this month

- RTTY line-end indicator 22
- tunable audio filter 28
- sstv preamplifier 36
- binaural CW reception 46
- master frequency oscillator 50

high-performance vhf fm receiver
QUALITY & PRICE
CUSHCRAFT ANTENNAS OFFER YOU BOTH

Don't be misled by our prices... they are based on experience, large quantity buying of materials, great engineering and efficient office personnel. We are happy hams trying to hold the line on prices for you. So... why pay more when you can get the best for less!

FM 2 METER ANTENNAS

FM TWIST
Ten elements horizontal polarization for low end coverage and ten elements vertical polarization for FM coverage. For OSCAR buffs we have 144 MHz and 432 MHz models.

POWER PACK
The big signal (22 element array) for 2 meter FM uses two A147-11 yagis with a horizontal mounting boom, coaxial harness and all hardware.

4-6-11 ELEMENT YAGIS
The standard of comparison in VHF-UHF communications, now cut for FM and vertical polarization. There are models covering the 450 MHz, 220 MHz and 147 MHz bands. All are rated at 1000 watts with direct 52 ohm feed and PL-259 connectors.

IN STOCK WITH YOUR LOCAL DISTRIBUTOR

CUSHCRAFT CORPORATION

621 HAYWARD ST., MANCHESTER, N.H. 03103
Practically Perfect

MAXIMUM LEGAL POWER HF LINEAR AMPLIFIER

- POWERFUL — Handles 2+ kilowatts PEP and 1 kilowatt average d-c input continuously — with ease.
- RUGGED — Traditional ALPHA quality . . . husky components, 8874 ceramic tubes, highly efficient cooling.
- FULL-COVERAGE 10 through 160 meters (with low-cost 160M option).
- CONVENIENT — Self-contained and lightweight, UPS-shippable.
- GUARANTEED for a full year like all ALPHA's.
- SURPRISINGLY LOW IN COST — ONLY $795 direct from E.T.O.

ALPHA 76 - - - Uncompromised power and quality at minimum cost.

THE PERFECT ANSWER TO PRACTICAL HIGH POWER

BE READY FOR PEAK WINTER CONDITIONS — Order now for earliest delivery. Call or write E.T.O. for full specifications and ordering information on the value-packed powerhouse ALPHA 76, the NO-TUNE-UP ALPHA 374, the VHF ALPHA V74, and the ULTIMATE LINEAR, ALPHA 77D.
The most versatile transceivers...

- Solid state SSB/CW
- 200 watts P.E.P. input
- No transmitter tuning
- The ultimate in sensitivity selectivity and overload immunity

ATLAS 210x/215x
PLUS EXTENDED FREQUENCY COVERAGE FOR MARS OPERATION WHEN USED WITH 10X CRYSTAL OSCILLATOR

<table>
<thead>
<tr>
<th>BAND</th>
<th>VFO RANGE</th>
<th>CRYSTAL CONTROLLED RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>160M</td>
<td>1,800–2,100 KHz</td>
<td>1,700–3,000 KHz</td>
</tr>
<tr>
<td>160M Model 215x only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80M</td>
<td>3,500–4,000</td>
<td>3,000–5,200</td>
</tr>
<tr>
<td>40M</td>
<td>7,000–7,500</td>
<td>5,800–10,000</td>
</tr>
<tr>
<td>20M</td>
<td>14,000–14,500</td>
<td>13,900–14,900</td>
</tr>
<tr>
<td>15M</td>
<td>21,000–21,500</td>
<td>20,600–21,600</td>
</tr>
<tr>
<td>10M Model 210x only</td>
<td>28,400–29,400 Adjustable for any</td>
<td>27,500–30,000</td>
</tr>
<tr>
<td></td>
<td>1,000 KHz segment</td>
<td></td>
</tr>
</tbody>
</table>

210x/215x .. $649.
AC Console 110/220V $139.
Portable AC Supply, 110/22V $95.
Plug-in Mobile Kit $44.
10x Osc. Less Crystals $55.

AMERICAN MADE AND GUARANTEED BY:
ATLAS RADIO INC.
417 Via Del Monte Oceanside, CA 92054
Phone (714) 423-1983

For complete details see your Atlas dealer, drop us a card and we'll mail you a brochure with dealer list.

"SEE YOU AT SAROC '76!"
November, 1975
volume 8, number 11

staff
James R. Fisk, W1DTY
editor-in-chief
Patricia A. Hawes, WN1QJN
assistant editor
J. Jay O'Brien, W6GO
fm editor
James A. Harvey, WA6IAK
James W. Hebert, WABOBG
Joseph J. Schroeder, W9JUV
Alfred Worison, W6NF
associate editors
Wayne T. Pierce, K3SUK
cover
T.H. Tenney, Jr., W1NLB
publisher
Fred O. Moller, Jr., WN1USO
advertising manager
Cynthia M. Schlosser
assistant advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is
published monthly by
Communications Technology, Inc
Greenville, New Hampshire 03048

subscription rates
U.S. and Canada: one year, $8.00,
two years, $13.00; three years, $18.00
Worldwide: one year, $10.00,
two years, $15.00; three years, $24.00
Foreign subscription agents
Canada
Ham Radio Canada
Box 114, Goderich
Ontario, Canada, N7A 3Y5
Europe
Ham Radio Europe
Box 444
194 04 Upplands Vasby, Sweden
France
Ham Radio France
20 bis, Avenue des Clarions
89000 Auxerre, France
United Kingdom
Ham Radio UK
Post Office Box 64, Harrow
Middlesex HA3 6HS, England
African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1975 by
Communications Technology, Inc
Title registered at U.S. Patent Office
Printed by Wellesley Press, Inc
Framingham, Massachusetts 01701, USA

Microfilm copies of current and
back issues are available from
University Microfilms
Ann Arbor, Michigan 48103

Second-class postage
paid at Greenville, N. H. 03048
and at additional mailing offices

4 a second look 68 ham notebook
126 advertisers index 78 new products
72 comments 126 reader service
115 flea market 6 stop press

contents

8 high-performance vhf fm receiver
Gerald F. Vogt, WA2GCF

18 SSB with TTL ICs
Peter J. Hampton, G4ADJ

22 RTTY line-end indicator
Robert M. Mendelson, W2OKO

28 tunable audio filter
for CW communications
Kenneth E. Holladay, K6HCP

36 ssy preamplifier
Dr. Werner Berthold, DK1BF

38 crystal mixer
William H. King, W2LTJ

46 binaural CW reception
Donald E. Hildreth, W6NRW

50 varactor-controlled variable
frequency oscillator
M. A. Chapman, K6SDX

56 soldering-iron holder
Eugene L. Klein, W2FBW

60 dipole antennas
Albert F. Lee, KH6HDM

66 Collins R390A modifications
Alexander M. MacLean, WA2SUT

72 comments 126 reader service
115 flea market 6 stop press
68 ham notebook 78 new products
126 advertisers index
Although MOS integrated circuits are finding widespread use in microprocessors, memories and other LSI (large-scale integration) applications, it appears that a relatively new form of bipolar logic, called I^2L (for integrated injection logic), can do everything its MOS rivals do — and probably better and cheaper. Although MOS manufacturers continue to squeeze more and more performance out of n-channel MOS technology, some researchers believe that the high performance-low cost characteristic of I^2L will end the dominance of MOS circuits in new generations of equipment.

Another characteristic of I^2L which intrigues designers is its versatility: although it doesn’t directly lend itself to analog functions, it is compatible with bipolar manufacturing techniques used for linear devices so linear and I^2L can be combined on the same chip. Some digital-linear chips are already being developed, as are completely digital chips. In fact, according to one report, I^2L is now being designed into more circuit types by IC makers than are all MOS and other bipolar techniques combined!

Originally formulated about four years ago at IBM’s laboratories in Germany, and developed by Philips in the Netherlands, I^2L achieves MOS-level circuit densities by using planar npn transistors upside down (the basic logic element is an inverter). A direct result is the automatic isolation of all collectors, while the emitters are common. Lateral pnp transistors inject current directly into the base of a multi-emitter npn transistor operating in the inverse mode (see fig. 1). The result is a very simple gate structure which dissipates little power and has propagation delays on the order of 10 nanoseconds. This performance is comparable to that of standard TTL gates. By using integrated Schottky diode clamps speed can be pushed down to about 1 ns, making I^2L as fast as low-power Schottky TTL — Schottky-clamped I^2L, however, consumes 1/100th the power and is ten times smaller (circuit densities of 85 gates per square millimeter are routine).

Since I^2L units are powered through lateral pnp transistors, the circuitry is totally independent of resistors and can be operated over a wide speed range by simply varying the total current into the injector. Thus, the same I^2L device can run at slow speed in a watch, for example, dissipating microwatts, or at high speed in a microprocessor, dissipating milliwatts.

Many of the large semiconductor firms, including Fairchild, Motorola and Texas Instruments, are working on large-scale integration of I^2L and some devices are already on the market including TI’s SBP0400 4-bit I^2L microprocessor. A 4096-bit I^2L random access memory may be available by the end of the year, and a 16-bit microprocessor with cycle times of less than 50 ns is expected sometime next year. No doubt MOS and TTL will be with us for a long time to come, but I^2L promises complex logic systems that could not be built economically with the older technology.

Jim Fisk, W1DTY
editor-in-chief
You Win Again!

You've been bugging us to modify the IC-22A for use with the DV-21, and we did it! We're giving you what you've been wanting in a new field modification package simple enough for anyone experienced in kit building or home brewing. You can now use our unique scanning digital synthesizer to complete your ICOM two meter station.

The DV-21 is the LED readout synthesizer that operates in 5KHz steps over the 146-148MHz FM section of the two meter band, and even scans frequencies being used. Completely separate selection of the transmit or receive is as simple as touching the keys. When you transmit, the bright, easy to read LED's display your TX frequency. Release the mic switch, and the receive frequency is displayed. There are even two programable memories for your favorite simplex frequencies. You won't believe the features and versatility the DV-21 will add to your station.

We'll send you everything you need to make your modification: wire, coax cable, an extension/adapter cable with seven to nine pin capacity, and the active components. If you have neither the time nor the inclination to make your own connections, we will modify your radio for you at a nominal fee of $30.00 with prepaid return.

To get your mod kit send $10.00 to ICOM EAST, Inc. or ICOM WEST, Inc., and you will receive yours by return mail, prepaid.
NEW CHIEF OF FCC'S AMATEUR AND CITIZENS DIVISION is John Johnston, K3BSNS. The announcement was made during the FCC Forum at the ARRL National Convention in Reston, Virginia by FCC Safety and Special Services Bureau Chief, Charles Higginsbotham, WJCAH. Charlie said the choice had been made official by the Commissioners only a few days earlier.

Johnston's Selection was a natural and will be widely welcomed by the Amateur fraternity. John had already established a fine track record with the Amateur and Citizens when he served there as Chief of the Rules and Legal Branch. He left Amateur and Citizens just a year ago to become Deputy Chief of the Spectrum Management Task Force. He originally joined the FCC in 1972.

"DE-REGULATION" will be the key word when Johnston picks up the reins at Amateur and Citizens. John plans to take a very hard look at the present rules to see where they can be relaxed to the benefit of both Amateur Radio and the Commission.

WARC 79 Working Group on Amateur Radio had its second full group meeting at Reston, with Prose Walker still in the Chairman's seat. Much of the all-day session was devoted to reports of the various task force chairmen, and it was obvious to the more than 30 attendees that the considerable effort that had already been invested was only a small part of the total job.

With Respect To Frequencies, the Working Group position is to strive for more spectrum in the HF bands both by making the bands we presently share with other services (and/or do not have at all in other parts of the world) exclusive worldwide Amateur bands, and by adding new Amateur bands. Proposed new HF bands would be 10.1-10.6 MHz, 18.1-18.6 MHz, and 24-24.5 MHz. It was also proposed that 40 meters be extended to 7.5 MHz, 20 meters to 14.5 MHz, and 15 meters to 21.5 MHz. At the low end of the spectrum a totally new band in the 150-200 kHz region will also be proposed. There is reason for hope that all or at least a good part of this expansion could be achieved, since some heavy users of the HF bands are moving to satellites; however, other services will be going for more HF frequencies, too. In the VHF/UHF spectrum, competition is tougher and the picture less clear — we'll have problems there.

INVERTED SPLITS for additional two-meter repeaters in the northern California area were selected as standard at "Sacramento '75." Northern California thus follows the lead of southern California, while the eastern seaboard goes the opposite way.

RIGHT-SIDE UP SPLITS were the choice of the Mid-Atlantic Repeater council at their meeting. Reasons were a wish to remain compatible with other East Coast areas, and encourage increased use of narrow-band gear.

AMSAT'S EDUCATIONAL BULLETINS via OSCAR 6 resumed in September and will continue throughout the school year on mornings (U.S.) of even numbered days. Bulletin stations will transmit to be heard about 29.5 MHz on appropriate morning orbits as indicated by an "E" following the orbit number in the predictions.

Orbital Predictions from both HR Report and W6PAJ's booklet are both more than adequately accurate despite on-the-air comments to the contrary. Current HR Report sheet is within a few seconds, while W6PAJ's (prepared much earlier in the year) is accurate to within about a minute.

MULTI-2000, the multi-mode vhf rig which has caused interference in the aircraft band, is an offender primarily in its original version as imported by ITC, reports Mike Staal of KLM. The prime problem was with a spur ±16.9 MHz from the signal frequency and Mike reports that this has been corrected in the later versions which bear the KLM nameplate. All KLM Multi-2000s are being checked out with a spectrum analyzer to confirm that they meet published spurious specs.

All Early Multi-2000s should be checked out with proper instrumentation. Mike has some helpful suggestions for owners of the earlier radios — call him at KLM, (408)779-7363.

WORKING ALL STATES DURING 1976 will be rewarded by a very special Bicentennial WAS certificate from the ARRL. Only one award, for QSOs on any mode, any band — will be offered.
With the HAL RVD-1005, what you see is what you get.

And you get more of what you expect from noiseless, trouble-free all solid-state TTY reception. The RVD-1005 converts the output of any TU into a clear, easy-to-read RTTY readout. The signal can be fed to a TV monitor or, with slight modification, any standard TV receiver (just imagine a 23-inch teleprinter!). It's the beginning of enjoyable TTY communications and the end of electromechanical devices with all of their maintenance headaches. The display above points out the many reasons why the RVD-1005 makes all other TTY systems seem obsolete—and it's just part of the HAL lineup of quality, state-of-the-art RTTY components for the serious amateur.

The HAL DKB-2010 dual mode keyboard is another example. It allows you to transmit TTY or Morse—TTY at all standard data rates, and CW between 8 and 60 WPM. You also get complete alphanumeric and punctuation keys, plus 10 other function keys, a "DE—call letters" key and a "QUICK BROWN FOX" diagnostic key. In both modes you have a three character buffer for bursting ahead (larger buffers optional); and in the CW mode you can adjust the dot-to-space ratio (weight) to your liking.

When we say what you see is what you get, you can count on getting all that and more, including quality construction throughout. So if you're into RTTY, join the ranks of amateurs the world over who are enjoying this hobby at its best—with professional gear at amateur prices from HAL—the leader in amateur RTTY equipment. Send today for the HAL products you want!

*RVD-2110 9-inch Monitor/TV shown is optional

HAL Communications Corp.
Box 365, Urbana, Illinois 61801
Telephone: (217) 367-7373

Enclosed is $____ (RVD-1005 Video Unit) $____ (RVD-2110 Monitor/TV) $____ (DKB-2010 TTY/CW Keyboard)
☐ Charge Master Charge #
☐ Charge BankAmericard #
☐ M/C Interbank # Card exp. date
☐ Please send me the HAL catalog

Name ____________________________ Address ____________________________

City/State/Zip ___

All prices include USA shipping. Add $10 each for air shipment. Illinois residents add 5% sales tax.

More Details? CHECK-OFF Page 126

november 1975
Are you looking for a compact, low-cost receiver to use with your new homebrew fm transmitter? Are you interested in trying fm without investing a lot of money right away for a transceiver? Do you need an extra fm receiver around the shack to monitor your local repeater or calling channel while you're operating on another frequency? This article describes a second-generation, solid-state vhf fm receiver which might be the answer. It is an improved version of an earlier receiver designed a few years ago and uses two circuit boards: a vhf converter board and an i-f/audio board. The basic fm communications receiver may be used for 28, 50, 144 or 220 MHz (or adjacent commercial bands).

This new design includes the best features of its predecessor as well as refinements which improve selectivity and sensitivity, make construction and testing easier, and provide more flexibility. Built-in test points facilitate alignment and allow external signal strength and carrier frequency meters to be used.
Stable, cascode circuits are easily tuned and require no neutralization. The sensitivity of the receiver is about 0.2 to 0.4 μV for 20 dB quieting. Adjacent channel selectivity is about 90 dB beyond the desired ±7.5 kHz passband. Image rejection is 40 dB. Operating power is 13.6 Vdc at 60 to 200 mA, depending on audio level.

