one dollar

February 1976

- solid-state power amplifiers 16
- amateur television 20
- vhf prescaler 32
- microprocessors 50
- antenna gain 54

dt-600 rtty demodulator
Tempo VHF/ONE

the “ONE” you’ve been waiting for

No need to wait any longer – this is it! Whether you are already on 2-meter and want something better or you’re just thinking of getting into it, the VHF/ONE is the way to go.

- Full 2-meter band coverage (144 to 148 MHz for transmit and receive).
- Full phase lock synthesized (PLL) so no channel crystals are required.
- Compact and lightweight – 9.5” long x 7” wide x 2.25” h. Weight ~ 4.5 lbs.
- Provisions for an accessory SSB adaptor.
- 5-digit LED receive frequency display.
- 5 KHz frequency selection for FM operation.
- Automatic repeater split - selectable up or down for normal or reverse operation.
- Microphone, power cord and mounting bracket included.
- Two built-in programmable channels.
- All solid state.
- 10 watts output.
- Super selectivity with a crystal filter at the first IF and E type ceramic filter at the second IF.
- 800 Selectable receive frequencies.
- Accessory 9-pin socket.

TEMPO CL 146A

... a VHF/FM mobile transceiver for the 2 meter amateur band. It is compact, ruggedly built and completely solid state. One channel supplied plus two channels of your choice FREE

144 to 148 MHz coverage • Multifrequency spread of 2 MHz • 12 channel possible • Metering of output and receive • Internal speaker, dynamic microphone, mounting bracket and power cord supplied. A Tempo “best buy” at $239.00.

TEMPO CL 220

As new as tomorrow! The superb CL-220 embodies the same general specifications as the CL-146A, but operates in the frequency range of 220-225 MHz (any two MHz without retuning). At $299.00 it is undoubtedly the best value available today.

TEMPO VHF/UHF AMPLIFIERS

Solid state power amplifiers for use in most land mobile applications. Increase the range, clarity, reliability and speed of two-way communications.

Most of the above products are available at dealers throughout the U.S.

Henry Radio

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127

Prices subject to change without notice
Whether you choose the SB-104, or the HW-104, you're getting one of the finest Amateur transceivers you can buy at any price. And because you build them yourself, you get a feel for the equipment you simply can't duplicate with ready-made units. 100% solid-state construction including finals...totally broadbanded circuitry for instant QSY without pre-selector, load or tune controls...switchable 100 watts/1 watt out...0.5 μV typical sensitivity...super-clean operation thanks to reduced cross-mod and IM distortion...specs that show what state-of-the-art is all about...and styling second to none!

The SB-104 offers true digital frequency readout with resolution to 100 Hz on all bands, and complete frequency coverage from 3.5 MHz through 29.7 MHz without accessories.

The HW-104, for $130 less, brings you the same broadbanded circuitry as the SB-104, but it has an easy-to-read circular tuning dial, and 3.5 to 29.0 MHz coverage (to 29.7 MHz available with HWA-104-1 accessory). It's one of the best price/performance combinations available in amateur radio today.

The SB-104 with sophisticated station accessories. Unquestionably, some of the finest Amateur gear you can own.

Clockwise from top:

SB-104 Transceiver:
SB-230 Conduction-Cooled Linear: 1200 PEP SSB: 1000 watts CW from less than 100 watts drive. Also 400 watts for SSTV and RTTY.
Kit SB-230, Shpg. wt. 40 lbs..................339.95
SB-614 Station Monitor: CRT indicates signal quality. Also RF envelope and trapezoid displays. For SSB, CW and AM to 1 kW; 80-6 meters.
Kit SB-614, Shpg. wt. 17 lbs..................139.95
SB-634 Station Console: 24-hour clock, 10-minute ID timer, R F wattmeter, SWR bridge, phone patch.
Kit SB-634, Shpg. wt. 14 lbs..................179.95

SB-644 Remote VFO: For split transmit/receive on SB-104. Not for HW-104.
Kit SB-644, Shpg. wt. 10 lbs..................119.95

Fixed Station Power Supply. Fits inside accessory speakers of SB-104 and HW-104. 120/240 VAC, 60/50 Hz.
Kit HP-1144, Shpg. wt. 28 lbs..................89.95

Station Speakers: 5x7", 3.2 ohm speakers response-tailored to SSB. With cable, connectors and cabinet.
Kit SB-604, For SB-104 Shpg. wt. 8 lbs..................29.95
Kit HS-1661, For HW-104 Shpg. wt. 5 lbs..................19.95

Useful options for both the SB-104 and HW-104.
SBA-104-1, Noise Blanker, Shpg. wt. 1 lb..................26.95
SBA-104-2, Mobile Mount, Shpg. wt. 6 lbs..................36.95
SBA-104-3, 400 Hz CW Crystal Filter, Shpg. wt. 1 lb..................39.95

Heath Company, Dept. 122-14, Benton Harbor, Michigan 49022

Heath Company
Dept. 122-14
Benton Harbor, Michigan 49022
Send me my FREE Heathkit Catalog.

Name
Address
City State
AM-326 Zip

FREE!
Send me my FREE Heathkit Catalog.
The HAL ST-6000 demodulator/keyer and the DS-3000 and DS-4000 KSR/RO series of communications terminals are designed to give you superlative TTY performance today—and in the future. DS series terminals, for example, are re-programmable, assuring you freedom from obsolescence. Sophisticated systems all, these HAL products are attractively priced—for industry, government and serious amateur radio operators.

The HAL ST-6000 operates at standard shifts of 850, 425, and 170 Hz. The tone keyer is crystal-controlled. Loop supply is internal. Active filters allow flexibility in establishing different tone pairs. You can select AM or hard-limiting FM modes of operation to accommodate different operating conditions. An internal monitor scope (shown on model above) allows fast, accurate tuning. The ST-6000 has an outstandingly high dynamic range of operation. Data I/O can be RS-232C, MIL-188C or current loop.

The DS-3000 and DS-4000 series of KSR and RO terminals provide silent, reliable, all-electronic TTY transmission and reception, or read-only (RO) operation of different combinations of codes, including Baudot, ASCII and Morse. The powerful, programmable 8080A microprocessor is included in the circuitry to assure maximum flexibility for your present needs—and for the future. The KSR models offer you full editing capability. The video display is a convenient 16-line format, of 72 characters per line.

These are some of the highlights. The full range of features and specifications for the ST-6000 and the DS series of KSR and RO terminals is covered in comprehensive data sheets available on request. Write for them now—and tune in to the most sophisticated TTY operation you can have today...or in the future.
FEBRUARY 1976
volume 9, number 2

editorial staff
James R. Fisk, W1DTY
editor-in-chief
Patrick A. Hassel, WN0QMJ
Alfred Wilson, W6NF
assistant editors
J. Jay O'Brien, W6GO
managing editor
James A. Harvey, W6AIK
James W. Hebert, W4AGC
Joseph J. Schroeder, W5JJUV
associate editors
Wayne T. Pierce, K3SUK
cover
publishing staff
T. H. Tenney, Jr., W1NUL
publisher
Harold P. Kent
assistant publisher
Fred D. Moller, Jr., WN1USO
advertising manager
Cynthia M. Schissler
assistant advertising manager
Therese R. Bouriquet
circulation manager
offices
Greenville, New Hampshire 03048
Telephone: 603-678-1441
ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048

subscription rates
U.S. and Canada: one year, $10.00
three years, $20.00
Worldwide: one year, $12.00
three years, $24.00

foreign subscription agents
Ham Radio Canada
Box 114, Goderich
Ontario, Canada, N7A 3Y5
Ham Radio Europe
Box 444
164 04 Upplands Vasby, Sweden
Ham Radio France
20 bis, Avenue des Clamens
89000 Auxerre, France
Ham Radio UK
United Kingdom
Ham Radio UK
Post Office Box 64, Harrow
Middlesex HA3 6HS, England
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1976 by
Communications Technology, Inc.
Title registered at U.S. Patent Office
Printed by American Press, Inc.
Gordonville, Virginia 22942, USA
Microfilm copies are available from
University Microfilms
Ann Arbor, Michigan 48103
Second-class postage
paid at Greenville, N.H. 03048
and at additional mailing offices

contents

8 DT-600 RTTY demodulator
Garey K. Barrell, K4OAH
Robert C. Clark, K3HVV
Archie C. Lamb, WB4UKR

16 solid-state power amplifiers
Irving M. Gottlieb, W6QMD

20 vestigial television system
H. Paul Shuch, WA6UAM

26 low-cost digital clock
Douglas S. Schmieskors, Jr., WA6DLYW

32 vhf prescaler for digital counters
Marion D. Kitchens, Jr., K4GOK

36 50 years of television
James R. Fisk, W1DTY
David L. Ingram, K4TWJ

48 1979 World Administrative
Radio Conference
Herbert H. Hoover III, W6APW

50 microprocessors
David G. Larsen, WB4HYJ
Peter R. Rony
Jonathan A. Titus

54 antenna gain
Robert E. Leo, W7LR

58 the UAR/T and how it works
Jonathan A. Titus

64 voltage troubleshooting
Michael James

4 a second look
110 advertisers index
95 flea market
103 ham mart
70 ham notebook
76 new products
64 repair bench
6 stop press
With AMSAT-OSCAR 7 now well into its second year of continuous operation, it's becoming more and more apparent that an increasing number of amateur stations using mode B (the 432 to 144 MHz repeater) are using much more power than the recommended 100 watts effective radiated power (erp). When more than the recommended power is used, it swamps the agc circuit in the transponder, resulting in an excessive amount of current being drawn from the on-board power source.

In maximum sunlight the solar panel on the spacecraft can supply approximately 1 ampere of current; if more than 1 ampere is required to power the repeater it must be supplied by the on-board battery. However, the red-line limit on battery discharge current is about 1.2 ampere, and when amateurs using mode B run excessive power, the current drawn from the battery often exceeds 2 amperes when OSCAR 7 is in sunlight, and more than 3 amperes when the satellite is in darkness.

At times this heavy current drain on the battery has caused the battery voltage to drop to the point where the under-voltage protection circuits have taken over. These circuits were designed to place the spacecraft in mode D (the discharge mode, both transponders turned off) when the battery voltage drops to 12.1 volts. The spacecraft systems have already switched to mode D a number of times, and some unexpected switches to mode A (the 144 to 29 MHz repeater) have also occurred.

Amateurs who are running more than the recommended 100 watts erp are conspicuous because their signals are much louder than the rest of the stations on the channel. If you tune across the mode B passband and note that certain stations in your local area are consistently much louder than others in the passband, please contact them directly, explain the adverse effects of excessive erp, and ask them to reduce power.

If they indicate that they're only running 100 watts output, ask them what they're using for an antenna — one-hundred watts of rf into a single KLM, Tilton, K2RIW or WØEYE Yagi produces an effective radiated power of 2000 to 3000 watts! Stations running 100 watts rf output into multiple Yagi arrays may have effective radiated powers of 8 kW or more. Some of the worse offenders appear to be a few 432-MHz EME operators who are not using 100 watts, but their kilowatt finals, and not with a single no-gain antenna but with their multiple Yagi arrays which have gains of 20 dBd or more, for an effective radiated power greater than 60 kilowatts. Their signals are brutally loud, but you can tell when they're on the air by simply monitoring telemetry channel 2B.

Since there may be some amateurs who don't understand the meaning of effective radiated power, following is a list of popular 432-MHz Yagis, and the rf power input for 100-watts effective radiated power for single, double and quadruple Yagi arrays:

<table>
<thead>
<tr>
<th>antenna type</th>
<th>approx gain</th>
<th>single antenna</th>
<th>double array</th>
<th>quadruple array</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLM</td>
<td>15 dBd</td>
<td>3.2 W</td>
<td>1.6 W</td>
<td>0.9 W</td>
</tr>
<tr>
<td>Tilton</td>
<td>13 dBd</td>
<td>5.0 W</td>
<td>2.5 W</td>
<td>1.4 W</td>
</tr>
<tr>
<td>K2RIW</td>
<td>15 dBd</td>
<td>3.2 W</td>
<td>1.6 W</td>
<td>0.9 W</td>
</tr>
<tr>
<td>WØEYE</td>
<td>14 dBd</td>
<td>4.0 W</td>
<td>2.0 W</td>
<td>1.1 W</td>
</tr>
</tbody>
</table>

The approximate gain is that for a single antenna. A 3 dB increase in gain is assumed for a double array, and a 5.5 dB increase for a quadruple array. Note that 10 watts input to any of these antennas results in more than the recommended 100 watts erp — 10 watts into four properly phased Yagis produces an erp of 1000 watts or more.

These facts must be brought to the attention of mode B users who are abusing the recommended maximum 100-watt limit. Any assistance you can provide in reducing what has become a serious problem will be appreciated by other mode B users and AMSAT alike — continued abuse of the 100-watt power limit will most certainly shorten the useful life of the satellite.

Jim Fisk, W1DTY
editor-in-chief
Hold it! Take hold of SSB with these two low cost twins. ICOM's new portable IC-202 and IC-502 put it within your reach wherever you are. You can take it with you to the hill top, the highways, or the beach. Three portable watts PEP on two meters or six!

Hello, DX! The ICOM quality and excellent receiver characteristics of this pair make bulky converters and low band rigs unnecessary for getting started in SSB-VHF. You just add your linear amp, if you wish, connect to the antenna, and DX! With the 202 you may talk through OSCAR VI and VII! Even transceive with an "up" receiving converter! The IC-502, similarly, makes use of six meters in ways that you would have always liked but could never have before. In fact, there are so many things to try, it's like opening a new band.

Take hold of Single Side Band. Take hold of some excitement. Take two.

IC-202
2 Meter SSB • 3 Watts PEP • True IF Noise Blanker
Switched Dial Lights • Internal Batteries • 200KHz
VXO Tuning • 144.0, 144.2 + 2 More! • RIT!

IC-502
6 Meter SSB • 3 Watts PEP • True IF Noise Blanker
Switched Dial Lights • Internal Batteries • 800KHz
VFO • RIT!
AN ARRL OFFER to carry the brunt of the Amateur Radio WARC preparation effort was enthusiastically received at the December 12 meeting of the entire Working Group in Washington. League support outlined by ARRL General Manager, Dick Baldwin, will even extend to participation in various contributory activities such as CCIR meetings.

Overall WARC Timetable was reviewed by Chairman John Johnston and despite the apparent remoteness of 1979, it was obvious that the task of coordinating all services' frequency needs for the next two decades will require every bit of that time.

Amateur Frequencies Proposed by the various task forces include 160-200 kHz, 1715-2000 kHz, 3.5-4 MHz, 7-7.5 MHz, 10.1-10.6 MHz, 14-14.5 MHz, 18.1-18.6 MHz, 21-21.5 MHz, 24-24.5 MHz and 28-29.7 MHz in the HF spectrum, all on an exclusive basis. VHF frequency requests include 50-54, 144-148, 220-225, 420-450, and at least a portion of 890-942 MHz. Basic microwave allocations proposed don't differ much from present U.S. amateur assignments, though a number of sub bands for satellite and experimental work were incorporated. How likely we are to get any of the proposed new bands or what problems we'll have in keeping or expanding those we have was debated at some length — though some services presently using a lot of the HF spectrum are planning to move to satellites, other services are eager to move into their slots, while pressures on VHF amateur bands are well known and increasing.

HOAX DISTRESS SIGNAL showed up on 3804 kHz Christmas afternoon and tied up many amateurs and Coast Guard people through the following afternoon. "WN8HOM" (a call unconfirmed by the FCC) claimed to be stranded on a 25 foot boat with 10 people on board that was disabled by engine failure near Pelee Island in western Lake Erie. W98BWU called the Coast Guard in Detroit and the 170-foot Cutter "Mariposa" was dispatched to search for the lost vessel while a growing number of listeners throughout the U.S. monitored the frequency. W98BWU and W8LIO became the relay stations between the "vessel in distress" and the "Mariposa" and Coast Guard land stations, all operating on 3804.

Possibility Of A Hoax was suspected fairly early in the adventure, but Coast Guard's philosophy is that all distress calls are genuine until proven otherwise. FCC monitors confirmed that WN8HOM's broadcast signals belonged to them and originated from near Zanesville, Ohio, and listeners as far away as Florida reported them to be over S9 — certainly suspect for a Novice rig working from a small boat with failing batteries.

Still the drama continued, complete with helicopter after improving weather permitted, until a Zanesville area Amateur reported the signals steady at S9+ from his location until a Zanesville area Amateur reported the signals steady at S9+ from his location and then put his signals on 75 to let the FCC DFers confirm their earlier determination that the Zanesville area was the source. A few minutes later — at 2215 Z Friday afternoon — the Coast Guard called off the search.

AN AMATEUR'S ORIGINAL LICENSE — not a photocopy — will have to be submitted with his application for renewal under the terms of Docket 20672 released by the FCC in mid December. All Comments on the Notice of Proposed Rule Making must be filed by January 22, and Reply Comments are due February 2. This proposal apparently resulted from the discovery of a number of recent applications that included photocopies of licenses showing class not in agreement with FCC file information.

License Renewal Requirements for operating time and code proficiency were dropped in a "Christmas present" Report and Order adopted by the FCC. The relaxation, which became effective December 24, is a logical one since the requirements were essentially unenforceable.

Docket Proposing that volunteer examiners be required to submit photocopies of their licenses with request for examinations has been released. Docket 20679, released December 22, was proposed to help establish the qualifications of volunteer examiners. Due date for Comments is February 2 and for Reply Comments February 12.

Applicants For An Extra Class License will no longer be required to have at least a year as a General or Higher class licensee as a result of a Report adopted by the Commissioners this week. Effective date of the change was not available at press time.

Comments On Effects of Ignition noise on communications and other radio services as well as feasibility of radiation reduction are being sought by the Commission. Comment due date for Docket 20654 is March 19, 1976; Reply Comments are due May 4.

INSURANCE PROTECTION for mobile rigs may shortly become much stickier as thefts from autos skyrocket. Since January 1 all auto insurance policies in Texas will have endorsement A927 attached to them which states: "The insurance does not apply to loss of or damage to any device or instrument or a combination of devices or instruments designed as a Citizens Band radio, two way mobile radio or telephone, including its accessories, equipment or antennas." Though this limitation as yet applies only to Texas, the Insurance Services Office is reported to be seriously considering introduction of a similar exclusion nationally.
American Ham Spirit, you either have it; or you don't.

The hams at Dentron have it. That's why we pack so much excitement into the products we build.

If you're an excited ham who loves to operate all bands, why not complete your station with the 160 meter Top Bander™? 160 meters is only a step away from 80 with this remarkable 160 meter transverter. Designed to bring simple, low cost 160 meter capability to any amateur station equipped for 80 meter CW, SSB, or AM operation. Just "plug in and play" and you're on 160 meters with 100 watts transmit power and a super sensitive receiver.

And coupled with the 160AT Skymaster™, tuning your present antenna or long wire is a snap. There is only one Super Tuner™ and only one Super Super Tuner™. Excited Dentron customers around the world have discovered why the Super Tuner™ and Super Super Tuner™ are the only antenna tuners on the market that will match EVERYTHING between 160 and 10 meters, whether it be balanced line, coax cable, random or long wire.

For the ham on the go the 80-10 Skymaster™ offers portability for tuning that random or long wire antenna. With Dentron Skymatcher™ you don't have to miss out on the fun of ham radio if you live in a motel or condominium.

It's Finally here! The Dentron Dual, In-line Watt meter. If you're a perfectionist as we are, you have certain requirements for your station. Naturally you'll want to monitor both forward and reflected wattage simultaneously. Tired of constant switching and guesswork? Upgrade!

- Reverse scale 0-200 watts
- Forward scale 0-200 and 0-2000 RFWatts
- Meter accuracy ±5%
- Frequency coverage — 1.7 through 30mcs.

Dentron manufactures antennas because our customers deserve better performance. There have been too many compromise antennas for too long. We know how much time the average antenna takes to assemble, that's why we do the work before we ship to you. What a Dentron antenna DOES NOT include is 2 large plastic bags of parts, 5 pages of instructions and many hours of assembly.

With the Skymaster™, Skyclaw™, Mobile Topbander™, all band doublet and new Trim-Tenna™ 20 meter beam, you'll be proud of their fine appearance and performance and thrilled with the few minutes it takes to assemble them.

CATCH THE EXCITEMENT FROM DENTRON...

all Dentron products are made in the USA.
From Dentron Radio or your Favorite Dealer.

Dentron Radio Co., Inc.
2100 Enterprise Parkway
Twinsburg, Ohio 44087
(216) 425-3473

More Details? CHECK-OFF Page 110
DT-600
RTTY demodulator

An advanced RTTY TU design with the most-wanted features—all on a single PC board

Amateurs have had much experience using IC RTTY demodulators but have found that certain optional circuits are difficult to add. Also, a number of options previously considered important were found to be no longer necessary. The ideas of active RTTY enthusiasts have been included in the DT-600 demodulator design described here.

Amateur RTTY has made significant progress since 1956. Only 850-Hz shift had been allowed until 1956, when the FCC revised regulations to allow any shift up to 900 Hz. It was found that properly designed and adjusted narrow shift (170 Hz) systems were superior to those with wide shift (850 Hz) in terms of adjacent signal rejection, weak-signal detection, selective fading, and noise immunity. The small group that began using narrow shift has grown to the point that wide-shift FSK is seldom heard in the high-frequency amateur bands so it may be assumed to be nonexistent for practical purposes. For this reason it’s no longer necessary to provide the option of both narrow and wide shift in an RTTY demodulator. Thus requirements are eased for a sophisticated demodulator, with a resulting decrease in size, cost, and construction time.

It is also no longer considered necessary to provide an option for receiving inverted shift, as standards for direction of shift are well established (FSK space below mark), and upside down keying is seldom encountered. However, as current operating practice has simplified certain aspects of the RTTY demodulator, it has complicated others. The problem most experimenters face today is

By Robert C. Clark, K9HVW, Garey K. Barrell, K4OAH and Archie C. Lamb, WB4KUR

Any of the authors may be reached c/o the following address: 930 Chestwood Avenue, Tallahassee, Florida 32303.

February 1976
modifying the demodulator to interface with external equipment such as the SELCAL, a regenerator, a speed converter, a video monitor, or even a computer. This problem has usually meant ending up with scorched boards with lifted foil and components dangling in the air to make modifications to the existing board. The DT-600 provides TTL compatible DATA (mark/space) and AUTOPRINT (print/nonprint) outputs as well as provisions for remote motor control relay.

If you don’t need the interface capability the interface components may be omitted, as the DT-600 will stand alone. If you wish, the high-voltage loop keyer, high-voltage loop supply, and motor relay may be mounted in the teleprinter and driven from the interface outputs. This option is particularly important when a number of machines at the operating location must be shifted from one loop to another. Keying and motor control can be easily controlled by a simple matrix switcher. Furthermore, if the high-voltage loop is completely contained within the teleprinter, there is much less likelihood of noise disturbing other equipment.

The DT-600 is an adaptation of the popular and reliable ST-6 demodulator, incorporating the philosophy mentioned above. Other modifications have been made to reduce size, cost, and construction time of the DT-600. Additional design standards and philosophies of the CATC project, described below, have been incorporated. To meet the requirements of both amateur RTTY operators and the CATC project, the following features have been included in the DT-600:

1. Single-board construction
2. Single shift (may be either standard narrow 2125/2295 Hz or wide 2125/2975 Hz).

For single shift, DT-600 performance is equivalent to that of the ST-6 but with the advantages described above.

The CATC group is charged with developing Computer-Automated Teletype Control for the Navy-Marine Corps MARS Teletypewriter Relay System. Its goal is to develop an automatic store and forward message system. The CATC group is using a systems approach for the development of receivers, demodulators, fsk and afsk generators, and control devices. The DT-600 is the first of a series of such devices to be described in coming months. It should be noted that designs described in this and future articles were by amateur radio operators (but professionals in electronics) on their own time. For this portion of the effort the CATC project provides only direction.

Much thought from CATC group members has been incorporated into the CATC system philosophy. Standards have been established for interface between equipment (TTL logic family compatibility), connections to card connectors, card configuration, and power supplies to allow for many options and ease of interconnection. The CATC philosophy allows the user to integrate system components (or self-designed equipment) into a working system with minimum cost, effort, and size, while allowing versatility, presently unavailable, for

This article describes the DT-600, a single-board adaptation of the popular ST-6 demodulator introduced by Irv Hoff, W6FFC, in the January, 1971, issue of Ham radio. The DT-600 will either stand alone or be interfaced with a variety of other options. Its design results in a significant decrease in size, cost, and construction time with no decrease in performance. A future article will contain a brief description of the simplified but similar DT-500 vhf demodulator with examples of how to interface both units with external equipment. editor

3. Optional interface connections.
4. Reduction of discrete components.
5. Choice of components to reduce size and cost.
6. A minimum of panel controls.
The audio from the station receiver is introduced into the DT-600 through a three-pole Butterworth bandpass filter, fig. 3. This filter may be used for either wide shift (2125/2975 Hz) or narrow shift (2125/2295 Hz). The wide-shift bandpass filter is about 1 kHz wide at the -3 dB points, and the narrow-shift filter is about 270 Hz wide (fig. 1). This filter provides additional immunity to noise and adjacent signals even when the receiver has good selectivity. Also the bandpass filter significantly reduces any hum that may appear on the receiver audio, protects the first amplifier stage from being damaged by excessive audio input, and provides an impedance match between the receiver 600-ohm output and the high impedance of the first amplifier stage. CR1 and CR2 are ordinary silicon diodes that limit the audio at the junction of R4, R5, and R6 to 0.7 volt.

Audio from the bandpass filter is amplified by U1, a 709 operational amplifier in the open-loop configuration. U1 functions as an amplifier and hard limits the signal to ±10 volts (at the output). Output from pin 6 is a square wave as long as the input signal exceeds the extremely low limiting threshold (about 1 mV). Thus, very large changes in the rf or audio signal levels may be tolerated. R8 establishes the balance for U1 to provide for minimum threshold and symmetrical output. R12, C13, C11 provide frequency compensation, while R11, R13, C10, C12 decouple U1 from the dc supply lines. Limiterless operation is available by connecting point 3 to point 4. In this configuration U1 limits only on signal peaks. Note that autoprint operation would be unreli-
able in this mode, so the motor and print control sections are forced on (fig. 2) by a parallel switch section.

discriminator/detector

The square wave output of U1 is coupled to the discriminator via R16, R17, R18. R17 is set to equalize the voltage levels of both mark and space signals in the discriminator. L4, L5, C15, C16 form a linear discriminator. Its narrow-shift response is shown in fig. 4, with peaks about 100 Hz wide at the -3 dB points. L4, C15 form a parallel-tuned circuit at 2125 Hz (mark). L5, C16 are tuned for the space frequency (2295 Hz for narrow shift or 2975 Hz for wide shift). Since the same inductance is used for both mark and space frequencies, the filter Q would be different, which in turn would cause unequal bandwidth for the two filters (equal bandwidth is particularly important for limiterless copy). R19 damps the Q of the L4, C15 combination to match the Q and bandwidth of the L5, C16 tuned circuit. CR5, CR6, CR7 and CR8 (1N270 germanium) form full-wave detectors for minimum ripple. CR3 and CR4 form an OR gate so that a positive voltage appears across C14 if either mark or space tones are present. This voltage is used to control the demodulator autoprint section and may also be used to drive a tuning meter. Scope connections are through one-megohm resistors to eliminate loading the discriminator.

R24, R26 may be changed to 16k, and C17 to 0.02 μF for narrow shift and 0.03 μF for wide shift.

ATC and slicer

During selective fading the automatic threshold corrector provides the symmetry necessary for the slicer, another 741 op amp. Action is shown in fig. 6 for selective fading on the space channel. Without the ATC action selective fading would bias the signal. The symmetrical ATC output is fed to U4 which is set for maximum gain to provide uniform keying from the varying, but symmetrical, ATC output. This high gain allows just 1 or 2 mV over offset to trigger the output and allows copy during deep selective fading and incorrect (straddle-tuned) shift.

keyer

Strapping options are available on the board so that slicer output may be fed directly to the base of Q1 (jumper from 1 to C), an open-collector output stage.

Complete DT-600 RTTY demodulator is built on one plug-in printed-circuit board. The five 88-mH toroids used in the filter circuits are mounted along the lower edge of the board. Double-sided circuit boards with plated-through holes are available from Data Technology Associates (see footnote on page 14).
Output from Q1 does not respond to the mark hold provided by the standby line, autoprint section, or anti-space. Q1's output may be used to provide data to external equipment, such as the SELCOM, where the autoprint attack time delay is not desired. CR15 prevents the negative portion of U4's output from reaching the transistor.

By strapping 2 to C, Q1 may be inhibited by the standby line, the autoprint section, and the anti-space section. Q2 is the high-voltage keyer. It is always inhibited, as described for the second option on Q1. For a simple selector magnet keyer stage, the importance of a high-voltage supply and keyer can't be overemphasized. Several designs are based on the fact that only 12 volts are necessary to maintain a 60-mA selector-magnet current but completely overlooked is the behavior of a large inductance (selector magnet) in an ac (switched) circuit. Results from such low-voltage keyers are very poor, even with no distortion on the received signal. Their operation deteriorates rapidly with distortion. Q2 may be omitted and Q1 used to drive a remote keyer within the teleprinter, as mentioned earlier. (A simple circuit to control the loop keyer and motor relay through logic levels will be described in the future article which features the simplified DT-500 demodulator.)

R36 and C22 suppress keying transients, and CR16 prevents the negative-going pulses from the selector-magnet field decay from being propagated back through preceding stages. It's possible through the options provided on the board to take the data signal from Q1, process it in external equipment, then reintroduce the processed signal to the loop keyer. (This feature will be emphasized.) Results from such low-voltage keyers are very poor, even with no distortion on the received signal. Their operation deteriorates rapidly with distortion. Q2 may be omitted and Q1 used to drive a remote keyer within the teleprinter, as mentioned earlier. (A simple circuit to control the loop keyer and motor relay through logic levels will be described in the future article which features the simplified DT-500 demodulator.)

autoprint

CR3 and CR4 form an OR gate as mentioned earlier. If either mark or space tones are present, a positive voltage will appear across C14. U5 threshold is set (by R50) so that with no signal present its output is positive. This positive voltage locks the keyer stage (through CR27) in mark hold. When a signal appears on either mark or space frequencies, the OR gate output forces U5 to reverse state so that its output is negative. This action stops the charge on C24, C25, which begin to discharge through R54, R55. When the voltage at point 26 has decreased to a level determined by R56, R57 (time constant is such that it takes about 1.3 seconds to reach this level with C24, C25 in series and about 7.4 seconds with point 15 shorted to ground), U6 pin 6 is forced negative, the standby line is released; Q5 is biased off charging C26; U7 output is forced positive; and Q6 conducts, pulling in motor relay K1. If the signal disappears, or if (as in CW) the duty cycle drops below 25%, then C24, C25 begin to charge, eventually returning to mark hold. However, C26 must discharge below the voltage on U7 pin 2 before the motor relay is released. This delay gives about 38 seconds after loss of signal before motor shut down, which is desirable to keep the motor from turning on and off between transmissions or when the signal fades into the noise. Shorter turn-on and turn-off times may be had by making C24 and C26 each 18 μF.

anti-space

In the mark condition, the positive output of U4 (pin 6) forward biases Q7, preventing C27 from charging. On space, Q7 is shut off and C27 begins to charge. The time constant is such that C27 will charge above the threshold set for U8 in slightly over 132 ms (132 ms is the longest steady space expected from valid RTTY, a blank at 60 wpm). Thus, U8 will not trigger with normal RTTY where C27 is quickly discharged by each mark signal through Q7. Should a space exceed the time constant, U8 output becomes positive, and the positive voltage is applied through CR33 to the mark hold line. The positive output of U8 is also applied through CR32 to C24, C25, starting the motor time-out sequence. Thus a steady space will a) not turn the machine on, b) immediately clamp the printer in mark hold if it is already on, and c) begin the time-out sequence.

standby

When the standby line (14) is grounded, Q4 forward bias is removed, placing a positive voltage on the mark hold line through CR24. Also U6 pin 3 is pulled low, starting the motor, as described previously. (The only time the standby feature is regularly used is during trans-
mit and, hence, holds the motor on during a long transmission.) Note that the mark hold line is positive when no signal is present, the standby line is grounded, a steady space is present, or a signal is present (CW or other non-RTTY) that doesn’t switch U5. All these situations occur on nonprint. The mark hold line positive voltage forward biases Q3, which may be used to indicate to external equipment that no valid RTTY signal is present. When a valid RTTY signal does appear, Q3 forward bias is removed.

tuning meter

The CR3, CR4 OR gate output is also coupled to the base of Q10, a meter amplifier. When the RTTY signal is properly tuned, a positive bias is applied to Q10 base if the signal is either mark or space. The tuning meter reading will be proportional to the signal level of mark (or space) at the discriminator. In operation the receiver is tuned for the highest steady meter reading. For tuning incorrect shift the meter tuning indicator is superior to an oscilloscope, as a proper meter reading will closely indicate balanced output from the discriminator to the low-pass filter.

loop power supply

A full-wave 170-volt supply provides the required loop current (60 mA). Note that loop-current limiting resistor R39 is in the negative supply lead. This is the floating loop introduced by Hoff and included in the ST-6.7 By allowing the supply to float, a polar output (mark negative, space positive) is available at point 11 to key either an afsk or fsk oscillator. Grounding point 12 gives less than full saturation current through a shifter diode, yielding narrow-shift CW identification.

components

The DT-600 is constructed on a single 4½ by 6 inch (11 by 15cm) board, which includes all parts except the switches and power supplies (a single ±12 volt supply may power several DT-600s). A 22-pin edge connector is provided at the board edge.

The capacitors that tune the bandpass and discriminator filters should be of high quality and have high Q. Sprague Orange Drops or Mallory polystyrenes are generally available and recommended. Tantalum capacitors are recommended for C20, C21, C24, C26, and C27. All resistors are ¼ watt unless otherwise indicated. Diodes CR5 to CR12 are germanium 1N270s. All other diodes may be 1N914 or equivalent (note: larger diodes will not fit the available space on the circuit board). CR17 to CR20 are 400 PIV 1 amp, and C39 to C41 are 100 PIV, 1 amp. U1 is a 709 op amp (must be in TO-99 package), but all the others are 741s (8 pin mini-dip). Substitutions should not be made. Transistors are specified, but only Q2 is critical. Nearly any transistor that meets the specifications will do (2N3904: npn silicon switch $V_{ce} = 40$ V at 200 mA; 2N5656: npn silicon switch $V_{ce} = 300$ V at 500 mA). The loop supply transformer is an Essex PA-8421, which provides 125 Vac at 50 mA, but since the filament winding isn’t used the transformer is well within rating, supplying 60 mA to the loop.

Relay K1 should have a 12-volt coil and the contacts should be rated at 10 amps for long life, such as the P&B KA11DG. Trimmers R8, R17, R50, R76 are PC-board mounts, such as TRW X201. A single two-pole, five-position rotary switch can handle all the switching functions (fig. 3B), or miniature toggle switches may be used. M1 is any inexpensive 0-1 mA meter. Dale EBT156 22-pin connectors may be used for the edge of the card.

construction

Consult the parts layout sheet provided with the circuit board and mount all parts on the board except for components for the bandpass input filter and discriminator. These tuned circuits must be adjusted to the proper frequency before they are permanently mounted on the board. The tuned circuits are adjusted with an audio

* A double-sided printed-circuit board with plated-through holes for the DT-600 is available from Data Technology Associates, Inc., Post Office Box 1912, Miami, Florida 33143. The price is $12.50, postpaid.
oscillator and a frequency counter coupled to the tuned circuit through a high-resistance (100k) to eliminate loading of the tuned circuit (fig. 7). Audio voltage across the tuned circuit is monitored by a vtm. The audio generator is adjusted to obtain the peak. If the frequency is lower than desired, reduce the inductance to increase resonant frequency. If the frequency is higher than desired, capacitance may be added. Note that the inductors for the narrow-shift bandpass filter are 22 mH. These may be formed by placing the two windings of an 88-mH toroid in parallel.

filter tuning

The procedure for tuning the narrow-shift bandpass filter is to mount all capacitors on the board, but omit R1, R2, R3, and R4 at this time. Each of the three sections is, in turn, tuned to 2195 Hz. Short the toroid in the center section and tune the first and third sections to the desired frequency. Then remove the short from the center section, short the toroids in the first and third sections, and tune the center section to the desired frequency. Remove all shorts and place R1, R2, R3, R4 in their respective positions on the board. The discriminator filters are best tuned on the board, supplying either mark or space tones through the input filter. Use care in tuning all filters, as performance will be seriously degraded if filters are not resonant at the proper frequencies. No instructions are provided for tuning the wide-shift input filter, as it is sufficiently noncritical with the specified capacitors that tuning is not required.

adjustments

After the board has been completed and filters tuned, the unit may be adjusted. Short the audio input and adjust R9 until the voltage at TP1 is zero. Remove the short from the audio input and apply a mark tone. Note the reading at TP2. Adjust the audio oscillator for the space frequency (depends on choice of shift), and adjust R17 for the same reading at TP2 as obtained with the mark signal. Repeat the procedure until the readings are identical for both mark and space. R50 determines the bandpass for autoprint (i.e., how far off frequency a station can be and still hold in the autoprint). Set the audio oscillator about 50 Hz below the mark frequency and adjust R50 so that the voltage at TP4 fluctuates near zero (both positive and negative excursions). R76 should be set for a maximum meter reading of 70% of full scale for either mark or space.

