this month

- S-line frequency synthesizer 8
- introduction to microprocessors 32
- 1296-MHz bandpass filters 46
- uhf frequency scaler 50
- cumulative index 114
NEW FM GAIN RINGO RANGER...you'll say "IT WORKS", when you try this exciting new antenna! Ringo Ranger is even better than the popular Ringo. Ranger has more gain for extended range. Easily mounted on a mast or existing tower, Ranger consists of a one eighth wave phasing stub and three half waves in phase to concentrate your signal at the horizon where it can do you the most good. Your present AR-2 can be extended with a simply installed RANGER KIT.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power</th>
<th>Frequency Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARX-2</td>
<td>100 watts</td>
<td>146-148 MHz</td>
<td>$26.50</td>
</tr>
<tr>
<td>ARX-220</td>
<td>100 watts</td>
<td>220-225 MHz</td>
<td>$26.50</td>
</tr>
<tr>
<td>ARX-450</td>
<td>100 watts</td>
<td>435-450 MHz</td>
<td>$26.50</td>
</tr>
<tr>
<td>ARX-2K</td>
<td>Ranger Kit</td>
<td></td>
<td>$10.95</td>
</tr>
</tbody>
</table>

NEW FM MOBILE... Fiberglass 5/8 wave professional mobile antenna for roof or trunk mount. Superior strength, power handling and performance.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power</th>
<th>Frequency Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-147T</td>
<td></td>
<td>146-175 MHz</td>
<td>$29.50</td>
</tr>
</tbody>
</table>

NEW 4 POLE... economically priced for primary repeater or home QTH, this antenna has been proven in hundreds of repeater installations. It is a four dipole gain array for mast or tower mounting. It has sealed coax harness for direct 52 ohm feed. The antenna can be adjusted for a 180° or 360° radiation pattern. Another unmatched antenna value by Cush Craft.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power</th>
<th>Frequency Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM-4D</td>
<td>1000 watts</td>
<td>146-148 MHz</td>
<td>$52.50</td>
</tr>
<tr>
<td>AFM-24D</td>
<td>1000 watts</td>
<td>220-225 MHz</td>
<td>$48.50</td>
</tr>
<tr>
<td>AFM-44D</td>
<td>1000 watts</td>
<td>435-450 MHz</td>
<td>$46.50</td>
</tr>
</tbody>
</table>

center support mast not included

IN STOCK WITH YOUR LOCAL DISTRIBUTOR

CORPORATION

621 HAYWARD ST., MANCHESTER, N.H. 03103
There's a unit of DRAKE gear just right for any ham...

Season's Greetings from your friends and fellow hams at R. L. Drake Co.

If your XYL needs a hint, circle your choice(s) and leave this ad where she will be sure to find it!

R. L. DRAKE COMPANY
540 Richard Street
Miamisburg, Ohio 45342

Phone (513) 866-2421
Telex 288-017

See us at SAROC in Las Vegas
ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.

- Powered by 6-16vdc, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Low distortion sinewave output
- Available in all EIA tone frequencies, 67.0 Hz-203.5 Hz
- Complete immunity to RF
- Reverse polarity protection built-in

$29.95 each

Wired and tested, complete with k-1 element

Communications Specialists
P. O. Box 153
Brea, California 92621
(714) 998-3021

K-1 Field Replaceable, Plug-In, Frequency Determining Elements

$3.00 each
contents

8 Collins S-line frequency synthesizer
 Robert S. Stein, W6NBI

28 high-frequency linear amplifier
 William S. Skeen, W6WR

32 introduction to microprocessors
 David G. Larsen, WB4HYJ
 Peter R. Rony
 Jonathan A. Titus

36 squelch circuits for transistor radios
 Robert C. Harris, Jr., WB4WSU

40 2304-MHz power doubler
 Norman J. Foot, WA9HUV

46 1296-MHz bandpass filters
 H. Paul Shuch, WA6UAM

50 uhf frequency scaler
 Douglas R. Schmieskors, Jr., WB9KEY

114 1968-1975 cumulative index
Beginning this month we are presenting a series of articles on microprocessors by Dave Larsen, WB4HYJ, Peter Rony and Jonathan Titus, authors of the popular series of Bugbooks.¹ Not since the development of the transistor in 1948 has any product or technology offered such an exciting promise of things to come as the microprocessor — literally a computer on a chip.

Computers in the 1960s are credited with revolutionizing the engineering and accounting fields by replacing people power with instantaneous electronic computation and retrieval. Microcomputers in the 1970s are expected to extend these benefits into areas where existing computer technology has never before penetrated, including amateur radio. Several groups are now working on microprocessor controlled vhf-fm repeaters, future OSCAR satellites will carry an on-board microprocessor for systems maintenance and control, and VE3SAT and others are already using microprocessors for ASCII communications through OSCARs 6 and 7.

Other amateur applications such as RTTY speed control, RTTY-ASCII or RTTY-Morse conversion, and automatic Morse code copiers are a natural for microprocessors. Automatic satellite tracking systems, log keeping, transmitter tuneup and control, and antenna pointing systems are other straightforward microprocessor-based systems which will see widespread use in the future. If, for example, you’re a DXer and hear a rare VP8 on 20 meters, you would just punch VP8 into your keyboard and your beam would automatically come around to the correct heading. If you were operating on CW you would only have to tap out VP8 in Morse code — the microprocessor would convert the Morse characters into machine language, translate that into a beam heading, and turn on your antenna rotator.

Until recently the cost of microprocessor chips put them out of reach for most amateur applications, but as more and more manufacturers have gotten into the act the prices have dropped dramatically. The popular 8-bit 8080 microprocessor which was originally developed by Intel, for example, was selling for $300 to $400 a little more than a year ago, dropped to about $150 this past summer, and is now available from one source for under $30. Although these prices are still a bit high for the amateur experimenter, industry sources predict that microprocessors will sell for $5 or less within a couple of years, perhaps as early as 1977.

In addition to the microprocessor series in the magazine which is designed to familiarize amateurs with this important new technology, during 1976 ham radio will be presenting a series of one-day microprocessor seminars at various hamfests across the country including SAROC in Las Vegas (January 9th), Miami (January 24th) and Dayton (April 23rd and 24th). The fee for the seminar is $50 and includes $35 worth of books. Since seating is limited, early registration is recommended — write to ham radio for details.

¹Bugbook I and II, Logic and Memory Circuits Using TTL Integrated Circuits; Bugbook III, Microcomputer Interfacing Experiments using the Mark 80, an 8080 system, $35 the set from Ham Radio Books, Greenville, New Hampshire, 03048.

Jim Fisk, W1DTY
editor-in-chief
WE'VE GIVEN IT A NEW LOOK!

IC-22A

The front panel and control locations have been changed to make the IC-22A even better looking and easier to operate. The new design allows the use of larger channel numbers which may be viewed from the left side or right side by reversing the window position and installing a new dial. (optional at nominal cost)

Inside is the same high quality radio construction and engineering that has made the IC-22 the most reliable, most popular two meter crystal controlled set on the market. When you join 22 channels of capacity (five supplied) with the unexcelled performance of helical RF filtering in the receiver front end then add solid state T-R switching you get one great radio for your money. All the great features that made the IC-22 so desired are still there. Including, 1 watt/10 watt switch option, trimmer capacitors on both receiver and transmitter crystals plus a 9 pin accessory jack with the discriminator already wired for frequency calibration.

SEE ONE !! BUY ONE !! AT YOUR ICOM DEALER TODAY.

ICOM WEST, INC.
Suite 232--Bldg. 11
300-120th Ave. N.E.
Bellevue, Wash. 98005

ICOM EAST
Suite 307
3331 Towerwood Dr.
Dallas, Tx 75234

Distributed by:
ANY HOPE THAT DOCKET 20282 — Restructuring — would be out by the end of this year has been much too optimistic. FCC Safety and Special Services Chief, Charles Higginbotham, W3CAH, feels that sometime next spring is a much more realistic target, and even then some aspects may require reexamination as additional dockets or oral proceedings such as the ARRL has requested. A tremendous amount of work has already gone into analyzing the mountain of Comments with the task far from done, and problems associated with CB’s explosion aren’t helping the effort.

SECRECY PROVISIONS of the Communications Act of 1934, Section 605, deserve a lot more attention by Amateurs than they’ve been getting. A strict interpretation of Section 605 forbids the disclosure of anything heard on the air except broadcast and Amateur transmissions — and that includes mentions of frequencies or any other information regarding the overheard signals!

Since This Ban applies to CB as well as other services, it could put a severe crimp in some of the recently publicized CB clean-up efforts conducted by Amateur groups.

The Intent Of Section 605 is quite clear — how likely an Amateur is to be cited for violating it is not.

REQUIREMENT FOR MULTIPLE COPIES for submissions to the FCC was upheld by Commissioners after consideration of a petition for its elimination submitted by W6NJU. Additional copies are necessary to insure the submission reaches all who should see it, but in their review of the requirement reductions were found possible.

Effective October 14 the number of copies required for comments on a Notice of Proposed Rule Making was reduced from 15 to 12 (original plus 11 copies) — other requirements not likely to affect Amateurs were also reduced. In their rejection of W6NJU’s petition the Commissioners also noted that single copy submissions are now and have been accepted although they do not receive as wide circulation as those that meet the requirement.

Ham Radio/HR Report readers should not forget our long standing public service offer. Send your FCC submission directly to us and we’ll make all the necessary copies and mail them to the Commission for just $1.00 per page of original document.

REPEATER FUNDING may become an issue with the FCC if some flagrant abuses aren’t corrected. Though use of a club’s dues to pay for repeater maintenance is well within the Amateur rules, the solicitation of money for the use of a given repeater or its facilities (such as autopatch) is almost certainly a violation of Part 97.112, ”No remuneration for use of station.”

OSCAR ORBITAL PREDICTION BOOKLET produced by W6PAJ will replace HR Report’s monthly prediction sheets for HR Report subscribers in 1976. W6PAJ’s handy booklet will be sent without charge to any subscriber who asks for it — dropping the monthly sheets was done in recognition that a vast number of subscribers did not use them and HR Report sheets were a duplication of effort.

6000 MILE OSCAR QSO was completed between G3IOR and W6CG! Using meteor scatter techniques on selected orbits as the Satellite was over the horizon between them, successful two-way communications were finally exchanged between the two over a period of two weeks. Congratulations to both!

CIVIL SERVICE ADMINISTERED Amateur Radio exams have not been as popular in the test areas as expected. At the mid-point of the two-year program (which runs until next July) no specific conclusions have been drawn and FCC Field Operations people are watching it carefully.

BARRY ELECTRONICS WILL CONTINUE as a major Amateur Radio supplier despite Barry’s tragic loss in a boating accident on Long Island Sound. Barry’s wife Kitty vows she and the crew will keep the business going just as before.

LAISH/By QSLs received by several west coasters are pretty exciting wallpaper but little else. It’s now considered certain that he operated only from shipboard.
OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101
Specify when ordering.
Price $3.95 ea.

OF-1 OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OF-1, Lo, Cat. No. 035108. 20 to 60 MHz, OF-1, Hi, Cat. No. 035109
Specify when ordering.
Price $3.25 ea.

EX CRYSTALS
(HC 6/U HOLDER)
Cat. No. Specifications
031080 3 to 20 MHz — For use in OX OSC Lo
Specify when ordering
$4.95 ea.
031081 20 to 60 MHz — For use in OF-1 OSC Hi
Specify when ordering
$4.95 ea.
031300 3 to 20 MHz — For use in OF-1L OSC
Specify when ordering
$4.25 ea.
031310 20 to 60 MHz — For use in OF-1H OSC
Specify when ordering
$4.25 ea.

MXX-1 TRANSISTOR
RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range. 3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106
Specify when ordering.
Price $4.50 ea.

SAX-1 TRANSISTOR
RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Signal tuned input and link output. 3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103
Specify when ordering.
Price $4.50 ea.

PAX-1 TRANSISTOR
RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 m.w., depending on frequency and voltage. Amplifier can be amplitude modulated. 3 to 30 MHz, Cat. No. 035104
Specify when ordering.
Price $4.75 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107
Specify when ordering.
Price $4.75 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102
frequency synthesizer

for the Collins 75S receiver

Complete description of a frequency synthesizer that converts the Collins 75S-series of communications receivers to general-coverage use from 3.4 to 30 MHz

During the past few years, the use and application of frequency synthesis in both receivers and transmitters has increased tremendously. A quick perusal of the ads for vhf transceivers is all the evidence needed to verify this fact, although there are also many high-frequency military and commercial (non-amateur) transmitters and receivers which employ frequency synthesizers to generate specific frequencies required within those units.

The advantages of having a general-coverage receiver in the ham shack are manifold and were discussed in a previous article describing a synthesizer for use with the Drake R-4 series receivers¹. This article will describe a frequency synthesizer to supplement or replace the high-frequency oscillator crystals in a Collins 75S-1, 75S-2 or 75S-3, resulting in a receiver which covers 3.4 through

1849 Middleton Avenue, Los Altos, California 94022.
30 MHz. Only minor electrical changes are required in the receiver; no holes need be drilled nor other mechanical modifications made.

Before proceeding with the description of the frequency synthesizer which makes this possible, a review of the receiver conversion process is in order. The 75S-1, 75S-2 and 75S-3 receivers all utilize identical crystal-oscillator and first-mixer circuits, so that the discussion is applicable to any one of the receivers.

The local-oscillator (LO) frequency injected into the first mixer is 3.155 MHz higher than the low-frequency end of the desired 200-kHz tuning range. Since the high-frequency oscillator is crystal controlled, this requirement is translated to a crystal which will generate the proper frequency. For example, the 3.8- to 4.0-MHz band requires a 6.955 MHz crystal (3.8 plus 3.155 MHz), which is supplied with the receiver. Collins specifies that the receiver will tune from 3.4 to 30 MHz with the proper crystal. It should be noted that for receiver frequencies above 12 MHz, frequency doubling takes place in the plate circuit of the crystal oscillator; therefore the crystal frequency is one-half the frequency injected into the first mixer. Nevertheless, the injection frequency is always 3.155 MHz above the lower band edge.

In order to cover the entire range of 3.4 to 30 MHz in 200-kHz increments, 133 crystals would be required, starting with a 6.555-MHz crystal for the 3.4- to 3.6-MHz band, a 6.755 MHz crystal for the 3.6- to 3.8-MHz band, and so on. Even with the 28 crystal positions available in the 75S-3A, it is obvious that a complete set of crystals would not only be impractical to use, but prohibitively expensive. However, if we can generate frequencies of 6.155 through 32.955 MHz every 200 kHz, and substitute them for the crystals in the hf crystal oscillator, we can achieve all-band coverage within the specified tuning range of the receiver. The frequency synthesizer to be described does exactly that.

S-line frequency synthesizer with some of the 128 crystals from the Collins CP-1 crystal pack, which it replaces.

Basic Phase-Locked Loop Frequency Synthesizer

Although the basic phase-locked loop frequency synthesizer has been explained in previous articles, a brief review at this time will simplify the detailed explanation of this specific synthesizer. Fig. 1 shows the basic phase-locked frequency synthesizer. A stable reference frequency is applied to one input of a phase comparator. The output of the phase comparator is a dc voltage which passes through a lowpass filter and controls the frequency of a voltage-controlled oscillator (vco). The oscillator generates the desired frequency, which may be any multiple of
the reference frequency. The vco output is also applied to a frequency divider whose function is to divide the vco output frequency to the same frequency as that of the reference oscillator.

Let's assume that the reference oscillator frequency is exactly 5 kHz and that an output frequency of 6555 kHz is required. If we have a divider or programmable counter which will divide by 1311, the signal input to the phase comparator will also be 5 kHz when the vco output is exactly 6555 kHz. This is accomplished by the phase comparator producing a dc output which "tunes" the vco until it is exactly 6555 kHz. The divided vco frequency is then exactly 5 kHz, the same as the reference frequency. Thereafter, the vco output will stay at 6555 kHz; any variation from this frequency changes the signal input to the phase comparator, which in turn produces a dc output change and brings the vco back to 6555 kHz. Thus, the output frequency is locked to the reference frequency, and has essentially the same stability as the reference oscillator.

By using a frequency divider which can be programmed, it is possible to obtain virtually any number of discrete frequencies which are integral multiples of the reference frequency, all of which are phase locked to the reference oscillator. The lowpass filter keeps the reference frequency from modulating the vco and establishes the lock-up time of the loop.

75S synthesizer

A block diagram of the 75S hfo frequency synthesizer is shown in fig. 2. The loop reference is a 100-kHz crystal-controlled oscillator, which is divided by ten and then by two, resulting in a 5-kHz reference signal which is applied to one input of the phase comparator. The other input to the comparator is the divided vco frequency, which will be discussed presently. The output from the comparator is a function of the difference between the two input frequencies and is applied to the loop filter, consisting of an active and a passive lowpass filter. The resultant dc controls the vco frequency by changing the capacitance of a varactor diode. The vco output, 6.555 to 32.955 MHz in 200-kHz steps, is amplified to a suitable level and routed to the receiver.

The vco output is also applied, via an isolating source follower, to a Schmitt trigger, which converts the amplitude and waveform of the vco output to one that is compatible with the TTL integrated circuits in the frequency divider.

![Diagram](image-url)

fig. 1. Basic phase-locked frequency synthesizer. The frequency divider is a variable-modulus, or programmable, counter.

The vco frequency divider is a variable-modulus counter which can be programmed to divide by any factor between 1311 and 6591 in steps of 40 (i.e. 1311, 1351, 1391, 1431, etc.). An examination of the discrete vco frequencies to be synthesized will reveal that the largest common factor is 5 kHz, thereby establishing the reference frequency. Steps of 200 kHz in the vco output are obtained by changing the counter modulus in steps of 40 (40 x 5 kHz = 200 kHz). Since each vco frequency ends in 5, the least significant digit in the number by which the vco frequency must be divided to yield 5 kHz will always be 1. Therefore the first counter always provides a 1-count. The three remaining counters are programmed by the front-panel frequency-
control switches and establish the first three digits of the frequency divisor.

Preselected binary-coded-decimal (BCD) outputs from each counter, plus the output from the Schmitt trigger, are fed to a decoder circuit, which produces Trimmer capacitor C3, in series with the crystal, permits adjustment of the crystal frequency. The output of the oscillator is shaped and buffered by a third gate, U1C.

The 100-kHz signal is divided down

fig. 2. Block diagram of the Collins 755 hfo frequency synthesizer. The only tuning controls are the front-panel TENS, UNITS, and TENTHS rotary switches.

the divided-down vco signal applied to the phase comparator. The decoder also resets the counters (actually this is its primary function), but that signal path has been omitted from fig. 2 because it is not pertinent to overall signal flow. Details of the counter and decoder functions will be explained in greater detail under their circuit descriptions.

reference oscillator and phase comparator

The 100-kHz reference oscillator and its frequency dividers, the phase comparator, and the loop filter are shown in fig. 3. The reference oscillator consists of gates U1A and U1B, two sections of an MC846P quad 2-input NAND gate. The gates are configured as a multivibrator and the 100-kHz signal is developed by connecting crystal Y1 as part of the signal path between the gates. to 10 kHz by U2, a 7490 decade counter. The output of the 7490 is then divided by two by one flip-flop in U3, a 7474 dual D-type flip-flop, resulting in the 5-kHz reference which is applied to pin 3 of phase comparator U4.

The phase comparator comprises U4, another 7474 dual D-type flip-flop, and the remaining gate section of U1. It compares the phase difference between the 5-kHz reference and the vco frequency divided by the counter modulus \(f_{\text{vco}}/N \), and produces a digital pulse output whose duty cycle is a function of the phase difference. This digital output is partially filtered by R3 and C6 to a sawtooth which is applied to the inverting input of U5.

U5 is an LM3900 quad op amp, one amplifier section of which is used as the active element in the loop filter. It attenuates the ac components of the sig-
nal from the phase comparator and thereby produces a dc output which varies in accordance with the phase difference between the inputs to the comparator. Additional attenuation of harmonics of the reference frequency is accomplished by R22, R34, C18 and C38 in the vco (fig. 4).

![Schematic of the crystal oscillator and its frequency dividers, the phase comparator, and the loop filter. Integrated circuits are listed in table 1 (page 20). C7 must be a polycarbonate- or polyester-film type capacitor.](image)

fig. 3. Schematic of the crystal oscillator and its frequency dividers, the phase comparator, and the loop filter. Integrated circuits are listed in table 1 (page 20). C7 must be a polycarbonate- or polyester-film type capacitor.

parator. The gain of the loop filter, its frequency response, and the loop lock-up time are determined by the values of R3, R4, R5, and C72.3.

Additional filtering of the 5-kHz loop reference frequency is needed to prevent modulation of the vco, which would produce spurious sidebands on both sides of the desired frequency. A parallel-T filter, consisting of R6 through R8 and C9 through C11, provides a minimum of 35 dB attenuation at 5 kHz. (This figure is based on worst-case conditions using five-percent capacitors. If two- or one-percent capacitors are used, or the capacitors are selected by bridge measurement, the attenuation will be improved.)

voltage-controlled oscillator

The vco is built as a separate, shielded unit to eliminate stray pick-up from the digital circuits and from ac fields. The oscillator consists of Q1, an E300 (or equivalent) n-channel fet, in a Colpitts circuit with varactor CR25 connected in series with C38 across the tank circuit. The varactor is a Motorola MV1401 and has a ratio of maximum-to-minimum capacitance of approximately ten, as compared to usual ratios of two to four for conventional varactors. (It also happens to be the most expensive single component in the entire synthesizer.) Despite the large capacitance ratio, the oscillator cannot
cover the entire range of 6.555 to 32.955 MHz without switching. This is accomplished by diode switching, using switch section S3-D of the tens divider switch (fig. 5).

In the zero position of the tens switch, diodes CR26 and CR27 do not conduct, so coils L1 and L2 are each effectively in series with a 33-μH choke (L4 and L5) to ground. The high value of this inductance has only stray effect on the circuit; thus the oscillator frequency is essentially determined by coil L3 and the tank-circuit capacitance. When the tens switch is set to position 1 or 2, one of the diodes is biased into forward conduction and brings the low end of the associated coil close to rf ground, shunting L3 and thereby lowering the tank-circuit inductance. Resistor R21 in series with the switch arm limits diode current to a safe value.

The oscillator output is taken from the source of Q1 and coupled to the base of amplifier Q2. The amplifier, a type 2N2219 npn transistor, is a broadband stage which feeds the hf oscillator circuit in the receiver through an isolating 5-dB L-pad, R27 and R28. Also applied to the output circuit is the +12-volt power supply, which is decoupled from the vco signal by rf choke L8 in series with current-limiting resistor R32. This dc source is used to actuate a sensitive relay in the receiver, as will be explained later.

The output of Q2 is also coupled to Q3, an n-channel fet configured as a source follower. The source load is made up of two resistors, R30 and R31, which form a 6-dB L-pad in the output. The source follower drives the Schmitt trigger in the digital portion of the synthesizer and, with the L-pad, keeps

fig. 4. Schematic of the vco. See table 1 for coil-winding data and descriptions of parts not identified on the schematic.
fig. 5. Schematic of the vco frequency divider. Letters within circled terminals correspond to pads on the main PC board, to which the switches are wired. All parts below the terminals are mounted separately from the PC board. Integrated circuits are described in table 1.
any digital signals from feeding back into the vco.

frequency divider

Fig. 5 shows the vco frequency divider and its associated front-panel switches. Note the use of the word divider in its singular form; the counters used in the divider circuit function as an integral circuit (no pun intended), rather than as separate divider stages such as are used to divide the 100-kHz crystal frequency down to 5 kHz. Because this is quite different from the usual frequency multiplier or divider stages familiar to most amateurs, as evidenced by the many inquiries received following publication of the R-4 synthesizer article1, it seems appropriate at this point to explain the operation of a typical variable-modulus, or programmable, counter.

Let us consider a basic two-stage frequency divider, as shown in fig. 6. Each of the counters is a decade counter, that is, a counter which produces one output pulse for every ten input clock pulses. However, each counter is presettable, which means that its count may be programmed or modified by setting its data inputs (D_A, D_S, D_C, and D_D) either high or low. The data-input subscripts indicate the binary weighting assigned to each input: A=1, B=2, C=4, and D=8. There is also a fifth data terminal, D_S; this is the data-enable input, which must be set prior to and during the interval that the data inputs are applied. In the simplified circuit shown, we will assume that D_S must be set high to enable the data inputs.

Conventional digital terminology designates the first pulse in a pulse train as 0, so that the tenth pulse, which produces an output from a decade counter, is therefore designated number 9. The total number of clock pulses, N_{max}, which can be counted before an output is produced from a ripple-through counter (another name for the circuit shown in fig. 6) is

\[N_{max} = N_1 \times N_2 \times \ldots \times N_n \]

where \(N_1 \) is the modulus of the first counter, \(N_2 \) is the modulus of the second counter, and so on. Since each counter in fig. 6 has a modulus of 10, \(N_{max} = 100 \). But remember that this will be clock pulse 99, since we start with pulse 0.

![fig. 6. Basic variable-modulus counter.](image)

Now let's assume that we want the circuit of fig. 6 to divide the clock frequency by 25. If the counters are up-counters (as are all those used in this synthesizer), their data inputs must be preset with the nines' complement of the desired divisor. (Nines' complement simply means the difference between nine and the desired count.) The preset data to be entered, \(N_D \), is determined by the equation

\[N_D = (N_{max} - 1) - D \]

where \(D \) is the frequency divisor. Since \(N_{max} \) is 100 for our circuit,

\[N_D = (100 - 1) - 25 = 74. \]

The least significant, or units, digit corresponds to the count of the first counter, since it is counting unit clock pulses; the most significant, or tens, digit corresponds to the count of the second counter because it is counting tens...
of clock pulses. Therefore counter number 1 must be preset with a 4, and counter number 2 must be preset with a 7. To do this, \(D_C \) (having a binary weight of 4) of counter number 1 is set high and all other data inputs are set low. On counter number 2, \(D_A, D_B \) and \(D_C \) are set high (binary weighting: \(1 + 2 + 4 = 7 \)) and \(D_D \) is set low. What we have done is to preset the counters so that each is in the state which would exist following the clock pulse having the same number as the preset data. Since counter number 1 has been preset with a 4, it will produce an output after five clock pulses have occurred (corresponding to the 5 in the desired divisor of 25). Thereafter, the first counter will count by ten until \(D_S \) is set high by the output of counter number 2. Similarly, because counter number 2 has been preset with a 7, it will produce an output after it has counted two pulses from the first counter, completing the count of 25. This output is applied to the \(D_S \) inputs of both counters and re-enables the data inputs, starting the count over.

If we analyze the operation of the counters, we can see that by presetting the first counter with a 4, the elapsed time between clock pulse 0 and clock pulse 9 was shortened by four clock-pulse intervals. In the same way, by presetting counter number 2 with a 7, the elapsed time between clock pulse 9 (the first output pulse from the first counter) and clock pulse 99 \((N_{max})\) was shortened by 7 times 10 clock-pulse intervals. Assuming a clock frequency \(f_c \), with a period \(t_c \),

\[
t_{out} = 99t_c - 4t_c - 7(10t_c) = 25t_c
\]

and

\[
f_{out} = \frac{1}{t_{out}} = \frac{1}{25t_c} = \frac{f_c}{25}
\]

The preceding analysis may be extended to any number of cascaded counters and to hexadecimal as well as decade counters. However, actual operation will be limited by the propagation delays through the counters and the setup times required for the data inputs. As previously stated, the \(D_S \) inputs must be enabled before and during the time period that the preset data are entered. Since the preset data are dc levels, it follows conversely that they are entered shortly after the generation of the output pulse, which is applied to the \(D_S \) inputs. If the clock frequency is too high, the counters may toggle but too much time may elapse, because of propagation delays, between the output pulse following the terminal clock pulse (equivalent to pulse 99 in our basic circuit) and the arrival of the next clock pulse (pulse 0). This will prevent the data inputs from being enabled prior to the arrival of clock pulse 0, and will result in an erroneous count.

Another problem which often arises when using a circuit similar to that of fig. 6 is caused by the short duration of the output pulse. The output pulse from counters which are used in these circuits has the same width as the clock pulse. Thus the output pulse of counter number 1 is the same as the clock pulse (although with greater time intervals between pulses), and since counter number 2 is toggled by the output of counter number 1, its output pulse width will also be the same as the clock-pulse width. Furthermore, as soon as the output pulse resets the dataenable inputs, both counters resume their preset state and the output pulse disappears. This condition, along with the narrow pulse width, may not permit the data inputs to be enabled for the minimum time which is required by the counter.

The propagation delay may be minimized by decoding the BCD outputs of the counters. These outputs have the same binary weighting as the corresponding data inputs. Thus when the terminal condition of 99 is reached in fig. 7, outputs A and D of each counter...
will go high, causing the output of the AND gate to go high and enable the data inputs. The advantage of this circuit lies in the reduction in the delay time between clock pulse 99 and the D_S enabling pulse. In fig. 6, the delay is equal to the propagation delay through the two counters, or through a total of eight flip-flops. In fig. 7, the delay is equal to the propagation delay through only one flip-flop (flip-flop A in counter number 1) plus that of the gate. This occurs because at clock pulse 98, outputs A and D of counter number 2 are high, as is the D output of counter number 1. Clock pulse 99 needs to propagate only through the first flip-flop in counter number 1 to cause output A to go high, resulting in the required enabling output from the gate.

This technique of decoding may be used in various circuit configurations. In many cases, it may be necessary to decode outputs which are other than those of the terminal count in order to enable the data inputs before the arrival of clock pulse 0. It may also be necessary to utilize flip-flops in addition to the decoding gate in order to enable the D_S inputs with a pulse whose width is greater than the clock-pulse width. This may result in some preset factors being unusable, but rarely are all moduli of a variable-modulus counter utilized.

Returning now to fig. 5, we see that the vco frequency divider is a four-stage variable-modulus counter comprising U6, a 74S196 or 82S90 presettable decade counter, and U7 through U9, each a 74196 or 8290 presettable decade counter. The signal from source follower Q3 in the vco is converted to TTL level by U11A, one section of a 7404 hex inverter. The inverter functions as a Schmitt trigger by virtue of the connection of R9 between the input and output. Additional shaping is provided by U11B, and the resultant output clocks counter U6 and both flip-flops in U12.

As stated previously, only the counts of the last three counters in the chain need be varied, since U6 provides a fixed count. The counts are controlled by tenths switch S1, units switch S2, and tens switch S3. Fig. 5 shows the switches set for a receiver frequency of 4.2 MHz; the corresponding vco frequency is therefore 7.355 MHz. Since the reference frequency is 5 kHz, the vco frequency must be divided by 1471. U6 provides the least significant count of 1. The next significant count of 7 results from setting the data inputs of U7 to the nines' complement of 7, or 2. It can be seen that +5 volts are applied to pin 10 (input D_B) through S1-A, while the remaining data inputs are either grounded directly or are pulled low by resistors R11 and R12. Similarly, it can be seen that U8 provides a count of 4, and U9 a count of 1 for the most significant digit.

The complexity of the switching circuits is the result of labelling the switches so that they indicate the low end of the receiver's 200-kHz tuning range, rather than the dividing count or the vco frequency. Steering diodes CR1 through CR24, in conjunction with the switches, route the 5-volt supply to the appropriate data inputs.

The BCD outputs of the counters are decoded in U10, a 7430 8-input NAND gate, the output of which is inverted by
U11C and applied to pin 3 of U12, a 74S112 dual J-K flip-flop. Both flip-flops are used to re-enable the counters and require three clock pulses after pin 3 is set high by U11C. This means that instead of decoding when the BCD outputs of the counters total 9999, decoding should take place when the BCD outputs total 9996, so that the data inputs of the counters are enabled three clock pulses later, immediately following the terminal BCD state of 9999. However, I found it necessary to shorten the propagation time between the terminal clock pulse and the last-occurring input to U10, and therefore chose to decode a count of 9995. (Note that the A and C outputs from U6 provide the least significant digit of 5.) Since this re-enables the data inputs one clock pulse early, the extra clock pulse is accounted for by presetting U6 for a count of 2, which keeps the least significant digit in the frequency divisor at 1.

Because the preset enabling pulse for the counters must be low, the Q output from pin 7 of the second flip-flop in U12 is used. The complementary Q output from pin 9 is applied to the phase comparator for comparison with the reference frequency.

power supply

The synthesizer draws approximately 425 mA from its power supply, which is shown in fig. 8 along with the interconnections of the main pc board and the vco unit.

Full-wave bridge rectifier CR29 through CR32 is supplied from T1, a 16-volt, 0.5-ampere transformer. The 12-volt supply for op amp U5 on the main board and for the vco is obtained from the output of U13, a fixed 12-volt regulator. The drop to regulated 5 volts for the logic circuitry takes place in U14, a similar 5-volt regulator. LED CR33, connected to the 5-volt supply through current-limiting resistor R35, serves as a pilot light.

construction

Most of the parts comprising the synthesizer are mounted on two printed-circuit boards, the main board and the vco board. The large main board contains all of the digital circuits and the phase detector, while the entire vco, except for the feedthroughs and output connector, is built on the separate vco board. Figs. 9 through 12 show the foil patterns and parts locations for the two boards*. The interior photograph shows the construction of the prototype unit, which is enclosed in a steel utility box measuring 10x10x3-1/2 inches (25.4x25.4x8.9 cm). It is imperative that a steel enclosure be used because of the strong magnetic field around the receiver caused by the power transformer. The phase-detector circuit and the vco in the synthesizer are extremely sensitive to ac fields, and when the unit was first enclosed in an aluminum box, it was impossible to eliminate a 60-Hz hum on received signals except when the synthesizer was placed directly in front of the receiver. Since this is hardly consistent with good "human engineering" practice, the aluminum housing was discarded and a steel box was substituted.

An enclosure was intentionally selected which was larger than might be expected, because of the sensitivity of the synthesizer to stray fields. This proved to be a wise choice (sometimes you luck out!), since the physical placement of the power transformer within the box became the next problem. Rather than fool around with compartment shielding, I mounted the transformer, rectifiers, and filter capacitor on a small piece of sheet steel. The steel shields the rest of the unit from the transformer

*A set of two drilled and plated boards is available from the author for $14.50, postpaid in the U.S.A. Questions will be answered if accompanied by a self-addressed, stamped envelope.
field when the power supply assembly is positioned so that the steel plate is vertical and the transformer is on the side away from the main board.

Even with the arrangement described, the placement of the power supply assembly is critical. I suggest that the assembly be mounted temporarily, with long leads, when the unit is constructed. Then after all adjustments have been made and the synthesizer is functioning, the final location can be determined by moving the assembly around until any hum on a received signal disappears. You may find that moving it one way or the other by as little as a half-inch (1 cm) may make a big difference.

On the other hand, this problem can be eliminated, and a smaller cabinet used, if the power supply is made a separate unit and connected to the synthesizer proper by means of a cable. The choice is yours.

The three rotary switches, the power switch, and the LED pilot light are mounted on the front panel. On the rear is the coax output connector. Four rubber bumpers are mounted on the bottom to prevent scratches from the hardware which fastens the parts to the enclosure.

When assembling the parts on the main PC board, a socket or Molex pins should be installed at U11 for the integrated circuit. It may be necessary to select a 7404, since its upper frequency limit is being pushed. But at the current price of 25 to 35 cents each, it is much more economical to buy three or four than to buy the devices which would be required for a more sophisticated Schmitt trigger. More about this later.

The main board is connected to the left-hand wall of the enclosure, with their pins extending into the interior. Apply a thin layer of silicone heat-transfer compound between the regulators and the housing to aid in dissipating heat.

The three rotary switches, the power switch, and the LED pilot light are

fig. 8. Schematic of the power supply and interconnections of the assemblies comprising the synthesizer. Diodes and integrated circuits are described in table 1.
frequency-control switches from 20 pads, designated A through V, along the front of the board, as shown in fig. 5. The remainder of the connections appear in fig. 8. All connecting leads to and from the board should be soldered in place on the board before connecting the other ends. Leave plenty of wire on each lead to make the connections to the parts which are not on the board so that if any troubleshooting must be done it will not be necessary to unsolder the wires. Shielded wiring is made with RG-174/U coax. All wiring, except for that between the “VCO” pad and E1 on the vco, carries dc only, making lead length noncritical. The board is mounted on four standoff posts; in order to prevent ground loops, three of the four should be non-metallic or should be insulated from the ground plane on the board, so that only a single metallic post grounds the main board to the cabinet.

The vco printed-circuit board is enclosed in a 2-1/8x2-5/8x2-3/4 inch (5.4x6.7x7 cm) mini-box. Feedthrough terminal E1 and feedthrough capacitors C17, C23, C24 and C33 are mounted on one side of the box, and J1 is placed on one end, corresponding to the leads designated in fig. 12. Use solder lugs under the outsides of the feedthrough capacitors which are to have shielded leads attached. The PC board is fastened to the side of the box on which the feedthroughs are mounted by means of small right-angle brackets which are soldered to the ground plane of the board. The feedthroughs and J1 are then connected to the appropriate pads on the box, using short lengths of bare wire.

The vco mini-box must be mounted so that there is only a single return to common ground, in order to prevent ground loops. When mounting the vco,

CR1-CR24	1N34A, 1N100, 1N270 or equivalent germanium diode
CR25	Motorola MV1401 varactor
CR26,CR27	1N658
CR28	1N914 or 1N4148
CR29-CR32	1N4001 or equivalent 50 PiV, 1 amp silicon rectifier
CR33	Hewlett-Packard 5082-4882, Motorola MLED655, Radio Shack 276-041 or equivalent light-emitting diode
E1	insulated feedthrough terminal
L1	5-3/4 turns no. 28, closewound on 0.211" (5.5mm) diameter slug-tuned form (Miller 25A014-4)
L2	10-3/4 turns no. 28, closewound on 0.211" (5.5mm) diameter slug-tuned form (Miller 25A014-3)
L3	20 turns no. 30, closewound on 0.211" (5.5mm) diameter slug-tuned form (Miller 25A014-3)
Q1	Siliconix E300, 2N5397 or 2N5398
Q2	2N2219
Q3	2N5458, 2N5459 or Motorola MLED103
S1	2-pole, 5-position, non-shorting rotary switch
S2	3-pole, 10-position, non-shorting rotary switch
S3	4-pole, 3-position, non-shorting rotary switch
U1	Motorola MC846P quad 2-input NAND gate
U2	7490 decade counter
U3,U4	7474 dual D-type flip-flop
U5	National LM3900 quad op amp
U6	745196 or Signetics 82590 presettable decade counter
U7,U8,U9	74196 or Signetics 8290 presettable decade counter
U10	7430 8-input NAND gate
U11	7404 hex inverter (see text)
U12	745112 dual J-K flip-flop
U13	7812 or National LM340-12 12-volt regulator
U14	7805, National LM340-5 or LM309K 5-volt regulator
fig. 9. Foil pattern of the main printed-circuit board.
be sure to position it so that the feed-throughs are close to the side of the main PC board on which are located the pads designated "VAR" and "VCO." The lead between E1 on the vco and the will probably have little detrimental affect. The cable between the synthesizer and the receiver must be the 95-ohm type or 93-ohm RG-62/U.

The power transformer should sup-

Interior of the assembled synthesizer. The power supply components are located to the left of the main PC board (top). The vco is mounted on the rear wall just above the main board (bottom right). Note the holes in the vco enclosure which provide access to the tuning slugs of the coils mounted on the vco board inside.

"VCO" pad on the main board should not be more than 3 or 4 inches (7.5 or 10 cm) long. The shields of the leads going to capacitors C17, C23 and C24 are grounded to the solder lugs under those capacitors.

The coax between J1 and the output connector on the rear of the cabinet should be 95-ohm type, such as RG-180/U or RG-195/U (although using a very short piece of 50-ohm RG-174/U supply 16 to 17 volts ac at approximately 0.5 ampere. Any higher voltage only results in greater heat dissipation in regulator U13. The method by which this voltage can be obtained by modifying an inexpensive 24-volt transformer is described in reference 1.

The numbered positions on the rotary switch knobs were made by using number transfers on the skirts of the knobs. Several heavy coats of Krylon
fixative were sprayed on to keep the numbers from peeling off. The panel markings can be applied in the same manner. If you are fortunate enough to have access to a Selectric Composer, or even a good electric typewriter, the panel labeling can be typed on frisket, which is an adhesive-backed translucent
acetate. The material is virtually invisible when applied to a grey panel, against which the black type effectively contrasts. Frisket is available at art-supply dealers.

receiver modifications

At the beginning of the article, I indicated that only minor modifications had to be made to the receiver; these are shown in fig. 13. The synthesized crystal frequency is introduced into the receiver via the *spare* jack on the rear apron. The added components must be placed close to the oscillator-mixer (V3) tube socket, and the shielded connection to the *spare* jack made with 93- or 95-ohm coax, e.g., RG-62/U, RG-180/U or RG-195/U.

The existing coax lead in the receiver between *bandswitch* S1 and pin 2 of V3 is disconnected from V3 and rewired to the added relay. This relay may be a reed or "crystal can" type; its coil resistance must be at least 500 ohms in order to minimize the voltage drop across R32 in the vco.

When the synthesizer is off or is disconnected from the receiver, the normally-closed relay contacts complete the circuit between S1 and V3, allowing the receiver to function as if no changes had been made. When the synthesizer is turned on, the relay is energized by the 12-volt supply in the vco through R32 and L8 (see fig. 4), disconnecting the crystals and applying the synthesized crystal signal to the control grid (pin 2) of the oscillator section of V3. The 56-µH choke at the relay coil isolates it from the rf signal path.

A new *preselector* scale may be added to the receiver so that you don't have to consult or memorize the preselector chart in the manual. Fig. 14 is a full-scale reproduction of the new *preselector* scale and may be cut out, or photocopied if you prefer not to mutilate the magazine.

Remove the *preselector* knob and pointer and attach the scale to the front panel of the receiver, using either a spot of rubber cement or a small piece of double-sided sticky-back tape in each corner. The scale shows the approximate settings of the *preselector* control; the letter at the end of each scale segment indicates the *bandswitch* position to be used.

![Construction of the vco sub-chassis. Inductors L1, L2 and L3 are at left. Output connector is at right. Feedthrough capacitors and input connector are on rear panel. All other components are mounted on the printed-circuit board at bottom.](image)

alignment and test

After all wiring and connections have been checked and rechecked, the synthesizer is ready for the few adjustments necessary to set the vco on frequency. The only test equipment absolutely necessary is an electronic voltmeter, although a frequency counter and oscilloscope can be helpful.

Apply power to the synthesizer and
check the supply voltages to make sure that they are within five percent of the nominal values. Then make sure the reference oscillator is working by bringing a lead from the receiver antenna jack close to the crystal. Harmonics of the 100-kHz oscillator should be heard in the receiver. The oscillator may also be checked with a scope; 100-kHz square waves should be observed at pin 3 of U1, and 5-kHz square waves should be present at pin 9 of U3. If the oscillator is not working, adjust trimmer capacitor C3, although it is not necessary for the crystal to be oscillating at exactly 100 kHz at this time.

Connect an electronic voltmeter between ground and feedthrough capacitor C17 on the vco. Set the rotary switches to 9.8 MHz and adjust the tuning slug of L3 until a meter reading of 10 volts is obtained. Rotate the units switch toward zero, noting that the voltmeter reading drops with each change in the switch setting until position 3 is reached. Then rotate the tenths switch to zero, noting that the voltage continues to drop. (Actually, any switch setting below 3.4 MHz is invalid, since it is below the tuning range of the receiver preselector.) A frequency counter connected to the output of the synthesizer should indicate approximately 12.955 MHz with the frequency switches set to 9.8 MHz, and 6.155 MHz with the switches set to 3.0 MHz. The exact frequencies will be obtained only if the crystal is set to exactly 100 kHz, which adjustment is not made until the vco is aligned.

Next, set the rotary switches for a frequency of 19.8 MHz, and adjust the slug in L2 for a voltmeter reading of approximately 10 volts. Do not touch the slug in L3. Again turn the units switch toward zero and note that the voltage drops at each switch position, including position 0. Turn the tenths switch to 0 and make sure that the voltage also decreases with each step. A counter should indicate about 13.155 MHz and 22.955 MHz respectively for the minimum and maximum units and tenths switch settings.

