHz. Standard unit is equipped with UHF connectors but BNC, N, H, C connectors are available at additional charge. Models available are SW3, 4, 5, 6, 7, 8, 9. Also heavy duty 10KW units. Special switching systems are available. Tell us your needs.

Mastercharge & BankAmericard accepted.

ANTENNA MART

- **Box 7 • Ripley, Iowa 50235**
 - **Phone 515-436-7718**

More Details? CHECK—OFF Page 102
Great New Turn On

MOCO II ushers in a new generation of Morse Code Readers. Its central processing unit is combined with computer programmed firmware totalling more than 8,000 bits of memory, which permit MOCO II to translate standard alphanumeric Morse Code, even punctuation automatically.

Simply connect MOCO II to the speaker leads and then just turn it on. No knobs, no adjustments. One switch calibration automatically determines and displays sending speed.

MOCO II is not a kit. It's completely assembled and tested, includes integral power supply, parallel ASCII and Baudot outputs for existing display units.

PRICE: $199.00

Available as options are a video display, or a teletype driver with 60 ma. loop supplies.

Order from Howard Microsystems, Inc., 6950 France Avenue
South, Minneapolis, MN 55435 (612) 925-2474.

DISPLAY OPTIONS
A. Baudot Driver/Interface for TTY $75.00
B. Video Character Display — connects with your TV $200.00
(Kit) $125.00
All orders — add $2.75 shipping/handling

HOWARD MICROSYSTEMS, INC.

ANNOUNCING ...

... MOSLEY

A & W Electronics, Inc. is your source for all Mosley antenna products. Exclusive distributors in this area for Mosley antenas and accessories. Pictured above is the world famous TA-33 TRAP MASTER beam for 10, 15, and 20 meters. Exceptionally broadbanded incorporating Mosley's famous Trap-Master traps. Power rating 2 KW PEP SSB and may also be used on 40 meters with TA-40KR conversion kit.

Call or write for full specifications and price schedule on all Mosley products.

Call or Write for info on many other lines including Standard, Regency, Bomar Crystals, etc.

Prepaid Orders accompanied by M.O. or Bank Checks are shipped immediately. U.P.S. C.O.D. also available if specified.

A & W ELECTRONICS
491 RIVERSIDE AVE. MEDFORD, MA 02155
617-396-5550

march 1976 Page 95

More Details? CHECK—OFF Page 102
SUPER CRYSTAL
THE DELUXE DIGITAL SYNTHESIZER!!

MFA-22 DUAL VERSION
- Transmit and Receive Operation: All units have both Simplex and Repeater Modes
- Accurate Frequency Control: .0005% accuracy
- Stable Low Drift Outputs: 20 Hz per degree C typical
- Full 2 Meter Band Coverage: 144.00 to 147.99 MHz in 10K steps
- Fast Acting Circuit: 0.15 second typical settling time
- Low Impedance (50 ohm) Outputs: Open to all radio amateurs - worldwide. Remind your hams friends of the contest. Details from Phil, KD7TB, c/o Global Research, Box 271, Lombard, Ill. 60148.

OSCAR 7, SSB-CW TRANSMIT CONVERTERS. 28 or 50 MHz input at 20 mw. Solid state, for 12 volt supply. 35 watt solid state amplifier available for this converter. Units designed and built by W16NC. Write for information. UHF-VHF Communications, 53 St. Andrew, Rapid City, S.D. 57701.

1st ANNUAL 6 METER GROUND WAVE & TROPO CONTEST. April 4, 1976. 0300-0700 GMT. All modes. Prizes. Details from Phil, KD7TB, c/o Global Research, Box 271, Lombard, Ill. 60148. Let's preserve and encourage 6 meter operation.