Construction and alignment details are organized in three sections. The i-f/audio board is described first since it is straightforward and does not vary with the input frequency. Then the vhf converter board is described, along with variations for 10, 6, 2, and 1¼ meters. Finally, to demonstrate ideas for various receiver packages which can be based on the two basic boards, a short discussion of options is presented.

i-f and audio

The i-f/audio circuit (fig. 1) includes a sensitive and selective i-f amplifier, narrowband fm detector, audio amplifier and squelch circuitry. By including the proper external circuitry it may be used to build a single-channel vhf or uhf receiver, a multi-channel receiver, or a scanning receiver. The 10.7 MHz input to the board has a three-pole L-C filter operating into a low-noise grounded-base preamplifier, Q1. The high gain cascode mixer (Q2 and Q3) translates the input to a 455 kHz i-f with a selective ±7.5 kHz ceramic ladder filter providing 90 dB of adjacent channel selectivity and 40 dB image rejection. The 455 kHz i-f amplifier and limiter chain consists of five low-noise, high-gain transistor stages (Q5-Q9). The previous design used an IC — this discrete design provides improved operation, easier maintenance, and better metering.

The fm discriminator drives a special communications service 2-watt audio amplifier IC, an SGS ATE TBA-820, which incorporates lowpass filtering and de-emphasis to minimize hiss on weak signals. A sensitive squelch circuit (Q10-Q11) detects any a-m noise in the 7 kHz region to determine if a carrier is present in the limiter circuit. A flutter-proof circuit is used to prevent drop out of weak mobile stations. The audio circuit is set up so the user can change the volume control range or high-frequency response, if desired, to suit his own operating habits.

construction

Most pertinent construction details for the i-f/audio board are shown on the component location diagram (fig. 2). Following are details of coil assembly and other suggestions to facilitate proper assembly. The coils are wound on 10-32 (about 5mm diameter) plastic forms with carbonyl TH slugs. All are wound in a clockwise direction, as viewed from the top, using number 26 (0.4mm) solderable wire. All turns are close-spaced as shown in fig. 3. This drawing is exaggerated for clarity, but all leads should be pulled tight. No fancy bends are required, and no coil dope is necessary. Holes in the base of the form are numbered as indicated for
reference when winding the coils. The coils can be prewound and then installed on the board with the keyways as shown. Primaries should be wound first, followed by the secondaries; then the capacitors, if any, are inserted through remaining holes in the base of the form.

Do not be overly concerned with coil winding. Neatness is not a requirement; the turns can overlap, and the windings don't have to be uniform. Secondary windings can be wound in a second layer over the primary or by continuing the first layer next to the primary. The only critical requirement is that primary and secondary of L1 and L3 must be correctly phased. (When the primary is finished at the tap, the secondary should start at the tap and be wound in the same [clockwise] direction.)

When the coil leads are inserted through the board, they should be started into the holes in the board while the coil form is spaced slightly away from the board; the form is then seated into place. Do not attempt to insert capacitor leads with the form tight against the board. After the coils are installed, application of heat from a very hot soldering iron for 10 to 15 seconds will automatically strip the wire. If you prefer, the leads may be stripped in the conventional way before installation. Do not solder-strip the leads unless the coil is mounted on the board as the leads will migrate into the plastic form.

Be careful, when installing the ceramic filter and the discriminator transformer, to seat them slowly by rocking to avoid lead stress. Resistor R35 is installed vertically with the top lead extending about 1/4 inch (6.5mm) to form a test point. Connections to the outside world are made by soldering number-22 (0.6mm) leads to pads on the board. The output circuit is designed for an 8-ohm speaker. However,
other speakers may be used with some effect on frequency response and audio level.

alignment

With a 455-kHz signal generator connected through a dc blocking capacitor to the base of transistor Q5 and a vtvm connected to the top of the volume control (point E8), adjust transformer T1 for zero volt dc. Noise will be heard with no signal input, and the squelch should operate as expected. About 2 to 10 μV at 455 kHz should provide 20 dB quieting. Now set the signal generator to 10.7 MHz and couple it to the input, J1. Alternately peak L1 through L4 for maximum negative voltage at TP1 (top of R35). Image response at 9.79 MHz should be down about 40 dB, and the sensitivity at 10.7 MHz should be 2 to 10 μV.

If you wish to use meters to indicate signal strength or carrier frequency, this may be done. A zero-center 50 μA meter may be connected in series with the top of the 10k volume control (connect a small electrolytic capacitor across the meter). The dc current through the volume control will operate the meter, with positive swings indicating high-frequency error and vice versa. A sensitive voltometer circuit can be built around a Darlington pair or an op amp to drive an S-meter from the limiter test point at R35. Do not load the base of Q7 by changing the value of R35 or by making connections directly to the base of the transistor. The voltage swings from +0.6 volt to about -3 volts, so some bias is required in the meter amplifier to avoid swinging through zero on the meter.

Since some operators may prefer different frequency response or volume control range, the following information is provided as a guide. The value of R32 may be reduced as low as 47 or 51 ohms to increase audio gain. A corresponding increase in the high frequency response also results. The value of C27 may be changed to vary the audio frequency response. A 0.1 or 0.05 μF capacitor here will provide bass response or more de-emphasis; a 0.001 μF capacitor at C27 will increase high-frequency response.

VHF converter

The vhf converter consists of a sensitive cascode rf amplifier, low-noise fet mixer, an oscillator, and an injection multiplier/buffer chain. Two schematic
CASCODE RF AMPLIFIER

fig. 4. Schematic of vhf converter designed for use on two meters (values shown are for 145 to 155 MHz and 220 MHz). Inductors and transformers are wound with no. 26 (0.4mm) wire. Tuned-circuit values may be changed as required for operation in adjacent commercial bands.

145 MHz

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10 pF</td>
</tr>
<tr>
<td>C2</td>
<td>1.0 pF</td>
</tr>
<tr>
<td>C3</td>
<td>15 pF</td>
</tr>
<tr>
<td>C5</td>
<td>1000 pF</td>
</tr>
<tr>
<td>C7</td>
<td>150 pF</td>
</tr>
<tr>
<td>C8</td>
<td>5 pF</td>
</tr>
<tr>
<td>C9</td>
<td>1.0 pF</td>
</tr>
<tr>
<td>C10</td>
<td>15 pF</td>
</tr>
<tr>
<td>C13</td>
<td>270 pF</td>
</tr>
<tr>
<td>C19</td>
<td>150 pF</td>
</tr>
<tr>
<td>C21</td>
<td>15 pF</td>
</tr>
<tr>
<td>C23</td>
<td>270 pF</td>
</tr>
<tr>
<td>C24</td>
<td>150 pF</td>
</tr>
<tr>
<td>C28</td>
<td>10 pF</td>
</tr>
<tr>
<td>L1</td>
<td>2-1/6</td>
</tr>
<tr>
<td>L4</td>
<td>4-5/6</td>
</tr>
<tr>
<td>L5</td>
<td>2-1/6</td>
</tr>
<tr>
<td>L8</td>
<td>14-1/3</td>
</tr>
<tr>
<td>L10</td>
<td>2-5/6</td>
</tr>
<tr>
<td>L12</td>
<td>4-1/6</td>
</tr>
<tr>
<td>L13</td>
<td>2-1/6</td>
</tr>
<tr>
<td>T1</td>
<td>Primary, 1-1/6 turns; secondary, 3-1/6 turns</td>
</tr>
<tr>
<td>T2</td>
<td>Primary, 14-1/6 turns; secondary, 2-5/6 turns</td>
</tr>
</tbody>
</table>

220 MHz

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.9 pF</td>
</tr>
<tr>
<td>C2</td>
<td>0.68 pF</td>
</tr>
<tr>
<td>C3</td>
<td>5 pF</td>
</tr>
<tr>
<td>C5</td>
<td>82 pF</td>
</tr>
<tr>
<td>C7</td>
<td>82 pF</td>
</tr>
<tr>
<td>C8</td>
<td>3.9 pF</td>
</tr>
<tr>
<td>C9</td>
<td>0.68 pF</td>
</tr>
<tr>
<td>C10</td>
<td>5 pF</td>
</tr>
<tr>
<td>C13</td>
<td>82 pF</td>
</tr>
<tr>
<td>C19</td>
<td>600 pF</td>
</tr>
<tr>
<td>C21</td>
<td>20 pF</td>
</tr>
<tr>
<td>C23</td>
<td>150 pF</td>
</tr>
<tr>
<td>C24</td>
<td>270 pF</td>
</tr>
<tr>
<td>C28</td>
<td>20 pF</td>
</tr>
<tr>
<td>L1</td>
<td>2-1/6</td>
</tr>
<tr>
<td>L4</td>
<td>3-1/6</td>
</tr>
<tr>
<td>L5</td>
<td>2-1/6</td>
</tr>
<tr>
<td>L8</td>
<td>14-1/3</td>
</tr>
<tr>
<td>L10</td>
<td>3-5/6</td>
</tr>
<tr>
<td>L12</td>
<td>2-1/6</td>
</tr>
<tr>
<td>L13</td>
<td>2-1/6</td>
</tr>
<tr>
<td>T1</td>
<td>Primary, 1-1/6 turns; secondary, 3-1/6 turns</td>
</tr>
<tr>
<td>T2</td>
<td>Primary, 14-1/6 turns; secondary, 2-5/6 turns</td>
</tr>
</tbody>
</table>

diagrams (fig. 4 and 5) give details for various bands, including tuned circuit variations, bypass values, and local-oscillator chain.

The i-f output normally is 10.7 MHz for use with the i-f/audio board. However, the output transformer can be modified to cover other intermediate frequencies, such as 14, 28, or 50 MHz, if you wish to use the converter with a tunable receiver as an i-f.

The converter board includes one oscillator. Multichannel operation may be accomplished by using a multichannel adapter in place of the built-in oscillator. The converter may be used for scanner operation by switching oscillator frequencies in the multichannel adapter.

The crystal in the converter is a third overtone, 0.002% unit cut for series resonance less 1000 Hz (many two-meter transceiver crystals may be used).
The required crystal frequency is given by

\[\text{channel frequency} \times \frac{\text{i-f}}{X} \]

where \(X \) is the frequency multiplier. For channel frequencies of 30 to 60 MHz, \(X \) be trimmed to the desired operating frequency.

Construction

Most pertinent construction details are shown on the component location diagram, fig. 6. Coil forms are the same as used in the i-f/audio board, except that carbonyl J slugs are used in the coil forms. Winding information for the i-f coil is for 10.7 MHz. For an i-f near 14
MHz, the primary winding should be reduced to about 10-1/6 turns. For 28 MHz, the primary should be 7-1/6 turns, and the secondary should be 1-5/6 turns. For 50 MHz, capacitor C11 should be changed to 15 pF, and the turns should be as shown on the schematic.

As a matter of interest, the unconventional long leads on a few of the components and the +13 volt connection to the center of the board permit maximum ground area in the board layout. In effect, you get the ground plane performance of a double-sided circuit board without the problems encountered in working with two foils.

When building the converter be sure to observe polarity on the electrolytic capacitor, and be sure to solder the shield can lugs to the board. If coil pruning becomes necessary, the shield cans may be unsoldered. All components should be seated close to the board to provide short leads. If a multi-channel adapter is to be used, the oscillator on the converter board can be included for test purposes and later disabled when the adapter is connected.

Phono connectors are used to allow easy connection to the board with coaxial cable. This may be done at a tuned circuit because the coax is terminated at such a point. However, any connectors used in mid-line should be constant-impedance types for low loss, and phono and type-uhf connectors may put a bump in the line in such applications. Likewise, the cable should be chosen carefully for low signal levels. RG-8/U cable (or better) should be used unless you can accept the higher loss of the smaller cable types. If a separate transmitter is used with the converter, a good coax relay should be used to minimize signal loss and to prevent coupling of large amounts of rf into the front end of the converter.

Converter alignment

The most difficult part of the alignment procedure is obtaining a stable test signal. Even my HP-608 signal generator takes several hours to settle down enough to stay within a 5 kHz passband at vhf. An alternative is a crystal-controlled weak-signal source such as those which have been described in the past. An on-the-air test, if it can be arranged, is another possibility.

Start with all adjustments at about half range. Tune in a signal, and peak all adjustments. If the coils do not peak within the range of the slug, an adjust-

fig. 6. Component layout for the vhf converters. Same circuit board is used for each of the converters shown in figs. 4, 5 and 6. Circuit board is 2½" (6.5cm) wide and 4½" (11.5cm) long.
fig. 7. Some ideas for complete vhf receiver systems using the vhf converter and i-f/audio board described in this article. Kits for each of the circuits shown here are available from Hamtronics.*
ment in the number of primary turns may be necessary. Be careful, however, that you don't tune a multiplier coil to the wrong harmonic. Then, adjust the oscillator trimmer coil (L8) to net the converter to the channel frequency by monitoring the receiver discriminator or S-meter. Note that the crystal may be pulled enough for adjustment over a range of about 4 kHz at vhf. A vtm connected to test point TP1 may be used for peaking adjustments when aligning a converter which will be used with the previously described i-flaudio board.

The final alignment should be done by peaking all rf, i-f and multiplier or injection coils with a weak received signal. Antenna reactance may require that the input coil be repeaked when the antenna is connected. Because of interactions between pairs of coils, such coils should be peaked alternately until you find the combination which provides the test sensitivity. This is especially true of L12 and L13, which are somewhat overcoupled. There should not be any tendency to oscillate when the coils are peaked.

When used with the i-flaudio board, the converter should provide sensitivity of about 0.2 to 0.4 μV for 20 dB quieting. Meter action at TP1 on the i-f/audio board should start with as little as 20 μV of signal into the converter.

If a multichannel oscillator is used in place of the converter's local oscillator, R5 and Q4 should be removed from the converter. The following parts also may be removed if desired: R1, R2, R3, R4, C14, C15, C16, Y1, L8 and shield.

receiver system ideas

After building the basic receiver you may wish to add accessories to extend its usefulness. Fig. 7 illustrates a variety of receiver configurations using the two boards described in this article as well as circuit boards featured in earlier articles.

The arrangement in fig. 7A is the basic setup described in this article. The layout in fig. 7B uses the uhf converter described in a previous article for coverage of the 450-MHz amateur band. For weak signal uhf reception or long-distance communications, a uhf preamplifier may be included as shown in fig. 7C. An alternate layout that provides good uhf performance is shown in fig. 7D.3,4 For uhf monitor service, the simple circuit of fig. 7E is recommended.

Fig. 7F shows how a multi-channel adapter may be added to the circuit for multi-channel operation. A multi-channel fm receiver with a scanner adapter5 is shown in fig. 7H.

*The following kits are being made available in conjunction with this article. Be sure to specify exactly what you want, including frequency band.

<table>
<thead>
<tr>
<th>Kit Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-f/Audio Board kit</td>
<td>$40.00</td>
</tr>
<tr>
<td>Vhf Converter kit</td>
<td>$25.00</td>
</tr>
<tr>
<td>Receiver kit (both of above)</td>
<td>$64.95</td>
</tr>
<tr>
<td>Vhf Preamplifier kit</td>
<td>$6.00</td>
</tr>
<tr>
<td>Six-Channel Adapter kit</td>
<td>$12.95</td>
</tr>
<tr>
<td>Scanner Adapter kit</td>
<td>$10.00</td>
</tr>
<tr>
<td>Uhf Converter kit</td>
<td>$20.00</td>
</tr>
<tr>
<td>Uhf Preamplifier kit</td>
<td>$15.00</td>
</tr>
</tbody>
</table>

When ordering please add shipping; New York residents please add sales tax. Quantity prices are available to clubs and to individuals who are interested in distribution at hamfests, etc. A complete catalog is available in exchange for a self-addressed, stamped envelope. Hamtronics, Inc., 182 Belmont Road, Rochester, New York 14612.

references

Ham Radio

November 1975
using TTL ICs in single-sideband equipment

Simple TTL IC ssb circuits include a complete transceiver using only three SN7400 NAND gates

A while ago I was toying with TTL crystal oscillators for use as clocks in digital equipment. The performance of standard multivibrator configurations (see fig. 1) was quite surprising. Just about every crystal I had performed equally well in the circuit. Fundamentals from 100 kHz to over 20 MHz all gave outputs of at least 2 volts peak-to-peak. Perhaps, I thought, these circuits could be used successfully as local oscillators in high-frequency ssb equipment.

Since the output of the circuit of fig. 1 is a square wave, lower second harmonic content can be expected as compared to most conventional oscillators. This can be a very good thing when trying to filter out the spurious responses so often troublesome in homebrew ssb gear.

Having found a cheap, sure-fire local oscillator, a TTL-compatible mixer was required to provide the appropriate double-sideband signal. For this purpose nothing more complicated than a single NAND gate was found to be necessary. Two square waves, \(f_1 \) and \(f_2 \), when applied to the separate inputs of a NAND gate, yield outputs of \(f_1 + f_2 \) and \(f_1 - f_2 \). Hence the gate is performing the function of a product modulator. If, however, one input to the gate is biased at the point (A) on the transfer characteristic shown in fig. 2, then a small signal applied to that input will be amplified linearly (see reference 2), and

Peter J. Hampton, G4ADJ

november 1975
also switched by the square-wave signal at the other input. Thus, if the switching signal is an rf carrier and the other a speech waveform, then the gate becomes a low level amplitude modulator. A carbon or crystal microphone used as the audio source will usually provide enough output to give a 100 per cent modulated signal.