Finally, set the rotary switches for a frequency of 29.8 MHz and adjust L1 as described in the preceding adjustment. The frequency range of the vco with the tens switch in position 2 is 23.155 to 32.955 MHz. If you find that it is not possible to obtain a 10-volt reading on the voltmeter at switch settings of 29.8 MHz, but that at some lower frequency the loop starts to lock up (as indicated by incremental changes in the voltage as the tenths or units switch positions are changed), you must change U11. I tried four 7404 hex inverters in the circuit; two worked at the highest frequency and two quit at about the 26-MHz switch settings. Thus there is every probability of getting at least one better-than-average IC out of three or four.

Connect the synthesizer output to the spare jack on the receiver, using a cable made from 93- or 95-ohm coax.
Turn on the receiver and synthesizer and set the synthesizer switches to one of the WWV frequencies suitable for good reception. Set the receiver bandswitch and preselector control to the settings specified for the frequency selected. WWV should be heard when setting its switches to the desired frequency. Then set the receiver bandswitch and preselector control to the appropriate positions and tune.

One minor difference will be noted when using the synthesizer. On the

10-meter band, the 200-kHz segments start at 28.0 MHz and progress in 200-kHz increments so that you tune from 28.4 MHz, 28.6 MHz, etc. In other words, while each segment throughout the synthesizer range will start with an even tenths digit, the crystals supplied with the receiver set the 10-meter segments at 28.5 MHz, 28.7, and 28.9 MHz.

There is one precaution which may be necessary. Even with the prototype unit enclosed in a steel box, there was still a very small amount of 60-Hz pickup from the receiver transformer when the synthesizer was placed next to either side of the receiver. (The condition also exists with the synthesizer on top of the receiver, but this arrangement would block the heat convection flow

![Diagram: Location of parts on the vco printed-circuit board.](image-url)
from the receiver and should not be used anyway.) Simply moving the synthesizer 3 to 4 inches (7.5 to 10 cm) away from either side eliminated the stray pick-up. It is entirely possible that this condition may not manifest itself with all receivers, and it will undoubtedly depend on the physical locations of the assemblies within the synthesizer cabinet. In any event, the synthesizer is still close enough to the receiver for convenient operation.

conclusions

The synthesizer satisfies all the requirements necessary to make any Collins 75S a general-coverage receiver. Spurious signals are down a minimum of 80 dB on all frequencies, and are down better than 90 dB on most. The major spurs appear 10 kHz either side of the incoming signal, and are caused by the second harmonic of the 5-kHz reference frequency. The reference frequency itself is weaker than the harmonic because of the attenuation provided by the parallel-T filter. Although the suppression of the spurious sidebands was achieved at the expense of fast lock-up time, a one- or two-second lock-up is of little consequence, since it takes that long to move your hand from the synthesizer switches and tune the receiver.

The synthesizer has not been used with a 75S receiver operating in transceive mode with a 32S transmitter, although there is little reason to doubt that it will work. There should be sufficient sideband attenuation to keep spurious outputs from the transmitter at least 60 dB down. The only possibility of trouble might be rf getting back into the synthesizer from the transmitter, which would be simply a shielding problem. However, until and if new amateur bands are forthcoming, there is no reason to use the synthesizer for transmitting except possibly on part of the 10-meter band.

acknowledgements

The following were instrumental in enabling me to complete this project; without their assistance this article would never have been written: Cliff Buttschardt, WGHDO, for the use of his 75S-3 receiver; Duke Moran, WGSPB, who etched the prototype PC boards; Paul Zander, WB6GNM, for his invaluable help in the design of the phase-locked loop; and Bob Melvin, W6VSV, who listened to my problems and even made a suggestion or two.

references

fig. 14. New receiver preselector scale for the Collins 75S receiver.

fig. 13. Wiring changes to be made to the Collins 75S receiver. Make sure that the relay will pull in when it is connected in series with a 110-ohm resistor to a 12-volt dc supply.
100-watt
linear amplifier
for QRP rigs

To dispose of the first question apt to be asked — "Why add a linear amplifier to a QRP rig since it defeats the whole idea of QRP operation?" — I'd like to say that while 2 to 5 watts can do wonders during the day, night operation is a different story. The prevailing sunspot activity precludes the predictable propagation conditions of 10 or 15 years ago, even on the 40- and 80-meter bands. A little boost to the output of a QRP rig means the difference between fun and drudgery during nighttime operation. When good conditions return, a linear amplifier probably won't be needed for low-power work.

I built this amplifier to augment a homebrew rig that didn't live up to my expectations — the rig had only about 5 watts output on ssb. The linear amplifier described here should prove to be a useful adjunct to low-power transmitters in the 2 to 10 watt range.

*Route 2, Box 615, Brentwood, Calif. 94513.
circuit

The schematic (fig. 1) is simple, effective, and uncluttered. A grounded-grid, grounded screen circuit is used without the usual blower for tube cooling. Any of the Eimac 4X or 4CX tubes will perform equally well.

In the late 1950s, I witnessed some tests at Eimac that were run to see what these tubes would do without forced air cooling. The tests indicated that the tubes would dissipate 60 to 70 watts under key down operation — however, the tubes were mounted in the open, with no restriction to ambient air flow. Under intermittent operation, it appears that a tube of this family could safely dissipate at least 50 watts; perhaps a little more if cooling fins are provided. Again, the qualifier is: unrestricted air flow around the tube. A further advantage is that the heater-cathode isolation in these tubes is excellent; no filament chokes are required at this power level.

One other precaution should be observed. Although the heater is rated at 6.0 volts ±5%, it is recommended that 6.0 volts be considered the upper limit. A 50-ohm, 10-watt resistor in series with the primary of a 6.3 Vac, 2.5 amp filament transformer should do the trick. The heater contributes a large part of the heat to be dissipated, and tube life is prolonged by keeping the heater voltage on the low side.

A noninductive, 1-watt carbon resistor (R1) of a few hundred ohms is provided for situations where excitation is excessive with no provision for reducing it. The resistor should be selected to obtain recommended operating conditions. While this amplifier is a two-band affair for 80 and 40 meters, additional taps can, of course, be provided for other bands on the pi-net output coil.

operating conditions

The amplifier has a power gain of about ten with both grids grounded, so 5 watts input should yield about 50 watts output, with a plate current of 100 mA and E_b at 1 kV. This current is 100 mA as read on the meter in the CW mode. Although up to 150 mA can be obtained with 7 watts input on CW, it is recommended that the series grid resistor be switched in to hold the plate current to 100 mA on ssb or 150 mA on CW. As with any low duty cycle amplifier, don't hold the key down longer than necessary.

Static plate current (no drive) is about 10 mA. Linearity could be improved by a higher idling current, but observations with a spectrum analyzer indicate that, with 10 mA static plate current, the bandwidth is entirely

fig. 1. QRP linear schematic. Any of the 4X or 4CX series of tubes may be used. Up to 50 watts dissipation is possible without a blower providing tube is mounted in the clear.
acceptable, and reports have been universally good.

construction

An aluminum chassis, 2x6x9 inches (5x15x23cm) in an LMB cabinet constructed with perforated aluminum for sides top and bottom, easily contains the amplifier with power supply. The LMB cabinet (model CO-2) measures 6½ inches high by 10 inches deep by 13 inches wide (16.5x25x33cm) excluding hood. The chassis was purposely selected to improve air circulation. The tube socket is mounted as close as possible to one rear corner, both for short leads from coax connectors and again to improve cooling by air circulation over the chassis edge (see photo).

While the built-in screen bypass capacitor of the SK-600 socket is superfluous, open space around the tube pins permits air flow around the header (tube base). Old timers will remember that these tubes also fit in a loctal socket. A 4-inch (10.2cm) square piece of perforated aluminum with chassis cutout should also be suitable.

The grid resistor shorting switch, if used, should be mounted close to the tube, which means a shaft extension. The rf chokes are ordinary garden-variety 2 mH, 100 mA chokes with the exception of the plate choke; but even here, tests indicated that the smaller chokes should hold up.

The 10-μH pi-net coil (46 turns, 7/8 inch [2.2cm] OD, 3 inches [7.6cm] long, air wound) is barely large enough to cover the low end of 80 meters and is tapped at slightly less than one-half for 40 meters. The coil is mounted on the switch. A paralleled BC tuning capacitor suffices for the output. Additional fixed capacitance to total 1000 pF can be used, if necessary, for 80 meters.

power supply

A 50-VA isolation transformer is used with 120 Vac input and 240 Vac output to a voltage tripler arrangement that provides the 1-kV plate supply. Inspection of recent catalogs indicates that 115/230 V primary, 115 V secondary transformers are about all that are available now (about $10). In this case, the secondary may be used for the primary with a slight loss in output voltage and regulation. The filter capacitors and diodes mount under the chassis, and since there isn't much else there, no under chassis photograph is provided. A separate heater transformer and switch are provided. The tube heater should be allowed to warm up at least a half minute before applying plate voltage. Static plate current provides "bleeder" protection.

summary

This small linear compares favorably, both in size and performance, with commercially built units of the same power class. It has held its own with other 200-watt-plus units and has provided many solid contacts during the worst interference hours of the evening.

Ham Radio
When Kenwood entered the amateur market, we did it with the finest technology and craftsmanship available. Thousands of discerning amateurs have selected Kenwood... after comparing specifications, features and prices... and finally, comparing its performance against all competition. The result has been Kenwood's phenomenal acceptance by the amateur world. And with this acceptance we pledge to constantly improve our products as technology advances and to bring forth new products that will meet tomorrow's needs. That is why we are the "pacesetter in amateur radio."

KENWOOD

The 'Twins' have a new look!

The R-599D and the T-599D is the most versatile solid state receiver and transmitter combination on the ham bands. Thousands of "Twins" have proven themselves through daily use. Everything that made them the best remain... only their appearance has changed.

Available at select Kenwood dealers throughout the U.S.

Kenwood... pacesetter in amateur radio

Distributed by TRIO-KENWOOD COMMUNICATIONS INC.

116 East Alondra / Gardena, California 90248
an introduction to microprocessors

Microprocessors are probably the single, most exciting development in the entire field of electronics, and in this article, the first of a series on microprocessors, we would like briefly to compare them to programmable calculators for typical laboratory applications.

The best description of what a microprocessor is, and isn't, was given by Laurence Altman in a recent issue of Electronics: "A microprocessor is not a computer but only part of one. To make a computer out of a microprocessor requires the addition of memory for its control program, plus input and output circuits to operate peripheral equipment . . . What a microprocessor is, then, is the control and processing portion of a small computer or microcomputer. Moreover, it has come to mean the kind of processor that can be built with LSI mps or, more recently, bipolar circuitry, usually on one chip. Like all computer processors, microprocessors can handle both arithmetic and logic data in bit-parallel fashion under control of a program. But they are distinguished both from a minicomputer processor by their use of LSI with its lower power and costs, and from other LSI devices (except calculator chips) by their programmable behavior."

Thus, a microprocessor is not a totally self-contained computer-on-a-chip, nor is it able to complete with and replace the central processing unit (CPU) within a computer. Existing microprocessor chips are simply much too slow for such applications. The niche that microprocessors will soon fill is in the creation of "smart" input/output devices to a computer that relieve the computer of the drudgery associated with the data acquisition from and the control of such devices. In other words, microprocessors will shortly become very important tools in computer interfacing, a trend that will accelerate as the price of microprocessor chips declines, as more individuals develop the capability to handle such chips, and as more manufacturers incorporate such chips in laboratory instruments and other types of devices that communicate with computers.

The advantages of interfacing with microprocessors are at least fourfold:

1. Microprocessor communications are simple. The communications capability of a microprocessor system is a big point in its favor. Most such systems come with a built-in asynchronous serial port, and thus can communicate with teleprinters or with any device that also has an asynchronous serial port. The microprocessor is not inherently limited to only a single asynchronous port; it is

*Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Titus is with Tychon, Inc., Blacksburg, Virginia.
very easy to add more such ports and thus permit the microprocessor system to communicate serially with other external devices such as laboratory instruments that are interfaced with Analog Devices' Serdex modules.

Microprocessor systems have parallel input ports for inputs from various digital sensor instruments, including voltmeters, panel meters, frequency meters, and counters. Any type of digital circuit that can supply parallel digital data can be used in conjunction with a microprocessor system.

2. Microprocessor systems are inexpensive. Such systems currently range in price from several hundred dollars to several thousand dollars, depending upon the capability of the system. They are available from Intel, Prolog Corporation, E & L Instruments, Control Logic, and other companies. The number of manufacturers that offer microprocessor systems is increasing rapidly.

3. Microprocessor systems are flexible and powerful. Microprocessors have the ability to make decisions. (Is an input value from a digital sensor too high or too low? If it is too high, then open a valve and release pressure on the system. If it is too low, then open another valve and add gas to the system.) Microprocessors use software to replace hardware; i.e., microprocessor programs replace complicated hard-wired random logic digital electronic circuits that perform a variety of functions, including sequential logic, non-sequential logic, simple arithmetic calculations, and comparison of digital signals. Manufacturers of microprocessor systems provide you with both read/write memory, for temporary data and program storage, and with read-only memory, which is easily programmed with the aid of a PROM programmer. Once you have written and tested a program using read/write memory that can acquire data and perform desired control operations, you can "burn" it into a programmable read-only memory (PROM) IC and then use that chip day after day to operate the microprocessor system.

You never have to worry about a power failure causing your program to be erased. The program can remain in the PROM for up to twenty years; it is always available for reloading into a read/write memory. The program can be easily modified to accommodate changed data acquisition or control requirements. You can develop a whole repertoire of PROM chips to accomplish different functions.

4. Microprocessor systems are capable of handling most laboratory data acquisition requirements. Current microprocessor systems can acquire digital data at the rate of five hundred 16-bit words per second. Higher data acquisition rates are occasionally claimed by manufacturers, but they frequently overlook the real software overhead that is needed, for example, to input the data, check if the data are ready, and compare the data to make sure that they are within the right range of values.

In the area of mathematical computations, microprocessors can perform integer multiplications and divisions, i.e., 3 times 4 or 5 divided by 7, with reasonable accuracy. A floating-point package available with the 8-bit Intel microprocessor allows you to perform additions, subtractions, multiplications, and divisions over the range of $\pm10^{32}$ to $\pm10^{-32}$. This package requires four read-only memories, which means that 1000 words of your microprocessor are

This the first of a new series of articles on the subject of microprocessors which we will be presenting in future months. Material presented here is reprinted with permission from American Laboratory, June, 1975, copyright © International Scientific Communications, Inc., Fairfield, Connecticut, 1975.
dedicated to the floating-point package. Execution times are slow, so you must worry about the following types of questions: Do you acquire a data point and then operate upon it and still have sufficient time to acquire the next data point? Or must you store a complete block of data and then operate upon the block as a whole? If you store a block of data, how much additional memory is required for the microprocessor? Finally, is the system sufficiently complex and expensive that it can be replaced by a minicomputer or programmable calculator?

The strong point of the microprocessor is that it can perform control functions quickly, easily, and inexpensively. The microprocessor can turn devices on and off. It can regulate physical parameters such as temperature, pressure, velocity, and flow. Since it lacks special functions such as log, x^Y, sine, cosine, square root, hyperbolic sine, and hyperbolic cosine, it cannot perform sophisticated mathematical computations. This is one reason why many individuals are looking very seriously at programmable calculators, which start in the vicinity of $3000; are available from Wang, Tektronix, and Hewlett-Packard; and allow the user to program with complex functions such as sine, cosine, log, and x^Y. The programmable calculators, however, are not nearly as convenient to use as microprocessors in the control of equipment and processes.

As a final point, we would like to caution you about making any long-term decisions concerning both microprocessors and programmable calculators. The comments above apply to today's technology, which is precisely what you can do today. The price/performance ratio changes from day to day so that a decision that is valid today may not be the same one that would be proper in a month or a year from now; e.g., 8-bit bipolar microprocessors now available from Intel have cycle times of 50 nanoseconds. This speed is a little bit difficult to precisely define for the user, but it represents probably a decade of improvement in overall microprocessor speed when compared to any microprocessor available a year ago.

If you can postpone your problem, you may find that you can solve it differently and/or less expensively a year from now. Digital electronics is without doubt the fastest changing technological field today. You, as an amateur, engineer or scientist, will be a major beneficiary of the changes that are occurring. However, to take proper advantage of the new technology, you will have to spend some time learning the jargon and understanding the tradeoffs that can be made.

Microprocessor equipment, if cared for properly, has an operational life of at least ten years but a functional life that may only be several years. A reasonable strategy would be to postpone the purchase of a microprocessor until the price/performance ratio justifies a purchase, and then to go ahead and purchase a system with the knowledge that the same system will probably cost at least 20% less for the same performance a year later. We believe that not too much time will pass before all of us who are involved in research or manufacturing and depend upon instrumentation will have to take advantage of the power of microprocessors if we are to continue to have viable products or research programs.

We recommend that you give careful consideration to the ability to interface newly acquired digital instruments to future ones that will come on the market within the next several years. We emphasize again that the existence of asynchronous serial ports on your digital instruments will allow you to hedge your bets for the future.

reference
Rugged Giants
Tri-Ex Sky Needle Towers
Give your antennas a big lift!

Regular and heavy duty towers

delivery. Act now! Write for your free brochure, today.

*Three Hi-Gain 10, 15, 20M long johns.
**Log-periodic antenna for MARS use 13 to 30 MHz.

This advanced state-of-the-art "Sky Needle" is fast earning its own special place of honor in the ham-communications field. Tri-Ex takes great pride in being the developer and first to build this crank-up, freestanding tubular tower for the amateur. Uniquely eye-pleasing, the slim and graceful "Sky Needle" is a symbol of pride to its owner as well as proof positive that he has the very best in towers. Tri-Ex offers immediate

<table>
<thead>
<tr>
<th>MODEL</th>
<th>EXTENDED</th>
<th>NESTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-240</td>
<td>40'</td>
<td>22'</td>
</tr>
<tr>
<td>TM-35S</td>
<td>58'</td>
<td>22(\frac{1}{2})'</td>
</tr>
<tr>
<td>TM-370/370HD</td>
<td>70'</td>
<td>27'</td>
</tr>
<tr>
<td>TM-490</td>
<td>90'</td>
<td>26'</td>
</tr>
<tr>
<td>TM-5100R</td>
<td>100'</td>
<td>29'</td>
</tr>
</tbody>
</table>

Tri-Ex TOWER CORPORATION
7182 RASMUSSEN AVE, VISALIA, CALIF. 93277
squelch circuits
for transistor radios

Agc-activated squelch can easily be added to portable transistor radios

Inexpensive transistorized portable radios can become excellent monitor receivers for vhf operators (a-m and fm) with the addition of one of the simple squelch circuits presented in this article. The squelch will get rid of the constant and fatiguing hash and noise usually put out under no-signal conditions, making the portable a much more useful and enjoyable radio to listen to. I have had much success in adding the circuits shown here to several portables. It should be possible to adapt this same basic approach to just about any existing portable receiver.

A brief explanation of squelch circuitry seems appropriate at this point.

During no-signal conditions, the audio output of a receiver is random and unpleasant noise. When a signal is received, the gain of the receiver is reduced or limited by agc action, and the level of noise output is reduced. The greater the signal strength, the lower the noise output, and hence the term "receiver quieting." By adding circuitry which detects the degree to which the receiver has been quieted, and by using this circuitry to mute or un-mute the audio output, squelch may be added to the receiver.

Note, that with the squelch I have just described the operator may adjust the sensitivity of his receiver in terms of a minimum signal-to-noise ratio needed to produce an audio output signal. By making this signal-to-noise ratio sufficiently high, the operator can be sure that whenever the receiver produces an audio output it will contain a signal of a

fig. 1. A typical ratio detector found in many transistor radios. Agc voltage may be taken from the (+) or (-) terminals.
certain minimum readability. At first this might sound like intentionally reducing the sensitivity of your receiver, but this is not so. With sophisticated circuits, the opening of the receiver squelch alerts the operator to the presence of marginal level signals that might otherwise have gone unnoticed in the noise. Unfortunately, these noise-operated squelch circuits are somewhat complex, and they are beyond the scope of this article.

Another method of producing squelch action is to make use of the agc or other signal level dependent voltages to control audio muting. The only drawback with this approach is that sufficiently strong noise or interference will also open the squelch. However, for the purpose intended here they work quite acceptably.

detector

Most inexpensive portable receivers use the common ratio detector similar to the one shown in fig. 1. This detector develops significant positive and negative voltages during signal conditions, either of which may be used for control of the audio muting. Generally, the audio section of a portable receiver will closely resemble the circuit of fig. 2. Audio from the detector is coupled to Q1, a preamplifier, (which is sometimes omitted in inexpensive sets). The output is coupled through the volume control.
to the driver stage, Q2, which in turn drives the output stage. These sections are easily located by finding the audio transformers associated with them, and it is seldom necessary to resort to a schematic to find the desired stages.

![Schematics](image)

fig. 4. A "brute force" squelch circuit is shown at (A); variations of the circuit are shown in (B) and (C). A spst switch may be placed in the control line for on/off control of the squelch.

simple squelch

The point marked X in the emitter of Q2 is a convenient point to add squelch control to the audio stages. By breaking the circuit at this point and adding the muting circuit of fig. 3A, a simple squelch circuit is obtained. In some cases, small amounts of signal or noise will leak through even when this stage is supposedly squelched. Also, an increase in distortion may be noticed at high volume levels. A variation of this circuit is also shown, using an npn transistor, in fig. 3B.

improved design

Somewhat more positive acting squelch circuits which do not tend to cause distortion or suffer from incomplete muting are shown in fig. 4. In these circuits, the emitter signal path of the driving transistor is not broken, but the biasing of the driver is upset when no signal is present. But with even a small signal present, the bias is sharply returned to normal and audio output is restored.

conclusion

The several approaches to agc-controlled squelch shown here can be easily adapted to most portable radios. Receivers using both npn and pnp transistors may be accommodated, and junk box transistors seem to work a great percentage of the time. If you are unable to locate a source of agc voltage, do a little poking around with a vtm until you find a voltage source that varies with signal strength. That is all that is needed to add squelch to a portable radio, making it a much more useful and enjoyable low cost monitor receiver.

ham radio
NEW FROM ATLAS
All L.E.D. Dot Matrix Display

THE ATLAS 210x/215x
- Solid state SSB/CW transceivers
- 200 watts P.E.P. input
- No transmitter tuning
- The ultimate in sensitivity, selectivity, and overload immunity.
- Plus extended frequency coverage for MARS operation when used with 10x crystal oscillator.

210x or 215x .. $649.
AC Console 110/220V $139.
Portable AC Supply 110/220V $95.
Plug-in Mobile kit $44.
10x Osc. less crystals $55.

Available now at your Atlas dealer.

For complete details see your Atlas dealer. Or, drop us a card and we'll mail you a brochure with dealer list.

"SEE YOU AT SAROC '76!"

Season's Greetings from the gang at Atlas
A 2C39 power amplifier capable of providing 30 watts output on 2304 MHz was described in the February, 1975, issue of *Ham Radio*. Its design involves a combination of the best characteristics of various experimental 2.3 GHz amplifier models I have built and tested over the past three years. Each succeeding version differed from the previous one in ways which both improved performance and simplified construction.

During the same three-year period, on-the-air tests over a ten-mile path were performed between WA9HUV and both W9DCN and K9CNN, first working 432/2304 crossband, and later using 2304 MHz two-way. Signals were well over S9 on 2304 MHz, in spite of the 1296-MHz antenna used by W9DCN. Contacts over longer distances have
Developing a companion doubler stage capable of driving the power amplifier to full power output with drive to spare. Rather than starting from scratch, it was decided to convert one of the earlier power amplifiers into a doubler by lengthening the cathode cavity to 1-3/8 inch (35mm). No changes were made to the amplifier plate circuit. The resulting doubler circuit is very similar to the power amplifier.

Because the doubler plate circuit is identical to that of the companion power amplifier, only the doubler cathode circuit will be described here. Details of the plate circuit can be obtained from reference 1.

Heater-cathode assembly

The heater-cathode assembly shown in fig. 2 is nearly identical to the one used in the amplifier except that the heater-cathode line extends into the cavity 1-1/16 inches (27mm). The 2-56 brass flat-head machine screw holds a solder lug to connect the cathode side of the heater to the appropriate circuitry (this detail was omitted from the amplifier article). Attach the screw to the plate with a 3/16 inch (4.5mm)

december 1975
hexagonal nut and then sand the inside surface of the plate flat to make sure the screw head does not project beyond the surface of the plate. Finally, position the plate over the finger-stock assembly and solder the two together as shown in fig. 2.

The completed heater-cathode assembly should be insulated from the cathode partition with insulating shoulder washers and 0.005 inch (0.1mm) Teflon sheet.

cathode piston tuner

The cathode partition is identical to the one described for use with the amplifier and is shown in fig. 3. Rather than using a brass bushing from an old volume control for the piston trimmer, a 3/4 inch (19mm) diameter brass cylinder 5/8 inch (16mm) long is soldered to a length of 1/4 inch (6.5mm) diameter brass rod. Then a 1-1/4 inch (32mm) length of 3/8-32 threaded brass sleeving is slipped over the 1/4 inch (6.5mm) shaft and soldered in place as shown in fig. 4. Soldering should be done with the aid of a propane torch, using solder sparingly. Finally, the tuner and sleeve assembly are screwed into the tuner bushing from inside the cathode partition.

If 3/8-32 threaded brass tubing is not available, use 3/8-28 threaded lamp fixture brass tubing which is obtainable in most hardware stores. In this case, the tuning shaft should be made of 5/16 inch (8mm) diameter brass rod to fit inside the lamp hardware. Test the threaded tubing with a magnet to make sure it is not brass-plated steel. Before reassembly with the cathode cavity, the cathode input coupling circuit is assembled as described in the next section.

Helical springs are used to put pressure on the threads of the tuning piston trimmer threads. These springs, which are used on the amplifier as well as the power doubler, are 9/32 inch (7mm) inside diameter. A brass collar with set screws is used at the far end of the tuning shaft to place the spring in compression. These springs are quite important.
as tuning is likely to be erratic if they are omitted.

cathode coupling assembly

The 1/8 inch (3mm) and 5/32 inch (4mm) OD brass tubing needed to fabricate the cathode coupler (fig. 5) can be obtained from most hobby shops. The connector end of the assembly is soldered to the center conductor of the type-N coaxial connector. The 1/8 inch (3mm) end is slotted with a fine (32 teeth per inch) hacksaw blade. Spread the slotted end slightly to provide a tight slide fit with the cavity end of the coupler assembly.

The cavity end is screwed into the 3/16 inch (5mm) diameter hole in the grid cavity plate. Solder a flat brass washer on the cavity end as shown to provide a good rf contact on the inside of the cavity.

When assembling the cathode partition on the cathode cavity, slide the connector end of the coupler into the cavity end. If the instructions have been carefully followed, the two parts should slide together without interference.

tuning up

The circuit diagram of the frequency doubler shown in fig. 1 is identical to the amplifier wiring diagram except for

![View of cathode cavity before installation of the cathode partition. Since an earlier model of the 2304 MHz power amplifier was modified for use as a doubler, parts in this do not correspond exactly with figs. 2 through 5.](image)

![fig. 4. Cathode piston tuner assembly. Brass rod is soldered to 3/8-32 threaded sleeve.](image)

![fig. 5. Cathode coupling assembly. Brass tubing can be obtained from most hobby shops.](image)
Front view of completely assembled 1152 to 2304 MHz power doubler.

Component values and the meter ranges. A 7.6-volt zener diode is used instead of the 6.3-volt unit to reduce the conduction angle of the plate current for better doubler efficiency. The quiescent (no-drive) plate current should be set to approximately 25 mA by adjusting the position of the slider on the 100 ohm variable resistor.

Measurements were made using a calorimeter which indicate that the doubler has a power gain of approximately 5 dB. It is interesting to note that this doubler provides about 8 dB more power output on 2304 MHz than would be expected from a varactor doubler with the same drive power. Therefore, with less than one watt of drive at 1152 MHz, more than sufficient output is obtained to drive the power amplifier stage to full output. It is recommended that the primary winding of the doubler plate supply transformer be controlled with a variable transformer so that drive to the power amplifier can be adjusted to the desired level.

Reference
INSTRUCTIONS
Cut on Dotted Line
FILL IN ORDER FORM
LEAVE IN CONSPICUOUS PLACE
(It's not very subtle, but it may work.)

RECEIVER KITS
50-144-220-432 MHz

RX-50 $59.95 RX-144, RX-220 $69.95 RX-432 $79.95

INEXPENSIVE AND UNIQUE MODULAR CONCEPT
- Performance equal to commercial equipment
- Monitor receivers
- Repeaters: using our transmitter, 15 or 25 watt amplifier and COR modules
- 10 channel auto-scan receivers: using our SC-3 scanner kit and CD-1 crystal deck

All Receiver kits are dual conversion with squelch and COR output.

10 CHANNEL SCANNING
SC3 – Capable of scanning up to 10 channels. Scan delay allows both sides of a conversation to be monitored without the scan starting each time the carrier drops. The priority feature allows the user to program the scanner to return to his favorite channel whenever it is active. Price $19.95 kit

CD-1 – A ten channel receive crystal deck which utilizes diode switching to select the crystal position required. This module can be used to expand your present single channel receiver to multichannel capability. Price $6.95 kit

Mail to: VHF ENGINEERING, P.O. Box 1921-H, Binghamton, NY 13902 Ph. 607-723-9574

ORDER FORM

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
<th>Extension</th>
</tr>
</thead>
</table>

Name
Address
City
State
Zip

Terms: C.O.D., cash or check with order. We also accept BankAmericard and Master Charge.
Claims: Notify VHF and the carrier of damage within seven (7) days of receipt of shipment.
Returns: Obtain authorization from VHF before returning any merchandise. Price and specifications subject to change without notice.
Shipping information: All shipments are F.O.B. Binghamton, N.Y. 13902. Shipments will be made by the most convenient method. Please include sufficient funds to cover shipping and handling. Allow $1.25 for each item.
Two- and three-pole bandpass filters for 1296 MHz are shown schematically in fig. 1. In each of the filters parallel-resonant sections, consisting of microstrip inductors and piston trimmer capacitors, are loosely top coupled. The input and output striplines are tapped down on the inductors to provide a match to 50 ohms. The two-pole bandpass filter is functionally equivalent to the filters used at the input of the RF and LO ports of my 1296-MHz double-balanced mixer. In the design presented here, however, the coupling capacitor, C_c, formerly a 0.5 pF chip capacitor, has been replaced by the stray coupling capacitance between the stator ends of trimmers C1 and C2.

As can be seen from the swept frequency response curve in fig. 2, these microstrip filters are relatively low-Q devices. The steepness of the rejection skirts may be sacrificed somewhat to minimize passband insertion loss, which for this design averages around 1 dB.

construction

Full-size artwork for the printed-
Circuit microstrip line filters is shown in fig. 3 and is designed for 1/16 inch (1.5mm) thick G-10 epoxy-glass printed-circuit board, double clad with 1 ounce copper.\(^*\) The unetched side of the board serves as a groundplane. Board dimensions are such that the filters mount easily in a miniature die-cast aluminum box such as a Pomona 2417. The cutaway view of fig. 4 shows the method of mounting the piston trimmer capacitors on the circuit board.

With the circuit values shown, these filters can be adjusted to resonate anywhere in the range between 1100 and 1500 MHz. The easiest method to adjust for resonance at 1296 MHz is to connect a weak-signal source through the filter into a receiver, and adjust the trimmer capacitors for maximum received signal. Since the output impedance of the signal source and the input impedance to the receiver may deviate substantially from 50 ohms, it's a good idea to temporarily install fixed attenuators at the input and output of the filter while tuning as shown in fig. 5. There is a certain amount of interaction between the trimmer capacitors so the adjust-

\(^*\)Tuned and tested two- and three-pole bandpass filters for 1296 MHz are available from Microcomm. For complete specifications and prices, send a self-addressed, stamped envelope to Microcomm, 14908 Sandy Lane, San Jose, California 95124.

fig. 1. Two- and three-pole microstrip line bandpass filters which tune the range from 1100 to 1500 MHz. Full-size printed-circuit layouts for these filters are shown in fig. 3.

fig. 2. Swept frequency response of the two- and three-pole microstrip line filters (measured with a Hewlett-Packard network analyzer and X-Y plotter). The 3 dB bandwidth is 150 MHz and passband insertion loss is about 1 dB. The 20-dB bandwidth is 320 MHz for the 3-pole filter, 570 MHz for the two-pole design.
ments should be repeated several times to insure that you have the filters tuned for minimum insertion loss.

If the filter is to be used to reduce the spurious output of a local-oscillator chain, alignment to the desired passband frequency is most easily accomplished by placing the filter in the line between the LO and the mixer and adjusting the filter for maximum indicated mixer current (fig. 6).

![Diagram of filter alignment](attachment:filter_alignment.png)

fig. 6. Method of mounting the piston trimmer capacitors on the microstriplines.

applications

Most amateurs who are active on 1296 MHz will probably want to have several of these bandpass filters available on their workbench. In general, accurate measurements on any two-port device are enhanced by the application of filtering at each port. Microstrip-line amplifiers, for example, tend to be extremely broadband; since transistors tend to have higher gain at lower frequencies, any low-frequency spurious which is applied to the amplifier will be amplified more than the desired in-band signals. It is not unlikely, in fact, for lower frequency, out-of-band signals to actually force an amplifier into gain compression. Bandpass filters at the input and output of an amplifier under test will thus aid considerably in making accurate gain and dynamic range measurements.

In operational equipment it’s a good idea to place bandpass filters between each wideband stage as shown in fig. 7. The filter’s 1 dB or so of insertion loss is more than offset by the elimination of image signals and spurious responses. For maximum image rejection it is recommended that the more selective three-pole filter be installed between all active stages. In the local-oscillator chain, where harmonically related spurious signals are separated from the pass-band by an octave or more, the simpler two-pole resonators are usually sufficient.

acknowledgements

I would like to thank Marvin Wahl, W6FUV, for critiquing the design of these filters, and Stu Rumley, WB6LOU, for assisting in the swept-frequency response measurements.

![Diagram of weak-signal alignment](attachment:weak_signal_alignment.png)

fig. 5. Using a weak-signal source to align a filter to 1296 MHz. The 3 dB attenuators swamp out any impedance mismatches.
fig. 6. Bandpass filter can be adjusted to the
local-oscillator output frequency by tuning
the filter for maximum mixer current.

references
1. Henry Meyer, Jr., W6GGV, "A Crystal-
 Controlled 1296-MHz Converter," QST, Sep-
2. John Specialny, Jr., W3HIX, "1296-MHz
3. Donald Nelson, WB2EGZ, "Modernizing a
 Classic 1296-MHz Converter," QST, Decem-
4. N. H. Sandford, VK4ZT, "Solid-State
 1296-MHz Converter," ham radio, November,
5. William O. Troetschel, K6UQH, "1296 Re-
6. H. Paul Shuch, WA6UAM, "How to Use
 Double-Balanced Mixers on 1296 MHz," ham

ham radio

fig. 7. Installation of bandpass filters in a typi-
cal 1296-MHz transmitter and receiver. Three-
pole filters are recommended between active
stages, as discussed in the text.
uhf frequency scaler

New Fairchild 11C90 decade counter IC is a direct plug-in replacement for the popular 95H90 that extends operation to above 500 MHz.

Fairchild Semiconductor has introduced another outstanding IC in the 11C00 series which should be of immediate interest to amateurs — the 11C90, a pin-for-pin replacement for the popular 95H90 that has a minimum guaranteed toggle frequency of 520 MHz from 0°C to +75°C. At its best, the new 11C90 is a complete front end for a 700 MHz frequency counter (typical toggle frequency at 25°C).*

The 11C90 uhf divide-by-10/11 prescaler makes use of Fairchild's Isoplanar II technology for high speed with reasonable power dissipation. Pins which were unused on the 95H90 decade prescaler are used on the 11C90 to provide a reference voltage which centers the input clock voltage about the switching threshold and allows direct capacitive coupling to the signal source or test antenna. An on-chip ECL-to-TTL level converter is capable of driving ten TTL loads and eliminates the need for any external output interface circuitry.

circuit operation

To take full advantage of the 11C90's uhf counting ability, a circuit such as that shown in fig. 1 should be built or derived from an existing 95H90 layout. Pin 13 (TTL V_{EE}) should be tied to ground (low) if the TTL output (pin 11) is used. If only the ECL output

*The 11C90 is available now from franchised Fairchild distributors worldwide for $16.00 in small quantities.
(pin 8) is used, pin 13 may be left open to reduce power consumption.

A reference voltage is generated internally across a 400-ohm resistor to the \(V_{BB} \) supply and is present at pin 15 (\(V_{ref} \)). This completely eliminates any need for an external biasing network.

Pins 6 and 7 of the 11C90 are uncommitted 2000-ohm resistors which are internally connected to the mode control inputs, \(M_1 \) and \(M_2 \). When tied high (+5 volts) these resistors allow the associated mode control input to be driven from TTL; if these inputs are left open or tied low, the mode control inputs offer, respectively, unterminated or terminated ECL loads to the drivers.

The mode control inputs are useful primarily when the 11C90 is employed in the divide by 10/11 mode to produce non-standard divide ratios such as those used in pulse swallowing for frequency synthesis. The 11C90 logic symbol (fig. 2) and truth table in table 1 should aid in understanding the device.

Circuit layout, although not critical, can be used to enhance the high-frequency operation of the 11C90. Proper power supply decoupling, broad ground connections, short signal runs, and short leads (sockets are not recommended) will all help the user to reap the maximum performance that has been built into the device. The 11C90 typically requires only 65 mA as compared to 90 mA for the 95H90, so it runs much cooler than its predecessor.

![fig. 1. Divide-by-10 uhf prescaler has a minimum guaranteed toggle frequency of 520 MHz. Typical toggle frequency at \(25^\circ C \) is 700 MHz.](image)

![fig. 2. Logic symbol for the Fairchild 11C90. Mode control inputs \(M_1 \) and \(M_2 \), and \(RM_1 \) and \(RM_2 \) inputs are discussed in text. The IC includes a built-in ECL-to-TTL converter.](image)

table 1. Mode selection for the 11C90. Low is indicated by \(L \), high by \(H \).

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>(M_2)</th>
<th>divide by</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L)</td>
<td>(L)</td>
<td>11</td>
</tr>
<tr>
<td>(H)</td>
<td>(L)</td>
<td>10</td>
</tr>
<tr>
<td>(L)</td>
<td>(H)</td>
<td>10</td>
</tr>
<tr>
<td>(H)</td>
<td>(H)</td>
<td>10</td>
</tr>
</tbody>
</table>

summary

The 11C00 family of sub-nanosecond logic now consists of nine devices ranging from the 11C05 prescaler to the 11C01 gate package, and includes the 11C58, a 150-MHz voltage-controlled monostable oscillator which features a 4:1 frequency range with 2-volt dynamic range. These new devices obviously open up a whole new range of frequency synthesizer possibilities, but that’s another story.

references

quadrifilar toroid

The prevalence of roller inductors in transmitters and antenna couplers attests to the need for adjustability. The quadrifilar toroid limits the adjustability to discrete steps but offers the advantages of small size, internal field requiring little if any shielding, and balun applications.

The ends of the four, parallel, tightly-coupled windings are connected into the desired configuration by an octal socket and tube base. Of several octal sockets I tested those with “wrap-around” pins consistently measured 0.003 dc ohm per contact while the “edge-bite” pins varied from 0.003 ohm for a few pins to many times that value for most. Obviously only the “wrap-around” octal socket is recommended and preferably in ceramic or mica-filled bakelite. If a low-resistance 12-point switch or plug-socket can be found, a hexifilar toroid with inductance ratios of 1, 4, 9, 16, 25 and 36 can be built.

This example of a quadrifilar toroid consists of an Amidon T-200-6 toroidal core with four windings of 16 turns each of number 12 (2.1mm) enamelled...
Fig. 1 shows the socket connections and the measured inductance values.

In balun service the four independent windings lend themselves to several configurations; three of the simpler forms are shown in Fig. 2. The easy access to the terminals suggests other arrangements.

The frequency response of the 1:1 balun is flat to at least 20 MHz (the limit of my sweep generator) and probably well beyond. Even at one-half and twice termination the smooth roll-off dropped only 30 and 20 per cent, respectively, at 20 MHz.

R.S. Naslund, W9LL

technique speeds antenna tuner adjustment

This article deals with a simple and accurate procedure for tuning or adjusting antenna tuners without using a transmitter or a standing-wave bridge. To avoid some possible confusion the term antenna tuner refers to such devices as Johnson Matchbox, Millen Transmatch, Murch Ultimate Transmatch and most similar homebuilt antenna tuners. Every ham shack should have at least one.¹

In almost every technical article on antenna tuners that is published, you are instructed to make a written record of the dial settings and coil tap points for future use. If you’ve gone through this you know it’s time consuming to search for coil tap points and tune two or three variable capacitors for each tap, trying to find the correct settings for each operating frequency. Furthermore, going through this procedure on the air generates a lot of unnecessary interference. I deliberately put up a four-band parallel dipole so I could avoid using (or adjusting) an antenna tuner, but because of the high swr the antenna tuner is now back in the line.

The simple technique discussed here for adjusting your antenna tuner does require an additional piece of test equipment which you may not have. However, the necessary test gear, a simple impedance bridge, can be easily built from junkbox parts. Although several RX impedance bridges have been described in the amateur literature,²³⁴ the more simple antennascopes⁵ or antenna impedance meter⁶ are suitable for

fig. 3. Simple test setup speeds initial adjustment of antenna tuning unit with minimum on-the-air interference.

this application. You will also need a grid-dip meter or low power transmitter as a source of rf for the impedance bridge. A grid-dip meter is highly recommended as it will cause less unnecessary interference.

| table 1. Comparison of Transmatch dial settings obtained with three different impedance bridges using the test setup of fig. 3. |
|---|---|---|---|
| bridge type | frequency (MHz) | input capacitor | inductor tap | output capacitor |
| RX Bridge³ | 3.95 | 98 | 59 | 40 |
| 7.25 | 90 | 68 | 0 |
| 14.05 | 55 | 3 | 40 |
| 21.05 | 90 | 2 | 10 |
| Macromatcher⁴ | 3.95 | 95 | 60 | 15 |
| 7.25 | 100 | 68 | 0 |
| 14.05 | 35 | 4 | 24 |
| 21.05 | 90 | 2 | 15 |
| Antennascope⁵ | 3.95 | 90 | 52 | 10 |
| 7.25 | 98 | 68 | 0 |
| 14.05 | 30 | 4 | 20 |
| 21.05 | 95 | 2 | 15 |

Set up the test equipment as shown in fig. 3. If you use a grid-dip meter you won't get a reading on the swr meter, but at this point that's not important. Set the impedance bridge to 50 ohms (or 75 ohms if that's the impedance of your transmission line), tune the grid-dipper to the desired operating frequency and couple it to the impedance bridge. The meter on the bridge should swing upscale.

Now locate the tap on the antenna tuner inductor that causes a null on the impedance bridge. When finding the tap point it is suggested that the clip be held by its insulation and moved slowly up and down the coil until you see a downward movement of the bridge meter. That's the tap point you're looking for. This procedure is simplified somewhat if your antenna tuner uses a roller inductor, but the end result in either case is the same.

When the correct tap point has been found, fasten the clip on the inductor and tune the variable capacitor for as perfect null as possible on the bridge meter. Record the dial settings for future use. When a transmitter, tuned to the same frequency, is connected in place of the impedance bridge, only very minor touchup of the antenna tuner should be required for an indicated vswr of 1:1. The data of table 1 show the results I obtained while using this procedure to adjust a Transmatch.⁷ Note the close correlation between dial settings obtained with three different types of impedance bridges. The operating swr for all cases was very nearly 1:1.