With all adjustments completed you are now ready to operate the DT-600. In normal operation nothing is done to the DT-600 except to ground the standby line during transmit. For very weak signals you may prefer to switch to limiterless and manual print control. Sometimes it's a bit frustrating to think that there's no way to adjust things to improve the print. However, with the exception noted above, you can be sure the DT-600 is providing the best print available for the price, and only slight improvement is available even at the higher prices. Interface connections will be discussed in a future article.

acknowledgements

We wish to thank Werner Fehlauer, KL7HKB, for constructive comment on early designs; Ronald C. Viets for parts layout and PC artwork changes; James E. Scalf, K4TKU, for drawings (and their many revisions); Fred R. Scalf, Jr., K4EID, for CATC systems interface compatibility and project coordination.

references

a new look at
solid-state amplifiers

Techniques for joining unipolar and bipolar transistors to exploit the features of each

This article reveals no technological breakthroughs, nor will it lead you through the intricacies of a construction project. Rather, it suggests that amateurs and experimenters have overlooked a useful and versatile circuit technique — the marrying of unipolar and bipolar transistors to produce an amplifying module with the desirable features of each solid-state device. In the following paragraphs arguments in behalf of the union of these devices are developed. I hope these discussions will stimulate the interest of those who enjoy designing and building their own equipment.

When bipolar transistors first became commercially available, it became obvious that this device had a serious shortcoming compared with the vacuum tube: the current hungry base-emitter junction was recognized as a sorry trade for the voltage-actuated input circuit of the tube. Because of the many advantages of the transistor (no heater, no microphonics, negligible aging, small size and cost) we learned to live with its low-impedance, power-consuming input.

fet transistor

Technological evolution produced the unipolar, or field-effect transistor, known as the fet. Logic can be presented to show that the fet should have chased the bipolar transistor right off the market. Some of the reasons why such a displacement did not occur are:

1. Fets tended to lag behind bipolars in gain-bandwidth product.
2. Fets acquired a reputation for being limited in power-handling capability, even for the needs of low-level circuitry.
3. Fets have never been cost competitive with bipolar transistors.
4. At least until recently, fets have not been hot performers — transconductance tended to be low — in the several hundred to several thousand micromho range.
5. The electronics fraternity has been in need of articles such as this to illustrate the benefits of beefing up fet performance with the bipolar transistor.

operational amplifier

What about the operational amplifier? Surely, the monolithic op amp must be the ultimate amplifying device. Not necessarily! From the viewpoint of the experimenter, the op amp has the following disadvantages:

1. It is far from easy to work with unless your eyes, nerves, and fingers were predestined for the jewelry trade.
2. During experimentation, it is vulnerable to catastrophic damage.

By Irving M. Gottlieb, W6HDM, 931 Olive, Menlo Park, California 94025
3. Dual-polarity dc supplies are required.
4. The cheapies — the ones amateurs can afford — are notorious for performance kinks such as latch-up from overdrive and a propensity for oscillation.
5. The op amp is a bargain, it's true, in terms of the perhaps several-dozen discrete devices displaced. But a great number of amplifying tasks don't require differential input, dc response, or accurate operational functions. As a more mundane gain-producing device the op amp often is less than a good buy.

fig. 1. Transconductance amplification in a two-stage amplifier. G_m is increased by the current gain of a following stage, A, and by the voltage gain of a preceding stage, B.

We could deal similarly with the merits and shortcomings of other amplifiers; for example the tube, magnetic amplifier, and tunnel diode. All have problems for general experimental use. An amplifying module with the high-impedance input of tubes and the output characteristics of bipolar transistors would be a major step in the right direction.

the transconductance problem

One of the salient features of the bipolar -- and one not generally appreciated -- is its inordinately high transconductance, which can range from several hundred thousand to millions of micromhos. Think of a tube or fet with such a characteristic! The reason that little awareness of this feature exists is that the healthy transconductance loses much of its significance when we have to supply power to the input circuit. Now the concept of driving a bipolar with an fet should begin to make sense. With such a combination we can achieve both high input impedance and high transconductance.

In the amplifier cascade of fig. 1A assume that the transconductance of stage 1, the fet, is G_{m1}, and that the current gain of stage 2, the bipolar, is B_2. The overall transconductance of the cascade is given by $G_{m1} \times B_2$. Expressed in words, the transconductance of a stage is increased by the current gain of a subsequent stage.

(Keep in mind the concept of transconductance as the figure of merit of amplifying capability.)

Let's now deal with the amplifying cascade depicted in fig. 1B. This time, the voltage gain of stage 1 is known and is represented by A_1. The transconductance of stage 2 is represented by G_{m2}. The overall transconductance of the amplifying cascade is given by $A_1 \times G_{m2}$. In words, the transconductance of a stage is increased by the voltage gain of a preceding stage. Assuming that the same amplifying cascade is represented by the block diagrams of A and B in fig. 1, some meaningful insights can now be attained.

We have seen that two products are both equal to a common quantity: overall transconductance, or G_{m12}. We can therefore write:

$$G_{m1} \times B_2 = G_{m12} = A_1 \times G_{m2} \quad (1)$$

or simply

$$G_{m1} \times B_2 = A_1 \times G_{m2} \quad (2)$$

We can make any of four algebraic transpositions; that is, eq. 1 can be manipulated to facilitate the solution of any of its four terms. For our investigations, a particularly interesting transposition focuses on G_{m2}, the transconductance of the bipolar transistor. Thus, we have:

$$G_{m2} = \frac{G_{m1} \times B_2}{A_1} \quad (3)$$

practical example using a fet and a bipolar

When we consult manufacturer's spec sheets, we generally find the transconductance of fets and the current gain of bipolars. (We seldom find the transconductance of bipolars.) Let's deal with the type 2N5438 n-channel fet and the 2N3565 npn bipolar transistor. The fet can have a nominal transconductance of 4000 micromhos, and the bipolar can have a nominal current gain of, say, 300. (The parameter tolerances of both devices are, to say the least, sloppy.) Suppose that the fet is used as a common-source voltage amplifier and that its voltage gain is four. It is thus employed to drive the bipolar. With a bit of crank-grinding, we can use these numbers to compute G_{m2}, thus:

$$G_{m2} = \frac{4000 \times 300}{4} = 300,000 \text{ micromhos}$$

transconductance for the 2N3565 transistor

Note, too, that the overall transconductance, G_{m12}, of the amplifier cascade calculates to a whopping 1,200,000 micromhos! (Both $G_{m1} \times A_1$, and $A_1 \times G_{m2}$ confirm this result.) Whether a single device or a module with more than one active device, an amplifier that develops over a million micromhos and extracts no power from the signal source has to be what the doctor ordered. Also to be considered is the fact that voltage gain is available from the bipolar. If we insert a 1k load resistor in the bipolar transistor collector circuit, the circuit will develop a voltage gain of 300 (from voltage gain $= G_m \times R_L = 0.3 \times 1000 = 300$, where G_m is expressed
in mhos). The overall voltage gain of the amplifier cascade is then the product of the voltage gains of stages one and two, or $4 \times 300 = 1200$. This is confirmed by multiplying the overall transconductance, G_{m12}, by the output load resistance, or $1.2 \times 1000 = 1200$. This calculation is made on the premise that a 1,200,000 micro-mho, or 1.2 mho, amplifier acts upon a 1000-ohm output load resistance. Note that high voltage gain can be produced in the bipolar stage with low load resistances, which implies relatively low degradation of higher frequencies. If you wanted high voltage gain in a single fet, the drain resistor would have to be many tens, perhaps hundreds, of kilohms; and frequency response would peter out pronto.

Multipurpose amplifying module

In fig. 2 we have an amplifier with the described performance characteristics. The -3 dB points are approximately 100 Hz and 0.6 MHz. But this is only a start. The circuit is extremely flexible. The frequency response, voltage gain, power output, and power consumption are easy candidates for selective optimization. Such versatility and noncritical features stem from the use of ac coupling between the stages. Direct coupling can also be used but will, in general, require a bit more patience in satisfying the mutual bias requirements of the two active devices. Direct coupling can lead to more compact packages and is necessary, of course, if dc amplification is needed.

The bipolar load resistor, R_L, is in effect acted upon by an overall transconductance exceeding a million micromhos. At the same time, the input impedance is of the same order of magnitude obtainable from vacuum-tube amplifiers and is limited only by R_G. The dashed enclosure in fig. 2 facilitates thinking of the cascade as a single "amplifying module." Component values are non-critical and can be modified considerably from those indicated to optimize gain, frequency response, power output, or power consumption. Similarly, other than the indicated devices can be used. Not obvious from inspection of fig. 2 is the fact that the load presented to the fet is primarily the input resistance of the bipolar transistor. This value is in the order of 1000 to 1200 ohms and enables the fet to develop a voltage gain of 4.

Feedback amplifier

In fig. 3 a similar amplifier is shown, but with the addition of an overall feedback path. Depending on how much feedback is used (how much the overall gain is decreased), various circuit attributes are evident. These include distortion reduction, extension of frequency response, and stabilization against gain variations, which otherwise tend to occur from the effects of temperature on both active and passive components and from changes in power-supply voltage. In this circuit, the feedback decreases the amplifier output impedance, which is usually a desirable feature. This amplifier, like the previous one and the subsequent ones as well, can be optimized for rf as well as audio. In this particular case, you would reduce the size of the coupling, feedback, and emitter bypass capacitors. Or if both low and high frequency response are desired, these capacitors can be paralleled by small ceramic or mylars (electrolytics often don't perform well at higher frequencies). At high frequencies, the amplifier physical layout becomes exceedingly important, and a printed circuit board is probably the best approach.

Other things being equal, the extent of flat frequency response increases with increased feedback. If in addition to these techniques the fet and the bipolar are selected for both high transconductance and gain-bandwidth product, such a feedback amplifier can provide voltage gain by a factor of several tens to a frequency of several or more MHz. (For higher frequency work, the cascade arrangement of fig. 4D is best.)

Experimental amplifying module family

Nine other unipolar-bipolar amplifying modules are shown in fig. 4. Their names and applications are:

A. Alternative feedback amplifier — audio, general purpose, rf capability at low gain.

B. Audio amplifier with direct coupling — speech amplifier, low-level audio.

C. Audio amplifier for operation from rectified line voltage — audio output.
D. Cascode amplifier — audio, video, i-f, rf; best arrangement for use with tuned circuits.

E. Ultrahigh input impedance amplifier — active scope probe, electrometer, instrumentation.

F. Darlington amplifier — meter interface, impedance transformer, coax driver, relay actuator.

G. Complementary symmetry Darlington — meter interface, impedance transformer, coax driver.

H. Source follower with constant-current bias supply — used where a source follower with high output-voltage swing and voltage gain close to unity is required.

I. Single-stage amplifier with dynamic load — high voltage gain; can be used with very low supply voltage.

In all instances the designated device types and component values are intended only as a guide. Because of device and component tolerances as well as the specific performance required, various modifications will probably be made. In particular, the empirical determination of bias networks in direct-coupled circuits will usually pay dividends in the attainment of symmetrical voltage swing. Improved performance of these circuits, as well as those in figs. 2 and 3, can sometimes be obtained by connecting a high resistance from the fet gate to the ungrounded battery terminal. Several tens of megohms should do the trick.

Why not build a few of these amplifier modules and retain them as convenient building blocks?
vestigial sideband microtransmitter for amateur television

Amateur television video bandwidth can be reduced by adapting commercial techniques

To conserve spectrum space commercial television uses a transmission mode known as vestigial sideband. A composite video signal, containing frequency components from dc to 4 MHz, is amplitude modulated onto a carrier. The resulting sum and difference frequencies (sidebands) occupy an 8-MHz bandwidth. Before transmission, the modulated signal is filtered. The upper sideband and carrier are transmitted, but most of the lower sideband is not (see fig. 1). Thus the video signal plus its audio can be transmitted in the 6-MHz TV-channel allocation.

As amateur television (ATV) activity expands in the 70-, 23- and 13-cm bands, it will become necessary for amateurs to adopt vestigial sideband as their operating mode to avoid interference with other communications services. A case in point is the possibility of interference with the 435.1-MHz OSCAR satellite telemetry beacon, which would result from the unfiltered lower sideband of an ATV station operating on the 439.25 MHz ATV calling frequency.

In commercial television, the modulated carrier is developed, and filtering performed, at the ultimate transmission frequency (fig. 2). A complicating factor, the need for frequency flexibility, makes such a system impractical for ATV. Imagine retuning a stagger-tuned string of over-coupled resonator pairs for sharp skirts and flat response over a 5-MHz band, then retuning it each time you need to shift your operating frequency!

One alternative is to generate a stable, well-filtered vestigial sideband video signal on a fixed frequency in the vhf spectrum, then heterodyne it to the desired uhf in a balanced mixer. The conversion stage local-oscillator chain, if made variable in frequency, will provide the system with the required frequency flexibility. Fig. 3 is a block diagram of one such system, which I use for ATV transmission in the 70-cm band. The observant reader may note in fig. 3 a pronounced similarity to the transceive converter for 1296-MHz ssb published in an earlier issue.1 Obviously, the process of heterodyning a modulated signal into a higher frequency band for transmission is virtually the same, regardless of whether the original signal was modulated with a-m, fm, ssb, CW, or video.

By H. Paul Shuch, WA6UAM, Microcomm, 14908 Sandy Lane, San Jose, California 95124

20 February 1976
Many of the blocks in the local oscillator and rf strings of fig. 3, as well as the mixer, are either available commercially or may be adapted from equipment designs published previously. This article deals with the design and construction of the microtransmitter and vestigial sideband filter modules of the ATV system in fig. 3—building blocks toward clean, commercial-quality TV transmission.

microtransmitter chip

The heart of the ATV transmitter is the LP-2000, a miraculous integrated circuit from Lithic Systems Inc., in Saratoga, California.* The outgrowth of a program to develop a microminiature aircraft crash-beacon transmitter, the LP-2000 is a complete transmitter system—oscillator, buffer, driver, power amplifier, modulator, preamplifier and regulator—all in a single 10-lead, TO-100 can. With the addition of a crystal, two tuned circuits, a battery, and a modulation source these ICs can generate as much as 100 mW of CW, or 50 mW of a-m or pulse-modulated output well into the vhf spectrum. Figs. 4 and 5 indicate the very complex circuitry that can be built into a single monolithic microcircuit. A complete circuit description is available from the manufacturer in the form of an application note.2

An appealing feature of the LP-2000 is that its modulator transistors (Q14 and Q16 in fig. 5) are dc-coupled to both the driver and power amplifier transistors, Q13 and Q15. Additionally, direct coupling is employed between all modulator stages. Thus the circuit lends itself well to video-modulated applications.

frequency selection

The operating frequency chosen for the microtransmitter, 61.25 MHz, corresponds to the assigned video carrier frequency of commercial TV channel 3. This permits the basic microtransmitter module to be used for short-range, closed-circuit TV applications, there being no local channel 3 allocation in my area to interfere with such operation. Similarly, you may wish to select an operating frequency corresponding to the video carrier frequency for a locally unassigned lower vhf-band TV channel.

The circuit I used on channel 3 (fig. 6) will cover TV channels 2 through 4 merely by substituting crystals and retuning the two trimmer capacitors. For operation on channels 5 and 6, it will be necessary to reduce L1 to 6 turns, L2 to 8 turns, and L3 to 2 turns. All other component values remain as in fig. 6. Similarly, the vestigial sideband filter shown in fig. 7 may be tuned to cover TV channels 2 and 3. For operation on channels 4 through 6, L1 and L4 of fig. 7 must be reduced to 3 turns, and L2 and L3 to 7 turns each. Table 1 will serve as a guide in selecting crystal frequencies. When the microtransmitter operating frequency is increased, output power will begin to degrade as the upper frequency limit of the integrated circuit is approached.

microtransmitter circuit

The basic circuit for generating 10 mW of stable double-sideband A5 with the LP-2000 microtransmitter is shown in fig. 6. The circuit is divided functionally into three sections. J1 is the video input connector, which is driven by the standard composite video output signal from a TV camera or video tape recorder (typically 1 volt peak into a 72-ohm impedance). This video

* An experimenter-grade version of this microcircuit, the NA2000, is available for $9.95 from NASEM, Box AI, Cupertino, California 95014.
drive level is more than adequate to overmodulate the microtransmitter, hence the pad-and-trimpot combination at J1, which simultaneously matches the relatively high video input impedance of the IC to 72 ohms and allows the appropriate video level to be set.

Because of the number of stages employed, the lead to instability. I have achieved the greatest success by using a piece of PC stock only as a ground plane, positioning the components in space above it to minimize lead lengths. I call such a configuration a "bread-space," for breadboard suspended in space. (See the accompanying photographs.) This circuit would also lend itself well to isolated-pad construction, as described in recent articles.

Parallel resonant circuits C1-L1 and C2-L2 tune the oscillator and amplifier stages respectively. Any coupling between them will obviously result in oscillations, or at least potential instability. Although the toroidal cores on which the inductors are wound tend to minimize stray coupling, the two inductors should nonetheless be

fig. 2. Simplified block diagram of a monochrome TV transmitter.

fig. 3. Block diagram of ATV transmitter for use in the 70-cm band.
oriented at right angles to one another as a precaution against oscillations. Although not attempted in the prototype unit, the use of shields positioned as shown by the dotted lines in fig. 6 is a good idea. The 3-dB T pad between L3 and J2 not only keeps the power level within the requirements of the system but also provides a degree of isolation against instability that may occur from mismatching the output to its load.

microtransmitter tuning

A common amateur practice in tuning transmitting equipment is to adjust all tuned circuits for maximum indicated output power. As this circuit is potentially unstable, such an approach would be disastrous if applied to the microtransmitter. The resulting output signal could well contain a multitude of frequency components. If some of the output energy did indeed fall on the desired video carrier frequency, it would only be by coincidence. The best way to tune this circuit is with a spectrum analyzer. Trimmers C1 and C2 are tuned for maximum output on the desired video carrier frequency consistent with minimum spurious output. Tuning should be accomplished with video input connector J1 terminated into a 75-ohm resistor. Some interaction between the tuning of C1 and C2 will be noticed; repeated adjustments may be necessary.

Since few amateurs have access to a spectrum analyzer, two alternative tuning methods are proposed. The first involves the use of a high-selectivity absorption wavemeter (or grid-dip oscillator in the absorption mode), loosely coupled to J2. Adjust C1 and C2 repeatedly for maximum indicated output on the desired video carrier frequency, then tune the wavemeter over its total frequency excursion to ensure absence of parasitic oscillations.

Those lacking an absorption wavemeter will probably have difficulty in adjusting this circuit. Nonetheless, a “last resort” tuning method may be attempted. Loosely couple J2 output into a TV receiver that is adjusted for reception at the channel for which the microtransmitter was built. Tune C1 and C2 until the resulting video carrier blanks the TV receiver screen. Now tune the receiver to all adjacent channels to detect any parasitic oscillations.
tion. If any other channel is blanked, try again until output is noticed only on the desired channel.

The video level setting is best accomplished visually. After the rf adjustments are completed, loosely couple the rf output into a TV receiver. Connect a TV camera to J1 and scan a scene containing bright white level (a test pattern is ideal). Tearing of the horizontal synchronization will occur with the trimpot set for maximum video modulation. Back off on the video level until a stable sync is obtained, which will put the transmitter very close to the standard 12.5% ±2.5% modulation level for bright white. If the camera is properly adjusted, the 75% ±2.5% blanking level will fall into line automatically.

vestigial sideband filter circuit

The filter depicted in fig. 7, consisting of two critically coupled parallel resonant circuits with link coupling in and out, is the absolute minimum in circuit complexity considered adequate for amateur vestigial sideband transmission. Attenuation of frequency components 2 MHz below the video carrier frequency, as seen in fig. 8, is 11 dB referenced to the passband midpoint. Similarly, the -3 MHz component is attenuated by 13.5 dB. If high-power ATV operation is anticipated, a greater degree of lower-sideband attenuation may be desirable, and two or more sets of resonator pairs may be cascaded. If multiple stages are used, stagger tuning may be necessary to maintain the required passband bandwidth.

As mentioned previously, the vestigial sideband filter may be modified for operation at different video carrier frequencies by modifying the number of turns on the toroids. As a general rule, skirt selectivity can be expected to degrade as operating frequency increases (due to a decrease in loaded Q). This suggests that cascaded resonator pairs should be considered for operation at TV channels 5 and 6.

Construction of the vestigial sideband filter is far less critical than that of the microtransmitter module. The only precaution to be observed is adequate shielding of the filter assembly to prevent lower video sideband components from leaking around the filter and being radiated into following stages.

vestigial sideband filter tuning

As in the case of adjusting the microtransmitter module for optimum rejection of spurious output, properly tuning the vestigial sideband filter requires equipment not often available to the ATV experimenter. Thus
in addition to the ideal approach, a compromise adjustment method will be outlined. Ideally, the filter should be adjusted on an rf sweep setup, as indicated in fig. 9. The procedure consists merely of adjusting C1, C2 and C3 of fig. 7 repeatedly until the desired frequency response (that of fig. 8) is displayed on the CRT. The goals are a 5-MHz bandwidth, minimum passband ripple, and steepest possible lower-skirt selectivity with the video carrier frequency falling just at the knee of the lower-skirt rolloff. An application note from Hewlett-Packard describes swept attenuation measurements in detail.

The filter passband can be adjusted manually using a stable rf signal generator, a vtvm with rf probe, and a 50-ohm coaxial feedthrough. Equipment is connected as in fig. 10. The signal generator is adjusted to 2 MHz above the desired video carrier frequency, coupling capacitor C3 adjusted to minimum capacitance, and C1 and C2 adjusted for a maximum indication on the vtvm. The filter will now be adjusted for minimum coupling (thus maximum Q) and will be resonant near the center of its passband. Next readjust the signal generator frequency to coincide with the video carrier frequency. The vtvm indication should drop off markedly because of the high selectivity and narrow bandwidth of the under-coupled resonators. The filter passband will widen if C3 capacitance is increased (because of tighter coupling), which will bring the video carrier within the lower skirt.

The carrier-frequency attenuation, relative to midband power level, will be 1 to 2 dB when the voltage produced at the video carrier frequency (measured on the vtvm) equals 80 to 90% of the voltage indicated at mid passband. Acceptable vestigial sideband filtering will result under such conditions. Passband ripple and skirt selectivity can be examined readily by sweeping the signal generator manually in frequency and observing the vtvm.

conclusions

As rf spectrum space becomes increasingly scarce, vestigial sideband transmission will become the standard for ATV. A high degree of frequency flexibility can be maintained by generating a stable vhf television signal, filtering it to roll off the lower sideband, then heterodyning the resulting vestigial sideband signal to the transmission frequency. I hope the equipment described will be the first of numerous approaches to apply commercial standards to amateur television transmission.

acknowledgements

I wish to express my appreciation to Bob Hirschfeld, W6DNS, president of Lithic Systems, for his interest in developing amateur applications for his products. Thanks also go to Cliff Buttschardt, W6HDO, for encouraging me to try the LP-2000 even though, in his words, “it’s a squirrelly chip.” Once tamed, I found the device to be a fine choice indeed.

references

ham radio
low-cost
digital clock

New digital clock IC is designed for alarm clock-radio service and provides display drive, alarm and sleep-to-music in 12- or 24-hour formats.

Fairchild Semiconductor has announced the 3817, an MOS digital clock IC with full clock radio features. The direct drive offered by the 3817 IC allows the design of a simple, low-cost clock radio without the multiplex noise problem previously associated with MOS clock circuits. The design described here capitalizes on this direct-drive capability and features the Fairchild FND500 LED display.

device description

The 3817 digital alarm clock is a monolithic MOS IC which uses Isoplanar p-channel processing. The logic density thus achieved allows the incorporation of large output transistors for direct digit drive without making the overall chip size too large for low-cost, high-volume production. The 3817 is micro-programmable at the mask level to allow options such as alarm tone or dc at the alarm output pin without making major changes to the entire mask set. Four display modes are switch selectable (time, seconds, sleep and alarm) allowing the user to build several types of clocks and timers. Either a 50- or 60-Hz input may be used for the clock input, derived from either the power line with the simple RC filter shown or from an external timebase. Time display may be either 12-hour (with AM/PM indication) or 24-hour format. Outputs consist of display drive, alarm, and sleep to music (timed radio turn-off).

The FND500 is a 0.5 inch (13mm) high common-cathode LED display using a single diode per segment with a light pipe for diffusion. The digits may be horizontally stacked on 0.6 inch (15mm) centers for a compact display.

By Douglas R. Schmieskors, Jr., WA6DYW, 22065 McClellan Road, Cupertino, California 95014

26 February 1976
circuit description

Power supply. Three separate power supplies are actually used in the design shown in fig. 1. Diode CR1 and capacitor C2 provide Vss and display power; CR2, C3 and U2 provide a regulated A+ for the radio; CR3 and C4 provide a "high" to the display blanking input of the 3817. Should a power failure occur, R2 discharges C4, the display blanking input goes low, and the display is blanked until power is reapplied. With the display blanked, the 3817 requires less than 4 mA to maintain the registers and this is provided by the charge on C2. U2 is a 7800-series IC voltage regulator with the output voltage and current handling capability determined by the requirements of the radio used. R1 and C1 form an RC filter to remove line transients which could cause false counting or device damage. The output of the filter is applied to the Cp input (pin 35) of the 3817, where an internal Schmitt trigger shapes the signal for further use.

Output drive circuits. Transistor Q3 and its associated resistors provide an active low output for timed radio turn-off after a user-selected interval of up to 59 minutes. This portion of the circuitry may be omitted in its entirety if the feature is not desired.

Diode CR4 and C6 rectify the alarm tone output for amplification by Q4, resulting in an active low output for timed radio turn-on when a coincidence is detected by the alarm comparators. Again, this portion may be omitted in its entirety if the feature is not desired.

Transistor Q5 and its associated components provide an alarm tone output at a level sufficient to drive a

Layout of the digital clock PC board. Three-terminal voltage regulator is not installed, nor is the phototransistor display control circuitry.
40-ohm speaker with enough volume to wake even the soundest of sleepers. If a radio is used, this speaker should be omitted and 0.1-μF capacitor from Q5’s collector to the radio’s audio amplifier input should be installed. S9 is tone on/off and R41 controls the tone amplitude.

Control circuits. All control functions are implemented by applying \(V_{ss} \) to the appropriate pin (an internal pull down to \(V_{dd} \) through approximately 2 megohms is provided.) Time of day is displayed in the absence of any of the following inputs:

Fast Set (pin 34) advances hours at a 1-Hz rate; Slow Set (pin 33) advances minutes at a 1-Hz rate; Seconds Display (pin 32) blanks the tens of hours digit and both Alarm and Seconds, Time (no other mode selected).

Alarm Display (pin 31) temporarily defeats time-of-day display and causes the time for which the alarm is currently set to be displayed, along with the appropriate AM or PM indication when in the 12-hour format. Alarm Set is accomplished by simultaneous operation of Alarm

Display and the appropriate setting input; the time-of-day setting is not disturbed by this operation.

Sleep Display (pin 30) blanks the hours digits and displays the minutes remaining until timed radio turn-off occurs. Operation of this input plus a setting input causes the sleep timer to decrement at the same rate at which time of day is set. When this input is activated, sleep output (pin 27) goes to \(V_{ss} \); when the counter reaches 00 a latch is reset and the output goes low, Q3’s collector goes high, and the radio turns off. The turnoff may also be accomplished at any time in the countdown by momentary operation of the Snooze input (pin 24).

Snooze inhibits the alarm output for 9 minutes, after which the alarm again sounds. The input may be used as often as desired during the 59 minutes for which the alarm latch is set.

Alarm Off (pin 26) resets the alarm latch, causing pin 25 to remain low and therefore silence the alarm. This momentary connection to \(V_{ss} \) also readies the latch for the next comparator output, causing the alarm to sound again 24 hours later. If no alarm output is desired for more than a day this input should remain at \(V_{ss} \), so a spst toggle was used for this function. S9 is provided to silence the alarm tone while causing the radio to remain on for up to 59 minutes.

Digit drive circuits. Resistors R13 through R40 limit the output current of the 3817 to provide uniform display brightness and to prevent destruction of the output de-
24-hour operation: jumper points 1 and 2, 4 and 5, and 7 and 8

In the 12-hour format, only, resistors R13 thru R40 may be omitted and replaced with jumpers if the following additional changes are made:

1. Replace J5 with a 5.1 volt, 1 watt zener diode with the anode oriented toward Q1 and Q2 collectors.

2. Replace diode CR6 with a jumper. This maintains the display V common 5.1 volts above ground and moves a watt of power dissipation to the zener diode.

Display brightness control. Transistor Q1, a phototransistor, and Q2 control the voltage drop between the LED common cathodes and ground. R3 biases Q2 so that the display does not completely blank even in total darkness. 56 kilohms has been used with satisfactory results. Increasing the value will lower the minimum brightness with 100k being about the highest practical value. Q1 may be omitted and a 25k pot installed from VSS to ground with the wiper connected to Q2’s base, using the Q1 emitter pad for connection, if manual brightness control is desired. Q1, Q2 and R3 may be omitted and replaced with a jumper from Q2’s collector to emitter for fixed maximum brightness.

Display. The tens of hours and tens of minutes digits (fig. 4) have been inverted in the display to provide an AM indicator and an acceptable colon from the otherwise unused decimal points included with the digits. This approach eliminates the use of discrete LED lamps for these functions. It should be noted that the manufacturer’s designations of segments A thru G must be disregarded when a digit is inverted and the builder should re-define the segments as shown. The colon may be wired to the junction of CR2/C3 through a resistor in either the time display format, or, in 12-hour format only, it may be tied to the 1-Hz output thru a resistor one-half the value of that selected for R13 thru R40. This latter method will pulse the colon at a 1-Hz rate for
an activity indicator. An added benefit of this approach is that the colon brightness will then track display brightness since the 1-Hz output transistor is on the output common source bus rather than V_{SS}.

The AM or PM indicators are normally lit constantly (tens of hours digit in the 24-hour format); however, if V_{SS} drops below approximately 8 volts, the indicator will flash at the 1-Hz rate to indicate a potential display error. The indicator returns to a steady state after application of either setting input while in the time-of-day mode.

Construction

Construction is very straightforward although normal handling precautions should be applied to the 3817 during construction. Small arrows on the display board foil side indicate the position of the orientation notches of the FND500 LED readouts.

The single-sided PC board shown in fig. 3 is cut in two pieces at the dimensioning lines and R13 thru R40 with J11 thru J13 support the display board perpendicular to the main board as shown in the photograph. Operation at 50 Hz is selected by installing a jumper between points 7 and 10.

Table 3, a parts list, is included to provide a starting point for the builder. Few of the components shown are critical; in fact, resistance and capacitance values can be varied by 50% and more with no adverse effects, specified diodes can be replaced with virtually any diode with a minimum of 10:1 front-to-back ratio, and the transistors may be virtually any available npn type.

Conclusion

An attempt has been made to illustrate a minimum-cost but full-featured clock radio design which can be scaled down to a simple desk clock if so desired by the builder. The usual multiplexing noise associated with electronic digital clocks is eliminated by the direct drive approach, while overall circuit cost and complexity is reduced. The 3817 IC should find a home in many other applications such as automobile clocks (using a crystal and 12-state cmos divider for time-base generation and the blanking input to kill the display in ignition off conditions). Photography timers, appliance timers, industrial controllers, and digital stopwatches are other potential uses. Other common-cathode displays such as the FND70 may be used in place of the FND500 shown, or liquid crystal, neon, or fluorescent display may be substituted at some cost sacrifices. The 3817, FND500, and related data sheets may be obtained from franchised Fairchild distributors.

table 3. Parts list for the digital clock.

<table>
<thead>
<tr>
<th>qty</th>
<th>part</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>0.01 µF, 25 WVdc disc ceramic</td>
</tr>
<tr>
<td>1</td>
<td>C2</td>
<td>1000 µF, 25 WVdc electrolytic</td>
</tr>
<tr>
<td>1</td>
<td>C3</td>
<td>5000 µF, 25 WVdc electrolytic</td>
</tr>
<tr>
<td>1</td>
<td>C4</td>
<td>0.1 µF, 25 WVdc disc ceramic</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
<td>10 µF, 25 WVdc electrolytic</td>
</tr>
<tr>
<td>6</td>
<td>CR1-CR6</td>
<td>1N4148</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>FPT130 phototransistor</td>
</tr>
<tr>
<td>4</td>
<td>Q2-Q5</td>
<td>2N4401 npn transistor</td>
</tr>
<tr>
<td>1</td>
<td>R1</td>
<td>100k, 10%, 1/4-watt</td>
</tr>
<tr>
<td>1</td>
<td>R2</td>
<td>1.5 megohm, 10%, 1/4-watt</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>56k, 10%, 1/4-watt</td>
</tr>
<tr>
<td>5</td>
<td>R4,R5,R7, R8,R11</td>
<td>4.7k, 10%, 1/4-watt</td>
</tr>
<tr>
<td>3</td>
<td>R6,R9,R12</td>
<td>27k, 10%, 1/4-watt</td>
</tr>
<tr>
<td>1</td>
<td>R10</td>
<td>1.2k, 10%, 1/4-watt</td>
</tr>
<tr>
<td>28</td>
<td>R13-R40</td>
<td>1.8k, 10%, 1/4-watt (see text)</td>
</tr>
<tr>
<td>1</td>
<td>R41</td>
<td>10k potentiometer</td>
</tr>
<tr>
<td>6</td>
<td>S1-S5,S7</td>
<td>spt pushbutton switch</td>
</tr>
<tr>
<td>2</td>
<td>S6,S9</td>
<td>spt toggle or slide switch</td>
</tr>
<tr>
<td>1</td>
<td>S8</td>
<td>spt toggle or slide switch</td>
</tr>
<tr>
<td>1</td>
<td>T1</td>
<td>12 Vac secondary transformer, rating as required by radio</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>Fairchild 3817ApC digital clock IC</td>
</tr>
<tr>
<td>1</td>
<td>U2</td>
<td>78Lxx or 78Mxx voltage regulator (voltage and current determined by radio requirements)</td>
</tr>
</tbody>
</table>

Printed-circuit boards and semiconductors for the digital clock are available from Circuit Specialists Company, Post Office Box 3047, Scottsdale, Arizona 85257: set of two circuit boards, $4.50; Fairchild 3817ApC clock IC, $6.50; FND500 LED readouts, $3.50 each; MPSA70 transistor (2N4401 replacement), 32¢ each.
Many of our customers then are still our customers today...

Back in 1958, on the island of Okinawa, Jim Fisk, KR6JF, was operating his Drake Model 1A Receiver.

Today, Jim Fisk, W1DTY, is operating his Drake C-Line station at home in New Hampshire.

Long term stability means more than just equipment performance. (It also refers to people and companies).

R. L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017

See us at Dayton Hamvention

More Details? CHECK-OFF Page 110
vhf prescaler
for digital
frequency counters

A sensitive circuit
that will extend
your counter's range
to 300 MHz

As easy-to-build, high-performance vhf prescaler can be added to a high-frequency digital counter to extend its useful frequency range to 300 MHz. Such a prescaler is described here with my experiences in adding it to a homebrew counter. The prescaler is based on the Fairchild 95H90 and a series of articles by W6PBC.1,2,3 These articles contain excellent material for those interested in obtaining the ultimate performance from the 95H90 prescaler. The unit described here can be built for around $25.

circuit
The circuit (fig. 1) is based on W6PBC’s work and information in Fairchild 95H90 data sheets.4 A low-impedance input amplifier uses a 2N5179 transistor to provide good gain at vhf. Two back-to-back 1N914 diodes protect the input from overload. The 22-ohm resistor and two 0.05-μF capacitors isolate the input amplifier to prevent oscillation. The amplifier is coupled to the 95H90, which also has a low input impedance. The 95H90 operates best with low input impedances hence the 68- and 200-ohm input bias resistors.