STOLEN: Heath HW-202 2m transceiver. Has following crystals installed: 34/94, 94/94, 07/67, 16/76, 88/88. Can be identified by wrong size wire on PC board, modulation on, set ROT, normal use will clip out on repeaters. Has other marks that can be recognized by owner. Stolen from Doc A. L. Stigers, (303) 227-8286, 2532 Beach Ct., Golden, Colo. 80401. Any information notify owner or any law enforcement agency. Please do not discuss this incident on any of the above frequencies.

WANTED, AT SURPLUS PRICES, Tracor phase comparator model 1LPD. 895A Tracor frequency difference meter model model 527A. Tracor Sulzer 5C or 2.5C frequency standard or similar equipments. Offers for 100 vintage British Radio magazines 1924-1935. A. Fletcher, 62, Moorbridge Lane, Stapleford, Nottingham, England.

Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished.

Regularly $70.00. Now, over 30% discount (only $49.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax.

Send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

D-D ENTERPRISES
Dept. A, P. O. Box 7776
San Francisco, CA 94119
FREQUENCY STANDARD

- Only $37.50 (less batteries)
- POSTPAID USA & CANADA
- Precision crystal
- Fully guaranteed
- Markers at 100, 50, 25, 10, or 5 KHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Free brochure on request.
- Order direct. $37.50 PPD U.S. & Canada. California residents add 6 percent sales tax.

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025
Phone: (714) 747-3343

BARRY ELECTRONICS

- **FREE 7 Segment Digital Readout with purchase of every PB-600 PB-100**

NEW EQUIPMENT IN STOCK

- **DRAKE SPR-4 Communications Receiver**
- **DRAKE R4-C Receiver with Noise Blanker in mint condition**
- **Central Electronics Model 200V transmitter**, completely factory reconditioned with all lab reports
- **Robot Model 70 Slow Scan Monitor, 10 hours use, lab checked**
- **Drake 2NT Transmitter, lab checked, mint condition**
- **Hallicrafters SX-130, lab checked**
- **Collins S16F Power Supply complete**
- **Johnson Viking Matchbox Model 250-23-3, mint condition**
- **Motorola Receiver Model R220/URR, 20-220 Mc, AM/FM, SS6, complete, lab checked**
- **DRAKE C4 Station Console, lab checked**
- **Factory Authorized Service Repair for Collins Amateur Radio Products.**
- **Microprocessor Home Study Training Kits**
- **Newtronics Magna Mini Transmitter, Model 1002/1003**
- **Drake SPR-4 Communications Receiver**
- **Drake R4-C Receiver with Noise Blanker in mint condition**
- **Central Electronics Model 200V transmitter**, completely factory reconditioned with all lab reports
- **Robot Model 70 Slow Scan Monitor, 10 hours use, lab checked**
- **Drake 2NT Transmitter, lab checked, mint condition**
- **Hallicrafters SX-130, lab checked**
- **Collins S16F Power Supply complete**
- **Johnson Viking Matchbox Model 250-23-3, mint condition**
- **Motorola Receiver Model R220/URR, 20-220 Mc, AM/FM, SS6, complete, lab checked**
- **DRAKE C4 Station Console, lab checked**
- **Factory Authorized Service Repair for Collins Amateur Radio Products.**

Continental Specialties Proto Boards

- **FREE 7 Segment Digital Readout with purchase of every PB-600 PB-100**

THE GRABBERS! 6-DIGIT COUNTERS!

- **6-Digit Kit**
 - **$69.95 (30mHz)**
- **210854**

- **6-Digit Kit**
 - **$119.95 (250mHz)**

We have a whole wonderful line of unbelievable counters starting at $45.95! All counters are also available factory wired and tested. Drop us a line or give us a call today.

NEW from NRI

- **Home training in AMATEUR RADIO**

 NRI, leader in Communications, Television, Electronics and TV-Radio home training, now offers the first in Amateur Radio courses, designed to prepare you for the FCC Amateur License you want or need.