Howard Stark, WA4MTH

CRYSTAL FILTERS

9.0 MHz MODELS

<table>
<thead>
<tr>
<th>Filter</th>
<th>Center Frequency</th>
<th>Mode</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>X9-01</td>
<td>± 5 kHz</td>
<td>RTTY</td>
<td>$24.10</td>
<td></td>
</tr>
<tr>
<td>X9-02</td>
<td>± 10 kHz</td>
<td>NBFM</td>
<td>$24.10</td>
<td></td>
</tr>
<tr>
<td>X9-03</td>
<td>± 12 kHz</td>
<td>NBFM</td>
<td>$24.10</td>
<td></td>
</tr>
</tbody>
</table>

9.0 MHz DISCRIMINATORS

HF25/u Socket

- XF900: 9000.0 kHz Carrier
- XF901: 8998.5 kHz USB
- XF902: 9001.5 kHz LSB
- XF903: 8999.0 kHz BFO

10.7 MHz MODELS

<table>
<thead>
<tr>
<th>Filter</th>
<th>Center Frequency</th>
<th>Mode</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF107-A</td>
<td>14 kHz</td>
<td>NBFM</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>XF107-B</td>
<td>16 kHz</td>
<td>NBFM</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>XF107-C</td>
<td>32 kHz</td>
<td>WBFM</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>XF107-D</td>
<td>38 kHz</td>
<td>WBFM</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>XM107-S04</td>
<td>14 kHz</td>
<td>4 POLE</td>
<td>$18.95</td>
<td></td>
</tr>
<tr>
<td>XF102</td>
<td>14 kHz</td>
<td>2 POLE</td>
<td>$7.95</td>
<td></td>
</tr>
</tbody>
</table>

10.7 MHz DISCRIMINATORS

- XF107-01: ± 50 kHz NBFM
- XF107-02: ± 50 kHz WBFM

Sold with** SOCKET (for XM107-S04) type DG1** $1.50

VHF CONVERTERS UHF

- RF Freq. (MHz)
- IF Freq. +
- N.F. (typical)
- Nom. Gain

<table>
<thead>
<tr>
<th>Range</th>
<th>MMc 50</th>
<th>MMc 144</th>
<th>MMc 220</th>
<th>MMc 432</th>
<th>MMc 1296</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-54</td>
<td>144-148</td>
<td>220-224</td>
<td>432-436</td>
<td>1296-1300</td>
<td></td>
</tr>
<tr>
<td>2.5dB</td>
<td>2.8dB</td>
<td>3.4dB</td>
<td>3.8dB</td>
<td>5dB</td>
<td></td>
</tr>
<tr>
<td>30dB</td>
<td>30dB</td>
<td>26dB</td>
<td>28dB</td>
<td>20dB</td>
<td></td>
</tr>
<tr>
<td>$53.70</td>
<td>$53.70</td>
<td>$64.45</td>
<td>$64.45</td>
<td>$85.95</td>
<td></td>
</tr>
</tbody>
</table>

Power 12V D.C.

- Other ranges, amateur & commercial, to order.

VHF Pre Amps. Write for details.

Low loss pre-selector filters available for 432 MHz and 1296 MHz bands.

ANTENNAS

- 144/480 MHz
- 420-450 MHz
- 1250-1340 MHz

FM TRANSPORTER QM 440

Transverters contain both a transmitting and receiving converter allowing a lower band transceiver to be used on a higher frequency band.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Band</td>
<td>146-150 MHz</td>
<td>$179.95</td>
</tr>
<tr>
<td>High Band</td>
<td>442-450 MHz</td>
<td>FM and CW</td>
</tr>
</tbody>
</table>

More Details? CHECK-OFF Page 142

SPECTRUM INTERNATIONAL

BOX 1084 CONCORD MASSACHUSETTS 01742 U. S. A.
burglar-proof alarm

When you are setting up a burglar-proof alarm for your car, you should have an unusual alarm. The more unusual the alarm, the harder it is for a burglar to get into the car. The most important parts of the alarm are the switches used to activate it. These switches must be placed so that they are hard to find, but still allow complete protection. This means that switches should be used to prevent the car from being towed away, as well as being broken into.

After the switches have been placed, you must connect them to some sort of alarm. The alarm device must make a very noticeable sound. This requirement rules out the car's horn because people hear them constantly in a populated area. The best device for the alarm is a siren. There are two types of sirens that can be used, mechanical or electronic. Both types are suitable for the system shown in fig. 4.

In the schematic there is a time-delay switch which is used to eliminate outside control on the car. This is important because it gives the advantage of surprise when a burglary is being committed. The approximate one-minute time delay allows you to enter the car and shut the alarm off. This is enough time to shut the device off if you know how, but not enough if you don't. This stops the burglar from removing anything that is fastened inside the car or searching the interior. The schematic also shows that two switches are used in the driver's door. The second switch is used to activate the circuit with the time delay.

The on-off switch is a simple dpst switch placed somewhere in the middle of your ham gear. This way a burglar will never realize that it is the switch to deactivate the device. Also, the battery and siren are placed in the trunk. This makes it very hard for a burglar to disarm the system.

As noted in the schematic, there are four other switches marked "trunk," "hood" and "limit." These four switches are very important in deterring a person from stealing your car. The trunk and hood switches are simply placed in the trunk and hood, preventing anyone from opening either one and tampering with anything inside.

The other two switches are harder to place, but they prevent the car from being moved. One of the switches is placed inside the car and is operated by the parking brake cable. Cutting the cable releases the tension on the cable and activates the alarm. The other switch is placed on one of the back shock absorbers. It is a limit switch, operating when the shock absorber is extended to its maximum. This sounds the alarm if the car is being towed away.

Installed correctly, this alarm system will keep your car well protected. It has already prevented three burglaries for me.

Glenn Eisenbrandt, Jr.
The HAL ST-6 terminal unit has been hailed by experienced RTTY amateurs. Its immunity to interference and noise is the talk of the RTTY world as the best in the business. In fact, we built it to highest standards — but kept the price in a range that you can afford.

The features of this unit tell the story of why it's so popular: Auto-start operation, separate input filters for each shift, an antispace feature, and switch selection of 850 and 170 Hz shifts are standard. An extra discriminator for a 425 Hz shift is available as an option. A space-saving special power transformer is part of the package; it includes windings for low voltage and loop supplies, and a 115/230 VAC primary. Dual-in-line IC's are mounted in sockets for ease of testing and replacement. Seven G10 epoxy glass boards with reliable wiping contacts hold all circuitry. Other visual indicators display AC power on, Mark, and Space conditions. Two other lamps indicate whether the ST-6 is in the receive or standby mode. For maximum safety, a three-wire grounding cord and grounding outlet for the printer are included. The power supply card contains easy-to-replace clip-in fuses. The ST-6 is available factory assembled and aligned, or in kit form. The PC boards and cabinet only are also available.

A popular option designed to plug right in to the ST-6 is HAL's AK-1 AFSK oscillator. Available assembled or in kit form, the AK-1 is an AFSK oscillator that demonstrates stability and reliability. It provides switch selection of 170 Hz and 850 Hz shift using standard AFSK tones. The AK-1 may also be mounted in its own cabinet for use as an independent unit. Frequencies are set by 15-turn trimmers for ease of accurate tone adjustment. The AK-1 operates on 12 VDC, or directly from the ST-6 power supply.

If you're ready for the very best RTTY at an attractive price, look into the HAL ST-6 TU, the 425 Hz discriminator, and the AK-1 AFSK oscillator. They'll give you all the help you need. Order yours today!
short circuits
universal tone encoder

A few transceiver models using diode PTT switching will not operate correctly with the Universal Tone Encoder shown in the July, 1975, issue. The problem occurs in the tone-burst mode after the PTT button is released, and results from the charging current drawn by C7. Some transceivers are not able to supply this current and will not return fully to the receive mode.

This problem is solved by adding CR2 and R27 as shown in the schematic above; the polarity of C7 was also reversed in the original schematic. The encoder will now operate with relay- and diode-switched transceivers. The new circuit board incorporates this change. Circuit boards are available from Larry McDavid, W6FUB, 185 South Alice Way, Anaheim, California 92806.

dc latch circuit

In the CMOS dc latch circuit, fig. 2, on page 44 of the August, 1975 issue, the D input of U2A (pin 5) should be connected to the Q output (pin 2), not to the Q output (pin 1) as shown.

low-frequency loop antenna

In the article on the loop antenna receiving aid in the May, 1975 issue, no ground return is shown for the fet pre-

amp (fig. 3) or Q multiplier (fig. 4). In both cases the 100k resistor connected to the gate of the HEP802 fet should be grounded.

automatic az/el control

Several errors appeared in the automatic azimuth/elevation rotator control system published in the January, 1975, issue of ham radio. In the base diagram for the 558 op amp (fig. 3), the inverting and non-inverting inputs to the lower op-amp are reversed (pin 5 should go to the non-inverting [+] input). In fig. 7 the sensed position output should be connected to the junction of the 100- and 750-ohm resistors, not to the op-amp output terminal. Also, add two to all IC numbers in the second column on page 29 and the first column on page 31 (U11C, for example, should be U13C).

Some readers have found that the frequency-selective amplifier in fig. 4 oscillates. This can be easily solved by increasing the value of the shunt resistance of the bridged-T network. In amplifier U1, for example, the resistor to change is the 7500-ohm unit connected between the two 0.05 μF capacitors.

To eliminate difficulty with rf interference, shunt each rotator motor winding lead with a 0.01 μF disc capacitor at the control unit case. Treat the leads to the rotator potentiometer as illustrated in fig. 1, shown here. In addition, the grounded end of the rotator potentiometer should be fastened to the circuit ground near the comparator, U11. Otherwise, unrelated ground currents may upset the sensed rotator position.

fig. 1. Use the circuit shown here with rotator potentiometer leads to eliminate difficulty with rf interference.
phase modulation techniques

In the article on phase modulation principles and techniques on page 28 of the July, 1975 issue, the value of R in fig. 7 should be 10k. The loss formula shown in fig. 7 should be

\[\text{loss} = 20 \log \left(\frac{X_C}{R^2 + X_C^2} \right) \text{ dB} \]

communications receiver

In the communications receiver described in the October, 1975 issue (page 32), the KVG XF9E crystal filter has 12 kHz bandwidth, not 2.4 kHz. Transformers T1 (fig. 2) and T1, T2 and T3 (fig. 8) are wideband transformers which I5TDJ wound on Ferroxcube 0.25" (6.5mm) diameter toroid cores (permeability of 1000 or more). The Amidon T50-6 cores specified in the article have low permeability and low-frequency performance is poor. For those who have asked, Q6 in fig. 8 which is specified as an HEP S0014 may be replaced with a 2N3866 or 2N4427.

Designer I5TDJ has heard from several amateurs who have built duplicates of this receiver that they sometimes have trouble with the fet crystal oscillator circuits (fig. 8). He subsequently tested a number of fets and found that some circuits would not oscillate with fets with high IDSS because of the large voltage drop across the 1000-ohm drain resistor which biased the fet into the pinch-off region. This can be solved by using low IDSS fets or by reducing the value of the drain resistor to 100 ohms.

radiation hazards

In the September editorial W1DTY made an error when calculating the power density at 10 watts input to a 30-foot dish. Since the 10 watts is essentially spread over the area of the dish in the near field (within one or two dish diameters), the power density at 10 watts input is 0.061 mW/cm². An input of 1642 watts would be required to reach 10 mW/cm².
logarithmic speech processor

New from MFJ Enterprises is the LSP-520BX speech processor, which provides 400% more rf power to your phone signal. The LSP-520BX adds this extra punch by means of three active filters, two of which are switch-selectable, and a low-distortion IC logarithmic amplifier with a 30-dB dynamic range, assuring constant transmitter output without clipping or appreciable distortion. Voice frequencies are tailored to put communication intelligence where it will do the most good—in your transmitted signal.

Four techniques are used to maximize the voice-to-noise power ratio. First, an rf-protected preamp is optimized for low-noise performance by using a premium, low-noise transistor. Second, putting two high-pass active filters before the log amplifier input ensures a clean, noise-free signal at the log amp output. Third, battery operation eliminates hum, and fourth, a filtered and shielded input circuit provides immunity from rf fields.

The low-noise preamp has a gain of about 43 dB. An emitter follower matches the preamp output to a 500-Hz two-pole active filter, which has a roll-off of 12 dB/octave (at 250 Hz the signal is attenuated 12 dB). A switch-selectable two-pole 1400-Hz highpass active filter, which also has a 12-dB/octave rolloff, follows the 500-Hz filter. When these two filters are cascaded, rolloff is 24 dB/octave below 500 Hz for maximum filtering. Following the two filters are a compression-level control and the logarithmic amplifier. A six-pole, low-pass active filter accepts the log amp output. This filter features steep rolloff at 36 dB/octave, with a 2100-Hz cutoff frequency. Thus, bandwidth restriction prevents a wide ssb signal and removes distortion products.

Installation is simple. Plug your microphone into the processor, plug the processor output into your transmitter microphone output, and you’re ready for some pleasant surprises on the crowded phone bands. The LSP-520BX is priced at $49.95 or $35.95 in kit form. Write MFJ Enterprises, P.O. Box 494, Mississippi State, Mississippi 39762, or use check-off on page 142.

525-MHz uhf prescaler

The new Pagel model 525 uhf prescaler divides frequency by ten to extend the range of any 50 MHz or higher counter to the vhf and uhf bands. The unit also contains a 20 dB preamp for the unscaled 1 MHz to 50 MHz range to improve frequency counter sensitivity to 5 millivolts rms or better. Sensitivity is 50 mV rms at 500 MHz, and 30 mV rms below 400 MHz. A through-line
feature with an internal signal sampler can be used with transmitters up to 100 watts (requires 50-ohm dummy load). This feature can be used to perform simultaneous power and frequency measurements and is a great time saver.

The model 525 operates from the 117 Vac line or battery power (8 to 15 volts) may be used for portable or mobile use. Price is $159. For more information, write to Pagel Electronics, 6742-C Tampa Avenue, Reseda, California 91335, or use check-off on page 142.

Hamtronics catalog

Hamtronics, Inc., long known for its vhf preamplifiers and fm communications receiver kits for amateur and monitor applications, recently announced a new catalog, which is available to readers in return for a self-addressed, stamped envelope. It lists many new products, including a high performance version of its famous standard vhf preamp. This kit, which is wired in series with the coaxial antenna lead of vhf communications receivers of various operating frequencies, boosts the receive signal by 20 dB or more, depending on the frequency. It operates from +12 Vdc, and is constructed on a PC board. Cost of the kit is $9 (wired and tested, $14).

The second new product is a two-stage grounded-gate preamplifier for uhf receivers in the 400-500 MHz range, including amateur, commercial, and monitor receivers. It provides 20 dB gain, and is priced at $15 (kit) or $30 (wired and tested). A companion uhf converter kit is available for operation on various i-f frequencies, thereby converting a vhf receiver into a uhf receiver. The converter kit is priced at $20 plus crystal.

A new improved vhf receiver for fm communications has also been introduced in this catalog. It consists of a vhf converter board and a i-f/audio board. The converter is also available separately.
Whenever and wherever there's news in amateur Radio, you can bet that HR REPORT is right there in the middle of it, insuring that our readers are the best informed amateurs anywhere.

In just two short years, HR REPORT has set an enviable record for concise, accurate reporting. Others have tried to copy us, but they were no match for the experienced steady hand that editor W9JUV and his colleagues apply to this exciting newsletter each week.

Whether it happened at the FCC or the ARRL, or if it's DX, a new product, propagation news or just a worthwhile tip, if it's news and if you should know about it, then it will be in HR REPORT.

Don't put off subscribing to this exciting weekly newsletter any longer. We'll have more up to the minute news in the mail this Friday and every Friday. HR REPORT is written with you in mind — we don't want you to miss it.

Operator active in contest and DX work will welcome a novel CW filter offered by Palomar Engineers. The circuit combines a wideband and narrowband filter to provide simulated stereo reception. Active filters prevent annoying ringing and give sharp skirt selectivity, which removes all signals except those within an 80-Hz bandwidth. The simulated stereo technique allows off-frequency signals to be heard, but because of the action of mind and ears, the off-frequency signals do not interfere with the desired signal.

The filter connects between your receiver and a set of stereo headphones. In the simulated-stereo mode, the narrowband signal is applied to one side of the stereo headset and the wideband signal to the other. Alternatively, the narrowband signal can be applied to a test oscillator. The result is an effective stereo test oscillator.
phones by panel-switch selection. The simulated stereo mode uses both filters with a dramatic improvement over either filter alone. The desired signal is heard in both phones; the off-frequency signals and noise are heard in only one phone. The mind concentrates on the desired signal and rejects the interference — yet off-frequency calls can still be heard, which otherwise might be missed.

The center frequency of the CW filter is 800 Hz. Bandwidths of the narrow- and wide-band filters are 80 and 300 Hz respectively. A 9-volt transistor battery supplies power. Input impedance is 1 megohm; the output will drive either low- or high-impedance headphones. The panel switch has four positions: off (receiver output direct to phones); wideband amplifier to both phones; narrowband amplifier to both phones; and simulated stereo. The CW filter is $39.95 postpaid in U.S. and Canada. More information may be obtained from Palomar Engineers, Box 455, Escondido, California 92025, or use check-off on page 142.

unique ic op-amp applications

A specialist in IC operational amplifiers, Walter Jung, has written this book on the uses of unique op amps. Unique op amps are those with characteristics that set them apart from previous amplifiers. Modified types of op amps are discussed along with totally unique types, such as programmable op amps, operational transconductance amplifiers, and quad current-differencing amplifiers. The material has been extracted from another Sams book, *IC Op-Amp Cookbook*. Heavily illustrated. 144 pages, softbound, $4.95 from Ham Radio Books, Greenville, New Hampshire 03048.
AN OUTSTANDING OPPORTUNITY!

Radio Communication is certainly one of the finest foreign Amateur Radio magazines. Published monthly by the Radio Society of Great Britain it is very much "The Magazine" to British Amateurs and to many others around the world.

This magazine covers the whole Amateur Radio scene in Great Britain offering both a wide range of technical information and a description of many activities both on and off the air.

Of particular interest is the monthly column Technical Topics by Pat Hawk-er, G3VA. Here is a great rundown on new technical ideas from around the world. It touches on virtually all phases of Amateur Radio and is sure to have just the hint you need.

Now is an extremely good time to subscribe to Radio Communications as the strength of the US dollars has greatly reduced its price, and you can still beat a major price increase scheduled for 1976.

To: Radio Communication
Greenville, NH 03048

Enclosed is $9.95. Please sign me up for a one year subscription.

Name ________________________________ Call ________________________________

Address __

City __________________ State ______ Zip ______

This offer expires December 31, 1975

Regency crystal deck

Topeka FM Communications has just introduced a new improved version of their highly popular 6T-HR2 six-channel crystal deck. Mounted in a Regency HR-2 or HR2-A, the deck allows full 12-channel transmit/receive capability. Improvements include a smaller board which makes installation notably easier. Component placement has been changed to allow netting without removing the speaker from the radio.

The new version, designated the 6T-HR2-3, is now available for $15.50. Kit versions are also available for $11.50. For more information, write or call Topeka FM Communications, Inc., 125 Jackson, Topeka, Kansas, 66603.

noise in electronics

Why is noise important? What is shot noise? How can noise figure be measured using a signal generator? These and dozens of other pertinent questions are answered in this new book for the amateur, engineer and technician. They provide the reader with a basic understanding of noise characteristics and noise measurement techniques for practical applications.

The author first introduces the reader to noise with explanations on white, pink, man-made, atmospheric and galactic noise. The remainder of the book answers questions about thermal noise, shot noise, noise bandwidth, special considerations for noise, signal-
to-noise ratio, noise figure and other miscellaneous noise characteristics.

Here's an opportunity to learn about flicker noise, noise power, the effect of various detectors on noise, and dozens of other noise-related subjects. Easy-to-understand answers are detailed without the complex mathematical manipulations usually required with noise associated calculations. Illustrations, examples, and tables of solutions are provided to further explain the answers. 96 pages, softbound, $3.95 from HR Books, Greenville, New Hampshire 03048.

The new multicoupler set from Radiation Devices features an antenna-located preamplifier and provides preamplification of signals at the base of a broadband high-frequency antenna to overcome coaxial cable loss. Preamplifier BBA-1/PMS-3 has greater than 9 dB gain over the band from 2 to 50 MHz. It receives power via the coaxial cable connecting it to the Multicoupler/Power Adapter Unit MPU-1. The MPU-1 provides four isolated signal ports to receivers or other equipment. Intermodulation and cross-modulation distortion products are greater than 60 dB below the desired signal at zero dBm output level. The unit operates from 115 Vac, 50 to 400 Hz.

For more information, contact Radiation Devices Company, Post Office Box 8450, Baltimore, Maryland 21234, or use check-off on page 142.
You won't believe 1976 at HAM RADIO. We'll be wearing our new 8½" x 11" format, a great new size with larger pictures, larger schematics and improved circuit layouts.

There will be a great bonus as each page contains over 50% more material. You'll find more to learn and more to enjoy each month from the NEW HAM RADIO.

Look for great new columns which will make your amateur activities more fun than ever before. Look for more bargains from our advertisers as they have the room to describe more of their products and in better detail.

SOME SAD NEWS

Yes, all of this is going to cost more, and a 30% postal increase will not help a bit. It will cost less per article and less per idea, but the total cost just has to go up.

ACT NOW & SAVE

You can still have the new HAM RADIO at the old HAM RADIO cost. Just get your order in before January 1, 1976 and you'll be all set to go at today's price.

Knowing wind speed and direction will allow you to trim that big beam antenna for minimum wind resistance when the next storm arrives. The model 75C Brunswick Wind Set by TMAC Products consists of a wind-speed transmitter, wind-direction transmitter, an indicator mounted in a handsome console, and all cables and mounting hardware. The transmitter units are low profile; the entire assembly measures only 12-3/4 inches high by 24 inches long (53 by 61cm) and may be mounted on any convenient surface.

The wind-speed transmitter consists of a dc generator coupled to a 5½-inch (14cm) diameter, spherical cup rotor assembly mounted on a 1-inch (2.5cm) diameter pvc pipe support. Wind speed is indicated by a 6-inch (15cm) diameter, 250-degree linear taut band pivot and jewel movement. Readout is in mph, with 1-mph divisions between 0 and 100 mph inscribed in white against a contrasting background.

The wind-direction transmitter uses hermetically sealed reed switches actuated by a magnet in an environment-protected, low-friction assembly. Wind direction is indicated by eight panel lamps, one at each cardinal compass point, located around the periphery of the wind-speed indicator. Intercardinal
compass points are indicated by the illumination of two adjacent lamps. Thus, 16 compass points may be indicated; at least one indicator lamp will be on at all times. The instrument is powered by 110 V, 60-Hz. Price and additional information are available from TMAC Products, P.O. Box 28341 (Lincoln Village Branch), Columbus, Ohio 43228, or use check-off on page 142.

miniature touch-tone encoders

Data Signal has announced a new line of solid-state crystal-controlled Touch-Tone encoders which use a CMOS encoder IC. Only ¼ inch (6.5mm) thick, these self-contained units provide Touch-Tone capability to repeater stations or provide data entry. They are designed to be mounted directly on the side of hand-held portables, on the front of mobile transceivers, or on the dashboard of vehicles. The circuitry is completely rf proof, and all electronics are contained within the keyboard. Keyboards with 12 Touch-Tone digits are available in three sizes: 2½x3 inches (57x76mm), 1⅞x2 inches (38x51mm) and 2x1½ inches (51x38mm). The 16-digit keyboard is 2 inches (51mm) square. These keyboard encoders, type DTM, require only three external connections and are priced at $49.95.

Also available from Data Signal is a sub-miniature Touch-Tone encoder and keyboard which is designed for use with...
hand-held fm transceivers. The encoder PC board measures a mere 0.8 by 1.2 inch (20x30.5mm) and is easily installed inside hand-held transceivers. The keyboard is available in the same four styles mentioned above and can be mounted on the side of the transceiver. The Touch-Tone encoder and keyboard, type SME, is priced at $29.95.

In addition to the DTM and SME keyboards and encoders, the major components are also available for amateurs who want to build their own. The keyboard, choice of four styles, is $8.50. The digital Touch-Tone encoder with 1-MHz HC-6/U crystal is $12.50 (encoder with slim 1-MHz crystal is $13.50). The miniature printed-circuit board is $2.50. If you purchase a keyboard, encoder and crystal, the PC board, and all resistors and capacitors are provided free of charge.

For more information, write to Data Signal, Inc., 2212 Palmyra Road, Albany, Georgia 31701 or use check-off on page 142.

dual-trace oscilloscope adapter

A new RCA dual-tracer adapter that can be attached to any triggered or recurrent-sweep oscilloscope to update it to dual trace operation is now available.

The RCA WM-541A Dual-Tracer Adapter provides two displays on a single-trace oscilloscope for simultaneous viewing of two signals. Applications of the new RCA instrument include comparison tests of gain, frequency, response, distortion, phase shift, and time delay. In addition, the WM-541A can also be used to add additional traces to dual-trace oscilloscopes.

Display modes included in the operation of the instrument are channel A only, channel B only, or both A and B channels simultaneously (chopped or alternate). The switching rate is continu-
ously variable over a range designed to minimize flicker and beat interference.

The RCA WM-541A has additional features which include ac or dc coupling and vertical position controls for both channels; separate, variable sync-level control with polarity reversing switch; a zener-regulated power supply and LED power-on indicator. The inputs and outputs are terminated with BNC connectors for connection to the oscilloscope. The latest cos/mos integrated circuitry is used for high performance operation. The instrument can be used from dc to 10 MHz.

The RCA WM-541A Dual-Tracer Adapter is priced at $108.00. An optional WG-400A Direct/Low Capacitance Probe and Cable is available for $15.00.

Additional information on RCA Electronic Instruments is available from RCA Distributor and Special Products Division, 2000 Clements Bridge Road, Deptford, New Jersey 08096, or use check-off on page 142.

corrosion-resistant vhf antenna

Most mobile antennas include a stainless-steel whip but here is one that is built entirely of stainless steel, brass, and an elastomer compound. This unit has been developed to meet and overcome two significant obstacles to antenna performance — corrosion and the necessity for a ground plane. The construction materials allow this popular model to live happily in a salt environment. The design has no need for a ground plane; this feature allows this unit to operate perfectly on a wood deck or fiberglass trunk lid.

For further details on this high gain, almost indestructible antenna, write to Gam Electronics, Inc., 191 Varney Street, Manchester, N.H. 03102, or use check-off on page 142.
THE TIGER
15% Savings on Gas

A Capacitive Discharge Ignition system absolutely guaranteed NOT to interfere with your radios & equally guaranteed to improve your auto's operation and gas mileage. No rewiring necessary. Engine cannot be damaged by improper installation. Either of three models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil & distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.

Write for free booklet that not only is the BEST description of CDIs, but also explains the need for such a system. Current prices assured til Jan. '76.

D-D ENTERPRISES
P.O. Box 7776
San Francisco, CA 94119

SRI-200 RTTY TERMINAL

SRI-200, Terminal unit. Need only be connected to the output of any RTTY converter and to any monitor (either video or "RF") to copy teletype. Price $399. Standard T.V. set.

SRI-210, Keyboard assembly. Allows you to transmit RTTY by simply connecting the output of the 210 to any AFSK or FSK unit. Price $199.

SRI-220, Video display monitor. Mounts on top of the terminal to make a compact desk top unit. — To be announced —

SRI-230, RTTY converter board. Plugs directly into terminal main board. Accepts audio from any receiver. — To be announced —

SRI-240, AFSK board. Plugs directly into keyboard assembly main board. — To be announced —

All items assembled and tested. Allow approx. 60-90 days delivery time. All items shipped post paid.

Send cash or check with order or use the following:

Master Charge
BankAmericard

More Details? CHECK—OFF Page 142

The new Bearcat 101 is a totally synthesized, five-band scanning monitor featuring a re-programmable custom integrated circuit. In addition to receiving the low (30-50 MHz), high (148-174 MHz) and uhf (450-470 MHz) bands, the unit will also receive the two-meter ham band (146-148 MHz) as well as uhf frequencies from 416 to 450 MHz.

The nerve center of the Bearcat 101 is provided by two exclusive, custom, large-scale ICs: one for scanning and the second for a non-volatile memory system. With the memory chip, the radio retains all frequencies programmed — without the need for a battery. This feature allows users to order sets fully programmed with frequencies and assures program retention, even if the unit is unplugged or if there is a power outage.

The Bearcat 101 scans 16 channels. Individual lock-out switches are provided for each channel; these are also used in programming frequencies. Channel indicators are light-emitting diodes, providing a scan rate in excess of 20 channels-per-second. Selective Scan Delay, a new feature, permits the listener to remain on a channel for one second longer, in case of a reply on a simplex channel. The Bearcat Selective Scan Delay system permits delay on just those channels desired. Sensitivity in the low and high bands is measured at 0.6 μV;
on the uhf bands, it typically ranges from 0.6 to 0.9 µV. A six-pole crystal filter offers 70 dB of i-f selectivity.

For more information, write to the Electra Company, Cumberland, Indiana 46229, or use check-off on page 142.

precision low-noise op amp

It isn't often that a precision, low noise, ultra-stable, high gain operation amplifier is put into production, and when one is, the cost is usually very high. Not so with a new state-of-the-art amplifier developed by National Semiconductor. Called the LH0044, the new operational amplifier includes all of these features plus low cost.

The LH0044 precision operational amplifier is intended to replace modules and chopper-stabilized monolithic amplifiers and is particularly well-suited for differential mode, inverting, and non-inverting mode applications that require very low initial offset, low offset drift, very high gain and high power supply rejection ratio. In addition, the low initial offset and offset drift of the LH0044 eliminate costly and time-consuming null adjustments.

Specifications include an input offset voltage less than 25 microvolts, long term stability better than ±1 microvolt per month, a maximum offset drift of only 0.5 microvolts/°C, and a noise level lower than 0.7 microvolts peak-to-peak from 0.1 to 10 hertz. Other performance features include a CMRR and PSRR of 120 dB minimum, open-loop gain greater than 120 dB, and a common mode range wider than ±13 volts. The power supply range is from ±2 volts to ±20 volts.

For more information, write to National Semiconductor Corporation, 2900 Semiconductor Drive, Santa Clara, California 95051, or use check-off on page 142.
YES!
There is an antenna that your neighbors will love!

We know you're not going to believe your neighbors will like your new 20 meter beam; but just wait until they CAN'T see it.

The trim-tenna™ is designed for the discriminating amateur who wants fantastic performance in an environmentally appealing beam.

It's really loaded! Up front there's a 13 feet 6 inch director with precision Hy-Q colls. And, 7 feet behind is a 16 foot driven element fed directly with 52 ohm coax.

The trim-tenna™ goes up on your roof, tripod, or chimney as easily as a color TV antenna.

The difference in on-the-air performance between the trim-tenna™ and a full size 2 element beam is negligible. But oh the difference between the trim-tenna™ and that dipole, long wire or inverted Vee you've been using.

trim-tenna™... 129.50 post paid U.S.A. from DenTron Radio or your favorite dealer.

- The secret is proper placement of factory sealed Hy-Q inductors
- Heavy gage seamless aluminum
- Light weight
- SWR less than 2:1 over the entire band

DenTron
Radio Co., Inc.
2100 Enterprise Parkway
Twinsburg, Ohio 44087
(216) 425-8073
The Super Super Tuner has evolved.

The phenomenal performance of the 1 KW Super Tuner™ has naturally led to the development of our dynamic 3KW Super Super Tuner, commonly known on the air waves as the "DenTron SST."

This 22 pound slave to full power amplifiers promises 3KW PEP comfort. The "SST" has continuous tuning coverage from 1.7 mhz to 30 mhz.

Whether your antenna be fed with single wire, Coax, or balanced tuned feeders, "SST" efficiently tunes it with ease.

DenTron Radio Co.—Proud to say "Made in the U.S.A.!!"

Super Tuner™ (A) $119.50 post paid in U.S.A. from DenTron Radio or your favorite dealer. Super Super Tuner™ (B) $229.50 post paid in U.S.A. from DenTron Radio or your favorite dealer.
3000-volt silicon rectifiers

Electronic Devices has announced the development of a miniaturized, high voltage, high current silicon rectifier diode with a surge capacity of 300 amperes. The rectifier is an axial lead type. Electrical specifications for the series 3W3 diode are 3000 peak reverse voltage, 2 amp rating with 300 amp surge capacity. Two other similar designs are available with peak reverse voltages of 2000 and 2500 volts. Fast recovery types are also available. The exceptionally high surge capability and small size of these rectifiers results from a special diffusion process and larger junction with lower forward voltage drop.

For complete information, write to the Sales Manager, Electronic Devices, Inc., 21 Gray Oaks Avenue, Yonkers, New York 10710, or use check-off on page 142.

tool catalog

A free tool catalog describing over 2500 individual items is offered by Jensen Tools and Alloys. “Tools for Electronic Assembly and Precision Mechanics” is a 112-page handbook of particular interest to amateurs, electronic technicians, engineers, scientists, and instrument mechanics working on fine assemblies. Section headings include screwdrivers, wrenches, pliers, tweezers, files, shears, knives, microtools, relay tools, power tools, metalworking tools, wire strippers, soldering equipment, lighting and optical equipment, work holders, test equipment, engineering and
Isn’t it time you had another choice in electronic kits?

Introducing... the other choices:

Contact cement

Industrial strength Zipbond contact cement bonds most materials almost instantly. It is easy to use, with no pre-mixing necessary, and is used directly from the squeeze applicator bottle (production-line dispenser also available). No heat or pressure treatment is needed, and Zipbond sets up quickly at room temperature.

Zipbond is impervious to most chemicals, weather and temperatures. Its bonding strength is not affected by most solvents. Low viscosity allows Zipbond to seep into tiny spaces most adhesives can’t penetrate. It is very econom-

164 kits offering better value, greater choice than any other kits available today. For free catalog, write:

Amtroncraft Kits Ltd.
1 West 13th St.,
New York, N.Y. 10011
(212) 255-2362
250 MHz FREQUENCY COUNTER
MODEL 4X6C
(includes temp. compensated oscillator — .0005% from -30° to +60°C.)

SPECIFICATIONS

Frquency Range 500 kHz - 250 MHz
Sensitivity Less than 80 mV at 150 MHz
Max. Input Voltage 15 V rms, 50 V dc
Time Base Crystal Clock plus-minus 10 ppm
0°C to 40°C ambient
Readout 6 Digit 7 Segment LED
Power 120 V ac
Dimensions 2 1/8” H, 10” L, 7” D
Cabinet Light blue

PRICE $270.00 (Wired and Tested)

K-ENTERPRISES
1401 East Highland - Shawnee, OK 74801

We're Fighting Inflation
No Price Rise for '76

FOR FREQUENCY STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

Audio power amplifier

A new 40-watt (20 watt rms) B high-fidelity amplifier with total harmonic distortion of 0.2 per cent at 15 watts output is now available from Plainview Electronic Supply. This class B, quasi-complimentary amplifier is capable of delivering full output power into a standard 8-ohm speaker with a 500 mV input signal. Supply voltage can be ±36 volts or ±18 volts. Frequency response is from dc to 80 kHz.

The hybrid amplifier is designed for use in communications, stereo, public address and intercom systems, and is priced at $10.65 in small quantities. For more information, write to Bernard Erde, Marketing Manager, Plainview Electronic Supply, 7 Gordon Avenue, Plainview, New York 11803, or use check-off on page 142.

Transformer catalog

Triad's new Catalog of Transformers, Inductors, Power Supplies and Circuit Cards, is now available. The 52-page catalog covers more than 30 categories of transformers, including autoformers, bridging, driver, input, interstage line matching and voltage correction. The inductor section of the catalog lists audio and filter reactors, high Q reactors, tone control and toroidal inductors.

These components are available from 44 Triad-Utrad representatives and distributors worldwide. Catalog requests should be addressed to Steve Fisher, General Manager, Triad-Utrad Distributor Services, 305 N. Briant Street, Huntington, Indiana 46750, or use check-off on page 142.
THE DO IT ALL RADIO

Whatever your needs on 2 meters — SSB or OSCAR DX, FM simplex or repeaters, the KLM Multi-2000 does it all!

$795

FEATURES

- Full compatibility with KLM linear amplifiers
- PLL synthesizer covers 144-148 MHz
- Separate VXO and RIT for full between-channel tuning
- Simplex or selectable up or down 600 kHz offset for repeater operation
- Three selectable simplex priority channels
- Multi mode operation. All CW/SSB/NBFM/WBFM
- Built in AC and DC power supply, noise blanker, squelch and RF gain control
- Selectable, 1 or 10 watt
- Separate S-/power and frequency deviation meters
- Built in test (call tone and touch-tone provisions)
- Excellent sensitivity (.3 µV for 12 dB Sinad)
- Superior immunity to cross modulation and intermodulation

New Companion 80 and 160 Watt Linears now available.

CALL OR WRITE YOUR NEAREST DEALER OR:

KLM ELECTRONICS 17025 LAUREL RD., MORGAN HILL, CA. 95037

PHONE (408) 779-7363

More Details? CHECK-OFF Page 142
december 1975
Wilson Electronics Corp.
CHRISTMAS SUPER SPECIAL

1402SM HAND HELD
2.5 WATT TRANSCEIVER
SPECIAL INCLUDES:
RUBBER FLEX ANTENNA
52-52 CRYSTAL

$164.95

1405SM HAND HELD
5 WATT TRANSCEIVER
SPECIAL INCLUDES:
RUBBER FLEX ANTENNA
52-52 CRYSTAL

$239.95

90 DAY WARRANTY
10 DAY MONEY BACK GUARANTEE

OPTIONAL TOUCH-TONE PAD SHOWN

CAN BE MODIFIED FOR MARS OR CAP

ORDER EARLY FOR CHRISTMAS DELIVERY

More Details? CHECK-OFF Page 142
ACCESSORY SPECIALS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REGULAR SPECIAL PRICE</th>
<th>CHRISTMAS SUPER SPECIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1 - BATTERY CHARGER</td>
<td>$36.95</td>
<td>$29.95</td>
</tr>
<tr>
<td>FOR 1402 AND 1405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP - NI-CAD BATTERY PACK</td>
<td>15.00</td>
<td>10.95</td>
</tr>
<tr>
<td>LC1 - 1402 LEATHER CASE</td>
<td>14.00</td>
<td>8.50</td>
</tr>
<tr>
<td>LC2 - 1405 LEATHER CASE</td>
<td>14.00</td>
<td>8.50</td>
</tr>
<tr>
<td>SM2 - SPEAKER MIKE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOR 1402 AND 1405</td>
<td>29.95</td>
<td></td>
</tr>
<tr>
<td>TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED</td>
<td>39.95</td>
<td>34.95</td>
</tr>
<tr>
<td>TTP - TOUCH TONE PAD INSTALLED</td>
<td>$59.95</td>
<td></td>
</tr>
<tr>
<td>XF1 - 10.7 MONOLITHIC IF XTL FILTER INST</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>CRYS. TX OR RX (Common Freq. Only)</td>
<td>4.50</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Add $7.50 per Transceiver for Factory Crystal Installation

OVER 1,000 UNITS IN STOCK FOR CHRISTMAS SPECIAL
ORDER EARLY TO INSURE DELIVERY BY CHRISTMAS

CHRISTMAS SUPER SALE ORDER BLANK

<table>
<thead>
<tr>
<th>1402 SM @ $164.95</th>
<th>1405 SM @ $239.95</th>
<th>FACTORY XTALS INSTALLED @ $7.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1 @ $29.95</td>
<td>BP @ $10.95</td>
<td>LC1 @ $8.50</td>
</tr>
<tr>
<td>LC2 @ $8.50</td>
<td>SM2 @ $24.95</td>
<td>TE1 @ $34.95 (SPECIFY FREQUENCY)</td>
</tr>
<tr>
<td>TTP @ $44.95</td>
<td>XF1 @ $8.95</td>
<td>TX XTALS @ $3.00 ea.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RX XTALS @ $3.00 ea.</td>
</tr>
</tbody>
</table>

EQUIP TRANSCEIVER AS FOLLOWS: XTALS A: 146.52/52 B: ___
C: ___ D: ___ E: ___ F: ___

ENCLOSED IS ___________ CHECK ___________ MONEY ORDER ___________ MC ___________ BAC

CARD #_________ EXPIRATION DATE ___________

NAME ___________
ADDRESS ___________
CITY ___________ STATE ___________ ZIP ___________

SIGNATURE ___________

SHIPPING AND HANDLING PREPAID FOR CHRISTMAS SPECIAL
SALE VALID DECEMBER 1 - 31, 1975

More Details? CHECK-OFF Page 142
The Wilson 204 is the best and most economical antenna of its type on the market. Four elements on a 26' boom with Gamma Match (No balun required) make for high performance on CW & phone across the entire 20 meter band.

The 204 Monobander is built rugged at the high stress points yet using taper swaged slotted tubing permits larger diameter tubing where it counts, for maximum strength with minimum wind loading. Wind load 99.8 lbs. at 80 MPH. Surface area 3.9 sq. ft., Weight 50 lbs., Boom 2" OD.

All Wilson Monoband and Duoband beams have the following common features:
* Taper Swaged Tubing
* Full Compression Clamps
* No Holes Drilled in Elements
* 2" or 3" Aluminum Booms
* Adjustable Gamma Match 52 $2
* Quality Aluminum
* Handle 4kw
* Heavy Extruded Element to Boom Mounts
* M204 4 ele. 20, 26', 2' OD $139.00
* M155 5 ele. 15, 26', 2' OD $139.00
* M154 4 ele. 15, 20', 2' OD $ 89.00
* M106 6 ele. 10, 26', 2' OD $ 99.00
* M104 4 ele. 10, 17', 2' OD $ 64.95
* M240 2 ele. 40, 16', 3' OD $299.00
* M520 5 ele. 20, 40', 3' OD $269.00
* DB54 5 ele. 20, 4 ele. 15, 40', 3' OD $299.00
* DB43 4 ele. 15, 3 ele. 10, 20', 2' OD $119.00
* DB33 3 ele. 15, 3 ele. 10, 16', 2' OD $ 89.00

All Wilson Antennas are FACTORY DIRECT ONLY! The low prices are possible by eliminating the dealer's discount. Most antennas in stock. If you order any antenna, you may purchase a CDR Ham II for $124.95 or a CDR CD44 for $85.95. Send check or money order, or phone in Bank Americard or Master Charge. All 2" Boom antennas shipped UPS, 3" by truck.

Call for special Tower, Antenna & Rotor package.

Wilson Electronics Corporation
4288 S. Polaris Avenue, Las Vegas, Nevada 89103 702-739-1931
CK-04

6 DIGIT JUMBO LED ALARM CLOCK KIT

$21.95

12HR/60HZ or 24HR/50HZ

THIS CLOCK HAS THE FEATURES YOU WANT AT A PRICE YOU CAN AFFORD!

compare these features with any other kit at any price!

2 220 MFD Filter Caps
6 MAN64 .4inch LED Readouts
2 Plated & Drilled G10 PC Boards
1 Power TRANSFORMER
2 4PDT Switches for Time & Alarm Functions
14 NPN Driver Transistors
5 Diodes
1 Clock Chip with Presettable “Beeper” Alarm
1 2” SPEAKER
16 RESISTORS

COMPLETE step-by-step Instructions
Power Failure Indicator, Snooze Alarm, & Intensity Control

WOOD CASE
FOR CK 04 KIT

$5.75

SLOPE FRONT
PRE CUT RED PLEXIGLAS FRONT
SLIDING SUBCHASSIS

BULLET ELECTRONICS

P.O. BOX 1465
LAKE WORTH, FLORIDA 33460

More Details? CHECK-OFF Page 142

december 1975
New! Plua™ modulator
rewiring on your Com
mun~cator
Just plug into
mike jack and crystal
socket

Compact self-contained
modulator measures 4" x
3" x 1½".