Decoupling the 95H90 from the power supply is accomplished with the 0.01 and the 2.20-μF capacitors. A 2N5771 couples the 95H90 output to TTL counter inputs. Most counters with amplified inputs can be

By Marion D. Kitchens, Jr., K4GOK, P.O. Box 183, Haymarket, Virginia 22069
operated by connecting pin 8 of the 95H90 to the counter input through a 0.01-µF capacitor. Both arrangements are shown in the schematic and the parts placement drawing, fig. 2. Input sensitivity was not however. The 2-20 µF decoupling capacitor should be the smallest physical size you can obtain. The PC board is laid out for ¼-watt resistors, although if you really work at it you can install ½-watters. The ¼-watt resistors measured but should be around 15 mV at 100 MHz and about 100 mV at 260 MHz, according to W6PBC's data.

construction

Construction is simple. Just mount all parts, except R_v, onto the PC board and solder. (R_v is discussed later.) A few points about construction should be made, are preferred. Note that pin 14 of the 95H90 is floating; no connection should be made to it.

The RG-174 coax is held in place (strain relieved) by placing short loops of wire over the coax and soldering them to the PC board. Fig. 2 shows component placement. A photo of the circuit board is shown without the heatsink in place and with temporary wiring. The
2N5771 should be installed with its flat side down against the PC board so it will clear the aluminum heatsink.

A heatsink (fig. 3) is strongly recommended although not absolutely necessary. Fairchild data sheets indicate the 95H90 maximum count frequency depends on the IC’s temperature. About 750 kHz is lost for each °C rise in temperature, for near-room temperatures. My prescaler frequency limit was around 270 MHz without the heatsink, but went to 300 MHz with it. The signal source, a grid-dip oscillator, was limited to 300 MHz so I don’t know if my prescaler will go higher or not. The heatsink was used to mount the prescaler in the cabinet. Fig. 4 shows a full-size etched board layout for the prescaler.

supply voltage

Individual 95H90s have a “best” supply voltage that results in maximum count frequency. The best voltage for most 95H90s is 4.85 V according to W6PBC’s data. My homebrew counter power supply provides 4.85 volts (how lucky can you get?), so when the prescaler was wired directly to the power supply for testing a 300-MHz count frequency was obtained. However, when the permanent installation was made, the maximum count frequency was only 150 MHz. After many hours of searching I found the 95H90 voltage was only 4.60 V. I was surprised to find a 2-amp in-line fuse produced a 0.1-volt drop. The other 0.15-volt drop was across a switch located between the power supply and the counter. This total 0.25 volt drop caused no problems with the basic counter but sure played havoc with the prescaler.

![Fig. 4. Full-size etched board layout.](image)

The 95H90 draws 100 to 150 mA so a value for Rₓ in the 1-ohm range will provide 4.85 volts from a 5.0-volt source. Individual 95H90s will draw different currents, so Rₓ is best determined by trial and error. Tack in a trial resistor and measure the maximum count frequency until you’re satisfied.

Conclusion

The prescaler was easy to build and operate. It should be useful for vhf enthusiasts since it covers 50, 144 and 220 MHz with good sensitivity. No tricky, fussy or unstable circuits are involved. The vhf prescaler is a very worthwhile addition to all digital counters.

References

OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101
Specify when ordering.
Price $3.95 ea.

OF-1 OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OF-1, Lo, Cat. No. 035108. 20 to 60 MHz, OF-1, Hi, Cat. No. 035109
Specify when ordering.
Price $3.25 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106
Specify when ordering.
Price $4.50 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mW, depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz, Cat. No. 035104
Specify when ordering.
Price $4.75 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Signal tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103
Specify when ordering.
Price $4.50 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107
Specify when ordering.
Price $4.75 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to:
M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102
50 years of television

The first public demonstration of television was given fifty years ago although experimenters have been interested in transmitting visual images for more than 100 years.

Last year marked approximately the 50th anniversary of television, a medium which began amidst an array of flickering neon lamps and a whirling disc in 1925, when C. Francis Jenkins transmitted a live silhouette of a moving windmill from his workshop in Anacostia, Maryland, to the Navy Department in nearby Washington, DC. Later that year Jenkins gave his first public demonstration of the radio transmission of live images (which he called "radiovision") and film ("radiomovies").

In a conference at the Department of Commerce on May 29th, 1925, the authorities decided to allow amateurs to transmit pictures and facsimiles on any wavelengths for which they were licensed, but there is no record of any amateur television transmissions until many years later.

The early years

The transmission of visual images goes back one-hundred years, to 1875, when George Carey in Boston used the system of fig. 1 to simultaneously transmit each separate picture element by wire. This followed the discovery in 1873 by Lewis May, a British telegrapher, of the photoconductive properties of selenium. The principle of rapidly scanning each picture element in succession, line by line, was proposed in 1880 by Maurice Leblanc of France and led to one of the first television patents which was issued to Paul Nipkow of Germany in 1884. The distinctive feature of the Nipkow system was the use of a spinning disc, with a spiral array of holes near its outer edge, to disassemble the image into a series of dots, and a similar disc at the receiving end to reassemble the picture (fig. 2). Until the advent of all-electronic image scanning in the 1930s, all workable television systems depended on some form or variation (mirrored drums, lensed discs, etc.) of the sequential scanning system exemplified by the Nipkow disc.

The sequential reproduction of visual images is feasible only because the human visual sense displays a persistence of vision — the brain retains the impression of illumination for about 100 milliseconds after the source of light is removed. If the image-making process occurs within less than 100 milliseconds, the eye is unaware that the picture has been assembled piecemeal, and it appears that the whole viewing screen is continuously illuminated.

Although selenium was used by all the early television experimenters, it had one serious handicap: slow response to changes in light. The discovery of a potassium hydride coated cell in Germany in 1913 improved sensitivity and the ability to follow rapid changes of light.

By Jim Fisk, W1DTY, and Dave Ingram, K4TWJ
but experimenters were still limited by the slow response of incandescent lamps. This was solved by the invention of the neon gas-discharge tube by D. M. Moore in 1917. The application of the cathode-ray tube for television reception was first proposed by Boris Rosing in Petrograd in 1907, but development of his patent was retarded by the lack of suitable photo cells and electronic amplification. However, he did succeed in transmitting and reproducing some crude geometrical patterns. In 1908, Alan Campbell-Swinton, a Scotsman, outlined a method that is the basis of modern television when he proposed the use of a magnetically-deflected CRT at both the camera and receiver. Although his idea couldn’t be translated into workable hardware because he lacked suitable amplifiers, his proposed mosaic-screen image pickup tube was remarkably like the iconoscope invented by Vladimir Zworykin some fifteen years later. Because of the lack of suitable amplifiers, television experimenters continued to work with mechanical television systems and, in 1922, using his own version of

fig. 2. Spiral hole layout in a 24-line Nipkow scanning disc is shown at left. The shaded area represents the size of the reproduced image. Enlarged view of an image produced by the 24-hole scanning disc in center shows poor resolution of 24-line scanning. At right is the same image produced by 48-line scanning disc. Resolution is improved but is still crude compared to modern standards.

Nipkow’s disc, C. Francis Jenkins transmitted a still picture from one room to another. The next year he received nation-wide attention when he sent a recognizable picture of President Harding by wireless from Washington to Philadelphia.

In the Jenkins system a disc with 24 (later 48) apertures was rotated at 2000 rpm by a motor whose speed was varied until it was synchronized with a similar setup at the transmitting end. A neon tube was positioned behind the receiving disc and connected in place of the receiver’s earphones which, in the broadcast sets of the 1920s, were connected between the audio output tube’s plate and B+ supply. A piece of ground glass or thin wax paper was placed in front of the neon tube to diffuse the light. Motor speed was difficult to regulate, and since exact synchronism was required for good image reproduction, copying a picture off the air was something of a challenge. The pictures were usually about two inches (51mm) square although many viewers (Jenkins called them “Lookers in”) used a magnifying glass to enlarge this area to 5 or 6 inches (13 to 15cm) square.

All of the mechanical systems, however, suffered from poor definition and flickering. Swinton and others had pointed out that at least 100,000 and preferably 200,000 elements were required for good quality and definition on a screen of reasonable size. John Baird of England gave the first true demonstration of television in 1926 by transmitting moving pictures in halftones using 30 lines, scanned 10 times per second. However, since the number of elements is approximately equal to the square of the number of lines, Baird’s 30-line system was far from adequate — 300 lines being more nearly the minimum.
Far-sighted planners at American Telephone and Telegraph, Westinghouse, RCA and General Electric saw the commercial possibilities of television in the mid-20s, and in April, 1927, AT&T set up the first long-distance telecast in the United States when then Secretary of Commerce Herbert Hoover spoke from a makeshift studio in Washington, DC, and sight and sound were received over five minutes of every hour along with simultaneous sound which was broadcast by another local station.

In September, 1928, General Electric telecast the first live video drama from W2XCW in Schenectady, an old play called "The Queen's Messenger," selected primarily because it had only two characters. The accompanying sound was transmitted by WGY, GE's a-m broadcast station. This created a lot of excitement in the press, but Dr. Ernst Alexanderson, who directed much of the television development at GE, cautioned that the program was experimental and didn't mean that television was yet ready for public consumption.

Indeed it wasn't. Although QST devoted more space to television in 1928 than it did to radiotelephony, amateur interest in the crude radiovision systems of the day waned quickly, and the topic received little coverage in QST in 1929. It wasn't until eight years later and the telephone circuits in New York City, 200 miles away. In the considerable publicity given to the AT&T transmissions the term "television" was used and soon came into widespread use as applying to any form of visual broadcasting. "Television," of course, means transmission over wire, and although you cannot argue with established usage, Jenkins stubbornly continued to call the new medium "radiovision" in his magazine articles and advertising.

In the summer of 1928 the Federal Radio Commission issued experimental television licenses to Jenkins Laboratories in Washington (W3XK) and to the General Electric Company in Schenectady, New York (W2XCW). Jenkins began broadcasting radiomovies on a regular schedule on July 2nd, and a month later he reported that "one hundred or more had finished their receivers and were dependably getting our broadcast pictures" Hugo Gernsback's magazine, Television, regularly reported new developments and published construction articles for amateurs eager for information and was packed with advertising for television kits, parts, discs and neon lamps. Gernsback also owned a pioneering radio station in New York, WRNY, which broadcast live pictures for the first time.
The development of cathode-ray television systems that QST expressed renewed interest in the subject.

Aside from the very crude pictures of the disc-television systems which made it difficult, in the words of one wit, "... to tell the difference between an opera singer and her poodle," the big problem was synchronization. The utility companies tried to maintain 60 Hz, but there were no unified power grids as we know them, so synchronization was always slow and laborious, and often impossible. To quote ARRL's Percy Maxim, W1AW, "... for about half a second, I actually had a picture. It flickered and it was fuzzy and foggy, and about the time I was wondering why they picked on a cow to televise, it suddenly dawned on me that it was a man's face I was looking at. Then I lost synchronism and my man disappeared into a maze of badly intoxicated lines..."

By 1929 a total of twenty-six television stations were licensed by the Radio Commission, although few of them broadcast with any regularity. Jenkins, however, increased the power of W3XK and started work on a plant in New Jersey to build "radiovisors." In 1930 he petitioned the Radio Commission to commercialize television using his 90-hole disc system, but the request died without action when a Commission engineer said the mechanical system was "an absorbing field for the experimenter but not ready for entertainment." The major corporations — including GE, RCA and Westinghouse — echoed the Commission's view.

The images, as seen in the receiver, were small and extremely crude. In addition, the pickup camera was fixed so the subject had to be brought to it, and the transmission of a person's head and shoulders strained all the resources of the scanner and transmitter. Obviously, a telecast within such technical limitations could have little entertainment value.

Nevertheless, continuing research resulted in increasing the number of scanning lines to about 180 lines per picture, and later, to 240-line images, all generated by mechanical methods. The increased image details forced higher and higher speeds in the mechanical parts, until engineers despaired of ever presenting an image of fine detail by mechanical scanning methods.

By this time news of all-electronic image-scanning systems were beginning to reach the hobby magazines, and the days of the whirling discs were numbered. In 1932 Jenkins terminated his broadcasts and was taken over by the Deforest Radio Company, which itself later drifted into bankruptcy.

1925 re-activated

As a nostalgic special interest project, K4TWJ is planning a re-activation of 1925 style television. This will be a project designed so that anyone can join in the fun at minimum expense (less than ten dollars, depending on your junk box). Alan Smith, W8CHK, and Dave Ingram, K4TWJ, will work together to supply information to interested parties. Alan will have the disc patterns, detailed sketches, and instructions available via mail; Dave will distribute cassette tapes of TV signals (include return postage).

The tapes will be handled on an exchange basis. Originally, a one-time transmission of 1925 TV signals was planned for 20 meters. These TV signals sound a bit like someone tuning up (a 1000 Hz note) and occupy little bandwidth. Briefly, K4TWJ's request to the FCC was for a one time, three-minute TV transmission which

*Alan Smith, W8CHK, 3213 Barth Street, Flint, Michigan 48504.
Dave Ingram, K4TWJ, Eastwood Village, No. 604 N., Rt. 11, Box 499, Birmingham, Alabama 35210.

The first home television reception took place in 1927 at Dr. Alexanderson's home in Schenectady. A television system developed by Alexanderson and his co-workers was used for public broadcasts in 1928, the year this photo was taken. The television screen is in the small square at eye level. (Photo courtesy GE)
would be included in a roundtable discussion among interested parties, and would be abandoned if QRM was evident. The FCC turned thumbs down on the request, contending that the mode was outdated, the transmission would create unnecessary interference, and suggested a nationwide telephone hookup. Mailing tapes was the alternative.

Fig. 3 shows K4TWJ's modern day equivalent setup for reproducing 1925 style TV. An ac motor such as an old fan or phono motor is used to rotate the scanning disc. A commercial light dimmer is placed in series with the motor for sync/speed control of disc. The speed will later be adjusted to approximately 1700 rpm. Light-emitting diodes are used to replace the neon glow tube used in the early systems. It is suggested that three or four LEDs be used and positioned to form a square picture area. Wire the LEDs in parallel and connect them to your receiver or tape recorder speaker. A piece of ground glass (grind in a mixture of turpentine and sand) is placed between the LEDs and the disc to produce a picture area. This area will be approximately 1/2 inch (13mm) square, depending on the LED's size.

Harry Mills, K4HU, and Alan Smith, W8CHK, are to be thanked for their assistance with this project. Harry's experiences in actually receiving the original TV transmissions from GE's station in Schenectady was the final push needed to get it going. His assistance in locating information on disc TV systems in old engineering texts was very helpful. Alan, W8CHK, heard of the project and offered to help with copying and mailing. Their assistance is greatly appreciated.

electronic image scanning

In 1923 Dr. Vladimir K. Zworykin, a former student of Boris Rosing in Petrograd, was granted a patent on a system for the "cell storage of light" that was to become the basis of modern television. A year later he demonstrated a crude tube, which he called the iconoscope,† that scanned a scene electronically.

In the iconoscope (fig. 4) the external image is focused on a mica plate which is covered on one surface by millions of photosensitive particles, each insulated from the other (called a mosaic plate). The other side of the plate has a thin, deposited metal coating (called the signal plate) so each photosensitive particle forms one plate of a miniature capacitor. When a scene is focused on the mosaic plate, each of the particles develops a positive charge which is proportional to the amount of light falling upon it. When the photosensitive mosaic is scanned by an electron beam, the beam discharges each of the particles, in turn, and creates a small electric current which is picked off the signal plate and amplified.

Although the iconoscope was used in nearly all the early electronic television systems, secondary electron emission generated undesired outputs which had the effect of producing uneven shading. As a result, the reproduced image had large areas with varying brightness levels which were not contained in the original scene. This spurious shading signal is often called dark-spot shading because it can be generated when the mosaic plate is not illuminated. The spurious shading signal is inherent in the iconoscope camera tube but is minimized by using low values of beam current (at the expense of camera efficiency).

At about the same time Zworykin was working on his iconoscope, Philo T. Farnsworth was working independently toward an electronic scanning system somewhat along the same lines. However, while the iconoscope is based on electron storage, Farnsworth's image dissector camera tube may be considered an instantaneous scanner. The image dissector, shown in fig. 5, consists of a flat photosensitive cathode located at one end of the tube. The light from the scene is focused on the cathode, and electrons are emitted in proportion to the amount of light striking it at any one point.

The electrons emitted from the cathode are forced to move down the tube by high positive voltages applied to

†From Greek icon, "image," and scope, "to observe."
Dr. Vladimir K. Zworykin, inventor of the iconoscope, all-electronic "eye" of the television camera. (Photo courtesy RCA)

Attracting electrodes at the opposite end of the tube. A fixed scanning aperture is also located at the anode end of the tube and the electrons from the cathode are magnetically deflected by external coils -- as the electrons are moved past the aperture they enter and are amplified by the electron multiplier structure. Therefore, in the image dissector the electronic image is moved while the scanning device is stationary; the opposite is true of the iconoscope.

In 1929 Dr. Zworykin demonstrated a television transmitter based on mechanical scanning with a receiver in which an improved form of cathode-ray tube called the kinescope,* was used to reproduce the transmitted 120-line image. In 1931 RCA made experimental television transmissions over station W2XBS in New York City and RCA's president, David L. Sarnoff, predicted that within five years television would become "as much of a part of our life" as radio. As with so many other, similar predictions, however, it proved to be premature.

It was to be four more years before Dr. Zworykin had developed the iconoscope to the point where it could be used as the basis of a workable, all-electronic television system.

After several years of experimentation with mechanical scanning systems, RCA built an entirely new television transmitter at the Empire State Building and equipped NBC's nearby broadcasting studios for broad experimentation in all phases of television broadcasting. In the summer of 1936 RCA began extensive field tests from the Empire State Building with electronically-scanned 343-line pictures, 30 frames per second. In January of the following year, however, definition was raised to 441 lines in accordance with the proposed standards of the Radio Manufacturer's Association, a figure which remained until 1941.

The television art was also advancing in other parts of the world. In England, Electrical and Musical Industries (EMI) set up a TV research group in 1931 under the direction of Isaac Schoenberg. He fostered the evolution of a practical system based on a camera tube known as the Emitron, which was an advanced version of Zworykin's iconoscope, and a CRT for the receiver. Schoenberg saw the need to establish standards that would en-

*From Greek kine, "motion," and scope, "to observe."
dure for many years and proposed 405-line pictures, 50 frames per second.

The British government authorized the BBC to adopt these standards as well as the complete EMI system, launching the world's first public, high-definition TV service in 1936. These same standards remained in effect until 1964, when they were gradually superseded by a 625-line standard.*

Initially, and for only a short time, the EMI system was under comparison with alternate broadcasts from a 240-line, 25-frame system developed by John Baird. However, the Baird system used mechanical scanning and suffered from poor sensitivity.

Initially, and for only a short time, the EMI system was under comparison with alternate broadcasts from a 240-line, 25-frame system developed by John Baird. However, the Baird system used mechanical scanning and suffered from poor sensitivity.

Regular television broadcasts began in Germany in 1935, though with medium definition (180 lines), and in France engineers were working on a high-resolution 1000-line system which eventually resulted in France's 819-line standard.

camera tube development

Later research in television camera tubes resulted in the development of pickup tubes, based on the iconoscope principle, which had greatly increased sensitivity. The first of these was the orthiconoscope or orthicon which was developed by Albert Rose and Harley Lams in 1939. Continuing research led to the development of the image orthicon by Albert Rose, Paul Weimer and Harold Law of RCA in 1943.

In the image orthicon, fig. 6, a glass plate coated on one side with a conducting layer of photoelectric material serves as the photocathode. The semitransparent plate receives the light image on one side while photoelectrons are emitted from the other side, which faces a wire-mesh screen and target, to produce an electron image which corresponds to the scene focused on the front of the glass plate.

The electron gun produces a stream of electrons which is accelerated toward the target by the positively charged anode wall coating. Beam deflection is accomplished with magnetic deflection coils which are mounted externally on the tube. A decelerating ring with a very low positive potential is placed near the target to slow down the electrons so the scanning beam does not have sufficient velocity to produce secondary emission that generates spurious shading signals. High electron velocity is required in the neck of the tube, however, because of difficulties in magnetic deflection and focusing with a low-velocity electron beam.

Photoelectrons are emitted from the cathode surface in direct proportion to the light and shade in the scene, converting the optical image into an electron image. The electron image is accelerated toward the target (which is 300 volts positive in respect to the photocathode), and is focused through the screen onto the target plate by a uniform magnetic field in a manner very similar to that used in Farnsworth's image dissector tube. As the electron beams scans the target, a charge distribution corresponding to the picture elements in the light image deter-

*There is still one BBC station broadcasting 405-line telecasts. At this time no firm date has been established to convert it to the 625-line standard.
that it reduces the signal plate-to-cathode potential. During the short time between successive scans, charge leaks through the photoconducting material at a rate which is determined by the intensity to which that part of the photoconducting material is subjected. As the electron beam scans the surface of the photoconducting material, the charge it deposits varies in accordance with the variations in the illumination of successive elements of the photoconductor. Therefore, the current through the load resistor, and hence the output voltage, electronically reproduces the light intensity of the scene.

frequency allocations

Late in the fall of 1937 the FCC announced new allocations for the spectrum between 30 and 300 MHz and, much to the delight of amateurs, reaffirmed the 56-60 MHz (5-meter) band as exclusively amateur. The new rules also provided two new exclusive amateur uhf bands: 112-118 MHz (2½ meters) and 224-230 MHz (1¾ meters). One of the big worries at the time was the huge spectrum space demanded by the impending arrival of television, still around several corners but getting closer. In fact, the Commission’s press release on the new uhf allocations commented that, “The investigations and determinations of the Commission justify the statement that there does not appear to be an immediate outlook for the recognition of television service on a commercial basis. The Commission believes that the general public is entitled to this information for its own protection . . .”

Nevertheless, the FCC allocated seven main television channels, each 6 MHz wide, between 44 and 108 MHz, and twelve additional channels above 156 MHz. The 50-56 MHz TV channel was of special concern because of possible interference due to its close proximity to the amateur 5-meter band. In New York this channel was assigned to CBS, and in a brief survey their engineers logged scores of amateur stations operating between 54 and 56 MHz, well outside the band. When you consider that modulated oscillators and superregen receivers were the order of the day, this is understandable, but the new TV allocations spelled the end of broad signals from unstable 5-meter transmitters (which were often operated on raw ac). Not unexpectedly, in December, 1938, the FCC required that all 5-meter amateur transmitters meet the same stability requirements as those already imposed on the lower frequencies.

modern television

The first regular television schedule in the United States was introduced by NBC’s W2XBS in 1939 with a telecast of President Roosevelt opening the World’s Fair in New York. RCA announced the new NBC programming in an advertisement for television receivers in QST which explained that NBC stations in New York, Schenectady and Los Angeles would begin telecasting two one-hour programs per week, plus special pickups of sports, visiting celebrities, etc. The public, however, didn’t respond eagerly to the new medium, and after five months of broadcasting, RCA had sold only 400 television sets. The story was much the same in England where only 3000 receivers had been sold after two years of television broadcasting by the BBC.

The New York World’s Fair also marked an important milestone for amateur television. The Managing Director of W2USA at the World’s Fair, Art Lynch, W2DKJ (now W4DKJ), after seeing a successful demonstration of amateur television equipment at a radio show in Chicago in June, was convinced that television communications should be added to the station at W2USA, “the most visited amateur station in the world.” Since the World’s Fair was scheduled to close at the end of October, time was short, but Art lined up the necessary talent, and with some help from industry, the group built two complete television systems in an effort to establish the first two-way television contact. Their goal was accomplished on September 27, 1940, when amateurs at W2USA and W2DKJ/2 at the New York Daily News Building in Manhattan began exchanging fair quality television pictures.

Pilot home television set from the late 1930s, one of the first sets offered to the consumer. From the AWA Museum collection. (Photo by W2BWK)

This television set, first introduced by RCA for public use at the New York World's Fair in 1939, featured a picture reflected from the top of the kinescope to a mirror on the underside of the cabinet's uplifted lid. (Photo courtesy RCA)
In the early 1930s, Felix the Cat was the first "star" to appear before RCA-NBC experimental television cameras. Felix whirled around on his phonograph turntable for hours on end while four hot arc lights beat down on him. In those early days the crude TV images of Felix looked like he was being viewed through a venetian blind. (Photo courtesy RCA)

on the amateur 112-MHz band. Accompanying sound was transmitted on 56 MHz. Distance between the two stations was about eight miles.

The television equipment at each end of the circuit consisted of a camera-modulator unit, a receiver and a transmitter which were duplicates of equipment described earlier in QST. The system used 30-Hz vertical scanning, 3600-Hz horizontal scanning and a 120-line raster. Considering that the pictures were viewed on a CRT with a P1 phosphor, the results were quite gratifying. Each station boasted the very latest in electronic equipment including electro-magnetically-deflected cathode-ray tubes, free-running sweep circuits synced by external pulses and iconoscope camera tubes. The equipment was donated by RCA, National, Hallicrafters, Hammarlund, Thordarson and Kenyon. The station at W2USA used a single 1000-watt lamp for subject illumination while W2DKJ/2 had a battery of smaller lights with reflectors.

A number of amateurs in the vicinity of New York were working on their own television receivers and on October 15th, W2AOE put on a demonstration for members of the Northern Nassau Radio Association by receiving TV signals from the 20-watt station at W2DKJ/2, 17 miles away, using an improved version of the receiver described by J. B. Sherman in QST. The range was increased to 29 miles on October 19th when good quality TV signals from W2DKJ/2 were received at W3FRE in Denville, New Jersey.

On July 1st, 1941, NBC’s New York station, called WNBT, and CBS’s station, WCBW, were licensed as the first commercial television stations in the United States. The FCC authorization provided for an upgrading in picture definition by adopting a 525-line standard, and fm for the audio portion of the telecasts (replacing a-m). However, the outbreak of the war in December brought television broadcasting to a standstill, and as critical materials and manpower were channeled into the war effort, television broadcasting ceased.

The FCC was carefully studying spectrum allocations during the last few years of the war, in anticipation of the armistice, and in March, 1945, they announced the new vhf allocations above 108 MHz and below 44 MHz. The spectrum between 44 and 108 MHz was to be allocated later, after running fm transmission tests during the summer. Since the release of raw materials was not imminent, this didn’t appear to pose any problem. However, after VE day cutbacks and labor layoffs commenced in industry and it appeared that needed raw materials would soon be available - on June 27th the FCC announced the allocations between 44 and 108 MHz without running their planned tests. Under the new plan amateurs would get 50-54 and 144-148 MHz, fm broadcasting would move to 88-106 MHz (106-108 MHz was reserved for facsimile broadcasting), and television received channels 1 through 13. Channel 1, originally slated for the 44-50 MHz slot, was later deleted.

By 1948 there were 36 television stations on the air, 70 more were under construction, an estimated one-million television sets were in use by the public, and interference problems began to appear. In September, 1948, the FCC put a freeze on licensing any new TV stations in order to study the frequency allocations and to consider the problems posed by color television (more about that later). This situation continued for three years, prolonged by the Korean War and a consequent shortage of critical materials. Finally, in April, 1952, the FCC lifted the freeze with a document that supplemented the twelve existing vhf channels with 70 new uhf
fig. 8. Color television system of the late 1920s. Light from the image is concentrated by lenses on the main scanning disc, but reaches photocell only when the proper color filter is presented by the second rotating disc, which revolves faster than the scanner. Similar setup was used at the receiver.

channels. Within a few months they had processed a backlog of 700 applications for new stations and had granted 175 new licenses. Within a year there were 377 stations on the air, and by 1955 about 95 per cent of the country had television coverage. Today there are 919 television stations (590 on vhf, 329 on uhf) throughout the United States and there are few places in the world that don’t have television service.

color television

Although color television is generally accepted as a product of the past 25 years, it is nearly as old as television itself. One of the earliest proposals was patented in Germany in 1904, and the same Dr. Zworykin who invented the iconoscope filed a patent disclosure for an electronic color TV system in 1925.

John Baird demonstrated the first practical color television system in 1928 which used a Nipkow disc with three spirals of 30 apertures, one spiral for each primary color. The light source at the receiver used two gas-discharge tubes: one of mercury vapor and helium for the green and blue colors, and a neon tube for red.

In 1929 Herbert Ives and his colleagues at Bell Laboratories transmitted 50-line color images between New York and Washington, DC. This was also a mechanical system, but one that simultaneously sent the three primary color signals over three separate circuits.

In 1940 both NBC and CBS gave public demonstrations of color television which used 441-line scanning. Numerous demonstrations were also given after the war, including one by RCA in 1946 in which a stereoscopic system was used to present a three-dimensional representation of the image. In all of these demonstrations, however, color filter discs (or drums) rotated in synchronism in front of the camera tube and receiver.

At the receiver the color images were presented sequentially (field-sequential system) so the red, green and blue components of the scene were viewed one after the other. Because of the persistence of vision the viewer perceived a full-color image; however, if he moved his head or scanned the picture rapidly, the image suffered from “color break-up.” The rotating mechanical discs were also a drawback, and as black-and-white TV sets became widely distributed in the late 1940s, the inability of unmodified monochrome receivers to reproduce a color program made color television broadcasting, on this basis, economically impractical.

These difficulties were solved by a simultaneous three-channel color system introduced by RCA in 1946 in which the three component images (red, green and blue) were separately transmitted and projected on a screen or presented on three separate CRTs which were viewed through a system of beam-splitting dichroic mirrors. RCA even developed a projection CRT for this purpose which they called the trinoscope. Monochrome receivers were simply tuned to the green channel (fig. 9).

fig. 9. Transmission channel for RCA’s experimental simultaneous color television picture signal required 14.5-MHz bandwidth. Monochrome receivers were tuned to the green carrier. Detail capable of being resolved in a blue image is much less than in a green, red or white image so bandwidth of blue video signal can be reduced substantially without affecting the quality of the color picture.

fig. 10. Basic system for field-sequential transmission of color television images.

However, both the field-sequential and simultaneous three-channel color systems required, for equal picture definition and freedom from flicker, much greater bandwidth than the 6-MHz channels already allocated to black-and-white TV. In view of the great pressure for frequency allocations in the vhf spectrum, it was generally agreed that color television should be accommodated within the existing 6-MHz channels. By reducing both the color frequency and the number of lines, the field-sequential color system could be transmitted within a 6-MHz bandwidth, but only with poor resolution and increased flicker.
Investigators at RCA (1949) found it was possible to retain full resolution, freedom from flicker, and monochrome compatibility with a simultaneous system that used a monochrome picture signal with a phase and amplitude-modulated subcarrier which carried the color or chroma information. The chromatic subcarrier, approximately 3.58 MHz above the picture carrier, was selected so it had no visible effect on the picture reproduced by a monochrome receiver. In a color receiver the subcarrier was used to distribute picture brightness between the three primary colors to produce a natural color rendition of the original scene.

Nevertheless, in October, 1950, after a lengthy series of hearings, the FCC adopted the incompatible field-sequential color system as the standard for the United States. However, in December, 1953, the Commission rescinded its earlier ruling and issued a new set of specifications which had been submitted by RCA and the National Television System Committee (NTSC). These corresponded to the compatible color system developed earlier by RCA — this same basic color system is still used throughout North and South America, Japan, Korea, and parts of Europe.

Slow-scan television

No history of television would be complete without some mention of slow-scan television, and the important role that amateurs played in its development. Copthorne MacDonald, W4ZII (now W0ORX), introduced slow-scan television to amateurs in a 1958 QST article which described a simple system, using a flying-spot scanner, to transmit photo transparencies. Initial on-the-air tests were conducted on 11-meter a-m between W4JP at the University of Kentucky and K4KYY. MacDonald also tried to run tests with PJ2AO in Curacao, but band conditions were too poor for satisfactory picture reception.

The slow-scan system, which requires no more bandwidth than an audio signal, was originally conceived as a facsimile system and it was a number of years before the medium was used to transmit live images. Since 11 meters was the only high-frequency band where facsimile transmission was permitted, most sstv activity ceased when amateurs lost 11 meters to the Citizens Radio Service. Eventually, however, the FCC granted special permission to conduct sstv tests on 10 meters and, later, 20 meters. The sstv standards which are used today were developed during these early tests. Since August, 1968, slow-scan television (designated narrow-band A5 and F5 emission) has been permitted on portions of all the high-frequency bands plus most of vhf.

references

bibliography

AUDIOTRONICS CAMERAS:

#5588 PVC 818
Same as PVC 808 but less viewfinder
LIST .. $375

#5586 PVC 808
3" Viewfinder Camera, 2/3" Vidicon
(20 PE11) Fabulous Features,
Including External Sync
Drive Capabilities
LIST .. $550

#5592 PVA901 FADER/SWITCHER

Specifications:
Camera has switchable internal random sweep or external drive connections for use with special effects, etc. 500 line Resolution, 10 step gray scale, ALC 2000:1 with IV p-p video output, 2/3" vidicon, power requirement 120VAC 60C 6.6VA. Viewfinder has 3" diagonal screen.

Dimensions:
Model PVC-808 7½"H x 4"W x 10½"D. Wt. 9.5 lbs. Model PVC-818 3½"H x 3"W x 10½"D. Wt. 5.5 lbs.

#5586 — Brand new model PVC-808 camera w/lens & viewfinder $399.95
#5588 — Camera model PVC-818 less viewfinder, w/lens 16mm fl. 6 $299.95
#5587 — Viewfinder only — requires 14VDC & Video input $129.95
#5278 — Triple 3" viewfinder in panel 11½ x 5½ with 14V power supply $449.95
#5592 — Switcher/Fader model PVA-901 to use with 2 of above cameras, solid state. Both switch & fade, super-imposed, dissolving, fade-to-black, internal AC power supply $249.95

SPECIALS:
Low Frequency Xtals #4300 — 15.750KC or #4301 — 31.5KC each $12.95
#5700 — Type 1698 Monoscope tube w/instructions $7.95
#2043 — Focus coil for 1" vidicon (no yoke) 365 ohms $14.95

Please enclose check with order. All above items shipped via United Parcel Service transportation charges collect.

The following is a list of our most recent flyers. Write for your free copy and have your name placed on our permanent mailing list at no charge.

97511 — TV cameras, Vidicons, Character Gen., Manual Zoom Lenses, etc.
975M2 — Video monitors, Monitor/Receivers, TV cameras, 1" Video Tape.
97514 — Spec. Effects, Switcher/Faders, VTR's, ½ price Audio Mixers, etc.
97515 — Singer/GPL model 1200 Viewfinder camera compl/with MP100 Studio Console package.
97557 — TV cameras, VTR's, Audio mixers, tripods, tech. books, etc.
975N8 — Color VTR's, cameras, etc.

Catalog 973S1 — 256 pages of Video Equipment Bargains — $1.00

DENSON ELECTRONIC CORP.
PO Box 85, Longview St. 203/875-5198 Rockville, Conn. 06066
the 1979
World Administrative Radio Conference
and what it means to you

What, me worry? Yes, you worry -- about an increasingly important four-letter word -- WARC.

What's a WARC? A WARC is a World Administrative Radio Conference - a gathering of all the ITU member nations to examine and decide upon basic questions of mutual interest. The first WARC was in Berlin in 1903, the most recent in 1959, and the next has been scheduled for sometime in the second half of 1979, in Geneva, Switzerland.

Okay, that's a WARC -- so what? The "What" of the WARC is what is going to be discussed in 1979 -- namely, frequency allocation, or perhaps more properly, re-allocation, that's "what."

On an international basis the radio spectrum from 10 kHz to 47 GHz has already been allocated. There are no unallocated segments of the spectrum within those limits. Therefore, if some user of that part of the spectrum needs additional frequencies, it must come from someone else's present allocation (ah -- the light dawns!). Yes, even from the hitherto sacrosanct domain of the amateur bands if the justification for such a request is strong enough. And there is the secret word -- justification! Say it correctly, and the duck will bring you 200 kHz (sorry, Groucho).