 Don't lose your favorite frequency

 The FCC has said "either-or" on licensing, but to pass Advanced and Extra Class exams, you need the technical guidance as offered by NRI. NRI Advanced Amateur Radio is for the ham who already has a General, Conditional or Tech Class ticket. Basic Amateur Radio is for the beginner and includes transmitter, 3-band receiver, code practice equipment. Three training plans offered. Get all the facts. Mail coupon. No obligation. No salesman will call on you. NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

MAIL NOW

- **46-016**

- **Please send me information on Amateur Radio training**

- **Name**
- **Age**
- **Address**
- **City**
- **State**
- **Zip**

ACCREDITED MEMBERS NATIONAL HOME STUDY COUNCIL

More Details? CHECK-OFF Page 102

BARRY 512 Broadway NY, NY 10012 ELECTRONICS

TELEX 12-74070 Add shipping-excess refunded-Quote FOB N.Y.C.

371X566

224 OPAL BLVD., STEUBENVILLE, OHIO 43925 Phone 614 264-6464

march 1976 | p 97
<table>
<thead>
<tr>
<th>State</th>
<th>City</th>
<th>Address</th>
<th>Phone</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>Henry Radio</td>
<td>931 N. Euclid Ave, Anaheim, CA 92801</td>
<td>714-772-9200</td>
<td>The world's largest distributor of Amateur Radio equipment.</td>
</tr>
<tr>
<td></td>
<td>HENRY RADIO CO., INC.</td>
<td>11240 W. Olympic Blvd, Los Angeles, CA 90064</td>
<td>213-477-6701</td>
<td>The world's largest distributor of Amateur Radio equipment.</td>
</tr>
<tr>
<td></td>
<td>HAM RADIO OUTLET</td>
<td>999 Howard Avenue, Burlingame, CA 94010</td>
<td>415-342-5757</td>
<td>Northern California's largest new and used ham inventory.</td>
</tr>
<tr>
<td></td>
<td>M-TRON</td>
<td>2811 Telegraph Avenue, Oakland, CA 94609</td>
<td>415-763-6262</td>
<td>We service what we sell.</td>
</tr>
<tr>
<td>Colorado</td>
<td>C W ELECTRONIC SALES CO.</td>
<td>1401 Blake St, Denver, CO 80202</td>
<td>303-573-1386</td>
<td>Rocky Mountain area's complete ham radio distributor.</td>
</tr>
<tr>
<td>Illinois</td>
<td>KLASS RADIO, INC.</td>
<td>8400 North Pioneer Parkway, Peoria, IL 61614</td>
<td>309-691-4840</td>
<td>Let us quote your Amateur needs.</td>
</tr>
<tr>
<td></td>
<td>SPECTRONICS, INC.</td>
<td>1009 Garfield Street, Oak Park, IL 60304</td>
<td>312-949-6778</td>
<td>Chicagoland's Amateur Radio leader.</td>
</tr>
<tr>
<td>Indiana</td>
<td>HOOSIER ELECTRONICS</td>
<td>P. O. Box 2001, Terre Haute, IN 47802</td>
<td>812-239-1456</td>
<td>Ham Headquarters of the Midwest. Store in Meadow Shopping Center.</td>
</tr>
<tr>
<td></td>
<td>TAFTS RADIO ELECTRONICS</td>
<td>386 Main Street, Medford, MA 02155</td>
<td>617-395-8280</td>
<td>New England's friendliest ham store.</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC DISTRIBUTORS</td>
<td>1960 Peck Street, Muskegon, MI 49441</td>
<td>616-726-3196</td>
<td>All major brands, new/used equipment & accessories.</td>
</tr>
<tr>
<td></td>
<td>PURCHASE RADIO SUPPLY</td>
<td>327 E. Hoover, Ann Arbor, MI 48104</td>
<td>313-668-8696</td>
<td>We still sell Ham parts!</td>
</tr>
<tr>
<td>Minnesota</td>
<td>ELECTRONIC CENTER, INC.</td>
<td>127 Third Avenue North, Minneapolis, MN 55401</td>
<td>612-338-5881</td>
<td>ECI is still your best buy.</td>
</tr>
<tr>
<td>Missouri</td>
<td>HAM RADIO CENTER, INC.</td>
<td>8342 Olive Blvd, P. O. Box 28271</td>
<td>800-325-3636</td>
<td>Call toll free.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>ATKINSON & SMITH, INC.</td>
<td>17 Lewis St, Eatontown, NJ 07724</td>
<td>201-542-2447</td>
<td>Ham supplies since "55".</td>
</tr>
<tr>
<td>New York</td>
<td>ADIRONDACK RADIO SUPPLY, INC.</td>
<td>185 W. MAIN STREET, Amsterdam, NY 12010</td>
<td>518-842-8350</td>
<td>Yaesu dealer for the Northeast.</td>
</tr>
<tr>
<td></td>
<td>CFP COMMUNICATIONS</td>
<td>211 North Main Street, Horseheads, NY 14845</td>
<td>607-739-0187</td>
<td>Jim Beckett, WA2KTI, Manager</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC EXCHANGE</td>
<td>136 N. Main Street, Souderston, PA 18964</td>
<td>215-723-1200</td>
<td>New & Used Amateur Radio sales and service.</td>
</tr>
</tbody>
</table>