- New! Plug in modulator
- No modification or
rewiring on your Com-
- Communicator. Just plug into
mike jack and crystal
- socket
- Compact self-contained
- modulator measures 4" x
- 3" x 1½"

*Works with Communicator I, II, III, IV and
- GC-105, and other rigs listed.
- FM at a tenth the cost of a new rig.
- Frequency adjust for netting built in.
- $37.50 postpaid USA & Canada. Specify
- transmitter model. Calif. residents add sales
tax. (HC6/U crystal and 9 volt transistor
- battery not supplied.)
- Send for free descriptive
- brochure.

Radio Amateurs
Reference Library
of Maps and Atlas

WORLD PREFIX MAP — Full color, 40" x 28", shows
prefixes on each country . . . DX zones, time zones,
cities, cross referenced tables $1.25

RADIO AMATEURS GREAT CIRCLE CHART OF THE
WORLD — from the center of the United States! Full
color, 30" x 25", listing Great Circle bearings in de-
grees for six major U.S. cities; Boston, Washington,
B. C., Miami, Seattle, San Francisco & Los Angeles.

$1.25

RADIO AMATEURS MAP OF NORTH AMERICA! Full
color, 30" x 25" — includes Central America and the
Caribbean to the equator, showing call areas, zone
boundaries, prefixes and time zones. FCC frequency
chart, plus useful information on each of the 50
United States and other Countries

$1.25

WORLD ATLAS — Only atlas compiled for radio ama-
- teurs. Packed with world-wide information — includes
- 11 maps, in 4 colors with zone boundaries and coun-
- try prefixes on each map. Also includes a polar pro-
- jection map of the world plus a map of the Antarc-
-tica — a complete set of maps of the world. 20 pages
- size 8½" x 12"

$2.50

Complete reference library of maps — set of 4 as listed
- above

$3.75

See your favorite dealer or order direct.
Mail orders please include 75¢ per order for postage and handling.

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET
for your Clegg 27er, Poly Comm 2, PC 62, Johnson
6 N2, Aerotron 500, Ameritex 62 or VHF III

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas

FM YOUR GONSET

Radio Amateurs
Reference Library
of Maps and Atlas
PALMER INDUSTRIES
INTRODUCES THE
52' TRISTAOU
SUPER MINI-MAST

The Tristao Mini-Mast features an exclusive three-section, crank-up, self-supporting 52' mini-mast with automatic brake winch. Constructed of telescoping 20 foot high-strength steel tubing, the mast is designed to withstand winds of 50 to 60 miles per hour when fully extended or higher winds when partially retracted. Extension and retraction are accomplished with a hand winch. (Motor drive winches are available.) Once the Mini-Mast is installed, all operations can be easily handled by one man.

Only the Tristao Mini-Mast features an exclusive rotating base assembly — which adds an additional two and a half feet to height of the mast. Rotor may be mounted at ground level for easy operation. Tristao products offer at least 30% more weight and strength than any other comparable masts on the market and at a lower price!

We offer a complete assortment of accessory bases and raising features for the Mini-Mast.

AVAILABLE FOR IMMEDIATE SHIPMENT

TRISTAOU TOWER DIVISION
Palmer Industries, Inc., Dept. HR
415 East 5th Street
P. O. Box 115
Hanford, California 93230
(209) 582-9016
NEW NEW NEW!!

TOUCH TONE* ENCODERS

SOLID STATE CRYSTAL CONTROL TONE ENCODERS

- 12 or 16 Touch Tone* digits
- Ideal for hand held units
- Choice of 4 keyboard styles
- RF proof
- Temperature, −20° to 150° F
- CMOS IC Encoder
- Bell System Compatibility
- Easy Installation
- Sub-miniature size
- Crystal Controlled
- Single Tone capability
- Low cost

SELF-CONTAINED KEYBOARD ENCODERS

Complete 12 or 16 digit Touch Tone* keyboard encoders for mounting directly to side of hand-
held transceivers. All electronics included WITHIN keyboard, nothing to add inside of trans-
ceiver. Only ¼" thick. Ready for easy installation, just add three connections to unit. RF proof.
Select keyboard style when ordering.

DTM $49.50

SUB-MINIATURE TOUCH TONE* ENCODER AND KEYBOARD

Touch-Tone* encoder for mounting INSIDE hand-held transceiver, keyboard mounts on side of
transceiver. P.C. board only 0.8" x 1.2". RF proofed. Assembled and ready for easy installation.
Select keyboard style when ordering.

SME $29.50

DO IT YOURSELF ENCODERS

Now, buy all the major parts — “ala-carte” and build your own Touch Tone* Encoder. All you
need is a Keyboard, Digital Touch Tone* Encoder, a 1-MHz crystal, and P.C. board. Parts come
with complete set of application notes, schematics and instructions.

Keyboard, your choice of keyboard style $8.50
Digital T. T. Encoder with 1-MHz HC-6 Crystal $12.50
Digital T. T. Encoder with 1-MHz Slim HC-6 Crystal $13.50
P.C. board 0.8" x 1.2" $2.50
All resistors, capacitors, and P.C. board FREE
(With purchase of keyboard, encoder and crystal)

AUTOMATIC TOUCH TONE* DIALER

Automatic mobile telephone dialing is now available. By the
push of a single button you can automatically dial up to six
separate 7-digit numbers. All solid-state micro-power COS-
MOS design. Automatic PTT operation. Programmable to send
telephone number only, access code plus telephone number
or telephone number plus an identification number. Low profile
dash mount, easy installation. Compatible with most radio
equipment. Available with keyboard for manual dialing of
numbers. Manual operation provides automatic PTT opera-
tion with 1½ second transmitter hold.

AD-6 Without keyboard $99.50
AMD-6 With keyboard $119.50
Factory programming of numbers $7.50.

ORDER TODAY — SEND FOR FREE NEW CATALOG

DATA SIGNAL, INC.
2212 PALMYRA ROAD, ALBANY, GA. 31701
912-435-1764

*TM of A. T. & T.
TOUCH TONE* TO DIAL PULSE CONVERTER

Convert standard 0-9 touch tone* digits to Bell system compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-falsing touch tone* decoder, large capacity 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function. * and # digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting.

DPC-121
P.C. Board $195.00
DPC-121R Rack Mount $285.00

ANTI-FALSING TOUCH TONE* DECODER

Now, a true anti-falsing decoder/receiver. Virtually immune to high noise or audio falsing. Twelve or 16 digit capability. Completely solid state, uses latest Phased Locked Loop decoding. Single 5-volt power supply. Heavy duty transistor output. Available as p.c. board or 19" rack.

TTD-126-12 12 digit P.C. $149.95 Rack $219.95
TTD-126-16 16 digit P.C. $169.95 Rack $239.95

REPEATER AUTO PATCH

It's complete — a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dialing capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.

RAP-2 P.C. $99.50 Rack $149.50

DELUXE P.C. KEYER

In either a 5 volt TTL or a 9 volt C-MOS version this new module type IC keyer can be easily adapted to your own custom package or equipment.

Versatile controls allow wide character weight variation, speeds from 5 to 50 w.p.m., plus volume and tone control.

Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuitry.

With its side-tone monitor and 90 day warranty the Data Signal P.C. Keyer is the one for you.

TTL Keyer Wired $19.95
Kit $14.95
C-MOS Keyer Wired $24.95
Kit $19.95

DELUXE RECEIVER PREAMP

Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signal with a Data Preamp.

ORDER TODAY — SEND FOR FREE NEW CATALOG

DATA SIGNAL, INC.

2212 PALMYRA ROAD, ALBANY, GA. 31701

912-435-1764

*TM of A. T. & T.

More Details? CHECK—OFF Page 142
december 1975

85
Vanguard Now Has the World's Largest Selection of Frequency Synthesizers from $129.95

You'll never have to buy Crystals again!

AVAILABLE FOR AIRCRAFT, FIRE, POLICE AND AMATEUR FREQUENCIES

Check these features:
- Smallest size of any commercially available synthesizer — only 1-3/8" x 3-3/4" x 7/8".
- Excellent spectral purity since no mixers are used.
- 0.0005% (5 parts per million) accuracy over the temperature range of -10° to +60° C.
- Immune from supply line voltage fluctuations when operated from 11 to 16 volts D.C.
- Up to 8000 channels available from one unit. Frequency selected with thumbwheel switches.
- Available from 5 MHz to 169.995 MHz with up to 40 MHz tuning range and a choice of 1, 5 or 10 kHz increments (subject to certain restrictions depending on the frequency band selected).
- Top quality components used throughout and all ICs mounted in sockets for easy servicing.
- All synthesizers are supplied with connecting hardware and impedance converters or buffers that plug into your crystal socket.

Vanguard frequency synthesizers are custom programmed to your requirements in 1 day from stock units starting as low as $129.95 for transmit synthesizers and $139.95 for receive synthesizers. Add $20.00 for any synthesizer for 5 kHz steps instead of 10 kHz steps and add $10.00 for any tuning range over 10 MHz. Maximum tuning range available is 40 MHz but cannot be programmed over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless the i-f is greater than 10.7 MHz and uses low side injection. Tuning range in all cases must be in decades starting with 0 (i.e. — 140.000 — 149.995 etc.). The output frequency can be matched to any crystal formula. Just give us the crystal formula (available from your instruction manual) and we'll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.

Vanguard Labs

WHY WASTE WATTS?

SWR-1 guards against power loss for $21.95

If you're not pumping out all the power you're paying for, our little SWR-1 combination power meter and SWR bridge will tell you so. You read forward and reflected power simultaneously, up to 1000 watts RF and 1:1 to infinity VSWR at 3.5 to 150 MHz.

Got it all tuned up? Keep it that way with SWR-1. You can leave it right in your antenna circuit.

ELECTRONIC ENGINEERS

RF COMMUNICATIONS has immediate openings for Electronic Project Engineers and Design Engineers experienced in HF, SSB, VHF/ UHF — FM communications equipment, or both.

Call or write Ken Cooper, W2FLZ
(716) 244-5830

RF Communications Division

HARRIS COMMUNICATIONS AND INFORMATION HANDLING

1680 University Avenue
Rochester, New York 14610 U.S.A.
An Equal Opportunity Employer M/F

december 1975

More Details? CHECK-OFF Page 142
ALL I WANT FOR CHRISTMAS

CHECK OFF WHAT YOU WANT FOR CHRISTMAS AND LEAVE YOUR MAGAZINE OPEN TO THIS PAGE . . . MAYBE YOUR OWN PERSONAL SANTA WILL SEE WHAT YOU WANT AND GET IT FOR YOU . . .

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4NB NOISE BLANKER for R4C</td>
<td>$65.00</td>
</tr>
<tr>
<td>34PNB NOISE BLANKER for TR4C</td>
<td>$100.00</td>
</tr>
<tr>
<td>DESK MIC for Drake line</td>
<td>$39.00</td>
</tr>
<tr>
<td>W4 WATTMETER, 1.8-54 MHz</td>
<td>$62.00</td>
</tr>
<tr>
<td>WV4 WATTMETER, 20-200 MHz</td>
<td>$74.00</td>
</tr>
<tr>
<td>TR22C, portable FM Xcvr</td>
<td>$229.00</td>
</tr>
<tr>
<td>KR50 KEYER, dual paddle, memory</td>
<td>$110.00</td>
</tr>
<tr>
<td>KR20A KEYER, self completing</td>
<td>$67.50</td>
</tr>
<tr>
<td>PLF PREAMP, FET, 2.54 MHz</td>
<td>$44.00</td>
</tr>
<tr>
<td>PT Xcvr PREAMP, w/switching</td>
<td>$69.95</td>
</tr>
<tr>
<td>ARX2K, converts Ringo to Ranger</td>
<td>$10.95</td>
</tr>
<tr>
<td>OSCAR TWIST, A144-20T, circular</td>
<td>$52.00</td>
</tr>
<tr>
<td>OSCAR TWIST, for UHF</td>
<td>$45.00</td>
</tr>
</tbody>
</table>

R43HHT . . . HI BAND MOTRACS
We have just gotten in a limited supply of Hi Band Rail Road Motracs . . .
12VDC operable
2 Frequency
Narrow Band
Less Accs

$125.00 + shipping

IF SANTA DOESN'T TAKE THE HINT . . .
SEE YOU AT SAROC

MONTHLY SPECIAL LIST AVAILABLE . . . SEND S.A.S.E.
WANTED: Good used FM & test equipment. No quantity too large or small. Finders fee too.

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778
TELEX: 72:8310

STORE HOURS:
Mon-Thurs 9:30-6:00, Fri. 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.

More Details? CHECK—OFF Page 142
The JE-801 is a three and one half digit, auto-polarity digital voltmeter, in a kit form. It features several options not available in any commercial digital voltmeter. Its low cost is perhaps the most important feature, which is achieved by offering it in a kit form. A kit allows the unit to be used by small CEM's where cost effectiveness is an important factor, and by the hobbyist who has to be concerned with cost. The unit also features on card regulators, allowing it to be operated off a single plus and minus fifteen volt, unregulated power supply. The unit has a small size of three inches width, three and a quarter inches of length, and one and a quarter inch height.
What do you do with junk equipment? Have you ever discarded equipment that just didn’t do the job it was intended to do? Hams are noted for not discarding obsolete and worn out equipment; it goes to the junk box or gets traded at flea markets for something of greater use. However, the day finally comes when it becomes necessary to relegate the totally useless equipment to the burn pile.

A similar situation is presented to us in the Bible in the book of John 15:1-6. As long as we are useful to our heavenly Father we will be upgraded to become less obsolete and more useful. If the worn out equipment and junk in our ham shack had the same advantage we have as mentioned in Acts 16:31: "... Believe on the Lord Jesus Christ and thou shalt be saved...", the burn pile would not be necessary. “If anyone separates from me (Jesus), he is thrown away like a useless branch, withers and is gathered into a pile with all the others and burned.” John 15:6.

We have such a wonderful opportunity to be removed from the pile being readied for burning and put into service for God. “Sin pays its servants: the wage is death. But God gives to those who serve him: His free gift is eternal life through Christ Jesus our Lord.” Rom. 6:23. Don’t find yourself on that bum pile when you don’t have to be. Take advantage of this free gift now for we don’t know what day the Lord is coming. Turn from your way and give yourself to Jesus and receive this free gift.

HAVE A Blessed Christmas
AND BEST WISHES FOR AN ABUNDANT NEW YEAR

Andy, Lee, Jane, Denny, Jan, Denny, Mary Jo and Clarissa

500 MHZ SCALER
MODULE

ONLY 1.55 x 1.65 x .4 INCHES
FITS RIGHT INTO EXISTING EQUIPMENT

HIGH SENSITIVITY: 35 nV AT 500 MHZ,
15 nV AT 150 MHZ.

INPUT IMPEDANCE: 50 OHMS

REQUIRES 12 TO 15 VDC AT 100 MA. MAX.

TTL COMPATIBLE OUTPUT F-IN

OVERLOAD PROTECTED

PS-M PRESCALER MODULE HIRED & TESTED
$ 99.00 plus $8.85 shipping
Calif. residents add 6% sales tax
WRITE FOR DATA ON ENTIRE LINE OF PRESCALERS

LEVY ASSOCIATES
P.O. BOX 961 TEMPLE CITY, CA. 91780

BUSINESS FOR SALE!
INTERESTED IN TAKING OVER A
SURPLUS MILITARY ELECTRONICS
BUSINESS?

Package includes loads of inventory, also contract with well-known manufacturer of military electronics. All of this plus good will built up over the years along with business contacts for only $20,000. - Terms are available. Mail your inquiry to Ham Radio Magazine, Box M, Greenville, N. H. 03048.

RMS CORPORATION
THE ELECTRONIC STORE
675A GREAT ROAD (ROUTE 119)
LITTLETON, MASS. (617) 486-4973

ICOM MATRIC KEYERS
HUSTLER HUSTLER
ANTENNA SPECIALISTS LARSEN
KLM RADIO PUBLICATIONS
LARGE INV. COMPONENTS USED EQUIP.
I-495 to Rte. 119 Groton Exit 19
2 miles on Right

SEE US FOR
KLM’s
MULTI-2000

Calif, residents add 6% sales tax

IIRITE FOR DATA ON ENTIRE LINE OF
PRESCLAVER
LEVY ASSOCIATES
P.O. BOX 961 TEMPLE CITY, CA. 91780

BUSINESS FOR SALE!
INTERESTED IN TAKING OVER A
SURPLUS MILITARY ELECTRONICS
BUSINESS?

Package includes loads of inventory, also contract with well-known manufacturer of military electronics. All of this plus good will built up over the years along with business contacts for only $20,000. - Terms are available. Mail your inquiry to Ham Radio Magazine, Box M, Greenville, N. H. 03048.

RMS CORPORATION
THE ELECTRONIC STORE
675A GREAT ROAD (ROUTE 119)
LITTLETON, MASS. (617) 486-4973

ICOM MATRIC KEYERS
HUSTLER HUSTLER
ANTENNA SPECIALISTS LARSEN
KLM RADIO PUBLICATIONS
LARGE INV. COMPONENTS USED EQUIP.
I-495 to Rte. 119 Groton Exit 19
2 miles on Right

SEE US FOR
KLM’s
MULTI-2000

Calif, residents add 6% sales tax

IIRITE FOR DATA ON ENTIRE LINE OF
PRESCLAVER
LEVY ASSOCIATES
P.O. BOX 961 TEMPLE CITY, CA. 91780
$1.69

NEW!

Universal Breadboard
The most versatile breadboard we have made.

+5V 1.5A
-15V 150mA
.1% regulation low ripple

POWER SUPPLY SPECIAL
We brought in a large quantity of parts to make a quality power supply for TTL and linear work.
You get:
- Drilled & Plated Board
- All components including transformer

GET A 26 FUNCTION, HAND HELD SCIENTIFIC CALCULATOR FOR LESS THAN WHOLESALE

$39.95 AND WE PAY POSTAGE!

- Full Factory Warranty
- Instruction Manual
- Battery
- Case

SPECIALS AND FEATURES

- Battery Operation
- Pocket Size
- Supplied With 8 Volt Battery
- Large New Digit, Easy To Read Fluorescent Type Display
- Current Key: Changes Between Floating Point Notation And Scientific Notation.
- 5 Functions: Full Accumulating Memory: Mr, M+, M-, MC, X, M
- Transcendental Functions: Sin, Cos, Tan x°, Sec, Csc, Cot, x°, Log, Ln, e
- Try Functions Calculated In Radians Or Degrees
- 7 x 4 x 1 Functions
- Backlighting
- Capacity To Calculate 3 x 3 and 3 x 4
- Chem Calculations
- Automatic Power On Cleat
- Tracking Zero Suppression
- Automatic Constants
- MO/DLS solid state circuitry for durability and dependability
- Size: 12" x 7.5" x 3/4"
- Weight: With Battery: 8 ounces

BULLET ELECTRONICS
P.O. BOX 1466
LAKE WORTH, FLORIDA 33460

GET MORE DETAILS? CHECK-OFF Page 142
This New Unit meets the best spec of all: Its Low Price! The GTX-1 is NOT a "cheap" import. It IS identical to Genave's Land Mobile and Aircraft units for high quality and reliability. Compare performance to Motorola, GE, RCA or any other hand-helds that sell for $700 or more . . .

GTX-1
HAND-HELD
2-Meter FM Transceiver

NOW CHECK THESE FEATURES:
- All Metal Case
- American Made
- Accepts standard plug-in crystals
- Features 10.7 MHz crystal filter
- Trimmer caps on TX and RX crystals
- 3.5 watts output
- Battery holder accepts AA regular, alkaline or nicad cells
- Mini Handheld measures
 8" high x 2.625" wide x 1.281" deep
- Rubber ducky antenna, Wrist safety-carrying-strap included
- 6 Channels
- Factory-direct to You

Accessories Available:
- Nicad Battery Pack
- Charger for GTX-1 battery pack
- Leather carrying case
- TE III Tone Encoder for auto patch

GTX-1
2 Meter 6 channel Hand-Held (without encoder) $249.95
(Reg. $299.95)

GTX-1T
with Built-In Tone Encoder $299.95
(Reg. $349.95)

HURRY! STILL TIME FOR CHRISTMAS DELIVERY.

SUAA IMMEDIATE SERVICE IN ALL OTHER GENAVE FACTORY-TO-YOU EQUIPMENT
GENAVE, 4141 Kingman Dr., Indianapolis, IN 46226 (317+546-1111)

HEY, GENAVE! Thanks for the nice prices! Please send me:

GTX-200-T 2-meter FM, 100 channels, 30 watts (incl. 146.94 MHz) Special Price

$249.95

GTX-200 2-meter FM, 100 channels, 30 watts NOW $199.95 was $299.95 (Incl. 146.94 MHz)

GTX-100 1½-meter FM, 100 channels, 12 watts VERY SPECIAL $199.95

GTX-I 2-meter FM, 10 channels, 10 watts $169.95

GTX-iT Special Price $249.95

GTX-2 2-meter FM, 10 channels 30 watts was $299.95 NOW $189.95 (Incl. 146.94 MHz)

GTX-600 6-meter FM, 100 channels, 35 watts SPECIAL NOW $199.95 was $309.95 (Incl. 52.525 MHz)

PSI-11 Battery Pack (with charger) @ $109.95 $109.95

ARX-2 2-M Base Antenna @ $29.95 $29.95

Lambda/4 2-M Trunk Antenna @ $29.95 $29.95

TE-I Tone Encoder Pad @ $59.95 $59.95

TE-II Tone Encoder Pad @ $49.95 $49.95

PSI-9 Port. Power Package (less batteries) @ $29.95 $29.95

PS-1 AC Power Supply @ $69.95 $69.95

and the following standard crystals @ $4.50 each: $4.50

Non-standard crystals @ $6.50 each: $6.50 Sub-Total: $2,499.95

(allow 8 weeks delivery.)

IN residents add 4% sales tax:

CA residents add 6% sales tax:

All orders shipped post-paid within continental U.S.

NAME __________________________ AMATEUR CALL __________________________

ADDRESS __________________________ CITY __________________________ STATE & ZIP __________________________

Payment by: Certified Check/Money Order $2,499.95 Personal Check C.O.D. Include

20% Down Payment Enclosed. Charge Balance To:

BankAmericard # __________________________ Expires __________________________ Interbank # __________________________

Note: Orders accompanied by personal checks will require about two weeks to process.

20% Down. 20% Down Payment Enclosed.

Prices and specifications subject to change without notice.
Put your best fist forward.

To be one of the best fists on the air, all you need is a little practice and the HAL 2550 Keyer and its precision-built companion, the FYO Key.

The 2550 features a triggered clock pulse generator, sidetone monitor, iambic keying and dot memory. There's an optional tailor-made ID too.

Many amateurs remember the famous FYO Key, a key infinitely adjustable to every fist. Now it's back again, better than ever, and available only from HAL. The 2550 Keyer and the FYO Key make a great combination.

So to put your best fist forward, send today for a detailed brochure on these two great products.

HAL Communications Corp.
Box 365 Urbana, Illinois 61801
Telephone (217) 367-7373

TOUCH-TONE ENCODER

FEATURES:
- Crystal Controlled - Digitally Synthesized Tones.
- Low Current Drain CMOS Logic
- RFI Immune.
- 16-Button Tactile Feedback Keyboard.
- Will Interface to Transceivers Using Dynamic Microphones with Only Two Wires.
- Provisions for Three Wire Interface Are Provided.
- Gold-Plated Keyboard Contacts Provided for Maximum Reliability.
- Operating Voltage Range 9-18VDC.
- Size: 2.1" x 2.1" x .250" Without Case.
 2.1" x 2.1" x .312" With Case.

Touch-Tone Encoder $29.50
Case $2.00
Velcro $0.50

OHIO RESIDENTS ADD 4.5% SALES TAX

SEND CHECK OR MONEY ORDER TO:
The Barber Corporation
P. O. BOX 271
WAYNESVILLE, OHIO 45068
513-897-2926

2 METER CRYSTALS IN STOCK
FOR THESE RADIOS ON STANDARD ARRL REPEATER FREQUENCIES:
- DRAKE — TR-22
- GENAVE
- ICOM/VHF ENGINEERING
- KEN/WILSON
- REGENCY HR-2A/HR-212
- HEATHKIT HW-202
- REGENCY HR-2B
- S.B.E.
- STANDARD 146/826
- STANDARD HORIZON

Send for free frequency list and order blank to:

KENSOCO COMMUNICATIONS, INC.
DEPT. 112
BOX 469, QUINCY, MA. 02169
PHONE: (617) 471-6427
Back Again and Bigger and Better Than Ever!

NEW, MORE CONVENIENT LOCATION:
5935 N. MILWAUKEE AVENUE, CHICAGO
NEW TELEPHONE: (312) 631-5181
NEW HOURS: 9:30 - 9 Monday & Thursday
9:30 - 5:30 Tues., Wed. & Fri.
9 - 3 Saturday

Featuring Lots of New Lines: Collins • Yaesu
Regency • Hy-Gain • Atlas • Motorola
Mosely • Dentron • Swan • Data Signal

Plus those Regular Lines you’ve found at E thru the years:
Standard • Icom • ASP • Midland • TPL
Larsen • Kenwood • Henry • Cushcraft

Call or Write for Our Low Prices

ERICKSON COMMUNICATIONS, INC.
5935 North Milwaukee Ave., Chicago, IL 60646
(312) 631-5181 We Service What We Sell
Announcing the first ham radio technical seminar

MICROCOMPUTER INTERFACING

AN INTRODUCTION TO INTERFACING, PROGRAMMING, AND APPLICATIONS

For individuals who are interested in learning about microcomputers and how to get started in applying them to real-world situations.

An all-day program including:

1. What is a microprocessor? A Microcomputer?
2. Where do microcomputers fit? What are appropriate applications?
3. Microcomputer interfacing
 a. Bus structure
 b. Control signals
 c. Data flow
4. Microcomputer memory
 a. Types of memory: RAM, ROM, and PROM
 b. ROM/RAM trade-offs
5. Microcomputer Input/Output
 a. Device addressing
 b. Control of Input/Output
 c. Communication with the outside world
6. Microcomputer interrupts and flags
 a. Hardware vs software
 b. Advantages and disadvantages of interrupt schemes
 c. Timing
7. Microcomputer software
 a. As a replacement for hardware
 b. Modular approaches
8. Microcomputer peripherals and I/O port implementation
 a. UARTS and communications chips
 b. FIFOs and buffer storage
 c. PPI chips
 d. I/O port chips
9. Microcomputer software development
 a. Machine language
 b. Assembly language and editor/assemblers
10. How do I get started?
 a. Equipment and materials
 b. Texts
 c. Costs: projections of time and money

The four Bugbooks® described on the opposite page will be furnished at no extra charge to each student.

Each presentation of this course will be taught by one of the following instructors.

David G. Larsen, WB4HYJ*
Instructor, Department of Chemistry
Virginia Polytechnic Institute & State University

Dr. Peter R. Rony*
Professor, Department of Chemical Engineering
Virginia Polytechnic Institute & State University
*One of the authors of the Bugbook series

Mr. Jonathan A. Titus*
President, Nanotran Inc.
(Microcomputer consulting firm)

Mr. Christopher Titus
Consultant

Two dates and locations are currently scheduled. For your convenience they have been planned to take place during major Amateur Radio Conventions.

January 9, 1976
SAROC Convention
Hotel Sahara
Las Vegas, Nevada

January 24, 1976**
Tropical Hamboree
Miami, Florida
**Exact location to be announced

To enroll send $50.00 (this fee includes over $35.00 worth of textbooks) with your name, address and telephone number to Ham Radio, Greenville, NH 03048. Be sure to indicate your choice of date and location.

We suggest that you not delay as registration will be limited in all cases. Cancellation will be accepted up until one week prior to the Seminar.

ham radio
GREENVILLE, NH 03048 603-878-1441
MICROPROCESSORS ANYONE?
Here are those fabulous BUGBOOKS®! Each book is an excellent text plus complementary experiments designed to introduce you into the exciting new world of microcomputers. They start right at the beginning and give you everything you’ll need to start designing your own interface systems.

This is the first good microprocessor information featuring hardware and experiments with actual wiring diagrams.

BUGBOOKS I and II
by Peter R. Rony
David G. Larsen, WB4HYJ
Sold as a set these two books outline over 90 experiments designed to teach the reader all he will need to know about TTL logic chips to use them in conjunction with microprocessor systems. You’ll learn about the basic concepts of digital electronics including gates, flip-flops, latches, buses, decoders, multiplexers, demultiplexers, LED displays, RAM’s, ROM’s and much, much more.
Order BB-12
Only $16.95 per set

BUGBOOK IIa
by Peter R. Rony
David G. Larsen, WB4HYJ
This volume will introduce you to the fabulous UART chip — that all important interface between data terminals, etc., and your microcomputer. It also covers current loops, and the RS 232C Interface standard. Particularly recommend for any RTTY enthusiasts.
Order BB-2A
Only $4.95

BUGBOOK III
by Peter R. Rony
David G. Larsen, WB4HYJ
Jonathan A. Titus
Here is the book that puts it all together. Besides having much valuable text there are a series of experiments in which the reader completely explores the 8080 chip pin by pin and introduces you to the Mark 80 microcomputer, a unique easily interfaced system. It is recommended that you have the background of the BUGBOOKS I & II before proceeding with BUGBOOK III.
Order BB-3
Only $14.95

Please add 25c per volume for shipping and handling

☐ Bugbooks I and II ☐ Bugbook III ☐ Bugbook IIa
Only $16.95 per set Only $14.95 Only $4.95
☐ All Four Volumes Just $35.00 postpaid

Name ___________________________ Call ___________________________
Address __
City ___________________________ State __________ Zip ___________

order today from ham radio, greenville, nh 03048

More Details? CHECK—OFF Page 142
SPECTROL TYPE 43 RECTANGULAR CERMET POTS

Cermet sealed. Screwdriver adjust with and without resistance. 25% tolerance. 1/4" dia. x 4-1/2". Suitable for many "keyboard" systems, available, 0.01 - 9.9.

INDUSTRIAL SPEED CONTROL

A $49 item from G.E. Model 833A (used for potentiometers, shop and laboratory lighting). A highly versatile circuit for controlling many electrical devices. Easily controlled by any rheostat. Low cost. 1/4" to 12.5". Cables, brush type motors, etc. 115vac, rated at 1100 watts. 2000-1200. 2200-1200.

TELE TYPE CHIPS

COMM 2502

COM2601

NMX-5010

CAL1022

UART, 40 pin, 3-Antenna, 2400 Baud. $12.50

USRT, 40 pin, 3-Antenna, 2400 Baud. $24.00

Keyboard encoder ROM, 128K. $12.50

10 channel multiplex, 128K. $9.95

12 bit calculator, 2400 Baud. $24.00

Wow! INCREDIBLE PRICES!

TTL'S BUY ANY 10 TAKE 15%

BUY 100 TAKE 25%

| Type | SN7400 | SN7401 | SN7412 | SN7413 | SN7415 | SN7416 | SN7417 | SN7420 | SN7421 | SN7430 | SN7432 | SN7433 | SN7434 | SN7436 | SN7440 | SN7442 | SN7446 | SN7447 | SN7450 | SN7453 | SN7454 | SN7457 | SN7462 | SN7470 | SN7472 | SN7473 | SN7474 | SN7475 | SN7480 | SN7495 |
|------|-------|
| | 16 |
| | $1.25 |

G.E. DYNAMIC DIODE

Crystal clear response for all types of ham, audio, etc. Size only 2 1/16 x 1 1/4 x 1/2. Gray metal case. ON-OFF switch. With multi-position stand, 6 ft. cord. For plug and external switch control. 50 ohm impedance. 60 to 9000 KHz. 6 ozs. $2.50

MINIMUM ORDER — $6.00

PO BOX 842H, LYNNFIELD, MASS. 01940

STANDARDS & CUSTOMER SATISFACTION GUARANTEED

MICROPROCESSORS, RSI'S, RAMS, MEMORIES!

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>$29.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super 8x8</td>
<td>$15.00</td>
</tr>
<tr>
<td>2162-1 1624 Static RAM, 4.50</td>
<td></td>
</tr>
<tr>
<td>2162-2 1624 Static RAM, 4.50</td>
<td></td>
</tr>
<tr>
<td>1103 1624 bit RAM, 24</td>
<td></td>
</tr>
<tr>
<td>MM2562 2048 bit RAM, 24</td>
<td></td>
</tr>
<tr>
<td>MM2560 Erasable PROM, 5.00</td>
<td></td>
</tr>
<tr>
<td>17M024 Erasable ROM, 19.95</td>
<td></td>
</tr>
<tr>
<td>2221 Programmable ROM, 2.95</td>
<td></td>
</tr>
</tbody>
</table>

POSTAGE STAMP MOBILE SPKR MIKE

$198

This unit is not an advertised anywhere. Made for Motoports Communication at 1100. Mixes 6 ohm imp MIKE into your own 6 ohm imp MIKE, making it a 6 ohm imp MIKE. It's an excellent speaker. Works over a wide frequency range in sound.

MICROCOMPUTER CIRCUIT DESIGNS & PACKAGES!

MINI RELAY RELAY

IT'S NEW! GRIFFSBY-BARTON REED RELAY IN A DIP PACKAGE!

One of the special outstanding new buys of 1976 for you hobbyist looking for something different in relays. Designed so that you can beat the $1.25 to $4.00 JR1-1 pin socket. Rated at 5 volts or 150 ohms coil, 90% contact voltage, in a 12 VDC or 24 VDC. Needs 1 volt to break contact. With built-in coil suppression diode.

RELAY IN A DIP!

GB 821B-2

$2.50

3 for $6

Terms: add postage & handling. Rated: net 10%

Phone Orders: Wakefield, Mass. 1-213-2129
Retail: 1100 21st Street, Wakefield, Mass. 1100 21st Street
C.O.D. $5 MAY BE PHONED

20% off 100 parts

POLY PAKS

P.O. BOX 842H, LYNNFIELD, MASS. 01940

December 1975
TWO PLASTIC HOLDERS frame and display 40 components. CPO Surplus. Box 189. Braintree, for $1.00, or 7 holders enhance 140 cards for $3.00.

TIARA (Tokyo Amateur Radio Assoc.) is now offering within one year, five of which must be foreigners. Gear ever compiled.

THE BIG LIST. Get the largest listing of used Ham radio equipment. Compiled 1/3/76. From selected principal cities. Write for details.

HOMEBREWERS: Stamp brings list of high quality equipment. Both like new and working perfectly. Can be of interest to anyone interested old rig (a Nostalgia Rig is any gear built since 1945 but at least ten years old — an advantage, but not required in the Exchange). Exchange period 1/3/76, Sat., Jan. 4, and 19002 Sun., Jan. 4 to 05002 Mon., Jan. 5. Exchange your name, RST, state/foreign country, phone type (homebrew use P. H. i.e. "807"). The same station may be worked on each mode on each band. No A.M. phone below 28 MHz. Mailed to "CQ NX", please call "Ham Radio Exchange". Suggested frequencies: 1810 and CW up to 20 kHz from low band edges; phone 3910, 7280, 14280, 21380, 28580, Novice 3720, 7120, 1120, 28120. Send logs, comments, anecdotes, and legal sized SASE to: Saroc per cent are to have worked ten TIARA members Ihara, c/o CQ Magazine, to receive the award. To submit Latin, receive a list of callsigns to look for, submit a request.

HAMPFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio can not check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

THE BIG LIST. Get the largest listing of used Ham gear ever compiled! 20¢ SASE to: Buyers & Sellers BIG LIST, Box 73, Boston, Mass. 02215.

RTTY — Model 32 ASR - $300.00, Model 33 ASR - $600.00. Both like new and working perfectly. Can be shipped by most scheduled airlines sewing Las Vegas Tri-Ex Tower Corp.

TIARA (Tokyo Amateur Radio Assoc.) is now offering within one year, five of which must be foreigners. Gear ever compiled.

HOMEBREWERS: Stamp brings list of high quality equipment. Both like new and working perfectly. Can be of interest to anyone interested old rig (a Nostalgia Rig is any gear built since 1945 but at least ten years old — an advantage, but not required in the Exchange). Exchange period 1/3/76, Sat., Jan. 4, and 19002 Sun., Jan. 4 to 05002 Mon., Jan. 5. Exchange your name, RST, state/foreign country, phone type (homebrew use P. H. i.e. "807"). The same station may be worked on each mode on each band. No A.M. phone below 28 MHz. Mailed to "CQ NX", please call "Ham Radio Exchange". Suggested frequencies: 1810 and CW up to 20 kHz from low band edges; phone 3910, 7280, 14280, 21380, 28580, Novice 3720, 7120, 1120, 28120. Send logs, comments, anecdotes, and legal sized SASE to: Saroc per cent are to have worked ten TIARA members Ihara, c/o CQ Magazine, to receive the award. To submit Latin, receive a list of callsigns to look for, submit a request.

HAMPFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio can not check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

THE BIG LIST. Get the largest listing of used Ham gear ever compiled! 20¢ SASE to: Buyers & Sellers BIG LIST, Box 73, Boston, Mass. 02215.

RTTY — Model 32 ASR - $300.00, Model 33 ASR - $600.00. Both like new and working perfectly. Can be shipped by most scheduled airlines sewing Las Vegas Tri-Ex Tower Corp.

TIARA (Tokyo Amateur Radio Assoc.) is now offering within one year, five of which must be foreigners. Gear ever compiled.

HOMEBREWERS: Stamp brings list of high quality equipment. Both like new and working perfectly. Can be of interest to anyone interested old rig (a Nostalgia Rig is any gear built since 1945 but at least ten years old — an advantage, but not required in the Exchange). Exchange period 1/3/76, Sat., Jan. 4, and 19002 Sun., Jan. 4 to 05002 Mon., Jan. 5. Exchange your name, RST, state/foreign country, phone type (homebrew use P. H. i.e. "807"). The same station may be worked on each mode on each band. No A.M. phone below 28 MHz. Mailed to "CQ NX", please call "Ham Radio Exchange". Suggested frequencies: 1810 and CW up to 20 kHz from low band edges; phone 3910, 7280, 14280, 21380, 28580, Novice 3720, 7120, 1120, 28120. Send logs, comments, anecdotes, and legal sized SASE to: Saroc per cent are to have worked ten TIARA members Ihara, c/o CQ Magazine, to receive the award. To submit Latin, receive a list of callsigns to look for, submit a request.

HAMPFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio can not check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.
PORTA-PAK the accessory that makes your mobile really portable. $59.95 and $39.95. Dealer inquiries invited. P. O. Box 67, Somers, Visc. 53171.

WYOMING RANCH LAND. Wild horses, antelope, deer, elk. 10 acres $30 down. $30 month. FREE HAM Radio Info. Own Ranch. Mike Gauthier, 9550 Gallatin, Downey, CA 90240.

JAPANESE TRANSISTORS — All Transistors original factory made. Over 500 types available. Write for free catalog. West Pacific Electronics, P. O. Box 25837, W. Los Angeles, CA 90025.

NEED A NICE FAT TAX DEDUCTION? Tulsa 76 R&R Civil Air Patrol squad needs radio equipment for search and rescue and Cadet training operations. Items most urgently needed include 75M SSB, CB (nonsynthesized), VHJ-aircraft, and 2M FM with misc. parts and test equipment and what-have-you. Send descriptions and value to: Comm Officer, P. O. Box 4198, Tulsa, Ok. 74104.

NEW HOLIDAY BOOK CATALOG available free from Ham Radio. Send postcard today to request your free copy. Ham Radio, Greenville, NH 03048.

TRAVEL-PAK QSL KIT — Send call and 25¢; receive your call sample kit in return. Samco, Box 203, Wynantskill, N. Y. 12198.

QRP TRANSMATCH for HW7, Ten-Tec, and others. Send stamp for details to Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

R-388 RECEIVER, $200. AN/USM-159 frequency meter, solid state battery powered, 125 kHz to 1 GHz. $150. Boonton 101, CT 06010. Long Range. $150. AN/TRM-3 AM/Sweep Generator, 15-400 MHz, piston attenuator, metered output, CRT display, markers, all accessories. $250. Manuals included. Jim Walker, 576 West Ave., San Pablo, CA 94806.

SOCIETY OF WIRELESS PIONEERS offers Life Membership to active and former C.W. operators on comm't., military, gov't., etc. wireless/radio circuits. Contact: Society of Wireless Pioneers, Dept. H, P. O. Box 530, Santa Rosa, California 95402.

SELL GONSET 910A-SSB 6M transceiver - AC and DC power supplies. Original cartons, manuals. In storage for 30 years. $200. Box 2174, Royal, Box 2174, Sandusky, OH 44870.

SOCY OF WIRELESS PIONEERS lists Western Leasing and Radio Equipment. Contact: Society of Wireless Pioneers, Dept. H, P. O. Box 530, Santa Rosa, California 95402.

Sell Kenwood Radio Equipment. Contact: Society of Wireless Pioneers, Dept. H, P. O. Box 530, Santa Rosa, California 95402.

SOCIETY OF WIRELESS PIONEERS lists Western Leasing and Radio Equipment. Contact: Society of Wireless Pioneers, Dept. H, P. O. Box 530, Santa Rosa, California 95402.

SOLD ONCE! HARD TO FIND! Rare items. W2ABC. Box 4198, Tulsa, OK 74104.

TEK SERIES (ALL 40" THICK) —

TEK-125 1.58" x 2.08" $57.50

TEK-165 2.08" x 2.08" $65.00

SKW 1500 (5'x 10') $39.95. Dealer inquiries welcome.

SOS’S — BROWNIE W3CJ — 3035B Lehigh, Allentown, PA. 18103. Samples with cut catalog 35¢.
MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Estes Engineering, 930 Marine Dr., Port Angeles, WA. 98362.

FREE Catalog. LEDS, Microphones, Headsets, IC's, Relays, Ultrasonic Devices, Precision Trimmer Capacitors, Unique Components. Low Prices! Chany's, Box 15431, Lakewood, Colo. 80215.

WANTED: R-390A parts. W6ME, 4178 Chasin Street, Oceanside, Ca. 92054.

COMPUTER HOBBYISTS! Bargain hunt or sell via On-Line. 18 issues/year - $3.75. Free sample issue from 24695 Santa Cruz Hwy., Los Gatos, CA 95030.

"HAM BUY LINES" Send name and address for Literature. V. Lucacelli, 1720 77 St., Brooklyn, New York 11214.

1000V 1 AMP DIODES 10/$1.00. Many other electronic parts available. Free catalog. NuData Electronics, Dept. D, 104 N. Emerson St., Mt. Prospect, IL 60056.

NEW CANADIAN MAGAZINE. "Electronics Work Shop" $1.00 yearly. Sample $1.00. ETCOB. Box 15431, Lakewood, Colo. 80215.

WE PAY 10% ABOVE on any cash, or trade in deal on any of your equipment. We also pay shipping. We are buyers, not talkers. For details write Ocean Electronics, P. O. Box 193, Rockville Centre, New York 11570.

DO-IT-YOURSELF DECEPTION Stay at ZF1BF. Cayman is Vertical antenna and Caribbean at your doorstep. Diving/fishing if band folds. Write Spanish Bay Reef Resort, Box 800K, Grand Cayman, B. W. I.