Seriously, though, justification is not the numbers game -- just the number of licensees alone in a given radio service will not be adequate justification for getting new frequencies, much less keeping those already allocated. Sure, the Amateur Radio Service has grown from 46,000 in 1934, to 185,000 in 1959, to 275,000 today, with basically the same allocated spectrum -- give or take a hundred kHz. Crowded? Sure. QRM -- you bet! But can you imagine what it would be like if we still used only double-sideband-with-carrier? Absolute chaos!

The Amateur Radio Service responded to increased band crowding in its historical manner -- ingenious adaptations of, and subsequent improvements upon, commercial techniques to relieve congestion. (Sounds like a nasal spray commercial but it sure worked -- remember the disparaging remarks about the "Donald Duckers," and when SSB was known as SSSC?)

Well, if numbers aren't the answer, then what is? Simple, and like many other things, money included, it's not how much you have, but what you do with what you have. How does Amateur Radio use its allocated spectrum? Is it being used wisely for the benefit of the public at large and in keeping with the Service's Basis and Purpose as outlined in Part 97.1 of the FCC Rocks and Shoals? Or, is it being used for the personal amusement and satisfaction of a miniscule percentage of the U.S. citizenry? What are the trends in the Amateur Radio Service? Where will it be in the year 2000? How will, or can, WARC influence this?

These and similar questions, plus those dealing with the Amateur frequency needs now and up to the year 2000, are being discussed by members of eight task forces set up by the FCC in what's called the "Amateur Working Group." This group, numbering about forty, has been given the job of developing recommendations for the United States Amateur Radio Service position in the next WARC -- including the justifications needed to keep the frequencies it presently has, plus -- maybe -- getting some new ones. There's plenty of time 'till 1979, right? Wrong!

The lead-time of a bureaucratic, international operation like a WARC boggles the mind! What with the need to coordinate, review, correlate, adjust, modify, etc., both within the FCC and between various parts of our government, coordinate unofficially with other ITU member governments, and so forth, it's not surprising that the preliminary Amateur Radio Service frequency allocation request has to be in the FCC's hands by the time you read this! And there are only a few more months in which to come up with the most persuasive justification possible for the continuation of the Amateur Radio Service as we now know it, and would like it to be. This "Amateur Radio Service position paper," as it is being called, has to be submitted to the FCC for its consideration no later than June of this year -- this year, not 1979!

In the meantime, if you're now concerned, re-read Stu Cowan's excellent article in the April, 1965, issue of OST.*

What, me worry . . . you bet!

By Pete Hoover, W6APW, 1520 Circle Drive, San Marino, California 91108

Learn to service CB equipment and get your FCC license with NRI's Complete Communications Course.

Career opportunities are opening up fast for the man trained in communications.

Two-way, citizen's band radios are selling faster than the manufacturers can turn them out. That means countless career jobs in CB design, installations and maintenance. Start training now, at home, to qualify for one of those openings... the professional NRI way.

Get your own 500 Channel digitally-synthesized VHF Transceiver.

The NRI Complete Communications Course teaches you to service and/or adjust two-way radio including CB equipment, using your own digitally-synthesized 500 Channel VHF Transceiver and AC power supply. Mounted in your car or used as a base station, the "designed for training" Transceiver gives you the only fully-up-to-date 220 MHz equipment for complete training in professional communications; you get "hands-on" experience that puts your course theory into practice.

The complete program includes 10 training kits (with your own Discovery Electronics Lab) a new Antenna Applications Lab, and an Optical transmissions system. 48 lesson texts, CMOS digital frequency counter, and a TVOM.

A wide choice of careers for trained men.

The NRI Complete Communications Course covers AM and FM Transmission Systems, Radar Principles, Marine Electronics, Mobile Communications, Aircraft Electronics and digital electronics including frequency synthesizers. You will qualify for a first-class radio telephone FCC License or you get your money back.

Over a million men have trained the NRI way.

Send for the free NRI catalog and discover why more than a million men have chosen the NRI way. Read about the "bite-size" lessons, self-pacing, and "power-on" training.

There's no obligation and no salesman will call.

If coupon is missing write to:
NRI Schools, McGraw-Hill Continuing Education Center, 3939 Wisconsin Avenue, Washington, D.C. 20016.

More Details? CHECK-OFF Page 110
What is a microcomputer input/output device?

In the discussion of the anatomy of a microcomputer last month, we described the various data paths in a microcomputer, including data input, data output, external device addressing, in and out function pulses, and interrupt signals. These are the vital lines of communication between the microcomputer and the "outside world," i.e., those signal lines that are necessary to interface the microprocessing unit (MPU) to the input/output, or I/O devices that you would like to control.

What, exactly, is an I/O device? Some useful definitions include the following:

input/output General term for the equipment used to communicate with a computer and the data involved in the communication.¹

I/O Abbreviation for input-output.²

I/O device Input/output device. Any digital device, including a single integrated-circuit, that transmits data to or receives data or strobe pulses from a computer. The in and out functions are always referenced to the computer.³

The traditional view of an I/O device is that it is somewhat large or complex. Card readers, magnetic tape units, CRT displays, and teleprinters certainly fit such a description. However, a single integrated-circuit chip, such as a latch, shift register, counter, or small memory can also be considered to be an I/O device to a computer.

Another important point is that several device-select pulses may be required to interface a single I/O device. For example, a 74198 shift register has a pair of control inputs that determine whether the register shifts left, shifts right, or parallel loads eight bits of data. This chip also has a clock input and a clear input. Thus, a single 74198 chip, when serving as an output device, may require up to four device-select lines from the microcomputer. Therefore, the fact that we can generate 256 different input and 256 different output device select pulses does not necessarily mean that we can address 512 different "devices." A more reasonable number is of the order of 50 to 100 different devices.

Device-select pulses are inexpensive and easy to implement. We encourage you to use them as often as possible as you attempt to substitute computer software, (microcomputer programs) for integrated-circuit chip hardware. We shall repeat this theme often: software vs. hardware. There is a tradeoff between the two, but your main objective in using microcomputers will usually be to substitute software for hardware. When you do so, the only penalty that you may pay is time because it takes time to execute computer instructions. If you can accept the delays inherent in computer programs, then you can vastly simplify the circuitry required to accomplish a specific interfacing task.

By Peter R. Rony, David G. Larsen, WB4HYJ, and Johathan A. Titus.

Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Jonathan Titus is President of Tychon, Inc., Blacksburg, Virginia.
what is interfacing?

Interfacing can be defined as the joining of members of a group (such as people, instruments, etc.) in such a way that they are able to function in a compatible and coordinated fashion. By “compatible and coordinated fashion,” we usually mean synchronized. Some important definitions include the following:

Synchronous

In step or in phase, as applied to two devices or machines. A term applied to a computer in which the performance of a sequence of operations is controlled by equally spaced clock signals or pulses. At the same time.

Synchronous computer

A digital computer in which all ordinary operations are controlled by equally spaced signals from a master clock.

Synchronous operation

Operation of a system under the control of clock pulses.

To synchronize

To lock one element of a system into step with another.

Synchronization pulses

Pulses originated by the transmitting equipment and introduced into the receiving equipment to keep the equipment at both locations operating in step.

We can thus define computer interfacing as "The synchronization of digital data transmission between a computer and one or more external input/output devices." 3

Although the details of computer interfacing vary with the type of computer employed, the general principles of interfacing apply to a wide variety of computers. Such principles include the following:

The digital data that are transmitted between a computer and an I/O device are either individual clock pulses or else full data words.

The computer and the input/output device are both clocked devices. At the very least the I/O device has a single flip-flop that is set or reset by the computer. All data transmission operations are synchronized to the internal clock of the computer.

The computer sends synchronization pulses, called device-select pulses, to the I/O device. These pulses are generated by the computer program i.e., they are software generated, and are usually quite short (for an 8080 microcomputer operating at 2 MHz, they last only 500 nsec). They synchronize and select at the same instant of time.

Individual device-select pulses are sent to individual input or output devices. This is called external device addressing. The pulses are used for latching data output and strobing data input.

Computer program operation can be interrupted by the transmission of a clock pulse from an I/O device to a special input line to the computer. This is called interrupt generation. Upon being interrupted by an external I/O device, the computer goes to a computer subroutine that responds to, or services, the interrupt.

Full data words can be output from, or input into, the accumulator register. For the 8080 microcomputer, a full data word contains eight bits. Output data from the accumulator is available for only a very short period of time, and usually must be latched. Input data into the accumulator is acquired over a very short period of time, and usually must be strobed into the accumulator.

*Charles L. Garfinkel of Keithley Instruments, Inc. is the originator of this definition.

DIGITAL DATA RECORDER
for
Computer or Teletype Use
Up to 4800 Baud

Uses the industry standard tape saturation method to beat all FSK systems ten to one. No modems or FSK decoders required. Loads 8K of memory in 17 seconds. This recorder enables you to back up your computer by loading and dumping programs and data fast as you go, thus enabling you to get by with less memory. Great for small business bookkeeping. Imagine! A year's books on one cassette.

Thousands are in use in colleges and businesses all over the country. This new version is ideal for instructional, amateur, hobby and small business use. Ideal for use by servicemen to load test programs. Comes complete with prerecorded 8080 software program used to test the units as they are produced. (Monitor)

SPECIFICATIONS:
A. Recording Mode: Tape saturation binary. This is not an FSK or Home type recorder. No voice capability. No modem. 3" per sec.
B. Two channels (1) Clock, (2) Data. Or two data channels providing four (4) tracks on the cassette. Can also be used for NRZ, Bi-Phase, etc.
C. Inputs: Two (2). Will accept TTY, TTL or RS 232 digital.
D. Outputs: Two (2). Board changeable from TTY, RS232 or TTL digital.
E. Erase: Erases while recording one track at a time. Record new data on one track and preserve three or record on two and preserve two.
F. Compatibility: Will interface any computer using a UART or PIA board. (Altair, Sphere, M6800 etc.)
G. Other Data: 110/220 V, 50/60 Hz; 2 Watts total; UL listed #955D; three wire line cord; on/off switch; audio, meter and light operation monitors. Remote control of motor optional. Four foot, seven conductor remoting cable provided.
H. Warranty: 90 days. All units tested at 110 and 4800 baud before shipment. Test cassette with 8080 software program included. This cassette was recorded and played back during quality control.

COMING NEXT MONTH — IN KIT FORM
* Hexadecimal Keyboard — Load programs direct from keyboards' 16 keys and verifying display. Does not use Computer I/O.
* I/O for use with Computer Aid or other digital recorders. Variable baud rate selectable on externally located unit by one knob. Can load computer or accept dumps without software. Turnkey Operation. For any 8 bit computer.
* Record/Playback Amplifier
Expanded version of our Computer Aid board for use with your own deck (cassette or reel to reel). Go to 9600 baud on reel to reel. Digital in, digital out, serial format.
* Interested in these? Send your name and address for brochure when released.

(EDUCASSETTE is our registered TradeMark)

Fill out form and send check or money order to:
NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080

Data Recorder $149.95
Operating & Technical Manual (Schematics) $1.00
* New Products, No Charge

Please enclose $2.00
Shipping & Handling
N. J. Residents add 5% Sales Tax

NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
For a limited time only, you can own an Altair® 8800 Computer kit with 4,096 words of memory, new Altair multi-port interface, and revolutionary Altair BASIC language software, for just $695. A savings of up to $114!*

Computer. The Altair 8800 is the best-selling general-purpose computer in the world today. It is a parallel 8-bit word/16-bit address computer with an instruction cycle time of 2 microseconds. It was designed for almost unlimited peripheral and memory expansion, using a bus system where all input/output connections merge into a common line. The Altair 8800 is capable of addressing up to 65,536 words (bytes) of memory. Regularly priced at $439 for a kit and $621 assembled.

Memory. The Altair 4K Memory Board provides 4,096 words of dynamic random-access-memory for the Altair 8800. Contains memory protect circuitry, and address selection circuitry for any one of 16 starting address locations in increments of 4K. Access time is 200-300 nanoseconds. The entire 4,096 words of memory on the board can be protected by switching to PROTECT. Regularly priced at $195 for a kit and $275 assembled.

Interface. Your choice—either the new Altair 88-2SIO serial interface or the new Altair 88-4PIO parallel interface. The serial interface can be ordered with either one or two ports and the parallel interface can be ordered with up to four ports. Add $24 for an additional 88-2SIO port kit. Add $50 for each additional 88-4PIO port kit.

Each port of the new serial interface board is user-selectable for RS232, TTL, or 20 milliamp current loop (leletype). The 88-2SIO with two ports can interface two serial I/O devices, each running at a different baud rate and each using a different electrical interconnect. For example, the 88-2SIO could be interfaced to an RS232 CRT terminal running at 9600 baud and a leletype running at 110 baud. An on-board, crystal-controlled clock allows each port to be set for one of 12 baud rates. The 88-2SIO is regularly priced at $115 kit and $144 assembled.

Each port of the new parallel interface board provides 16 data lines and four controllable interrupt lines. Each of the data lines can be used as an input or output so that a single port can interface a terminal requiring 8 lines in and 8 lines out. All data lines are TTL compatible. The 88-4PIO regularly sells for $86 kit and $112 assembled.

Software. Altair 4K BASIC leaves approximately 725 bytes in a 4K Altair for programming which can be increased by deleting the math functions (SIN, SQR, RND). This powerful BASIC has 16 statements (IF, THEN, GOTO, GOSUB, RETURN, FOR, NEXT, READ, INPUT, END, DATA, LET, DIM, REM, RESTORE, PRINT, and STOP) in addition to 4 commands (LIST, RUN, CLEAR, NEW) and 6 functions (RND, SQR, SIN, ABS, INT, TAB, and SGN). Other features include: direct execution of any statement except INPUT; an "@" symbol that deletes a whole line and a "←" that deletes the last character; two-character error code and line number printed when error occurs; Control C which is used to interrupt a program; maximum line number of 65,529; and all results calculated to seven decimal digits of precision. Altair 4K BASIC is regularly priced at $60 for purchasers of an Altair 8800. 4K of Altair memory, and an Altair I/O board. Please specify paper tape or cassette tape when ordering.

*Savings depends upon which interface board you choose. An Altair 4K BASIC language system kit with an 88-2SIO interface regularly sells for $809. With an 88-4PIO interface, this system sells for $780.

MITS
"Creative Electronics"
MITS/4328 Linn N.E., Albuquerque, NM 87108 505/265-7553 or 262-4951

MAIL THIS COUPON TODAY:
□ Enclosed is check for $__________
□ BankAmericard #__________ or Master Charge #__________
□ Altair BASIC System Special □ 4PIO interface □ 2SIO interface
□ Cassette tape □ or paper tape
□ Extra SIO port □ Extra 4PIO ports
Add $8 for postage and handling.
□ Please send free literature

NAME:
ADDRESS:
CITY, STATE & ZIP

NOTE: Personal checks take 2-3 weeks for clearance. For immediate processing send money order or use charge card. Delivery: 30 days. Prices, specifications and delivery subject to change.
In a previous article, I gave the gain for certain vertical-plane radiation angles for horizontal antennas at certain antenna heights. Since then I've had requests for data on what height to use for optimizing gain at a certain radiation angle. Suppose you'd like to work DX on 20 meters and your beam is on a 40-foot (12m) tower. You may find in this case that you hear stations about 900 miles (1440km) away much louder than the DX stations, which are perhaps over 2000 miles (3200km) away. Would it help, and if so, how much, to use a higher tower? The answer to these questions is in this article. The data is useful in selecting heights for horizontal dipoles for 40 and 80 meters as well as tower heights for beams at 10, 15 and 20 meters. Most of this article and examples, however, cover the latter case.

antenna height for several radiation angles

The answers to the question of what height to use to optimize gain at certain radiation angles is given in fig. 1, in which relative antenna gain is on the vertical scale and antenna height in wavelengths is on the horizontal scale. Curves are given for several radiation angles, α. Reference gain is 1.0 (the gain of a half-wave antenna in free space for all radiation angles). This is just a convenience, as all the gains are relative. If an antenna is higher than a half-wavelength, multiple lobes occur in the vertical plane; this data is shown in detail in the ARRL Antenna Handbook. Similar data is also shown in fig. 1 especially for α = 30°, which shows peaks near h/λ = 0.5 and 1.5, with nulls at h/λ = 1.0 and 2.0.

Fig. 1 shows that for α = 6°, the higher the tower the better, as the peak in the gain curve doesn't occur until the antenna height is almost three wavelengths (h/λ = 3.0). As a convenience table 1 is included, which gives h/λ for tower height for the 10-, 15- and 20-meter bands. Thus, only at 10 meters with a 100-foot (30m) tower is h/λ = 3.0, where maximum gain is achieved at α = 6°. Table 2 shows the relationship between radiation angle, α, and distance for F₂-layer one-hop signals. Fig. 1 also shows that for radiation straight up (α = 90°), a very low antenna (h/λ = 0.1) is sufficient; for α = 10°, an h/λ = 1.2 is best; and for α = 15°, a first plateau in gain is reached at h/λ = 0.6, with maximum gain at h/λ = 1.1.

The graph would become pretty messy if more α values were plotted. (I have data for other α values, which I'd be happy to send on request.) The curves shown should cover most situations since there's not as much need to optimize antennas for vertical-plane radiation angles above 15° or for distances less than 1200 miles (1920 km) as there is for DX work.

other examples

It's also useful to plot gain versus tower height, either

By Robert E. Leo, W7LR, Electronics Research Laboratory, Montana State University.
for one radiation angle or for one band (figs. 2 and 3). Fig. 2 shows that for $\alpha = 5^\circ$ (2000 mile or 3200 km one-hop F2-layer DX), the higher the tower the better for all three bands (10, 15 and 20). Now consider fig. 3.

If you have a 40-foot (12 m) tower, the gain for DX signals ($\alpha = 5^\circ$) is about 0.75, while for signals 900 miles (1440 km) away ($\alpha = 25^\circ$), the gain is 2.25. This ratio is 0.75/2.25 or 3 to 1 against you. This is why those W9s sound so loud and the DX so weak!

If you had an 80-foot (24m) tower, the DX/W9 ratio at $\alpha = 5^\circ$, say, would be 1.26/0.18 = 7.88, which is a lot better (24 times better) than with the 40-foot (12m) tower. The whole business is, however, not too simple as even at 80 feet (24m), the gain for 1200-1500-mile (1920-2400 km) ($\alpha = 15^\circ$ to 10°) signals is much greater than for 2000-mile (3200 km) distant DX signals; and if you go to a 100-foot (30m) tower, the 900-mile (1440 km) signals are strong and the 1000-mile (1600 km) signals weak! Data is given in table 3 so that you can plot graphs similar to figs. 2 and 3 for other angles or other bands.

If you have a 40-foot (12m) tower, the gain for DX signals ($\alpha = 5^\circ$) is about 0.75, while for signals 900 miles (1440 km) away ($\alpha = 25^\circ$), the gain is 2.25. This ratio is 0.75/2.25 or 3 to 1 against you. This is why those W9s sound so loud and the DX so weak!

If you had an 80-foot (24m) tower, the DX/W9 ratio at $\alpha = 5^\circ$, say, would be 1.26/0.18 = 7.88, which is a lot better (24 times better) than with the 40-foot (12m) tower. The whole business is, however, not too simple as even at 80 feet (24m), the gain for 1200-1500-mile (1920-2400 km) ($\alpha = 15^\circ$ to 10°) signals is much greater than for 2000-mile (3200 km) distant DX signals; and if you go to a 100-foot (30m) tower, the 900-mile (1440 km) signals are strong and the 1000-mile (1600 km) signals weak! Data is given in table 3 so that you can plot graphs similar to figs. 2 and 3 for other angles or other bands.

While there's no simple answer of what tower height to use, it's evident that one at 80 feet (24m) is much more desirable than one at 40 feet (12m) for 20-meter operation to improve the DX/W9 signal ratio. Graphs such as that in fig. 3 for 10 and 15 meters are even more complex, so practical and economic factors may dictate which height to use.
So much for only $629!

Kenwood's TS-520 is a solidly built, superbly designed SSB transceiver that has literally taken the amateur world by storm. The value of its features and specifications is obvious. Less obvious, but just as important, is the kind of quality that Kenwood builds in. Hundreds of testimonials, in writing and on the air, attest to its performance and dependability. You probably have heard some of the same glowing praise.

The TS-520 operates SSB and CW on 80 through 10 meters and features built-in AC and 12VDC power supply, VOX, RIT, noise blanker, 2-position ALC, and double split frequency controlled operation are only some of its fine features.

Kenwood offers accessories guaranteed to add to the pleasure of owning the TS-520. The TV-502 transverter puts you on 2-meters the easy way. (It's completely compatible with the TS-520.) Simply plug it in and you're on the air. Two more units designed to match the TS-520 are the VFO-520 external VFO and the model SP-520 external speaker. All with Kenwood quality built in.

Available at select Kenwood dealers throughout the U.S.

TRIO-KENWOOD COMMUNICATIONS INC.
116 East Alondra / Gardena, California 90248

TV-502
TRANSMITTING/RECEIVING FREQUENCY: 144.155 MHz, 145.040 MHz (option).
INPUT/OUTPUT IF FREQUENCY: 28.029.7 MHz
TYPE OF TRANSMISSION: SSB (A3J), CW (AI)
RATED OUTPUT: 8W (AC operation)
ANTENNA INPUT/OUTPUT IMPEDANCE: 50 Ohms
UNWANTED RADIATION: Less than -60 dB
RECEIVING SENSITIVITY: More than 1µV at 50 ohms
IMAGE RATIO: More than 60 dB
IF REJECTION: More than 60 dB
FREQUENCY STABILITY: Less than ±2.5 kHz during 160 min after power switch is ON and within 100 Hz (per 30 min) thereafter.
POWER CONSUMPTION: AC 220/120V, Transmission 50W max., Reception 12W max. DC 13.8V, Transmit mission 2A max., Reception 0.4A max.
POWER REQUIREMENT: AC 220/120V, DC 13.8V (standard voltage 13.8V)
SEMI CONDUCTOR: FET 5, Transistor 15, Diode 30
DIMENSIONS: 6½"W x 6½"H x 3½"D
WEIGHT: 15 lbs
SUGGESTED PRICE: $249.00

CW-520
500 Hz CW Crystal Filter $45.00
Prices subject to change without notice
KENWOOD'S TS-700A finally fulfills the promise of 2-meters... more channels, more versatility, tunable VFO, SSB-CW and, best of all, the type of quality that has placed the Kenwood name out front.

- Operates all modes: SSB (upper & lower), FM, AM, and CW
- Completely solid state circuitry provides stable, long lasting, trouble-free operation
- AC and DC capability. Can operate from your car, boat, or as a base station through its built-in power supply
- 4 MHz band coverage (144 to 148 MHz) instead of the usual 2
- Automatically switches transmit frequency 600 KHz for repeater operation. Just dial in your receive frequency and the radio does the rest... Simplex repeater reverse
- Or do the same thing by plugging a single crystal into one of the 11 crystal positions for your favorite channel
- Outstanding frequency stability provided through the use of FET-VFO
- Zero center discriminator meter
- Transmit/Receive capability on 44 channels with 11 crystals
- Complete with microphone and built-in speaker
- The TS-700A has been thoroughly field-tested. Thousands of units are in operation throughout Japan and Europe

The TS-700A is available at select Kenwood dealers throughout the U.S. For the name of your nearest dealer, please write.

Available at select Kenwood dealers throughout the U.S.
the UAR/T

and how it works

Versatility plus
on a 40-pin
TTL-compatible chip —
useful for many
data transmission
and receiving
applications

One of the largest LSI devices found in recent construction projects and commercial data communications equipment is the UAR/T or universal asynchronous receiver/transmitter. It is also one of the most interesting and versatile chips now available, yet very few people understand its operation. The UAR/T receives and transmits digital information. It acts as a pair of shift registers, the transmitter converting parallel input data to serial output data and the receiver converting serial data bits back to a parallel word. We could easily use an SN74165 as the transmitter (parallel-to-serial) and an SN74164 as the receiver (serial-to-parallel). Data present at the SN74165 is serialized and transmitted to the SN74164 where it is reconstructed again in parallel form.

You could actually perform this experiment, but you would quickly find that a common clock is needed for both shift registers, and the receiver must be synchronized to receive the data as you start to transmit it. If a large number of digital words are being sent between the shift registers, you must have some way to distinguish the end of one word and the start of the next. This requires a great deal of extra synchronizing logic and control lines between the two shift registers.

You probably know that some tricks are used in data communication between terminals and computers, since the data generally flows over one or two pairs of wires and no additional connections are available for clocks or logic control. One of the tricks, using the UAR/T, is to start each data word, generally eight binary bits long, with a START bit and to end each data word with two STOP bits, as shown in fig. 1. Now, whenever the receiver is waiting for a new word and it senses the negative edge of the START bit, it resets itself internally and starts shifting in the serial word.

When the two STOP bits are sensed, the data word transfer is complete, and the reconstructed parallelized data is available. Since there are no common clocks, the receiver and transmitter operate out of sync, or asynchronously. The clocks at both ends of the transmission circuit are set very closely but are not exact. The UAR/T makes up for this by sensing input data in the middle of each bit position. If the bits are not exactly aligned they are still sensed correctly, somewhere close to the middle of each bit, as shown in fig. 1.

The clock, supplied externally to the UAR/T by a crystal or R/C TTL oscillator, is set at a frequency 16 times the desired bit rate, which allows the internal logic to perform control and sensing functions. Clock inputs for the receiver and transmitter sections of the UAR/T chip are independent and may be set at different bit rates if needed.

By Jonathan A. Titus, Tychon, Incorporated, P.O. Box 242, Blacksburg, Virginia 24060

58 February 1976
functional description

A block diagram of the UAR/T is shown in fig. 2. This 40-pin chip has many functions that control the sending and receiving of data and allow programming the UAR/T for certain functions. The number of data bits per word is programmed from five to eight, the number of STOP bits may be selected as one or two, and odd or even parity may be selected or parity may be eliminated from the data word. Five input lines allow the user to program the format of the data sent and received by the UAR/T (table 1). The receiver and transmitter are programmed at the same time, so the format of transmitted and received data must be the same. For convenience the Control Strobe signal may be left at logic 1 rather than being strobed, which assures that the programming information is always input. In the following examples, pins 34-39 of the transmitter control are programmed at logic 1 giving an eight-bit data word, no parity, and two STOP bits. Active signals are followed by their abbreviation and pin number.

Eight bits of parallel data are entered on the eight transmitter input lines. It is important to note that this data may have any format: two BCD digits, an ASCII character, or any random data. Once the eight bits are ready, the Data Strobe (DS/23) is pulsed with a logic 0, and the data is transmitted in serial form. The Serial Output (SO/25) is a TTL-compatible output that is at a logic 1 when no data is being sent. A Transmitter Buffer Empty flag (TBMT/22) is available to indicate that the next eight bits of parallel data may be entered to the UAR/T. The UAR/T is double-buffered, having a holding register as well as the transmitter register. This buffering allows the next data word to be entered and stored while the UAR/T is still transmitting the previous word. The stored word is then automatically placed in the transmitter register and sent.

ASCII keyboard input

A typical UAR/T application is shown in fig. 3 in which an ASCII keyboard supplies the data. The transmitter clock is set at a bit transmission rate 16 times the actual output rate. In the keyboard example there are 11 bits since the START and STOP bits must also be counted. A common telecommunication speed is 110 bits per second, or 110 baud. The clock rate must be 16 times this rate or 1760 Hz, which may be supplied from an NE555 oscillator circuit or other source. Although not used in this example, the TBMT output could signal for the next ASCII character. The TBMT output is often used when data is stored in a buffer or computer and you want to send one word right after another to use the data communication lines efficiently. Whenever TBMT goes to logic 1, the next eight-bit data word is entered to the UAR/T buffer register.

The serial output from the UAR/T can go to an fsk generator to store the data on tape, to a modem, or even to another UAR/T. Although you may not have recognized it, fig. 1 represents the transmission of an ASCII 5 or octal 265. (Remember that the least-significant bit, DB1, is sent first, right after the START bit.) The UAR/T receiver section must be programmed to receive data in the same format as it was sent. The receiver acts as your serial-in, parallel-out shift register, reforming the data into a parallel data word. When the receiver senses a negative transition at the edge of a START bit, it resets to receive a new serial data word. The receiver waits eight clock pulses then starts to sample the serial input bits. This initial offset of eight clock pulses positions the sensing pulse in the middle of each serial data bit, which makes up for the asynchronous clocks. The clock difference may be about ±5%.

used when data is stored in a buffer or computer and you want to send one word right after another to use the data communication lines efficiently. Whenever TBMT goes to logic 1, the next eight-bit data word is entered to the UAR/T buffer register.

The serial output from the UAR/T can go to an fsk generator to store the data on tape, to a modem, or even to another UAR/T. Although you may not have recognized it, fig. 1 represents the transmission of an ASCII 5 or octal 265. (Remember that the least-significant bit, DB1, is sent first, right after the START bit.) The UAR/T receiver section must be programmed to receive data in the same format as it was sent. The receiver acts as your serial-in, parallel-out shift register, reforming the data into a parallel data word. When the receiver senses a negative transition at the edge of a START bit, it resets to receive a new serial data word. The receiver waits eight clock pulses then starts to sample the serial input bits. This initial offset of eight clock pulses positions the sensing pulse in the middle of each serial data bit, which makes up for the asynchronous clocks. The clock difference may be about ±5%.

used when data is stored in a buffer or computer and you want to send one word right after another to use the data communication lines efficiently. Whenever TBMT goes to logic 1, the next eight-bit data word is entered to the UAR/T buffer register.

The serial output from the UAR/T can go to an fsk generator to store the data on tape, to a modem, or even to another UAR/T. Although you may not have recognized it, fig. 1 represents the transmission of an ASCII 5 or octal 265. (Remember that the least-significant bit, DB1, is sent first, right after the START bit.) The UAR/T receiver section must be programmed to receive data in the same format as it was sent. The receiver acts as your serial-in, parallel-out shift register, reforming the data into a parallel data word. When the receiver senses a negative transition at the edge of a START bit, it resets to receive a new serial data word. The receiver waits eight clock pulses then starts to sample the serial input bits. This initial offset of eight clock pulses positions the sensing pulse in the middle of each serial data bit, which makes up for the asynchronous clocks. The clock difference may be about ±5%.

used when data is stored in a buffer or computer and you want to send one word right after another to use the data communication lines efficiently. Whenever TBMT goes to logic 1, the next eight-bit data word is entered to the UAR/T buffer register.

The serial output from the UAR/T can go to an fsk generator to store the data on tape, to a modem, or even to another UAR/T. Although you may not have recognized it, fig. 1 represents the transmission of an ASCII 5 or octal 265. (Remember that the least-significant bit, DB1, is sent first, right after the START bit.) The UAR/T receiver section must be programmed to receive data in the same format as it was sent. The receiver acts as your serial-in, parallel-out shift register, reforming the data into a parallel data word. When the receiver senses a negative transition at the edge of a START bit, it resets to receive a new serial data word. The receiver waits eight clock pulses then starts to sample the serial input bits. This initial offset of eight clock pulses positions the sensing pulse in the middle of each serial data bit, which makes up for the asynchronous clocks. The clock difference may be about ±5%.
Besides the eight output data lines, the receiver also has some error and flag outputs. The error signals are not frequently used in small systems, but they can serve a useful purpose in debugging systems that use serial data transmission. The Parity Error (PE/13) indicates that the parity programmed in the UAR/T and the parity of the received word don't match. The Framing Error (FE/14) indicates that the received word doesn't have valid STOP bits, and the Overrun (OR/15) indicates that we haven't read the current word and a new word just took its place on the eight output lines. A logic 1 on any of these lines signals an error.

remote data transmission

A Data Available flag (DAV/19) goes to a logic 1 to signal that a complete character has been received and may be read at the eight output lines. The data may be read by a terminal (TV typewriter), a computer (Mark-8), or other data storage or output device. After the word is read, the Data Available flag must be reset or it will not indicate when the next word has arrived. Pulsing the Reset Data Available line (RDAV/18) with a logic 0 resets the flag. If the flag is not reset, the next word received will generate an overrun error.

The receiver's data, error, and flag outputs are all tri-state so that a number of UAR/Ts could be used on a bus input scheme. The Receiver Data Enable (RDE/4) and the Status Word Enable (SWE/16) enable the data and flag outputs so that we can read the data. For general, non-bus applications, both these enable lines may be connected to ground. If the UAR/T is to be used on an input bus to a computer or terminal, the tri-state outputs are enabled at the correct time by pulsing RDE and SWE with logic zeros. In the Mark-8 this is done with input instructions.1

Fig. 4 shows how a UAR/T could be connected to the TV typewriter to provide the ASCII input from a remote location, possibly from the keyboard shown in fig. 3. In this example, the data-available flag triggers an SN74121 monostable to provide the key-pressed pulse to the TV typewriter, and this pulse is also used to clear the data available flag.

remote data acquisition

Having a receiver and transmitter available in a standard 40-pin package represents a considerable package count, cost, and power saving over a discrete or SSI (small-scale integration) version of this circuit. UAR/Ts have many other applications besides transmitting data back and forth to terminals and computers, so they become useful tools for remote data acquisition and remote control. For example, BCD data could be stored temporarily in a shift register then shifted, one BCD character at a time, to the UAR/T to be transmitted to a terminal or printer. By connecting DB5, DB6, and DB8 to logic 1 and D137 to ground, octal 260 is inserted into the transmitted data, converting it directly to ASCII. Decimal 3 becomes 263, the ASCII code for 3. The source of the BCD data could be a digital meter, pressure indicator or position encoder — multiple digits are sent over a pair of wires!

The acquisition and transmission of the data can be controlled by using the receiver section and two SN7485 digital comparators (fig. 5). You can compare an output character from the receiver to a preset eight-bit data word. When the two are equal, a monostable starts the data acquisition/transmission sequence and resets the data-available flag. Using a dozen or so 7400-series chips...
and a UAR/T, you now have a four-wire remote data station.

The UAR/T data inputs don't have to be limited to encoded data. They can also be used to monitor limit switches on equipment or even burglar alarm switches or fire sensors. Fig. 6 shows how two UAR/Ts can be used to indicate remote switch positions. Open and closed switches enter logic 1s or zeros to the UAR/T, and this data lights the corresponding LEDs at the receiver. Data is continuously transmitted by deriving the DS pulse from the clock input.

The remote UAR/T receiver section can also be used for housekeeping control at the area being checked. Two SN74154 decoders are connected to the receiver output lines. You can now decode up to 256 possible combinations; and using some NOR gates, you can generate a positive output for each combination. Only one of the 256 combinations may be active at any time. You could also have used eight relay drivers connected to the eight receiver output lines, which would allow independent control of eight devices. The keyboard located at the monitoring station is used to control the receiver outputs. Complete connections in these examples have not been shown for clarity.

The serial output from the UAR/T should not be used to drive lines longer than about six feet (1.8m). If longer lines are required, line drivers and receivers such as the DM8820 and DM8830 should be used. Each of the UAR/T outputs has a TTL fan-out of one load; and although the UAR/T is a mos device, it doesn't require pull-up or pull-down resistors.

availability

If you want to experiment with UAR/Ts for data communication or remote control, you may find it difficult to insert the 40-pin chips in breadboard sockets such as those available from E/L Instruments, Continental Specialties, and AP, Inc. To make UAR/T experimenting easy, a special breadboard* has been developed that brings all the connections to 16-pin IC sockets for easy connections with jumpers, and the most important connections are brought to the front of the breadboard to small pins. The complete breadboard plugs into an E/L Instruments SK-10 socket or an AP, Inc. Superstrip socket, leaving plenty of extra room for other chips and connections. Pins on the UAR/T board pick up 5 volts for housekeeping control from the power buses. The –12 volts must be supplied with a jumper. All connections are labeled by function and pin number. UAR/Ts available from various manufacturers are generally pin-for-pin compatible, but data sheets should be thoroughly checked before use. The UAR/Ts listed below are compatible.