Reference 2 states that a TTL gate can give large amounts of gain at frequencies as high as 10 MHz when operating as a linear amplifier. Thus it was decided to see if the device could be used as a simple and inexpensive rf amplifier for small signals. The circuit of fig. 4 was lashed up, and, to my surprise, it performed very well indeed when correctly biased. A gain of around 15 dB was obtained at 8 MHz and there seemed to be no major instability problems. However, it is recommended that double-sided PC board be used with one side acting as a ground plane. Also 0.1 μF and 100 μF capacitors should be wired across the supply pins of each IC to provide adequate decoupling of the +5 volt bus.

ssb exciter using TTL gates

In the junkbox at home I found a large number of 10XJ crystals of surplus origin with fundamentals of 3.446 and 3.449 MHz. Not being able to think of anything else to do with them, I attempted to make up something of an ssb filter for use in an exciter built around circuits similar to those outlined above. The unit was designed to generate and detect upper-sideband signals at 3.447 MHz. Fig. 5 shows the circuit of the complete prime-mover.

The oscillator section is straight forward enough and uses a 3.446 MHz crystal for upper sideband and 3.449 MHz for CW. Gates U1C and U1D are buffers for transmit and receive, respectively. These are followed by controlled gates U3B and U2A which route the carrier to the appropriate mixer while shutting the unused one off. PTT (or full break-in CW) is provided by U3A and U2B.

Gates U2C and U3C are the modulator and detector, each giving an output of 2 volts p-p for inputs of 100 mV or so. Following the modulator is a filter/amplifier arrangement comprised of crystals X2, X3, X4 and U2D which is used to supply a certain amount of rf clipping before the main filter. U3D, the remaining gate, is used as an rf amplifier preceding the product detector U3C.
Both U3D and U2D are controlled by the PTT voltage applied to their unused inputs.

the filter

The pièce de résistance of most ssb rigs is their filter. Well, this one has quite a job to do since it must remove all the carrier from an a-m signal (the modulator is unbalanced) and also have a reasonable passband characteristic for good audio reproduction. The simple ladder arrangement shown in fig. 6 seemed to work pretty well, but with an insertion loss of around 10 to 12 dB.

All the series elements of the filter use 3.449 MHz crystals with additional capacitance shunted across them to give series resonant frequencies spread throughout the range from 3.4465 to 3.4485 MHz. The remaining shunt crystals are all resonant at 3.4460 MHz, the carrier frequency, and effectively shunt it to ground.

In the original a total of twelve 10XJ crystals were used, giving about 45 dB of carrier and 35 dB of lower-sideband suppression. There is plenty of room for improvements in the filter design, however!

summary

In conclusion, we have here the basis of a very inexpensive unit which can generate and detect ssb signals at good quality with a minimum of external components. Transmit output power is
on the order of 10 mW PEP and receiver sensitivity is about 50 mV for noise-free audio (i.e., an S9 input signal). It is intended that the rest of the receiver gain be supplied by the preselector stages in the frequency translator.

is a good idea to use an oscilloscope for setting the bias points as there is a considerable variation in gate characteristics between samples. This is why potentiometers are shown in all the previous circuits instead of fixed resistors.

As far as I can see, the standard TTL gate is probably the most useful active device available to the home constructor on a cost/performance basis. It seems that it can be used in almost any application up to 20 MHz or so with a minimum of external components and little difficulty in setting up. Nevertheless, it

Kenwood TS-520 CW filter option modification

Owners of the Kenwood TS-520 transceiver who have the CW filter installed are confronted with the problem that all CW reception must be with the narrow filter when transmitting in this mode. Often it’s desirable and more pleasant to receive CW with a wider bandpass as on the upper and lower sideband modes. A very simple modification consisting of the installation of an auxiliary switch permits the option of the wideband or CW narrowband filter. Fortunately the TS-520 mode control employs diode switching when inserting the CW filter. Thus lead length and capacitance are no problem, and the CW filter control leads can be extended and switched remotely or externally.

The TS-520 has a flat plate on the chassis underside, which is part of the dial assembly and which is an ideal location for such a switch. Adequate clearance is available to install a miniature spdt switch by carefully drilling a hole in this plate for mounting the switch and a clearance hole in the bottom of the outer cover case to permit the switch handle to protrude without being obvious or defacing any panel space. A small three-wire cable connects the switch to the filter control circuit by attaching the center pole of the switch to the original brown common wire and connecting one switch pole to the CW terminal on the TS-520 i-f circuit board and the other switch pole to the ssb terminal. Thus you now have the option of a wideband CW position (ssb filter) or the 500-Hz CW filter by the simple flick of this switch.

references

Ham Radio
Can you type a smooth 60 words per minute? Would you like to have your RTTY transmissions sound like commercial press sent from a tape? It really is quite easy to do provided you are equipped with a tape perforator and transmitter-distributor.

Unfortunately, many amateurs have the equipment but don't like to punch tape while receiving the other fellow's message. This is especially true when there is only one keyboard and printer in the station. You often hear, "How can I punch tape without seeing what I'm typing; how will I know when I am near the end of the line?" Or, "I have two machines, but if I run them both at once my wife would throw me out of the house!" Relax! It can all be done with one machine with the printer copying the incoming traffic while the keyboard types the answers. Typing blind is really not difficult, and an occasional error will not really matter during a ragchew. It's the end of line that is annoying.

Articles have been written about RTTY line-end indicators, but they have all been based on mechanical switches, or counting word spaces instead of letters, or other similar circuits. With today's digital and linear ICs it can all be done electronically with the line-end light or bell actuated at 66 characters every time.

The circuit shown in fig. 1, which uses RCA CMOS digital ICs and a bipolar timer, does this. The CMOS ICs have many advantages over the more familiar TTL logic family. Power consumption is minimal. The whole circuit draws 5 mA quiescent or operating,
except when the light goes on. The power supply voltage can be anything from 4.5 to 15 volts and does not really have to be regulated.* Further, the circuit needs only a few common resistors and capacitors.

circuit operation

In the circuit of fig. 1 an optical isolator, U1, in the 60 mA loop will turn its transistor output on and off in response to the mark-space code. The output is separated completely from the input and allows the 120-volt loop supply to be applied without any danger to the CMOS circuits. The zener diode across the input protects the optical isolator against incorrect polarity or too high a source voltage.

The isolator collector is tied to the input of U2, an RCA CD4047 monostable oscillator. The appearance of a start pulse will trigger the oscillator whose holding time is set by R1 and C1 to 150 milliseconds, the time it takes for the start pulse, 5 code pulses, and part of the stop pulse to occur. The isolator output is also fed to U5, an RCA CD4015 shift register. This function will be explained later. Each time a character fires U2, its output will trigger U3, an RCA CD4017 divide-by-10 coun-

fig. 1. Schematic diagram of the RTTY line-end indicator. Correct values for C1, C2, R1, R2, and R3 are shown for speeds of 60 and 100 wpm. Power supply option for 6.3 Vac input is shown at lower right. Circled numbers refer to PC connector pins shown in fig. 2.

<table>
<thead>
<tr>
<th>speed</th>
<th>C1</th>
<th>C2</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 wpm</td>
<td>0.1 μF</td>
<td>0.033 μF</td>
<td>560k</td>
<td>470k</td>
<td>56k</td>
</tr>
<tr>
<td>100 wpm</td>
<td>0.1 μF</td>
<td>0.033 μF</td>
<td>330k</td>
<td>270k</td>
<td>56k</td>
</tr>
</tbody>
</table>

*A zener regulator will help hold the clock frequency if the lamp load should cause a large change in supply voltage.

* The isolator output is also fed to U5, an RCA CD4015 shift register. This function will be explained later. Each time a character fires U2, its output will trigger U3, an RCA CD4017 divide-by-10 counter which, after 10 pulses, will trigger U4, another RCA CD4017.

The CD4017 has a serial input and output, but it also has ten outputs, one for each digit. Only one of these outputs will be at logic 1, or high, at any time. Each input pulse will move the
logical 1 state from pin to pin until, on the tenth pulse, it will be back where it started.

This rotating logic 1 can be used to form a sort of combination lock when used in conjunction with some simple NOR gates. The output of a NOR gate will go high only when all of the gate inputs are low. Using this information, to be high. Under these conditions the output from U6C cannot go high to turn the lamp on.

At count 60 the output of section U6B will go low, but from count 60 to 67, the outputs from U3 units counts 8 and 9 will be low, as will the connection from the U4 7 count. Therefore, the output from U6A will be high and the

let's work back from the lamp which will signal that the end of the RTTY line is near.

The lamp will be on when Q1 conducts; that is, its base is greater than 0.7 volt. The base voltage is supplied by the output of U6C, a NOR gate. For this gate to have a high output, its inputs from sections U6A and U6B must be low. For a count below 60 the leads from 6 and 7 of the tens counter will both be low, causing the output of U6B output from U6C will stay low — the lamp stays off.

However, at count 68, the units 8 will go high, driving the output of U6A low. Since the U6B output is also low, output from U6C will go high and the lamp will turn on. This same condition will exist at count 69. At count 70 both U6A and U6B will have a high input (from the 7 count on U4) and the lamp will stay on until count 80, which is way past the line end of 72 characters.
Now that the lamp has gone on, a few more letters may be typed and then *carriage return-line feed-letters*. The *carriage return* code group is used to reset gate only when the *carriage return* character (SSSMS) is struck. The RCA CD4015 is a serial input, parallel output, static shift register. Each time a

![Diagram](image)

fig. 3. Full-sized printed-circuit board for the RTTY line-end indicator. Component layout is shown in fig. 2.

the counters to zero for the next line. Here's how it works: A shift register, U5, used to read the five-unit Baudot code, is preset to trigger another NOR pulse appears at its clock input, the information already in the register is shifted over one stage. The parallel output allows data monitoring at each stage.
The clock pulses are provided by an RCA CA555 astable timer, U9, set for approximately the same pulse width as the 22 millisecond Baudot code. The start pulse at the output of the optical isolator will turn on the monostable oscillator, U2, and will also appear at the data input of the shift register, U5. The oscillator output, in turn, will trigger the astable timer, U9, but will allow it to stay on only for seven pulses. These seven pulses will clock the register for each of the seven mark, or space, pulses of a Baudot character. After seven pulses the register will contain the code for the character sent.

Ignoring the start and stop pulses, the five-character code pulses available at the parallel outputs can now be checked to see if they form the code group for carriage return (SSSMS). By placing inverters in each of the space outputs, all outputs applied to U8 (RCA CD4078) become low. This condition will occur only for carriage return (for any other character, one or more of the outputs will be high). With all inputs low, the output of U8 will go high and reset U3 and U4. While the seven pulses are being fed into the shift register, the output of U8 is kept low by the input lines (pins 9, 10, 11) which are tied to the high output of U2.

If you were concerned about the lamp going on too close to the line-end after character 68 was struck, relax. All amateurs send the carriage return-line feed-letters combination at the end of line. The last two functions do not move the type box, so the lamp will go on at 66 printed characters, the same as the mechanical switch on the printer. Use of the figures or letters key on any line of type provides a safety factor. They will be counted even though there is no print.

Construction is simple whether you use hand wiring or a printed-circuit board. The layout of the circuit board is shown in fig. 2. The board can be mounted inside the machine. The printer remains in the TU loop while the keyboard and line-end indicator input are put in series in a separate loop to the perforator (watch the polarity).

If the board is too big, as shown, you can build a smaller one as there really is nothing critical. The only adjustments are to the two oscillators. The values shown in fig. 1 should work with no problem. For exact adjustment use a digital counter and vary R1 and/or R2 for the monostable oscillator, U2, and astable oscillator, U9, respectively. Set the monostable for 150 milliseconds (7 Hz) and the astable for 22 milliseconds (45 Hz). If in doubt, set the astable slightly on the low frequency side. The rise time of its pulses can occur anytime during each 22 millisecond Baudot pulse.

A relay to turn on an existing margin light may be substituted for the lamp shown in fig. 1. The PC board provides contacts for a relay such as the General Reed GR410-P5 or Clare MRB 1A05. Just wire the relay contacts in parallel with the machine margin switch.

The circuit board also provides for a rectifier diode to allow use of 6.3 volt ac power. A dropping resistor and 5.1 volt zener diode are added to prevent wide voltage swings as the lamp turns on and off.

conclusion

And what do you have after you built this CMOS line-end indicator? You can receive a message and while reading what is being printed, you can type answers to questions, ask questions, or make comments. When the other station signs, you can turn on the transmitter and TD and continue to punch tape while you are transmitting commercial quality, 60 wpm copy.

reference
• Synthesized • General Coverage • Low Cost
• All Solid State • Built-in AC Power Supply
• Selectable Sidebands • Excellent Performance

PRELIMINARY SPECIFICATIONS:
• Coverage: 500 kHz to 30 MHz
• Frequency can be read accurately to better than 5 kHz
• Sensitivity typically 0.5 microvolts for 10 dB S+N/N SSB and better than 2 microvolts for 10 dB S+N/N AM
• Selectable sidebands • Built-in power supply: 117/234 VAC ± 20%
• If the AC power source fails the unit switches automatically to an internal battery pack which uses eight D-cells (not supplied).
 • For reduced current drain on DC operation the dials do not light up unless a red pushbutton on the front panel is depressed.

The performance, versatility, size and low cost of the SSR-1 make it ideal for use as a stand-by amateur or novice-amateur receiver, short wave receiver, CB monitor receiver, or general purpose laboratory receiver.

For more information on this and other Drake products, please contact:

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288-017

See us at SAROC in Las Vegas
A discussion of weak-signal CW detection techniques, including a versatile, high-performance audio filter

Although there has recently been a great deal of controversy over the value of CW communications, CW continues to be the most efficient mode of radio transmission. This was true in the first successful transatlantic tests of the 1920s and it is still true today as amateurs work to improve the reliability of EME, meteor scatter and long-range tropospheric communications. Once a communications path has been proven to exist with CW, amateurs usually find a way to use ssb (or other mode) over the same path. CW is also valuable for working DX on the high-frequency bands when propagation conditions are poor, particularly during periods of low solar activity.

Amateur communications equipment has come a long way since 1921 when Paul Godley set up a receiving station...
on the Scottish coast to listen for signals from the United States. Now our transmitters run higher power, are more efficient and are stable; high-gain, directional antennas are commonplace and our stable and sensitive communications receivers are equipped with highly selective mechanical or crystal filters.

The communications receiver conditions the incoming CW signal so that the greatest receiver of all — our ear-brain — can capture that first detectable signal. The ear is capable of receiving signals from less than 20 Hz to more than 20 kHz and, when coupled with the brain, forms an extremely efficient and versatile CW detector. Furthermore, the ear-brain combination is capable of acting like a variable-frequency, variable-bandwidth audio filter which allows us to detect and copy signals which are buried in the noise or nearly obliterated by interference.

The human ear is actually able to hear signals which are below the noise level. Tests conducted by W2IMU, using a 3 kHz bandwidth receiver and a signal generator, showed that when a CW signal is adjusted to the same audio level as the noise (zero dB signal-to-noise ratio), the signal was 100 per cent
readable. The input signal was then reduced in 3 dB steps. Copy became more difficult but callsigns could still be accurately identified at 9 to 12 dB below the noise level. Although the presence of signals 20 dB below the noise could still be detected, the signals could not be copied.

The reason that these weak signals can be copied reliably is that the ear-brain filter has narrowed its bandwidth to approximately 50 Hz! The graph of fig. 1 shows the frequency response of the human ear vs its bandwidth. This curve also shows that 1000 Hz is not the optimum tone with which to copy weak CW signals. Most amateurs who have worked with weak CW signals have found that they prefer a lower pitch as signals get weaker. Fig. 1 shows why.

Another reason to lower the frequency of the signal you want to copy is that, if there is interference, the lower-frequency signal is easier to detect. For example, if the frequency difference between the desired and undesired signals is 100 Hz, and the desired signal is tuned for a 1000 Hz pitch, the frequency difference is only 10 per cent. If you tune the desired signal for a 500 Hz pitch, the frequency difference is increased to 20 per cent, a 2:1 improvement.

The human ear-brain also copies signals by comparing signal against signal or signal against noise. If a narrow bandpass filter, say 200 Hz, is used in the receiver it excludes other signals as well as some of the noise. This is fine for strong signals but causes problems with weak ones because too much bandwidth restriction limits the amount of noise the ear has to compare with.

Very sharp filters also have a tendency to “ring” — this ringing sounds much like the signal and makes signal-to-noise comparison difficult, if not impossible, with very weak CW signals. In addition, narrow bandwidth filters are usually tuned to some fixed frequency so the individual operator cannot optimize the frequency and bandwidth of the filter to complement his own ear.