DECEMBER SPECIALS:

1. 2N3563 TYPE RF Amp & Switch (TO-18/180) 3/$1.00
2. 2N3565 TYPE Gen. Purpose High Gain (TO-82/106) 6/$1.00
3. 2N3567 TYPE High Current Amplifier/500 mW 4/$1.00
4. 2N3663 TYPE RF Power Amp 1.5 W @ 450 MHz 1.50
5. 2N3903 TYPE GP Amp & Sw to 100 mW and 30 MHz 6/$1.00
6. 2N3918 TYPE GP Power Amp 15 W @ 200 MHz 5.00
7. 2N2474 TYPE Ultra-High Speed Switch 12 nA 4/$1.00
8. MPS515 TYPE High-Gain Amplifier hgu 250 3/$1.00
9. Asst. 2N3654, 2N3903, etc. (15) 2.00
10. 2N3638 1 NPN GP Amp & Sw to 300 mW 4/$1.00
11. 2N2434 TYPE (PNP) Low Noise Amp 1 mA to 50mA 4/$1.00

FET's:
N-CHANNEL (LOW NOISE)
12. 2N4001 TYPE RF Amp & Switch (TO-18/180) 3/$1.00
13. 2N4415 TYPE RF Amplifier to 450 MHz (TO-72) 2/$1.00
14. 2N5163 TYPE Gen. Purpose Amp & Sw (TO-18) 3/$1.00
15. 2N5486 TYPE RF Amp to 450 MHz (plastic 2N4416) 2/$1.00
16. EN82 TYPE Low Cost Audio Op Amp 4/$1.00
17. ITE4868 TYPE Ultra-Low Noise Audio 2/$1.00
18. TS42 TYPE High-Speed Switch 4022 3/$1.00
19. Assot. RF & GP FET's, e.g. 2N5163, MPF102, etc. (8) $2.00

P-CHANNEL
20. 2N4360 TYPE Gen. Purpose Amp & Sw (TO-18/180) 3/$1.00
21. E175 TYPE High-Speed Switch 1250 (TO-18/180) 3/$1.00

LINEAR IC's:
22. 308 Micro Power GP Amp (TO-5/MINI-DIP) $1.00
23. 309 V Voltage Regulator 5 V & 1A (TO-3) $1.50
24. 328 Volt 3411A Comp. (TO-6) $1.00
25. 530 2.5 Watt Audio Amplifier 4A 28 dB (DIP) $1.25
26. 555 Timer 10 A 15s, N555, LM555, etc. (MINI-DIP) $.65
27. 709 Popular Op Amp (TO-5) $1.00
28. 733 Voltage Regulator 0.15 V to 1.5 V (TO-5) $0.75
29. 733 Dual Low Noise Audio Preamp/Omp (DIP) $1.00
30. 1458 Dual 741 Op Amp (MINI-DIP) $.65
31. 741 Free Comp. GP Amp (DIP/TO-5/MINI-DIP) $1.00

DIODES:
32. Zeners: SPECIFY Voltage 3.3, 3.9, 4.3, 5.1, 8.8, 8.2, 400mA 4/$1.00
33. 9, 10, 12, 15, 18, 22, 24, 27 and 32 (10V) 1 $3/4.00
34. 1N3500 TYPE High Speed Sw 75 V/200 mA 0.08
35. 1N3502 TYPE 1N4148 4148 Stud Mount 400 V/12 A 2/$1.00
36. 1N314 or 1N4148 TYPE Gen. Purp. 100/10mA 1.5/$1.00
37. VARACTOR 50 W Output @ 350 MHz, 50 W 5.00
38. VARACTOR 2.5 W Output @ 1000 MHz, 50 W 5.00
39. VARACTOR 50 W Output @ 200 MHz, 50 W 3.00

*MAIL orders on 2000 DATA SHEETS subject to change. No notes. All items are new surplus parts - 100% functionally tested.

WRITE FOR FREE CATALOG offering hundreds ofsemiconductors not listed here. Send 10¢ stamp.

TERMS: All orders must be prepaid. We pay postage, $1.00 handling charge on orders over $10.00. C.O.D.'s add 6% sales tax. Foreign orders - add postage. COD orders - add $1.00 service charge.

FREE DATA SHEETS WITH EVERY ITEM 749 IC with every $10 order.

- REDUCE YOUR PROJECT COSTS
- MONEY-BACK GUARANTEE
- 24-HOUR SHIPMENT
- ALL TESTED AND GUARANTEED

TRANSISTORS (PNP):
2N3563 TYPE RF Amp & Oct to 1 GHz (2N9198) 5/$1.00
2N3665 TYPE Gen. Purpose High Gain (TO-82/106) 6/$1.00
2N3557 TYPE High Current Amplifier/500 mW 4/$1.00
2N3685 TYPE RF Power Amp 1.5 W @ 450 MHz 1.50
2N3903 TYPE GP Amp & Sw to 100 mW and 30 MHz 6/$1.00
2N3918 TYPE GP Power Amp 15 W @ 200 MHz 5.00
2N2474 TYPE Ultra-High Speed Switch 12 nA 4/$1.00
MPS515 TYPE High-Gain Amplifier hgu 250 3/$1.00
Asst. 2N3654, 2N3903, etc. (15) 2.00
2N3638 1 NPN GP Amp & Sw to 300 mW 4/$1.00
2N2434 TYPE (PNP) Low Noise Amp 1 mA to 50mA 4/$1.00

ACCESSORIES: 500W MOSFET POWER AMPLIFIER. 200 LF QY 400W FF 150W BH 300W CS 200W CH

FREE MORE DETAILS? CHECK-OFF Page 142

Add $2.00 handling charge on orders under $10.00. 6% sales tax added on orders shipped outside the United States. Specials for orders over $100.00. No cash discounts on foreign orders. No COD orders. No returns on special order items. All orders prepaid only. No postmarked mail orders accepted.

ADVA ELECTRONICS
Box 4181 BC, WOODSIDE, CA 94062
Tel. (415) 851-0455
TWO · ROHN G-65 TOWERS · 150 feet each · 20 foot sections · may be stacked · 24 inch ID complete · set · 1 1/2" guy wires · for use as two towers plus a 3-30 MHz log periodic antenna which they supported included. You Ship. $3,900.00. Ropt. L: WJR, RT, 3 Box 104, Bozeman, Montana 59715.

TELETYPEWRITER PARTS · gears, manuals, supplies, tape, toroids, SASE list. Typetronics, Box 8873, Ft. Lauderdale, Fla. 33310. Buy parts at wholesale.

YAESU OWNERS · Present or prospective · Help us celebrate our 5th birthday by joining the International Fox-Tango Club. Send SASE or IRC for complete details. Sample ad sheets available. Lots. WAZAQ/4, 248 Lake Dora Drive, W. Palm Beach, FL 33441.

RADIO ARCHIVES, amateur anecdotes solicited for ISA's Unpublished Radio History. Electronic Avocations, 3207 4th St. N., Minneapolis, Minn. 55412.

BUY-Sell-Trade-DE. Write for free mailer, give name, address, call letters. Complete stock of major brands, new and reconditioned equipment. Call us for Quotes, J&F, PO Box 100, Clinton, Iowa 52732.

MANUALS for most ham gear made 1940-55, some earlier. Send SASE for specific quote. Hobby Industry, WO3JK, Box H-864, Council Bluffs, Iowa 51501.

WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNQ, Box 257, Canal Station, New York, N. Y. 10013.

QSL CARDS · Something completely different. Nothing to mail to the market! cards: 25¢, W5TU, Box 1171D, Garland, TX 75040.

EXCLUSIVELY HAM TELETYPE 21st year. RTTY Journal. articles, news, DX, VHF, classified ads. Sample 30¢. $3.00 per year. Box 837, Royal Oak, Michigan 48073.

RADIO AND POWER PLANT ENGINEERS, ANTENNA RIGGERS. Supervisory openings are available overseas with Voice of America, Transmitter Technicians · Openings in California, North Carolina, and Ohio. Salaries: $12,285 to $17,556. Civil Service Application Form (SF-171) available at post offices. Federal buildings should be sent to VOA Personnel Office, New South Building, 330 C Street S.W., Washington, DC 20547. AN EQUAL OPPORTUNITY EMPLOYER.

$100.00 REWARD. (Ham) radio equipment stolen in a shop at Shreveport, La., between 3 p.m. 8 October and 7:30 a.m. 9 October 1975 in from my personal car parked on a commercially parked lot west of the P & S Hospital at the corner of Elizabeth and Jordan Streets. 1 Amateur radio transceiver, Gladding 25, Price-Simpson, 6 channel, serial #97050392, 1 Allied Radio, Pro-7, scanning receiver, 8 channel, Ser. No. 7111406, 1 Amateur radio transceiver, KAAR Expediter, Type 505, 6 channel, serial #9705039. 1 antenna, center loaded, 450 MHz, 1 mobile mount, handle-talkie, built in amplifier and control plug. Also removed at the same time was a red revolving warning light with magnetic mount, Signal-Stat, Model #381/384. B. W. Laurents, W5DQ, 322 Embrazio Street, Bossier City, La. 71101. Tel. No. 425-5351.

VIDEO RECORDER-REPRODUCER ELECTRONIC ASSEMBLY. Contains power supply with adjustable, regulated outputs of ±10 to 18 VDC (±15 VDC, 1½amps). Third output is 10 VDC at 3 amps. Perfect for 6 or 12-volt systems. DC Power. Contains 900 usable parts with extremely long leads. Includes 182 transistors IC's, diodes, and FET's, numerous capacitors, crystals, inductors, delay lines and varicaps. Transistors will operate in HEATHKIT TV's. Schematics and semiconductor cross-reference data supplied upon request. Total price, including shipping is $15.00. Write to Madison Electronics Company Inc., P.O. Box 369, Madison Alabama 35756 for a free brochure.

YOUR AD belongs here too. Commercial ads 35¢ per word. Non-commercial ads 10¢ per word. Complete the following sentence: Discounts are not available for ads not changed each other.

NEW FM XMTR KITS

• 2 M, 200 W FM/CW Exciter $39.95
• 432-450 MHz Tripler/Driver $19.95
• 20-25W 2M or 13-15W 432-450 PA, using new RF power modules $79.95
• Cab't for xcvr or other projects $27.95

Send SASE for catalog, incl. cvrs, preamps, etc.
Counter
Preamp

COUNTER PREAMP with 20dB gain and proximity probe measures oscillator frequency without actually touching circuit components, does not pull oscillators off frequency. Battery powered by 3 pencells. BNC connectors. With probe, less batt., ppd USA. Foreign add $5.00.

VHF Preamp, 100 KHz to 200 MHz $35.00
UHF Preamp, 1 MHz to 500 MHz $49.00

Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished.

Regularly $67.00. Now, over 30% discount (only $46.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax.

Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmericard accepted

D-D ENTERPRISES
DEPT. A, P.O. BOX 7776
SAN FRANCISCO, CA 94119

Dear Customer,

1975 has been one very busy year for us. Naturally, we are continually looking for bigger and better values to offer. Mix that effort in with moving our business to a new location and completely reorganizing our stock and you have an idea of why there have been some delays in serving you. Please accept our sincere thanks for bearing with us during this transient period. Now we’re squared away and it’s back to business. Try us. You’ll be glad you did.

Merry Christmas and a Happy New Year!

Yours truly,

Gene Korpela

Hauskaa Joulua

Buon Natale

Joyeux Noel

December 1975
And the angel said unto them, Fear not: for, behold, I bring you good tidings of great joy, which shall be to all people.

For unto you is born this day, in the city of David a Saviour, which is Christ the Lord.

...And the shepherds returned, glorifying and praising God for all the things that they had heard and seen, as it was told unto them.

Luke 12: 10, 11 and 20

We, too, praise God for his blessings and wish all of you a joyous Christmas.

Memories
825129

1024 bit ROM (256x4 PROM)

- access time 50 ns
- Power dissipation .5 MW/BIT
- Tri-state output
- Field programmable
- 16 pin DIP

Each $5.00 8 for $34.95

DIP RC NETWORKS

14 and 16 pin IC packages containing precision resistors and capacitors.

NO SCHEMATICS AVAILABLE

Sample indicates most contain 10 to 15R and 1 or 2C.

Assortment of 15 $1.00

Voltage Regulators 10-3

1 AMP POSITIVE 1 AMP NEGATIVE

EACH 10 PK EACH 10 PK

LM 309K 5V $1.25 $10.00 LM 320 5V $1.95 $17.50

7806 6V 1.95 13.00 LM 320 5V 1.95 17.50

7812 12V 1.95 17.50 LM 320 12V 1.95 17.50

7815 15V 1.95 17.50 LM 320 15V 1.95 17.50

7824 24V 2.25 20.00

Year-end sale!

With a $25 prepaid order we’ll include a CTS901 4-function, 12 digit calculator IC with data.

Send for free flyer

All merchandise is new unused surplus and is sold on a money back guarantee.

Five dollar minimum order. Free first class postage on all orders. California residents please add sales tax.

Write to: VALU-PAK

P.O. Box 41779 Sacramento, CA 95841

Now — Programmable Electronic Keyer

COMPLETE KIT

ONLY $59.95 ppd.

ASSEMBLED $79.50 ppd.

FEATURES: Dot and Dash Memory, Two Independent 256 Bit Memories, Keys up to ~150V, Self Completing Char. 6 to 60 WPM, Iambic Keying. Does not include paddle.

New England Digital Electronics

Box 684 Kenmore Station

Boston, MA. 02215

Elprocon

1 Watt 2 Meter Transmitter

- 2 CHANNEL OPERATION
- FREQUENCY RANGE 144-148 MHz
- 1 WATT MINIMUM POWER OUTPUT @ 12.5 wdc
- 50 OHM RF OUTPUT IMPEDANCE
- 8X MULTIPLICATION FACTOR
- NARROW BAND FM ± 5 KHz
- RUGGED BALANCED EMITTER OUTPUT TRANSISTOR
- SIZE 3¾” L X 1¾” W X 2” H
- TESTED & FULLY ASSEMBLED (Less xtal)
- $32.95 price includes all postage fees

Elprocon

DEPT. DS 1907 W. Campbell

Phoenix, Arizona 85015

More Details? CHECK-OFF Page 142
11th Annual SAROC
Amateur Radio's Prestige Convention
January 8-11 1976
DEL WEBB'S HOTEL SAHARA
LAS VEGAS, NEVADA
Special Hotel Sahara Safari
Airfare Packages from selected cities

SEE OUR AD IN THE FLEA MARKET — PAGE 99 FOR COMPLETE DETAILS

SAROC
Box 945, Boulder City, Nev. 89005
a NEW antenna principle
PROVEN IN EXACTING TESTS AND MANY YEARS ON THE AIR AT W0MBH — KAST — KBVRM

THE Little GIANT BEAM ANTENNA

only 27 inches high
by 22 inches wide

A COMPLETELY NEW ANTENNA
Here is an ultra compact beam antenna which can be tuned to any frequency between 7.0 and 14.5 MHz. Weighing only 18 lbs. this antenna may not outperform a full sized beam but it sure will give you your share of DX and state-side contacts. Will handle 1 KW over a 100 kHz bandwidth.

- Fully weather proof
- Hi-Q, attenuates harmonics
- Mounts easily on TV masting
- Comes assembled & tested

KITS 10/40 $74.50

LITTLE GIANT MODEL 100X1000-40
$149.50

Figure 8 pattern KITS 10-40 $74.50
Little Giant Antenna Labs, Box 245, Vaughsville, Ohio 45893
Subsidiary "Apollo Products" Village-Twix Co.
419-646-3495

FOR THE ULTIMATE ANSWER
to your Communications needs contact us NOW! We are distributors for multiple lines of Amateur and Two-Way Radio Products. Call or write for information. Dealer inquiries invited.

SAGAL ELECTRONICS INC.
P. O. BOX 117
ROSELLE PARK, N. J. 07204
201-289-2390

FREE gift! Just for writing for your free YAESU catalog.

10 CHANNEL SCANNER
For All Regency HR series 2, 2A, & 2B MT-15, MT-25, & AQUAFONE Transceiver

FEATURES:
- Selectable Priority Channel (Selected By Channel Selector Switch)
- 10 Second Delay Before Scan Resumes After Transmit
- 2 Second Delay Before Scan Resumes After Signal Loss
- Plugs Into Existing Crystal Sockets. Simple 5 Wire Hook-Up Without Major Modification To Radio
- Simple Modification For Selective Channel Bypass
- Optional Digital Channel Display

SCANN 10B 10 Channel Scanner $52.50
(Directed Only)

DI08 Digital Channel Display $21.75
(Wired Only)

NET PRICE FOR BOTH $74.25

HR-2B With Both Installed $299.99

6T-HR2-3 Crystal Deck (6 more FQ's in HR2, HR2A) Kit $11.50, Wired $15.50

HF 144 U MOSFET Précip Kit $11.95, Wired $17.95

MOTOROLA MTRM 11 in stock — Write for Information

Topeka FM Communications & Electronics
125 Jackson
Topeka, Kansas 66603
913-233-2343

YOUR BEST BUY IN KITS
Freq. Counter Kit - 0-300 MHz $99.00
Freq. Counter Kit - 0-500 MHz $139.00
Basic Clock Kit - full 6 digit $17.95
Calculator Kit, 9 function, 8 digit readout — with memory $17.95
Electronic Dice Game Kit $10.95
Function Generator Kit $10.95
Various other kits and electronic components available. Send SASE for flyer.

HAL-TRONIX
P. O. BOX 1101
SOUTHGATE, MICH. 48195
(313) 285-1782

WANT TO WORK THOSE SPLIT CHANNELS WITH YOUR ICOM IC-230?
Contact us NOW for a set of three crystals that will let your IC-230 do the job on the standard 15 kHz split channels. Guaranteed crystals by Sentry. Set of 3 regularly $17.85. NOW only $14.50 per set if you mention where you saw this ad.

CFP Communications
Division of CFP Enterprises
211 NORTH MAIN STREET
HORSEHEADS, NEW YORK 14845
Phone: 607-739-0187
MODEL KR50

- SUPERLATIVE “FEEL” 5-50 GRMS PADDLE FORCE
- AUTOMATIC OR MANUAL WEIGHTING
- DIT AND DAH MEMORIES WITH SEPARATE DEFEATS
- “STRAIGHT KEY” OVERRIDE FOR QRS OR TUNE-UP
- GUARANTEED FOR LIFE BEARING PIVOTS

A sparkling new keyer with a host of exciting features. A powerful aid to cleaner, more articulate CW that is relaxing to use and a joy to copy.

The paddle assembly will delight the CW purist as well as the recent graduate from a bug or hand key. The superlative “feel” is attained by a magnetic return force, instantly adjustable to exactly the right touch for you.

Weighting, the ratio of dit and dah (bits) lengths to the spacing between them, is either automatically or manually varied. In the automatic position, it is programmed to lengthen the bits at slow speed for enhanced smoothness and decrease them as you advance the speed, for highest articulation. Or, it can be adjusted to a constant value.

The KR50 is versatile. Dit and dah memories are provided for full iambic (squeeze) keying. Either dit or dah, or both, may be turned off for operation as a conventional type keyer. Self-completing characters at all times.

A convenient “Straight key” is built-in for QRS sending or tune-up. Also an internal side-tone and 115VAC/12VDC operation is provided.

The KR50 is designed to have a permanent place in your shack for the years, perhaps decades, ahead. An investment in the enjoyment of CW.

PRICE $110.00

KR20-A

Paddle has unique principle with excellent feel for rhythmic CW. Characters are self-completing. Bit weighting is optimized for normal speeds. Manual key button conveniently located for hand sending. Side tone signal. Read relay. Plug-in circuit boards, 115VAC or 6 to 14 VDC. HWD 2½” X 4½” X 8 ¾”. WT. 2 ½ lbs.

PRICE $67.50

KR1-A

This is the paddle mechanism used in the KR50. Requires 6-14 VDC for adjustable electromagnetic paddle return force. Adjustable contact spacing. For iambic or conventional keyers. “Straight key” button. Housed in an attractive metal case with cream front panel, walnut vinyl top. Size: 2” X 4” X 6”. WT. 1½ lbs.

PRICE $25.00

KR5-A

Similar to the KR20A but without monitor signal and AC power supply. A great value. For 6-14 VDC operation. Size HWD 2” X 4” X 6”. Weight: 1½ lbs.

PRICE $38.50

KR2-A

The paddle used in the KR20A. Simple paddle for non-iambic keyers. “Straight key” button conveniently located, cream aluminum case with walnut vinyl top. Size: 2” X 4” X 6”. Weight: 1½ lb.

PRICE $15.00

WHAT'S THE MOST VALUABLE TOOL IN BUYING USED HAM GEAR?

THE BIG LIST

Send 20¢ coin or stamps to
BUYERS & SELLERS — BIG LIST
Box 73, Boston, Mass. 02215

DIGITAL CLOCK CASE — WALNUT

If you're into electronic kits — you're into clocks. Put the finishing touches on your clock with our beautifully designed solid walnut case. Stained to enhance any decor, this clock comes with glass free Polished Atari. Accommodates dials up to 3½” W X 3½” H. D & N Gifts by Mail offers exceptional value and the finest quality. Display that clock you worked so hard to build in a case designed to give that professional look. Postage prepaid order. Shipped same day received only $11.95

D & N GIFTS BY MAIL
P. O. BOX 29607 * DALLAS, TEXAS 75228

TIRED OF CRANKING?

MOTORIZE YOUR TOWER WITH OUR ELECTRIC HOIST/WINCH

- STURDY—RELIABLE—EASILY INSTALLED
- ½-TON LOAD HANDLING CAPACITY

TOWTEC CORP. Dept. H-2
118 ROSEDALE RD., YONKERS, NY 10710 Tel. (914) 779-4142

$195
JAMES ELECTRONICS
P. O. BOX 822
BELMONT, CALIFORNIA 94002
(415) 592-8097

WALL or T.V. DIGITAL CLOCK
12 or 24 Hour, 25" VIEWING DISTANCE, Walnut Case 6" x 3" x 1.5".
Hr. & Min. 10-9 High, Seconds 3-12 High
Kit-All Comp. & Case $31.95
Wired & Assembled $39.95

POCKET CALCULATOR KIT
5 function plus constant-addressable memory with individual recall.-8 digit display plus over-flow-
way saver--was standard or rechargeable batteries--
all necessary parts in ready to assemble form-
instructions included, 3" x 4.5".
SPECIAL $12.95 each
OPTIONS- 115VAC Transformer $4.95 each
& 6 each "M" Alkaline Batteries $1.95 for.

LOGIC PROBE
The Logic Probe is a must have for the
microcircuit designer. Kit includes testing
large families, TTL, DTL, IRE, CMOS. It
enables the probe of ready to operate directly
coff of the printed circuit board without
the need for additional test equipment.
Save $10 w/ Max. 50000 free w/ PULSER-1. The
Probe works at any frequency greater than
45 kHz. It can be used at MOS levels or
chain-down circuits.
$9.95 Per Kit

MINI POWER SUPPLIES
Three power supplies offer small size, with a wide choice of voltage outputs.
They are all capable of delivering 300mA and have dimensions of 1" x 1" x 2.5".
The models are A, B, C. The voltage range is 0-15V, -5V, 0-9V, 0-12V, 0-24V.
$19.95 per kit.

LOW COST DIGITAL CLOCK KIT
This compact kit is ideal for learning about digital electronics and
is perfect for the beginner.
Kit contains all necessary parts and includes a 120 page manual.
$9.95 per kit.

ELECTRONIC ROULETTE
Complete kit with all components case and
transformer.
8" x 8" x 11"
A 56 page book on the facts of
Roulette included.
$29.95 Per Kit

ELECTRONIC CRAPS
Complete kit with all components case and
transformer.
6" x 3" x 1.5"
A 56 page book on the facts of
Craps included.
$19.95 Per Kit

Satisfaction Guaranteed. $5.00 Min. Order. U.S. Funds.
Add $1.25 for Postage — Write for FREE 1976 Catalog
California Residents — Add 6% Sales Tax

JAMES
P. O. BOX 822, BELMONT, CA. 94002
PHONE ORDERS — (415) 592-8097

WANT TO TRADE BINDERS?
Got more small sized HAM RADIO
Binders than you can use?
Now with our new large sized magazine starting in January we'll trade any
extra small sized (6" x 9") binders for
our new large sized binders for just
$1.00 ($2.00 foreign) per binder
shipping and handling.
Send in any extra binders in new,
unused condition still in their original
shipping carton along with the wires
and date labels plus $1.00 per binder.
We'll ship you a brand new large
binder for each small one returned.
Hurry though, this offer is valid only through January 31, 1976.

HAM RADIO
GREENVILLE, NH 03048
FROM AMPLIFIERS . . . TO ANTENNAS

Your needs are best served by considering SPECIALTY COMMUNICATIONS SYSTEMS as your source for equipment. Experience as an Amateur along with a genuine interest in the features you need are combined with years of design and manufacturing experience. The end result is evident in the features listed, many of which are not available elsewhere.

- Selectable bias - Linear Class AB for SSB, Class C for FM.
- Variable T-R delay
- SSB mode also usable for low power (<10W) FM.
- Solid State and microstrip construction.
- No tuning across entire amateur band.
- Full VSWR and reverse voltage protection.

SPECIALTY COMMUNICATIONS SYSTEMS
4519 Narragansett Ave., San Diego, CA 92107
714-222-8381
Write now or contact your nearest dealer!
(Dealer inquiries invited.)

SUBAUDIBLE for FM

for

- Inexpensive multi-tone system
- Low distortion
- Adjustable to any freq (98-250Hz): Lower freq avail.
- Rugged, plastic encased
- Excellent freq. stability
- Input 16VDC unregulated

Price
Freq set at factory
Calc/ins. tax
Send for app. notes

$19.95
5.00
1.20
P.O. Box 2083
Santa Clara Calif.
95051

The DX 'J' Antenna:
- Gold-alodined aluminum radiators
- Requires no ground plane
- VSWR typ. 1.3:1 (146-148 MHz)
- Handles 250 watts plus
- Weight: 8 oz.

SPECIAL INTRODUCTORY PRICE $24.95
Accessory: 15' of RG-58/U w/connector $4.95
Add for shipping & handling $2.50
California residents add 6%
Louis N. Anciexx, W6BNM

SUBAUDIBLE GENERATOR THE CUBE

CHIP as low as $7.95

8043: IC only, 50-up group rate $ 7.95
8043-1: IC, PCB, Manual $ 24.95
8043-2: Semi-kit $ 49.95
Add for air postage and handling $ 1.50
(See Feb 75 QST and Apr 75 HR articles)
KB4200 Keyboard Keyer (Oct 74 QST) $549.95
EK420/MK420 K4ayer/Mem (Oct 73 QST) ... $439.90
EK430 CMOS Keyer (uses 8043 chip) $124.95
IK440 Instructionkeyer (Jun 75 "73") $224.95
CURTIS ELECTRO DEVICES, Inc.
(415) 964-3136
Box 4090, Mountain View, Cal. 94040

PORTA-PAK

SUGGESTIVE? SURE!

THE DELUXE PORTA-PAK NOT ONLY SUGGESTS BUT DELIVERS:
- Attractive Package
- Durability Plus
- Operation Anywhere
- Full Power
- Overnight Recharging

PORTA-PAK IS THE ACCESSORY THAT MAKES YOUR MOBILE RADIO REALLY PORTABLE.

PORTA-PAK P.O. BOX 67.
SOMERS, WI. 53171

PORTA-PAK IS THE ACCESSORY THAT MAKES YOUR MOBILE RADIO REALLY PORTABLE.

PORTA-PAK P.O. BOX 67.
SOMERS, WI. 53171

CURTIS KEYER

CHIP as low as $7.95

8043: IC only, 50-up group rate $ 7.95
8043-1: IC, PCB, Manual $ 24.95
8043-2: Semi-kit $ 49.95
Add for air postage and handling $ 1.50
(See Feb 75 QST and Apr 75 HR articles)
KB4200 Keyboard Keyer (Oct 74 QST) $549.95
EK420/MK420 K4ayer/Mem (Oct 73 QST) ... $439.90
EK430 CMOS Keyer (uses 8043 chip) $124.95
IK440 Instructionkeyer (Jun 75 "73") $224.95
CURTIS ELECTRO DEVICES, Inc.
(415) 964-3136
Box 4090, Mountain View, Cal. 94040

D. R. CORBIN MFG. CO. P.O. Box 44
North Bend, Oregon 97459

DUPLEXER KITS

PROVEN DESIGN. HUNDREDS SOLD IN US, CANADA, EUROPE. CONSTRUCTION WELDED ALUMINUM TRIDITE & SILVER PLATED. SEE JAN. 74 QST RECENT EQUIPMENT. ALL PARTS PROFESSIONAL QUALITY. EVERYTHING SUPPLIED. NO SPECIAL TOOLS. RECEIVER & TRANSMITTER CAN BE USED FOR TUNE UP.

MOD. 62-1 6 CAVITY 135-165 MHz POWER 250W ISOIATION GREATER THAN 100dB 600 kHz INSERTION LOSS .9 dB MIN. TEMP STABLE OVER WIDE RANGE PRICE $349.00

MOD. 42-1 4 CAVITY SAME AS 6 CAVITY EXCEPT ISOIATION GREATER THAN 80 dB 600 kHz INSERTION LOSS .6 dB MAX. PRICE $249.00

NORTH SHORE RF TECHNOLOGY

Exclusive Distributor TUFTS Radio
386 MAIN ST, MEDFORD, MA 02155
617-395-8280
MOCO II ushers in a new generation of Morse Code readers. Its central processing unit is combined with computer programmed firmware totalling more than 8,000 bits of memory, which permit MOCO II to translate standard alphanumeric Morse Code, even punctuation, automatically.

Simply connect MOCO II to the speaker leads and then just turn it on. No knobs, no adjustments. One switch calibration automatically determines and displays sending speed.

MOCO II is not a kit. It's completely assembled and tested, includes integral power supply, parallel ASCII and Baudot outputs for existing display units.

PRICE: $199.00

Available as options are a video display, or a teletype driver with 60 ma. loop supplies.

Order from Howard Microsystems, Inc., 6950 France Avenue South, Minneapolis, MN 55435 (612) 925-2474.

DISPLAY OPTIONS

A. Baudot Driver/Interface for TTY .. $75.00
B. Video Character Display with VHF TV
 Modulator .. $325.00
 (Kit .. $175.00)

All orders — add $2.75 shipping/handling

Technological Advances with MOCO II

- **Central Processing Unit**: Incorporates firmware totalling over 8,000 bits of memory.
- **Automated Calibration**: One switch calibration automatically determines and displays sending speed.
- **Comprehensive Features**: Includes integral power supply and parallel outputs for ASCII and Baudot.

Ease of Use

- **No Knobs, No Adjustments**: Simple connection to speaker leads.
- **Turn-On Activation**: Just turn it on for automatic operation.

Technical Specifications

- **Memory Capacity**: Over 8,000 bits.
- **Output Compatibility**: ASCII and Baudot outputs.

Options

- **Video Display**: For enhanced viewing.
- **Teletype Driver**: With 60 ma. loop supplies.

Order Information

- **Contact**: Howard Microsystems, Inc., 6950 France Avenue South, Minneapolis, MN 55435 (612) 925-2474.

Additional Features

- **Learn the Truth About Your Antenna**: Find its resonant frequency, R and X off-resonance.
- **Compact, Lightweight**: Battery operated, simple to use.
- **Broadband**: 1-100 MHz, easy to use, self-contained.
- **Free Brochure**: Request a free brochure.
- **Order Direct**: $39.95 PPD U.S. & Canada (add sales tax in Calif.).
PERSONALIZED SERVICE FOR ALL YOUR AMATEUR NEEDS

New Equipment
Transmitters
Receivers
Keyers

Used Equipment
Publications
OSCAR Antennas
Coax

FM Transceivers
Preamps
Mobile Antennas
Beams

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

THE ULTRA-BAL 2000
Now... An extremely rugged, weather-proof BALUN!
• Full 2KW, 3-30 MHz, 1/2 to 14 ratios.
• Special Teflon insulation. May be used with tuned lines and tuners.
• With dipole insulator and hang-up hook.
ONLY $9.95ppd. (state ratio)
At your dealer or order direct

K.E. Electronics
Box 1279, Tustin Calif. 92680

THE BRIMSTONE 144
Automatic Electric 12 button pads and enclosures available NOW.
Inquire about Nye Viking S.S. T/R Switch.
We also handle popular Nye Viking Super Squeeza Key.
Ten-Tec equipment available.
Used Amateur Gear — 2M, Novice, HF.
Call or write for immediate assistance.

COMMUNICATION SPECIALTIES INC.
97 AMSTERDAM AVENUE
P. O. BOX 471
WARWICK, R. I. 02889
401-738-3287

VHF/UHF CONVERTERS PREMPS
Ten meters through 432 MHz. A post card will bring our full 1975 Catalog.

JANEL laboratories
260 NW POLK AVE.
CORVALLIS, OREGON 97330
Telephone: 503-757-1134

CASH FOR 2-WAY FM RADIO EQUIPMENT
MOTOROLA, GE, RCA, ETC.
MOBILES, BASES, PORTABLES, MOBILE-TELEPHONES
REPEATERS, REMOTE CONTROLS, TONE EQUIPMENT
2-WAY TEST EQUIPMENT
Operational Units Only
Commissions/Finders Fees
CAL-COM SYSTEMS, INC.
701-51A KINGS ROW, SAN JOSE, CALIFORNIA 95112
Telephone 24 Hours 408/998-4444

QUELL QRM QUICK
In Your HW or SB Kit With Our
SUPERFILTER-MKII
Simple "Plug-In" replacement for the standard sideband filter practically doubles receive selectivity.

SIGNAL MANAGEMENT SCIENCES
LONG GREEN, MD. 21092

test for resonant resistance with an omega-t antenna noise bridge

The Omega-t Noise Bridge is an inexpensive and flexible testing device that can effectively measure antenna resonant frequency and impedance. This unique piece of test equipment does the work of more expensive devices by using an existing receiver for a bridge detector. There is no longer a need for power loss because of impedance mismatch. Get more details or order now!

Model TE7-01 for 1-100 MHz Range $29.95
Model TE7-02 for 1-300 MHz Range $39.95

ELECTROSPACE SYSTEMS, INC.
320 TERRACE VILLAGE, RICHARDSON, TEXAS 75080
TELEPHONE (214) 231-9303

Sold at Amateur Radio Dealers
or Direct from Electrospace Systems, Inc.

test your skills on the "WHEEL OF FORTUNE"

COMPLETE KITS
ONLY $24.95

(A perfect Christmas gift for the man with everything)

INCLUDES:
• Phenolic Case • Engraved Front
• Drilled P.C. Board • All Necessary Components
• Detailed Instructions with Simulations

HOSFELT ELECTRONICS
224 OPAL BLVD., STEUBENVILLE, OHIO 43952
PHONE 614 264-6464
We’ve Got POWER
80 Watts for $93.00

POWER is important on any band, even 2 meters. It means that they hear you, or they don’t. Most 2 meter transceivers have 10 watts out and that’s enough for local repeaters. But for hams who want more than just a few local contacts, you should hear RF POWER by PRA Industries. The PRA 10/80 amplifier will give your signal TALK POWER. It makes 10 watts a BIG 80 WATTS. That’s the difference between being just one of the guys, and being the guy with the STRONG SIGNAL. BIG SIGNAL TALK POWER FOR JUST $93.00!

Don’t forget our MINI AMP I KIT will give hand held units 25 watts of talk power too! Call our toll free number or see your local dealer and then PUT SOME POWER IN YOUR TALK!

Call Toll Free 800-453-5717

Crystal Products Co.
HIGH STABILITY CRYSTALS
• For Industrial, Commercial, Amateur & C.B.
• Competitive prices, normally 1 week delivery.
• All crystals shipped prepaid insured airmail.
QUANTITY USERS CALL FOR QUOTES

Write or call:
WANDA BURCH
CRYSTAL PRODUCTS CO.
P. O. BOX “E” • COLLINSVILLE, OKLA. 74021
918-371-4269

R648/ARR-41 RE CeIVER

Mini version of R-390A with many features of R390A
Digital Readout: 500 kHz to 24,999 MHz
1.4 kHz to 6 kHz Mechanical Filters
Crystal Calibrator: 500 ohm Output, 17 tubes.
Input: 28 Volt-115 V, 400 Hz — 250 V @ 100 MA
Size: 8”x17”x22”. Weight: 34 lbs.
Information sheet available
Price: $199.50 tested: FOB Tucson, Arizona

KOLAR, INC.
4484 E. TENNESSEE ST., TUCSON, AZ, 85714
TELEPHONE: AREA 602-325-3391

FAST SCAN AMATEUR TELEVISION EQUIPMENT
• SOLID STATE • BROADCAST QUALITY PERFORMANCE

AX-10 TRANSMITTER
AM-1A RCVR MODEM

FOR TECHNICAL DATA AND PRICING, WRITE TO:
APTRON LABORATORIES BOX 323 BLOOMINGTON IN 47401

december 1975
antennas and transmission lines

general

- **Antenna control, automatic azimuth/elevation for satellite communications**
 - WA3HLT: p. 26, Jan 75
 - Correction: p. 58, Dec 75
- **Antenna dimension (HN)**
 - W6AGX: p. 28, May 75
- **Antennas and capture area**
 - K6MIO: p. 42, Nov 69
- **Antenna control, automatic azimuth/elevation for satellite communications**
 - WA3HLT: p. 26, Jan 75
 - Correction: p. 58, Dec 75
- **Antenna design, programmable calculator simplifies (HN)**
 - WA1ABP: p. 69, May 69
- **Bridge for antenna measurements, simple**
 - W2CTK: p. 34, Sep 70
- **Cubical quad measurements**
 - W4YM: p. 42, Jan 69
- **Dipole center insulator (HN)**
 - WA1ABP: p. 69, May 69
- **Diversity receiving system**
 - W2EEX: p. 12, Dec 71
- **Dummy load and rf wattmeter, low-power**
 - W2DLU: p. 56, Apr 70
- **Dummy loads, experimental**
 - W8YFB: p. 36, Sep 68
- **Dummy load, low-power vhf**
 - WB9DNI: p. 40, Sep 73
- **Effective radiated power (HN)**
 - VE7CB: p. 72, May 73
- **Feedpoint impedance characteristics of practical antennas**
 - W5JJ: p. 50, Dec 73
- **Filters, low-pass, for 10 and 15m**
 - W2EEX: p. 42, Jan 72
- **Gain vs antenna height, calculating**
 - WB8IFM: p. 54, Nov 73
- **GDO, new uses for**
 - K2TQ: p. 48, Dec 68
- **Grounding, safer (letter)**
 - WA5KTZ: p. 59, May 72
- **Ground rods (letter)**
 - W7FS: p. 66, May 71
- **Ground systems, vertical antenna**
 - W7L: p. 30, May 74
- **Headings, beam antenna**
 - W6FFC: p. 64, Apr 71
- **Hook, line 'n sinker (HN)**
 - WA4NED: p. 76, Sep 68
- **Horizontal or vertical (HN)**
 - W7IV: p. 62, Jun 72

high-frequency antennas

- **All band antenna portable (HN)**
 - W2ZIN: p. 68, Jun 70
- **All-band phased-vertical**
 - WA7CDD: p. 32, May 72
- **Antenna, 3.5 MHz, for a small lot**
 - W6AGX: p. 28, May 73
- **Antenna potpourri**
 - W6AGX: p. 28, May 73
- **Antenna systems for 80 and 40 meters**
 - K6EKA: p. 34, Nov 70
- **Army loop antenna — revisited**
 - WA3FQJ: p. 59, Sep 71
- **Antenna, improved triangular shaped**
 - W6DL: p. 20, May 70
- **Beam for ten meters, economical**
 - W1PPF: p. 54, Mar 70
- **Beverage antenna**
 - W3FQJ: p. 67, Dec 71
- **Big beam for 10 meters**
 - VE1TG: p. 32, Mar 68
- **Bobtail curtain array, forty-meter**
 - VE1TG: p. 58, Jul 69
- **Coaxial dipole, multiband (HN)**
 - W4BDK: p. 71, May 73
- **Compact antennas for 20 meters**
 - W4ROS: p. 38, May 71

Impedance measurements, non-resonant antenna

- **W7CSD**: p. 46, Apr 74
- **Insulators, homemade antenna (HN)**
 - W7ZC: p. 70, May 73
- **Isotropic source and practical antennas**
 - K6FD: p. 32, May 70
- **Measurement techniques for antennas and transmission lines**
 - W40Q: p. 36, May 74
- **Measuring antenna gain**
 - KE1YQ: p. 26, Jul 69
- **Mobile mount, rigid (HN)**
 - VE7ABK: p. 69, Jan 73
- **Power in reflected waves**
 - Woods: p. 49, Oct 71
- **Reflectors, some reflections on**
 - VE3AAZ: p. 44, May 70
- **Reflectometers**
 - K1Y2W: p. 65, Dec 69
- **Rf current probe (HN)**
 - W6HPH: p. 76, Oct 68
- **Rf power meter, low-level**
 - W5WGF: p. 58, Oct 72
- **Sampling network, rf — the milli-trap**
 - W6QGW: p. 34, Jan 73
- **Smith chart, how to use**
 - W1GIA: p. 16, Nov 70
 - Correction: p. 76, Dec 71
- **Standing-wave ratios, importance of**
 - W2HB: p. 26, Jul 73
- **Correction (letter)**
 - W2HB: p. 67, May 74
- **Time-domain reflectometry, practical experimenter's approach**
 - WA3GIA: p. 22, May 71
- **T-R switch**
 - W3KMO: p. 61, Apr 69
- **Voltage-probe antenna**
 - W1DNY: p. 29, Oct 70