The editors of *Ham Radio* are grateful to all the dealers who take the time to provide this important service. If you are interested in becoming a dealer, please contact us for more information.
South Dakota

BURGHARDT AMATEUR CENTER
124 FIRST AVE, N.W. P.O. BOX 73
WATERTOWN, SD 57201
605-886-7311

Specializing in ham equipment for the Ark-La-Tex.

Texas

ALTEC COMMUNICATIONS
1800 S. GREEN STREET
LONGVIEW, TX 75601
214-757-2831

Virginia

ARCADE ELECTRONICS
7048 COLUMBIA PIKE
ANNANDALE, VA 22003
703-256-4610

Washington

AMATEUR RADIO SUPPLY CO.
6213 13TH AVE, SO.
SEATTLE, WA 98108
206-767-3222

Amateur center of the Northwest.

ADFV ELECTRONICS
BOX 4181 BN. WOODSIDE, CA 94062
Tel. (415) 851-0455

FOR THE ULTIMATE ANSWER to your Communications needs contact us NOW.We are distributors for multiple lines of Amateur and Two-Way Radio Products. Call or write for information. Dealer inquiries invited.

<table>
<thead>
<tr>
<th>401</th>
<th>15/51</th>
<th>51/50</th>
<th>41/50</th>
<th>31/45</th>
<th>21/40</th>
<th>11/35</th>
<th>01/30</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 01</td>
<td>01 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
</tr>
<tr>
<td>400 01</td>
<td>01 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
</tr>
<tr>
<td>400 01</td>
<td>01 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
</tr>
<tr>
<td>400 01</td>
<td>01 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
<td>00 00</td>
</tr>
</tbody>
</table>

Gray impact plastic case 5% x 6% x 2 1/2. 115 Volts 60 cycle power supply included.

FG-2 Function Generator Kit shipping weight 3.0 lbs. $39.95 PPD

SEND FOR OUR NEW 1976 CATALOG

listing this and other unique kits "FREE" by simply circling our number on the reader service card.

SOUTHWEST TECHNICAL PRODUCTS CORPORATION

DEPT. H
219 W. Rhapsody
San Antonio, Texas 78216

0.1 Hz. to 100 Khz.

For only $39.95.

Our new FG-2 Function Generator kit gives you all five of the most useful waveforms for design and testing at one fourth the cost of previous similar instruments. Thanks to improved IC's the FG-2 now features amplitude stability of + 1 db over any range, Sine wave distortion of less than 1% from 20 Hz. to 20,000 Hz. and an output of 4.0 Volts peak-to-peak with adjustable offset. The offset selector lets you put the positive peak, negative peak, or the center of the waveform on DC ground. The DC coupled circuit keeps the waveforms in exactly the same position no matter what the level control setting.
Apollo Products-Little Giant Trans Systems Tuner Kit — $99.50

Designed and engineered after "Apollo" — "Little Giant" 2500X-2, for an "engineered performance" Trans Systems Tuner and Adaptations of the Lew McCoy Transmatch, with power handling at the KW plus level!