<table>
<thead>
<tr>
<th>source</th>
<th>part no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Instruments, Inc.</td>
<td>AY-5-1012</td>
</tr>
<tr>
<td>600 West John Street</td>
<td></td>
</tr>
<tr>
<td>Hicksville, New York 11802</td>
<td></td>
</tr>
<tr>
<td>Western Digital Corp.</td>
<td>TR1602A &</td>
</tr>
<tr>
<td>3128 Red Hill Avenue</td>
<td>TR1402A</td>
</tr>
<tr>
<td>Newport Beach, California 92663</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments, Inc.</td>
<td>TMS-6011-NC</td>
</tr>
<tr>
<td>P. O. Box 5012</td>
<td></td>
</tr>
<tr>
<td>Dallas, Texas 75222</td>
<td></td>
</tr>
<tr>
<td>American Microsystems, Inc.</td>
<td>S-1883</td>
</tr>
<tr>
<td>3800 Homestead Road</td>
<td></td>
</tr>
<tr>
<td>Santa Clara, California 95051</td>
<td></td>
</tr>
</tbody>
</table>

*The UAR/T breadboard is available from E/L Instruments, 61 First Street, Derby, Connecticut 06418 as part no. LR-21.

reference

ham radio
WILSON GOES MOBILE

introducing the new WE-224

$209.95

WE-224; 52/52, SIMPLEX PLUS

TWO TX/RX CRYSTALS, YOUR CHOICE

(Common Repeater Frequency Only),
MOUNTING BRACKET; MOBILE MIKE

FEATURES

1. 24 Channel Operation
2. One priority Channel
3. Selectable 1 or 10 Watts Out
4. 10.7 Monolithic Filter Installed
5. 455 KHz Ceramic Filter
6. Numerical Read-out on each Channel
7. Built-in Adjustable "Tone- Burst" Generator
8. Front Panel Tone Encoder Control
9. Accepts Wilson 1402 & 1450SM Xtras
10. Individual Trimmer Capacitors for both TX/RX
11. Mosfet Front End
12. Helical Resonator
13. High VSWR Protection Circuit
14. Reverse Polarity Protection Circuit
15. NBFM - 15 KHz Channel Separation
16. External Speaker Jack
17. Built-in Speaker
18. Dynamic Microphone Included
19. Mobile Mounting Bracket Included
20. Frequency Range
21. Weight: 5% lbs.
22. Power Requirements:
 Source: 13.5 VDC
 Receive: .45A
 Transmit: 2.6A (low), .7A (1W)

WILSON announces the addition of

of the 220 and the 450

2202 SM

FREQUENCY RANGE 220 - 225 MHz

- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- 12.5 Microvolt Sensitivity for 20 Db Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 2.5 Watts Output
- 12 VDC
- Current Drain: RX 14 MA TX 500 MA
- Microswitch Mike Button
- Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405

INTRODUCTION SPECIAL

$279.95

INCLUDES

1. 2202 SM 3. Ni-Cad Batteries
2. Antenna 4. Leather Case
5. 223.50 Simplex Installed

4502 SM

FREQUENCY RANGE 420 - 450 MHz

- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- 12.5 Microvolt Sensitivity for 20 Db Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 1.8 Watts Output
- 12 VDC
- Current Drain: RX 14 MA TX 500 MA
- Microswitch Mike Button
- Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405

INTRODUCTION SPECIAL

$299.95

INCLUDES

1. 4502 SM 3. Ni-Cad Batteries
2. Antenna 4. Leather Case
5. 446.00 Simplex Installed

HAND HELD ACCESSORY SPECIALS

DESCRIPTION

BC1 - BATTERY CHARGER	$26.95
BC-1 - NI-CAD BATTERY PACK	15.00
LC1 - 1402 LEATHER CASE	14.00
LC2 - LEATHER CASE FOR 1402, 2202, 4502	14.00
SM2 - SPEAKER MIKE FOR 1400 AND 1405	29.95
TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED	39.95
TTP - TOUCH TONE PAD INSTALLED	55.95
XFI - 10.7 MONOLITHIC IF XTL FILTER INST	100.00
CRYSTALS: TX OR RX (Common Freq. Only)	4.50

February 1976

More Details? CHECK-OFF Page 110
Wilson Electronics Corp.

1402SM HAND HELD 2.5 WATT TRANSCEIVER 144-148 MHz

$199.95

1405SM HAND HELD 5 WATT TRANSCEIVER 144-148 MHz

$279.95

FEATURES

1402 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 IF and 455 KC IF
- 3 Microvolt Sensitivity for 20 dB Quietling
- Weight: 1 lb. 14 oz. less Battery
- 5-Meter/Battery Indicator
- Size: 8 7/16 x 7/8 x 2 7/8
- 2.5 Watts Minimum Output
- Current Drain RX 14 MA TX 500 MA
- Microswitch Mike Button

1405 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 18.7 and 455 KC IF
- 3 Microvolt Sensitivity for 20 dB Quietling
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 5 Watts Minimum
- Output @ 12 VDC
- Current Drain RX 14 MA TX 400 MA (lw) 900 MA (5W)
- Microswitch Mike Button
- Unbreakable Lexan® Case

SPECIAL ON EACH RADIO INCLUDES:

1. Antenna
2. Case
3. Ni-Cad Batteries

OPTIONAL TOUCH-TONE PAD SHOWN

Can be Modified for MARS or CAP

TO: WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NEVADA 89103
(702) 739-1931

FEBRUARY FACTORY DIRECT SALE ORDER BLANK

2202 SM @ $279.95. 4502 SM @ $299.95. WE-224 @ $209.95.
1402 SM @ $199.95. 1405 SM @ $279.95.

BC1 @ $36.95. BP @ $15.00. LC1 @ $14.00. LC2 @ $14.00.
SM2 @ $29.95. TE1 @ $39.95. (SPECIFY FREQUENCY)
TTP @ $59.95. XF1 @ $10.00. TX XTALS @ $4.50 ea. RX XTALS @ $4.50 ea.

EQUIP TRANSCEIVER AS FOLLOWS: XTALS A. B. C. D. E. F.

ENCLOSED IS __________ CHECK __________ MONEY ORDER __________ MC __________ BAC CARD # __________ EXPIRATION DATE __________

NAME __________________________
ADDRESS __________________________
CITY __________________________ STATE __________ ZIP __________
SIGNATURE ________________________

Add $5.00 per Radio for Shipping, Handling, and Crystal Netting.
SALE VALID FEBRUARY 1 THRU 29, 1976

HR NEVADA RESIDENTS ADD SALES TAX

More Details? CHECK-OFF Page 110

February 1976 63
Most successful electronic technicians combine a number of different troubleshooting techniques when tracking down a circuit problem, including signal tracing, resistance measurements and oscilloscope checks, but voltage measurements are probably the most popular. They go hand in hand with resistance measurements so you can’t understand one without understanding the other, but since resistance measurements are often the next logical step after detecting an incorrect voltage, troubleshooting with an ohmmeter will be discussed next month.

Although voltage troubleshooting is probably the best known, it isn’t always the best choice -- logic dictates that you should first isolate the problem to one section or stage in the equipment. If your test equipment is limited to a voltmeter you can use voltage measurements to pinpoint a problem area, but other techniques are usually faster. Nevertheless, once you know which circuit to look in, voltage troubleshooting is a quick way of finding the faulty part.

Most modern instruction books and schematics include voltages at each transistor or IC terminal, and some include dc voltages and signal levels at various points in the circuit. To troubleshoot the circuit you start by measuring each dc voltage in the suspected circuit and compare it to the correct voltage on the schematic. When you find a voltage that is much higher or lower than it should be, you have to figure out what could cause it. If you know Ohm’s law for voltage, current and resistance, it’s not too hard to decide what’s causing the undesired voltage change.

When comparing the measured voltages with those given in the instruction book, don’t be lead astray by the fact that the instruction book values are “nominal” values -- the actual, measured voltages may be 10 per cent higher or lower. This isn’t usually a problem in solid-state circuits because the measured voltages should be within 1 or 2 volts of that specified, but in vacuum-tube equipment the measured voltages may be as much as 30 or 40 volts off and still be within the “nominal” range. In a transmitter stage with a “nominal” 800-volt plate supply the actual circuit voltages could fall in the range from 700 to 900 volts and still be okay. The clue here is the actual dc supply voltage, so the first thing to check is the dc supply voltage at the output of the last power supply filter. If it’s 10 per cent higher than that noted on the schematic, you can expect other unregulated voltages in the set to be 10 per cent higher.

Voltage Dividers

We’ll discuss series and parallel resistance circuits in more detail next month when we get into troubleshooting by resistance measurement, but in the meantime let’s look at a typical series circuit and see what happens when one of the resistors in the string changes value for some reason. Consider the simple series circuit in fig. 1. Since the resistors are connected in series, the same current flows through them all and the resistors divide the voltage in direct proportion to their resistance values. In the circuit of fig. 1 the resistance ratios are 8:4:3:1. The R1-R2 voltage is 24 volts below the supply voltage, the R2-R3 junction is 12 volts below R1-R2, the R3-R4 junction is 9 volts below R2-R3, and 3 volts are developed across R4. The 8:4:3:1 ratio is maintained. (Although circuit voltages are measured in reference to ground unless otherwise specified, you can directly measure the voltage drop across a resistor by placing the voltmeter probes on each lead of the resistor. Be sure the negative voltmeter lead is placed at the lower voltage end of the resistor.)

![Fig. 1. Typical series voltage dividers, showing how the resistance and voltage-dividing ratios are maintained even when a resistor or supply voltage changes value.](image-url)
divides accordingly. \(R1 \) (with \(R5 \)) drops 16 volts, \(R2 \) drops 16 volts, \(R3 \) drops 12 volts and \(R4 \) drops 4 volts, maintaining the 4:4:3:1 voltage ratio.

If you forget \(R1 \) (and \(R5 \)) for a moment, note that the ratios of \(R2, R3 \) and \(R4 \) are 4:3:1 for both circuits. This is important because it illustrates the fact that if one resistor in a series voltage divider changes value, the ratio of the other resistors in the divider remains the same. As a further example of this consider fig. 1C where the value of \(R2 \) has been reduced to 750 ohms and the supply voltage lowered to 37.5 volts. The voltage and resistance ratios are 8:3:3:1 with the ratios between \(R1, R3 \) and \(R4 \) the same as in fig. 1A.

As an example of voltage troubleshooting, consider the simple voltage divider circuit of fig. 2. This is the type of circuit that might be used to provide different operating voltages to various transistor circuits in a set. The bypass capacitors provide necessary circuit decoupling. The circuit of fig. 2A shows the normal dc voltages (usually called operating voltages) while fig. 2B shows the voltages which you might measure in the circuit when you start troubleshooting.

In fig. 2A the +12 volts appears at the junction of \(R2-R3 \) because of the 6 volt drop across \(R1 \) and \(R2 \). A further voltage drop across \(R3 \) causes +6 volts at the junction \(R3-R4 \). When analyzing the incorrect voltages in fig. 2B note that two of the voltages have changed. Since the voltages have changed, it follows that the resistance ratios have changed.

The first step in troubleshooting this circuit, therefore, is to determine what the new resistance ratios are. If you consider only the +4 volts at the \(R2-R3 \) junction,

\[
\frac{R2}{R3} = \frac{6}{12} = \frac{1}{2}
\]

there are two possibilities: \(R1 \) and \(R2 \) have higher resistance than normal, resulting in a larger voltage drop, or \(R3 \) and \(R4 \) have lower resistance with a lower than normal voltage developed across them. Which is it? The clue lies in the fact that the ratio between the voltages at \(R2-R3 \) and \(R3-R4 \) is the same in both circuits, 12:6 = 2:1. Therefore the trouble is more likely in either \(R1 \) or \(R2 \); one of them has probably increased in value.

You might be inclined at this point to disconnect the two resistors from the circuit and measure them with an ohmmeter. However, further voltage measurements will indicate that one retains its ratio to \(R3-R4 \) while the other does not. Even though the voltage isn’t shown for the \(R1-R2 \) junction, you can quickly calculate it with Ohm’s law. Since 6 volts appears across \(R4 \), a 1200 ohm resistor, the current through the circuit is 5 mA. Therefore, the voltage at the \(R1-R2 \) junction should be 1.5 volt, a ratio of 1:8 when compared to the voltage at \(R2-R3 \).

If the voltage at \(R1-R2 \) is 0.5 volt in the faulty circuit, it has the correct ratio to the 4 volts at \(R2-R3 \) and resistor \(R1 \) is the culprit. On the other hand, if you measure 1.5 volt at \(R1-R2 \) in the faulty circuit, \(R2 \) has increased in value and should be replaced.

The same type of reasoning is the basis for analyzing all dc voltages in series circuits. First look at the ratio of resistances, compare the voltage ratios, and then figure out what’s causing the problem.

transistor and tube circuits

Thinking in terms of resistance and voltage is simple so long as the resistances are simple, and with a little experience you’ll be able to estimate voltage ratios close enough to give you a clue to which resistance has changed. Transistor and IC (and vacuum tube) circuits, however, are different because the dc operation of the device changes as you alter the bias and/or supply voltages. In the circuit of fig. 3A, for example, the current through the transistor (and the voltage drop from collector to emitter) is determined by the base bias which is set by \(R1 \).

The same sort or thing occurs in the vacuum-tube circuit in fig. 4. Here the grid bias is picked off the
cathode resistor R1. Since the current through the tube is a function of grid bias, any changes in plate current are reflected throughout the series circuit, which affects bias, which affects plate current, etc.

Although the transistor and vacuum tube can be rather loosely represented by an equivalent variable resistance, the interdependency of bias and emitter or plate resistance is a function of grid bias which is set by the cathode resistor R1. This complicates the analysis as discussed in the text.

Consider the transistor amplifier circuit shown in fig. 5A and its resistive equivalent in fig. 5B. Voltages are shown for each point in the circuit so you can calculate the voltage and resistance ratios. There is a 9 volt drop across R2, a 6 volt drop across Q1 and a 3 volt drop across R1 so the ratio is 3:2:1. Now assume that something goes wrong with the circuit and you measure the voltages shown in fig. 5C. With 4.2 volts across R1, 1.2 volts across Q1 and 12.6 volts across R2 you have a voltage ratio of 3:0.29:1. Since the ratios of R1 and R2 remain the same, it's a good guess that they're okay, but the resistance of Q1 has changed, upsetting the voltages in the circuit. However this doesn't necessarily mean the transistor is bad. It's very likely that something in the circuitry at the base of the transistor (not shown) is causing the problem.

To get an idea of how complex these relationships can get, look at the transistor audio amplifier shown in fig. 6A. Shown in fig. 6B is the equivalent diagram of the collector circuit (Q1C is the collector-emitter junction); fig. 6C shows the equivalent circuit for the base circuit and includes the bias network (R1 and R2) and the path through the base-emitter junction (Q1B). Note that the emitter resistor R4 is in this path, too, so a current change in either circuit affects the voltage drop across that resistor.

Fig. 6D shows the combined dc paths through the transistor. Figuring out the voltage ratios in this circuit would be difficult even if the resistances were simple, whole numbers, which they aren't, but the circuit is complicated by the fact that the value of Q1C is controlled by Q1B. However, as will be seen later, there are some rules of thumb that remove some of the apparent complexity and allow you to successfully use voltage ratios to troubleshoot circuits of this type.

We will study transistor circuits in greater detail in a future column, but there are several important facts about transistor circuits that are particularly helpful in understanding the operating voltages of the stage. In a transistor amplifier, for example, the base-emitter junction is always forward biased and the base-collector junction is always reverse biased. This is the cause was really the effect, and vice versa. Fig. 4. Basic vacuum-tube circuit and its basic series resistance equivalent. Plate resistance is a function of grid bias which is set by the cathode resistor R1. This complicates the analysis as discussed in the text.

*Forward biased for class-A stages. Class-AB stages are slightly forward biased while class-C stages are operated at zero bias.

In many cases it is practically impossible to separate the two without resorting to another troubleshooting technique. But don't feel too badly if you get caught in this trap -- more than one technician has chased his tail around a circuit only to discover that what he thought was the cause was really the effect, and vice versa.

To get an idea of how complex these relationships can get, look at the transistor audio amplifier shown in fig. 6A. Shown in fig. 6B is the equivalent diagram of the collector circuit (Q1C is the collector-emitter junction); fig. 6C shows the equivalent circuit for the base circuit and includes the bias network (R1 and R2) and the path through the base-emitter junction (Q1B). Note that the emitter resistor R4 is in this path, too, so a current change in either circuit affects the voltage drop across that resistor.

Fig. 6D shows the combined dc paths through the transistor. Figuring out the voltage ratios in this circuit would be difficult even if the resistances were simple, whole numbers, which they aren't, but the circuit is complicated by the fact that the value of Q1C is controlled by Q1B. However, as will be seen later, there are some rules of thumb that remove some of the apparent complexity and allow you to successfully use voltage ratios to troubleshoot circuits of this type.

We will study transistor circuits in greater detail in a future column, but there are several important facts about transistor circuits that are particularly helpful in understanding the operating voltages of the stage. In a transistor amplifier, for example, the base-emitter junction is always forward biased and the base-collector junction is always reverse biased. That is, the base terminal is always at a higher dc potential with respect to the emitter, and the collector is always at a higher potential than the base. In npn transistors the collector is positive with respect to the emitter, and in pnp transistor circuits the collector is negative with respect to the emitter. Furthermore, there's an approximately 0.7 volt voltage drop from base to emitter in silicon transistors, and about 0.2 volt base-emitter voltage drop for germanium transistors. In fig. 6A, for example, there's a 0.7 volt difference between the base and emitter terminals so Q1 is a silicon transistor.

fig. 4. Basic vacuum-tube circuit and its basic series resistance equivalent. Plate resistance is a function of grid bias which is set by the cathode resistor R1. This complicates the analysis as discussed in the text.

Consider the transistor amplifier circuit shown in fig. 5A and its resistive equivalent in fig. 5B. Voltages are shown for each point in the circuit so you can calculate the voltage and resistance ratios. There is a 9 volt drop across R2, a 6 volt drop across Q1 and a 3 volt drop across R1 so the ratio is 3:2:1. Now assume that something goes wrong with the circuit and you measure the voltages shown in fig. 5C. With 4.2 volts across R1, 1.2 volts across Q1 and 12.6 volts across R2 you have a voltage ratio of 3:0.29:1. Since the ratios of R1 and R2 remain the same, it's a good guess that they're okay, but the resistance of Q1 has changed, upsetting the voltages in the circuit. However this doesn't necessarily mean the transistor is bad. It's very likely that something in the circuitry at the base of the transistor (not shown) is causing the problem.

To get an idea of how complex these relationships can get, look at the transistor audio amplifier shown in fig. 6A. Shown in fig. 6B is the equivalent diagram of the collector circuit (Q1C is the collector-emitter junction); fig. 6C shows the equivalent circuit for the base circuit and includes the bias network (R1 and R2) and the path through the base-emitter junction (Q1B). Note that the emitter resistor R4 is in this path, too, so a current change in either circuit affects the voltage drop across that resistor.

Fig. 6D shows the combined dc paths through the transistor. Figuring out the voltage ratios in this circuit would be difficult even if the resistances were simple, whole numbers, which they aren't, but the circuit is complicated by the fact that the value of Q1C is controlled by Q1B. However, as will be seen later, there are some rules of thumb that remove some of the apparent complexity and allow you to successfully use voltage ratios to troubleshoot circuits of this type.

We will study transistor circuits in greater detail in a future column, but there are several important facts about transistor circuits that are particularly helpful in understanding the operating voltages of the stage. In a transistor amplifier, for example, the base-emitter junction is always forward biased and the base-collector junction is always reverse biased. That is, the base terminal is always at a higher dc potential with respect to the emitter, and the collector is always at a higher potential than the base. In npn transistors the collector is positive with respect to the emitter, and in pnp transistor circuits the collector is negative with respect to the emitter. Furthermore, there's an approximately 0.7 volt voltage drop from base to emitter in silicon transistors, and about 0.2 volt base-emitter voltage drop for germanium transistors. In fig. 6A, for example, there's a 0.7 volt difference between the base and emitter terminals so Q1 is a silicon transistor.

fig. 4. Basic vacuum-tube circuit and its basic series resistance equivalent. Plate resistance is a function of grid bias which is set by the cathode resistor R1. This complicates the analysis as discussed in the text.

Consider the transistor amplifier circuit shown in fig. 5A and its resistive equivalent in fig. 5B. Voltages are shown for each point in the circuit so you can calculate the voltage and resistance ratios. There is a 9 volt drop across R2, a 6 volt drop across Q1 and a 3 volt drop across R1 so the ratio is 3:2:1. Now assume that something goes wrong with the circuit and you measure the voltages shown in fig. 5C. With 4.2 volts across R1, 1.2 volts across Q1 and 12.6 volts across R2 you have a voltage ratio of 3:0.29:1. Since the ratios of R1 and R2 remain the same, it's a good guess that they're okay, but the resistance of Q1 has changed, upsetting the voltages in the circuit. However this doesn't necessarily mean the transistor is bad. It's very likely that something in the circuitry at the base of the transistor (not shown) is causing the problem.

To get an idea of how complex these relationships can get, look at the transistor audio amplifier shown in fig. 6A. Shown in fig. 6B is the equivalent diagram of the collector circuit (Q1C is the collector-emitter junction); fig. 6C shows the equivalent circuit for the base circuit and includes the bias network (R1 and R2) and the path through the base-emitter junction (Q1B). Note that the emitter resistor R4 is in this path, too, so a current change in either circuit affects the voltage drop across that resistor.

Fig. 6D shows the combined dc paths through the transistor. Figuring out the voltage ratios in this circuit would be difficult even if the resistances were simple, whole numbers, which they aren't, but the circuit is complicated by the fact that the value of Q1C is controlled by Q1B. However, as will be seen later, there are some rules of thumb that remove some of the apparent complexity and allow you to successfully use voltage ratios to troubleshoot circuits of this type.

We will study transistor circuits in greater detail in a future column, but there are several important facts about transistor circuits that are particularly helpful in understanding the operating voltages of the stage. In a transistor amplifier, for example, the base-emitter junction is always forward biased and the base-collector junction is always reverse biased. That is, the base terminal is always at a higher dc potential with respect to the emitter, and the collector is always at a higher potential than the base. In npn transistors the collector is positive with respect to the emitter, and in pnp transistor circuits the collector is negative with respect to the emitter. Furthermore, there's an approximately 0.7 volt voltage drop from base to emitter in silicon transistors, and about 0.2 volt base-emitter voltage drop for germanium transistors. In fig. 6A, for example, there's a 0.7 volt difference between the base and emitter terminals so Q1 is a silicon transistor.

It's also important when analyzing transistor stages to remember that the base current is a small fraction of the collector or emitter current, typically 1 per cent or less (for a collector current of 25 mA, typical base current is about 250 μA). Therefore, the fact that R4 in fig. 6D is common to both the base and collector equivalent circuits is of little consequence because base current contributes only about 11 mV to the voltage drop across R4.

Since the base-emitter voltage remains relatively constant throughout the operating range of the transistor, this can complicate troubleshooting because if the emitter voltage increases for some reason, the base voltage will follow right along behind it. On the other hand, if the base bias voltage increases, this increases the base current slightly, increases the emitter current greatly, and increases the voltage measured at the emitter terminal. The measured voltages may be the same in both cases but the causes are different.

*Forward biased for class-A stages. Class-AB stages are slightly forward biased while class-C stages are operated at zero bias.

fig. 5. Simple transistor circuit (A), the dc equivalent of the collector circuit (B), and incorrect voltages which can be analyzed using voltage ratios. Troubleshooting cannot be completed however, without considering the base circuit as shown in fig. 6.
The circuits of fig. 7 are the same as those of fig. 6A except that the operating voltages have changed, indicating trouble. Note in both cases that the emitter voltage has increased. In fig. 7A the emitter voltage has increased to 1.6 volt while the collector voltage has dropped to 5.4 volts. In fig. 6A the ratio of the voltage drops across R3 and R4 is approximately 8:1. In fig. 7A the R3 and R4 voltage drops are 12.6 and 1.6 volts respectively, a ratio of about 8:1. Therefore, the difficulty is the base bias network (the value of R1 has probably decreased, increasing the current flow through R1-R2 and increasing the base bias voltage).

In fig. 7B the emitter voltage has also increased, but note that the ratio of the voltage drop across R3 (15.6 volts) to that across R4 (1.3 volts) is now 12:1. Further checking will reveal that the value of the emitter resistor has decreased to about 100 ohms, nearly doubling collector and emitter current.

The i-f amplifier in fig. 8 is typical of the type you might find in a modern communications receiver. Assume you have tracked a receiver problem to this stage and measure the transistor voltages shown in fig. 8B. The collector voltage is very low, indicating either higher than normal current through the transistor or that R4 has increased in value. The base voltage is a little low, but it has changed little with respect to the emitter voltage. If you study the circuit you quickly decide that the bypass capacitor C3 has shorted. With 1 volt of forward bias the transistor conducts heavily, dramatically lowering collector voltage.

There are countless transistor and IC supply circuits which you can analyze in this same way. First, pick out the voltage that is the most wrong and find out what caused it. Concentrate on one supply path at a time and try to ignore the effects of other circuits. When you decide what happened in one circuit, then decide whether another circuit could possibly be causing the incorrect voltages in the circuit. The component that is common to all symptoms is usually the culprit. Each symptom leads to another, and ultimately to the defective component.

Collins paint

Although not directly in the area of troubleshooting, maintaining the appearance of your amateur equipment is also important. Not generally known is the fact that Collins Radio stocks spray cans of paint for both the S-line and the older 75A4/KWS line. The S-line color scheme is actually in three different hues: 180 Gray for the cabinet (Collins part number 097-6161-000), 250 Gray for the panel (Collins part number 097-6162-000) and 126 Medium Gray for the ring (Collins part number 097-6163-000). The spray paint for the 75A4/KWS line is St. James Gray (Collins part number 097-6164-000). Spray cans may be ordered through your local Collins dealer.

ham radio
When you consider the extra “goodies” — that you don’t pay extra for — we think you’ll agree that the...

Drake TR-22C is a remarkable 2-meter FM portable

GENERAL: Frequency Coverage: 144 through 148 MHz. 12 Channels, 2 supplied: (1) Receive: 146.52 MHz, Transmit: 146.52 MHz; (2) Receive: 146.94 MHz, Transmit: 146.34 MHz. Power Requirements: 13.0 Volts DC±10%. Current Drain: Transmit: 450 mA, Receive: 45 mA. Antenna Impedance: 50 Ohms. Dimensions: 5 5/8" x 2 1/4" x 7 1/2" (13.6 x 5.6 x 19.1 cm). Weight: 3.75 lbs (1.7 kg).

RECEIVER: Sensitivity: Typically 5 microvolts for 20 dB quieting. IF Selectivity: 20 kHz at 8 dB down; >30 kHz channel rejection greater than 75 dB down. First IF: 10.7 MHz with 2-pole monolithic crystal filter. Second IF: 455 kHz with ceramic filter. Intermodulation Response: At least 60 dB down. Modulation Acceptance: 7 kHz. Audio Output: At least 1 Watt at less than 10% distortion. Audio Output Impedance: 8 Ohms.

TRANSMITTER: RF Output Power: 1 Watt minimum. Frequency Deviation: Adjustable to ±0.01 kHz maximum, factory set to ±5.0 kHz. Multiplication: 12 Times. Amateur Net: $229.95.

ACCESSORIES: Model AA-10 Power Amplifier: Use with TR-22C or any transceiver up to 1.8 watts output. 10 dB power increase. At least 10 watts output at 13.8 VDC. Automatic transmit/receive switching. Model MMK-22 Mobile Mount: $99.95.

R.L. DRAKE COMPANY

Great New Turn On

MOCO II ushers in a new generation of Morse Code Readers. Its central processing unit is combined with computer programmed firmware totalling more than 8,000 bits of memory, which permit MOCO II to translate standard alpha-numeric Morse Code, even punctuation automatically.

Simply connect MOCO II to the speaker leads and then just turn it on. No knobs, no adjustments. One switch calibration automatically determines and displays sending speed.

MOCO II is not a kit. It’s completely assembled and tested, includes integral power supply, parallel ASCII and Baudot outputs for existing display units. PRICE: $199.00 Available as options are a video display, or a teletype driver with 60 ma. loop supplies.

Howard Microsystems introduces MOCO II, the newest and most efficient Morse Code translator in the state of the art.

Order from Howard Microsystems, Inc., 6950 France Avenue South, Minneapolis, MN 55435 (612) 925-2474.

DISPLAY OPTIONS
A. Baudot Driver/Interface for TTY $75.00 B. Video Character Display — connects with your TV $200.00 (Kit $125.00). All orders — add $2.75 shipping/handling.

HOWARD MICROSYSTEMS, INC.
Proper modulation means better results when you’re out to make longer lasting contacts. What’s more, you can get maximum power output and super radiation when you work your rig with the help of Leader Test Instruments. You also achieve optimum operating capability, proper impedance matching and minimum TVI problems. Easy to operate, Leader gear is priced to give you the best value for your communications dollar. It is the ideal “performance test center”.

(A) LPM-885 SWR Wattmeter
A sensitive, in-line type power meter which measures SWR of x’mission lines and power output from 1.8 to 54MHz. Facilitates adjustment of x’mitter and antenna systems for highest efficiency. May be left in circuit for continuous power output monitoring in the 1-1000W range. SWR Power Detector circuit assembly separates for remote measurements. Forward-to-Reverse power ratio is used for accurate SWR readings.

$99.95

(B) LBO-310Ham Oscilloscope with Built-in LA-31 RF Monitor Adapter.
Observe IF circuit waveforms and monitor SSB and AM xmitter signals. The built-in LA-31 Adapter helps provide continuous monitor of RF output (to 500W). This versatile scope will also indicate tuned condition for RTTY operation. The internal 2-tone generator checks SSB. Vert. sensitivity is 20mVp-p/div; DC-4MHz bandwidth. It’s sensitive general purpose scope, too!

LBO-310Ham 3” Scope $269.95
LA-31 adapter for use with our LBO-310A or any scope with deflection plate conn. $22.95

(C) LPM-880 RF Wattmeter
May be left in circuit for continuous Measure RF x’mitter power output in the power output monitoring in the 0.5 to 120W range from 1.8 to 500MHz. Features pushbutton range selection. SWR Power Detector circuit assembly separates for remote measurements. Forward-to-Reverse power ratio measures power losses in low pass filters and coaxial cables. Complete with sturdy tilt stand.

$149.95

Complete your Communications “Performance Test Center” by adding these valuable Leader Instruments...

LAC-895 Antenna Coupler
For optimum antenna matching & reducing TVI. Has built-in SWR and in-line power meter for accurate measurement in 5 bands. $159.95

LIM-870A Antenna Impedance Meter
For on-site antenna adjustments & excellent matching. Uses 9V batt’y. Checks linear amplifier and receiver impedances. $99.95

LDM-815 Transistorized Dip Meter
Docks with our LIM-870A to facilitate antenna impedance matching. Portable, battery operated, adjust wave traps, etc. $99.95

See your dealer or write direct

Mail this coupon now. Place your order today!

Leader Instruments Corp. Communications Division, Dept. HR
151 Dupont Street, Plainview, N.Y. 11803 (516) 822-9300
In Canada Ommintron Ltd, Montreal, Quebec

...I want to get the most out of my rig with Leader Test Gear...
☐ Send me your free Communications Instruments Catalog.
☐ Send me your full line catalog of test instruments for Service, Industry, Education and Maintenance.
☐ Ship me the following Leader Communications Test Gear;
 ☐ LPM-885 SWR Watt Meter $99.95
 ☐ LBO-310Ham 3” Scope w/ built-in RF Monitor $269.95
 ☐ LA-31 RF Scope Adapter $22.95
 ☐ LPM-880 RF Power Meter $149.95
 ☐ LAC-895 Antenna Coupler $159.95
 ☐ LIM-870A Antenna Impedance Meter $99.95
 ☐ LDM-815 Transistorized Dip Meter $99.95

Total enclosed $

Name __________________________
Address _______________________
City ___________________________
State / Zip _______________________
Phone _________________________

Payment by: ☐ Personal Ck. ☐ Money Order ☐ Certified Ck.
Note: Do not send cash or stamps.
Personal checks require 2 weeks processing.

CA. & N.Y. residents add Sales Tax For prepaid shipping & handling, enclose $4 add’l. per unit with purchase price.

CA. & N.Y. residents add Sales Tax For prepaid shipping & handling, enclose $4 add’l. per unit with purchase price.
high power calibration for the Heath HM2102 vhf wattmeter

The great crowds of two-meter fm enthusiasts will no doubt provide the Heath Company with a continuing market for their HM2102 vhf wattmeter. This dandy piece of equipment provides two switch-selectable power ranges of 25 and 250 watts full scale, in the 50 to 160 MHz range, and also includes a built-in SWR bridge.

In checking out my wattmeter I found that everything worked fine with the exception of a noticeable discrepancy in the accuracy of the high power (250 watt) range. Checking further, I found that the problem was due to the fact that R8, a 68k resistor which is used as a meter multiplier in the 250 watt range, was out of tolerance. The problem could have been cured by replacing R8 with a new resistor, but it occurred to me that even greater accuracy could be obtained by replacing R8 with a variable 100k resistor to allow separate calibration of the high power range.

This modification is easily done and works out very nicely. The small trim-pot may be supported by using short pieces of solid hookup wire inserted in the PC board holes formerly occupied by R8. The adjusting slot should face upward in the same direction as potentiometer R6. A hole in the cover plate allows access to R8 when the cover is in place. This access hole can be labeled high for high power adjust, and the hole already in the plate for R6 can be labeled low.

The original calibration procedure calls for adjusting R6, a 50k pot, in the low power position, which also affects the high power calibration. With the addition of a 100k pot for resistor R8, the new calibration procedure is as follows:

1. Using a known power source in the 10 to 25 watt range, and/or comparing with another wattmeter of known accuracy, adjust R6 for the correct meter indication in the 25 watt range.
2. Switch to the 250 watt range, and again using a transmitter with known output, and/or a comparison wattmeter, adjust R8 for correct meter indication.

Both ranges are now individually calibrated. Any further adjustment of R6 will require readjustment of R8.

Robert H. Johnson, W9TKR

speech compressor

I wanted to improve the efficiency of my homebrew ssb transmitter, so I decided to build an audio speech compressor. The circuit in fig. 2 uses a Motorola MFC6040 voltage-controlled amplifier IC which has 13 dB gain and 90 dB (maximum) gain reduction. Maximum input is specified at 5 mV rms. In this circuit transistors Q1 and Q2 are a microphone preamplifier. Transistor Q4, which is connected to the output through a 0.1 µF capacitor, is the agc...
detector/amplifier for U1, the voltage-controlled gain stage. Q3 is the output buffer.

At my station I use a 500-ohm dynamic microphone with this circuit and the performance of the unit could be further improved by adding a 300-3000 Hz filter at the output.

L. Novotny

goral oscillator notes

The Goral crystal oscillator circuit described by Don Stoner in ham radio* appears to be excellent in many respects. I have found, however, that the proper value of C2 in fig. 4 of the original article is a critical function of the capacitance for which the crystal is calibrated. Crystals for the GE Progress Line, for example, are ground to operate into a 10-pF load and will not oscillate on their proper frequency using 20 pF as the value of C2. Data on two different crystals for a GE Progress Line receiver are shown in fig. 1. A value of 12 pF for C2 is more suitable as it allows the crystal to be netted using an 8-pF trimmer capacitor at C1. The data also illustrate the wide frequency range over which the oscillator will operate when different values of C1 and C2 are used.

Robert E. Cowan, K50IN

nicad battery care

Most pocket computers are powered by rechargeable nicad batteries. These are good batteries, but they must be treated with care. If you run the batteries, or even one cell, much below 0.7 volt, there seems to be the danger of the weakest cell reversing its polarity and chemically burning itself out. If one cell does go dead, it is suggested you replace the

whole string in series, or you may have further problems with cells burning out. If you can get a rundown battery to recharge a little, you may be able to cycle the battery back to health by recurrent discharging and recharging. It appears these cells may also remember how you treat them. Treat them ruggedly, and they will be rugged; treat them kindly, and they will away.

monitor receiver modification

I would like to elaborate on the W3WTO article in the January, 1975, issue of *ham radio.* In this unit the local oscillator is 10.7 MHz below the 162 MHz received frequency, at about 151 MHz. By slightly spreading the turns of the oscillator coil, it can be moved to the range of 156 to 159 MHz, 10.7 MHz above the two-meter band. The present tuning arrangement covers about 3 MHz, or 145 to 148 MHz if the coil is carefully adjusted.

Since the rf coils were previously peaked at 162 MHz, sensitivity on two meters can be substantially improved by replacing the rf coils using the same size wire and coil diameter. L1 and L2 should have one additional turn and L3 should have two additional turns. Carefully adjust the length of the new coils for optimum sensitivity.

While the unit works well with its self-contained antenna, I added a phono jack for convenient connection to an external antenna. It really gives quite good performance for a tunable, $15 two-meter receiver.

Lowell White, W2CNQ

Everybody wants the ultimate ham station, but the only way most of us are going to get it is to start now and grow into it.

And the best way to start is with our 700CX.