December 1975
<table>
<thead>
<tr>
<th>Antenna Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converted-vee, 80 and 40 meter</td>
<td>18</td>
</tr>
<tr>
<td>W6JKR</td>
<td>Dec</td>
</tr>
<tr>
<td>Cubical quad antenna design parameters</td>
<td>55</td>
</tr>
<tr>
<td>K6GPZ</td>
<td>Aug</td>
</tr>
<tr>
<td>Cubical-quad antennas, mechanical design of</td>
<td>44</td>
</tr>
<tr>
<td>VE3II</td>
<td>Oct</td>
</tr>
<tr>
<td>Cubic-quad antennas, unusual</td>
<td>6</td>
</tr>
<tr>
<td>W1DTY</td>
<td>May</td>
</tr>
<tr>
<td>Cubical quad, three-band</td>
<td>22</td>
</tr>
<tr>
<td>W1HXX</td>
<td>Jul</td>
</tr>
<tr>
<td>Curtain antenna (HN)</td>
<td>66</td>
</tr>
<tr>
<td>W4ATE</td>
<td>May</td>
</tr>
<tr>
<td>Dipole, all-band tuned</td>
<td>22</td>
</tr>
<tr>
<td>Z6SBBT</td>
<td>Oct</td>
</tr>
<tr>
<td>Dipole antennas on non-harmonic frequencies (HN)</td>
<td>72</td>
</tr>
<tr>
<td>W2CTK</td>
<td>Mar</td>
</tr>
<tr>
<td>Dipole beam</td>
<td>56</td>
</tr>
<tr>
<td>W3FQJ</td>
<td>Jun</td>
</tr>
<tr>
<td>Dipole pairs, low SWR</td>
<td>42</td>
</tr>
<tr>
<td>W6FPO</td>
<td>Oct</td>
</tr>
<tr>
<td>Dipole sloping inverted-vee</td>
<td>48</td>
</tr>
<tr>
<td>W6NIF</td>
<td>Feb</td>
</tr>
<tr>
<td>Double bi-square array</td>
<td>32</td>
</tr>
<tr>
<td>W6FFF</td>
<td>May</td>
</tr>
<tr>
<td>Dual-band antennas, compact</td>
<td>18</td>
</tr>
<tr>
<td>W6SAI</td>
<td>Mar</td>
</tr>
<tr>
<td>DX antenna, single-element</td>
<td>52</td>
</tr>
<tr>
<td>W6FMH</td>
<td>Dec</td>
</tr>
<tr>
<td>Performance (letter)</td>
<td>65</td>
</tr>
<tr>
<td>W6SAI</td>
<td>Oct</td>
</tr>
<tr>
<td>Folded mini-monopole antenna</td>
<td>32</td>
</tr>
<tr>
<td>W6SAI</td>
<td>May</td>
</tr>
<tr>
<td>Four-band wire antenna</td>
<td>54</td>
</tr>
<tr>
<td>W3FQJ</td>
<td>Aug</td>
</tr>
<tr>
<td>Ground-plane, multiband (HN)</td>
<td>42</td>
</tr>
<tr>
<td>W2CTK</td>
<td>May</td>
</tr>
<tr>
<td>Groundplane, three-band</td>
<td>6</td>
</tr>
<tr>
<td>LA1EI</td>
<td>May</td>
</tr>
<tr>
<td>Correction (letter)</td>
<td>91</td>
</tr>
<tr>
<td>W6SAIQ</td>
<td>Dec</td>
</tr>
<tr>
<td>Footnote (letter)</td>
<td>65</td>
</tr>
<tr>
<td>W6SAIQ</td>
<td>May</td>
</tr>
<tr>
<td>High-frequency amateur antennas</td>
<td>40</td>
</tr>
<tr>
<td>W2WLX</td>
<td>Jun</td>
</tr>
<tr>
<td>High-frequency diversity antennas</td>
<td>8</td>
</tr>
<tr>
<td>W2WLX</td>
<td>Oct</td>
</tr>
<tr>
<td>Horizontal antennas, optimum height for</td>
<td>40</td>
</tr>
<tr>
<td>W7LR</td>
<td>Jun</td>
</tr>
<tr>
<td>Horizontal antennas, vertical radiation patterns</td>
<td>58</td>
</tr>
<tr>
<td>W9HRQY</td>
<td>May</td>
</tr>
<tr>
<td>Inverted-vee antenna (letter)</td>
<td>66</td>
</tr>
<tr>
<td>W6SAIQ</td>
<td>May</td>
</tr>
<tr>
<td>Inverted-vee antenna, modified</td>
<td>40</td>
</tr>
<tr>
<td>W2KTW</td>
<td>Oct</td>
</tr>
<tr>
<td>Large vertical, 160 and 80 meters</td>
<td>8</td>
</tr>
<tr>
<td>W7IV</td>
<td>May</td>
</tr>
<tr>
<td>Log-periodic antenna, 14, 21 and 28 MHz</td>
<td>18</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>Aug</td>
</tr>
<tr>
<td>Log-periodic antennas, 7-MHz</td>
<td>16</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>May</td>
</tr>
<tr>
<td>Log-periodic antennas, feed system for</td>
<td>30</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>Oct</td>
</tr>
<tr>
<td>Log-periodic antennas, graphical design method</td>
<td>14</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>May</td>
</tr>
<tr>
<td>Log-periodic antennas, vertical monopole, 3.5 and 7.0 MHz</td>
<td>44</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>Sep</td>
</tr>
<tr>
<td>Log-periodic beams, improved (letter)</td>
<td>74</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>May</td>
</tr>
<tr>
<td>Log-periodic beam, 15 and 20 meters</td>
<td>6</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>May</td>
</tr>
<tr>
<td>Log periodic feeds (letter)</td>
<td>66</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>May</td>
</tr>
<tr>
<td>Log-periodic, three-band</td>
<td>28</td>
</tr>
<tr>
<td>W4AEQ</td>
<td>Sep</td>
</tr>
<tr>
<td>Long-wire multiband antenna</td>
<td>28</td>
</tr>
<tr>
<td>W3FQJ</td>
<td>Nov</td>
</tr>
<tr>
<td>Loop receiving antenna</td>
<td>66</td>
</tr>
<tr>
<td>W21MB</td>
<td>May</td>
</tr>
<tr>
<td>Correction</td>
<td>58</td>
</tr>
<tr>
<td>Low-mounted antennas</td>
<td>6</td>
</tr>
<tr>
<td>W3FQJ</td>
<td>May</td>
</tr>
<tr>
<td>Mobile antenna, helically wound</td>
<td>40</td>
</tr>
<tr>
<td>Z66JP</td>
<td>Dec</td>
</tr>
<tr>
<td>Mono-loop antenna (HN)</td>
<td>70</td>
</tr>
<tr>
<td>W8BW</td>
<td>Sep</td>
</tr>
<tr>
<td>Multiband dipoles for portable use</td>
<td>12</td>
</tr>
<tr>
<td>W6SAI</td>
<td>May</td>
</tr>
<tr>
<td>Phased array, electrically-controlled</td>
<td>52</td>
</tr>
<tr>
<td>W4STRS</td>
<td>May</td>
</tr>
<tr>
<td>Phased vertical array, four-element</td>
<td>24</td>
</tr>
<tr>
<td>W6HXR</td>
<td>May</td>
</tr>
<tr>
<td>Quad antenna, multiband</td>
<td>41</td>
</tr>
<tr>
<td>DJ4VM</td>
<td>Aug</td>
</tr>
<tr>
<td>Receiving antennas</td>
<td>56</td>
</tr>
<tr>
<td>W6ZGO</td>
<td>May</td>
</tr>
<tr>
<td>Satellite antenna, simple (HN)</td>
<td>59</td>
</tr>
<tr>
<td>W4APXY</td>
<td>Feb</td>
</tr>
<tr>
<td>Shunt-feed systems for grounded vertical</td>
<td>34</td>
</tr>
<tr>
<td>radiators, how to design</td>
<td>May</td>
</tr>
<tr>
<td>W4OQ</td>
<td>Jul</td>
</tr>
<tr>
<td>Simple antennas for 40 and 80</td>
<td>16</td>
</tr>
<tr>
<td>W5RUB</td>
<td>Dec</td>
</tr>
<tr>
<td>Simple 1-, 2- and 3-band antennas</td>
<td>54</td>
</tr>
<tr>
<td>W9EQQ</td>
<td>Jul</td>
</tr>
<tr>
<td>Sloping dipoles</td>
<td>19</td>
</tr>
<tr>
<td>W5RUB</td>
<td>Dec</td>
</tr>
<tr>
<td>Performance (letter)</td>
<td>76</td>
</tr>
<tr>
<td>W6SAI</td>
<td>May</td>
</tr>
<tr>
<td>Small-loop antennas</td>
<td>36</td>
</tr>
<tr>
<td>W4YOT</td>
<td>May</td>
</tr>
<tr>
<td>Stub bandswitched antennas</td>
<td>50</td>
</tr>
<tr>
<td>W2EYE</td>
<td>Jul</td>
</tr>
<tr>
<td>Suitcase antenna, high-frequency</td>
<td>61</td>
</tr>
<tr>
<td>VK5BI</td>
<td>May</td>
</tr>
<tr>
<td>Tailoring your antenna, how to</td>
<td>34</td>
</tr>
<tr>
<td>KH6HDM</td>
<td>May</td>
</tr>
<tr>
<td>Three-band ground plane</td>
<td>32</td>
</tr>
<tr>
<td>W6PH</td>
<td>Oct</td>
</tr>
<tr>
<td>Triangle antennas</td>
<td>56</td>
</tr>
<tr>
<td>W3FQJ</td>
<td>Aug</td>
</tr>
<tr>
<td>Triangle antennas</td>
<td>58</td>
</tr>
<tr>
<td>W6K1W</td>
<td>May</td>
</tr>
<tr>
<td>Triangle antennas (letter)</td>
<td>72</td>
</tr>
<tr>
<td>K4ZZV</td>
<td>Nov</td>
</tr>
<tr>
<td>Triangle beams</td>
<td>70</td>
</tr>
<tr>
<td>W3FQJ</td>
<td>Dec</td>
</tr>
<tr>
<td>Unidirectional antenna for the low-frequency</td>
<td>61</td>
</tr>
<tr>
<td>bands</td>
<td>Jan</td>
</tr>
<tr>
<td>GW3NJY</td>
<td>May</td>
</tr>
<tr>
<td>Vertical antenna radiation patterns</td>
<td>50</td>
</tr>
<tr>
<td>W7LR</td>
<td>Apr</td>
</tr>
<tr>
<td>Vertical antenna, low-band</td>
<td>70</td>
</tr>
<tr>
<td>W4IYB</td>
<td>Jul</td>
</tr>
<tr>
<td>Vertical antenna, three-band</td>
<td>44</td>
</tr>
<tr>
<td>W9BQFE</td>
<td>May</td>
</tr>
<tr>
<td>Vertical antennas, improving performance of</td>
<td>54</td>
</tr>
<tr>
<td>W4K6D</td>
<td>Dec</td>
</tr>
<tr>
<td>Vertical antennas, performance characteristics</td>
<td>34</td>
</tr>
<tr>
<td>W7LR</td>
<td>Mar</td>
</tr>
<tr>
<td>Vertical beam antenna, 80 meter</td>
<td>26</td>
</tr>
<tr>
<td>VEITG</td>
<td>May</td>
</tr>
<tr>
<td>Vertical dipole, gamma-loop-fed</td>
<td>19</td>
</tr>
<tr>
<td>W6SAI</td>
<td>May</td>
</tr>
<tr>
<td>Vertical for 80 meters, top-loaded</td>
<td>20</td>
</tr>
<tr>
<td>W2MB</td>
<td>Sep</td>
</tr>
<tr>
<td>Vertical radiators</td>
<td>16</td>
</tr>
<tr>
<td>W4OQ</td>
<td>Apr</td>
</tr>
<tr>
<td>Vertical, top-loaded 80 meter</td>
<td>48</td>
</tr>
<tr>
<td>VEITG</td>
<td>Jun</td>
</tr>
<tr>
<td>Vertical-tower antenna system</td>
<td>56</td>
</tr>
<tr>
<td>W4OQ</td>
<td>May</td>
</tr>
<tr>
<td>Whips and loops as apartment antennas</td>
<td>80</td>
</tr>
<tr>
<td>W2EY</td>
<td>Mar</td>
</tr>
<tr>
<td>Windom antenna, four-band</td>
<td>62</td>
</tr>
<tr>
<td>W4VUG</td>
<td>Jan</td>
</tr>
<tr>
<td>Correction (letter)</td>
<td>74</td>
</tr>
<tr>
<td>W4SAI</td>
<td>Sep</td>
</tr>
<tr>
<td>Zepp antenna, extended</td>
<td>48</td>
</tr>
<tr>
<td>W6VQI</td>
<td>Dec</td>
</tr>
<tr>
<td>160-meter loop, receiving</td>
<td>46</td>
</tr>
<tr>
<td>K6HTM</td>
<td>May</td>
</tr>
<tr>
<td>160 meters with 40-meter vertical</td>
<td>34</td>
</tr>
<tr>
<td>W21MB</td>
<td>Oct</td>
</tr>
</tbody>
</table>
vhf antennas

Antennas for satellite communications, simple p. 24, May 74
K4GSX

Circulary-polarized ground-plane antenna for satellite communications p. 28, Dec 74
K4GSX

Collinear antenna for two meters, nine-element p. 12, May 72
WB5JO

Collinear antenna (letter) p. 70, Oct 71
W6SAI

Collinear array for two meters, 4-element p. 50, Apr 69
WB6KGF

Collinear antenna, four element 440-MHz p. 38, May 73
W6GTP

Collinear, six meter p. 59, Nov 69
K4ERO

Corner reflector antenna, 432 MHz p. 24, Nov 71
W2FSQ

Cubical quad, economy six-meter p. 50, Apr 69
W6DOR

Ground plane, 2-meter, 0.7 wavelength p. 40, Mar 69
W3WZA

Ground plane, portable vhf (HN) p. 71, May 73
K9OHU

J-pole antenna for 6-meters p. 48, Aug 68
K4SDY

Log-periodic, yagi beam p. 8, Jul 69
K6RIL, W6SAI

Correction p. 68, Feb 70

Microwave antenna, Low-cost K6HHU

Mobile antenna, magnet-mount W1HCL

Mobile antenna, six-meter (HN) p. 54, Sep 75
W4PSI

Moonbounce antenna, practical 144-MHz p. 77, Oct 70
K6HCP

Parabolic reflector antennas p. 12, May 74
VK3ATN

Parabolic reflector element spacing p. 28, May 75
WASHUV

Parabolic reflector gain p. 50, Jul 75
W2TQK

Parabolic reflectors, finding the focal length (HN) p. 57, Mar 74
W4AWDL

Parabolic reflector, 16-foot homebrew p. 8, Aug 69
WB6IOU

Quad-yagi arrays, 432- and 1296-MHz p. 20, May 73
W3AED

Short circuit p. 58, Dec 73

Simple antennas, 144-MHz p. 30, May 73
WA3NF

Switch, antenna for 2 meters, solid-state p. 48, May 69
K2QSK

Two-meter antenna, simple (HN) p. 78, Aug 68
W6BLCZ

Two-meter fm antenna (HN) p. 64, May 71
WB6KYE

Two-meter mobile antennas p. 76, May 68
W6BLZ

Vertical antennas, truth about $\frac{1}{4}$-wavelength p. 48, May 74
K32OK

Added note (letter) p. 54, Jan 75

Vhf antenna switching without relays (HN) K2QSK

 Whip, 5/8-wave, 144 MHz (HN) p. 76, Sep 68
VE3DOD

Yagi, 1296-MHz p. 70, Apr 73
W2QCH

10-GHz dielectric antenna (HN) p. 24, May 72
WA4WDL

144-MHz vertical, $\frac{3}{4}$-wavelength p. 80, May 75
K6LLO

144-MHz antenna, $\frac{3}{4}$-wavelength built from CB mobile whip (HN) p. 40, Jul 74
WB4WSU

432-MHz OSCAR antenna (HN) p. 67, Jun 74
W1JAA

1296-MHz Yagi array p. 58, Jul 75
W3AED

matching and tuning

Antenna coupler for three-band beams p. 42, May 72
Z5SST

Antenna coupler, six-meter K1RAK

Antenna impedance transformer for receivers (HN) p. 44, Jul 71
W6NIF

Antenna matcher, one-man W4SD

Antenna tuner adjustment (HN) p. 24, Jun 71
WA4MTH

Antenna tuner, automatic W4CAQC

Antenna tuner, medium-power toroidal p. 28, May 70
WB2ZSH

Antenna tuner for optimum power transfer p. 58, Jan 74
W2WL

Antenna tuners p. 58, Dec 72
W3FOJ

Antenna tuning units p. 58, Jan 73
WB6KGF

Balun, adjustable for yagi antennas W6SAI

Balun, Simplified (HN) p. 14, May 71
WA2KKC

Baluns, wideband bridge W6SAI, WA6BAN

Broadband Antenna Baluns W6SAI

Couplers, random-length antenna W2EHE

Gamma-match capacitor, remotely controlled p. 32, Jan 70
K2BT

Gamma-matching networks, how to design p. 46, May 73
W7ITB

Impedance bridge, low-cost RX W8YFB

Impedance-matching baluns, open-wire W6MUR

Impedance-matching systems, designing W7CSO

Loads, effect of mismatched transmitter W5JJ

Matching, antenna, two-band with stubs W6MUR

Matching system, two-capacitor W6MUR

Measuring complex impedance with swr bridge W6AKSS

Mobile transmitter, loading W4GB

Noise bridge, antenna W6LHZ

Noise bridge, antenna (HN) W5QEE

Noise bridge for impedance measurements YA1GJM

Added notes p. 66, May 74; p. 60, Mar 75

Phase meter, rf VE2AVU, Korth

Quadrifilar toroid (HN) W9LL

Stub-switched, stub-matched antennas W2SEE

Swr alarm circuits W2EHE

Swr bridge WB2ZSH

Swr bridge and power meter, integrated WA4DOB

Swr bridge readings (HN) W6FPSO

Swr meter W6VSV

Transmission, five-to-one W7IV

Transmission lines, grid dipping (HN) W2OLU

Transmission lines, uhf WA2VTR
towers and rotators

Antenna and rotator preventive maintenance
WA1ABP p. 66, Jan 69

Antenna mast, build your own tilt-over
WG9RT p. 42, Feb 70

Correction p. 76, Sep 70

Az-el antenna mount for satellite communications
W2LX p. 34, Mar 75

Cornell-Dubilier rotators (HN) K6KA p. 82, May 75

Keeping your beam, tips for
W6BLZ p. 50, Aug 68

Pipe antenna masts, design data for
W3MR p. 52, Sep 74

Added design notes (letter) p. 75, May 75

Rotator, AR-22, fixing a sticky
WA1ABP p. 34, Jun 71

Rotator, T-45, Improvement (HN)
WA9XAM p. 64, Sep 71

Stress analysis of antenna systems
W2FZJ p. 23, Oct 71

Telescoping tv masts (HN)
WA9KKC p. 57, Feb 73

Tilt-over tower base, low-cost
WA1ABP p. 86, Apr 68

Tilt-over tower uses extension ladder
W5TRS p. 71, May 75

Tower, homemade tilt-over
WA3EWH p. 28, May 71

Tower, wind-protected crank-up (HN) p. 74, Oct 69

Wind loading on towers and antenna structures, how to calculate
K4KJ p. 16, Aug 74

Added note p. 56, Jul 75

transmission lines

Coax cable dehumidifier
K4RJ p. 26, Sep 73

Coax connectors, repairing broken (HN)
W2HKF p. 66, Jun 70

Coaxial cable, checking (letter)
W2OLU p. 68, May 71

Coaxial cable connectors (HN) WA1ABP p. 71, Mar 69

Coaxial-cable fittings, type-F K2MDQ p. 44, May 71

Coaxial cable supports (HN)
W2QA p. 56, Jun 68

Coaxial cable, what you know about
W91SB p. 30, Sep 68

Coaxial feedthrough panel (HN)
W3URE p. 70, Apr 69

Coaxial-line loss, measuring with reflectometer
W2VCI p. 50, May 72

Coax, Low-loss coax (HN) K6BIJ p. 74, Oct 69

Coaxial transmission lines, underground
W2FCH p. 38, May 70

Impedance transformer, non-synchronous (HN) W5TRS p. 66, Sep 75

Open-wire feedthrough insulator (HN) W4RNL p. 79, May 75

Single feedline for multiple antennas
K2ISP p. 58, May 71

Solenoid rotary switches
W2EEY p. 36, Apr 68

Tuner, receiver (HN)
WA7KRE p. 72, Mar 69

Tuner, wall-to-wall antenna (HN)
W2OUX p. 56, Dec 70

Uhf microstrip sweater bridge
W4GGC p. 22, Dec 72

audio

Audio agc principles and practice
WA5SNZ p. 28, Jun 71

Audio amplifier and squelch circuit
W6AFJ p. 36, Aug 68

Audio CW filter
W7DI p. 54, Nov 71

Audio filter, tunable, for weak-signal communications
K9HCP p. 28, Nov 75

Audio filters, aligning (HN) WA4ATE p. 72, Aug 72

Audio filters, inexpensive
W8YFB p. 24, Aug 72

Audio filter mod (HN) K6HIU p. 60, Jan 72

Audio module, a complete K4DHC p. 18, Jun 73

Audio-oscillator module, Cordover WB2QQQ p. 44, Mar 71

Correction p. 80, Dec 71

Audio transducer (HN) WA1OPN p. 59, Jul 75

Binaural CW reception, synthesizer for W6NRW p. 46, Nov 75

Compressor, dual channel W2EEY p. 40, Jul 68

Distortion and splatter K5LLI p. 44, Dec 70

Filter for CW, tunable audio WA1JSM p. 34, Aug 70

Filter-frequency translator for cw reception, integrated audio W2EEY p. 24, Jun 70

Filter, lowpass audio, simple OD5CG p. 54, Jan 74

Filter, simple audio W4NJK p. 44, Oct 70

Filter, tunable peak-notch audio W2EEY p. 22, Mar 70

Filter, variable bandpass audio W3AEX p. 36, Apr 70

Hang agc circuit for ssb and CW WI1ERJ p. 50, Sep 72

Headphone cords (HN) W2OLU p. 62, Nov 75

Headphones, lightweight K6KA p. 34, Sep 68

Impedance match, microphone (HN) W5GJ p. 67, Sep 73

Intercom, simple (HN) W4AVV p. 66, Jul 72

Microphone preamplifier with agc Bryant p. 28, Nov 71

Microphone, using Shure 401A with the Drake TR-4 (HN) G3XOM p. 68, Sep 73

Microphones, muting (HN) W6IL p. 63, Nov 75

Notch filter, tunable RC WA5SNZ p. 16, Sep 75

Oscillator, audio, IC W6GZN p. 16, Sep 75

Oscillator-monitor, solid-state audio WA1JSM p. 48, Sep 70

Phone patch W8GRG p. 20, Jul 71

Pre-emphasis for ssb transmitters OH2CD p. 38, Feb 72

RF clipper for the Collins S-line K6JOYO p. 18, Aug 71

RF speech processor, ssb W2MB p. 18, Sep 73

Speaker-driver module, IC WA2ICF p. 24, Sep 72

Speech amplifiers, curing distortion Allen p. 42, Aug 70

Speech clipper, IC K6HTM p. 18, Feb 73

Added notes (letter) p. 64, Oct 73
Speech clips, rf
G6XN p. 26, Nov; p. 12, Dec 72
Added notes p. 58, Aug 73; p. 72, Sep 74
Speech clipping in single-sideband equipment K1YZW p. 22, Feb 71
Speech clipping (letter) W3EJD p. 72, Jul 72
Speech processing W1DTY p. 60, Jun 68
Speech processing, principles of ZL1BN Added notes p. 75, May 75; p. 64, Nov 75
Speech processor for ssb, simple K6PHT p. 22, Apr 70
Speech processor, IC VK9GN p. 31, Dec 71
Speech processor, logarithmic WAF3FY p. 38, Jan 70
Squelch, audio-actuated K4MOG p. 52, Apr 72
Tape head cleaners (letter) K4MSG p. 62, May 72
Tape head cleaning (letter) Buchanan p. 67, Oct 72

Commercial equipment
Alliance rotator improvement (HN) K6JVE p. 68, May 72
Alliance T-45 rotator Improvement (HN) W6ZAM p. 64, Sep 71
CDR AR-22 rotator, fixing a sticky WA1ABP p. 34, Jun 71
Clegg 27B, S-meter for (HN) W2YUD p. 61, Nov 74
Collins receivers, 300-Hz crystal filter for W1DTY p. 58, Sep 75
Collins S-line power supply mod (HN) W6IL p. 61, Jul 74
Collins S-line, reducing warm-up drift W6VFR p. 46, Jun 75
Collins S-line, rf clipper for K6JYO p. 18, Aug 71
Correction
Collins S-line spinner knob (HN) W6VFR p. 69, Apr 72
Collins S-line transceiver mod (HN) W6VFR p. 71, Nov 72
Collins 325-3 audio (HN) K6KA p. 64, Oct 71
Collins 325-1 CW modification (HN) W1DTY p. 82, Dec 69
Correction
Collins 51J PTO restoration W6SAl p. 36, Dec 69
Collins 70K-2 PTO, correcting mechanical backlash (HN) K9WEH p. 58, Feb 75
Collins 75A4 avc mod (letter) W9KNI p. 63, Sep 75
Collins 75A4 hints (HN) W6VFR p. 68, Apr 72
Collins 75A4, increased selectivity for (HN) W1DTY p. 62, Nov 75
Collins 75A4 modifications (HN) W4SD p. 67, Jan 71
Collins 75A4 PTO, making it perform like new W3AFM p. 24, Dec 74
Collins 75A4 receiver, improving overload response in W6ZO p. 42, Apr 70
Short circuit p. 76, Sep 70
Collins 75S frequency synthesizer W6NB1 p. 8, Dec 75
Collins R390A, improving the product detector W7DI p. 12, Jul 74
Collins R390A modifications WA2SUT p. 58, Nov 75

Comdel speech processor, increasing the versatility of (HN) W6SAI p. 67, Mar 71
Cornell-Dubilier rotators (HN) K5KA p. 82, May 75
Drake R-4 receiver frequency synthesizer for W6NB1 p. 6, Aug 72
Modification (letter) p. 74, Sep 74
Drake R-4C, electronic bandpass tuning in Horner p. 58, Oct 73
Drake TR-4, using the Shure 401A microphone with (HN) G3XOM p. 68, Sep 73
Drake W-4 directional wattmeter W1DTY p. 86, Mar 68
Elmac chirp and drift (HN) W5QZF p. 68, Jun 70
EX crystal and oscillator WB2EGZ p. 60, Apr 68
Galaxy feedback (HN) WASTP K p. 71, Jan 70
Halliecraters HT-37, increased sideband suppression W3CM p. 48, Nov 69
Hammarlund HQ215, adding 160-meter coverage W2GHK p. 32, Jan 72
Heath CA1, ten-minute timer from (HN) K8HZ p. 74, Jul 68
Heath HG-10B vfo, independent keying of (HN) K4BRR p. 67, Sep 70
Heath HM-2102 wattmeter, better balancing (HN) V66RF p. 56, Jan 75
Heath HM-2102 wattmeter mods (letter) K3VNR p. 64, Sep 75
Heath HW-10 as RTTY monitor scope (HN) K9HWV p. 70, Sep 74
Heath HW-7 mods, keying and receiver blanking (HN) W5KPG p. 60, Dec 74
Heath HW-12 on MARS (HN) K8AUH p. 63, Sep 71
Heath HW-16 keying (HN) W7DI p. 57, Dec 73
Heath HW-16, vfo operations for W96MZN p. 54, Mar 73
Short circuit
Heath HW-17A, perking up (HN) p. 70, Aug 70
Heath HW-17 modifications (HN) W1SPW p. 66, Mar 71
Heath HW-100, HW-101, grid-current monitor for K4MFR p. 46, Feb 73
Heath HW-100 incremental tuning (HN) K1GOU p. 67, Jun 69
Heath HW-100, the new W1NLB p. 64, Sep 68
Heath HW-100 tuning knob, loose (HN) V3E3EPY p. 68, Jun 71
Heath HW-101, using with a separate receiver (HN) W4LAK p. 63, Oct 73
Heath HW-202, adding private-line WA8AWJ p. 53, Jun 74
Heath IM-11 vtvm, convert to IC voltmeter K6VCI p. 42, Dec 74
Heath SB-100, using an outboard receiver with (HN) K4GMR p. 68, Feb 70
Heath SB102 modifications (HN) W2CNO p. 58, Jun 75
Heath SB-102, rf speech processor for W5VI p. 38, Jun 75
Heath SB-200 amplifier, modifying for the B873 zero-bias triode W6UOV p. 32, Jan 71
Heath SB-200 amplifier, six-meter conversion K1RAK p. 38, Nov 71
construction techniques

AC line cords (letter) p. 80, Dec 71
W6EG
A dab of paint, a drop of wax (HN) VE3BUE p. 78, Aug 68
Aluminum’s new face W4BRS p. 60, May 68
Aluminum tubing, clamping (HN) WA9HUV p. 78, May 75
Antenna insulators, homemade (HN) W7ZC p. 70, May 73
APC trimmer, adding shaft to (HN) W4IETT p. 68, Jul 69
Blower-to-chassis adapter (HN) K6JYO p. 73, Feb 71
BNC connectors, mounting (HN) W9KKJ p. 70, Jan 70
Capacitors, oil-filled (HN) W2OLU p. 66, Dec 72
Center insulator, dipole WA1ABP p. 69, May 69
Circuit boards with terminal inserts (HN) W3KBM p. 61, Nov 75
Coaxial cable connectors (HN) WA1ABP p. 71, Mar 69
Coax connectors, repairing broken (HN) W0HKF p. 66, Jun 70
Coax relay coils, another use (HN) K0VQY p. 72, Aug 69
Cold galvanizing compound (HN) WSUNF p. 70, Sep 72
Color coding parts (HN) WA7BPO p. 58, Feb 72
Component marking (HN) W1JE p. 66, Nov 71
Deburring holes (HN) W2DXH p. 75, Jul 68
Drill guide (HN) W5BVF p. 68, Oct 71
Drilling aluminum (HN) W6IL p. 67, Sep 75
Enclosures, homebrew custom W4YYU p. 50, Jul 74
Exploding diodes (HN) VE3PEZ p. 57, Dec 73
Ferrite beads WSJJ p. 48, Oct 70
Files, cleaning (HN) WA1ACP p. 66, Jun 74
Ferrite beads, how to use K1ORV p. 34, Mar 73
Filter chokes, unmarked W0KMF p. 60, Nov 68
Grommet shock mount (HN) VE3BUE p. 77, Oct 68
Grounding (HN) W9KKJ p. 67, Jun 69
Heat sinks, homemade (HN) W9PWOZ p. 69, Sep 70
Homebrew art W2PEM p. 56, Jun 69

Heath SB-300, RTTY with W4IZZ p. 76, Jul 68
Heath SB-303, 10-MHz coverage for (HN) WIJE p. 61, Feb 74
Heath SB-400 and SB-401, improving alc response in (HN) W49FDQ p. 71, Jan 70
Heath SB-610 as RTTY monitor scope (HN) K9HWY p. 70, Sep 74
Heath SB-650 using with other receivers K2BYM p. 40, Jun 73
Heath SB receivers, RTTY reception with (HN) K9HWY p. 64, Oct 71
Heath SB Series special control and narrow shift RTTY with (HN) WA4YVL p. 54, Jun 73
Heath ten-minute timer K6KA p. 75, Dec 71
Heathkit Sixer, spot switch (HN) WA6FNR p. 84, Dec 69
Heathkit, noise limiter for (HN) W7CKH p. 67, Mar 71
Heathkit HW202, fm channel scanner for W7BZ p. 41, Feb 75
James Research oscillator/monitor W1DTY p. 91, Mar 68
James Research permalloy key W1DTY p. 73, Dec 68
Kenwood TS-520 CW filter modification (HN) W7TDY p. 21, Nov 75
Knight-kit inverter/charger review W1DTY p. 64, Apr 69
Knight-kit two-meter transceiver W1DTY p. 62, Jun 70
Mini-mitter II W6ZQ p. 72, Dec 71
Motorola channel elements WB4NEX p. 32, Dec 72
Motorola Dispatcher, converting to 12 volts WB6HXU p. 26, Jul 72
Short circuit W41DTY p. 64, Mar 74
Motorola fm receiver mods (HN) VE4RE p. 60, Aug 71
Motorola P-33 series, improving WB2AEB p. 34, Feb 71
Motorola receivers, op-amp relay for W6GDO p. 16, Jul 73
Motorola voice commander, improving W2DKU p. 70, Oct 71
Motrac Receivers (letter) K5ZBA p. 69, Jul 71
Quem sub circular slide rule W2DXH p. 62, Apr 68
Regency HR-2, narrowbanding WB8TMP p. 44, Dec 73
Regency HR-212, channel scanner for W413JK p. 28, Mar 75
SBE linear amplifier tips (HN) WA6DCW p. 71, Mar 69
SB301/401, Improved sidetone operation W1WLZ p. 73, Oct 69
Signal One review W1NLB p. 56, May 69
Spurious causes (HN) K6KA p. 66, Jan 74
Standard 826M, more power from (HN) WB6KVF p. 68, Apr 75
Swan television interference: an effective remedy W2OUX p. 46, Apr 71
Swan 120, converting to two meters K6RIL p. 8, May 68
Swan 350 CW monitor (HN) K1KXA p. 63, Jun 72
Swan 350, receiver incremental tuning (HN) K1KXA p. 77, May 73
Swan 350, receiver incremental tuning (HN) K1KXA p. 64, Jul 71
Swan 350 and 400, RTTY operation (HN) WB2MIC p. 67, Aug 69
Swan 250, update your (HN) K8ZH p. 84, Dec 69
Telefax transceiver conversion K0QMR p. 16, Apr 74
Ten-Tec Argonaut, accessory package for W7BBX p. 26, Apr 74
Ten-Tec RX10 communications receiver W1NLB p. 63, Jun 71
T150A frequency stability (HN) WB8TP p. 70, Apr 69
Yaesu sideband switching (HN) W2MUU p. 56, Dec 73
Yaesu spurious signals (HN) K6KA p. 69, Dec 71
Units affected (letter) WA6FNR p. 67, Oct 73
Yaesu TS-101 clarifier (letter) KINUN p. 55, Nov 75
Tilt your rig (HN) p. 58, Jun 68
W4ANED
Toroids, plug-in (HN) p. 60, Jan 72
K6EIG
Transformers, repairing W6NIF
Trimmers (HN) p. 76, Nov 69
W5LHG
Uhf coax connectors (HN) p. 70, Sep 72
W2LCP
Uhf hardware (HN) p. 76, Oct 70
W6CMQ
Underwriter's knot (HN) p. 69, May 69
W1DTY
Vector-board tool (HN) p. 70, Apr 72
WALKW
Volume controls, noisy, temporary fix (HN) p. 62, Aug 74
W3JUV
Watercooling the 2C39 K6MYC p. 30, Jun 69
Wiring and grounding (HN) p. 44, Jun 69
WIEZT
Workbench, electronic (HN) p. 50, Oct 70
WIEZT
features and fiction
Alarm, burglar-proof (HN) p. 56, Dec 75
Eisenbrandt
Binding 1970 issues of ham radio (HN) p. 72, Feb 71
W1DHZ
Brass pounding on wheels (HN) K5QD p. 58, Mar 75
Dynistor, the (HN) W6GXN p. 49, Apr 68
Catalina wireless, 1902 (HN) W6BLZ p. 32, Apr 70
Early wireless stations (HN) W6BLZ p. 64, Oct 68
Electronic bugging (HN) W225Q p. 70, Jan 68
Fire protection in the ham shack (HN) Darr p. 54, Jan 71
First wireless in Alaska (HN) W6BLZ p. 48, Apr 73
Ham Radio sweepstakes winners, 1972 (HN) W1NLB p. 58, Jul 72
Ham Radio sweepstakes winners, 1973 (HN) W1NLB p. 68, Jul 73
Ham Radio sweepstakes winners, 1975 (HN) W1NLB p. 54, Jul 75
How to be DX (HN) W4NXD p. 58, Aug 68
Nostalgia with a vengeance (HN) W6HDN p. 28, Apr 72
QSL return, statistics on (HN) WB6IUH p. 50, Dec 68
Photographic illustrations (HN) WA4GNW p. 72, Dec 69
Reminiscences of old-time radio (HN) K4NW p. 40, Apr 71
Secret society, the (HN) W4NXD p. 82, May 68
Use your old magazines (HN) Foster p. 52, Jan 70
What is it? (HN) WA1ABP p. 84, May 68
Wireless Point Loma (HN) W6BLZ p. 54, Apr 69
fm and repeaters
Amateur vhf fm operation (HN) W6AYZ p. 36, Jun 68
Antenna and control-link calculations for repeater licensing (HN) W7PUG p. 58, Nov 73
Short circuit (HN) W5PKK p. 59, Dec 73
Antennas, simple, for two-meter fm (HN) WA3HFW p. 30, May 73

Antenna, two-meter fm (HN) W86KYE p. 64, May 71
Antenna, 3/8-wavelength, two-meter K6KL p. 40, Jul 74
Antenna, 1/4 wavelength two-meter, W8WGRG p. 22, Mar 74
build from CB mobile whips (HN) W84WSU p. 67, Jun 74
Audio-amplifier and squelch unit WA6AF p. 36, Aug 68
Automatically controlled access WA6GRG p. 32, Jul 74
to open repeaters
Base station, two-meter fm W9JTQ p. 22, Aug 73
Carrier-operated relay K9РР, WA1UZO p. 58, Nov 72
Carrier-operated relay and call monitor VE4RE p. 22, Jun 71
Cavity filter, 144-MHz W1SNN p. 22, Dec 73
Channel scanner W2FPP p. 29, Aug 71
Channels, three from two (HN) VE7ABK p. 68, Jun 71
Charger, fet-controlled for nicad WA5J p. 46, Aug 75
batteries WA5J p. 46, Aug 75
Cavity filter circuit W6RO p. 12, May 72
Collinear antenna for two meters, W6RO p. 12, May 72
nine-element WA7N p. 54, Dec 70
Control head, customizing VE7ABK p. 28, Apr 71
Deviation measurement (letter) KS2ZB p. 68, May 71
Deviation measurements W3FQJ p. 52, Feb 72
Deviation meter (HN) VE7ABK p. 54, Dec 70
Digital touch-tone encoder for vhf fm W7FBB p. 28, Apr 75
Discriminator, quartz crystal WA5J p. 67, Oct 75
Distortion in fm systems W5JJ p. 26, Aug 67
Encoder, combined digital and burst K8AUH p. 48, Aug 69
Filter, 455-kHz for fm WA5J p. 22, Mar 72
Fm demodulator, TTL W3FQJ p. 66, Nov 72
Fm receiver frequency control (letter) W3AFN p. 65, Apr 71
Fm techniques and practices for vhf amateurs W6SAI p. 8, Sep 69
Short circuit W5J p. 79, Jun 70
Fm transmitter, solid-state two-meter WA6AJF p. 14, Jul 71
Fm transmitter, Sonobaby, 2 meter WA1UZO p. 8, Oct 71
Short Circuit WA1UZO p. 96, Dec 71
Crystal deck for Sonobaby W5J p. 26, Oct 72
Frequency meter, two-meter fm WA7JAZ p. 40, Jan 71
Short circuit W5J p. 72, Apr 71
Frequency synthesizer, inexpensive WC0A p. 50, Aug 73
all-channel, for two-meter fm WC0A p. 50, Aug 73
Correction (letter) WC0A p. 65, Jul 74
Frequency-synthesizer, one-crystal WC0MV p. 30, Sep 73
for two-meter fm
Frequency synthesizer, for two-meter fm WB4FPK p. 34, Jul 73
Identifier, programmable repeater W6AYZ p. 18, Apr 69
Short circuit W6AYZ p. 76, Jul 69
I-F system, multimode WA2IKL p. 39, Sep 71
Indicator, sensitive rf WB9DNI p. 38, Apr 73
Interface problems, fm equipment (HN) W5WGR p. 58, Jun 75
Interference, scanner receiver (HN) K2YAH p. 70, Sep 72
Logic oscillator for multi-channel W1SNN p. 46, Jun 73
Crystal control
Motorola antenna, magnet-mount W1HCI p. 54, Sep 75
Mobile operation with the Touch-Tone pad W5OLQ p. 58, Aug 72
Correction W5OLQ p. 90, Dec 72
Modification (letter) W5OLQ p. 72, Apr 73
Modulation standards for vhf fm W6TEE p. 16, Jun 70
Monitor receivers, two-meter fm WB5EMI p. 34, Apr 74
Motorola channel elements WB4AX p. 32, Dec 72
Motorola fm receiver mods W6AF p. 60, Aug 71
Motorola P-33 series, improving the WB2AB p. 34, Feb 71
Motorola voice commander, improving W6DKU p. 70, Oct 70
Motorol Receivers (letter) K5ZBA p. 69, Jul 71
Narrow-band fm system, using ICs in WA6AF p. 30, Oct 68
Phase-locked loop, tunable, 28 and 50 MHz W1KNI p. 40, Jan 73
Phase modulation principles and techniques VE2BEN p. 28, Jul 75
Correction W5J p. 59, Dec 76
Power amplifier, rf 220-MHz fm K7JUE p. 6, Sep 73
Power amplifier, rf, 144 MHz Hatchett p. 6, Dec 73
Power amplifier, rf, 144-MHz fm W4CGC p. 6, Apr 73
Power amplifier, two-meter fm, 10-watt WIDTY p. 67, Jan 74
Power supply, regulated ac for mobile WA8TMP p. 28, Jun 73
fm equipment WA2GCF p. 25, Mar 72
Preamplifier, two-meter WA2GCF p. 25, Mar 72
Preamplifier, two meter W6BBB p. 36, Jun 74
Private-line, adding to Heath HW-202 W4AWJ p. 53, Jun 74
Push-to-talk for Styleline telephones WIDRP p. 18, Dec 71
Receiver alignment techniques, vhf fm W4AVJ p. 14, Aug 75
K4IPV p. 14, Aug 75
Receiver for six and two meters, WISNN p. 54, Feb 74
multichannel fm WISNN p. 54, Feb 74
Receiver for two meter, fm W8SEK p. 22, Sep 70
Short circuit W8SEK p. 72, Apr 71
Receiver isolation, fm repeater (HN) WIDTJ p. 54, Dec 70
Receiver, modular fm communications K8AUH p. 32, Jun 69
Correction W5J p. 71, Jan 70
Receiver, modular, for two-meter fm WA2GBF p. 42, Feb 72
Added notes WA2GBF p. 73, Jul 72
Receiver performance, comparison of VE7ABK p. 68, Aug 72
Receiver, tunable vhf fm K8AUH p. 34, Nov 71
Receiver, vhf fm WA2GCF p. 6, Nov 72
Receiver, vhf fm WA2GCF p. 8, Nov 75
Satellite receivers for repeaters
Sequential repeater decoder, multi-function
Touch-tone decoder, Tone-burst keyer for FM repeaters
Tone-burst generator, Timer, Repeater transmitter, Transmitter for two meters, Touch-tone, Test set for Motorola radios
Scanning receiver
Reset, Tone encoder and secondary frequency
Transceiver for repeater control with simple timers

Correction
W3JJU
WBGRG
WBGRG
VE7ZBA
W6GDO
w3cix
WA2GCF
K2LZG
WA2GCF
W6DJB
W6FUB
K0BKD
K2YAH
K7YAM
W5ZHV
W6GDO
K2YAH
WA2GCF
W6AJF
W6EBO
WA4YAK
K2LZG
W6GDO
W5ZHV
W6DJB
W6FUB
K0BKD
K2YAH
W6EBO
Receiver, vhf fm (letter) K8HQ
Relay, operational-amplifier, for Motorola receivers W6GDO
Repeater control with simple timers W2FPP
Correction
Repeater decoder, multi-function WAGTBC
Repeater installation W2FPP
Repeater problems WE7ABK
Repeater, receiving system degradation KSZBA
Repeater transmitter, improving W6GDO
Repeaters, single-frequency fm W2FPP
Retimer, automatic W5ZH
Satellite receivers for repeaters W4AYAK
Scanner, vhf receiver K2LZG
Scanning receiver, improved for vhf fm WA2GCF
Scanning receiver modifications, vhf fm W6WOU
Scanning receivers for two-meter fm K4IPV
Sequential encoder, mobile fm W3JU
Sequential switching for Touch-Tone repeater control W6BGRG
Single-frequency conversion, vhf/uhf W3FQJ
S-meter for Clegg 27B (HN) WA2YUD
Squelch-audio amplifier for fm receivers WB4WSU
Squelch circuits for transistor radios WB4WSU
Telephone controller, automatic for your repeater K0PHF, WA0UZO
Test set for Motorola radios K0BKD
Short circuit
Added note (letter)
Timer, simple (HN) W3CIX
Tone-burst generator (HN) K4COF
Tone-burst keyer for fm repeaters W6BGRG
Tone encoder and secondary frequency oscillator (HN) K8AUH
Tone encoder, universal for vhf fm W6FUB
Correction
Touch-tone circuit, mobile K7QWR
Touch-tone decoder, multi-function K0PHF, WA0UZO
Touch-tone decoder, three-digit W6AYZ
Circuit board for
Touch-tone, hand-held K7YAM
Touch-tone handset, converting slim-line K7YAM
Transceiver for two-meter fm, compact W6AOI
Transmitter for two meters, phase-modulated W6AJF
Transmitter, two-meter fm W9SEK
Tunable receiver modification for vhf fm WB5V KY
Vertical antennas, truth about ¾-wavelength K0DOD
Added note (letter)
Weather monitor receiver, return to two-meter fm (HN) W3WTO
Whip, 5/8 wave, 144 MHz (HN) WE3DD
220 MHz frequency synthesizer W6GDX
450-MHz preamplifier and converter WA2GCF

integrated circuits

Amateur uses of the MC1530 IC W2EY
Amplifiers, broadband IC W6GDX
Applications, potpourri of IC W1DHY, Thorpe
Balanced modulator, an integrated-circuit K7QWR
Cmos logic circuits W3FQJ
Counter gating sources K6KA
Counter reset generator (HN) W3KBM
Gcl logic circuit W1DHY
Digital counters (letter) W1GDN
Digital ICs, part I W3FQJ
Digital ICs, part II W3FQJ
Correction
Digital mixers W3FQJ
Digital multivibrators W3FQJ
Digital oscillators and dividers W3FQJ
Digital readout station accessory, part I K6KA
Digital station accessory, part II K6KA
Digital station accessory, part III K6KA
Electronic counter dials, IC K6KA
Electronic keyer, cosmos IC WB2DFA
Electronic keyer, cosmos IC WB2DFA
Short circuit
Emitter-coupled logic W3FQJ
Flip-flops W3FQJ
Flip-flop, using (HN) W3KBM
Function generator, IC W1DTH
Function generator, IC K40HD
IC power (HN) W3KBM
IC-regulated power supply for ICs W6GDX
Integrated circuits, part I W3FQJ
Integrated circuits, part II W3FQJ
Integrated circuits, part III W3FQJ

Correction p. 91.
Short circuit p. 58.
Added for your repeater
122
keying and control