Since the human ear is already capable of 50 Hz bandwidth, very narrow filters are not the best for weak CW detection except for eliminating inter-
ference. What is needed is a variable frequency and variable bandwidth filter that can be adjusted for various operating conditions. Variable audio filters are response to less than 10 Hz. They can also provide simultaneous highpass, bandpass and lowpass outputs as shown in fig. 3 so they are ideal for such applications as

difficult to build with lumped values of inductance and capacitance, but modern integrated-circuit technology provides the basis for excellent audio CW filters. Kinetic Technology* has developed a line of Universal Active Filters which can be used from less than 1 Hz to greater than 100 kHz, depending on the model. The bandwidth of these active filters can be adjusted for a flat re-

tunable cw filter

The KTI active filters use three operational amplifiers in a stable, negative-feedback circuit (fig. 4) which is commonly called a bi-quad. Although a complete description of device operation and its various connections is beyond the scope of this article, complete data is available from KTI.

A tunable CW filter which uses the KTI FX-60 and an LM380 audio ampli-

*KTI/Division Baldwin Electronics, Inc., 3393 De La Cruz Boulevard, Santa Clara, California 95050, telephone (408) 296-9305.
filter is shown in fig. 5. This filter tunes the audio range from 300 to 1800 Hz and its bandwidth can be adjusted from 50 to 1200 Hz. The filter, which has unity gain and is built on a printed-circuit board, is designed to be plugged into the headphone jack of a communications receiver. The output is then connected to the speaker or headphones and the filter can be switched into the circuit as required. The LM380N provides two watts of audio output, more than enough for most applications.

In the circuit of fig. 5 the audio signal from the receiver is introduced to the CW filter at J1. The input pi network (C1, R14, C2) passes the audio frequencies but blocks rf energy. Resistor R13 is used to lower the input signal level, if required, to the FX-60 active filter. The dual 50k potentiometer, R3A and R3B, sets the frequency of the filter while the bandwidth is adjusted with potentiometer R9. The function switch, S1, selects the highpass, bandpass or lowpass output from the FX-60 or switches the filter out of the circuit. In the active filter circuit resistors R1 and R12 provide the necessary biasing so the FX-60 can be operated from a single, positive power supply. Resistor R11 allows the three outputs to be at

fig. 6. Component layout for the tunable audio filter. Full-size printed circuit is shown in fig. 6.

32 November 1975
Tunable audio filter built by W1DTY is housed in Ten-Tec JW-5 enclosure. Input and output jacks are on rear panel.

Construction of the tunable audio filter built by W1DTY using printed-circuit board available from Holladay Communications. Input and output jacks are on rear panel, left. Board is installed on chassis with 0.25" (7mm) spacers.

The same level. R10 limits the widest bandwidth while R9 sets the narrowest limit.

During setup resistor R8A is adjusted until the circuit goes into oscillation; the correct value is that just before the circuit oscillates. The narrowest bandwidth will vary from unit to unit, and some may not require R8A. Resistor R16 maintains filter stability at the narrow bandwidth setting and capacitors C4 and C5 set the frequency range.

The National LM380N audio power IC is connected to the function switch through the dc blocking capacitor, C6. Resistors R5 and R6 set the input level and capacitor C7 provides high-frequency rolloff at 4 kHz. The series RC circuit (R7, C9) from the output pin to ground prevents high-frequency oscillations.

The tunable audio filter is built on a 3 by 4.4 inch (7.6 by 11.2cm) printed-circuit board. The component layout is shown in fig. 6. Printed-circuit boards
and special components are being made available in conjunction with this article.*

The tunable audio filter may be used to improve various types of receiver signals. In the lowpass mode it can be helpful with ssb reception. For use on CW it should be set to the bandpass position, is quite simple and there is no preset adjustment to follow. Some amateurs like to use the unit in the narrow bandwidth, lowpass mode (fig. 8) as this provides some low-frequency noise to which the ear can compare weak CW signals.

![fig. 7. Full-size printed-circuit layout for the tunable audio filter. Drilled PC boards are available (see footnote below).](image)

adjusted to narrow bandwidth and peaked on the desired CW signal. The optimum frequency and bandwidth will vary from operator to operator, as discussed previously. Operation of the unit

![fig. 8. Frequency response of the tunable audio filter set for narrow bandwidth in the lowpass position. This response is sometimes preferred for weak-signal CW work.](image)

"The following components can be supplied: drilled and plated printed-circuit board, $5.75; KIT FX-60 Universal Active Filter, $6.95; National LM380N audio power IC, $1.75; Allen-Bradley dual 50k potentiometer, CCW log taper, $7.30; power transformer, Signal PC 24-180, $4.80. Wired and tested filters, model AF-100, complete with enclosure are also available for $60.00. Order from Holladay Communications, 2140 Jeanie Lane, Gilroy, California 95020.

references
OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035105. 20 to 60 MHz, OX-Hi, Cat. No. 035101 Specify when ordering.

Price $3.95 ea.

OF-1 OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OF-1, Lo, Cat. No. 035108. 20 to 60 MHz, OF-1, Hi, Cat. No. 035109 Specify when ordering.

Price $3.25 ea.

EX CRYSTALS (HC 6/U HOLDER)
Cat. No. Specifications
031080 3 to 20 MHz — For use in OX OSC Lo Specify when ordering $4.95 ea.
031081 20 to 60 MHz — For use in OX OSC Hi Specify when ordering $4.95 ea.
031300 3 to 20 MHz — For use in OF-1 OSC Specify when ordering $4.25 ea.
031310 20 to 60 MHz — For use in OF-1H OSC Specify when ordering $4.25 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range.

3 to 20 MHz, Lo Kit, Cat. No. 035105. 20 to 170 MHz, Hi Kit, Cat. No. 035106 Specify when ordering.

Price $4.50 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mW, depending on frequency and voltage. Amplifier can be amplitude modulated.

3 to 30 MHz, Cat. No. 035104 Specify when ordering.

Price $4.75 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MXX-1 Mixer. Signal tuned input and link output.

3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103 Specify when ordering.

Price $4.50 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain.

Cat. No. 035107 Specify when ordering

Price $4.75 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to:
M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102

november 1975
frequency
selective
and sensitivity
controlled
sstv preamplifier

Discussion of a specially designed op-amp circuit for reception of sstv pictures under adverse operating conditions.

Generally the input circuit of a sstv receiver uses a limiting amplifier so the frequency-modulated sstv signal is independent of amplitude variations. If this amplifier is not frequency selective and not sensitivity controlled, all signals within the range of the sstv signal frequency with amplitudes high enough to be limited will pass through the circuit and influence the picture.

Some sstv receivers use a filter in the input stage, but its efficiency depends on the signal strength, and undesired weaker signals, including unwanted sstv signals at the same frequency, will not be suppressed. A frequency-selective and sensitivity-controlled limiting amplifier avoids these disadvantages. It can be used as a preamplifier with any sstv receiver and permits the reception of sstv pictures under extremely adverse conditions.

In the block diagram of the system shown in fig. 1, the linearly amplified input signal passes through a high-pass filter and appears as a square-wave signal at the output of the comparator only if its amplitude exceeds that of the reference voltage, which is proportional to the peak voltage of the 1200-Hz synchronizing signal.

With this circuit the cutoff frequency of the high-pass filter is independent of the input amplitude. Furthermore, the sensitivity of the comparator is adapted to the amplitude of the sstv signal. Weaker signals, including sstv signals which are weaker than the desired signal, are totally suppressed.

Fig. 2 shows the circuit in detail. The back-to-back diodes (CR1 and CR2) at the input protect the linear amplifier, U1, from excessive drive. The high-pass filter (U2 and U3) is an active Tschebycheff filter of the order \(n = 4 \) with a cutoff frequency of about 1000 Hz (-60 dB/decade).

The frequency of the selective amplifier, U4, can be tuned to 1200 Hz by means of potentiometer R1. The peak voltage detector (U5 and U6) has a charging time constant of about 1 millisecond; the discharging time constant was chosen to be about 1 second.

The comparator, U7, is clamped by two back-to-back diodes to limit the output amplitude to 0.7 volt. In most cases this amplitude is still too high and

*A printed-circuit board and parts kit are available from the author.
must be further reduced, typically to 100 millivolts or so. The output can be adjusted to the required level with potentiometer R2. Feed an SSTV signal into the input and adjust R1 for maximum reference voltage. Now reduce the reference voltage with R3 as much as is required to synchronize the picture. Otherwise the reference voltage is too high and the synchronizing frequency cannot pass through the comparator. Complete specifications for this circuit are given in Table 1.

Table 1. Operating specifications for the frequency-selective and sensitivity-controlled SSTV preamplifier.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input sensitivity</td>
<td>1 mV rms</td>
</tr>
<tr>
<td>Regulating range</td>
<td>1 mV to 500 mV rms</td>
</tr>
<tr>
<td>Frequency range</td>
<td>1000 to 2800 Hz</td>
</tr>
<tr>
<td>Power requirements</td>
<td>±15 volts, 16 mA</td>
</tr>
</tbody>
</table>

To adjust the system first short the input of U1 and set the output of U6 to zero voltage with potentiometer R2. Feed an SSTV signal into the input and adjust R1 for maximum reference voltage. Now reduce the reference voltage with R3 as much as is required to synchronize the picture. Otherwise the reference voltage is too high and the synchronizing frequency cannot pass through the comparator. Complete specifications for this circuit are given in Table 1.

Table 1. Operating specifications for the frequency-selective and sensitivity-controlled SSTV preamplifier.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input sensitivity</td>
<td>1 mV rms</td>
</tr>
<tr>
<td>Regulating range</td>
<td>1 mV to 500 mV rms</td>
</tr>
<tr>
<td>Frequency range</td>
<td>1000 to 2800 Hz</td>
</tr>
<tr>
<td>Power requirements</td>
<td>±15 volts, 16 mA</td>
</tr>
</tbody>
</table>

Figure 1. Block diagram of a frequency-selective and sensitivity-controlled SSTV preamplifier which permits reception of SSTV signals under adverse conditions.

Figure 2. Circuit diagram of the frequency-selective and sensitivity-controlled SSTV preamplifier.

Ham Radio
RTTY operation made me aware of the need for frequency stability in my receiver. When copying nets receiver drift, although small, became a big problem. For example, autostart nets demand receiver stability on the order of several Hz. I tried the usual remedies to improve receiver frequency stability: voltage regulation, ventilation, and reduced heat sources but more stability was needed. Crystal control was the obvious answer.

the rock-mixer

My approach to the problem was simple and inexpensive. The device described here, which I call the rock-mixer, uses only a handful of ICs and very few crystals. In fact, one odd-ball crystal and the rock-mixer will allow you to tune the entire 20-meter band with crystal control all the way. The rock-mixer is easy to adapt to almost any receiver -- no phase-locked loops, no filters, and no other synthesizer-type complications.

The rock-mixer creates two frequencies and combines them to produce a pulse train with which your receiver local oscillator can synchronize. Your job is to determine what combination of frequencies to use, given the modest selection of crystals you might have on hand. You don’t even need crystals in...
Table 1 shows what can be expected for \(n \) between 19 and 23, for example, in the 20-meter band when the local oscillator frequency is above that of the VXO crystal. Note that the integer 21 yields a received frequency of 14064 kHz. But since we wish to receive 14062 kHz, we must find a frequency to which the 15000-kHz crystal can be VXOed to produce 14062 kHz.

When the local oscillator frequency is above the crystal frequency,

\[
F_{\Delta x} = \frac{(F_d + F_{i,f}) n}{n + 1}
\]

where

- \(F_{\Delta x} \) = crystal frequency changed by the VXO
- \(F_d \) = desired frequency (14062 kHz)
- \(F_{i,f} \) = intermediate frequency (1650 kHz)
- \(n \) = number to which the divide-by-\(n \) circuit is set (21 in the example)

If the local oscillator frequency is below the crystal frequency, simply replace \(n + 1 \) in the denominator of eq. 1 with \(n - 1 \).

Using the example above, in which the local oscillator frequency is above the amateur bands; surplus crystals work fine and are inexpensive.

Fig. 1 is a version of the rock-mixer which includes a variable frequency crystal oscillator, a divide-by-\(n \) circuit (VXO), a mixer NAND to combine the fundamental and divided frequencies, and a coupling capacitor to your receiver local oscillator (LO). The coupling capacitor can be a gimmick (wire twisted around the grid lead to the LO tube).

operation

The VXO provides a stable frequency, which is tunable over a modest range. The output of the divide-by-\(n \) is added to or subtracted from the VXO frequency to produce a pulse train from the mixer NAND to which the receiver LO can lock. Example: suppose you wish to tune in a station at 14062 kHz and the crystal you choose is 15000 kHz. To tune 14062 kHz with an i-f of 1650 kHz requires 15712 kHz at the receiver local oscillator, which is a frequency difference of 712 kHz. To get a ballpark value for \(n \), divide 15000 by 712, which equals 21.067. Note, however, that only whole numbers can be used in the divide-by-\(n \) circuit, which must provide a pulse train with a frequency that the receiver local oscillator can lock onto to produce the frequency to be received (14062 kHz).
the crystal frequency, then the frequency to which the crystal must be VXOed to receive 14062 kHz is 14997.818 kHz. By VXOing the 15000-kHz crystal to 14997.818 kHz and setting the divide-by-n circuit to 21, a pulse train of 15712 kHz will be produced from the mixer NAND to which the receiver local oscillator can lock onto to bring in the station at 14062 kHz.

You'll note that other frequencies will appear in the mixture feeding the local oscillator, but the predominant kHz. Since n is 21, the divide-by-n output is 714.182 kHz; therefore, the sum and difference frequencies are 15712.000 and 14283.637 kHz, respectively.

To attain lock is a simple matter. Tune the dial to a point near the expected place. As you approach it the receiver will lock from as far away as 50 kHz under the right conditions. When a lock has been attained you can tune the receiver knob a modest amount on either side and not lose the desired station. When you exceed the lock-in range you will hear squishing noises as well as other stations, but you won't lose the desired station. If you desire to fine-tune the station, then tweak the VXO knob and the receiver will follow.

When the lock-in condition exists, the receiver tuning will be under complete control of the VXO: thus the VXO knob is now the receive tune knob. The tuning range will be limited to the extent that you can "rubber" the crystal. For a 15-MHz crystal my VXO covers 14940 to 15012 kHz. Table 2 shows the corresponding ranges that can be covered on 20 meters with the 15-MHz crystal in the VXO and with the divide-by-n circuit set as shown. (Remember the i-f was 1650 kHz.)

<table>
<thead>
<tr>
<th>n</th>
<th>frequency tuned by each n (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>14001 to 14077</td>
</tr>
<tr>
<td>20</td>
<td>14037 to 14113</td>
</tr>
<tr>
<td>19</td>
<td>14076 to 14152</td>
</tr>
<tr>
<td>18</td>
<td>14120 to 14196</td>
</tr>
<tr>
<td>17</td>
<td>14169 to 14245</td>
</tr>
<tr>
<td>16</td>
<td>14224 to 14300</td>
</tr>
<tr>
<td>15</td>
<td>14286 to 14363</td>
</tr>
<tr>
<td>14</td>
<td>14357 to 14434</td>
</tr>
</tbody>
</table>

You'll note that other frequencies will appear in the mixture feeding the local oscillator, but the predominant frequency is the crystal frequency plus the divide-by-n output (see table 1).

Now let's review what we did. The 15-MHz crystal frequency has been changed by the VXO to 14997.818 kHz. Since n is 21, the divide-by-n output is 714.182 kHz; therefore, the sum and difference frequencies are 15712.000 and 14283.637 kHz, respectively.

To attain lock is a simple matter. Tune the dial to a point near the expected place. As you approach it the receiver will lock from as far away as 50 kHz under the right conditions. When a lock has been attained you can tune the receiver knob a modest amount on either side and not lose the desired station. When you exceed the lock-in range you will hear squishing noises as well as other stations, but you won't lose the desired station. If you desire to fine-tune the station, then tweak the VXO knob and the receiver will follow.

When the lock-in condition exists, the receiver tuning will be under complete control of the VXO: thus the VXO knob is now the receive tune knob. The tuning range will be limited to the extent that you can "rubber" the crystal. For a 15-MHz crystal my VXO covers 14940 to 15012 kHz. Table 2 shows the corresponding ranges that can be covered on 20 meters with the 15-MHz crystal in the VXO and with the divide-by-n circuit set as shown. (Remember the i-f was 1650 kHz.)

Table 3. Selected frequencies for RTTY using the SX-100 receiver (1650-kHz i-f).