Then you'll have an excellent transceiver with 700 solid watts P.E.P. input of SSB power at the lowest cost per watt—about a buck—of any comparable equipment.

And when you're ready to add capability and features, plug in or hook up Swan accessory equipment for easy expandability.

For instance, just plug in our 510-X crystal oscillator when you want extra frequency coverage. If your kind of traffic calls for separate transmit and receive frequencies, our 508 VFO is made for your station. Want VOX? Plug in the Swan VX-2 and start talking. Or hook up our FP-1 telephone patch in minutes.

And when you're ready for that big jump to all-the-law-allows, our 2000-watt P.E.P. input Mark II linear amp is waiting in the wings.

Add our complete selection of power supplies, microphones and other options and you've got everything you need for a full-house rig in matching specs and matching decor.

So your ham station will look and perform like it belongs together.

With the 700CX you'll never be troubled by things like cross-modulation and front-end overload because the design is excellent. All bands from 10 to 80 meters with selectable upper or lower sideband, AM, or CW with sidetone.

Get started on your dream rig today. See the 700CX at your nearest Swan dealer or order direct from our factory.

700CX Champion Transceiver $649.95
117-XC 110V AC Power Supply $159.95
(includes Speaker and Cabinet)
117-X 110V AC Power Supply $114.95
(less Speaker and Cabinet)
510-X Crystal Oscillator $67.95
508 External VFO $269.95
VX-2 Plug-In VOX $44.95
FP-1 Telephone Patch $64.95
Mark II Linear Amplifier $849.95
(complete with 110/220 VAC power supply and tubes)

Dealers throughout the world or order direct from Swan Electronics
A subsidiary of Cubic Corporation
Home Office: 305 Airport Road, Oceanside, CA 92054
Telephone: (714) 757-7525
CRYSTAL FILTERS
and
DISCRIMINATORS

by
K.V.G.

10.7 MHz FILTERS, 8 POLE
XF107-A 14kHz NBFM $40.60
XF107-B 16kHz NBFM $40.60
XF107-C 32kHz WBFM $40.60
XF107-D 38kHz WBFM $40.60

10.7 MHz FILTERS, 4 POLE
XM107-S04 14kHz NBFM $18.95
XM107-S02 14kHz NBFM $18.95

10.7 MHz FILTERS, 2 POLE
XR02 14kHz NBFM $7.95

SPECTRUM
INTERNATIONAL, INC.
BOX 1084 CONCORD
MASSACHUSETTS 01742
U.S.A.

VHF CONVERTERS UHF

RF Freq. (MHz) +
MC 50 M MC 144
MMC 220 MMC 432 MMC 1296
50-54 144-148 220-224 432-436 1296-1300

N.F. (typical)
2.5dB 2.8dB 3.4dB 3.8dB 9.0dB

Nom. Gain
36dB 39dB 26dB 28dB 26dB

$49.95 $53.70 $64.45 $64.45 $79.95

Shipping: Converters, $1.50

VHF PREAMPLIFIERS

Freq. Range (MHz)
MC 28 MC 50 MC 144 MC 220
28-32 50-54 144-148 220-224

N.F. (typical)
2.0dB 2.5dB 2.8dB 3.4dB

Nom. Gain
22dB 26dB 16dB 16dB

$37.95 $37.95 $37.95 $42.15

Shipping: $1.50

For 420-450 MHz AND 1250-1340 MHz BANDS. WRITE FOR DETAILS.

UHF PRE-SELECTOR FILTERS

MODEL
PF432
PF1296

FREQ. RANGE
420-450 MHz
1250-1340 MHz

RIPPLE TYP.
0.1dB PEAK
0.1dB PEAK

L TYPE CONNECTORS
BNC
TNC

IN/OUT IMPEDANCE
50 OHMS
50 OHMS

$34.95
$34.95

Shipping: $1.50

THE TIGER
15% Savings on Gas

A Capacitive Discharge Ignition system absolutely guarantees NOT to interfere with your radios & equally guaranteed to improve your auto's operation and gas mileage.

No rewiring necessary. Engine cannot be damaged by improper installation. Either of three models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil & distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.

Write for free booklet that not only is the BEST description of CDIs, but also explains the need for such a system. Current prices assured till July 1, '76.

D-D ENTERPRISES
P. O. Box 7776
San Francisco, CA 94119

For more information please contact:
R.L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342 • Phone: (513) 866-2421 • Telex: 288-017

The new Low Pass Filter is more than 80 dB down at 41 MHz and above! This is the third harmonic of 20 meters and the second harmonic of 15 meters—it's also the I.F. frequency for TV! • The popular TV-1000-LP provides for low power operation on 6 meters and thus cannot roll-off below 52 MHz. • Write for the TV-3300-LP curves.

See your Dealer.

For more information please contact:
R.L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342 • Phone: (513) 866-2421 • Telex: 288-017
The selectivity curve above looks phenomenal, especially when compared with ordinary filters. What makes it even more phenomenal is that it is a true graph of the overall selectivity of the Atlas transceiver, not just a graph of a filter operating in a special test fixture under laboratory conditions.

THE SUPER SELECTIVITY of the Atlas transceivers is provided by an 8 pole crystal ladder filter designed especially for Atlas by Bob Crawford of Network Sciences, Phoenix, Arizona. This filter represents a major breakthrough in filter design with unprecedented skirt selectivity and ultimate rejection. Its superior selectivity has been tailored to take full advantage of the extremely wide range of signal levels that the Atlas front end is capable of handling.

THE 6 db BANDWIDTH of 2700 cycles was purposely selected to provide audio response from 300 to 3000 cycles in both transmit and receive modes (it has been proven that transmission and reception of voice frequencies between 300 and 3000 cycles provides a substantial improvement in readability under noisy or weak signal conditions, as compared to narrower bandwidths). At the same time, the improvement in fidelity of voice communication is readily noticeable, and accounts for the constant reports of "broadcast quality" from Atlas transceivers. Unfortunately, many receivers with narrower bandwidths cannot fully appreciate the audio quality of the Atlas transmitter. It takes 2700 cycles of bandwidth to get all of the quality, and the Atlas transceivers are among the few that have this ideal bandwidth.

SKIRT SELECTIVITY. The 8 pole ladder filter provides a bandwidth at 60 db down of only 4300 cycles (shape factor of 1.6) and a bandwidth of only 9200 cycles at 120 db down! No other filter that we know can even list their 120 db Bandwidth. Note that the Atlas filter is narrower at these levels than other filters, even though the others provide less bandwidth at 6 db.

ULTIMATE REJECTION is in excess of 130 db, greater than the measuring limits of most test equipment.

IT IS THIS EXTREMELY STEEP SKIRT SELECTIVITY, illustrated in the above graph, which rejects strong adjacent channel signals better than any other known receiver.

Combine this amazing selectivity with all the other features of the Atlas, such as: Strong immunity to overload and cross modulation • All solid state design • 200 watts P.E.P. input • Total broadbanding with NO TRANSMITTER TUNING • Modular construction • Compact plug-in design (7 lbs, 3½" x 9″ x 9½"), and you quickly see why you get so much more operating pleasure with the Atlas 210x/215x.

210x or 215x. ... $649.
With noise blanker installed $689.
AC Console 110/220V $139.
Portable AC Supply 110/220V $ 95.
Model DD6 Digital Dial $199.
Plug-in Mobile kit ... $44.
10x Osc. less crystals $55.
Noise Blanker, for plug-in installation $48.

For complete details see your Atlas dealer, or drop us a card and we'll mail you a brochure with dealer list.

ATLAS RADIO INC.
Ask the ham who owns one!
417 Via Del Monte • Oceanside, CA 92054 • Phone (714) 433-1983

More Details? CHECK-OFF Page 110
general coverage receiver

The SSR-1 receiver is a new addition to R. L. Drake Company's family of communications equipment. Several design features make it a good candidate for portable work, general-purpose shortwave listening, emergency use, or as a standby receiver. The SSR-1 is frequency synthesized and covers 500 kHz to 30 MHz, providing reception in the a-m, CW, and ssb modes, with selectable upper or lower sidebands.

The SSR-1 is completely self contained including built-in speaker, removable telescoping antenna, 117/234 Vac 50 to 60 Hz power supply, and provision for eight D-cell batteries. With batteries installed, the SSR-1 switches automatically to battery operation if ac power fails. To conserve battery power, the SSR-1 features a front-panel push-button switch that must be depressed to illuminate dial lights.

More information may be obtained by writing to the R. L. Drake Company, 540 Richard Street, Miamisburg, Ohio 45342, or use check-off on page 110.

up/down counters

ESE is now producing the ES-301 and ES-302 digital up/down counters. Both are four-digit, 100-minute timers featuring four gas-discharge displays for display up to 99:59. Six separate controls count up, count down, stop, minutes advance, seconds advance and reset. The controls are momentary push-button switches. When the stop control is pressed, the display is automatically held at the precise second. Both the ES-301 and the ES-302 may be preset to a desired number for a specific count, and timing can be activated from that point, up or down. Desired numbers on the ES-301 can be preset by advancing the minutes and seconds simultaneously or independently. Lever type switches instantly preset the number on the ES-302.

Depressing the reset button on both units returns the numbers to 00:00 from which they will continue counting up or down, unless the stop button is pushed. Both units may be equipped with an option that returns the number to the preset digits when the reset is activated. Counting direction (up or down) on both units can be reversed or reset to 00:00 without stopping the count.

Both the ES-301 and ES-302 come in an etched aluminum case with simulated walnut sides and top. Power for both is 7 watts maximum, 117 Vac at 60 Hz. The ES-301 and ES-302 are efficiently designed for constant, daily use, utilizing solid state reliability, silence, easy operation, high accuracy, long life, low initial cost and operation.

For detailed catalog sheets contact ESE, 505'S Centinela Avenue, Inglewood, California 90302 or use check-off on page 110.

wideband rf transformers

Communications Power is offering a complete line of wideband rf transformers designed specifically for impedance matching in high-power solid-state amplifiers. The transformers cover 1.8 to 30 MHz and are rated at 150 watts. Extremely rugged construction assures reliability in any environment. Applications include marine as well as military and amateur radio communications equipment.

High-volume manufacture means lowest prices. The following example is representative of CPI wideband rf transformers available for immediate delivery. These units all have turns ratios of 1:3, 4, 5, or 6 and cover 1.8 through 30 MHz:

<table>
<thead>
<tr>
<th>Series</th>
<th>Power Rating (Watts)</th>
<th>Price (1-4 Pieces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF1000</td>
<td>150</td>
<td>$5.00</td>
</tr>
<tr>
<td>RF800</td>
<td>100</td>
<td>4.00</td>
</tr>
<tr>
<td>RF600</td>
<td>50</td>
<td>3.50</td>
</tr>
<tr>
<td>RF400</td>
<td>25</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Information on other types is available on request. Write Communications Power, Incorporated, 2407 Charleston Road, Mountain View, California 94043, or use check-off on page 110.

fm signal generator

The Edison Electronics division of McGraw-Edison Company has developed a solid-state fm signal generator that covers all the mobile communications frequency bands allocated by the FCC. Four models are offered, designed to your specific carrier-frequency needs. Each model has six frequency bands. The model 800A covers 25 to 960 MHz; model 801A, 25 to 470 MHz; model 802A, 25 to 175 MHz; and the model 803A, 25 to 520 MHz. Any desired frequency can be quickly obtained by first selecting one of the six frequency bands, then tuning the coarse tuning control until the desired frequency appears on the hand-calibrated tuning dial. Finally, narrowband adjustments may be made with either an electronic fine tuning control or incremental frequency controls.

Output voltages are provided with accuracy traceable to NBS. Output is continuously variable between 0.1 microvolt and 0.1 volt. A temperature-compensated bolometer circuit maintains output voltages automatically. Accurate receiver sensitivity measurements can be made to 0.1 microvolt.

The Measurements Model 800A series fm signal generators feature internal modulators that provide fm at 1000-Hz
sine waves or 20-Hz sawtooth waves. External modulation between dc and 30 kHz may be applied through binding posts on the panel. Sync output and sync phase are available for external modulation up to ±32 kHz peak deviation so that dual-trace sweep alignment may be used.

All four models are available at $992.00 FOB Manchester, New Hampshire. For a brochure providing more technical details write Edison Electronics, Grenier Field, Manchester, New Hampshire 03103 or use check-off on page 110.

tone encoding keyboards

Four new tone encoding keyboards have been introduced by Electrografix for vhf/uhf installations where access is required to amateur autopatch repeaters. Designated TEK-125, -165, -225, and -265, the series incorporates the cmos IC developed by Motorola: the MC144410 digital tone encoder.

The pads provide a compact, accurate, low-power, digital tone encoding system with a full 2-of-7 or 2-of-8 encoding format from a basic 1-MHz crystal oscillator. A unique key pad switch complements the anti-falsing lockout feature of the Motorola IC.

The two smaller pads, TEK-125 12 button and TEK-165 16 button, are for use with hand-held transceivers or other small units. TEK-225 and TEK-265 are much larger and are intended for installation in remote-control panels, repeater sites, or on vehicle dash panels. All units are 0.40 inch (10.2mm) thick. External dimensions are: TEK-125, 1.58x2.08 inches (40x52.8mm); TEK-165, 2.08x2.08 inches (52.8x52.8mm); TEK-225, 2.05x2.70 inches (52x68.6mm); TEK-265, 2.70x2.70 inches (68.6x68.6mm).

Also featured are a glow-in-the-dark keyboard face and a LED in the bezel.

Clegg

NOW OFFERS A FULL CHOICE FOR THE VHF FM'er!

The Unequalled
FM-DX
$645.00

- 35 Watts - 143.5 to 148.5 MHz - Digital Display
- Fully Synthesized in 5KHz Steps - .25 uv Receiver

15 Watt MARK 3 for 146 MHz
10 Watt FM-76 for 220 MHz

THE Clegg ECONOMY LINE
12 Channels – ONLY $189.50 for either Model
(special package prices for club groups)

The Best Value in Hand Holds.

HT-146
- 1.5 Watts - 5 Channels - .35 uv Receiver
PRICED LESS THAN THE KITS
ONLY $160.00 w/Ant. & 52 Simplex & Battery Pack

ORDER FROM Clegg DIRECT,
WE SHIP WITHIN 24 HOURS!
WE PAY DOMESTIC SHIPPING!
FOR DETAILS ON ANY OR ALL OF THESE PRODUCTS PHONE US TOLL FREE TODAY.

Clegg
208 Centerville Road, Lancaster, PA 17601
Toll free sales & services - Phone (800) 233-0250
In Pa. call (717) 299-7221 (collect)
GET TO THE TOP FAST!

NOW YOU CAN CHANGE, ADJUST OR JUST Plain WORK ON YOUR ANTENNA AND NEVER LEAVE THE GROUND!

Rohn manufactures towers that are designed and engineered to do specific jobs and that is why we have the FOLD-OVER TOWER...designed for the amateur. When you need to "get at" your antenna just turn the handle and there it is. Rohn "fold-over" towers offer unbeatable safety. These towers let you work completely on the ground for antenna and rotator installation and servicing. This eliminates the hazard of climbing the tower and trying to work at heights that could mean serious injury in a fall. So use the tower that reduces the risks of physical danger to an absolute minimum...the Rohn "fold-over"!

Like other Rohn big communication towers, they're hot dip galvanized after fabrication to provide a maintenance free, long lived and attractive installation. Rohn towers are known and used throughout the world...for almost a quarter century...in most every type of operation. You'll be in good company. Why not check with your distributor today?

semiconductor replacement guide

This book is designed to fill a gap in the information available to amateurs and electronics technicians. It provides general-purpose replacements for manufacturers' semiconductor parts numbers. Over 15,000 semiconductors used in entertainment-type electronic equipment are cross-referenced to the universal replacements produced by General Electric, International Rectifier, Mallory, Motorola, RCA, Sprague and Sylvania. Included are bipolar and field-effect transistors, diodes, rectifiers, and integrated circuits. 256 pages, softbound, $3.95 from Ham Radio Books, Greenville, New Hampshire 03048.
solder remover

You can de-solder any soldered joint merely by placing your iron atop a special braid, called Wik-It, which in turn is laid on the soldered joint. In a second or two the solder simply disappears into the special braid. The soldered joint is now clean and free of solder, ready for the next operation.

Wik-It is a patented solder remover developed by the Wik-It Electronics Corporation. Because of special chemical treatment of the braid, the solder to be removed is drawn into the braid through capillary action. When the solder has been removed from the joint, the user just snips off about a half-inch of Wik-It which is then ready to be used again.

Because the solder removal occurs so quickly, little heat is transferred to the surrounding material, whether it be mounting board or wire insulation. As a result, Wik-It eliminates delamination, lifted pads, and mealing which are all too often seen with de-soldering attempts. Flux contamination and component damage are also eliminated by the quickness of the Wik-It method.

Wik-It has been thoroughly tested for over two years in manufacturing companies and is approved for use in military and aerospace work since it meets specification MIL-F-14256C Type W and Type A.

Wik-It is available in different sizes to suit small transistor and IC applications as well as larger tube and heavier-size wire work. Wik-It comes in various lengths from 5 to 100 feet. The price of a 5-foot roll of Wik-It is from $1.59 to $1.79, depending on width, and is available in electronics supply stores or from the manufacturer. Free samples are available upon request.

For more information, contact Wik-It Electronics Corporation, 140 Commercial Street, Sunnyvale, California 94086, or use check-off on page 110.
The 280 series. No-nonsense, no-corrosion 10-80 meter mobile antennas from Hy-Gain.

Now from Hy-Gain, a new concept in tip-changing Ham antennas. The 280 series is designed with no-nonsense, one piece fiberglass masts and tough, one piece baked fiberglass coils. You get maximum power handling capability, minimum heat drift, and no loss to corrosion. Yet, it's lighter than aluminum and just as strong.

All five coils are mandrel wound for absolutely consistent performance, imbedded in fiberglass, then baked to make them impervious to weather. Tough ABS end caps and solid brass coil fittings keep performance in, corrosion out. Whips are 17-7 ph stainless, the finest antenna steel, and are literally indestructible in normal use.

Nominal 52 ohm impedance on all bands. Any coax length will work. Heavy duty, chrome plated mast and whip fittings. 3/8" x 24 base stud fits all standard mounts.

(A) 60" bumper mount mast Model 276
(B) 36" cowl or deck mount mast Model 277
(C) 10 meter coil/antenna Model 280
(D) 15 meter coil/antenna Model 281
(E) 20 meter coil/antenna Model 282
(F) 40 meter coil/antenna Model 283
(G) 75/80 meter coil/antenna Model 284

Quick disconnect unit Model 531
Fold over adaptor Model 409
Standard stainless spring Model 492
Heavy duty bumper mount Model 415
Flush body mount Model 499
Extra heavy duty stainless spring Model 511

Hy-Gain Electronics Corporation, 8601 Northeast Highway Six, Lincoln, NE 68505; 402-464-9151; Telex 48-6424
Manufacturers and distributors of more than 300 fine broadcast communications products.
No other antenna gives you performance on 10, 15 and 20 meters equal to the TH6DXX Super Thunderbird. It's built, without compromise, to be electrically and mechanically superior to everything else.

Separate "Hy-Q" traps are used for each band and they are factory tuned for peak performance. You can get optimum results on transmission, phone or CW, with the easy-to-use tuning charts we supply.

The cast aluminum, tilt-head, boom-to-mast bracket accommodates masts from 1¼" to 2½" and provides mast feed-through for stacking with other antennas. Taper-swaged, slotted aluminum tubing is used for easy adjustments and light weight. Full circumference compression clamps are used throughout, instead of the usual, self-tapping screws. All element-to-boom brackets are formed from extra heavy gauge aluminum.

Hy-Gain's exclusive Beta Match is used to give optimum matching on all three bands and a positive DC ground path.

For tri-band DX, nothing can beat the Super Thunderbird.

- Up to 9.5 dB gain over ½ wave dipole
- 3 active elements on 20 and 15 meters
- 4 active elements on 10 meters
- 25 dB front-to-back ratio
- SWR less than 1.5:1 on all bands at resonance
- 24' boom, 20' turning radius
- 6.1 sq. ft. surface area, net weight 61.5 lbs.

For best results, always use a BN-86 Balun

Hy-Gain Electronics Corporation 8601 Northeast Highway Six; Lincoln, NE 68505; 402-464-9151; Telex 48-6424
PALMER INDUSTRIES INTRODUCES THE 52' TRISTAO SUPER MINI-MAST...

featuring an exclusive three-section, crank-up, self-supporting 52' mast with automatic brake winch. Constructed of telescoping 20 foot sections of high-strength steel tubing, designed to withstand winds of 50 to 60 MPH when fully extended or higher winds when partially retracted.

Only the Tristao Mini-Mast features as an exclusive option, a rotating base assembly — which adds an additional 2½' to height of the mast. Rotor may be mounted at ground level for easy operation.

We offer a complete assortment of accessory bases and raising fixtures for the Mini-Mast.

AVAILABLE FOR IMMEDIATE SHIPMENT

40' MODEL ALSO IN STOCK

Call or Write for FREE Catalog and Price List

TRISTAO TOWER DIVISION
Palmer Industries, Inc., Dept. HR
415 East 5th Street
P.O. Box 115
Hanford, California 93230
(209) 592-9016

Here are those super famous cookbooks...

get 'em while they're HOT!

IC OP-AMP COOKBOOK
by Walter G. Jung
Sure to become one of the more important works in this field, this large new book really covers Op-Amps in great detail. You will learn about general purpose and special purpose devices. You will be given many dozens of useful applications and circuits. Also included are data sheets for general purpose Op-Amps and a linear IC cross reference guide. 576 pages.
Order 20969
$12.95

TTL COOKBOOK
by Donald E. Lancaster
Another smash hit from the author of the RTL Cookbook. The author gives you the background you need to best use these devices in your projects. Great stress has been placed on the practical side making this an outstanding experimenters book.
Order 21035
$8.95

RTL COOKBOOK
by Don Lancaster
This book will show you how to understand and intelligently use RTL digital ICs for practical, everyday electronics projects. This book also shows you the concepts of digital ICs — how they work, how to use and design with them.
Order 20715
Only $5.50

ACTIVE FILTER COOKBOOK
by Don Lancaster
Here is a practical, user-oriented manual giving you everything you need to build your own active filters. It explains the many different types and how to select the best one for your application. Written by the same author as the best selling RTL and TTL Cookbooks.
Order 21168
Only $14.95

ham radio
Greenville, NH 03048

More Details? CHECK-OFF Page 110
5 WAYS TO STOP WASTING TIME IN ELECTRONICS.

1. **Stop wasting your time soldering.** Save hours of soldering, desoldering, re-soldering with QT sockets and bus strips. Connect and disconnect resistors, capacitors, transistors, IC's etc., literally as fast as you can push in—or pull out—a lead. Make instant interconnections with short lengths of wire. And interlock sockets and bus strips for infinite expandability on bench, chassis, plug-in cards, etc. At $2.00-12.50* you'll wonder how you've done without them.

2. **Stop wasting your time designing circuits.** Design Mate™ 1 will help, by providing you with QT hookup versatility (see above), a continuously-variable 5-15V, 600mA 1%-regulated supply, and a voltmeter to monitor supply or circuit. Plug it in, turn it on and start designing more by soldering less. At $49.95* you can afford to.

3. **Stop wasting your time testing.** On DIP IC's, finding the lead you want—and making sure you don't short others—can be as delicate as surgery. Until you discover our handy Proto-Clip™ ... the instant, short-proof way to test IC's up to 24 pins. Available without cable or with cable, they're the most economical and foolproof IC test aids on the market.

4. **Stop wasting your time breadboarding.** Small budgets or big requirements are no obstacle to owning and enjoying today's most popular solderless breadboarding system ... our Proto-Board™ line. For just $15.95* you can have our PB-6 Proto-Board kit. Takes about 10 minutes to assemble, and gives you 630 solderless QT terminals. On the other end of the spectrum is our giant PB-104, with 3,060 solderless terminals for $79.95* or only 2.6¢ apiece! You can choose from a variety of models, with or without regulated power supplies.

5. **Stop wasting your time testing.** You can own the test gear you need at economical prices. Our Design Mate 2, for instance, gives you a 3-waveform function generator—sine, square and triangle—from 1 Hz to 100 kHz ... for just $64.95*

Stop wasting your time reading. Send for the complete CSC catalog and distributor list ... and start making more of your time in electronics.

*Manufacturer's recommended retail.

© 1975 Continental Specialties Corp.
NOW - SEE MORSE CODE DISPLAYED - AUTOMATICALLY - AT SELECTED SPEED -

One easy connection from your speaker to the Alpha-Numeric Display of your Code Reader CR-101. Displays all letters, numbers, punctuation. Operating speed 5-50 WPM. Easy to use teaching aide. Handicapped persons can learn new skills. CR-101 large 6 in readout - $225.00. CR-101A has smaller .2 in readout - $195.00. TU-102 TTY interface provides CR, LF, figures and letters automatically - $85.00. 6 Month Guarantee on parts and labor.

Call me at
(714) 745-1971

ATRONICS BOX 77, ESCONDIDO, CA 92025

84in february 1976
6 Digit LED Clock Kit - 12/24 hr.

$950 \text{ ea.} \quad \text{IN QUANTITIES OF 1 TO 5}

$850 \text{ ea.} \quad \text{IN QUANTITIES OF 6 OR MORE}

KIT INCLUDES:
- **INSTRUCTIONS**
- **GUARANTEED COMPONENTS**
- **(Factory Prime)**
- **MONEY BACK GUARANTEE**
- **50 or 60 Hz OPERATION**

ORDER KIT $850

LED Readouts (FND-70.25 in. Red)
1 - MM214 Clock Chip (24 pin)
2 - Transistors
3 - Resistors
4 - Diodes
5 - Capacitors
6 - **VOX**
7 - PLEXIGLAS 50 or 60 HZ OPERATION

$2.95

24 - Molex pins for IC socket
Printed Circuit Board for above (etched & drilled Fiberglass)

$1.50

Transformer for above (7-10V AC)

$2.95

COMPLETE KIT.

Plextglas Cabinet II, Red Chassis, White Case,

$42.95

KIT #7001-C

SAME AS #7001-B BUT HAS DIFFERENT LEDS.

USES 3 DIGITS & 2 MAN-J. 3 DIGITS FOR SECONDS. COMPLETE KIT, Less Case. $42.95

6 Digit LED Clock - Calendar-Alarm Kit

- 12/24 HR TIME • JUMBO DIGITS (MAN-64) • 29-30-31 DAY CALENDAR • AC FAILURE/BATTERY BACK-UP • 24 HR ALARM - 10 MIN. SNOOZE • ALTERNATES TIME & DATE (2 SEC) OR DISPLAYS TIME ONLY AND DATE ON DEMAND • 50/60 Hz OR • THIS KIT USES THE FANTASTIC CT-7001 CHIP. FOR THE PERSON THAT WANTS A SUPER CLOCK KIT (TOO MANY FEATURES TO LIST)! THIS IS A COMPLETE KIT (LESS CASE including Power Supply, Line Cord, Drilled PC Boards, etc.) $39.95

- 3 DIGITS & 2 MAN-J. 3 DIGITS FOR SECONDS. COMPLETE KIT, Less Case. $42.95

CABINET I

GREAT FOR CLOCK & Calendar-Kits

White Plexiglas Case

Specify RED or GRAY

$6.95 ea.

CABINET II

GREAT FOR SMALLER KITS. (Ideal for Kit #850 above.)

All Plexiglas Red Chassis, White Case

$5.95 ea. — 6 or more $5.45 ea.

PLEXIGLAS FOR DIGITAL BEZELS

Gray or Red Filter

3" x 6" x 1/4" Approx. Size

$0.89 ea. or 6/$3.50

XTL TIME BASE KIT for Clock-Calender-Alarm Kit (115VAC or 120VDC operation)

Uses 100,000 KHz xtal. Can be used with #7001 Kits only.

$9.95

COMPONENT SPECIALS

ROCKER SWITCH

NEW! 4/$1.00
100 for $20.

SPDT 4A 125VAC 1 1/2" mntg. ctrs.

FACTORY PRIME

14 PIN DIP 7-SEG. LED

MAN-7 COMM. ANODE 3/16" 1/2" DEEP.

$1.95 ea.

25 AMP FULL WAVE BRIDGE 100 PIV

$3/5.00

SAGAL ELECTRONICS INC.

P.O. BOX 117
Roseville, N.J. 07075

TWO-WAY RADIO COMMUNICATION SYSTEMS

Apollo Products-Little Giant Trans Systems Tuner Kit — $99.50

Designed and engineered after "Apollo" — "Little Giant" 2500X-2, for an "engineered performance" Trans Systems Tuner and Adaptations of the Lew McCoy Transmatch, with power handling at the KW plus level!

Kit includes:

1. 200 pfd wide-spaced variable with isolantite insulation rated 3,000 volts
2. 200 pfd dual section parallel condenser insulated shaft couplings 4 1/4 to 1/4
3. 50-239 coax chassies connectors
4. Heavy inductance for 10-15-20-40-80 meters
5. 6 pc stand-offs, 4 for condensers and 2 for inductance
6. HD switch for band catching 10 thru 80 meter coverage
7. 1 pkg 12 gauge tinned round wire

Kit 2000X-KW

Kit price $99.50, FOB factory

Apollo Products, Box 245, Vaughsville, Ohio 45893 419-646-3495

More Details? CHECK-OFF Page 110
MINI-CATALOG 1976
THE WORLD'S MOST COMPLETE LINE OF VHF - FM KITS AND EQUIPMENT

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX144B Kit. transmitter exciter - 1 watt - 2 meters</td>
<td>$29.95</td>
</tr>
<tr>
<td>TX144B W/T. same as above - factory wired and tested</td>
<td>49.95</td>
</tr>
<tr>
<td>TX220B Kit. transmitter exciter - 220 MHz</td>
<td>29.95</td>
</tr>
<tr>
<td>TX220B W/T. same as above - factory wired and tested</td>
<td>49.95</td>
</tr>
<tr>
<td>TX432B Kit. transmitter exciter 432 MHz</td>
<td>39.95</td>
</tr>
<tr>
<td>TX432B W/T. same as above - factory wired and tested</td>
<td>59.95</td>
</tr>
<tr>
<td>RX33C Kit. 30-60 MHz r/cvr w/2 pole 10.7 MHz</td>
<td>59.95</td>
</tr>
<tr>
<td>RX144C Kit. 140-170 MHz r/cvr w/2 pole 10.7 MHz</td>
<td>69.95</td>
</tr>
<tr>
<td>RX144C W/T. same as above - factory wired and tested</td>
<td>114.95</td>
</tr>
<tr>
<td>RX220C 210-240 MHz r/cvr w/2 pole 10.7 MHz</td>
<td>69.95</td>
</tr>
<tr>
<td>RX432C Kit. 432 MHz r/cvr w/2 pole 10.7 MHz</td>
<td>79.95</td>
</tr>
<tr>
<td>RXCF accessory filter for above receiver</td>
<td>8.50</td>
</tr>
<tr>
<td>PA2010H Kit. 2 meter power amp - kit 1w in</td>
<td>59.95</td>
</tr>
<tr>
<td>PA2010H W/T. same as above - factory wired and tested</td>
<td>74.95</td>
</tr>
<tr>
<td>PA4310H Kit. 2 meter power amp - 10 in - 40w out</td>
<td>59.95</td>
</tr>
<tr>
<td>PA4310H W/T. same as above - factory wired and tested</td>
<td>74.95</td>
</tr>
<tr>
<td>PA144/1S Kit. 2 meter power amp - 1w in - 15w</td>
<td>39.95</td>
</tr>
<tr>
<td>PA144/1S Kit. similar to PA144/15 except 25w out</td>
<td>49.95</td>
</tr>
<tr>
<td>PA2210/15 Kit. similar to PA144/15 for 220 MHz</td>
<td>39.95</td>
</tr>
<tr>
<td>PA3210 Kit. power amp - similar to PA144/15 except 10w and 432 MHz</td>
<td>49.95</td>
</tr>
<tr>
<td>PA140/10 Kit. 10w in - 15w out - 2 meter amp - factory wired</td>
<td>179.95</td>
</tr>
<tr>
<td>PA140/30 Kit. 10w in - 15w out - 2 meter amp - factory wired and tested</td>
<td>159.95</td>
</tr>
<tr>
<td>HT144B Kit. 2 meter - 2w - 4 channel - hand held r/cvr with crystals for 146.52 simplex</td>
<td>129.95</td>
</tr>
<tr>
<td>RPT144 Kit. repeater - 2 meter - 15w - complete (less crystals)</td>
<td>465.95</td>
</tr>
<tr>
<td>RPT220 Kit. repeater - 220 MHz - 15w - complete (less crystals)</td>
<td>465.95</td>
</tr>
<tr>
<td>RPT432 Kit. repeater - 10 watt - 432 MHz (less crystals)</td>
<td>515.95</td>
</tr>
<tr>
<td>RPT14A Kit. repeater - 15 watt - 2 meter - factory wired and tested</td>
<td>695.95</td>
</tr>
<tr>
<td>RPT220 Kit. repeater - 15 watt - 220 MHz - factory wired and tested</td>
<td>695.95</td>
</tr>
<tr>
<td>RPT432 Kit. repeater - 10 watt - 43 MHz - factory wired and tested</td>
<td>749.95</td>
</tr>
<tr>
<td>PS5 Kit. 12 volt - power supply regulator card</td>
<td>8.95</td>
</tr>
<tr>
<td>PS15C Kit. NEW - 15 amp - 12 volt regulated power supply w/case, w/fold-back current limiting and overvoltage protection</td>
<td>79.95</td>
</tr>
<tr>
<td>PS15C W/T. same as above - factory wired and tested</td>
<td>94.95</td>
</tr>
<tr>
<td>PS25C Kit. NEW - 25 amp - 12 volt regulated power supply w/case, w/fold-back current limiting and overvoltage protection</td>
<td>129.95</td>
</tr>
<tr>
<td>PS25C W/T. same as above - factory wired and tested</td>
<td>149.95</td>
</tr>
<tr>
<td>OTHER PRODUCTS BY VHF ENGINEERING</td>
<td></td>
</tr>
<tr>
<td>CD1 Kit 10 channel receive xtal deck w/diode switching</td>
<td>$6.95</td>
</tr>
<tr>
<td>CD2 Kit 10 channel xmit deck w/switch</td>
<td>14.95</td>
</tr>
<tr>
<td>COR2 Kit complete COR with 3 second and 3 minute timers</td>
<td>19.95</td>
</tr>
<tr>
<td>SC3 Kit 10 channel auto scan adapter for RX</td>
<td>19.95</td>
</tr>
<tr>
<td>Crystals we stock most repeater & simplex pairs from 146.0-147.0 (each)</td>
<td>5.00</td>
</tr>
</tbody>
</table>

ORDER FORM

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
<th>Extension</th>
</tr>
</thead>
</table>

Name ________________________ Total ________________________
Address ______________________ Shipping ______________________
City ________________________ Sales Tax ______________________
State ________________________ Zip ________________________

Expiration Date ________________________

SHIPPING INFORMATION: All shipments are F.O.B. Binghamton, N.Y. 13902. Shipping will be made by the most convenient method. Please include shipping funds to avoid shipping and handling. Proper shipping at the minimum weight of 2 pounds per order will be assumed with the exception of the following.

- SFLX 144 and DFLX 320 are shipped freight collect.
- TERMS: C.O.D.: 3rd day cash in 10 days. We also accept BankAmericard and Master Charge.
- Claims for lost via UPS and Airway Express. Claims of 20 percent (100 percent on 500). Claims of damage within 15 days of receipt of shipment, UPS and Airway Express only. Complete color for returns.
- RETURN POLICY: Subject to change without notice.
- Export prices are slightly higher.

More Details? CHECK OFF Page 110

[Signature]

February 1976
C-METER
Direct Reading Capacitance Meter
- Reads from 100 pF to 1 MFD
- Linear Scale
- Internal 9V battery lasts 1 year
- Fully assembled and tested

Special with purchase of counter or C-Meter: Clock For Only $20. ppd

VHF FREQUENCY COUNTER
- 5 DIGIT LED DISPLAY
- 10 Hz TO >230 MHZ
- <200 MV SENSITIVITY
- FACTORY DIRECT SALES
- ASSEMBLED OR KIT

WEBER Electronics 1 Elmcrest Terrace, Norwalk, CT 06850
203-853-4716

WANT EVEN MORE SATISFACTION FROM YOUR HOBBY?
Come on in to visit. Let us know your SPECIAL INTERESTS in this exciting hobby or what your Communication problems are. Between the many lines of new equipment that we handle and also the used Amateur Radio equipment that is here, we’re certain to be able to make recommendations that will lead to greater enjoyment of Ham Radio.