Break-in circuit, CW
W8SYK p. 40, Jan 72

Break-in control system, IC (HN)
W9ZTK p. 68, Sep 70

Bug, solid-state
K2QV p. 50, Jun 73

Carrier-operated relay
KØPHF, WA2UZO p. 58, Nov 72

Cmos keying circuits (HN)
WB2DF A p. 57, Jan 75

Contact keyer (HN)
K2UBC p. 79, Apr 70

CW reception, enhancing through a simulated-stereo technique
WA1MKP p. 61, Oct 74

CW regenerator for interference-free communications
Leward, WB2EAX p. 54, Apr 74

Electronic hand keyer
K5TCK p. 36, Jun 71

Electronic keyer, cosmos IC
WB2DFA p. 6, Jun 74

Short circuit
WA1MKP p. 62, Dec 74

Electronic keyer, IC
VE7BFK p. 32, Nov 69

Electronic keyer notes (HN)
2L1BN p. 74, Dec 71

Electronic keyer package, compact
WA4TE p. 50, Nov 73

Electronic keyer with random-access memory
WB9FHC p. 6, Oct 73

Corrections (letter) p. 58, Dec 74

Increased flexibility (HN)
WA2EFU p. 62, Mar 75

Electronic keyer, 8043 IC
W6GZN p. 8, Apr 75

Electronic keyers, simple IC
WA5TRS p. 38, Mar 73

Grid-block keying, simple (HN)
WA4DHU p. 78, Apr 70

Key and vox clicks (HN)
K6KA p. 74, Aug 72

Keyboard electronic keyer, the code mill
W6CAB p. 38, Nov 74

Keying, paddle, Siamese
WA5KPG p. 45, Jan 75

Keying the Heath HG-10B vfo (HN)
K4GRW p. 67, Sep 70

Latch circuit, dc
W2LPQ p. 42, Aug 75

Correction p. 58, Dec 75

Memo-key
WA7SCS p. 58, Jun 72

Memory accessory, programmable for electronic keyers
WA9LUD p. 24, Aug 75

Mini-paddle
KGRIL p. 46, Feb 69

Morse generator, keyboard
W7CQU p. 36, Apr 75

Morse sounder, radio controlled (HN)
K6QEQ p. 66, Oct 71

Oscillators, electronic keyer
WA6JNU p. 44, Jun 70

Paddle, electronic keyer (HN)
KL7EV p. 68, Sep 72

Paddle, homebrew keyer
W3NK p. 43, May 69

Push-to-talk for Styleline telephones
W1DRP p. 18, Dec 71

Relay activator (HN)
K6KA p. 62, Sep 71

Relays, surplus (HN)
W2OLU p. 70, Jul 70

Relay, transistor replaces (HN)
W3NK p. 72, Jan 70

Relays, undervoltage (HN)
W2OLU p. 64, Mar 71

Remote keying your transmitter (HN)
WA3HOU p. 74, Oct 69

Reset timer, automatic
W5ZHV p. 54, Oct 74

Sequential switching (HN)
W5DSF p. 63, Oct 72

Solenoid rotary switches
W2EEY p. 36, Apr 68

Station control center
W7OE p. 26, Apr 68

Stop-start circuit, high-voltage (HN)
W6FVR p. 64, Sep 71

Suppression networks, arc (HN)
WA5F KA p. 70, Jul 73

Time base, calibrated electronic keyer
W1PLU p. 39, Aug 75

Transistor switching for
electronic keyers (HN)
W3QB0 p. 66, Jun 74
measurements and test equipment

Ac current monitor (letter) WB5MAP p. 61, Mar 75

Ac power-line monitor W2OLU p. 46, Aug 71

AFSK generator, crystal-controlled K7VCT p. 13, Jul 72

AFSK generator, phase-locked loop K7ZOF p. 27, Mar 73

Amateur frequency measurements K5KA p. 53, Oct 68

A-m modulation monitor, vhf (HN) K7UNL p. 67, Jul 71

Antenna gain, measuring K6JYO p. 26, Jul 69

Antenna matcher W4SD p. 24, Jun 71

Antenna and transmission line measurement techniques W4OQ p. 36, May 74

Beta master, the K8ERV p. 18, Aug 68

Bridge for antenna measurements, simple W2CTK p. 34, Sep 70

Bridge, noise, for impedance measurements YA1GJM p. 62, Jan 73

Added notes p. 66, May 74; p. 60, Mar 75

Bridge, rf noise WB2EZGZ p. 18, Dec 70

Calibrators and counters K5KA p. 41, Nov 68

Calibrator, plug-in IC K5KA p. 22, Mar 69

Capacitance meter, digital K4DHC p. 20, Feb 74

Capacitance meter, direct-reading ZL2AUE p. 46, Apr 70

Capacitance meter, direct-reading W6MUR p. 48, Aug 72

Short circuit p. 64, Mar 74

Capacitance meter, direct-reading WA5SNZ p. 32, Apr 75

Added note p. 31, Oct 75

Capacitance meter, direct-reading, for electrolytics W9DJZ p. 14, Oct 71

Coaxial cable, checking (letter) W2OLU p. 68, May 71

Coaxial-line loss, measuring with a reflectometer W2VCI p. 50, May 72

Converter, mosfet, for receiver instrumentation WA9ZMT p. 62, Jan 71

Counter, compact frequency K4EU p. 16, Jul 70

Short circuit p. 72, Dec 70

Counter, digital frequency K4EU p. 8, Dec 68

Counter gating sources K6KA p. 48, Nov 70

Counter readouts, switching (HN) K6KA p. 66, Jun 71

Counter reset generator (HN) W3KSM p. 68, Jan 73

Counters: a solution to the readout problem WA2GOZ p. 66, Jan 70

CRT intensifier for RTTY K4VFA p. 18, Jul 71

Crystal checker W6GSK p. 46, Feb 72

Crystal test oscillator and signal generator K4EEU p. 46, Mar 73

Crystal-controlled frequency markers (HN) WA4WDK p. 64, Sep 71

Cubical quad measurements W4YM p. 42, Jan 69

Curve master, the K8ERV p. 40, Mar 68

Decade standards, economical (HN) W4ATE p. 66, Jun 71

Digital counters (letter) W1GWN p. 76, May 73

Digital readout station accessory, part I K5KA p. 6, Feb 72

Digital station accessory, part II K6KA p. 50, Mar 72

Digital station accessory, part III K6KA p. 36, Apr 72

Dipper without plug-in coils W6BLZ p. 64, May 68

Dummy load and rf wattmeter, low-power W2OLU p. 96, Apr 70

Dummy load low-power vhf WB9DNI p. 40, Sep 73

Dummy loads, experimental W6YFB p. 36, Sep 68

Dynamic transistor tester (HN) VE7ABK p. 65, Oct 71

Electrolytic capacitors, measurement of (HN) W2NA p. 70, Feb 71

Fm deviation measurement (letter) K5ZBA p. 68, May 71

Fm deviation measurements W3FQJ p. 52, Feb 72

Fm frequency meter, two-meter W4AJZ p. 40, Jan 71

Short circuit p. 72, Apr 71

Frequencies, counted (HN) K5KA p. 62, Aug 74

Frequency calibrator, general coverage W5UQG p. 28, Dec 71

Frequency calibrator, how to design W3AEX p. 54, Jul 71

Frequency measurement of received signals W4AAD p. 38, Oct 73

Frequency meter, crystal controlled (HN) W5JSN p. 71, Sep 69

Frequency scaler, divide-by-ten K4EEU p. 26, Aug 70

Short circuit p. 72, Apr 71

Frequency scaler, divide-by-ten W6PBC p. 40, Jan 72

Correction p. 90, Dec 72

Added comments (letter) p. 64, Nov 73

Pre-scaler, improvements for W6PBC p. 30, Oct 73

Frequency scaler, uhf (11C90) W89KEY p. 50, Dec 75

Frequency scaler, 500-MHz W6URH p. 32, Jun 75

Frequency scalers, 1200-MHz W89KEY p. 38, Feb 75

Frequency-shift meter, RTTY W6KZV p. 33, Jun 70

Frequency standard (HN) WA7JJK p. 69, Sep 72

Frequency standard, universal K4EEU p. 40, Feb 74

Short circuit p. 72, May 74
Sweep response curves for low-frequency i-f's
Allen p. 56, Mar 71

Switch-off flasher (HN)
Thomas p. 64, Jul 71

Swr bridge
WB2ZSH p. 55, Oct 71

Swr bridge and power meter, integrated
W6DOB p. 40, May 70

Swr bridge (HN)
WA5TFK p. 66, May 72

Swr bridge readings (HN)
W6FPO p. 63, Aug 73

Swr meter
W6SVS p. 6, Oct 70

Swr meters, direct reading and expanded scale
WA4WDK p. 28, May 72
Correction p. 90, Dec 72

Time-domain reflectometry, experimenter's approach to
WA@PIA p. 22, May 71

Conductance tracer for fets
W6NBI p. 44, Sep 71

Transformer shorts
W6BLZ p. 36, Jul 68

Transistor and diode tester
ZL3AMJ p. 65, Nov 70

Transistor curve tracer
WA9LX p. 52, Jul 73
Short circuit p. 63, Apr 74

Transistor tester
WA6NIL p. 48, Jul 68

Transistor tester for leakage and gain
W4BRS p. 68, May 68

Transmitter tuning unit for the blind
W9NTP p. 60, Jun 71

Trapezoidal monitor scope
VE3CUS p. 22, Dec 69

Troubleshooting around fets
Allen p. 42, Oct 68

Troubleshooting by resistance measurement
Allen p. 62, Nov 68

Troubleshooting transistor ham gear
Allen p. 64, Jul 68

Uhf tuner tester for tv sets (HN)
Schuler p. 73, Sep 69

Vacuum tubes, testing high-power (HN)
W2OLU p. 64, Mar 72

Vhf pre-scaler, improvements for
W6PBC p. 30, Oct 73

Voltmeter, improved transistor, part I
Maddiever p. 74, Apr 68

Voltmeter, transistor, part II
Maddiever p. 60, Jul 68

Vom/vtvm, added uses for (HN)
W7DI p. 67, Jan 73

Vtvm modification
W6PH

Vtvm, convert to an IC voltmeter
K6VCI p. 42, Dec 74

Wavemeter, indicating
W6NIF p. 26, Dec 70

Short circuit p. 72, Apr 71

Weak-signal source, stable, variable-output
K6JYO p. 36, Sep 71

Weak-signal source, 144 and 432 MHz
K6JC p. 58, Mar 70

Weak-signal source, 432 and 1296 MHz
K6RL p. 20, Sep 68

WWV receiver, simple regenerative
WA5SNZ p. 42, Apr 73

WWV-WWVH, amateur applications for
W3FQJ p. 53, Jan 72

Zener tester, low-voltage (HN)
K3DJP p. 72, Nov 69

Amateur anemometer
WG6XN p. 52, Jun 68

Short circuit
W3MR p. 34, Aug 68

Antenna masts, design for pipe
W3MR p. 52, Sep 74

Added design notes (letter)
K6MIO p. 75, May 75

Antennas and capture area
W6KHT p. 42, Nov 69

Bandpass filter design
K6KJ p. 36, Dec 73

Bandpass filters for 50 and 144 MHz, etched
W5KHT p. 6, Feb 71

Bandpass filters, single-pole
W6PH p. 51, Sep 69

Basic electronic units
W2DZH p. 18, Oct 68

Batteries, selecting for portable equipment
WB2AIK p. 40, Aug 73

Broadband amplifier, wide-range
W6GKN p. 40, Apr 74

Bypassing, rf, at uhf
WB6BHI p. 50, Jan 72

Communications receivers, designing for strong-signal performance
Moore p. 6, Feb 73

Computer-aided circuit analysis
K1ORV p. 30, Aug 70

Converting vacuum tube equipment to solid-state
W2EY p. 30, Aug 68

Converting wavelength to inches (HN)
WA6SXC p. 56, Jun 68

Current flow?, which way does
W2DZH p. 34, Jul 68

Digital mixer, introduction
WBBIFM p. 42, Dec 73

Digital readout system, simplified
W6OIS p. 42, Mar 74

Double-balanced mixers
W1DTY p. 48, Mar 68

Double-balanced modulator, broadband
WA6NCT p. 8, Mar 70

Earth currents (HN)
W70UI p. 60, Aug 70

Effective radiated power (HN)
VE7CB p. 72, May 73

Ferrite beads
W5JJ p. 48, Oct 70

Ferrite beads, how to use
K1ORV p. 34, Mar 73

Fet biasing
W3FQJ p. 61, Nov 72

Filter preamplifiers for 50 and 144 MHz, etched
W5KHY p. 6, Feb 71

Filters, active for direct-conversion receivers
W7Z0I p. 12, Apr 74

Fire extinguishers (letter)
W5PGG p. 68, Jul 71

Fire protection
Darr p. 54, Jan 71

Fire protection (letter)
K7QCM p. 62, Aug 71

Fm techniques
W6SAI p. 8, Sep 69

Short circuit
W6SAI p. 79, Jun 70

Froen danger (letter)
WA5RTB p. 63, May 72

Frequency multipliers
W6GKN p. 6, Aug 71

Frequency multipliers, transistor
W6AJF p. 49, Jun 70

Frequency synchronization for scatter-mode propagation
K2OVS p. 26, Sep 71

miscellaneous technical
Alarm, wet basement (HN)
W2EMF p. 68, Apr 72
Frequency synthesis
WAS5KM p. 42, Dec 69
Frequency synthesizer, high-frequency
K2BIA p. 16, Oct 72
Gamma-matching networks, how to design
W7ITB p. 46, May 73
Glass semiconductors
W1EET p. 54, Jul 69
Graphical network solutions
WINCK, W2CTK p. 26, Dec 69
Gridded tubes, vhf-uhf effects
W6UOV p. 8, Jan 69
Grounding and wiring
W1EET p. 44, Jun 69
Ground plow
W1EET p. 64, May 70
Harmonic output, how to predict
Utne p. 34, Nov 74
Heat sink problems, how to solve
WASSNZ p. 46, Jan 74
Hybrids and couplers, hf
W2CTK p. 57, Jul 70
Short circuit
W7CD p. 72, Dec 70
Impedance-matching systems, designing
W7CSD p. 58, Jul 73
Inductors, how to use ferrite and powdered-iron for
W6GXN p. 15, Apr 71
Correction
K2OA W p. 63, May 72
Injection lasers (letter)
Mims p. 64, Apr 71
Injection lasers, high power
Mims p. 28, Sep 71
Integrated circuits, part I
W3FJQ p. 40, Jun 71
Integrated circuits, part II
W3FJQ p. 58, Jul 71
Integrated circuits, part III
W3FJQ p. 50, Aug 71
Interference, hi-fi (HN)
K6KA p. 63, Mar 75
Interference, rf
W1DTE p. 12, Dec 70
Interference, rf (letter)
G3LLL p. 65, Nov 75
Interference, rf
WA3NF W p. 30, Mar 73
Interference, rf, its cause and cure
G3LLL p. 26, Jun 75
Intermittent voice operation of power tubes
W6SAI p. 24, Jan 71
Isotropic source and practical antennas
K6FD p. 32, May 70
Laser communications
W4KAE p. 28, Nov 70
LED experiments
W4KAE p. 6, Jun 70
Lighthouse tubes for uhf
W6UOV p. 27, Jun 69
Local-oscillator waveform effects
on spurious mixer responses
Robinson, Smith p. 44, Jun 74
Lowpass filters for solid-state linear amplifiers
WASJY K p. 38, Mar 74
Short circuit
W7LR p. 62, Dec 74
L-networks, how to design
W7LR p. 26, Feb 74
Short circuit
W7LR p. 62, Dec 74
Lunar-path nomograph
W4NCT p. 28, Oct 70
Marine installations, amateur, on small boats
W3MR p. 44, Aug 74
Microprocessors, introduction to
W84HYJ, Rony, Titus p. 32, Dec 75
Microwaves, getting started in
Rosal p. 53, Jun 72
Microwaves, Introduction
W1CBY p. 20, Jan 72

Mini-mobile
K9UQN p. 58, Aug 71
Mismatched transmitter loads, affect of
W5JJ p. 60, Sep 69
Mnemonics
W6NIF p. 69, Dec 69
More electronic units
W1EET p. 56, Nov 68
Multi-function integrated circuits
W3FJQ p. 46, Oct 72
Networks, transmitter matching
W6FFC p. 6, Jan 73
Neutralizing small-signal amplifiers
WA4WDK p. 40, Sep 70
Noise figure, meaning of
K6MO p. 26, Mar 69
Operational amplifiers
WB2EGE p. 6, Nov 69
Phase detector, harmonic
WSTRS p. 40, Aug 74
Phase-locked loops, IC
W3FJQ p. 54, Sep 71
Phase-locked loops, IC, experiments with
W3FJQ p. 58, Oct 71
Phase-shift networks, design criteria for
G3NRW p. 34, Jun 70
Pi and pi-L networks
W6SAI p. 36, Nov 68
Pi network design
W6FFC p. 6, Sep 72
Pi network inductors (letter)
W7IV p. 78, Dec 72
Pi networks, series-tuned
W2EGH p. 42, Oct 71
Power amplifiers, high-efficiency rf
W8BQLQ p. 8, Oct 74
Power dividers and hybrids
W1DAX p. 30, Aug 72
Power supplies, survey of solid-state
W6GXN p. 25, Feb 70
Power, voltage and impedance nomograph
W2TQK p. 32, Apr 71
Printed-circuit boards, photofabrication of
Hutchinson p. 6, Sep 71
Programmable calculator simulates antenna design (HN)
W3DVO p. 70, May 74
Programmable calculators, using
W3DVO p. 40, Mar 75
Proportional temperature control for crystal
oscillators
VE5FP p. 44, Jan 70
Pulse-duration modulation
W3FJQ p. 65, Nov 72
Q factor, understanding
W5JJ p. 16, Dec 74
QRP operation
W7OE p. 36, Dec 68
Radiation hazard, rf
W1DTY p. 4, Sep 75
Correction
W1EET p. 59, Dec 75
Radio communications links
W1EET p. 44, Oct 69
Radio observatory, vhf
Ham p. 44, Jul 74
Radio-frequency interference
WA3NF W p. 30, Mar 73
Radiotelegraph translator and transcriber
W7CUI, K7KFA p. 8, Nov 71
Eliminating the matrix
K6HA p. 60, May 72
Ramgen generators
W6GXN p. 56, Dec 68
Rating tubes for linear amplifier
service
W6UOV, W6SAI p. 50, Mar 71
Reactance problems, nomograph for
W6NIF p. 51, Sep 70
Resistor performance at high frequencies
K1ORV p. 36, Oct 71
Resistors, frequency sensitive (HN)
W8YFB p. 54, Dec 70

december 1975
127
operating

Beam antenna headings
W6FFC

Code practice stations (letter)
W84LXJ

Code practice — the rf way
WA4NED

Code practice (HN)
W2OUX

Computers and ham radio
WSTOM

CW monitor
W2EZY

CW monitor and code-practice oscillator
K6RIL

CW monitor, simple
WA90HR

CW transceiver operation with transmit-receive offset
W1DXA

DXCC check list, simple
W2CQN

Fluorescent light, portable (HN)
K8BOY

Great-circle charts (HN)
K6KA

How to be DX
W4XNO

Identification timer (HN)
K9UQN

Magazines, use your old
Foster

Morse code, speed standards for
VE2ZZK

Added note (letter)

Protective material, plastic (HN)
W6BXX

QSL return, statistics on
W861UIH

Replays, instant (HN)
W6DNS

Sideband location (HN)
K6KA

Spurious signals (HN)
K6KA

Tuning with ssb gear
W2KD

Zulu time (HN)
K6KA

oscillators

AFSK oscillator, solid-state
WA4FGY

Audio oscillator, NE566 IC
W1EZT

Blocking oscillators
W6GZN

Clock oscillator, TTL (HN)
W9ZTK

Crystal oscillator, frequency adjustment of
W9ZTK

Crystal oscillator, high stability
W6TN

Crystal oscillator, miniature
W6DOR

Crystal oscillators
W6GZN

Crystal oscillators, stable
K6ZZ

Correction

Crystal switching (HN)
K6LZ

Crystal test oscillator and signal generator
K4EEU

Crystals, overtone (HN)
G8ABR

Resistors, frequency sensitive (letter)
W5UHV

RF amplifier, wideband
W6AKS

RF power-detecting devices
K6YJO

RF power transistors, how to use
WA7KRE

Safety in the ham shack
Darr, James

Satellite communications, first step to
K1MTA

Added notes (letter)

Satellite signal polarization
K6U6J

Signal detection and communication

in the presence of white noise
WB6G0M

Silver/silicone grease (HN)
W6DBB

Single-tuned interstage networks,

designing
K5ZGQ

Smith chart, how to use
W1DTY

Correction

Solar activity, aspects of
K3CHP

Solar energy
W3FQJ

Speech clippers, rf, performance of
G6XN

Square roots, finding

in rf amplifier design
W60UV

Stress analysis of antenna systems
W2FZJ

Tetrodes, external-anode
W6SAI

Thermoelectric power supplies
K1AJE

Thermometer, electronic
VK3ZN

Three-phase motors (HN)
W6PH

Thyristors, introduction to
WA7KRE

Toroidal coil inductance (HN)
W3WLX

Toroids, calculating inductance of
WB9FHC

Toroids, plug-in (HN)
K8EEG

Transistor amplifiers, tabulated characteristics of
W5JJ

Trig functions on a pocket calculator (HN)
W9ZTK

Tuning, Current-controlled
K2RSQ

TV sweep tubes in linear service,
full-blast operation of
W6SAI, W6OUV

Vacuum-tube amplifiers, tabulated characteristics of
W5JJ

Warning lights, increasing reliability of
W3NK

Wind direction indicator, digital
W6GZN

Wind loading on towers and antenna
structures, how to calculate
K4KJ

Added note

Y parameters, using in rf amplifier design
WA2TCU
power supplies

Ac current monitor (letter)
W85MAP p. 61, Mar 75

Ac power supply, regulated, for mobile fm equipment
WA8TMP p. 28, Jun 73

Arc suppression networks (HN)
WA5EKA p. 70, Jul 73

Batteries, selecting for portable equipment
WA2AIK p. 40, Aug 73

Battery drain, auxiliary, guard for (HN)
W1DTY p. 74, Oct 74

Battery power
W3FQJ p. 56, Aug 74

Charger, fet-controlled, for nicad batteries
WA2JYK p. 46, Aug 74

Current limiting (HN)
W2LPQ p. 70, Dec 72

Current limiting (letter)
K5MKO p. 66, Oct 73

Dc-dc converter, low-power
W5MLY p. 54, Mar 75

Diodes for power supplies, choosing
W6BLZ p. 38, Jul 68

Diode surge protection (HN)
W7LUJ p. 65, Mar 72

Added note p. 77.

Dual-voltage power supply (HN)
W1OOP p. 71, Apr 69

Short circuit p. 80, Aug 69

Dual-voltage power supply (HN)
W5JJ p. 68, Nov 71

Filament transformers, miniature
W7SK p. 66, Sep 74

High-power trouble shooting
WA2JYK p. 52, Aug 68

IC power (HN)
W3KBM p. 68, Apr 72

IC regulated power supply
W2FBW p. 50, Nov 70

IC regulated power supply
W5SEK p. 51, Dec 70

IC regulated power supply for ICs
W6GXN p. 28, Mar 68

Short circuit p. 80, May 68

Klystrons, reflex power for (HN)
W6BPK p. 71, Jul 73

Line transient protection (HN)
W1DTY p. 75, Jul 68

Line-voltage monitor (HN)
W8FVK p. 66, Jan 74

Current monitor mod (letter)
W6GXN p. 61, Mar 75

Load protection, scr (HN)
W5OZF p. 62, Oct 72

Low-value voltage source (HN)
W5EKA p. 66, Nov 71

Low-voltage supply with short-circuit
Protection W6BEG p. 22, Apr 68

Low-voltage supply (HN)
W6BEG p. 57, Jun 77

Meter safety (HN)
W6VFR p. 68, Jul 72

Mobile power supplies, troubleshooting
Allen p. 56, Jun 70

Mobile power supply (HN)
W88QV p. 79, Apr 70

Mobile supply, low-cost (HN)
WA4EGL p. 69, Jul 70

Motorola Dispatcher, converting to 12 volts
W6EKLUX p. 26, Jul 72

Operational power supply
WA2IKL p. 8, Apr 70

Pilot-lamp life (HN)
W2OLU p. 71, Jul 73

Polarity inverter, medium current
Laughlin p. 26, Nov 73

Power supplies for single sideband
Beit p. 38, Feb 69

Power-supply hum (HN)
W8YFB p. 64, May 71

Power supply, improved (HN)
WA4ATE p. 72, Feb 72

Power supply, precision
W7SK p. 26, Jul 71

Power supply protection for your solid-state circuits
W5JJ p. 36, Jan 70

Arc suppression networks
W2LTJ p. 50, Apr 75

Local oscillator, phase locked
W5FQP p. 6, Mar 71

Monitoring oscillator
W2JJO p. 36, Dec 72

Multiple band master-frequency oscillator
K5SOT p. 50, Nov 75

Multivibrator, crystal-controlled
WW2MJO p. 65, Jul 71

Oscillator, audio, IC
W6GXR p. 50, Feb 73

Oscillator, electronic keyer
WA6JNJ p. 44, Jun 70

Oscillator, Franklin (HN)
W5JJ p. 61, Jan 72

Oscillator, frequency measuring
W6IEL p. 16, Apr 72

Oscillator, gated (HN)
W6KEY p. 59, Jul 75

Oscillator-monitor, audio
W4JSM p. 48, Sep 70

Oscillator, phase-locked
W5FQP p. 6, Mar 71

Oscillator, two-tone, for ssb testing
W6GXR p. 11, Apr 72

Oscillators (HN)
W1DTY p. 68, Nov 69

Oscillators, cure for cranky (HN)
W8YFB p. 55, Dec 70

Oscillators, repairing
Allen p. 69, Mar 70

Oscillators, resistance-capacitance
W6GXR p. 18, Jul 72

Oscillators, ssb
W5EKA p. 25, Jun 68

Overtone oscillator (HN)
W5UQS p. 77, Oct 68

Quadrature-phased local oscillator (letter)
K5XK p. 62, Sep 75

Quartz crystals (letter)
WB2EGZ p. 74, Dec 72

TTL crystal oscillators (HN)
W2JVA p. 60, Aug 75

Vco, crystal-controlled
W6BIOM p. 58, Oct 69

Vfo buffer amplifier (HN)
W3QBO p. 66, Jul 71

Vfo, digital readout
W6BIFM p. 14, Jan 73

Vfo for solid-state transmitters
W3QBO p. 36, Aug 70

Vfo, high stability
W8YFB p. 14, Mar 69

Vfo, high-stability, vhf
OH2CD p. 27, Jan 72

Vfo, multiband fet
K8EEM p. 39, Jul 72

Vfo, stable
K8GDF p. 8, Dec 71

Vfo, stable transistor
W1DTY p. 14, Jun 68

Short circuit p. 34, Aug 68

Vfo transistors (HN)
W1OOP p. 74, Nov 69

Vfo design, practical
K6BLH p. 22, Aug 70

455-kHz bfo, transistorized
W6BLZ, K5GXR p. 12, Jul 68

december 1975
Precision voltage supply for phase-locked terminal unit (HN) W6TLA p. 60, Jul 74
Protection for solid-state power supplies (HN) W3NK p. 66, Sep 70
Rectifier, half-wave, improved Bailey p. 34, Oct 73
Regulated solid-state high-voltage power supply W6GKN p. 40, Jan 75
Short circuit p. 69, Apr 75
Regulated 5-volt supply (HN) W0UNF p. 67, Jan 73
SCR-regulated power supplies W4GOC p. 52, Jul 70
Solar energy W3FQJ p. 54, Jul 74
Solar power W3FQJ p. 52, Nov 74
Step-start circuit, high-voltage (HN) W6VFR p. 64, Sep 71
Storage-battery QRP power W3FQJ p. 64, Oct 74
Survey of solid-state power supplies W6GKN p. 25, Feb 70
Short circuit p. 76, Sep 70
Thermoelectric power supplies K1JE p. 48, Sep 68
Transformers, high-voltage, repairing W6NIF p. 66 Mar 69
Transformer shorts W6BLZ p. 36, Jul 68
Transformers, miniature (HN) W4ATE p. 67, Jul 72
Transients, reducing W5JJ p. 50, Jan 73
Vibrator replacement, solid-state (HN) K8RAY p. 70, Aug 72
Voltage regulators, IC W7FLC p. 22, Oct 70
Voltage regulator ICs, adjustable W89KEY p. 36, Aug 75
Voltage-regulator ICs, three-terminal W8SEMI p. 26, Dec 73
Added note (letter) W8SEMI p. 73, Sep 74
Wind generators W3FQJ p. 50, Jan 75
Zener diodes (HN) K3DPJ p. 79, Aug 68

6-meter sporadic-E openings, predicting W9RAQ p. 38, Oct 72
Added note (letter) W9RAQ p. 69, Jan 74

receivers and converters

antenna impedance transformer for receivers (HN) W6NIF p. 70, Jan 70
Antenna tuner, miniature receiver (HN) WA7KRE p. 72, Mar 69
Anti-QRM methods W3FQJ p. 50, May 71
Attenuation pads, receiving (letter) K2HNQ p. 69, Jan 74
Audio agc amplifier WASSNZ p. 32, Dec 73
Audio ac principles and practice WASSNZ p. 28, Jul 71
Audio amplifier and squelch circuit W6AJF p. 36, Aug 68
Audio filter for CW, tunable WA1JSM p. 34, Aug 70
Audio filter-frequency translator for CW W2EYE p. 24, Jun 70
Audio filter mod (HN) K6HIU p. 60, Jan 72
Audio filter, simple W4NVK p. 44, Oct 70
Audio filters, CW (letter) 6YSSR p. 56, Jun 75
Audio-filters, inexpensive W8YFB p. 24, Aug 72
Audio filter, tunable peak-notch W2EYE p. 22, Mar 70
Audio filter, variable bandpass W3AFX p. 36, Apr 70
Audio module, complete K4DHC p. 18, Jun 73
Batteries, how to select for portable equipment W4OAIK p. 40, Aug 73
Bfo multiplier for a multimode detector WA3YGJ p. 52, Oct 75
Calibrator crystals (HN) K6KA p. 66, Nov 71
Calibrator, plug-in frequency K6KA p. 22, Mar 69
Calibrator, simple frequency-divider using mos ICs W6GKN p. 30, Aug 69
Communications receivers, design ideas for Moore p. 12, Jun 74
Communications receivers, designing for strong-signal performance Moore p. 6, Feb 73
Converting a vacuum-tube receiver to solid-state W1OOP p. 26, Feb 69
Counter dials, electronic K6KA p. 44, Sep 70
CW filter, adding (HN) W2OUX p. 66, Sep 73
CW monitor, simple WA9OHK p. 65, Jan 71
CW processor for communications receivers WENRW p. 17, Oct 71
CW reception, enhancing through a simulated-stereo technique WA1MKP p. 61, Oct 74
CW reception, noise reduction for W2ELV p. 52, Sep 73
CW regenerator for interference-free communications W3FQJ p. 54, Apr 74

propagation

Artificial radio aurora, scattering characteristics of W86KAP p. 18, Nov 74
Echoes, long delay W86KAP p. 61, May 69
Ionospheric E-layer W86KAP p. 58, Aug 69
Ionospheric science, short history of W86KAP p. 58, Jun 67
Long-distance high frequency communications W86KAP p. 80, Jul 68
Maximum usable frequency, predicting W86KAP p. 70, Sep 68
Quiet sun, the W86KAP p. 76, Dec 68
Scatter-mode propagation, frequency synchronization for K2OVS p. 26, Sep 71
Solar cycle 20, vhf's view of W5FYX p. 46, Dec 74
Sunspot numbers W86KAP p. 63, Jul 69
Sunspot numbers, smoothed W86KAP p. 72, Nov 68
Sunspots and solar activity W86KAP p. 60, Jan 69
Tropospheric-duct vhf communications W86KAP p. 68, Oct 69

130

december 1975
high-frequency receivers

Bandpass filters for receiver preselectors
W7ZOI p. 18, Feb 75

Bandpass tuning, electronic, in the Drake R4C
Horner p. 58, Oct 73

BC-603 tank receiver, updating the
WA6IAK p. 52, May 68

BC-1206 for 7 MHz, converted
W4FIN p. 30, Oct 70

Collins 75A4 hints (HN)
W6VFR p. 68, Apr 72

Collins 75A4 modifications (HN)
W4SD p. 67, Jan 71

Communications receiver, five band
K6SDX p. 6, Jun 72

Communications receiver for 80
meters, IC
VE3ELP p. 6, Jul 71

Communications receiver, micropower
W89FPC p. 30, Jun 73

Short circuit
K4DHNC p. 24, Sep 74

Communications receiver, miniaturized
K4DHNC p. 24, Sep 74

Communications receiver, solid-state
ISTOJ p. 32, Oct 75

Correction
K6SDX p. 59, Dec 75

Companion receiver, all-mode
W1SNN p. 18, Mar 73

Converter, hf, solid-state
VE3GHN p. 32, Feb 72

Converter, tuned very low-frequency
OH2KT p. 49, Nov 74

Direct-conversion receivers
W3FQJ p. 59, Nov 71

Direct-conversion receivers, improved
selectivity
K6BII p. 32, Apr 72

Radiotelegraph translator and transcriber
W7CJUK, K7KFA p. 8, Nov 71

Eliminating the matrix
KH6AP p. 60, May 72

Receiver impedance matching (HN)
W2ZFN p. 79, Aug 68

Receiving RTTY, automatic frequency
control for
WSNPO p. 50, Sep 71

Reciprocating detector as fm discriminator
W1SNN p. 18, Mar 73

Reciprocating-detector converter
W1SNN p. 58, Sep 74

RF amplifiers for communications receivers
Moore p. 42, Sep 74

RF amplifier, wideband
WB4KSS p. 58, Apr 75

S-meter readings (HN)
W1DTY p. 56, Jun 68

Selectivity, receiver (letter)
K4ZVV p. 68, Jan 74

Sensitivity, noise figure and dynamic range
W1DTY p. 8, Oct 75

S-meters, solid-state
K6SDX p. 20, Mar 75

Spectrum analyzer, four channel
W9IA p. 6, Oct 72

Squelch, audio-actuated
K4MOG p. 52, Apr 72

SSb signals, monitoring
W6VFR p. 36, Mar 72

Superregenerative detector, optimizing
Ring p. 32, Jul 72

Superregenerative receiver, improved
JA1BHG p. 48, Dec 70

Threshold-gate/limiter for CW reception
W2ELV p. 46, Jan 72

Added notes (letter)
W2ELV p. 59, May 72

Weak signal reception in CW receivers
Z56BT p. 44, Nov 71
Direct-conversion receivers, simple active filters for W7Z0I
ESSA weather receiver W6GKN
Fet converter, bandswitching, for 40, 20, 15, and 10 (VE3GFN)
postscript p. 68, May 69
Fet converter for 10 to 40 meters, second-generation VE3GFN
p. 28, Jan 70
Short circuit p. 79, Jun 70
Frequency synthesizer for the Drake R.4 K4MR
WA2RDO
Overload response in the Collins Outboard receiver with the RTTY with SB-300
Preselector, general-coverage Receiver, reciprocating detector RTTY Receiver,
Hammarlund HQ215, adding 160-meter coverage W2GHK
p. 32, Jan 72
Heath SB-650 frequency display, using with other receivers K2BYM
p. 40, Jun 73
High dynamic range receiver input stages DJ2LR
p. 26, Oct 75
Incremental tuning to your transceiver, adding VE3GFN
p. 66, Feb 71
Monitoring oscillator W2JO
p. 36, Dec 72
Outboard receiver with a transceiver WLDTY
p. 12, Sep 68
Outboard receiver with the SB-100, using an (HN) K4MR
WA2RDO
Overload response in the Collins 7SA-4 receiver, improving W6Z0
p. 42, Apr 70
Short circuit p. 76, Sep 70
Phasing-type ssb receiver WA2JOYK
p. 6, Aug 73
Short circuit p. 58, Dec 73
Added note (letter) p. 63, Jun 74
Preampmitter, emitter-tuned, 21 MHz WA5SNZ
p. 20, Apr 72
Preampmitter, low-noise high-gain transistor W2EYE
p. 66, Feb 69
Preselector, general-coverage (HN) W5QZF
p. 75, Oct 70
Qser, solid-state W5TKP
p. 20, Aug 69
Receiver incremental tuning for the Swan 350 (HN) K1KXA
p. 64, Jul 71
Receiver, reciprocating detector WLSNN
p. 44, Nov 72
Correction (letter) p. 77, Dec 72
Receiver, versatile solid-state W1PLJ
p. 10, Jul 70
Receiving RTTY with Heath SB receivers (HN) K9HVV
p. 64, Oct 71
RF amplifiers, selective K6BIJ
p. 58, Feb 72
Regenerative detectors and a wideband amplifier for experimenters W3YFB
p. 61, Mar 70
RTTY monitor receiver K4EEU
p. 27, Dec 72
RTTY receiver-demodulator for net operation VE7BRK
p. 42, Feb 73
RTTY with SB-300 W2ARZ
p. 76, Jul 68
Swan 350 CW monitor (HN) K1KXA
p. 63, Jun 72
Transceiver selectivity improved (HN) VE3BWD
p. 74, Oct 70
Tuner overload, eliminating (HN) VE3GFN
p. 66, Jan 73
Attenuators for (letter) VE3GFN
p. 69, Jan 74
Two-band novice superhet Thorpe p. 66, Aug 68

vfo receivers and converters

Converters for six and two meters, mosfet WB2EGZ
p. 41, Feb 71
Short circuit p. 96, Dec 71
Cooled preamplifier for vfo-uhf WB2DOX
p. 36, Jul 72
Fet converters for 50, 144, 220 and 432 MHz W6AIF
p. 20, Mar 68
Filter-preamplifiers for 50 and 144 MHz etched W5KNT
p. 6, Feb 71
Fm channel scanner W2FPP
p. 29, Aug 71
Fm communications receiver, modular K8AUH
p. 32, Jun 69
Correction p. 71, Jan 70
Fm receiver frequency control (letter) W3AFN
p. 65, Apr 71
Fm receiver performance, comparison of VE7ABK
p. 68, Aug 72
Fm receiver, multichannel for six and two WISNN
p. 54, Feb 74
Fm receiver, tunable vfo K8AUH
p. 34, Nov 71
Fm receiver, uhf WA2GCF
p. 6, Nov 72
Fm repeaters, receiving system degradation in K52BA
p. 36, May 69
Hv 17A, perking up (HN) WBEGZ
p. 70, Aug 70

Interdigital preamplifier and comb-line bandpass filter for vfo and uhf WSKHT
p. 6, Aug 70
Interference, scanning receiver (HN) K2YAH
p. 70, Sep 72
Monitor receivers, two-meter fm WB5EMI
p. 34, Apr 74
Overload problems with vfo converters, solving W1OOP
p. 53, Jan 73
Receiver alignment techniques, vfo fm K4IPV
p. 14, Aug 75
Receiver, modular two-meter fm WA2GCF
p. 42, Feb 72
Receiver, vfo fm WA2GCF
p. 8, Nov 75
Scanning receiver for vfo fm, improved WA2GCF
p. 26, Nov 74
Scanning receiver modifications, vfo fm (HN) W5WOU
p. 60, Feb 74
receivers and converters, test and troubleshooting

Scanning receivers for two-meter fm K4IPV p. 28, Aug 74
Six-meter converter, improved K1BQT p. 50, Aug 70
Six-meter mosfet converter WB2EGZ p. 22, Jun 68
Short circuit p. 34, Aug 68
Squelch-audio amplifier for fm receivers W6AUSU p. 68, Sep 74
Ssb mini-tuner K1BQT p. 16, Oct 70
Two-meter converter, 1.5 dBi NF W6SXC p. 14, Jul 68
Two-meter mosfet converter WB2EGZ Neutralizing
Two-meter preamp, MM5000 W4KAE p. 49, Oct 68
Vhf converter performance, optimizing (HN) K2FSQ p. 18, Jul 68
Vhf fm receiver (letter) K8IHQ p. 76, May 73
Vhf receiver scanner K2LZG Vhf meterregenerative receiver, low-voltage W4SNNZ p. 22, Jul 73
Short circuit p. 64, Mar 74
28-30 MHz preamplifier for satellite reception W1A 50-MHz preamplifier, improved W2AGC p. 48, Oct 75
144-MHz converter (HN) K2VQY K2VQY
144-MHz converter (letter) W4LER p. 71, Oct 71
144 MHz converter, hot-carrier diode K8CJU p. 6, Oct 69
144-MHz converter, modular W6UOV p. 64, Oct 70
144 MHz converters, choosing fets for (HN) K6JYO p. 70, Aug 69
144-MHz preamp, super (HN) K6HCQ 144-MHz preamplifier, Improved W2AGC p. 25, Mar 72
Added notes p. 73, Jul 72
220-MHz mosfet converter WB2EGZ p. 28, Jan 69
Short circuit p. 75, Jun 69
432-MHz converter, low-noise K6JC 432-MHz fet converter, low noise W6SXC p. 18, May 68
432 MHz preamp (HN) W1OTY 432 MHz preamplifier and converter W2AGC p. 40, Jul 75
1296-MHz converter, solid-state VK4ZT 1296-MHz, double-balanced mixers for W6UAM p. 8, Jul 75
1296-MHz preamplifier W6UAM p. 42, Oct 75
1296-MHz preamplifier, low-noise WA2VTR p. 50, Jun 71
Added note (letter) p. 65, Jan 72
2340-MHz converter, solid-state K2JNG, WA2LTM, WA2VTR 2304-MHz preamplifier, solid-state WA2VTR p. 20, Aug 72

Signal injection in ham receivers
Allen p. 72, May 68
Signal tracing in ham receivers Allen p. 52, Apr 68
Weak-signal source, variable-output K6JOY p. 36, Sep 71
Weak-signal source, 144 and 432 MHz K6JC p. 58, Mar 70
Weak-signal source, 432 and 1296 MHz K6RL p. 20, Sep 68

RTTY

AFSK generator, crystal-controlled K7BVT p. 13, Jul 72
AFSK generator, crystal-controlled W6LLO p. 14, Dec 73
Sluggish oscillator (letter) VK3ZNV p. 59, Dec 74
AFSK oscillators, solid-state WA4FGY p. 28, Oct 68
Audio-frequency keyer, simple W2LJT p. 56, Aug 75
Audio-shift keyer, continuous-phase VE3CTP p. 10, Oct 73
Automatic frequency control for receiving RTTY W5NPO
Added note (letter) p. 66, Jan 72
Autostart, digital RTTY K4EEU p. 6, Jun 73
Autostart monitor receiver K4EEED CRT intensifier for RTTY K4VFA p. 18, Jul 71
Carriage return, adding to the automatic line-feed generator (HN) K4EEU p. 71, Sep 74
Coherent frequency-shift keying, need for K3WJO p. 30, Jun 74
Added notes (letter) p. 58, Nov 74
Crystal test oscillator and signal generator K4EEU p. 46, Mar 73
CW memory for RTTY identification W6LLO p. 6, Jan 74
Electronic speed conversion for RTTY teleprinters W6AJYY p. 36, Dec 71
Printed circuit for Frequency-shift meter, RTTY VK3ZNV p. 53, Jun 70
Line-end indicator, IC W2OKO p. 22, Nov 75
Line feed, automatic for RTTY K4EEU p. 20, Jan 73
Mainline ST-5 autostart and antispace K2YAH p. 46, Dec 72
Mainline ST-5 RTTY demodulator W6FFC Short circuit p. 14, Sep 70
Mainline ST-6 RTTY demodulator W6FFC Short circuit p. 72, Dec 70
Mainline ST-6 RTTY demodulator W6FFC Short circuit p. 6, Jan 71
Mainline ST-6 RTTY demodulator, more K4EEU p. 72, Apr 71
uses for (letter) W6FFC p. 69, Jul 71
Mainline ST-6 RTTY demodulator, troubleshooting W6FFC p. 50, Feb 71
Message generator, random access memory RTTY K4EEU p. 8, Jan 75
Message generator, RTTY W6OXP, W8KCQ p. 30, Feb 74
Monitor scope, phase-shift W3CIX p. 36, Aug 72
Monitor scope, RTTY, Heath HO-10 and SB-610 as (HN) K6HWW p. 70, Sep 74
Monitor scope, RTTY, solid-state
WB2MPZ
p. 33, Oct 71