<table>
<thead>
<tr>
<th>frequency (kHz)</th>
<th>station</th>
<th>speed/shift (wpm/Hz)</th>
<th>crystal frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3600</td>
<td>Autostart net</td>
<td>60/850</td>
<td>5.02</td>
</tr>
<tr>
<td>3623</td>
<td>W1AW ARRL Headquarters</td>
<td>60/170-850</td>
<td>5.02</td>
</tr>
<tr>
<td>3223</td>
<td>WBR70 Miami WX</td>
<td>60/850</td>
<td>9.00</td>
</tr>
<tr>
<td>8105</td>
<td>WBR70 Miami WX</td>
<td>60/850</td>
<td>9.00</td>
</tr>
<tr>
<td>8105</td>
<td>WBR70 Miami WX</td>
<td>60/850</td>
<td>9.10</td>
</tr>
<tr>
<td>8105</td>
<td>WBR70 Miami WX</td>
<td>60/850</td>
<td>10.00</td>
</tr>
<tr>
<td>12175</td>
<td>WBR70 Miami WX</td>
<td>60/850</td>
<td>15.00</td>
</tr>
<tr>
<td>12175</td>
<td>WBR70 Miami WX</td>
<td>60/850</td>
<td>13.92</td>
</tr>
<tr>
<td>8183</td>
<td>UPI News in English</td>
<td>66/550</td>
<td>11 or 22</td>
</tr>
<tr>
<td>19537</td>
<td>AP News in English (NYC)</td>
<td>66/400</td>
<td>9.08</td>
</tr>
<tr>
<td>5460</td>
<td>Voice of America (USIS)</td>
<td>60/400</td>
<td>7.00</td>
</tr>
<tr>
<td>5460</td>
<td>Voice of America</td>
<td>60/400</td>
<td>8.00</td>
</tr>
<tr>
<td>10972</td>
<td>Voice of America</td>
<td>60/400</td>
<td>11.65</td>
</tr>
</tbody>
</table>
Table 2 shows that the entire 20-meter band can be received, crystal controlled, using only one crystal. In my case a 15-MHz rock was used, but note that almost any crystal near 15 MHz will work. For example, a 15239 kHz crystal or another oddball like 14875 kHz would work just as well; the only change would be the n value required.

You don’t need to make a fundamental pulse train, because harmonics and subharmonics are almost as good. In the examples with two n values the oscillator is made to lock onto frequencies twice removed from the usual frequencies. Consider a 10-MHz VXO and an n value of 10. The receiver oscillator can just as easily lock onto 9.0, 10.0, and 11.0 MHz. Now make n = 20 and lock-on to the same frequencies occurs as well as to many others, such as 9.5, 10.5, 11.5 MHz, etc. There are other reasons to use the doubled n value, which are treated later.

two-crystal rock-mixer

There may come a point when you give up trying to find a good combination of n with a crystal you have available. Enter the two-crystal rock-mixer.

Table 3 shows several frequencies I use for RTTY. These are real examples, so included in the list are the n values and the nominal crystal frequency to tune in the particular station. Some examples in table 3 are straightforward and some are a little tricky. The one at 3223 kHz is a case in point. The 9-MHz crystal and the divide-by-12 circuit produce 9746 kHz to which the receiver LO at 4873 kHz can easily lock (i-f is 1650 kHz).

fig. 2. Circuit for one or two crystals. A pair of 7404s form the VXO and the second crystal oscillator. A 7440 drives a counter and provides mixing for the divide-by-n circuit.
In this arrangement you have one crystal in the VXO and a different crystal feeding the divide-by-\(n \) circuit; thus, you have greatly expanded the rock-mixer capability.

Fig. 2 shows the rock-mixer circuit in which one or two crystals can be used. Two 7404 hex inverters form the VXO\(^1\) and the second crystal oscillator. Two Table 4 shows the application of the 7493 for this purpose.

Fig. 3 depicts the shift registers and the logic to divide by any number from 1 to 100. This circuit was found in the Fairchild TTL Applications Handbook.\(^2\) The only changes I made were to substitute some equivalent ICs instead of those in the reference.

\[\text{Table 4}
\]

<table>
<thead>
<tr>
<th>SWITCH CODE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Briefly, the operation of the circuit is as follows. At the end of a divide sequence the registers are loaded with the data from the selector switches connected to wires a, b, c, and d. The registers then clock away until all outputs connected to the 7430 NAND are high, thereby producing an output pulse that loads the data, and the process repeats. The data can be selected by two 4-pole, 10-position selectors wired according to the switch code. A less expensive alternative using diode logic and two 10-position selectors of one pole each is shown in Fig. 4. The switch code calls for either a 1 or a zero. The

variable capacitors are shown with two crystal sockets. It is important to keep circuit stray capacitance at a minimum when varying the crystal frequency in the high direction. Note that no switch is used for changing crystals, because it’s not possible to keep stray capacitance to a low enough value with any type of switch.

The divide-by-\(n \) circuit consists of two parts: a set of two 74195 shift registers (Fig. 3) and a 4-bit binary IC (7493) connected to divide by 1, 2, 4, 8, 16. The 7493 is a "division range increaser," but more important is its function as a "duty-cycle improver."

42 November 1975
zero means to ground the point, and the 1 means to leave it open. The system counts one more than the data loaded, so if you want to divide by 23 you must set the switches for 22.

The rest of the circuit of fig. 2 is self explanatory. A part of the 7440 NAND is used to drive a counter. The other part of the 7440 is the mixer, whose output connects to a level-adjusting pot, then to the BNC connector, which leads to the receiver local oscillator. The power for the unit is +5 volts at 225 mA maximum when no crystals are in place. At 15 MHz only 170 mA is required. I used an old 6.3-Vac filament transformer, a diode bridge rectifier, a 1000 μF electrolytic, and a three-terminal, 5-volt regulator. This circuit provides adequate power to the regulator; and at the maximum condition of 225 mA, the supply provides 8.3 volts at the regulator input.

crystal sources

Crystals for the rock-mixer are inexpensive and easy to obtain from a variety of sources. At the Dayton Hamvention, for example, crystals perfect for rock mixing were selling for 15 cents each. The reason the crystals are so inexpensive is because their frequencies are not good for much — except rock-mixing, and you’re reading the first account of this now.

Many crystal manufacturers list their surplus crystals at bargain prices, so scan the flyers and you can find lots of “funny-frequency” crystals. Two prime sources I use are the citizens band and surplus fm mobile crystals; for example, some crystals marked for 153 MHz turned out to be 6.38 MHz fundamental mode, and others were 11.6 MHz. In a big bag full of surplus crystals purchased at Dayton were lots of usable ones from 5 to 16 MHz.

connections

Hooking up the rock-mixer to the receiver LO is another of those dealer’s choice affairs, because very few amateurs have the same receiver setup. The simplest method, requiring neither holes nor solder, is to run the rock-mixer output coax into the receiver and clip the shield to ground and twist a few inches of the center lead around the wire from the tuning capacitor to the local oscillator coil or tube grid. This

connection or gimmick, injects a weak but significant amount of signal into the oscillator except when the capacitor is nearly meshed.

A better approach is to locate a point in the LO where a ground can be lifted and a 47-ohm resistor inserted. There are many likely spots, such as plate or collector bypass-to-ground capacitors, or emitter or cathode grounds. In the SX-100, for example, the LO has a grounded cathode, tuned-grid, plate-tickler circuit, so in my case a 47-ohm

connections

fig. 4. Alternative selector switch and diode matrix circuit.
resistor is now between cathode and ground, and the coax is connected directly to the resistor, terminating in a BNC connector on the front panel. This type of low-impedance injection produces excellent lock-in characteristics over the entire receiver range of 0.5 to 30+ MHz as well as no interference with the normal operation of the receiver. Such a connection is also convenient to bring out a small amount of rf from the oscillator to operate a counter.

concluding remarks

The rock-mixer is a simple device for crystal control of almost any receiver. It’s easy to set up and use if you have a counter and a calculator. Its ease of operation will depend on the care used in calibrating both the receiver and VXO. Once learned and recorded, the scheme to lock onto a particular band of frequencies, or even a single point, is quite simple and rapid with or without the calculator-counter combination.

Tuning the band under crystal control is simple if you set up a segment schedule similar to the one shown in table 2. However, there’s a hitch to this unless you calibrate the VXO to suit the situation, because the receiver dial means almost nothing except to show what band you’re on. I solved this problem by building a homebrew counter using decades that can be preset instead of the usual type, which reset only to zero. The counter is switched to read all pertinent frequencies in the rock-mixer and the receiver.

When reading frequency per se, the reset pulse from the logic ties to the normal “reset-to-zero” bus line of all the decades. When connected to the receiver LO, the reset pulse is switched to the strobe data inputs, and the complement of the receiver i-f is thereby loaded into the counter decades. For an i-f of 1650 kHz the complement is 9835.00. Therefore, after 16500 input counts the counters read 0000.00 and the ensuing input counts above this point until the end of the gate period. The net effect is to subtract the i-f from the LO frequency and to present the received-station frequency in the display.

The action is similar to that of the divide-by-n counter, and the data can be either hard wired with short jumpers to ground the appropriate data points; or some can be fixed and some variable, using diode logic or switches made to provide the BCD information. The addition of the data input system in no way affects the normal usefulness of the counter, because the reset input and the data strobe inputs are independent.

references

50-144-220-432 MHz RECEIVERS

INEXPENSIVE AND UNIQUE MODULAR CONCEPT
- Performance equal to commercial equipment
- Monitor receivers
- Repeaters: using our transmitter, 15 or 25 watt amplifier and COR modules
- 10 channel auto-scan receivers: using our SC-3 scanner kit and CD-1 crystal deck
- Transceivers using our transmitter module
- Size: 4" x 6" — *RX-432C is 4" x 6-1/2"

All Receiver kits are dual conversion with squelch and COR output.

RX-50C 30-55 MHz $59.95
RX-144C 140-170 MHz $69.95
RX-220C 210-240 MHz $69.95
RX-432C 420-470 MHz $79.95

*RXCF — 70bb filter add $8.50 to above.

10 CHANNEL SCANNING
SC3 — Capable of scanning up to 10 channels. Scan delay allows both sides of a conversation to be monitored without the scan starting each time the carrier drops. The priority feature allows the user to program the scanner to return to his favorite channel whenever it is active. Price $19.95 kit.

CD-1 — A ten channel receive crystal deck which utilizes diode switching to select the crystal position required. This module can be used to expand your present single channel receiver to multichannel capability. Price $6.95 kit.

ORDER FORM

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
<th>Extension</th>
</tr>
</thead>
</table>

Name ____________________________ Total ____________________________
Address __________________________ Shipping __________________________
City __________________ Zip __________________ NYS Resident Sales Tax __________________
State _________________________ Total Enclosed _______________________

Master Charge No. ____________________________ BankAmericard No. ____________________________

TERMS: C.O.D., cash or check with order. We also accept BankAmericard and Master Charge.
CLAIMS: Notify VHF and the carrier of damage within seven (7) days of receipt of shipment.
RETURNS: Obtain authorization from VHF before returning any merchandise.
PRICES AND SPECIFICATIONS: Subject to change without notice.
SHIPPING INFORMATION: All shipments are F.O.B. Binghamton, N.Y. 13902. Shipments will be made by the most convenient method. Please include sufficient funds to cover shipping and handling. Allow $1.00 for each item.
If you tune your receiver across a CW signal with the bfo centered on a broad i-f passband, the beat note will change from high to low. As you continue tuning, the CW note will progress through zero beat from low to high again.

If, however, instead of using the usual single-channel audio system you provide two channels with the frequency response shown in fig. 1, feeding stereo phones or two speakers, an interesting and pleasing result is obtained. Tuning as described, but with the two-channel audio system described here, a signal will move from left (lower frequency) to center, then to the right (higher frequency) followed by the reverse action, spatially as the tone changes. If you switch to a narrower i-f bandwidth and adjust the bfo frequency to equal the crossover point of fig. 1 away from i-f center, you’ll obtain the right-center-left signal movement without the mirror image, and the spatial center of the signal will be at the crossover design frequency.

Thus a new dimension is added to CW signals. Can you imagine how it would be when conversing with several people at once if all the voices came from the same location? We have two ears — let’s use them.

With the system described, when interference occurs a few hundred Hz or so removed from the frequency of interest, you tune the signal you want to center, leaving the others to the right, or to the left.

components

Op amp active filter designs make this task easy and predictable. As building blocks I used a class of op amp filters shown in fig. 2.* I chose good grade 0.01 μF ceramic capacitors, then selected resistance values from the standard 5 per cent, ¼-watt range to set low- and high-pass filter rolloff fre-
frequencies. You can use 10 per cent resistors with good results; except that when you try to place the crossover frequency in the center of a narrowband audio filter, or in a very narrowband i-f filter, careful resistance-value pruning enters the picture. I know of no integrated circuit op amp that doesn't loaf in this task — the well-known 741 a good choice.

design requirements

How sharp must the frequency roll-off be to get a good stereo effect? I found that two stages each of low- and high-pass filtering provide good separation (four poles, or a rolloff of 24 dB per octave). More stages and more critical adjustment would be necessary if this system were fed from a source with bandwidth of less than 200 Hz or so. It can be done, but receiver tuning would become difficult and narrowband noise would begin to sound too much like the desired signal. A binaural system reduces the need for those very sharp filters.

The complete circuit is shown in fig. 3. You’ll note that the gain setting resistors are of different values for the low- and high-pass channels. Their ratio is the same, but values were selected to obtain parallel resistances in each case that are approximately equal to the op amp’s positive input port dc resistance to ground. This condition is desirable to encourage a minimum dc offset at the op amp’s output.

exalted operation

If you want to accept some added complexity it’s possible to obtain the kind of response shown in fig. 4. In this case the gain ratio resistors (those connected to the op amp negative input port) are changed to produce filter peaking. In this way a combination of audio filtering and binaural operation is obtained. The resistance ratio required to provide up to 20 dB of exalted operation is shown (10 dB per stage). It’s possible to provide more exaltation effect but adjusting resistance values becomes increasingly critical; at some point you’ll have an oscillator.
fig. 3. Schematic of the binaural synthesizer. For 750-Hz crossover, \(R = 21 \, k \); low channel is offset 5% high and high channel is offset 5% low to compensate for underlap due to four-pole cascade in each channel and overlap caused by approximately 4 dB of peaking on each side of the crossover point.

The unit shown is designed to work from a low-impedance drive, such as a receiver's speaker output. The 47-ohm resistor at the input is for those who wish to use the design with a solid-state receiver that couples to a speaker through a large capacitor. Op amp input ports must have a dc return path to ground, and this input circuit ensures it. If you want to drive the system from a high-impedance phone circuit, simply connect the receiver to the input through about 2.2k ohms and increase the value of the 47-ohm input resistor to 470 ohms.

The 47-ohm resistors shown in series with the outputs are used to avoid oscillation in the event that 8-ohm headsets or speakers are connected directly to the output. Also, small dc offsets will not produce immediate limiting on the positive or negative audio half cycle if a low-resistance dc path to ground is connected to the outputs. An op amp's output current capability will drive 2k-ohm phones to all the volume you'll need; unfortunately I haven't found any 2k-ohm stereo phones. Moderate levels are possible with 8-ohm loads.

conclusions

This binaural synthesizer provides more advantage as interference increases. When the band becomes crowded you may wonder how you have been able to get along without such a device.
If Santa had a
Altair®…

Santa might be possible!

Have you ever wondered how Santa keeps track of all the addresses of all the children in the world? How he knows who gets what?

With an Altair 8800, Santa might have a fighting chance. He might be able to keep up with the ever-expanding toy industry. He might be able to remember who’s been naughty and nice.

With an Altair 8800, Santa might be possible.

This Christmas you can do something that’s never before been possible. You can put an Altair under your tree or under the tree of a friend. Or you can start with our special Christmas 75 time payment plan!

The Altair 8800 is the NUMBER ONE hobby computer in the whole world. No other computer offers you the power and versatility—the proven track record—of the Altair 8800 at a comparable price. No other hobby computer offers you the sophistication of Altair BASIC software or the wide variety of Altair modules and peripherals. No other hobby computer offers you the customer support of an Altair (free membership in the Altair Users Club, free access to the Altair Service Department and the Altair Software Library, and a free subscription to the Altair monthly publication, Computer Notes).

Order now and avoid the last minute Christmas rush!

*Christmas 75 Time Payment Plan

1K Altair for just $68.00 a month!

The Altair time payment plans allow you to be the owner of an Altair 8800 with 1,024 bytes of memory for just $68.00 a month. Each month (for 8 months) you send in your payment and we send you part of an Altair kit until you have the complete system. The advantages of this plan are NO interest or financing charge. GUARANTEED price based on today’s price, and free, immediate membership to the Altair Users Group including subscription to Computer Notes.

Our terms are cash with order, BankAmericard or Master Charge. If you send in an early payment we will make an early shipment. By the same token, a late payment will result in a late shipment. (After 60 days past due, the balance of the deal is cancelled. All payments must be made within 10 months.)

Total Price: $544 (Retail price: Altair $439, Memory $97. Postage and handling $5—total $544)

The Brother II Computer Terminal has a full alpha-numeric keyboard and a highly readable 32-character display. It has its own internal memory of 236 characters and complete cursor control. Also it has its own built-in audio cassette interface that allows you to connect the Brother II to any tape recorder for both storing data from the computer and feeding it into the computer. Requires an RS232 Interface Card.