Kit includes:
1 heavy inductance for 10-15-20-40-80 meters
6 pec stand-offs for 4 condensers
and 2 for inductance
1 HD switch for band catching 10 thru 80 meter coverage
1 pkg. 12 gauge tinned round wire
Cabinet included — Apollo "Shadow Boxes" M Kit includes schematic. Recommend parts layout.
INFO NOTE *377 OHM and **600 OHM "Open wire spaced ladder line" air dielectric.
"5 x wire diam. *6 x wire diam.
info only — not supplied.

Apollo Products, Box 245, Vaughnsville, Ohio 45893 419-646-3495
Subsidiary "Little Giant Antenna Labs"

WANTED FOR CASH

490-T Ant. Tuning Unit
(Also known as CU1658 and CU1669)

Kit 2000X—KW
Kit price $99.50, FOB factory

100 march 1976 More Details? CHECK—OFF Page 102
KEYBOARD ENCODERS

"Customized" 2-Meter FM Transceiver

MIDLAND MODEL 13.500 WITH 12-DIGIT PAD $249.00

ENCLOSURES

MOBILE $8.95 12 MW

BASE $8.95 12 BW

ENCLOSURE WIRED WITH LIGHTED W/E PAD $49.95

12 DIGIT SUB-MINIATURE KEYBOARD ENCODER

Complete with Motorola Chip and PC Board Model 16 MPW $39.95

Dealer Inquiries Invited

All prices PREPAID shipping Cont'l USA

KING PRODUCTS

Manufacturer & Distributor of Communications Equipment

P. O. BOX A, LOMITA, CA 90717 • (213) 534-4402

CLOSE OUT SPECIALS

• REFERENCE DATA FOR RADIO ENGINEERS

A must for any serious amateur. In 45 chapters it covers not only every area of basic radio theory, but also goes into such modern areas as micro-miniature electronics and space communications. Probably the most complete reference of this type. Sales of over 350,000 testify to its wide acceptance. 1,196 pages, hardbound.

Was $23.00

Order 20678

Now Only $14.95

We have just purchased the complete inventory of recently superseded editions of the RADIO HANDBOOK and REFERENCE DATA FOR RADIO ENGINEERS. Here is a unique opportunity to own copies of these outstanding reference books at very attractive prices.

• RADIO HANDBOOK, 19th Edition

The famous communications handbook which is the electronics industry standard for engineers, technicians and advanced amateurs. Includes all types of radio communications equipment, RTTY circuits, latest semiconductor and computer circuitry. 986 pages, hardbound.

Was $16.95

Order 24030

Now Only $9.95

Your instructors — one or more of the following

David G. Larsen, WB4HJY

Instructor, Department of Chemistry, Virginia Polytechnic Institute & State University

Dr. Peter R. Rony

Professor, Department of Chemical Engineering, Virginia Polytechnic Institute & State University

Mr. Jonathan A. Titus

President, Nanotran inc. (Microcomputer consulting firm), General manager, Tycon, Inc.

Mr. Christopher Titus

Consultant

*One of the authors of the Bugbook series

DATE & LOCATION:

Friday, April 23 and Saturday, April 24 (Hamvention Weekend) at the Imperial House North, I-75 and Needmore Road, Dayton, Ohio.

FEE: $25 plus $35 for required textbooks (A complete set of Bugbooks I, II, III, and IV.)

TO ENROLL: Send $60 along with your name, address and telephone number to HAM RADIO. Be sure to indicate your choice of dates. May we suggest you hurry as registration is limited.