Phase-locked loop AFSK generator
K7ZOF
p. 27, Mar 73

Phase-locked loop RTTY terminal unit
WF4QM
p. 8, Jan 72
Correction
p. 60, May 72
Power supply for
p. 60, Jul 74
Optimization of the phase-locked terminal unit
p. 22, Sep 75

Precise tuning with ssb gear
W2KD
p. 40, Oct 70

Printed circuit for RTTY speed converter
W7POQ
p. 54, Oct 72

Receiver-demodulator for RTTY net operation
VE7BRK
p. 42, Feb 73

Ribbon re-inkers
W6FFC
p. 30, Jun 72

RTTY converter, miniature IC
K9MRL
p. 40, May 69
Short circuit
p. 80, Aug 69

RTTY distortion: causes and cures
WB6IMP
p. 36, Sep 72

RTTY for the blind (letter)
VE7BRK
p. 76, Aug 72

RTTY, introduction to
K6JP
p. 38, Jun 69

RTTY line-length indicator (HN)
W2UHF
p. 62, Nov 73

RTTY reception with Heath SB receivers (HN)
K9HVW
p. 64, Oct 71

RTTY with the SB-300
W2ARZ
p. 76, Jul 68

Signal Generator, RTTY
W7ZTC
p. 23, Mar 71
Short circuit
p. 96, Dec 71

Speed control, electronic, for RTTY
W3VF
p. 50, Aug 74

ST-5 keys polar relay (HN)
W2LDN
p. 72, May 74

Swan 350 and 400 equipment on RTTY (HN)
WB2MIC
p. 67, Aug 69

Synchrophase afsk oscillator
W6FOO
p. 30, Dec 70

Synchrophase RTTY reception
W6FOO
p. 38, Nov 70

Teleprinters, new look in
W6ZOE
p. 38, Jul 70

Terminal unit, phase-locked loop
WF4QM
p. 8, Jan 72
Correction
p. 60, May 72

Terminal unit, phase-locked loop
W4AYV
p. 36, Feb 75

Terminal unit, variable-shift RTTY
W3VF
p. 16, Nov 73

Test generator, RTTY (HN)
W3EAG
p. 67, Jan 73

Test generator, RTTY (HN)
W3EAG
p. 59, Mar 73

Voltage supply, precision for phase-locked terminal unit (HN)
WA6TLA
p. 60, Jul 74

Circulary-polarized ground-plane antenna for satellite communications
K4GSX
p. 28, Dec 74

Communications, first step to satellite
K1MTA
p. 52, Nov 72
Added notes (letter)
p. 73, Apr 73

Oscar 7, communications techniques for
G32CZ
p. 6, Apr 74

Picture transmission, recording satellite
W6CCN
p. 6, Nov 68

Signal polarization, satellite
KH61J
p. 6, Dec 72

28-30 MHz preamplifier for satellite reception
W1JAA
p. 48, Oct 75

432 MHz OSCAR antenna (HN)
W1JAA
p. 58, Jul 75

semiconductors

Antenna switch for meters, solid-state
K2ZSQ
p. 48, May 69

Avalanche transistor circuits
W4NVK
p. 22, Dec 70

Beta master, the
K8ERV
p. 18, Aug 68

Charge flow in semiconductors
WB6BHH
p. 50, Apr 71

Converting a vacuum-tube receiver to solid-state
W1OOP
p. 26, Feb 69

Short circuit
p. 76, Jul 69

Converting vacuum tube equipment to solid-state
W2EEY
p. 30, Aug 68

Curve master, the
K8ERV
p. 40, Mar 68

Diodes, evaluating
W5JJ
p. 52, Dec 71

Dynamic transistor tester
VE7ABK
p. 65, Oct 71

Fet bias problems simplified
WA5SNZ
p. 50, Mar 74

Fet biasing
W3FQJ
p. 61, Nov 72

Fetrons, solid-state replacements for tubes
W1DHY
p. 4, Aug 72
Added notes
p. 66, Oct 73; p. 62, Jun 74

Frequency multipliers
W6GSK
p. 6, Jul 69

Frequency multipliers, transistor
W6AJF
p. 49, Jul 70

Glass semiconductors
W1EIZ
p. 54, Jul 69

Grid-dip oscillator, solid-state conversion of
W6AJZ
p. 20, Jun 70

Heatsink problems, how to solve transistor
WA5SNZ
p. 46, Jan 74

Impulse generator, snap diode
Siegal, Turner
p. 29, Oct 72

Injection lasers, high power
Mims
p. 28, Sep 71

Injection lasers (letter)
Mims
p. 64, Apr 71

Linear power amplifier, high power solid-state
Chambers
p. 6, Aug 74

Linear transistor amplifier
W3FQJ
p. 59, Sep 71

Long-tail transistor biasing
W2DXH
p. 64, Apr 68

Mobile converter, solid-state modification of
Schuler
p. 58, Sep 69

Mosfet circuits
W3FQJ
p. 50, Feb 75

Mosfet transistors (HN)
WB2EGZ
p. 72, Aug 69

Motorola fets (letter)
WICER
p. 64, Apr 71

Motorola MPS transistors (HN)
W2DXH
p. 42, Apr 68
Single Sideband

Balanced modulator, integrated-circuit
K7QWR
Balanced modulators, dual fet
W3FOJ
Communications receiver, phasing-type
WAGJYK
Converting a.m. power amplifiers to
ssb service
WA4GNY
Converting the Swan 120 to two meters
K6RL
Detectors, ssb
Beltp.22,Nov68

Detector, ssb, IC (HN)
K4ODS
Correction
p.72, Apr73
Double-balanced mixers
WIDTY
Double-balanced modulator, broadband
WA6NCT
Electronic bias switching for linear
amplifiers
W6VFR
Filters, single-sideband
Belt
p.40,Aug68
Filters, ssb (HN)
p.63,Nov73
Frequency dividers for ssb
W7BZ
Frequency translation in ssb
transmitters
Belt
p.22, Sep68
Generating ssb signals with
suppressed carriers
Belt
p.24, May68
Guide to single-sideband, a
beginner’s
Belt
p.66, Mar68
Hang agc circuit for ssb and CW
W1ERJ
Improved operation of power tubes
W6SAI
Intermodulation-distortion measurements
on ssb transmitters
W6VFR
Linear amplifier, five-band conduction-
cooled
W9KIT
p.6,Jul72
Linear amplifier, five-band kilowatt
W4OQ
p.14,Jan74
Improved operation (letter)
p.59, Dec74
Linear amplifier, homebrew five-band
W7IV
p.30,Mar70
Linear amplifier performance, improving
W4PSJ
p.68,Oct71
Linear amplifier, 100-watt
W6WR
p.28, Dec75
Linear, five-band hf
W7DI
p.6,Mar72
Linear for 80-10 meters, high-power
W6HN
p.56, Apr71
Short circuit
p.96, Dec71
Linear power amplifiers
Belt
p.16, Apr68
Linear, three bands with two (HN)
W4NIF
p.70, Nov69
Minutiner, ssb
K1BQT
p.16, Oct70
Modifying the Heath SB-200 amplifier
for the new 8873 zero-bias triode
W6UOV
Oscillators, ssb
Beltp.26, Jun68
Peak envelope power, how to measure
W5JJ
p.32, Nov74
Phase-shift networks, design criteria for
G3NRW
p.34, Jun70
Phase-shift ssb generators
Belt
p.20, Jul68
Power supplies for ssb
Belt
p.38, Feb69
Precise tuning with ssb gear
W2KD
p.40, Oct70
Preemphasis for ssb transmitters
OH2CD
p.38, Feb72
Rating tubes for linear amplifier service
W6UOV, W6SAI
p.50, Mar71
Rf clipper for the Collins S-line
K6JO
Letter
p.68, Dec71
Rf speech processor, ssb
W2MB
p.18, Sep73
Sideband location (HN)
K6KA
p.62, Aug73
Frequency translation in ssb
Transmitters
Belt p. 22, Sep 68

Grid-current measurement in
grounded-grid amplifiers
W6SAI p. 64, Aug 68

Intermittent voice operation of power
tubes
W6SAI p. 24, Jan 71

Key and vox clicks (HN)
K6KA p. 74, Aug 72

Linear power amplifiers
Belt p. 16, Apr 68

Lowpass filters for solid-state linear amplifiers
WAØJYK p. 38, Mar 74

Short circuit p. 62, Dec 74

Multiple tubes in parallel grounding grid (HN)
W7CS p. 60, Aug 71

Networks, transmitter matching
W5FFC p. 6, Jan 73

Neutralizing tip (HN)
ZE6JP p. 69, Dec 72

Parasitic oscillations in high-power
transistor rf amplifiers
W2/KGI p. 54, Sep 70

Parasitic suppressor (HN)
WASJMY p. 80, Apr 70

Pi and Pi-L networks
W6SAI p. 36, Nov 68

Pi network design aid
W6NIF p. 62, May 74

Correction (letter) p. 58, Dec 74

Pi-network design, high-frequency
power amplifier
W6FFC p. 6, Sep 72

Pi-network inductors (letter)
W7IV p. 78, Dec 72

Pi networks, series tuned
W2EGH p. 42, Oct 71

Power attenuator, all-band 10-dB
K1CCCL p. 68, Apr 70

Power fets
W3FQJ p. 34, Apr 71

Power tube open filament pins (HN)
W9KNI p. 69, Apr 75

Pre-emphasis for ssb transmitters
OH2CD p. 38, Feb 72

Relay activator (HN)
K6KA p. 62, Sep 71

RF power amplifiers, high-efficiency
W8SLQK p. 8, Oct 74

RF power transistors, how to use
WA9KRE p. 8, Jan 70

Screen clamp, solid-state
W2/LRW p. 44, Sep 68

Step-start circuit, high-voltage (HN)
W6VFR p. 64, Sep 71

Swr alarm circuits
W2EEY p. 73, Apr 70

Temperature alarms for high-power amplifiers
W2EEY p. 48, Jul 70

Transmitter power levels, some
observations regarding
WASSNZ p. 62, Apr 71

Transmitter, remote keying (HN)
WASHDU p. 74, Oct 69

Transmitter switching, solid-state
W2EEY p. 44, Jun 68

Transmitter-tuning unit for the blind
W9NTP p. 60, Jun 71

TV sweep tubes in linear service,
full-blown operation of
W6SAI, W6UOV p. 9, Apr 68

Vacuum tubes, using odd-ball types in
linear amplifiers
W5JJ p. 58, Sep 72

Vfo, digital readout
WBBIM p. 14, Jan 73

high-frequency transmitters

ART-13, Modifying for noiseless CW (HN)
K5GKN p. 68, Aug 69

CW transceiver for 40 and 80 meters
W3NNL, K3OIO p. 14, Jul 69

CW transceiver, low-power 20-meter
W7Z0I p. 8, Nov 74

CW transmitter, half-watt
K3VQQ p. 69, Nov 69

Driver and final for 40 and 80 meters, solid-state
W3QBO p. 20, Feb 72

Field-effect transistor transmitters
K2BLA p. 30, Feb 71

Filters, low-pass for 10 and 15 meters
W2EEY p. 42, Jan 72

Frequency synthesizer, high frequency
K2BLA p. 16, Oct 72

Grounded-grid 2 kW PEP amplifier, high frequency
W6SAI p. 6, Feb 69

**Heath HW-101 transceiver, using with
a separate receiver (HN)**
WA1MKP p. 63, Oct 73

Linear amplifier, five-band
W7IV p. 30, Mar 70

Linear amplifier, five-band conduction-cooled
W5KIT p. 6, Jul 72

Linear amplifier performance, improving
W4PSJ p. 68, Oct 71

Linear amplifier, 100-watt
W6WR p. 28, Dec 75

Linear, five-band hf
W7DI p. 6, Mar 72

Linear, five-band kilowatt
W4QQ p. 14, Jan 74

Improved operation (letter)
W96HN p. 56, Apr 71

Short circuit
W6HHN p. 96, Dec 71

Linear power amplifier, high-power solid-state
Chambers p. 6, Aug 74

Linears, three bands with two (HN)
W4N4JF p. 70, Nov 69

Low-frequency transmitter, solid-state
W4KAE p. 16, Nov 68

Lowpass filter, high-frequency
W2JLO p. 24, Mar 75

Short circuit
W3NC p. 59, Jun 75

Modifying the Heath SB-200 amplifier for
the new 8873 zero-bias triode
W6UOV p. 32, Jan 71

Phase-locked loop, 28 MHz
W1KNI p. 40, Jan 73

QRP fet transmitter, 80-meter
W3FQJ p. 50, Aug 75

Ssb exciter, 5-band
K1UXX p. 10, Mar 68

Ssb transceiver, miniature 7-MHz
W7B8X p. 16, Jul 74

Ssb transceiver using LM373 IC
W5BA p. 32, Nov 73

Ssb transceiver, 9-MHz, IC
G3ZVC p. 34, Aug 74

Circuit change (letter)
W2JLO p. 62, Sep 75

Ssb transmitter and receiver, 40 meters
VE3GSD p. 6, Mar 74

Short circuit
W3FQJ p. 62, Dec 74

Ssb transmitter, phasing type
WAØJYK p. 8, Jun 75

Tank circuit, inductively-tuned high-frequency
W6SAI p. 6, Jul 70

Transceiver, single-band ssb
W1DTY p. 8, Jun 69

Transceiver, 3.5-MHz ssb
W66AX p. 6, Mar 73
vhf and uhf transmitters

Converting the Swan 120 to two meters
K6RIL p. 47, Oct 69
Fm repeater transmitter, improving
W6GDO p. 12, Jan 69
Linear for 4 meters
W4KAE p. 47, Jan 69
Linear for 1296 MHz, high-power
WB6IOM p. 12, Mar 69
Phase-locked loop, 50 MHz
WIKNI p. 40, Jan 73
Transistors for vhf transmitters (HN)
W1DOP p. 40, Jul 70
Transmitter, flea power
K2ZSQ p. 60, Aug 69
Transmitting mixers for 6 and 2 meters
K2ISP p. 44, Jul 69
Transverter for 6 meters
WA9IGU p. 21, Jul 69
Tunnel diode phone rig, 6-meter (HN)
K2ZSQ p. 40, Jul 70
Vhf linear, 2kW, design data for
W6UVU p. 6, Feb 69
50-MHz kilowatt, inductively tuned
K1DPP p. 8, Sep 69
50-MHz linear amplifier
K1RAK p. 38, Nov 69
50-MHz linear amplifier, 2-kW
W6UVU p. 16, Feb 70
50-MHz linear, inductively tuned
W6SAL p. 6, Jul 70
50-MHz transmitter, solid-state
W8BEGZ p. 6, Oct 68
50-MHz transverter
K1RAK p. 12, Mar 71
50/144-MHz multimode transmitter
K2ISP p. 28, Sep 70
144-MHz fm transmitter
W9SEK p. 6, Apr 72
144-MHz fm transmitter, solid-state
W6AJF p. 14, Jul 71
144-MHz fm transmitter, Sonobaby
WA2GUZ p. 8, Oct 71
Short circuit
K2WZ p. 96, Dec 71
Crystal deck for
K2WZ p. 26, Oct 72
144-MHz low-drive kilowatt linear
W6HHN p. 26, Jul 70
144-MHz low-power solid-state transmitter
K0VOY p. 52, Mar 70
144-MHz phase-modulated transmitter
W6AJF p. 18, Feb 70
144-MHz power amplifier, high performance
W6UOV p. 22, Aug 71
144-MHz power amplifier, 10-watt solid-state
W1DTY p. 67, Jan 74
144-MHz rf power amplifiers, solid state
W4GC p. 6, Apr 72
144-MHz transmitting converter, solid-state ssb
W6NBH p. 6, Feb 74
Short circuit
W6NBH p. 62, Dec 74

transmitters and power amplifiers, test and troubleshooting

Aligning vhf transmitters
Allen p. 58, Sep 69
Ssb transmitter alignment
Allen p. 62, Oct 69
Transverter, 6-meter
K8DGC, K8TPV p. 44, Dec 68
Tuning up ssb transmitters
Allen p. 62, Nov 69

troubleshooting

Analyzing wrong dc voltages
Allen p. 54, Feb 69
Audio distortion, curing in speech
Allen p. 42, Aug 70
Amplifiers
Allen p. 56, Jun 70
Dc-dc converters, curing trouble in
Allen p. 42, Oct 68
Fets, troubleshooting around
Allen p. 52, Aug 68
High-voltage troubleshooting
Allen p. 52, Jun 70
Mobile power supplies, troubleshooting
Allen p. 52, Jan 69
Ommeter troubleshooting
Allen p. 52, Jun 70
Oscillators, repairing
Allen p. 69, Mar 70
Oscilloscope, putting to work
Allen p. 64, Sep 69
Oscilloscope, troubleshooting amateur
Allen p. 52, Aug 68
gear with
Allen p. 52, Jun 69
Receiver alignment
Allen p. 64, Jun 69
Receiver alignment techniques, vhf fm
K4IPV p. 14, Aug 75
Resistance measurement, troubleshooting by
Allen p. 62, Nov 68
vhf and microwave general

Amateur vhf fm operation
W6KZ
p. 36, Jun 68

Artificial radio aurora, vhf
scattering characteristics
WB6KAP
p. 18, Nov 74

A-m modulation monitor
KH7UNL
p. 67, Jul 71

APX-5 transponder, notes on
WG6SA
p. 32, Apr 68

Band change from six to two meters, quick
K2QYQ
p. 64, Feb 70

Bandpass filters, single-pole
WG6PH
p. 51, Sep 69

Bandpass filters, 25 to 2500 MHz
K6RIL
p. 46, Sep 69

Bypassing, rf, at vhf
WB6BHI
p. 50, Jan 72

Cavity filter, 144-MHz
W1SNN
p. 22, Dec 73

Short circuit
p. 64, Mar 74

Coaxial filter, vhf
WG6AI
p. 36, Aug 71

Coaxial-line resonators (HN)
WA7KRE
p. 82, Apr 70

Coil-winding data, practical vhf and uhf
K3SVC
p. 6, Apr 71

Crystal mount, untuned
W1DTY
p. 68, Jun 68

Effective radiated power (HN)
VE7CB
p. 72, May 73

Frequency multipliers
WG6XN
p. 6, Aug 71

Frequency multipliers, transistor
WG6JF
p. 49, Jun 70

Frequency scaler, 500-MHz
WG6URH
p. 32, Jun 75

Frequency scalers, 1200-MHz
WB9KEY
p. 38, Feb 75

Frequency synchronization for scatter-mode propagation
K2OVS
p. 26, Sep 71

Frequency synthesizer, 220 MHz
WG6KN
p. 8, Dec 74

Gridded tubes, vhf/uhf effects in
WG6UV
p. 8, Jan 69

Harmonic generator (HN)
WG6DQ
p. 76, Oct 70

Impedance bridge (HN)
WG6KZ
p. 67, Feb 70

Indicator, sensitive rf
WB9DNI
p. 38, Apr 73

Klystron cooler, waveguide (HN)
WA4WDL
p. 74, Oct 74

Lunar-path nomograph
WA6NCT
p. 28, Oct 70

Microwave communications, amateur
standards for
K6HIJ
p. 54, Sep 69

Microwave hybrids and couplers for amateur use
W2CK
p. 57, Jul 70

Short circuit
p. 72, Dec 70

Microwaves, getting started in
Roubal
p. 53, Jun 72

Microwaves, introduction to
W1CBY
p. 20, Jan 72

Moonbounce to Australia
W1DTY
p. 85, Apr 68

Noise figure, meaning of
K6MIO
p. 26, Mar 69

Noise figure measurements, vhf
WB6NMT
p. 36, Jun 72

Noise generators, using (HN)
K2ZSQ
p. 79, Aug 68

Phase-locked loop, tunable 50 MHz
W1KNI
p. 40, Jan 73

Power dividers and hybrids
W1DAX
p. 30, Aug 72

Proportional temperature control for crystal ovens
YE5FP
p. 44, Jan 70

Radio observatory, vhf
Ham
p. 44, Jul 74

Reflex klystrons, pogo stick for (HN)
W6BPK
p. 71, Jul 73

RF power-detecting devices
K6JYO
p. 28, Jul 60

Satellite communications
K1TMA
p. 52, Nov 72

Added notes (letter)
Satellite signal polarization
KH6IJ
p. 6, Dec 72

Solar cycle 20, vhf'er's view of
WA5IVY
p. 46, Dec 74

Tank circuits, design of vhf
K7UNL
p. 56, Nov 70

Uhf hardware (HN)
W6CMQ
p. 76, Oct 70

Vfo, high-stability vhf
OH2CD
p. 27, Jan 72

Vhf beacons
K6EDX
p. 52, Oct 69

Vhf beacons
WA3FQJ
p. 66, Dec 71

50-MHz frequency synthesizer
W1KNI
p. 26, Mar 74

144-MHz fm frequency meter
W4JAZ
p. 40, Jan 71

Short circuit
p. 72, Apr 71

144-MHz frequency synthesizer
W84FPK
p. 34, Jul 73

144-MHz frequency-synthesizer, one-
crystal
W2KMW
p. 30, Sep 73

220-MHz frequency synthesizer
W6GKN
p. 8, Dec 74

432-MHz ssb, practical approach to
WA2FSQ
p. 6, Jun 71

1296-MHz microstripline bandpass filters
WA6LAM
p. 46, Dec 75

40-GHz record
K7PMY
p. 70, Dec 68

vhf and microwave antennas

Circularly-polarized ground-plane antenna for satellite communications
K4GSX
p. 28, Dec 74

Ground plane, portable vhf (HN)
K9DHD
p. 71, May 73

Log-periodic yagi beam antenna
K6RIL, WG6AI
p. 8, Jul 69

Correction
p. 68, Feb 70

Microstrip swr bridge, vhf and uhf
W4GAC
p. 22, Dec 72
Microwave antenna, low-cost
K6HCP p. 52, Nov 69
Parabolic reflector antennas
VK3ATN p. 12, May 74
Parabolic reflector element spacing
WA9HUV p. 28, May 75
Parabolic reflector gain
W2TKQ p. 50, Jul 75
Parabolic reflector, 16-foot homebrew
WB6IOM p. 8, Aug 69
Parabolic reflectors, finding focal length of (HN)
WA1WDL p. 57, Mar 74
Swr meter
W6SV p. 6, Oct 70
Transmission lines, uhf
WA2VTR p. 36, May 71
Two-meter antenna, simple (HN)
W6BLZ p. 78, Aug 68
Two-meter mobile antennas
W6BLZ p. 76, May 68
Vhf antenna switching without relays (HN)
K2ZSQ p. 77, Sep 68
10 Ghz dielectric antenna (HN)
WA4WDL p. 80, May 75
50-MHz antenna coupler
K1RAK p. 44, Jul 71
50-MHz collinear beam
K3VQ p. 59, Nov 69
50-MHz cubic quad, economy
W6DOR p. 50, Apr 69
50-MHz J-pole antenna
K4SDY p. 48, Aug 68
50-MHz mobile antenna (HN)
W4PSI p. 77, Oct 70
144-MHz antenna, ½ wave vertical
K6KLO p. 40, Jul 74
144-MHz antenna, ½-wave vertical, build from CB mobile whips
WB4WSU p. 67, Jun 74
144-MHz antennas, simple
WA3PFW p. 30, May 73
144-MHz antenna switch, solid-state
K2ZSQ p. 48, May 69
144-MHz collinear antenna
W6RJO p. 12, May 72
144-MHz four-element collinear array
WB5KGF p. 6, May 71
144-MHz ground plane antenna, 0.7 wave length
W3WAZ p. 40, Mar 69
144-MHz moonbounce antenna
K6HCP p. 52, May 70
144-MHz whip, 5/8-wave (HN)
VE3DDD p. 70, Apr 73
432-MHz corner reflector antenna
WA2FSQ p. 24, Nov 71
432-MHz OSCAR antenna (HN)
W1JAA p. 58, Jul 75
432- and 1296-MHz quad-yagi arrays
W3AED p. 20, May 73
Short circuit
W3AED p. 58, Dec 73
440-MHz collinear antenna, four-element
WA6HPT p. 38, May 73
1296-MHz Yagi
W2CQM p. 24, May 72
1296-MHz Yagi array
W3AED p. 40, May 75

vhf and microwave receivers and converters

Audio filter, tunable, for weak-signal communications
K6HCP p. 28, Nov 75
Cooled preamplifier for vhf-uhf reception
WA4RDX p. 36, Jul 72
Fet converters for 50, 144, 220 and 432 MHz
W6AJF p. 20, Mar 68
Interdigital preamplifier and comb-line bandpass filter for vhf and uhf
W6KHT p. 6, Aug 70
Noise figure, sensitivity and dynamic range
W1DFT p. 8, Oct 75
Noise figure, vhf, estimating
WA9HUV p. 42, Jun 75
Overload problems with vhf converters, solving
W1OO p. 53, Jan 73
Receiver scanner, vhf
K2LZG p. 22, Feb 73
Receiver, superregenerative, for vhf
WA5SZN p. 22, Jul 73
Signal detection and communication in the presence of white noise
WB6IOM p. 16, Feb 69
Signal generator for two and six meters
WAB0IK p. 54, Nov 69
Single-frequency conversion, vhf/uhf
W3FQJ p. 62, Apr 75
Vhf converter performance, optimizing (HN)
K2ZSQ p. 18, Jul 68
Weak-signal source, stable, variable output
K6JYO p. 36, Sep 71
Weak-signal source, 144 and 432 MHz
K6JC p. 58, Mar 70
Weak-signal source, 432 and 1296 MHz
K6RIL p. 20, Sep 68
28-30 MHz low-noise preamp
WB1JAA p. 48, Oct 75
50-MHz deluxe mosfet converter
WB2EGZ p. 41, Feb 71
50-MHz etched-inductance bandpass filters and filter-preamplifiers
W5KHT p. 6, Feb 71
50-MHz mosfet converter
WB2EGZ p. 22, Jun 68
Short circuit
W5KHT p. 34, Aug 68
50-MHz preamplifier, improved
WA2GCF p. 46, Jan 73
144-MHz converter (HN)
K2VQY p. 71, Aug 70
144-MHz converter, 1.5 dB noise figure
WA6SXc p. 14, Jul 68
144-MHz converters, choosing fets (HN)
K6JYO p. 70, Aug 69
144-MHz deluxe mosfet converter
WB2EGZ p. 41, Feb 71
Short circuit
WA2GCF p. 71, Oct 71
144-MHz etched-inductance bandpass filters and filter-preamplifiers
W5KHT p. 6, Feb 71
144-MHz fm receiver
W9SEK p. 22, Sep 70
144-MHz fm receiver
WA2GFB p. 42, Feb 72
Added notes
WA2GFB p. 73, Jul 72
144-MHz fm receiver
WA2GCF p. 6, Nov 72
144-MHz preamplifier, improved
WA2GCF p. 25, Mar 72
144-MHz preamplifier, low noise
W8BBB p. 36, Jun 74
144-MHz preamp, super (HN)
K6HCP p. 72, Oct 69
144-MHz preamp, MM5000
W4KAЕ p. 49, Oct 68
220-MHz mosfet converter
WB2EGZ p. 28, Jan 69
Short circuit
W6RJO p. 76, Jul 69
432-MHz converter, low-noise
K6JC p. 34, Oct 70
432-MHz fet converter, low-noise
WA6SJC p. 18, May 68
432-MHz fet preamp (HN)
W1DTY p. 66, Aug 69
vhf and microwave transmitters

Aligning vhf transmitters
Allen

Converting the Swan 120 to two meters
K6RIL

External anode tetrodes
W6SAI

Inductively-tuned tank circuit
W6SAI

Lighthouse tubes for uhf
W6UOV

Pi networks, series-tuned
W2EGH

Ssb input source for vhf, uhf transverters (MN)
F8MK

Transistors for vhf transverters (MN)
W1OOP

Vhf linear, 2 kW, design data for
W6UOV

2C39, water cooling
K6MYC

50-MHz customized transverter
K1RAK

50-MHz heterodyne transmitting mixer
K2ISP

Correction

50-MHz kilowatt, inductively-tuned
K1DPP

50-MHz 2 kW linear amplifier
W6UOV

50-MHz linear amplifier
K1RAK

50-MHz multimode transmitter
K2ISP

50-MHz transmitter, solid-state
WB2EGZ

50-MHz transverter
K8DOC, KBTPV

50-MHz transverter
WA9IGU

50-MHz tunnel-diode phone rig
K2SQZ

144-MHz fm transceiver, compact
W6A0I

144-MHz fm transceiver
W6AJF

144-MHz fm transmitter
W9SEK

144-MHz fm transmitter, Sonobaby
WA0UZO

Crystal deck for Sonobaby
WA6QCC

144-MHz heterodyne transmitting mixers
K2ISP

Correction

144-MHz linear
W4KAE

144-MHz linear, 2kW, design data for
W6UOV

144-MHz low-drive kilowatt linear
W6HNN

144-MHz multimode transmitter
K2ISP

144-MHz phase-modulated transmitter
W6A1F

144-MHz power amplifier, high performance
W6UOV

144-MHz power amplifiers, fm
W4COA

144-MHz power amplifier, 10-watt solid-state (HN)
W1DTY

144-MHz power amplifier, 80-watt, solid-state
Hatchett

144-MHz transceiver, a-m
K1AOB

144-MHz transmitting converter, solid-state ssb
W6NBI

Short circuit

144-MHz transverter
K1RAK

144-MHz two-kilowatt linear
W6UOV, W6ZO, K6DC

144- and 432-MHz stripline amplifier/tripler
K2RIW

220-MHz exciter
W6D9Y

220-MHz power amplifier
W6UOV

220-MHz rf power amplifier
W6D9Y

220-MHz rf power amplifier, fm
K7JUE

432-MHz amplifier, 2-kW
W6SAI, W6NLZ

432-MHz exciter, solid-state
W1OOP

432-MHz rf power amplifier
K6JC

432-MHz solid-state linear amplifier
W6QX9

432-MHz ssb converter
K6JC

Short circuit

432-MHz ssb, practical approach
W6FSQ

432-MHz stripline tripler
K2RIW

432-MHz 100-watt solid-state power amplifier
W6CNQ

1152- to 2304-MHz power doubler
WA9HUV

1296-MHz frequency tripler
K4SUM, W4API

1296-MHz linear, high-power
W66OM

Short circuit

1296-MHz power amplifier
W2COH, W2CCY, W2OJ, W1MU

1296-MHz ssb transceiver
WA6UAM

2304-MHz power amplifier
WA9HUV
Advertsers check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off".

Place your check mark in the space between name and number. Ex: Ham Radio 234

INDEX

Adva 265
Aldelco 347
Amtroncraft 381
Aptron 380
Atronics 269
Atalanta 382
Barber 383
Bauman 107
Budget 233
Bullet 328
Buyers & Sellers 329
CFP 022
CalCom 282
Communications Specialists 330
Communication Specialties 369
Carbin 346
Crystal Products ... 370
Curtis 382
Cush Craft ... 383
D & N 384
Damas 324
Data Signal 290
Dentron 259
Drake 206
Dyncomm 294
Eimac 295
Elders Co 385
Electrografix 386
Electronic Devices 387
Electronic Dist ... 384
Elect Equip Bank 288
ELPROCO 301
Electrospace 388
Erckman 291
Genave 189
HR Report 150
Hal 186
Hal-Tronix 254
Ham Radio 150
Hammar 246
Henry 620
Hilite 183
Hosfest 390
Howard 316
Hy-Gain 376
Icom 076
International Crystal 066
James 333
Jan 064
Jenel 456
Jensen 293
K-E 071
KLW 073
Kensco 394
Kenwood 341
Kilor 334
Levy 291
Little Giant ... 011
Lynt 373
M.J. 089
Matic 084
Maynard 363
M.Tech ... 357
National Semi ... 223
N.E. Digital ... 336
Northshore RF ... 296
PRA 116
Papel ... 092
Palomar 093
Polar Paks 096
Porta-Pak 274
RCA 122
R.F. Comm ... 035
RMS 121
RP ... 098
Radiation Devices ... 099
Regency ... 102
SST 275
Sagin ... 376
SARCO ... 466
Savoy ... 105
Signal ... 105
Sleap ... 232
Southwest Tech ... 262
Space ... 107
Specialty Comm. Systems ... 118
Spectrums ... 108
Swan ... 111
Systems Research ... 092
TMC ... 245
Tenn-Tec ... 393
Topeka FM ... 115
Tower ... 320
Tri-Ex ... 316
Tri-Tower ... 345
Tropical ... 118
Ham-Ore ... 185
Tufa ... 141
Valu-Pak ... 354
Vanguard ... 345
Webster ... 255
Weissnacker ... 122
Weir ... 379
White ... 367
Whitehorse ... 378
Wilson 124

*Please contact this advertiser directly

Limit 15 inquiries per request.

December 1975

Please use before January 31, 1976

Tear off and mail to

HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME ... CALL

STREET ..

CITY .. ZIP

STATE

0142

december 1975
2-meter antenna for hand-held transceivers
144-148 MHz

This rubber duckie is one tough antenna!

When the going gets tough, Hy-Gain's flexible 2-meter antenna is the one to have. So short, it goes where whips can't. Continuously loaded for optimum performance and completely insulated with a special vinyl coating, it won't crack or break, no matter how you bend it. Cannot be shorted out accidentally! Designed with the same care and excellence in engineering that produces our superb commercial and mobile antennas. Whether your 2-meter hand-held is one of the fine commercially available units or a beauty you built yourself, this is the antenna that can go where you go!

Available with three connector types and tuned for optimum performance:

Order No. 274 BNC or 'snap' fitting, fits Tempo, Wilson, Ken Product, Clegg and other popular hand-held 2-meter transceivers.
Order No. 275 Accepts SO-239 connector, fits Drake and Motorola.
Order No. 269 Male screw 5/6 x 32, fits Motorola, GE, Johnson, RCA Comco and Standard.

For information on the complete line of fine Hy-Gain Amateur products, see your Hy-Gain distributor or write: Hy-Gain Electronics Corporation; 8601 Northeast Highway Six, Lincoln, NE 68507; 402/464-9151; Telex 48-6424 Branch Office and Warehouse: 6100 Sepulveda Blvd., #322, Van Nuys, CA 91401; 213/785-4532, Telex 65-1359. Distributed in Canada by Lectron Radio Sales, Ltd.; 211 Hunter Street West, Peterborough, Ontario.

More Details? CHECK-OFF Page 142
Bird

We are official distributors for Bird Wattmeters & elements now.

C.D. Ham II Rotator

Includes brushed aluminum pin with your call!

New Improved $159.95 net **SAVE $20** $139.95

8 conductor cable for HAM II or CD-44 16c./ft.

Drake

R-4C Receiver $549.00

SPR-4 Solid State Gen. Cov. Receiver $299.00

T-4XC Transmitter $580.00

M-34 Speaker $24.95

AC-4 Power Supply $120.95

TR-22C, 2 meter FM, portable transceiver with NiCad, case $229.95

TR-4C, 10thru 80 M, SSB, AM, CW transceiver $399.95

TR-72, 2 meter FM transceiver, 23 channels, 10 watts, 2 channels supplied, with mobile bracket and mike. 12 VDC $320.00

L-14B Linear Amp w/P.S. & tubes $825.00

MN-4 Antenna Matching Network $110.00

DSR-2 5V thru 30V Digital Synthesized Communications Receiver $2950.00

Order all your other Drake products through

Globalman

EK-108D Electronic Keyer, wired, complete with paddle $74.95

ANTENNAS — TA-36 & other beams in stock, write or call

Antenna Specialists' Amateur and marine antenna stocks in depth

Antenna Specialists HM-4 Rubber Ducky, (2M, 51/2" (Motorola/Johnson, etc.) $7.00

Antenna Specialists HM-5 Rubber Ducky. (w/SL-239 for TR-22C, etc.) $7.00

CushCraft Antennas now in stock.

New Ringo Ranger ARK2, 135 thru 160 MHz $26.50

HyGain 1/4 wave 2M gtd plane $13.00

HyGain BNR6 Deluxe Balun $19.95

HyGain 18 AVT/WB 10-80 meters vertical $97.00

Neutronics G-644A fixed station antenna 6dB gain $52.95

Neutronics BBTL 2 Meter Mobile Antenna with trunk lip mt. 0.4dB gain, 143 thru 149 MHz $28.75

Times Wire & Cable, T-450, RG-8 foam $28.75

IC-230 — Call or write $489.00

Astatic Model T-UG-104 Mike w/stand $48.40

Also Stroh Shure Communications Microphones, B & W 850A or 852 for PiiBand switching inductor for $74.95

B & W 334A Dummy Load-Wattmeter 0-300MHz 50, 0-10, 100, 300, 1000 watts $167.50

B & W 374 Dummy Load-Wattmeter 0-300MHz 50, 0-15, 300, 1500 watts $195.00

Sockets for 8072, 8121, 8122 $36.00

Write EBC Jr. 2 meter FM synthesized XCVR $599.00

MC Jones Mod. 575.5 Micro Match SWR Bridge, N Connectors. For use with 200 µm meter.

value $100.00 $24.95

Heathkit SB610, SB630.

Collins R-388/4/URR Receiver with manual (also known as 388A) used condition $375.00

Just Arrived Collins 75S-1 Receiver with Collins 32S-1 Transmitter and Collins 516FZ Power Supply. Sell as package with manuals — good condition.

Write or call Write for Christmas catalog on decorator telephones — Free, excellent gifts.

Distributors T-Rex & Vibro Keys.

DX Engineering Speech Compressor for Collins 32S xmt $98.50; for Collins KWM2 $98.50; for Drake TRA(4) $128.50.

Tubes for worldwide and domestic, commercial service. Large stocks of tubes and capacitors.

BARRY 512 Broadway NY, NY 10012

DEPT. H-12 212-WA-57000 TELE: 127670

Add shipping excess refunded quoted 07B N.Y.C.

Universal Burglar Alarm — complete system including siren. Standard wire type for all cars. Trucks $31.05

Same as above, except wireless (connected to hot wire) $38.95

Series of beautiful leather cases for meter instrument — sizes varied — Medium (approx. 15 1/2 x 5 1/2 x 4) $7.95

Large (approx. 6 1/2 x 3 1/2 x 3) $9.95

Motorola 5500, Model 19. 0-1000 Watts thru 237.97 MHz. Continuous tuning AM/FM/CW. Excellent condition with complete manual — Lab certified $450.00

National NCX-500 Transceiver (10-80m) with Nat'l matching AC supply — very good condition — Lab tested with manual $275.00

Hallicrafters FPM-300 Transceiver (80-10m) with manual, Mint condition. $395.00

Hallicrafter SX-130 SSB Ham Receiver (10-80m) excellent, very clean condition with manual $159.00

Ten Tec Distributor — Order Through Barry, £30.00

KR5O Keyer $110.00

Triton IV $599.00

Hi Power Matchbox for comm't use — handles up to 10 kW $350.00

Johnson 154-10 or equal. Single section 23 thru 347 pF for KW transmatch. Replaces Millen 16520 $39.00

Johnson 229-202 or equal. 18 MHz variable inductor 10 to 80M for KW transmatch $39.00

Johnson 229-203 or equal. 28 MHz variable inductor 10 to 80M for KW transmatch $39.00

B & W Miniductors — Air-Dux coil stock

CONSTANT VOLTAGE TRANSFORMER. Input: 115/220 50/60Hz. Output: 24 VAC @ 15 amps ± 2% with matching AC capacitor. $19.95

SPECIAL BARRY-VENUS PRICES IN EFFECT NOV. 1 THRU DEC., 31, 1975 — Call or write for LOWER PRICES!

VENUS Finest SSTV, Latest Models, SS-2. SLOW SCAN MONITOR KIT $299.00

SS-2 Slow Scan monitor, factory wired $349.00

CI, FAST SCAN/SLOW SCAN CAMERA & CONVERTER, Factory Wired $469.00

Above prices now reduced!

Weller All-Purpose Soldering Gun, 100/140 watts $13.95

Weller 80 watt Soldering Iron $9.95

Handy Roll of Solder $1.09

We have VIBROPLEX in stock!

Orig. Deluxe Vibroplex Bug $46.70

Vibroplex Vibro Keyer Standard $30.75

Vibroplex Vibro Keyer Deluxe $39.95

NPC POWER SUPPLIES

Model 102 115 VAC Input - 12 VDC 4 amps output $25.00

Model 104R same as above but regulated $49.00

Model 108R — 115 VAC/13.6 VDC 8 watts continuous 12 amps surge. Regulated $72.00

Hammarlund Dual Section 320/320 per section Xmit Cap $29.95

Ameco Model PT Preamp, factory wired $36.95

Regency HR-6 6 mtr FM transcvr. Brand New Reg. $239.95. Now $175.00.

Lots of Meters! Lots of Parts! Lots of other Goodies!

BARRY BUYS UNUSED TUBES AND VACUUM CAPACITORS. Send Your List. Tube Headquarters. Diversified Stock. Heavy Inventory of Elmac tubes, sockets, etc. 3-500Z $63.00 or 3-400Z $50.00.

144 December 1975 More Details? CHECK—OFF Page 142
The Tempo ONE

DIGITAL SSB TRANSCIEVER

The Tempo ONE has been the "best value" in SSB tranceivers for several years. Now Tempo has outdone itself. The brand new Tempo ONE DIGITAL offers all of the proven features of the "ONE" combined with the advantages of a digital readout. Actual transmit and receive frequencies are displayed as fast as the transceiver is tuned. There is no chance of confusion, no chance of operating out of the band. The Tempo ONE DIGITAL, at only $498, is the most inexpensive digital transceiver available. The famous Tempo ONE, without digital readout, is still available at only $399.00 AC/ONE power supply $99.00. DC/1-A power supply $120.00

The Tempo ONE is available at Tempo dealers throughout the U.S. Also available is the Tempo CL-146A, CL-220, DFD/ONE, DFD/K, FMH, RBF-1 and TDC. Please call or write for specifications and prices.

The Tempo T-2000

LINEAR AMPLIFIER

The brand new T-2000 linear is the perfect companion for the Tempo ONE. It is compact, reliable, and priced right. Uses two Eimac 8873 grounded grid triodes cooled through a large heat sink. The T-2000 offers a full 2 KW PEP input for SSB operation and provides amateur band coverage from 80—10 meters. Provides a built-in solid state power supply, built-in antenna relay, a relative RF power indicator, and built-in quality to match much more expensive amplifiers. Completely wired and ready for operation . . . only $795.00

Henry Radio

11240 W. Olympic Blvd., Los Angeles, Calif. 90064
931 N. Euclid, Anaheim, Calif. 92801
Butler, Missouri 64730
213/477-6701
714/772-9200
816/679-3127
EIMAC 8874s were the first choice of Ehrhorn Technological Operations, Inc. for their desk-top Alpha 374 bandpass linear amplifier. It's designed to make it easier than ever before to run maximum legal power on all popular modes—it's capable of continuous operation at a kilowatt average power input for CW, RTTY and SSTV—with plenty of reserve for two kilowatts PEP on SSB.

Besides power, the Alpha 374 permits total "no tune-up" operation with modern broadband transceivers. With conventional exciters, it eliminates time, confusion and damage risk previously associated with amplifier tune-up. "Manual" or "Bandpass"—the choice is yours with the 374.

An amplifier like this obviously requires exceptional output tubes. And EIMAC 8874 high-mu, ceramic-metal triodes fill the bill. Three 8874s with axial air-flow cooling fit neatly in a corner of the amplifier—keeping the 374 size down to about one cubic foot and weight below 55 pounds. Yet, the EIMAC 8874s provide 1200 watts plate dissipation, allowing the 374 to coast along at maximum legal power.

For information about the 8874 or other power grid tubes providing the performance, reliability and design flexibility you need, contact EIMAC division of Varian, 301 Industrial Way, San Carlos, CA 94070. Telephone (415) 592-1221.