SOFTWARE PRICES:

Altair 4K BASIC \$550
Purchases of an Altair 8800, 4K of Altair Memory, and Altair Serial I/O or Audio-Cassette I/O

Altair B BASIC \$500
Purchases of an Altair 8800, 8K of Altair Memory, and Altair Serial I/O or Audio-Cassette I/O

Altair EXTENDED BASIC \$750
Purchases of an Altair 8800, 16K of Altair Memory, and Altair Serial I/O or Audio-Cassette I/O

Altair PACKAGE ONE (Assembler, Text editor, text editor, system monitor)

Purchases of an Altair 8800, 8K of Altair Memory, and Altair I/O ONLY $310

NOTE: When ordering software, specify paper tape or cassette tape.

Warranty: 90 days on parts for kits and 90 days on parts and labor for assembled units. Prices, specifications, and delivery subject to change.

MITS "Creative Electronics"

MITS/6328 Lino N.E., Albuquerque, NM 87108 505/265-7553 or 262-1951

MAIL THIS COUPON TODAY!

☐ Enclosed is check for $☐ BankAmericard
☐ Altair 8800 ☐ Kit ☐ or Master Charge
☐ Altair Time Payment Plan
☐ Please send free literature ☐ Options (List on separate sheet)

☐Please send my order to different address
☐ Include $5 for postage & handling (List on separate sheet)

NAME __
ADDRESS __
CITY __________________________ STATE & ZIP ________________

MITS/6328 Lino N.E., Albuquerque, NM 87108 505/265-7553 or 262-1951

NOTE: Personal checks take 2-3 weeks for clearance. For immediate processing send money order or use charge card.
Construction details for a varactor-tuned master frequency oscillator featuring multiple frequency capability

The frequency control system for any receiver or transceiver being considered for construction is obviously of prime consideration. The voltage-variable diode (varactor) offers significant flexibility in the design and construction of a variable-frequency oscillator. Parallel-plate capacitors suffer from the effects of mechanical rigidity, temperature, humidity, and just plain volume limitations. The varactor is an order of magnitude smaller in size, and is less sensitive to thermal and mechanical stress. For frequency tuning applications, the varactor is considerably simpler to tune and align than its conventional mechanical equivalent.

When a voltage source is used to reverse bias a P-N diode junction, the width of the diode's depletion region varies in proportion to the applied voltage, with the width of the depletion layer increasing with increased bias. This results in an effective capacitance which acts as if it were in parallel with the diode. The amount of capacitance per unit voltage is a function of the variation of the impurity concentration in the depletion region of the diode's P-N junction. If a diode is coupled to a tank coil and the bias across it is varied, the tank circuit resonance will change in proportion to the change in diode capacitance.
circuit design

Fig. 1 shows a precision variable frequency oscillator suitable for general purpose receiver and transmitter frequency control. All rf generating and control components are completely contained within a standard aluminum chassis box.* Since the oscillation frequency is dependent upon the LC ratio and the tuning capacitance is controlled by a voltage rather than the position of parallel plates, a potentiometer is used to vary the diode bias between two voltage points corresponding to the desired upper and lower capacitance.

If an ordinary single-turn pot is used as the control element, resolution would be very poor, with bandspread similar to a single-turn parallel plate capacitor. To provide additional bandspread in a conventional vfo the frequency-determining capacitor is often mechanically driven by a system of gears so that a single turn of the tuning knob represents a small incremental change in frequency. If a varactor is used as the control element, a small change in voltage will cause a corresponding change in the oscillation frequency.

Although the voltage-control potentiometer for the varactor could be used with a mechanical reduction scheme, most single-turn pots have very poor resolution; at some small discrete points along the wiper surface discontinuities occur which could reflect in an undesirable voltage being applied to the varactor. In addition, many low cost, single-turn pots are often noisy. The noise can be caused by a faulty internal termination, foreign particles or oxidation of the resistance element. The noise then appears as a random voltage, which can cause erratic varactor operation.

If you want to use a single-turn pot in a varactor-tuned vfo, an expensive servo type unit is recommended. The most practical alternative is to use a ten-turn unit, and a wide selection is available at modest cost. With a ten-turn pot to control varactor bias, a full ten rotations of the knob are available for tuning or frequency selection.

All potentiometers have considerable friction associated with the moving element. As shown in fig. 1, a simple

*Full-size detail drawings of the chassis are available from the author by sending him a self-addressed, stamped envelope. Etched, single sided, 1/16" printed-circuit boards without holes are also available for $2.00 each, including postage. Write to M. A. Chapman, K6SDX, 428 3rd Street, Encinitas, California 92024.
A circuit for a varactor-tuned master frequency oscillator is shown in fig. 2. The frequency determining network consists of the inductor, L1, the NPO capacitor C1, and the varactor, a Motorola MV1652.* The 0.001 µF ceramic capacitor provides dc blocking of the varactor control voltage. A 0.005 µF ceramic or similar value will perform as well.

The NPO capacitor, C1, can be small as compared to the total change in varactor capacitance for the desired frequency range, and provides some compensation due to thermal effects in the system. Only slight loss in thermal stability would be apparent if a 10 to 30 pF dipped mica capacitor were used.

The frequency range is adjusted by the resistance network consisting of R1, R2 and R3. Maximum varactor capacitance occurs when the anode is at ground potential; minimum capacitance occurs when the anode is reverse biased at -20 Vdc. Potentiometers R1 and R3 act as voltage dividers for the main tuning pot, R2.

Current through the varactor is negligible, and scaling of the values shown for R1, R2 and R3 is possible. Transistor Q1 is the basic oscillating element.

*The Motorola MV1652 is a silicon epicap tuning diode designed for general tuning, trimming and afc applications. Capacitance at -4 volts bias is nominally 120 pF (108 pF minimum, 135 pF maximum). Capacitance ratio from -2 to -20 volts reverse bias is 2.6. The Motorola HEP R2505 closely meets these specifications. Editor
with Q2 and Q3 buffering the output signal to minimize the effects of external loading. The output of Q1 is coupled to both Q2 and Q3 simultaneously so that the buffer stage can drive external circuitry in a receiver or transmitter. The separate buffer stages permit the use of a high level signal from one section in a receiver mixer stage where the conversion gain is dependent upon having an input of 2 volts peak to peak or greater.

The signal from the other buffer stage can be conditioned through filters for transmitter applications requiring lower harmonic content. This is because the normal low-impedance filter will reduce the vfo signal far too much for most receiver mixer applications. The growing popularity of digital frequency displays is also good justification for the separate buffer as it isolates the counter clock from the other receiver circuits.

construction

With the exception of the varactor voltage divider and the inductor, all components are mounted on a printed-circuit board. Fig. 3 shows component placement on the board. All resistors are 1/4-watt units, although 1/2-watt parts may be used by mounting them vertically. Low-value coupling capacitors are of the dipped-mica type; however, glass or silver-mica units are satisfactory. The 0.05 μF ceramic bypass capacitors are low-voltage (20 volt) types; 50 or 100 volt capacitors are approximately the same size and should fit the board equally well. The rf chokes are miniature low-current types.

The selection of Q1, Q2 and Q3 is not difficult. The 2N4416 is the first choice and matches the board layout with case grounding provisions included to minimize random oscillation. The 2N5459 and similar three-terminal epoxy fets work equally well with only slight reduction in output levels. If you have two or three N-type fets in your junk box, give them a try. Even the most general-purpose chopper types I tried seemed to work well.

Before installing the PC board into the enclosure, attach the wire leads for the inductor, +12 volts and the varactor tuning voltage. The inductor can be temporarily attached to the ends of the wire and left to dangle free in the air. Connect +12 volts and an adjustable negative voltage (not greater than -20
volts) to the appropriate leads. Initial testing of the board can be accomplished in this fashion to insure that the circuit is working properly.

By varying the negative voltage between zero and -20 V, and adjusting the slug in the inductor, a 3 to 6 MHz signal should be present at the outputs. Although the design shown here incorporates the entire circuit in a compact package, the voltage divider and varactor-tuning potentiometer do not have to be adjacent to the varactor. This is one of the advantages of this circuit.

Table 1 lists the LC components and the setting of the frequency-control pot, R2, for three different frequency ranges. Final adjustment of R1 and R3 should not be accomplished until the assembly is installed in the receiver or transceiver because thermal gradients will affect the operating frequency. When adjusting R1 and R3 remember that there is a perceptible voltage change at both ends of the varactor control pot. Inexpensive ten-turn trim pots are recommended for precise adjustment. However, single-turn, low wattage units are satisfactory, although they may require a little more tweaking for final frequency selection.

To calibrate the vfo first set R2 to the appropriate voltage level shown in table 1 and adjust the slug in L1 for either the high or low end of the band by monitoring the output frequency with a digital counter or calibrated receiver. The output signal level at both J1 and J2 should be between 2 and 3 volts peak-to-peak, depending upon the device used at Q1.

power supply

A well regulated, low ripple -20 volt varactor bias supply is necessary for best results. The reason for this is apparent if you look at the 3.045 to 3.545 MHz oscillator parameters listed in table 1. In this case the ends of potentiometer R2 are at -3.5 and -17 volts, a total range of 13.5 volts. If a 13.5 volt change in varactor bias will produce a 500 kHz change in the operating frequency, a simple calculation will indicate how much frequency variation can be expected for each millivolt of ripple on
the varactor bias supply:

$$\Delta f = \Delta V_B \left(\frac{f_2 - f_1}{V_{B2} - V_{B1}} \right)$$

where Δf is the frequency variation, ΔV_B is the ripple on the bias supply, $(f_2 - f_1)$ is the tuning range, and $(V_{B2} - V_{B1})$ is the change in varactor bias for the tuning range. For the 3.045 to 3.545 MHz vfo

$$\Delta f = 0.001 \left(\frac{500}{13.5} \right) = 37.04 \text{ Hz/mV}$$

Therefore, for each millivolt of ripple on the bias line, there is a corresponding change of about 37 Hz in the oscillation frequency (this would change somewhat at opposite ends of the tuning band). However, the 1 mV ripple across the varactor is related to the ripple on the -20 volt source by the same ratio as the voltage divider. By simple proportion

$$\frac{-20 \text{ volts}}{-13.5 \text{ volts}} = \frac{\Delta V}{1 \text{ mV}} \quad \Delta V \approx 1.5 \text{ mV}$$

For each 1.5 mV of ripple on the -20 volt source you can expect a 37 Hz change in operating frequency. For CW and ssb operation it is desirable to keep the total frequency deviation to less than 150 Hz. This means that the -20 volt bias source should have a ripple content no greater than 6 or 7 mV. This can best be achieved by using precision IC voltage regulators similar to the one shown in fig. 5.

parts substitutions

My experience from previous articles indicates that home builders are often faced with parts substitutions, and usually write to the author for advice. A typical case might be the use of a 0.047 μF or other value bypass capacitor as a substitute for 0.05 μF. In this application any value between 0.02 and 0.1 μF should work fine. The 220 and 150 pF units may be replaced with mica capacitors up to approximately 450 pF. The only problem here is board fit, and some capacitors may necessitate some lead bending. The 50 pF mica output capacitors may be replaced with any value from 20 to 500 pF.

ham radio

Yaesu FT101 clarifier

I have just completed the modification to my FT101 as described in *ham radio*\(^1\). When the modification is completed, depending upon whether the clarifier was turned on or off, the frequency shift may not be a complete zero beat. If the clarifier is turned off when the mod is done, the clarifier will be about 2 kHz high when turned on in the USB mode. If the operator does not care about the calibration of the clarifier, this does not pose a problem, but if he prefers to use the calibration of the clarifier, the following is recommended: Set the clarifier pot to zero before beginning the alignment procedure, and follow the procedure described in *ham radio*. When this is done, and sidebands are changed, the clarifier need not be adjusted to a new zero point and will remain within calibration.

Since I always leave my clarifier turned on, and at the zero position, this is the most comfortable procedure for me. To change sidebands and retune the receiver I just use the clarifier. Otherwise I would have to readjust my thinking when changing sidebands and then turn on the clarifier (as the calibration would not be correct).

Eric Falkof, K1NUN

soldering-iron holder

How to build a soldering-iron holder which reduces tip heat when the iron is not in use

Perhaps the most important tool used by the electronics experimenter is the soldering iron. It is indispensable when making repairs or building new equipment, and is frequently turned on for hours at a time. This extended time of use takes its toll in corroded tips and burned-out elements.

Radio servicemen learned long ago that they could keep a sharp bright tip on their irons by cutting down the voltage to the iron during those long periods between use. Many old pros would jury-rig a holder on their service bench for this purpose. A bulky heating element was often used in series with the iron when it was at rest in the holder. When the iron was picked up a leaf switch would short out the heating element, allowing full 117 volts to the iron.

In later years commercial holders for soldering irons became available. Some fine thermostatically controlled holders are widely used in the aerospace industry. Printed-circuit boards have called for smaller irons and lower temperatures. Practice has shown that 50 to 70 volts is sufficient to keep the iron ready to go, but low enough to prevent damage to the tip. Variacs have also been widely used to set the iron voltage to the required value.

Described here is a nifty soldering-iron holder that makes use of modern readily available components, and can be assembled in a couple of hours. All parts can be obtained from your hard-

fig. 1. Using a commercial light dimmer to control soldering-iron heat.
fig. 2. How to use a semiconductor diode to control soldering-iron heat. In this circuit a microswitch shorts out the diode when the soldering iron is lifted for use. When the iron is placed in its holder, the diode is switched into the circuit, reducing the effective power to the iron, by virtue of half-wave rectification.

There are two methods for controlling soldering-iron heat. The first simply uses a light dimmer control as shown in fig. 1. Find the position of the knob where the desired heat is obtained at the soldering iron’s tip. Then remove the knob. Or, place a mark on the box so the knob can be easily reset when desired.

The other method makes use of a series diode to cut the effective power to the iron. Any power diode with a PRV rating of at least 300 volts will do. The diode is connected across the normally-closed terminals of a microswitch. When the iron is lifted for use, the internal spring in the microswitch operates, returning the switch to its closed position, shorting out the diode. Full power is then available to the iron (see fig. 2). A handy pilot light tells you that power is on and shows the effect of the series diode.

The pilot light shown in fig. 2 is a surplus 28-volt lamp with a 3k, 2-watt series resistor. A neon pilot light is okay if connected to the input, but only one of its two internal elements will glow on rectified ac. If used with the light dimmer, a neon pilot will extinguish at the lower voltage.

collection

First, start with an electrical utility box. Drill and tap for a 10-24 machine screw in the upper lefthand corner as shown in fig. 3. Drill straight through both sides of the box and use a 4-inch (10cm) long screw. This will make a sturdy mount for the holder. A spacer made from 1/4 inch (6.5mm) copper tubing will keep the holder from collapsing when tightening this screw.
Use a conventional wire clamp for the incoming ac line. Choose a socket for the output which has a third wire grounding lug. Use of the ground is important when soldering some ICs and MOS semiconductors. Be sure to connect a ground lead from your soldering iron to the circuitry being worked on in these critical applications.

The aluminum parts for the holder can be made from scrap 0.090 and 0.062 inch (2.0 and 1.5mm) aluminum sheet. Other thicknesses can be substituted to satisfy your own design. The heat shield is held in place with four pop-rivets. Two more pop-rivets are used to fasten the lever to the bottom of the iron holder. The lever may have to be shaped slightly to fit through the notch in the side of the utility box so it engages the microswitch. Microswitches are readily available at low cost from many surplus outlets.

Buy a tip cleaner sponge and tray (not shown in the photograph) from a local radio store and cement it on the base just to the left of the ac outlet. Be sure to keep it moistened with a little water. Finally, add rubber feet to the four corners of the base. With your new soldering iron holder you'll have no more burned benches or dull, corroded soldering tips.
If you are on 2-meters now
...but you’re tired of being stuck
with too few channels
...and you’d like more versatility
...and you really do need tunable
VFO
...and SSB-CW (don’t forget
OSCAR!)

...you need Kenwood’s
NEW

TS-700A

It solves all of these problems and
lots more. And best of all... the
TS-700A reflects the type of quality
that has placed the Kenwood name
out front.

- Operates all modes: SSB (upper & lower),
 FM, AM, and CW
- Completely solid state circuitry provides
 stable, long lasting, trouble-free operation
- AC and DC capability. Can operate from
 your car, boat, or as a base station through
 its built-in power supply
- 4 MHz band coverage (144 to 148 MHz)
 instead of the usual 2
- Automatically switches transmit frequency
 600 KHz for repeater operation... reverses
too
- Outstanding frequency stability provided
 through the use of FET-VFO
- Zero center discriminator meter
- Transmit/Receive capability on 44 channel
 with 11 crystals
- Complete with microphone and built-in
 speaker
- The TS-700A has been thoroughly field-
tested. Thousands of units are in operation
 throughout Japan and Europe

The TS-700A is available at select Kenwood
dealers throughout the U.S. For the name of
your nearest dealer, please write.