Greenville, NH 03048 • 603-878-1441

ham radio

DAYTON

microcomputer seminars

An introduction to interfacing, programming and applications.

The course so widely acclaimed at SAROC

For individuals who are interested in learning about microcomputers and how to get started in applying them to real-world situations.

An all-day program including:

1 What is a microcomputer? A Microcomputer?
2 Where do microcomputers fit? What are appropriate applications?
3 Microcomputer interfacing: a. Bus structure; b. Control signals; c. Data flow
4 Microcomputer memory: a. Types of memory: RAM, ROM, and PROM; b. ROM/RAM trade-offs
5 Microcomputer Input/Output: a. Device addressing; b. Control of Input/Output; c. Communication with the outside world
6 Microcomputer interrupts and flags: a. Hardware vs software; b. Advantages and disadvantages of interrupt schemes; c. Timing
7 Microcomputer software: a. As a replacement for hardware; b. Modular approaches
8 Microcomputer peripherals and I/O port implementation: a. UARTs and communications chips; b. FIFOs and buffer storage; c. PPI chips; d. I/O port chips
9 Microcomputer software development: a. Machine language; b. Assembly language and editor/assemble
10 How do I get started?: a. Equipment and materials; b. Texts; c. Costs: projections of time and money

Your instructors — one or more of the following

David G. Larsen, WB4HJY

Instructor, Department of Chemistry, Virginia Polytechnic Institute & State University

Dr. Peter R. Rony

Professor, Department of Chemical Engineering, Virginia Polytechnic Institute & State University

Mr. Jonathan A. Titus

President, Nanotran inc. (Microcomputer consulting firm), General manager, Tycon, Inc.

Mr. Christopher Titus

Consultant

*One of the authors of the Bugbook series

Ham Radio seminars

Hamvention Seminars:

More Details? CHECK-OFF Page 102
Larsen Külrod leads

- In simplicity and ease of installation!
- In low silhouette: good looks!
- In a performance difference you can hear!

Even when working through a repeater you want everything going for you that you can. That’s what you have when you use the Larsen Külrod antenna. Has patented, greatly simplified, mount that stays put, and assures positive ground plane...less than 1.3 to 1 V.W.S.R. The exclusive Külrod whip assures maximum radiating efficiency with no loss to height. And for looks...it’s the one"xYLs pick. Get the Jim 150-K for complete 2 meter use...the JAM50-K for UHF.

Sold with no-nonsense money back guarantee. Easy-to-follow installation instructions. Get full fact and prices today.

Larsen Magnetic Mount...even the dragsters can’t shake this one loose. Has real stubbo hold for no-holes, no-mar mounting in seconds. Ask for Larsen MM-MLM. Includes coax and connector all attached.

*Külrod a Registered Trademark

Pioneers in communications antenna form...over 25 years.
Now...both USB & LSB for even greater value...lower, beat-inflation pricing!

The great response to the KLM, Multi-2000 VHF transceiver by amateurs world-wide has now made it possible to manufacture this fine set in quantities substantially larger than the original production runs. Result...new, value-added features, lowered manufacturing costs.

KLM will now have more sets to sell so, with the Multi-2000A, encourages the buyer by passing along a substantial portion of the production savings. Example: Former price, 795.00. Your inflation-fighting price today is 679.00...a saving of 116.00! But without extra cost you now get Lower Sideband, making the KLM Multi-2000A four mode equipment with NBFM, WBFM, SSB (with both USB and LSB) plus CW. Power output remains at 10 watts.

Here truly is the complete full feature VHF station for base or mobile. It has both 12VDC and 115VAC supplies built-in, is actually ready to operate right out of the shipping carton. It offers highest versatility and crystal stability. Any of 200 channels can be selected instantly in 10 kHz steps by three dials controlling the phase lock loop frequency synthesizer setup. Continuous interpolation within the 10 kHz segments (144-148 MHz) is afforded by VXO for trans./rec. and RIT for receive. There are also three FM crystal positions for frequently used channels.