Jim Beckett, W2K7J
David Finn, W2CFP

CFP COMMUNICATIONS
DIV. OF CFP ENTERPRISES
211 NORTH MAIN STREET
HORSEHEADS, NEW YORK 14845
PHONE: 607-739-0187

NEW SSB & CW FILTER
The NEW DE-103A CW/SSB filter virtually eliminates QRN & QRM on both CW & SSB. Features include 100 Hz CW filters, 1500 Hz SSB filters, 3 walt audio amp., and built in AC supply. $59.95. Other CW & SSB filters available.

INCREASE YOUR TALK POWER 10 TIMES
Our NEW DE-120 compressor/equalizer gives 12 dB or more of speech compression without distortion allowing you to cut through QRN & QRM. Features include voice tailored response for added punch and solid state switching for long battery life. Requires two 9V batteries (not included) $59.95.

NEW POWER SUPPLIES
The NEW DE-110 digital and linear integrated circuit supply has outputs of +15 V at 100 ma, -15 V at 100 ma, and 5 V at 1 A. $59.95.

INCREASE YOUR TALK POWER 10 TIMES
Dynamic Electronics, Inc. P. O. Box 1131 Decatur, AL 35601

SUB-AUDIBLE GENERATOR
The CUBE
- Inexpensive multi tone system
- Compatible with PL-CQ-OC
- Low distortion sine-wave
- Adjustable frequency (98-250 Hz), Lower Available
- Rugged, plastic encased with leads, easy to mount
- Input 8-18 VDC unregulated
- Excellent stability

Price $19.95 Calif. res. add 6%
Freq. set at factory $5.00 extra
Send for more information

TEKTRONIX®
Scope Sale
Here’s a partial list of our reconditioned and fully guaranteed scopes. Prices are for main frames. See below for partial listing of vertical amps.

MODEL 531 $395.00
543 $445.00
541 $475.00
551 $495.00
555 $595.00
581 $695.00
585 $895.00

Vertical Amplifiers (purchased with above)
L Plug-in $85.00
CA Dual Trace $145.00
M Four Trace $259.00
Others $65.00 & up

This Month’s Special
DEI Spectral Display Unit, Model TDU-3 30 MHz center frequency
Bandwidth is 3 MHz.

CLOSE OUT SPECIAL — $19.95
while they last ppd. USA

ARR-52
SOLID STATE VHF RECEIVER
Easily converted to 2-meter FM. Low cost for 165-173 MHz, 16 channels. Includes schematic diagram and conversion details. As described in the Surplus Schematics Column, (Pg. 58 Oct. CQ).

OVER 400 SOLD
BankAmericard & COD Welcome
Electronic Equipment Bank, Inc.
516 Mill Street, N.E. Vienna, Virginia 22180
(703) 938-3350

INCREASE YOUR TALK POWER 10 TIMES
Our NEW DE-120 compressor has outputs of +15 V at 100 ma.. $59.95.

TEKTRONIX®
Scope Sale
Here’s a partial list of our reconditioned and fully guaranteed scopes. Prices are for main frames. See below for partial listing of vertical amps.

MODEL 531 $395.00
543 $445.00
541 $475.00
551 $495.00
555 $595.00
581 $695.00
585 $895.00

Vertical Amplifiers (purchased with above)
L Plug-in $85.00
CA Dual Trace $145.00
M Four Trace $259.00
Others $65.00 & up

This Month’s Special
DEI Spectral Display Unit, Model TDU-3 30 MHz center frequency
Bandwidth is 3 MHz.

CLOSE OUT SPECIAL — $19.95
while they last ppd. USA

ARR-52
SOLID STATE VHF RECEIVER
Easily converted to 2-meter FM. Low cost for 165-173 MHz, 16 channels. Includes schematic diagram and conversion details. As described in the Surplus Schematics Column, (Pg. 58 Oct. CQ).

OVER 400 SOLD
BankAmericard & COD Welcome
Electronic Equipment Bank, Inc.
516 Mill Street, N.E. Vienna, Virginia 22180
(703) 938-3350

INCREASE YOUR TALK POWER 10 TIMES
Our NEW DE-120 compressor has outputs of +15 V at 100 ma.. $59.95.

TEKTRONIX®
Scope Sale
Here’s a partial list of our reconditioned and fully guaranteed scopes. Prices are for main frames. See below for partial listing of vertical amps.

MODEL 531 $395.00
543 $445.00
541 $475.00
551 $495.00
555 $595.00
581 $695.00
585 $895.00

Vertical Amplifiers (purchased with above)
L Plug-in $85.00
CA Dual Trace $145.00
M Four Trace $259.00
Others $65.00 & up

This Month’s Special
DEI Spectral Display Unit, Model TDU-3 30 MHz center frequency
Bandwidth is 3 MHz.

CLOSE OUT SPECIAL — $19.95
while they last ppd. USA

ARR-52
SOLID STATE VHF RECEIVER
Easily converted to 2-meter FM. Low cost for 165-173 MHz, 16 channels. Includes schematic diagram and conversion details. As described in the Surplus Schematics Column, (Pg. 58 Oct. CQ).

OVER 400 SOLD
BankAmericard & COD Welcome
Electronic Equipment Bank, Inc.
516 Mill Street, N.E. Vienna, Virginia 22180
(703) 938-3350

INCREASE YOUR TALK POWER 10 TIMES
Our NEW DE-120 compressor has outputs of +15 V at 100 ma.. $59.95.
The New Leader in '76!

GTX-1 or GTX-1T HAND-HELD 2-Meter HELD FM Transceiver

CHECK THESE FEATURES:
- All Metal Case
- American Made
- Accepts standard plug-in crystals
- Features 10.7 MHz crystal filter
- Trimmer caps on TX and RX crystals
- 3.5 watts output
- Battery holder accepts AA regular, alkaline or nicad cells
- Mini Handheld measures 8" high x 2.625" wide x 1.281" deep
- Rubber ducky antenna, Wrist safety-carrying-strap included
- 6 Channels
- Factory-direct to You

Accessories Available:
- Nicad Battery Pack
- Charger for GTX-1 battery pack
- Leather carrying case
- TE III Tone Encoder for auto patch

Use This Handy Order Form

Name ___________________________ Phone ___________________________
Address ________________________ City ____________________________
State & Zip ______________________

Payment by:
□ Certified Check/Money Order □ Personal Check □ C.O.D. Include 20% Down
Note: Orders accompanied by personal checks will require about two weeks to process.
□ 20% Down Payment Enclosed. Charge Balance To:
□ BankAmericard # ____________ Expires ____________ Interbank # ____________
□ Master Charge # ____________ Expires ____________

SUBTOTAL: ____________________ TOTAL: ____________________
(allow 8 weeks delivery.) (minimum order $12.00)

IN residents add 4% sales tax; CA residents add 6% sales tax.$___

Orders shipped post-paid within Continental U.S.

General Aviation Electronics, Inc., 4141 Kingman Drive, Indianapolis, Indiana 46226
Area 317-546-1111

More Details? CHECK-OFF Page 110
Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished.

Regularly $70.00. Now, over 30% discount (only $49.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax. Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmericard accepted

D-D ENTERPRISES
Dept. A, P. O. Box 7776
San Francisco, CA 94119

We're Fighting Inflation
No Price Rise for '76

FOR FREQUENCY STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS
Frequency Standards
100 Khz (HC 731) $4.50
100 Khz (HC 626) $4.50
Almost all CB sets, TR or Rec. $2.50
(CB Synthesizer Crystal on request)
Amateur Band in FT-243 ea. $1.50
B-80 Meier $3.00 (160-meter not available)
For 1st class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.

NEW from NRI
Home training in AMATEUR RADIO

NRI, leader in Communications, Television, Electronics and TV-Radio home training, now offers the first in Amateur Radio courses, designed to prepare you for the FCC Amateur License you want or need.

Don't lose your favorite frequency
The FCC has said "either-or" on licensing, but to pass Advanced and Extra Class exams, you need the technical guidance as offered by NRI. NRI Advanced Amateur Radio is for the ham who already has a General, Conditional or Tech Class ticket. Basic Amateur Radio is for the beginner and includes transmitter, 3-band receiver, code practice equipment, three training plans offered. Get all the facts. Mail coupon.

Mail coupon. No obligation. No salesman will call on you.
NATIONAL RADIO INSTITUTE, Washington, D.C. 20016.

D-R ENTERPRISES
Dept. A, P. O. Box 7776
San Francisco, CA 94119

WORK THE WORLD!!!

CW TRANSMITTER
ALL SOLID STATE—MODEL 50
160, 80, and 40-M Plug-In Coils (included)
Built-In 120 VAC Supply
Built-In Antenna Relay
Full Break-In Keying
Crystal Control

OVERALL SIZE: 2½" H x 5¾ W x 8¼ D
ORDER DIRECT or write for FREE brochure and name of nearest dealer.

MODEL 50K (KITS) $49.95
ADD-ON OPTIONS:
SIDETONE, 200-21K (KIT) $6.95
KEYER, 200-22K (KIT) $13.95
MODEL 50W (WIRED) $69.95
ADD-ON OPTIONS:
SIDETONE, 200-21W (WIRED) $6.95
KEYER, 200-22W (WIRED) $18.95
ADD $2.10 SHIPPING & HANDLING, U.S.A.

THE WORLD AT YOUR FINGER-TIPS! SEND ORDER TODAY!
(IPA Residents Add 6% Sales Tax)
PHONE: (814) 432-3647
BOX 185A • FRANKLIN, PA. 16323

This Month's Specials
Thumbscrew Switches EECO Model 805M 0 to 9 BCD and Compliment (These switches are used but are in good condition and are perfect for Ham Use)

Price: 1-10 $1.95, 11-25 $1.65, 26 and up $1.25

10 CHANNEL SCANNER

For All Repegy HR series 2, 2A, & 2B, MT-15, MT-25, & AQUAFONE Transceiver FEATURES:
• Selectable Priority Channel
• 10 Second Delay Before Scan Resumes after Transmit
• 2 Second Delay Before Scan Resumes after Signal Loss
• Plug Into Existing Crystal Sockets, Simple 5 Wire Hook-Up Without Major Modification To Radio
• Simple Modification For Selective Channel Bypass
• Optional Digital Channel Display

SCAN 10B 10 Channel Scanner (Wired Only) $52.50
DI0B Digital Channel Display $21.75 (Wired Only)

SPECIAL NET PRICE FOR BOTH OF ABOVE (Valid only until May 1) $59.95
HR-2B with Both Installed $299.99
6T-HR2-3 Crystal Deck (6 more FO's in HR2, HR-2A) Kit $11.95 Wired $15.90
HF 144 U MOSFET Preampl $11.95, Wired $17.95
MOTOROLA METRUM II IN STOCK — WRITE FOR INFORMATION

MH electronics
2543 N. 32ND ST.
PHOENIX, ARIZONA 85008
PH. 602-957-0786

More Details? CHECK-OFF Page 110
<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1969</td>
<td>FEATURING: UHF effects on gridded tubes, Solid-state SSB circuits, 220 MHz mosfet converter, Switched-switch convert-</td>
</tr>
<tr>
<td></td>
<td>ers, Cubical quads.</td>
</tr>
<tr>
<td>August 1969</td>
<td>FEATURING: Homemaid Paenetic Reflector, Solid-state Q-5er, Frequency calibrator with mpc ICs, New multiband quad an-</td>
</tr>
<tr>
<td></td>
<td>tenna, Troubleshooting with a scope.</td>
</tr>
<tr>
<td>September 1969</td>
<td>FEATURING: FM techniques and practices, IC power supplies, 1296-MHz varactor tripler, Tunable bandpass filters, Amateur microwave standards.</td>
</tr>
<tr>
<td>October 1969</td>
<td>FEATURING: Hot Carrier Diodes, Low-cost linear ICs, Diversity antennas, solid-state 432-MHz excit-</td>
</tr>
<tr>
<td></td>
<td>er, Tropospheric-dut communications.</td>
</tr>
<tr>
<td>November 1969</td>
<td>FEATURING: Op Amps... theory, selective & application, WWV receiver, Multiband antenna, Electronic key, Six-meter collinear.</td>
</tr>
<tr>
<td>June 1970</td>
<td>FEATURING: Communication experiments with light emitting diodes, FM modulation standards. Designing phase-shift nets-</td>
</tr>
<tr>
<td></td>
<td>works, Transistor frequency multipliers, RTTY frequency-shifter meter.</td>
</tr>
<tr>
<td>October 1970</td>
<td>FEATURING: An SWR meter for accurate RF power measurements, Direct-conversion receivers, ICs, Voltage regulators, 432 MHz converter, Introduction to thyrists.</td>
</tr>
<tr>
<td>December 1970</td>
<td>FEATURING: SSB generator, RF interference, Antenna bridge, QRP transmitter, AFSK oscillator.</td>
</tr>
<tr>
<td>June 1971</td>
<td>FEATURING: A practical approach to 432-MHz SSB, FM carrier-operated relay, Audio-to-SSTV systems, Practical IC’s, Low-</td>
</tr>
<tr>
<td></td>
<td>noise 1296-MHz preamp.</td>
</tr>
<tr>
<td>June 1972</td>
<td>FEATURING: S Band solid-state communications receiver, FM repeater control, SSTV synch generator, microwave experiment-</td>
</tr>
<tr>
<td></td>
<td>ing.</td>
</tr>
<tr>
<td>October 1972</td>
<td>FEATURING: 4 channel spectrum analyzer, HF frequency synthesizer, all-band dipole, 160 meter vertical, multi-function ICs.</td>
</tr>
<tr>
<td>February 1973</td>
<td>FEATURING: Communications receiver design, rf speech clipper, fm receiver, AF PK generator, mobile touch-tone.</td>
</tr>
<tr>
<td>June 1973</td>
<td>FEATURING: Digital RTTY autostart, fm repeater installation, micropower receiver, broadband amplifiers, logic oscillators.</td>
</tr>
<tr>
<td>July 1973</td>
<td>FEATURING: SSTV test generator, carrier operated relay, VHF receiver, two-meter frequency synthesizer, antenna matching.</td>
</tr>
<tr>
<td>December 1973</td>
<td>FEATURING: Two-meter power amplifier, AFSK generator, VHF cavity filter, Band-pass filter design, High-gain wire antenna.</td>
</tr>
<tr>
<td>April 1974</td>
<td>FEATURING: Communications techniques for Oscar Jr, active filter design, Telefax conversion, FM receivers, Wideband amplifier, Antenna radiation patterns.</td>
</tr>
<tr>
<td>August 1974</td>
<td>FEATURING: High-power solid-state linear power amplifier, Wind loading on antenna structures, VHF FM scanners, SSB trans-</td>
</tr>
<tr>
<td></td>
<td>ceivers, Variable-speed RTTY.</td>
</tr>
<tr>
<td>February 1975</td>
<td>FEATURING: 2304-MHz power amplifier, Bandpass filter design, Speech processing, RTTY terminal unit, GHz frequency scalers.</td>
</tr>
<tr>
<td>March 1975</td>
<td>FEATURING: Ultra low noise UHF preamplifiers, 3-meter dipole, AZEL antenna mount, Programmable calculators, Electronic voice biasing.</td>
</tr>
<tr>
<td>June 1975</td>
<td>FEATURING: A phasing-type single-sideband transmitter, Slim-line touch-tone, UHF preselector, Crystal oscillators, Noise-</td>
</tr>
<tr>
<td></td>
<td>figure measurements.</td>
</tr>
<tr>
<td>July 1975</td>
<td>FEATURING: UHF double-balanced mixers, Tone encoder, Cubical quad antenna, ATV sync generator, 432 MHz converters, Sweepstakes winners.</td>
</tr>
<tr>
<td>August 1975</td>
<td>FEATURING: 500 watt power amplifier for 160 meters, FM power techniques, Programmable keyer memory, Solid-state 432 MHz linear amplifier, Adjustable IC voltage regulators.</td>
</tr>
<tr>
<td>September 1975</td>
<td>FEATURING: Inductively-tuned six-meter kilowatt, RTTY terminal unit, SSB speech splatter, 432 MHz power amplifiers, Hand-</td>
</tr>
<tr>
<td></td>
<td>held touch-tone, VHF mobile antenna.</td>
</tr>
<tr>
<td>October 1975</td>
<td>FEATURING: Special receiver issue, Receiver sensitivity and dynamic range, High dynamic range receiver input stages, High-frequency communications receiver, Pre-amplifier for satellite communications, Crystal discriminator.</td>
</tr>
<tr>
<td>November 1975</td>
<td>FEATURING: High-performance VHF FM receiver, RTTY line-end indicator, Tunable active filter, SSTV preamplifier, Binaural CW reception, Master frequency oscillator.</td>
</tr>
<tr>
<td>December 1975</td>
<td>FEATURING: S-line frequency synthesizer, Introduction to microprocessors, 1296-MHz bandpass filters, UHF frequency scaler, Cumulative index.</td>
</tr>
</tbody>
</table>

HAM RADIO BINDERS

Collector's items deserve the best protection you can give them, and we know of no better than our handsome Ham Radio Binders. Bound in washable buckram and supplied with year labels to identify each volume. Each binder holds 12 issues.

$5.00 each 3 for $13.50

HAM RADIO BOUND VOLUMES

Here is a handsome addition to your library. Twelve issues (a full year) of Ham Radio bound into a rugged, good looking hard cover book. Certainly the most deluxe way to collect Ham Radio and perhaps the only way to acquire some out of print back issues. Years 1972, 1973, 1974 and 1975 available.

$19.95 each or All Four $65.00

Ham Radio

GREENVILLE, NH 03048

There's no place like a good collection of Ham Radio back issues to find answers you're looking for. Go over the list above and find the ones you need.

Enclosed is $_________ for the items I have checked.

Name ____________________________

Address __________________________

City ____________________________

State ______ Zip ______

March 1968 (first issue)
January 1969
May 1969
August 1969
September 1969
October 1969
November 1969
June 1970
October 1970
December 1970
June 1971
June 1972
October 1972
February 1973
March 1973
June 1973
July 1973
March 1969
January 1974
April 1974
May 1974
December 1973
August 1975
September 1975
October 1975
November 1975
December 1975

Just $1.00 each ppd.

More Details? CHECK-OFF Page 110
FAST SCAN AMATEUR TELEVISION EQUIPMENT

- SOLID STATE
- BROADCAST QUALITY PERFORMANCE
- FOR TECHNICAL DATA AND PRICING, WRITE TO:

APTRON LABORATORIES
BOX 323, BLOOMINGTON, IN 47401

WANT SOMETHING REALLY SMALL AND EFFICIENT?

Then you want the antenna that's known around the world for its small size and superior performance. The Mini-Products Multiband HYBRID QUAD

MODEL HQ-1

$109.50

If not stocked by your dealer order direct. We ship anywhere in USA. Send for free catalog of new models and more data.

MEMORIES

825129
1024 bit ROM(256x PROM)
-access time 50 ns
-power dissipation .5 M/MW
-tri-state output
-field programmable
-16 pin DIP
Each $5.88 for $34.95

Voltage Regulators TO-3
1 AMP POSITIVE each 10 for
LM309K 5V $1.00 $8.00
7806 6V 1.50 13.00
7812 12V 1.70 12.90
7815 15V 1.75 15.95
7824 24V 2.25 20.00
-1 CERAMIC DISC CAPACITORS
Each $1.15
10 pack $1.00

-1 AMP NEGATIVE
LM302 5V 1.95 12.50
LM320 5.2V 1.95 12.95
LM320 12V 1.95 12.50
LM320 15V 1.95 12.50

DIP Trimmer
-12 turn trimpots which plug into a dip socket
-5k and 2000
-4 leads spaced 3/32" x 3/32"
Each $0.65 10 for $4.95

DIP RC NETWORKS

14 and 16 pin IC packages containing precision resistors and capacitors.
NO SCHEMATICS AVAILABLE.
Sample indicates most contain 10 to 15k and 1 or 2C.
Assortment of 15 $1.00

All merchandise is new unused surplus and is sold on a money back guarantee. Five dollar minimum order. Free first class postage on all orders. California residents please add sales tax.

SEND FOR FREE FLYER

BABYLON ELECTRONICS

230 TERRACE VILLAGE
RICHARDSON, TEXAS 75080
TELEPHONE (214) 231-9300

Shur-Lok Mobile VHF Radio Lock

DON'T GET RIPPED OFF

U.S. Patent #3410122
- SHUR-LOK will accommodate a unit with overall dimensions including mounting bracket up to 3/4" high and from 4 1/4" to 9 1/4" wide.
- Prevents access to rig's mounting hardware. No special tools.
- Satisfaction Guaranteed.
- Special pry-proof hardware.
- Dealer & Club inquiries invited

You spent $200, $300 or $400 to put your VHF rig in the car. Why not spend $15 to keep it there? Order now from National Mfg's. Rep. for Amateur Radio Use.

PRUITT ENTERPRISES
Box 41N Tonopah, NV 89049
Tel: 702-482-3473

More Details? CHECK-OFF Page 110
PRE INVENTORY CLEARANCE

WE'RE GOING TO NEED ROOM . . . HERE'S YOUR CHANCE TO GET THE GOODIES THAT YOU NEED AT A LOW PRICE!!

OPERATING INSTRUCTIONS

Organize your mobile or base installation. These consoles were designed to sit next to you on the car seat, but are ideal for home use too. They originally were to be sold at nearly $100.00 Check these features:

- Rugged construction
- Storage area for logs, etc.
- Cut outs for rocker switches and speaker on some models
- 4 styles available (specify)

NOW $17.95 Prepaid
(continental U.S.)

SPECIAL . . . We will supply 3 rocker switches FREE on appropriate models, while supplies last.

CABINET . . . FITS R390

We have a limited supply of cabinets similar to BUD model CR1740. They have 19" opening and the R390 fits quite well. Many other uses too . . .

$14.95 + shipping

R43HHT . . . MOTRACS

We still have a few left. At this price they won't last long.

12 VDC operable
Convertible to 2 mtrs
2 Freq
Narrow Band
Less Accs

$125.00 + shipping

UHF RECEIVER STRIPS

We still have a supply of used Motorola "B" series UHF strips. They are 2 freq, narrow band, dual squelch units. Ideal for monitors or link receivers.

were $25.00

NOW $19.95 + shipping

LO BAND MOTOROLA

FOB Oak Park

T41GGV . . . 30 watt, vibrator mobile $49.00
T51GGV . . . 50 watt, vibrator mobile $48.00
U41GGT . . . 30 watt, P power mobile $79.00
T51AGD . . . 50 watt, 30-40 MHz, mobile less, accs. Ideal for making base or monitor RX, dynamator supply $29.00

Units come with mobile accy group (except T51AGD)

DID YOU MISS OUR 1976 BUYERS GUIDE?? . . . SEND FOR YOUR FREE COPY NOW!!

SPECTRONICS, INC.

1009 GARFIELD
OAK PARK, IL. 60304
312-848-6778
TELEX 72:8310

HOURS
STORE HOURS:
Mon-Thurs 9:30-6:00, Fri. 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.

february 1976
SLEP ELECTRONICS COMPANY
IS NOW SHIPPING

BRIMSTONE 144 FM TRANSCEIVER, 25 WATTS 143.00 TO 149.99 MHZ IN DIGITALLY DIALED FREQUENCY SYNTHESIS IN 5 kHz STEPS, NO CRYSTALS TO BUY, 12 VOLT, INCLUDES DYNAMIC MICROPHONE AND MOBILE MOUNTING BRACKET. MADE IN U.S.A. $650.00

OPTIONAL PLUG-IN BRIMSTONE ACCESSORY MODULES
TOUCH-TONE INTERFACE 28.95
DIAL TONE (SPECIFY FREQUENCY) 39.95
TONE BURST 1800 TO 2400HZ 39.95
SUB-AUDIBLE TONE (SPECIFY FREQUENCY) 39.95
142.00 TO 149.99 MHZ EXTENDED RANGE FOR MARS 15.00

COMCRAFT CST-50 VHF TWO BAND FM TRANSCEIVER FOR 2 AND 1¼ METERS 142 TO 149.995 MHZ AND 220.00 TO 225.00 MHZ. 25 WATTS BOTH BANDS, 12 VDC, DIGITAL FREQUENCY SYNTHESIS IN 5kHz STEPS, NO CRYSTALS TO BUY, BUILT-IN REPEATER OFFSETS, 600 kHz, 1 MHZ AND 1.6 MHZ. INCLUDES MICROPHONES AND MOBILE MOUNT. MADE IN U.S.A. 869.95

TOP TRADES GIVEN FOR YOUR FM TWO METER CRYSTALS SETS. SPECIFY MAKE, CONDITION, AND CRYSTALS INSTALLED. WE PAY SHIPPING IN U.S.A. VIA U.P.S. WE ALSO STOCK CUSHCRAFT, NEWTRONICS, HY-GAIN AND ANTENNA SPECIALISTS VHF ANTENNAS.
WRITE OR PHONE BILL SLEP (704) 524-7519

FREE STANDING ALUMINUM TOWER
10' to 100'
Prices from $110.00 (30')

REQUEST NEW CATALOG
OF TOWERS & ANTENNAS

Midwest Ham Headquarters
For Over 36 Years
HAMS! Write For Free Catalog and Wholesale Prices!

ELECTRONIC DISTRIBUTORS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

More Details? CHECK-OFF Page 110
B.A.R.T.G. SPRING RTTY CONTEST — From 0200Z March 27th to 0200Z March 29th, 24-hour operation. Send 5 call letters, full log, and a copy of your log. Rates: $1 per word, $10 per page, $100 for the first page of each additional 8-page spread. All rates include typewritten or clearly printed and properly punctuated. Top team: $500.00. Second: $300.00. Third: $200.00. Fourth: $100.00. Fifth: $50.00. All others will receive a special place in the June 1976 issue of Ham Radio.

SEND MATERIAL TO: Flea Market, Ham Radio, Eugene, Oregon, 97401.

KLM PRODUCTS. Larsen antennas, icom, police and fire scanners. Send for prices. Not given over price. 906 16th St., Cheyenne, WY 82004.

FREE Catalog. LEDs, Microphones, Nicads, IC's, Relays, Ultrasonic Devices, Precision Trimmers Capacitors, Diodes, Transistors, Unique Components. Chaney's, Box 15431, Lakewood, CO 80215.

LEARN CODE IN A FEW DAYS with audio reflex method of teaching letters, numbers, punctuation. One hour cassette only $7.00. Guardian, 20 E. Main, Ramsey, NJ 07446.

MARINE FM-1C, $299.00. YAESU FT2 auto scanner xcvr. $283.00. FTDX400, $395.00. FTDX570, $469.00. Herb, Days 213 478-3577, nite 216-6767, 9966 W. Wilshire, suite 527, Los Angeles, Calif. 90024.

NOVICE, GENERAL AND CODE COURSES are available through the School of Continuing Education. 10 two hour sessions one evening a week. Contact George Buchanan WB2FXV, 313 Kildare, Chesterton, IN 47319.

NORTHWESTERN PENNSYLVANIA Swapfest, May 1, Crawford County Fairgrounds, Meadville, Pa. Free Affil. P.O. Box 9 11004, Pittsburgh, PA 15203. Flea market begins at 10:00 a.m. Hourly door prizes; refreshments. Commercial displays welcome. Indoor Il rain. Talk-in 146.0/4.64 and 146.52 MHz. Details, Crawford Amateur Radio Society, PO Box 16, Meadville, Pa. 16332.

PAYING 5% OVER BEST OFFER for Eimac/Varian tubes, ham and commercial gear, etc. Ted Dames, 7W2KU, 308 Hickory St., Arlington, Va. 22203.

FREE FLYER of electronic parts, printed circuit, kits, photo items, misc. Write to R & L Radio Products, Apt. HR, P. O. Box 1432, Reseda, CA 91335.

THE 21ST ANNUAL HAM AUCTION. America's Largest. Saturday, March 13, 1976, at Lucas County Reserve Barn, Defiance, Ohio. Auction, flea market, commercial displays, prizes, 8:00 a.m. to 5:00 p.m. $2.00 after March 1st. Send SASE. Talk-in 146.50. Toledo Mobile Radio Association, Box 273, Toledo, Ohio 43601.

RARS 1976 ANNUAL Hamfest, April 11. For details send RARS, P. O. Box 2760, N. C. 27609.

FACTORY-ALIGNED GLB Channelizer, HW202, WA9QDZ, 2851 Eades Dr., Evansville, Ind. 47711.

TELEVISION diagnostic repair course prepared by master technicians. Lessons only $6.00 each. Send $0.50 sase for master index. Guardian, 20 E. Main, Ramsey, NJ 07446.

TECH TIPS — $6.50 each: SP-600XK, URM-250, OS-88/UE. BC-348JNQ. Thousands more available. Send 50c (coin) for large list. Write to Ted Double, WD6DQ, 14618 W. 35th Pl., Kansas City, KS 66111.

HOMEBUILDERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Braintree, Mass. 02184.

NEW SINGER MODEL RLE-1 low frequency standards receiver to complete with LFA-1 antenna and 100 feet connecting cable ready to operate. Bargain. £15.00. Haltiello, Kapaa, Hawaii 96746, 808-822-4726.

CANADIAN JUMBO SUPRPLUS and Parts Catalog. Bargains Galore. Send 1st ETCO-HR, Box 741, Maple, Ont.

ST HEATH TWIERS — good condition with manual and a troubleshooting CD. Send $0.50 sase for info. WATEWX, Rt. 1, Box 172-A3, Halsey, Oregon 97348.

PORTA-PACK the accessory that makes your mobile really portable. $59.95 and $39.95. Dealer inquiries invited. P. O. Box 67, Somers, WA 98284.

MOTOROLA HT220, HT200, Pageboy, and other popular FM transceivers (Skelter, Regency, etc.) service and modifications performed at reasonable rates. WA4FRF (802) 272-8403.

TELL YOUR FRIENDS about the BIG NEW Ham Radio Magazine!
PC BOARD negatives made photographically from your or magazine's art work. Now obtain professional results quickly, simply, 4 x 5, $13.00 or SASE for information. WASHFV, 10139 Apache Road, Richmond, Virginia 23235. 804-277-8403.

WYOMING RANCH LAND, Wild horses, antelope, deer, elk, 10 acres $100 down, $30 monthly, no down payment. FREE Maps - Photos - Info. Owner - KGIC, Mike Gauthier, 9550 Gallatin, Downey, CA 90240.

RTTY - MODEL 15, T.D. unit, converter, manual, $65.00 u/s ship. WASCBF, P. O. Box 143, Tipton, Okla. 73570.

JAPANESE TRANSISTORS — All Transistors original factory made. Over 500 types available. Write for list of all Pacific Electronics, P. O. Box 25837, W. Los Angeles, CA 90052.

TRAVELPAK QSL KIT — Send call and 25¢, receive your call sample kit in return. Samco, Box 203, Wynantskill, N. Y. 12198.

MODERN 60 MIN. CODE CASSETTES, Novice 0.5 wpm, Progressive 2-3 wpm, General 13-15 wpm, Extra 20-22 wpm $1 each, 4/$10. Royal, Box 2174, Sandusky, Ohio 44870.

ORP TRANSMATCH for HW7, Ten-Tec, and others. Send stamp for details to Peter MacCham Associates, 19 Loretta Road, Belchertown, Mass. 01007.

GREATER BALTIMORE HAMBOREE, Sunday, April 4th at 10:00 a.m. at Calvert Hall College, Goucher Blvd. and LaSalle Road, Towson, Maryland 21204. 1 mile south of exit 28 on I-695. Registration $2. 250 tables inside gym. Over 1000 attendees last year. Contact Brother Gerald Malseed, 32908 West 5th St., Beltsville, Md. 20705.

SIDESWIPER only $13. Airedale USA. Kungsimport, Box 287, Kungsbacka, Sweden.

PC's, Send large 5, E, for list. Sontronics, Rt. 3, Box 1, Bailleau, Ohio 44506.

BUY — SELL — TRADE. Write for free mailer. Give name, address, call letters. Complete stock of major brands, New and reconditioned equipment. Call us for best deals. We buy Collins, Drake, Swan, etc. SSB & FM Associated Radio, 8013 Conser, Overland Park, Ks. 66204. 913-381-5501.

OSCAR SLIDES, set of 5. $1.25. Launch and spacecraft. Proceeds AMSAT. KIPGX, P. O. Box 463, Pasadena, Ca. 91102.

MARYLAND FM ASSOCIATION'S Electronic Swap Meet, March 14, 1976 from 8:00 to 15:00 hours at High Point High School, 3600 Powder Mill Road, Beltsville, Maryland. Open to all persons interested in electronic and/or radio communications. Donations $2.00 per person, tables available for $1.00 per table. Anyone wishing advance ticket and/or reserved table send applications and remittance to David McCrory, W3ATW/KQ12199, P. O. Box 111, College Park, Maryland 20740. Checks payable to the Maryland FM Association, Inc.

RECONDITIONED TEST EQUIPMENT for sale. Catalog $5.00. Walter, 2697 Nickel, San Pablo, Ca. 94906.

COMPUTER HOBBISTS! Bargain hunt or sell via On-Line. 19 issues/year. $3.75. Free sample issue from: On-Line, 24695 Santa Cruz Hwy, Los Gatos, Ca. 95030.
HIGH FREQUENCY ANTENNAS

4 ELEMENTS 40 METERS

INTRODUCING THE LONG AWAITED, PRACTICAL SIZED, HIGH PERFORMANCE 40 METER "BIG STICK" DUAL DRIVEN YAGI. NOW YOU CAN HAVE CONSTANT GAIN AND LOW VSWR ACROSS THE 40 METER BAND. DUAL DRIVEN ELEMENTS FOR HIGH EFFICIENCY AND CLEAN PATTERN. LIGHTWEIGHT BUT STRONG MATERIALS INCLUDING KLM EXCLUSIVE EPOXY INSULATOR DESIGN...

SPECIFICATIONS

FREQUENCY: 7.0-7.3 MHz
ELEMENTS: 4, LINEAR LOADED
46' MAX. LENGTH
BOOM: 3" DIA. X 42' LONG
TURNING RADIUS: 32'
SHIPPING CONTAINER: WOOD CRATE 12' LONG 125 LBS. TOTAL WEIGHT

GAIN: 7.25 dB/DIPOLE
F/B: 20 dB TYPICAL
FEED IMP.: 200 OHMS BALANCED
(50 OHMS WITH OPTIONAL KLM 5:31 4:1 BALUN — $13.95)
WEIGHT: 85 LBS.
WIND AREA: 10 SQ. FT.

PRICE $495.00

20 METER 5 ELEMENT

KLM 13.9-14.4-5 $249.95
9.7dBi GAIN 30dB F/B

15 METER 6 ELEMENT

KLM 21.0-21.5-6 $224.95
10.5dBi GAIN 30dB F/B

WHEN YOU SPEAK OF PERFORMANCE IN ANTENNAS, AMPLIFIERS OR TRANSCEIVERS THE NAME IS:

KLM ELECTRONICS

17025 LAUREL ROAD
MORGAN HILL, CA. 95037
(408) 779-7363
A Brokerage for HAM GEAR??

That's right. Now there's a place you can call to find out who's selling the equipment you're looking for—absolutely free. Sound incredible? BUYERS & SELLERS radio brokerage compiles its listings from sellers all over the country for all kinds of radio gear, test equipment, etc. If you're looking for ham gear, give us a call. We'll put you in touch with someone selling the gear you want, usually in your vicinity.

If you've got something to sell, or have some equipment that's been collecting dust, let us know about it. Sellers list their equipment at no charge and pay a 10% commission of the asking price only if we find you a buyer and a sale is made.

Do it now! Get together a list of gear you have to sell and/or would like to buy, give us the details, and we'll do the rest. When writing be sure to include your call sign, name, address, telephone, make and model of unit you're buying or selling. Sellers should also include the age, condition, price, and all serial nos.

WRITE OR CALL:
BUYERS & SELLERS
617-536-8777
Post Office Box 73, Boston, Mass. 02215
Weekdays 9am-5pm Wed & Sun 7pm-midnight
GRAND OPENING SPECIAL!