Kenwood... pacesetter in amateur radio

Distributed by

TRIO-KENWOOD
COMMUNICATIONS INC.

116 East Alondra / Gardena, California 90248
A few basic ground rules applied to the installation of this simple antenna can pay off in excellent performance. The halfwave dipole antenna is hard to beat as an effective radiator of rf energy when considered in terms of low cost and ease of construction and tuneup. I'd like to report the results of my experience with this simple antenna for those now using a dipole or who would like to try one. Careful attention to materials, installation, positioning (or orientation), and tuning can make a big difference in performance. Many amateurs swear by the dipole as an antenna for portable work because of its simplicity. The following ideas should be helpful in planning your next dipole or improving your existing installation.

The quarter-wavelength legs of my dipoles have been made of many different materials: insulated copper wire, annunciator wire, aluminum wire, tubing, and even TV twinlead. All will work, but my recommendation is number-14 stranded copper wire. It's easy to handle and causes fewer construction problems than most other materials. Its strength per unit length is excellent and it withstands weather for a long time without failing.

An inexpensive bow and arrow set should be included in your dipole inventory. An 8- or 12-pound (3.6 or 5.4 kg) test nylon fishing line tied to the end of an arrow can be shot over a tree, house roof or similar support. A heavier length of line is then secured to the original line and, in turn, secured to your antenna wire. The whole works is then pulled into position. If the far end of your support is a tree, the arrangement shown in fig. 1 is one way to eliminate problems with wire breakage due to wind, or wear of the securing line due to friction.

Other antenna supports that can be used are interlocking sections of TV masting, wooden doweling, or the A-frame mast which is described in the ARRL Handbook. A husky bamboo pole is another possibility.

installation

I devised the wagonwheel concept (fig. 2) to help bring order and logic into resolving the dipole antenna installation problem. Some may think this is a simplistic approach; however, it makes sense to me because any compromise with any segment of the wagonwheel
results in a flat wheel, and who needs that? My dipole wagonwheel has five segments. Let's consider them in order.

Positioning. It might sound trite, but the best antenna is one that's located as high as possible and in the clear. This means the radiating (and receiving) wire should be positioned as far as possible from telephone wires, metal house siding, fences, and the like. If the antenna is located close to trees or shrubbery, the electrical characteristic of the reflecting surface will be adversely affected.\(^1\)

Each of my dipoles is constructed for one band; ideally the height above ground for each antenna should be one-quarter wavelength minimum for that band. Notice I said "ideally." The ideal situation is hard to achieve. If you must compromise on antenna height, try to compensate by observing the other installation hints mentioned here. See fig. 2.

Another consideration is the placement of two or more antennas. I once tested a long-wire antenna that had an antenna tuner and an swr meter in the transmission line. I was transmitting using a dipole about 15-feet (4.58m) away. It turned out that the long-wire antenna was absorbing a great portion of the signal radiated from the dipole. This makes me wonder how much power is lost in direct and harmonic absorption. So now my rule is, "Keep antennas separated and preferably oriented in a different plane of transmission."

Resonant frequency. This is the second segment in the dipole wagonwheel (fig. 2). After selecting your desired band and the part of that band in which you wish to work, the leg lengths of your dipole are easily determined from formulas in the *ARRL Handbook*. The lengths given in these formulas are usually somewhat long, which is fine for cut-and-try installation.

The resonant frequency is most accurately determined when measurements are made as close as possible to the base of your antenna. You'll need an rf source and, depending on the technique you wish to use, an swr meter, grid-dip meter/antenna bridge, or noise bridge.

The swr technique is easiest to use in testing a dipole antenna. However, there are restrictions as to the readings because there is no direct method of exactly reading either frequency or impedance. After the dipole has been placed in its operating position, a test length of coax cable is attached to the feedpoint, which should be a balun (see the discussion on wagonwheel segment 4). The other end of the test coax line is attached to your rf source (a transceiver in my case).

My test piece of coax is cut for a multiple of one-half electrical wavelength at the frequency at which I wish to test my antenna. I cut the coax test line slightly longer than a multiple of

\(^1\) The swr technique is easiest to use in testing a dipole antenna. However, there are restrictions as to the readings because there is no direct method of exactly reading either frequency or impedance. After the dipole has been placed in its operating position, a test length of coax cable is attached to the feedpoint, which should be a balun (see the discussion on wagonwheel segment 4). The other end of the test coax line is attached to your rf source (a transceiver in my case).

My test piece of coax is cut for a multiple of one-half electrical wavelength at the frequency at which I wish to test my antenna. I cut the coax test line slightly longer than a multiple of...
one-half wavelength, then made a shorting device from a straightened safety pin to obtain this length exactly. This test line can be used for all three methods of antenna testing.

With the test line attached to the SWR meter and the RF generator, tune across the band in 100-kHz increments with the set tuned to maximum output, then

![Diagram of dipole wagonwheel](image)

Fig. 2. The dipole wagonwheel—a useful adjunct to the installation problem.

reduce power. The SWR meter is set at full forward reading, then reflected power is recorded. Where the lowest reflected-power reading occurs is the antenna resonant frequency. If the SWR is more than unity, don't worry. An SWR of 3 or 4 is acceptable in amateur work.

Impedance. Using the grid-dip meter/antenna bridge method, select the correct frequency probe for the grid-dip meter, and with the meter turned on, you can spot your desired frequency on the transceiver. The grid-dip meter acts as a transmitter for your desired frequency. Connect the test line to the antenna bridge. By varying the grid-dip meter dial, you'll get a dip on the antenna bridge at the antenna resonant frequency and you'll know whether the wire is too long or too short. The antenna bridge will also show antenna impedance.

In the noise bridge method, an AM receiver signal is used. The bridge is attached to the receiver and turned on. The noise bridge will produce an output that is like atmospheric noise. As you tune the receiver across the band for which your antenna is cut, you'll obtain a null in the noise at the antenna resonant frequency. As with the antenna bridge, the noise bridge has an impedance dial that, when set to your antenna impedance, will produce a noise null. You can read an antenna resonant frequency and impedance fairly accurately.

At this point I'd like to include two personal notes. First, the bridge operates only with an older type AM receiver. Second, be sure your leads from the receiver to the bridge are short (not over 10 to 12 inches or 25.4 - 30.5 cm). I made these notes not from textbook directions but from yardwork failures.

Antenna impedance matching can fill a large textbook. With a dipole you can approach 50 ohms by changing the angle of the legs from the horizontal or by using a matching system. With my 20-meter dipoles, I use a piece of wire 42 inches (1.07) long with a clip at each end. One clip goes to each side of the antenna. The bridge and noise bridge methods will also show whether the antenna impedance is correct.

At this point I'd like to include two personal notes. First, the bridge operates only with an older type AM receiver. Second, be sure your leads from the receiver to the bridge are short (not over 10 to 12 inches or 25.4 - 30.5 cm). I made these notes not from textbook directions but from yardwork failures.

Antenna impedance matching can fill a large textbook. With a dipole you can approach 50 ohms by changing the angle of the legs from the horizontal or by using a matching system. With my 20-meter dipoles, I use a piece of wire 42 inches (1.07) long with a clip at each end. One clip goes to each side of the antenna. The bridge and noise bridge methods will also show whether the antenna impedance is correct.
balun connection (fig. 3). This matching system works well for me. An alternative is a matching stub as shown in fig. 4.

Balun. For quite a time I didn't understand about the balun and therefore didn't use it. Later I used the balun incorrectly thinking that it tuned out all of my antenna faults. However, the balun is a necessary device in a balanced antenna system such as a dipole. Radio-frequency energy propagates along the coax at a different rate in the shield compared to that in the center conductor. The result is that antenna currents will appear on the outside of the shield braid, and these currents will radiate. Such radiation causes undesirable antenna performance and is often the culprit in TVI. The balun will often reduce rf radiation from the coax.

Transmission line. Use only top-quality foam-dielectric RG-8A/U coax cable. I have lengths of cable to reach from the antenna to my swr meter, which are cut in multiples of one-half electrical wavelength determined from charts in coax cable handbooks and checked with a grounding pin made by straightening a safety pin. Using the grid-dip meter and antenna bridge test described earlier will produce such a length of coax.

In testing the correct length of coax to use, start at the signal source with the antenna bridge/grid-dip meter setup and include swr meter, in-line wattmeter, and lowpass filter. Coax transmission line lengths can also be measured in one-half electrical wavelengths by using an antenna noise bridge.

dipole variations

The dipole is the basis of all high-frequency antenna systems. This simple structure can be expanded almost without limit to produce extremely complex directive arrays. For example, a directive antenna used in France in the early 1940s for shortwave transmitters operating around 8 MHz had three horizontally oriented bays of six dipoles each, with each set of dipoles arranged in a diamond configuration. Each bay of six dipoles constituted one element of a three-element beam antenna — director, driven element, and reflector. This system was known as a Chireix-Mesny array.

The currents along any diagonal of each diamond had to be exactly in phase, so that the antenna wires served both as radiators and transmission line — truly an installer's nightmare. Such arrangements were popular for a short time but were eventually abandoned because of construction expense and tuning difficulties.

I have installed wire directors and reflectors in my dipole systems, used coil traps, and tried to decrease physical space requirements by installing the dipole ends at different angles from the horizontal. I still like the simple half-wavelength dipole as described and built according to the wagonwheel concept shown in fig. 2. This is the antenna I use today — simple and effective.

references

YES! There is an antenna that your neighbors will love!

We know you’re not going to believe your neighbors will like your new 20 meter beam; but just wait until they CAN’T see it.

The trim-tenna™ is designed for the discriminating amateur who wants fantastic performance in an environmentally appealing beam.

It's really loaded! Up front there's a 13 feet 6 inch director with precision Hy-Q coils. And, 7 feet behind is a 16 foot driven element fed directly with 52 ohm coax.

The trim-tenna™ goes up on your roof, tripod, or chimney as easily as a color TV antenna.

The difference in on-the-air performance between the trim-tenna™ and a full size 2 element beam is negligible. But oh the difference between the trim-tenna™ and that dipole, long wire or inverted Vee you've been using.

trim-tenna™... 129.50 post paid U.S.A. from DenTron Radio or your favorite dealer.

- The secret is proper placement of factory sealed Hy-Q inductors
- Heavy gage seamless aluminum
- Light weight
- SWR less than 2:1 over the entire band

DenTron Radio Co., Inc.
2100 Enterprise Parkway
Twinsburg, Ohio 44087
(216) 425-8073
The Super Super Tuner has evolved.

The phenomenal performance of the 1KW Super Tuner™ has naturally led to the development of our dynamic 3KW Super Super Tuner, commonly known on the air waves as the "DenTron SST."

This 22 pound slave to full power amplifiers promises 3KW PEP comfort. The "SST" has continuous tuning coverage from 1.7 mhz to 30 mhz.

Whether your antenna be fed with single wire, Coax, or balanced tuned feeders "SST" efficiently tunes it with ease.

DenTron Radio Co.—Proud to say "Made in the U.S.A."!

Super Tuner™ (A) $119.50 post paid in U.S.A. from DenTron Radio or your favorite dealer. Super Super Tuner™ (B) $229.50 post paid in U.S.A. from DenTron Radio or your favorite dealer.

DenTron
Radio Co., Inc.
2100 Enterprise Parkway
Twinsburg, Ohio 44087
Collins R390A modifications

Several simple modifications for the R-390A which can considerably improve performance

With the R390A receiver, it sometimes pays to work around a built-in problem or known trouble, rather than make extensive repairs. Here are some simple and somewhat complex modifications that may help, depending on the trouble you have.

Audio section. If you have audio problems, it may be due to a mismatch. All of the audio outputs are 600 ohm. A pair of high-impedance (3000 ohm) headphones will work as is. For low-impedance (8 ohm) speaker or phone use, the output transformer from a small tube type receiver or one of the universal replacement types will provide a reasonable match.

If there is still trouble, the entire audio section can be completely bypassed by using the diode load terminal at the back of the set. Leave the jumper connected and couple the signal to an outboard amplifier and speaker through a suitable blocking capacitor (fig. 1). A hi-fi amplifier used with the R-390A will give you beautiful shortwave broadcast-band listening. The added clarity will help amateur band reception too.

I-f section. Ssb reception with the R-390A has a mushy audio quality because of the envelope detector and the low bfo-to-signal ratio. One solution is to rewire the detector as a product detector.1

The set can also be used with a companion ssb adapter fed by the i-f output jack. There are advantages to building an adapter for the set rather than converting the existing circuit: you will have more room to work with; you can choose your own parts layout; and, you can build as elaborately as you want. More important, you should be able to get better performance from a totally outboard unit than by piece-meal modifications to the set.

Originally these sets were stagger tuned to improve the bandwidth characteristic. For amateur use the i-f stages can be retuned to the same frequency, which noticeably increases gain.

Rf section. When you increase the gain you also increase the noise. The rf gain control works in both the rf and i-f sections. As the set is now there is no way to vary the i-f gain without adversely affecting the rf stage.
The rf stage determines the overall sensitivity and noise level of the set. Removing the rf amplifier cathode circuit from the rf gain control and grounding it directly lets the stage work at its maximum gain and sensitivity. The cathode resistor (fig. 2) runs from the tube socket to a nearby standoff insulator where it connects with the rf gain control wiring.

Remove the wire from the standoff and tape it out of the way so it can't short. Then run a short wire from the resistor end on the standoff to a convenient ground lug. It would be a bit fussy, but you could run a shielded cable to a switch on the front panel and make the modification optional.

While the modifications are simple to make, you will need the manual to safely disassemble and reassemble the rf deck. Without it, it is too easy to damage the set or misalign the tuning mechanism.

It is possible to position the rf deck on its side in the main chassis so that the cables will just reach and you will be able to get at the bottom of the subsection chassis for testing or trying modifications with the set in operation.

Be careful when doing this as there is almost no slack in the cables and it is very easy to break one or damage some other part. Replacing one of the coax cables would try the patience of a saint.

Low sensitivity. If your R-390 seems to have lower sensitivity and higher noise below 8 MHz, and no fault can be found, try bridging either C281 or C282 (first mixer output coupling capacitors) with a higher value; the gain may come right up. The value probably isn't critical; I replaced both capacitors with 100 pF.

Antenna matching. The unbalanced antenna jack, J103, was intended for a whip antenna with a very short lead-in or a random length of wire. If you are using a longer length of coaxial cable you may be losing most of the signal.

A UG-970/U adapter, used with balanced input jack J104, makes the necessary changes with a substantial improvement. The following modification, originally issued by the Navy as a field change, does much the same thing.

1. Disconnect plugs P205 and P206 from the antenna box inside the set and reverse them: P205 to J106 and P206 to J105.
2. Connect a shorting plug to J104.
3. Connect the antenna to J103 which, because of the internal changes, provides a much better match to the antenna.

Reference

Ham Radio
trig functions on a pocket calculator

There are several ways of evaluating log, exponential and trig functions on small hand-held calculators. Here is a method for trig functions which offers some advantages if the calculator has square-root capability. Methods for finding square roots on four-function machines were previously described in *ham radio*.

The usual scheme is to run out the calculations using the series expansion for the sine or cosine. For the simple four-function machine this has the advantage of requiring only four basic operations. However, it has some disadvantages. The infinite series expressions are difficult to remember. Also, a number of terms of the series must be added together to arrive at a value accurate to three or four decimal places.

With square-root capability sine, cosine and tangent can be done quite simply by making use of a few trig identities. A useful approximation is that for small angles, the sine, the tangent and the angle, expressed in radians, are equal. **Table 1** lists some values along with the error for using the angle (in radians) rather than the sine or tangent function. Note that the values for the sine are somewhat closer to the actual values than for the tangent — about a two to one difference. Up to 20 degrees the maximum error is 4 per cent; limit-

<table>
<thead>
<tr>
<th>θ (degrees)</th>
<th>θ (radians)</th>
<th>sin θ</th>
<th>error</th>
<th>tan θ</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>0.01745</td>
<td>0.0175</td>
<td>0</td>
<td>0.0175</td>
<td>0</td>
</tr>
<tr>
<td>2°</td>
<td>0.03491</td>
<td>0.0349</td>
<td>0</td>
<td>0.0349</td>
<td>0</td>
</tr>
<tr>
<td>5°</td>
<td>0.08727</td>
<td>0.0872</td>
<td>0.1%</td>
<td>0.0875</td>
<td>0.3%</td>
</tr>
<tr>
<td>10°</td>
<td>0.17453</td>
<td>0.1736</td>
<td>0.5%</td>
<td>0.1763</td>
<td>1.0%</td>
</tr>
<tr>
<td>15°</td>
<td>0.26180</td>
<td>0.2588</td>
<td>1.2%</td>
<td>0.2679</td>
<td>2.3%</td>
</tr>
<tr>
<td>20°</td>
<td>0.34906</td>
<td>0.3420</td>
<td>2.1%</td>
<td>0.3640</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

| θ (RAD) = \(\frac{\pi}{180} \times θ (DEG) \) (1) |
| FOR 0 ≤ θ ≤ 15° sinθ ≈ tanθ ≈ θ (RAD) (2) |
| cosθ = \(\sqrt{1 - \sin^2θ} \) (3) |
| tanθ = \(\frac{\sinθ}{\cosθ} \) (4) |
| sin2θ = 2sinθ cosθ (5) |
| sinθ = cos(90° - θ) (6) |

sult, the above procedure is done in two steps at angles one quarter and one half the desired angle. Between 30 and 45 degrees this method is almost mandatory since the error above 15 degrees is fairly large. An example, table 2, has been worked out for the sine of 45 degrees. The calculated value differs by only 0.5 percent from the actual value.