Check the Multi-2000A panel in the photo. Note the convenient, “people engineered” control arrangements, the simple, positive channel setup and the many refinements that contribute to relaxed, enjoyable conversations in any of four different modes.

At your favorite dealer or write direct.

KLM electronics
17025 Laurel Road, Morgan Hill CA 95037
(408) 226-1780, (408) 779-7363

Economically priced 160W solid-state Linear Amplifier

160W power out from Multi-2000A (or other models/brands) with 5-15W input, SSB, CW, AM, FM. Broad band ... 144-148MHz without tuning. Automatic RF switching. 15.5 VDC. Also 144, 220, 450MHz models, 12 to 120W out.

More Details? CHECK-OFF Page 102
INTER-OFFICE MEMO

TO: MARVIN DRUSKOFF, General Manager
FROM: ROBERT BROWN, Chief Engineer

DATE: 12/1/75

Here is the information on our new “B” series of repeaters. All features are standard on all units, kits as well as wired. All checks indicate this is the hottest repeater on the market.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Power</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPT 1448 Kit</td>
<td>Repeater - 2 meter - 15w complete (less crystals)</td>
<td>465.95</td>
<td>110VAC/220VAC 50/60HZ</td>
<td></td>
</tr>
<tr>
<td>RPT 2208 Kit</td>
<td>Repeater - 220 MHz - 15w complete (less crystals)</td>
<td>465.95</td>
<td>110VAC/220VAC 50/60HZ</td>
<td></td>
</tr>
<tr>
<td>RPT 4328 Kit</td>
<td>Repeater - 10 watt - 432 MHz (less crystals)</td>
<td>515.95</td>
<td>110VAC/220VAC 50/60HZ</td>
<td></td>
</tr>
</tbody>
</table>

Marv -
Not shown in photo is new power supply. Has foldback current limiting (you can short supply & will not damage it), also over voltage protection (a short in the supply will shut it down so repeater is not damaged.) Don’t forget our CWID with its 154 bit field programmable memory.

Bob

PRICES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Power</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPT 1448</td>
<td>Repeater - 15 watt - 2 meter - factory wired and tested</td>
<td>695.95</td>
<td>110VAC/220VAC 50/60HZ</td>
<td></td>
</tr>
<tr>
<td>RPT 2208</td>
<td>Repeater - 15 watt - 220 MHz - factory wired and tested</td>
<td>695.95</td>
<td>110VAC/220VAC 50/60HZ</td>
<td></td>
</tr>
<tr>
<td>RPT 4328</td>
<td>Repeater - 10 watt - 432 MHz - factory wired and tested</td>
<td>749.95</td>
<td>110VAC/220VAC 50/60HZ</td>
<td></td>
</tr>
</tbody>
</table>
Explore the world of VHF

Join the VHF action with the FTV-650B and FTV-250. These matching economical additions offer VHF transmitting and receiving when coupled to your HF transceiver.

All Yaesu products are backed by a strong warranty and a nationwide sales and service dealer network.

See your Yaesu dealer or write for our catalog. Yaesu Musen USA, Inc., 7625 E. Rosecrans, No. 29, Paramount, California 90723

VHF Mobile/Base Station

FT-620B
6 Meter Transceiver

Our all new 6 meter solid state, 10 watt SSB, CW and AM transceiver features in one compact unit complete band coverage in eight 500 KHz segments with 1KHz VFO readout across the entire band. Provision for up to four crystal controlled channels in each of the eight band segments, a receiver offset clarifier, and an effective noise blanker — all add up to total operating flexibility. A built-in AC and DC power supply adds to the portability of the FT-620B transceiver.

Add up all these features and you have another total performance transceiver from the radio company.
When the FCC approves a 750kW power level for 12 clear channel AM stations to better serve the people of the United States, EIMAC tubes will do the job.

Your choice for Class C, Doherty, Ampliphase or PDM service. EIMAC makes it work. Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221.