MOTOROLA METRUM II

$249.50 (half suggested list!)
Cash and carry price

FEATURES:
- 25 Watts out
- Hot, selective receiver
- 12 channels
- Single crystal R/T
- PL provision built in

SPECIFICATIONS:
Transmitter Power: 1W/25W
Receiver Sensitivity: .2uV
Power Requirement: .3 A receive, 7.5 A transmit (25W)
Size: 2¼x11x9¼ inches
Optional PL, AC power supply and multiple repeater offset kits available

Ask for our very competitive prices on:
ASP
Atlas
CDE Rotors
Collins
Cushcraft
Data Signal
Dentron
Drake
Hy-Gain
Icom
Kenwood
Larsen
Mosley
Newtronics
Regency
Standard
Swan
TPL
Ten-Tec
Yaesu

Mail orders shipped UPS same day on receipt of cashier's check or money order. Mail orders add $10 for handling and shipping.

HOURS: 9:30 - 9 Mon. & Thurs.; 9:30 - 5:30 Tues., Wed. & Fri.; 9 - 3 Sat.
Open more than 50 hours a week to serve you better

ERICKSON COMMUNICATIONS, INC.
5935 North Milwaukee Ave., Chicago, IL 60646
(312) 631-5181

We Service What We Sell
Solid State Modules
2050 KOMO MAI DRIVE
PEARL CITY, HAWAII 96782
PHONE (808) 455-2282

This unit is a linear transmitter and receiver converter from 10 meters to 2 meters, suitable for use with either a separate transmitter and receiver or transceivers.

Any transmissions made into the unit is retransmitted on 2 meters. When used with a separate power supply may be used.

SPECIFICATIONS
- Dual Gate MOSFETS in the receive converter.
- Bipolar transistor oscillator chain.
- 200 W P.E.P. input.
- Transmitter drive requirement only 100 mW.
- Receive converter gain - 30 dB.
- Size: - 9" x 4 1/4" front panel 4 1/2" deep.
- Power supply requirement:
 - 1. 600-500V at 250 mA.
 - 2. 300-350V at 70 mA.
 - 3. 75 to -150V at 5mA.
 - 4. 12.6V ac. 1.8 amp.

The Europe B ON-OFF switch switches the Yaesu F.H.P.A. h.f. on and off automatically.

Introductory Price: $229.95 less tubes
Tubes Required 2 - 6360
1 - 3048

Total price with tubes $299.95
Dealer Inquiries Invited
Low Noise and Minimum VHF Pre-amps available.

Pedestrian Portable? FM or SSB or both
- To mate with the IC-202, or your old FM HT, new goodies from SCS.

Sidekick Linear Portable System - 3 watts in, 30 watts out $219.95
And NEW Amps for FM and SSB modes:
2M-30L 3 watts in, 30 watts out $109.95
2M-340L 3 watts in, 140 watts out $199.95
And for easy carrying:
DX 'J' Collapsible for 2 members, including cable (specify connector) $39.95

Write now or contact your nearest dealer!

Solid State Modules
4519 Narragansett Avenue
San Diego, CA 92107
Louis N. Anclau, WB6NMT
(Dealer inquiries invited.)
714-222-8381

flea market

BRAND NEW CARTRIVISION COLOR VIDEO RECORDER-REPRODUCER ELECTRONIC UNIT.

Contains power supply with adjustable, regulated outputs of ± 15 VDC at 1/2 amp, + 18 VDC at 1/2 amp) Third output is 10 VDC at 3 amps. Perfect for CMOS. TTL, Op-Amps and MICROPROCESSORS. Contains over 900 parts with extremely long leads. Includes 182 transistors, IC's, diodes, and FET's, numerous resistors, capacitors, crystals, inductors, varicaps and delay lines. (One 63.5 microsecond, precision, quartz, acoustically coupled delay line which determines one line of TV.) Transistors will operate in HEATHKIT TV'S. Schematics and component cross-reference supplied upon request. $19.95 $1.00 shipping. 50c for brochure Electronics Communications Industry. P. O. Box 369, Madison, Alabama 35758. Money back guarantee.

FIGHT TVI with the RSO Low Pass Filter. For brochure write Data Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. M5J 3B4.

TELETYPE PAPER NEW. Fresh from the mill! 4 1/4" roll. white or red. For all friction feed Teleprinter machines. 200/200 case of 12. Buy and Save-$11.00 or 23.50 .

TELETYPE EQUIPMENT FOR SALE for beginners and experienced operators. RTTY machines, parts, supplies. Special beginners package consists of Model 15 page printer and their new 110215A ATLANTIC SURPLUS, 3730 NAUTILUS AVE., BRYCRO, N.Y. 11224-7803.

RTTY - NS-1A PLL TU (RTTY Journal 1/76).

LSL CARDS - Something completely different. Nothing even close to it on the market! Samples: 25c. WSSU, BOX 1171D, GARLAND, TX 75040.

TELETYPewriter PARTS, gears, manuals, supplies, tape, toroids, SASE list. Typetronics, Box 8873, Ft. Lauderdale, FL 33310. Buy parts, late machines.

125-Hz CRYSTAL FILTER for Drake R-4C receivers. Ideal for DX and contest work $125.00. Sherwood Engineering, 1268 S. Ogden St., Denver, Colo. 80210.

AN/APR-4Y RECEIVER. Tunable. 38-1000 MHz, AM, FM, CW. Converted to 120 VAC, 60 Hz. Perfect, with manuals, $195.00, WABIT, P. O. Box 18161, Cleveland, OH 44118.

EXCLUSIVELY HAM TELETEYPE. 21st year, RTTY Journal, articles, news. DX, VHF, classified ads. Sample 35c, $3.50 per year. Box 837, Royal Oak, Michigan 48068.

VITRO TUNER. 250-1000 MHz, 60 Hz output. Very sensitive, $25.00. Typeboxes, Box 118, 28R0 bases, $35.00. (617) 486-4973.

TELETEYPE MODEL 28: 28RO bases, $35.00, 3/$100.00. New Relays, $1.50. Typeboxes (WX, COMM. or Fractions) $25.00 ea. ASR base for LXD TD, $25.00. Base - LXD standards, $30.00. M28 cabinets, gears, gearshifts, repair's, TD's keyboards, terminal units, paper, tape, ASR's, KSB's, SASE for complete list. L. Pflegere, 532 W. Wilson St., #1, Madison, WI 53703.

OSCAR 7, SSB-CW TRANSMIT CONVERTERS. For 28 or 50 MHz input at 20 mw. 3725 MHz output at 1 watt. Solid state, for 12 volt supply. 35W watt socket available for this converter. Units designed and built by W2ENC. Write for information. UHF/VHF Communications, 53 St. Andrew, Rapid City, S. D. 57701.

TTL 7400N 6/1.00, 7402 5/1.00, 7404 4.00 each, 7405N & 7453N 4/1.00, 7412 2/1.00, 7453N 3/1.00, 1000V 1 amp diodes 10/1.00, 14 pin IC sockets 5/1.00, 18 pin edge connectors 2/1.00. Natio- nal CMOS Data Book $1.00 each. Free Catalog. Some quantities limited, all products guaranteed. NuData Electronics, 104 N. Emerson St., Mt. Prospect, IL 60056.

Cash for 2-WAY FM RADIO EQUIPMENT. MOTOROLA, GE, RCA, ETC. EQUIPMENT: MOBILES, BASES, PORTABLES, MOBILE, TELEPHONES, REPEATERS, REMOTE CONTROLS, TONE EQUIPMENT. 2-WAY TEST EQUIPMENT. Operational Units Only. box of $15.00. WABIT, P. O. Box 18161, Cleveland, OH 44118

MODSET: precision modulation measurements for AM-SSB, 0.2 to 300 MHz. $29.50 (Kit: $19.50) D. R. CORBIN MFG. CO.
P. O. Box 44, North Bend, Ore. 97459

CUSTOM ACTIVE FILTER HIGH PERFORMANCE HIGH OR LOW PASS
You specify frequency & 10% to 100 kHz $30.00 per set.
With 808/998-4444

FRANKLIN ELECTRONICS

RMS CORPORATION
THE ELECTRONIC STORE
675A GIACOM ROAD (EISEN RD.) IN., 119
LITTLETON, MA. 01460
(617) 486-4973

ICOM HAM RADIO SPECIALISTS
HUSTLER ANTENNA SPECIALISTS
CONSIGNMENT EQUIPMENT - LARSEN KLM RADIO PUBLICATIONS LARGE INV. COMPONENTS

FOR ORDER

BUILD YOUR OWN TV CAMERA! Ideal for home & business applications

ATV Research

1976 More Details? CHECK-OFF Page 110
INTERLOK Cabinet kits are all of aluminum construction ready for easy assembly. Aluminum panels and extrusions match with precision. Sides and cover panels are covered with blue vinyl. Front panels are clear anodized aluminum. Inside the enclosures can be subdivided in numerous ways to fit your needs. All cabinets are individually packed in heavy duty mailing cartons.

An INTERLOK line of Collet Knobs to complement your cabinet is also available. These are a newly designed method of securing knobs to control shafts using a *collet*. No more set screws, notched or grooved shafts and no more marred front panels.

A starter kit with 5 black knobs in 3 shaft sizes plus 5 black caps, 3 black pointers and 3 clear skirts is available for $2.95. This kit will assemble into 45 variations to fit your needs.

INTERLOK can furnish a wide range of Knobs and Cabinets to meet your production needs. Please write for a catalog.

INTERLOK, One of the Purdy Group of Companies.

SPECIAL Introductory Offer

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Width</th>
<th>Height</th>
<th>Depth</th>
<th>Cost Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-181</td>
<td>16.44</td>
<td>417.5</td>
<td>10.45</td>
<td>265.5</td>
</tr>
<tr>
<td>34-281</td>
<td>16.44</td>
<td>417.5</td>
<td>10.67</td>
<td>271.0</td>
</tr>
<tr>
<td>34-481</td>
<td>16.44</td>
<td>417.5</td>
<td>8.53</td>
<td>216.6</td>
</tr>
<tr>
<td>34-681</td>
<td>16.44</td>
<td>417.5</td>
<td>11.09</td>
<td>281.8</td>
</tr>
<tr>
<td>36-111</td>
<td>5.67</td>
<td>144.0</td>
<td>2.83</td>
<td>72.0</td>
</tr>
<tr>
<td>36-135</td>
<td>5.67</td>
<td>144.0</td>
<td>3.78</td>
<td>96.0</td>
</tr>
<tr>
<td>36-194</td>
<td>17.00</td>
<td>432.0</td>
<td>14.44</td>
<td>128.4</td>
</tr>
</tbody>
</table>

Collet Knob Starter Kits $2.95
You Can't Beat The System!
The SPEC COMM 2M FM Modular System

- UNIQUE "SNAP-PACK" MODULAR SYSTEM permits 1 Transceiver to function as 3 – W/O COMPROMISE!
- IT'S A FULL 5 WATTS PORTABLE – with the BP-1 Portable Pkg. The plug-in H.D. NICAD Battery "Snap Pack" has 3X THE CAPACITY of the usual "penlite" cells – for 8 hrs. typ. operation perchg.
- IT'S A 25 WATT MOBILE – with the BA-1 25 Wt. Amp. "Snap-Pack". (Or a 5 Wt. mobile with BA-1.1)
- IT'S A HIGH PERFORMANCE FIXED STATION – with the AC-1 AC Supply "Snap-Pack".

IT'S A FULL 5 WATT PORTABLE – with the BP-1 Portable Pkg. The plug-in H.D. NICAD Battery "Snap Pack" has 3X THE CAPACITY of the usual "penlite" cells – for 8 hrs. typ. operation perchg.

SC512 - 12 CHAN.
SC560 - 6 CHAN.

100% Moneyback Guarantee
100 Day Warranty

Write for information on our High Performance REPEATER RCVR. & XMTR. BOARDS.
Send for Data Sheet on SC512/560 Transceivers & Accessories.
Available through Dealers – Or Factory Direct.

DEALER INQUIRIES INVITED.

SPECTRUM COMMUNICATIONS
Box 140 HR - WORCESTER, PA 19490 (215) 584-6469

16-DIGIT COUNTERS!

I 6-Digit Kit
I 6-Digit Kit

We have a whole wonderful line of unbelievable counters starting at $45.95! Drop us a line or give us a call today.

Hufco
Dept. 15, P.O. Box 357 Provo, Utah 84601 (801) 224-3355

NEW FM XMTR KITS
- 2M, 200 MW FM/CW EXCITER
 - $39.95
- 432-450 MHz TRIPLER/DRIVER
 - $19.95
- 20-25W 2M PA OR 13-15W 432-450 PA, using new RF power modules, wired
 - $79.95
- CABINET for xcvr or other projects - 3½"H x 7¼"W x 7"D
 - $24.95

SEND SASE FOR CATALOG, INCL RCVRS, PREAMPS, ETC —

hamtronics, inc.
182 BELMONT RD., ROCHESTER, NY 14612

AMSAT OSCAR 7
COMMUNICATOR

Support the AMSAT Team That Brought Us OSCAR 6 and 7

Since November 1974, Amateur Radio has had not one, but two long-life OSCAR satellites available for use by the international Amateur Radio community. AMSAT is now developing Phase III spacecraft, intended for much higher orbits. AMSAT Phase III promises to be a considerable step forward beyond OSCAR satellites launched to date, making possible reliable communications over transcontinental distances for hours at a time.

Please write now to find out how you can help make this possible.

AMSAT Membership Dept., P. O. Box 27, Washington, D. C. 20044.

WEIRNU
PO Box 942, Colton, CA 92324
102 February 1976

More Details? CHECK-OFF Page 110
Ham Radio's guide to help you find your local Amateur Radio Dealer

California

HENRY RADIO
931 N. EUCLID AVE.
ANAHEIM, CA 92801
714-772-9200
The world's largest distributor of Amateur Radio equipment.

HENRY RADIO CO., INC.
11240 W. OLYMPIC BLVD.
LOS ANGELES, CA 90064
213-477-5701
The world's largest distributor of Amateur Radio equipment.

Illinois

ERICKSON COMMUNICATIONS, INC.
5935 NORTH MILWAUKEE AVE.
CHICAGO, IL 60646
312-631-5181
"Headquarters for all your Amateur Radio needs"

SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312-848-6778
Chicagoland's Amateur Radio leader.

Indiana

HOOSIER ELECTRONICS
P. O. BOX 2001
TERRE HAUTE, IN 47802
812-238-1456
Ham Headquarters of the Midwest.
Store in Meadow Shopping Center.

Kansas

ASSOCIATED RADIO
8012 CONSER P.O. B. 4327
OVERLAND PARK, KS 66204
913-381-5901
Amateur Radio's Top Dealer.
Buy — Sell — Trade.

Massachusetts

TUFTS RADIO ELECTRONICS
386 MAIN STREET
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

Michigan

AUDIOLAND
36633 SOUTH GRATIOT
MT. CLEMENS, MI 48043
313-791-1400
All major brands, new/used equipment & accessories.

ELECTRONIC DISTRIBUTORS
1960 PECK STREET
MUSKEGON, MI 49441
616-726-3196
Communication specialists for over 37 years.

PURCHASE RADIO SUPPLY
327 E. HOOVER
ANN ARBOR, MI 48104
313-668-8696 or 668-8262
We still sell Ham parts!

RADIO SUPPLY & ENGINEERING
1203 WEST 14 MILE ROAD
CLAWSON, MI 48017
313-435-5660
1801 Chalmers, Detroit, MI 48213, 313-371-9050.

Missouri

HAM RADIO CENTER, INC.
8342 OLIVE BLVD.
P. O. BOX 28271
ST. LOUIS, MO 63132
800-325-3636
Call toll free.

New Jersey

ATKINSON & SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since "55".

New York

ADIRONDACK RADIO SUPPLY, INC.
185 W. MAIN STREET
AMSTERDAM, NY 12010
518-842-8350
Yaesu dealer for the Northeast.

CFF COMMUNICATIONS
211 NORTH MAIN STREET
HORSEHEADS, NY 14845
607-739-0187
Jim Beckett, W42KTJ, Manager
Dave Flinn, W2CFF, Owner

Ohio

UNIVERSAL SERVICE
114 N. THIRD STREET
COLUMBUS, OH 43215
614-221-2335
Give U.S. a try when ready to buy.

Pennsylvania

ARTCO ELECTRONICS
302 WYOMING AVE.
KINGSTON, PA 18704
717-288-8585
The largest variety of crystals in N. E. Penn.

ELECTRONIC EXCHANGE
136 N. MAIN STREET
SOUDERTON, PA 18964
215-723-1200
New & Used Amateur Radio sales and service.

HAMTRONICS, INC.
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same location for 25 years.

South Dakota

BURGHARDT AMATEUR CENTER
124 FIRST AV. N.W.
P. O. BOX 73
WATERTOWN, SD 57201
605-886-7314
America's most reliable Amateur Radio Dealer — Nationwide!

Texas

ALTEC COMMUNICATIONS
1800 S. GREEN STREET
LONGVIEW, TX 75601
214-757-2831
Specializing in ham equipment for the Ark-La-Tex.

Washington

AMATEUR RADIO SUPPLY CO.
6213 13TH AVE. SO.
SEATTLE, WA 98108
206-767-3222
Amateur center of the Northwest.

Dealers - you should be here too! Contact Ham Radio today for complete details.
Vanguard Now Has the World's Largest Selection of Frequency Synthesizers from $129.95

Send no money. We ship C.O.D. Order by phone and save time.

We ship open account only to U.S. and Canadian government agencies, universities and selected AAA rated corporations.

Available for aircraft, fire, police and amateur frequencies.

Check these features:
- Smallest size of any commercially available synthesizer — only 1-3/8" x 3-3/4" x 7".
- Excellent spectral purity since no mixers are used.
- 0.0005% (5 parts per million) accuracy over the temperature range of -10 to +60 C.
- Immune from supply line voltage fluctuations.
-0.0005% accuracy (parts per million) over 1-3/8" x 3-3/4" x 7".
- Available from 5 MHz to 169.995 MHz.
- All synthesizers supplied with connecting ICs mounted in sockets for easy servicing.
- Frequency selected with thumbwheel switches.
- The output frequency can be matched to any crystal formula. Just give us the crystal formula (available from stock units starting as low as $129.95 for 5 kHz steps instead of 10 kHz steps) and add $10.00 for any synthesizer for 5 kHz steps instead of 10 kHz steps and add $10.00 for any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Maximum tuning range over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless limited by restrictions depending on the frequency band selected.
- Frequency selected with thumbwheel switches. The output frequency can be matched to any crystal formula. Just give us the crystal formula (available from stock units starting as low as $129.95 for 5 kHz steps instead of 10 kHz steps) and add $10.00 for any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
- Any tuning range over 10 MHz. Maximum tuning range is 40 MHz but cannot be matched to any crystal formula. Just give us the crystal formula and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.
REFERENCE DATA FOR RADIO ENGINEERS

A must for any serious amateur. In 45 chapters it covers not only every area of basic radio theory, but also goes into such modern areas as micro-miniature electronics and space communications. Literally hundreds of charts, nomographs and tables round out what is probably the most complete reference of this type. Sales of over 350,000 testify to its wide acceptance. 1,196 pages, hardbound.

Was $23.00

Now Only $14.95

We have just purchased the complete inventory of recently superseded editions of the RADIO HANDBOOK and REFERENCE DATA FOR RADIO ENGINEERS. Here is a unique opportunity to own copies of these outstanding reference books at very attractive prices.

* RADIO HANDBOOK, 19th Edition

by William I. Orr, W6SAI

The famous communications handbook which is the electronics industry standard for engineers, technicians and advanced amateurs. Explains in authoritative detail how to design and build all types of radio communications equipment, RTTY circuits, latest semiconductor and computer circuitry. 986 pages; hardbound.

Was $16.95

Now Only $9.95

Order today from

ham
radio
Greenville, NH 03048
Remote Motor-Controlled Coax Antenna Switch

- Control unit works on 110/220 VAC, 50/60 Hz, and supplies necessary DC to motor.
- Excellent for single coax feed to multiband quads or arrays of monobanders. The five positions allow a single coax feed to three beams and two dipoles, or other similar combinations.
- Control cable (not supplied) same as for HAM-M rotator.
- Selects antennas remotely, grounds all unused antennas. GND position grounds all antennas when leaving station. "Rain-Hat" construction shields motor and switches.
- Motor: 24 VAC, 2 amp. Lubrication good to -40°F.
- Switch RF Capability: Maximum legal limit.
- $120 suggested Amateur Net

See your Dealer. For details write:

R.L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017
Full 12 Channel, 15 Watts with HI/LO power switch

Here is everything you need, at a price you like, for excellent 2 meter FM performance. The 12 transmit channels have individual trimmer capacitors for optimum workability in point-to-point repeater applications. Operate on 15 watts (minimum) or switch to 1 watt. 0.35 uv sensitivity and 3 watts of audio output make for pleasant, reliable listening. And the compact package is matched by its price. $229.00

Amateur Net

Regency ELECTRONICS, INC.
7707 Records Street
Indianapolis, Indiana 46226

An FM Model For Every Purpose . . .
Every Purse

SWR-1 guards against power loss for $21.95

If you're not pumping out all the power you're paying for, our little SWR-1 combination power meter and SWR bridge will tell you so. You read forward and reflected power simultaneously, up to 1000 watts RF and 1:1 to infinity VSWR at 3.5 to 150 MHz.

Got it all tuned up? Keep it that way with SWR-1. You can leave it right in your antenna circuit.

 Swan ELECTRONICS
A subsidiary of Cubic Corporation
305 Airport Road, Oceanside, CA 92054
(714) 757-7525
Barry joins VENUS in a Super Savings Sale

SS2K Monitor Kit, Reg. $269.00 Now $229.00
SS2 Monitor wired, Reg. $349.00 Now $279.00
C-1 Slow Scan/Fast Scan Camera, Reg. $469.00 Now $369.00

We are extending this sale due to our availability of stock.
Other Venus Products available — Please write for information.

Barry Electronics is now your Collins dealer
and factory authorized repair center. Write NOW for information.

We also carry many other fine lines such as:
DRAKE, HY-GAIN, MOSLEY, B & W, etc., etc.

Heavy diversified stock of Eimac tubes, chimneys & sockets. Thousands of unadvertised specials. Barry's is a builder's delight!

Barry Electronics
NY city’s only complete Amateur Radio Store!

Complete Export Facilities available. We pack and ship equipment all over the world.

Bird Wattmeters & accessories.

Contact us now for information or equipment!

BARRY
512 Broadway NY, NY 10012
DEPT. H-2
212-986-5700 ELECTRONICS

Add shipping-excess refunded-Refunded FOB N.Y.C.

ANTENNA SUPERMARKET - PO Box 338, Dept. H, Chambersburg, PA 17201

DIPOLES AND WIRE ANTENNAS, complete with 100’ Spec. Coax, Balun, Connector, 100’ Rope, Copper Ant, Wire, Insulators:

<table>
<thead>
<tr>
<th>Band</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>80/40/15</td>
<td>parallel dipole</td>
<td>$36.95</td>
</tr>
<tr>
<td>40/20/15</td>
<td>parallel dipole</td>
<td>$30.95</td>
</tr>
<tr>
<td>80/40</td>
<td>trap dipole</td>
<td>$41.95</td>
</tr>
<tr>
<td>40/20</td>
<td>trap dipole</td>
<td>$36.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/15 trap, 13’ hgt.</td>
<td>$29.95</td>
<td></td>
</tr>
<tr>
<td>40/20/15 trap 25’ hgt.</td>
<td>$44.95</td>
<td></td>
</tr>
<tr>
<td>80/40/20 trap 30’ hgt.</td>
<td>$54.95</td>
<td></td>
</tr>
<tr>
<td>80/40/15 trap 20’ hgt.</td>
<td>$39.95</td>
<td></td>
</tr>
</tbody>
</table>

To Order — Include $1.95 shipping ($2.95 West Coast) 24 hour shipment. 30 day guarantee. For Info: ASE or 1st Class Stamp.

NEW

PORTA-PAK An Almost Perfect Package?

The Deluxe PORTA-PAK not only suggests but delivers:

- Attractive Package
- Durability Plus
- Operation Anywhere
- Full Power
- Overnight Recharging

Porta-Pak is the accessory that makes your mobile radio really portable. Available for most F.M. Transceivers at $59.95 which includes charger.

Add $1.95 per unit for shipping and handling.

PORTA-PAK, INC.
P.O. BOX 67
SOMERS, WI 53171

Your BEST BUY in KITS

Freq. Counter Kit - 0-300 MHz $99.00
Freq. Counter Kit - 0-500 MHz $139.00
Basic Clock Kit - full 6 digit $16.95
Electronic Dice Game Kit $10.95
Function Generator Kit $10.95
Analog-Digilab $139.00

Also DVM available shortly. Various other kits and electronic components available. Send SASE for flyer.

HAL-TRONIX
P. O. BOX 1101
SOUTHGATE, MICH. 48195

Order both for just $7.90

HAM NOTEBOOK

Volume II

Here it is — the follow-up to our very popular Ham Notebook Volume I published several years ago. Ham Notebook, Volume II offers more of the very best from HAM RADIO Magazine’s popular Ham Notebook column plus a number of interesting ideas and small projects never in print before. This is an all-new book nothing has been repeated from Volume I.

Eleven Chapters cover everything from antennas to repeaters, from antennas to repeaters. Here it is — the follow-up to our very popular Ham Notebook Volume I published several years ago. Ham Notebook, Volume II offers more of the very best from HAM RADIO Magazine’s popular Ham Notebook column plus a number of interesting ideas and small projects never in print before. This is an all-new book nothing has been repeated from Volume I.

Eleven Chapters cover everything from antennas to repeaters, from receivers to test equipment. There’s something here for everybody so be sure to get your order in today for this exciting new book.

Just $4.95
• Don’t forget Volume I
Spend $1.00
Order both for just $7.90
Order Today

ham
radio
Greenville, NH 03048

More Details? CHECK-OFF Page 110
Vintage Radio Has
Great Books For You!
Relax With A Time Trip To Yesterday!

Thousands have already discovered the pleasure of owning Vintage Radio books. You too can enjoy browsing through those pioneer days of wireless and radio. You’ll recapture the excitement of wireless days even though they were long before your time. You’ll see fine old battery radios of the 1920’s, and rediscover “cathedral” radios of the 1930’s. You’ll relive the dawn of radio broadcasting, visit the radio operator aboard his ship, visit G. I. Joe in his foxhole with his handy-talkie set, and meet the radio “Ham” in his shack. These experiences and many more await you in Vintage Radio’s family of books. Young or old, you’ll be fascinated by your journey through those earlier days. You’ll also discover the fun and rewards of collecting old-time radio sets and memorabilia.

1921-1932
RADIO
COLLECTOR’S
GUIDE
This book makes you an “instant expert” as you go prospecting for those fine old radios. It eliminates guesswork in determining a set’s age and “pedigree.” There are 264 pages loaded with over 50,000 facts on 9,000 radio models made by 1,100 manufacturers.

Just $4.95

1927
RADIO
ENCYCLOPEDIA
Own this authentic reproduction of Gernsback’s classic. Browse through radio’s heroes (who’s Marconi?) and hardware (what’s a coherer?) of the old days. 175 fascinating pages. Our hard-cover version is a serialized limited edition, an ideal gift.

Sof t Cover Only $4.95
Deluxe Hard Cover Only $12.95

A FLICK OF THE SWITCH
1930-1950
Here’s your time trip through the great days of radio broadcasting and the dawn of television. Revisit the Lone Ranger, Philco “cathedral” radios, old “Ham” days and many more. You’ll revel in 312 pages of story, old ads and over 1,000 pictures.

Soft Cover Only $6.95
Hard Cover Only $9.95

VINTAGE RADIO
1887-1929
You’ll enjoy this fascinating pictorial story of pioneer days in wireless and radio. Relive the days of Marconi, old spark transmitters, and the struggles of early radio broadcasting. It’s the radio collector’s reference, with over 1,000 pictures on 263 pages.

Soft Cover Only $5.95
Hard Cover Only $7.95

MOST-OFTEN-NEEDED 1926-1938 DIAGRAMS
This reprint of Morris Beltman’s Supreme Publications book shows circuit diagrams for 600 radio models. Its 240 pages are valuable for historical circuit information, and are great aids in restoring those old sets. Made from Supreme’s original artwork, it is clear and readable.

Only $7.00

Please add 25¢ per book postage and handling

Order your Vintage Radio books from

ham
radio
Greenville, NH 03048

Discover the Exciting Radio Collector’s Hobby!

More Details? CHECK-OFF Page 110

February 1976 109
TWO BANDS, 2 METERS AND 1 ¼ METERS
DIGITAL FREQUENCY SYNTHESIS
WORKS ANY REPEATER SPLIT
EXTENDED FREQUENCY COVERAGE

FEATURES: Covers entire 2 meter and 1 ¼ meter bands □ Covers MARS, CAP and CD frequencies from 142 to 149.995 MHz □ Full digital frequency synthesis with 5 kHz steps □ No crystals to buy—ever □ Built-in repeater offsets of 600 kHz, 1 MHz and 1.6 MHz both plus and minus □ 25 watts output on each band □ No transmitter retuning across either band □ FM-AM receiver □ 8 pole crystal filter □ Front mounted speaker □ PTT microphone and mobile mount included □ Operates on 12 volts DC □ Front mounted speaker for better sound □ Accessory connector for tone burst and tone coded squelch □ Lighted thumbwheel switches —a Comcraft exclusive

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Category</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td>Frequency Coverage — 2 M: 142.00 MHz to 149.955 MHz 1 ¼ M: 220.00 MHz to 225.00 MHz</td>
</tr>
<tr>
<td></td>
<td>Frequency Resolution — 5 kHz</td>
</tr>
<tr>
<td></td>
<td>Frequency Stability — 0.0005%</td>
</tr>
<tr>
<td></td>
<td>Power Input — 11 VDC to 15 VDC</td>
</tr>
<tr>
<td></td>
<td>Dimensions — 10.5" W x 3.375" H x 10" D</td>
</tr>
<tr>
<td></td>
<td>Warranty — 90 days, parts and labor</td>
</tr>
<tr>
<td>RECEIVER</td>
<td>Sensitivity — FM: 0.4 μV for 20 dB quieting AM: 4 dB noise figure, nominal</td>
</tr>
<tr>
<td></td>
<td>Squelch Threshold — 0.3 μV</td>
</tr>
<tr>
<td></td>
<td>Bandwidth — 15 kHz</td>
</tr>
<tr>
<td></td>
<td>Image Rejection — 80 dB minimum</td>
</tr>
<tr>
<td></td>
<td>Adjacent Channel Rejection — 80 dB (30 kHz)</td>
</tr>
<tr>
<td></td>
<td>Audio Output Power — 2 watts</td>
</tr>
<tr>
<td>TRANSMITTER</td>
<td>Power Output — 2 M: 144 to 148 MHz; 28 watts typical 1 ¼ M: 220 to 225 MHz; 28 watts typical (25 watts guaranteed over both amateur bands)</td>
</tr>
<tr>
<td></td>
<td>VSWR — Able to withstand infinite VSWR with 14 VDC power input for 10 minutes</td>
</tr>
</tbody>
</table>

CST-50 Two-band Transceiver $869.95
Tone Encoding - Decoding at its BEST

DELUXE REPEATER AUTO PATCH

The auto-patch your club will be proud to own. It's complete in every aspect. Two 1/4 digit display, one 1/4 digit display, remote control, digital readout, plus many other features. Send for brochure. Rack mount only. RAP-101 Sh. Wt. 15 lbs. $949.00

DATA-TONE DECODERS — TTD-12 & TTD-16

The TTD-12 (TTD-16) is a complete 12-digit (16-digit) Data Tone decoder. It uses the latest Phased Locked Loop technology to provide an extremely compact, low-power receiver/decoder. The TTD-12 accepts the standard 2 out of 7 (TTD-16 accepts 2 out of 8) tone frequencies, providing a valid output for each tone pair. Standard outputs are available with heavy duty relays or TTL logic. The TTD-12 and TTD-16 provide simple and reliable selective signaling capability. They are ideally suited for remote control purposes where unattended operation over radio links, private lines or the telephone network are required. TTD-12L, TTL output $89.50 wired TTD-12R, Relay output $109.50 wired TTD-16L, TTL output $99.50 wired TTD-16R, Relay output $129.50 wired

AUDIO AUTOMATIC GAIN CONTROL AMPLIFIER

Is your tone decoder having problems due to input variations? If so, eliminate these and other problems caused by weak, strong or varying input signals. The AAGC-1 will take signal levels between 50 mV to 5 Volts and feed a clean rock stable signal to any decoder for perfect operation. Give your decoder a chance to decode properly with our AAGC-1 amplifier. Shipping Weight 3 oz. $19.95 wired

AUTOMATIC DATA TONE DIALER

Automatic mobile telephone dialing is now available. By the push of a single button you can automatically dial up to six separate 7-digit numbers. All solid-state micro-power COS/MOS design. Automatic PTT operation. Programmable to send telephone number only, access code plus telephone number or telephone number plus an identification number. Low profile dash mount, easy installation. Compatible with most radio equipment. Available with keyboard for manual dialing of numbers. Manual operation provides automatic PTT operation with 1 1/2 second transmitter hold. AD-6 Without keyboard 99.50 AMD-6 With keyboard 119.50 Factory programming of numbers $7.50.

DATA TONE PADS

Standard size 12 and 16 digit Data Tone Pads. Automatic PTT operation with 1 1/2 second transmitter hold. Self-transmit using internal 9V battery. Audio and PTT outputs, TTP-1 and TTP-2 also has low volume audio monitor for acoustically coupling of tones to microphone. Zero quiescent current. Operating temperature -20°F to +150°F. R. F. proof.

TTP-1 16 digit 3" x 5" x 1 1/2" Sh. Wt. 2 lbs. 59.50
TTP-2 12 digit 3" x 5" x 1 1/2" Sh. Wt. 2 lbs. 59.50

DATA TONE TO DIAL PULSE CONVERTER

Convert standard 0-9 Data Tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-falsing. Data Tone decoder, large capacity 64 digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function. 0-9 digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting. DPC-121 P.C. Board $195.00 DPC-121R Rack Mount $265.00

ANTI-FALSING DATA TONE DECODER

Now, a true anti-falsing decoder/receiver. Virtually immune to high noise or audio faking. Twelve 16-digit capability. Completely solid state, uses latest Phased Locked Loop decoding. Single 9 volt power supply. Heavy duty transistor output. Available as p.c. board or 1/2" rack. TTD-12/12 12 digit P.C. $149.95 Rack $219.95 TTD-12/16 16 digit P.C. $169.95 Rack $239.95

REPEATER AUTO PATCH

It's complete - a single data access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dialing capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available. RAP-2 PC $39.95 Sh. Wt. 2 lbs. Rack $49.95 Sh. Wt. 8 lbs.

DELUXE PREAMPLIFIER

In either a 5 volt TTL or a 9 volt CMOS version this new module type IC keyer can be easily adapted to your own custom package or equipment. Versatile controls allow wide character weight variations, speeds from 5 to 50 w.p.m. plus volume and tone control. Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuits. With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you. TTL Keyer Wired $19.95; Kit $19.95 C-MOS Keyer Wired $24.95; Kit $19.95

DELUXE RECEIVER PREAMP

Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signal with a Data Preamp.

<table>
<thead>
<tr>
<th>FREQ. (Mhz)</th>
<th>USE</th>
<th>DELUXE PREAMPLIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 to 148</td>
<td>METER</td>
<td>SINGLE 20 2.5 $ 9.50 $12.50</td>
</tr>
<tr>
<td>1 thru 30</td>
<td>HF BROADBAND</td>
<td>DOUBLE 40 2.5 $18.50 $24.50</td>
</tr>
</tbody>
</table>

Others Available.

Order Today — Send for Free New Catalog

DATA SIGNAL, INC.
2403 COMMERCE LANE
ALBANY, GEORGIA 31707, 912-435-1764

More Details? CHECK-OFF Page 110
The radio that makes the most of your money.

Look around anywhere, and we doubt if you'll find a base transceiver with a power-to-price ratio as good as the Yaesu FT-401B. This is a radio with everything you've ever wanted for ease of operation, round-the-world coverage, and feature upon feature in both the transmitting and receiving sections. Including 560 watts SSB PEP, and 80 meter through 10 meter transceiving coverage. What's more, the FT-401B is backed up by a strong warranty, a nationwide dealer network and convenient service.

So if you're ready to power up to one of the world's most popular rigs, get the radio. The FT-401B. From the world's leading manufacturer of amateur radio gear.

See your dealer or write for our catalog. Yaesu Musen USA, Inc., 7625 E. Rosecrans, No. 29, Paramount, Ca. 90723.
When the FCC approves a 750kW power level for 12 clear channel AM stations to better serve the people of the United States, EIMAC tubes will do the job.

Your choice for Class C, Doherty, Ampliphase or PDM service. EIMAC makes it work. Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221.