For angles between 45 and 90 degrees use relation (6). Find the sine and then the cosine of the complement of the angle desired.

<table>
<thead>
<tr>
<th>Angle (°)</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.25</td>
<td>(\sin 11.25° = 2 \times \frac{\pi \times 11.25}{180} \approx 0.19635 \approx \sin 11.25°)</td>
</tr>
<tr>
<td>22.5</td>
<td>(\cos 22.5° = \sqrt{1 - (0.19635)^2} = 0.98054)</td>
</tr>
<tr>
<td>45</td>
<td>(\sin 45° = 2 \times 0.19635 \times 0.98054 = 0.38505)</td>
</tr>
<tr>
<td></td>
<td>(\cos 45° = 2 \times (2 \times \sin 22.5°) \times 0.98054 = 0.92289)</td>
</tr>
<tr>
<td></td>
<td>(\sin 45° = 2 \times 0.38505 \times 0.92289 = 0.71073)</td>
</tr>
<tr>
<td></td>
<td>(\sin 45°) (from trig table) = 0.70711</td>
</tr>
<tr>
<td></td>
<td>(\text{error} = \frac{0.71073 - 0.70711}{0.70711} \times 100% = 0.512%)</td>
</tr>
</tbody>
</table>

As indicated in table 1, the error for the tangent is somewhat larger than for the sine when using the angle in place of the function. Since the above steps provide simple calculations for both the sine and cosine, relation (4) can be used to find the tangent of any angle.

The trig identities shown here should be at least as familiar as the series expansions for sine, cosine and tangent. In fact, relation (5) is really the only special identity in the group; the others come from trigonometry definitions.

Cal Sondgeroth, W9ZTK

copper-plated circuit boards with terminal inserts

Perfboard with terminal inserts has served well for many projects. What it lacks is the all-important ground plane that an etched board provides. This ground plane can be the difference between a quiet and a noisy mike preamp or the difference between a smoothly acting rf or converter stage and one that has a will of its own.

The answer I developed is a marriage of a circuit board copper plated on one side only with the perf board insert terminals. Insulated islands for the terminals was the immediate problem. The solution for this was to use a bit designed to rout channels in wood. Chucked in the drill press, this routing bit takes perfect ¼-inch (6.5mm) circles of copper from the board. Holes are then drilled in the center of the newly created insulated islands and the perf board terminals are inserted. The circuit is then wired point-to-point, with any components requiring a ground being terminated in a hole in the copper ground plane and soldered directly to the copper.

Layout is a common sense approach. Merely pencil a grid on the copper surface, determine where you want the islands, and apply the router bit. A few moments practice on a scrap piece of board will quickly give you the feel of just how much pressure to apply with the router bit to get perfect removal of copper without biting into the board proper.

Duplicate boards may be made by applying identical grids to the blanks. After the islands have been created, the boards may be stacked and drilled in one operation for terminal insertion. If you use care, this method may be used with board material plated on both sides.

Allan S. Joffe, W3KBM
headphone cords

For some time I have tried to purchase replacement earphone cords for my headphones. Over one dozen New York merchants told me they didn't stock them.

Various alternatives (including four-wire rotator cable) were tried, but none of them were satisfactory. If you are faced with a similar problem I would suggest trying Trimm, Inc., for suitable replacement cords.

I tried both their no. 811, standard pin tip terminals, black cotton braid, 4½ feet (1.4m) long; and their no. 870, similar but 5 feet (1.5m) long with a waterproof outer braid. Costs range from $2.00 plus postage. A card to Trimm, Inc., Post Office Box 489, Libertyville, Illinois 60048 could save you a lot of exasperation.

Neil Johnson, W2OLU

increased selectivity for the Collins 75A4

The ultimate skirt response of the 75A4 selectivity curve can be improved considerably by replacing the second 455-kHz i-f amplifier tank circuit (L27-C80) with a 3.1-kHz Collins mechanical filter (F455J31) as shown in fig. 1 (modification suggested by W4ZKI). Since most amateurs who use the 75A4 for ssb operation have replaced the original 3.1-kHz filter with a 2.1-kHz filter, the 3.1-kHz unit is seldom used. If a 3.1-kHz filter is not available, a 4.0 kHz filter (F455J40) will still provide a noticeable improvement in skirt response. The L27-C80 tuned circuit is in the i-f can next to the filter capacitor, C94.

Remove the bottom panel of the receiver, disconnect all the leads which go to the L27 i-f can, and remove the two retaining nuts (don't discard the i-f can — you may want to restore the receiver in the future). Cut out a small piece of thin aluminum, 1-3/4 inch (4.4cm) square, and punch a 3/4-inch (2cm) hole in the center for a 9-pin tube socket. Drill the two chassis-mounting holes and position the tube socket so pins 1-2 and 6-7 are aligned with them. Install the
socket on the plate and fabricate a small brass shield about 5/8 inch (1.6cm) high. This shield is placed across the tube socket between pins 3-4 and 8-9 and soldered in place (see mechanical filter sockets A, B and C for reference). Ground all unused socket pins.

Wiring the new filter into the circuit is straightforward and requires only four mica capacitors and one inductor. (C201-C204 and L201 in fig. 1). Install the two 100 pF filter resonator capacitors at the input and output socket pins (the filter is symmetrical so either set of pins may be used as the input). Install a small terminal strip next to V8 for the junction of R45, R47, C70, C210 and L201. Delete C69 and R46 as they are not used in the new mechanical filter circuit.

An improvement in i-f gain can be obtained by removing resistor R29 from the plate circuit of V6. This resistor swamps out the Q of L24 and increases the bandwidth for a-m reception; it is not required for ssb or CW operation.

Jim Fisk, W1DTY

muting microphones

Other amateurs must be faced occasionally with the same problem I was: that of disturbing others in the household when talking into a microphone. Headphones, of course, eliminate any speaker disturbance. The microphone problem was solved by attaching a heavy-walled cardboard tube (of the proper diameter) about 3 inches (10cm) long to the face of the microphone, making sure the joint is completely sealed. By pressing your lips into the open end of the tube, and speaking in a whisper, no sound can be heard in the shack. The fact that the voice is completely retained within the tube compresses the sound, resulting in increased talk power, although it may sound like you're in a barrel. Microphone gain must be reduced considerably.

Ralph Cabanillas, Jr., W6IL

You're Ahead when mobile with a Larsen Kürlrod® Gain Antenna

- TOPS IN PERFORMANCE
- LOW SILHOUETTE GOOD LOOKS
- V.S.W.R. LESS THAN 1.3 TO 1
- HANDLES FULL 200 WATTs

Larsen Kürlrod VHF Antennas are the result of over 25 years of practical experience in the two-way radio field. They are rugged, reliable and built with infinite care to assure top performance. Models available to fit all standard mounts and for all popular amateur VHF frequencies. Each is equipped with the exclusive Larsen Kürlrod, your assurance of maximum efficiency and no loss of RF through heat. Comes complete with all instructions. Models for 2 meters deliver a full 3 db gain over 1/4 wave whips...the 420-440 MHz and 440-460 MHz collinear... 5 db gain and full 100 watts capability. Sold with a full money back guarantee...the most liberal in the mobile antenna field. Whether you work via repeater or simplex you deserve to have a Larsen Kürlrod. Get full fact sheet and prices, today.

Larsen Antennas
11611 N.E. 50th Ave. P.O. Box 1686
Vancouver, WA 98663
Phone 206/573-2722

november 1975
speech processing

Dear HR:

ZL1BN's article on speech processing in the February, 1975, issue of *ham radio* covered much of the knowledge which has been available in the literature to the amateur. However, a few ideas to which I have been exposed were omitted. First, no reference was made to the excellent article in *QST* which developed a theoretical and empirical model of intelligibility, a concept which continues to be confusing to most hams with whom I have had relevant discussions.

Secondly, ZL1BN is well justified in his concern for problems of signal-to-noise degradation and power inefficiency resulting from heavy clipping levels, as can be attested by those who have heard, say, a Signal One under full clipping and power in heavy competition. One method which I have found effective in reducing extraneous noise in conjunction with my rf clipping system is the use of an "inverted" audio compressor; that is, an expander. A moderate amount of expansion (5 to 10 dB) seems to keep ambient noise to a minimum without degrading intelligibility. Adapting a good-quality audio compressor such as the RP Electronics RPC-3* to the expansion mode is extremely easy as shown in fig. 1.

Thirdly, an important factor in

fig. 1. Basic circuit of the RP Electronics RPC-3 speech processor. Expand function is added by breaking connections between R3 and Q2 gate and between Q1 source and ground and connecting Q1 source to the junction of R2 and C1.
communications theory (but almost entirely overlooked in the amateur literature) is the role of redundancy in effective transmission of information. On several occasions I chanced to overhear a weak signal of a young amateur who was using a reverberation system in the audio string and was very much impressed at the apparent readability improvement of his signal. I have also heard the use of reverberation by foreign broadcast stations with apparent improvement of intelligibility. Parity testing, a form of redundancy, is standard practice in computer data transmission.

Finally, it has been mentioned that rf clipping simulates a form of variable pulse-width modulation, which is essentially digital, as opposed to the analog waveform characteristics of unprocessed audio. With the recent introduction of relatively low-cost but powerful and fast mini-computer systems, it may be feasible at this time to develop a real-time speech-processing algorithm for precise computerized control of speech processing parameters.

James G. Limber, K9ZAT
Chicago, Illinois

rf interference

Dear HR:

One common type of RFI to which hi-fi equipment is susceptible is the "thumps and bangs" which come from the thermostats in refrigerators and central heating systems. It is not generally realized that these noises are usually caused by rectification of the radio-frequency component of the unwanted signals, and that any hi-fi equipment which is susceptible to "fridge crunch" is almost certainly also susceptible to other forms of rf interference.

If your neighbor complains of interference, it is a good approach psychologically to say something along the lines of, "Yes, it is a problem with some hi-fi equipment — it probably picks up your refrigerator as well." Nine times out of ten you will hit the nail on the head and get your point across. Your neighbor's displeasure at having to get his hi-fi fixed to remove your transmissions will be reduced if you point out that standard RFI measures will

*Available from RP Electronics, Box 1201, Champaign, Illinois 61820.
usually remove other unwanted noises as well.

clipping and rfi

It may come as a surprise that while a speech clipper makes your signal sound louder to other amateurs, it actually reduces the level of interference picked up on high-fidelity installation. With an ssb signal the hi-fi system registers the difference between the peaks and the troughs of your voice, and so theoretically if you clip sufficiently (enough to lift the noise between words to peak level), all amplitude variations will be cancelled, and the RFI will disappear.

In practice, if an rf speech clipper is used with around 6 to 10 dB of high-frequency pre-emphasis, about 30 dB of clipping can be applied without objectionable distortion. At this level of clipping, unless you run a very substantial linear, input power has to be reduced somewhat and a combination of this with the clipping can result in a considerable reduction in RFI along with a net gain in talk power.

Some experimenting has been done along these lines in Europe where the clipping has been taken to the extreme of being infinite — a block diagram of the system developed by PA0KT is shown in fig. 2. Although all the audio components are at the same level, the signal is still quite readable. This may seem like a drastic approach, but in difficult interference problems where unsympathetic licensing authorities are involved, it has solved the problem.

Harry Leeming, G3LLL
Holdings Audio Center
Blackburn, England

MANY SYSTEMS THROUGHOUT THE COUNTRY ARE USING SUBAUDIBLE TONE FOR INPUT AND CONTROL ACCESSING. IF YOU ARE ONE OF THIS GROUP OR ABOUT TO BE, YOU SHOULD SEE "THE FM PEOPLE" FOR ALL YOUR ACCESS NEEDS.

MANY SYSTEMS THROUGHOUT THE COUNTRY ARE USING SUBAUDIBLE TONE FOR INPUT AND CONTROL ACCESSING. IF YOU ARE ONE OF THIS GROUP OR ABOUT TO BE, YOU SHOULD SEE "THE FM PEOPLE" FOR ALL YOUR ACCESS NEEDS.

REEDS $4.00 ea.

If you were to buy them new you might have to spend a small fortune. We have a good selection of used Motorola TU217, "large gold" sender reeds. If you are considering adding tone here's your chance to save some bucks. Choose from the frequencies as we have an ample stock. Other tones also available in limited quantity. (frequencies listed in HzPS)

107.2 114.8 127.3 136.5 146.2 156.7 167.9

ENCODERS & DECODERS

Subaudible tone equipment is easy to add to present radios. We stock the proven Communications Specialists line of encoding and decoding boards. Take your pick, and in a short time convert your rigs to subaudible access capability.

STD ENCODE & DECODE

For use with "large gold" Motorola reeds & others. Decoder utilizes relay output. Size 1 1/2 x 4 x 3/4 in. (less reeds)

Encoder Kit $8.95
Decode Kit 9.95
Encode Wired 13.95
Decode Wired 14.95

MINIATURE

For use with small reeds such as Motorola K1000 or TLN6709. Size enc 2 1/2" x 1 1/2" x 3/8", decode 3 3/8" x 1 1/2 x 1/2 in. (less reed)

Encode wired $14.95
with reed 22.45
Decode wired 24.45
with reed 38.45

SUB MINIATURE

NEW ME3 reedless encode. Stable and reliable. Size prox. .29 cu. in. Fits in most any radio.

$29.95

TEST EQUIPMENT

In checking our inventory we find that we have the following items. Condition varies from unchecked to working.

Beckman 7350A Universal Eput & Timer w/manual .. $150.00
Beckman 5580 Reference Generator ... 100.00
Beckman 7570 amp with 7571 & 7572 convertor to 220 MHz 100.00
Beckman 7160 EPUT meter ... 100.00
Beckman 7570 amp with 7571, 7572 & 7573 convertors to 1,000 MHz 150.00
Doolittle FD12 Freq & Deviation meter ... 75.00
Dumont 304A Scope ... 50.00
Gen Radio 1001A Standard Signal Gen. ... 275.00
Hew Packard 400AB, VTVM .. 40.00
Hew Packard 400C, VTVM, recent cal. ... 80.00
Marconi TF934 FM Deviation meter .. 75.00
Measurements 111 Crystal calibrat ... 20.00
Measurements 115 Amplitude modulator .. 50.00

SEE YOU AT SAROC WITH LOTS OF GOODIES

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.

STORE HOURS: Mon.-Thurs. 9:30-6:00, Fri. 9:30-8:00, Sat. 9:30-3:00. Closed Sun. & Holidays

INQUIRIES WITHOUT ZIP CODE OR CALL ... NO ANSWER

WANTED: Good used FM & test equipment. No quantity too large or small. Finders fees too.

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778
TELEX: 72:8310

More Details? CHECK-OFF Page 126

november 1975
11th Annual SAROC
Amateur Radio's Prestige Convention
January 8-11 1976

DEL WEBB'S HOTEL SAHARA
LAS VEGAS, NEVADA

Special Hotel Sahara Safari Airfare Packages from selected cities

SEE OUR AD IN THE FLEA MARKET — PAGE 115 FOR COMPLETE DETAILS

SAROC
Box 945, Boulder City, Nev. 89005

I SEE OUR AD IN THE FLEA MARKET - PAGE 115 FOR COMPLETE DETAILS
ALRIGHT VHF'ERS
YOU'VE HAD PROMISES FROM OTHERS
NOW KLM DELIVERS!

EXCLUSIVELY IN THE U.S.A.

★ KLM-Multi-2000
144-148 MHz
CW/SSB/FM TRANSCEIVER
$795
1-10 WATTS FM
15 WATTS SSB

★ KLM-Echo-70CM
432 MHz CW/SSB TRANSCEIVER
$495

★ KLM-Echo-II
144-146 MHz
CW/SSB TRANSCEIVER
$389
10 WATTS SSB/CW

BE A WINNER — COMPLETE YOUR STATION WITH:

VHF & UHF ANTENNAS:
8, 11 EL. 50-52 MHz
12, 14 & 16 EL. 144-148 MHz

14 EL. 219-226 MHz
16 EL. "LONG BOOM' 430-434 MHz

VHF & UHF AMPLIFIERS:
40, 70 & 140 WATT 2 MTR FM/CW
70, 140 WATT 2 MTR SSB/FM/CW
40, 70 WATT 432 MHz FM/CW

HF ANTENNAS:
20, 15 MTR "BIG STICKS"
13-30 MHz LOG TRI-BAND

KLM ELECTRONICS
17025 LAUREL RD., MORGAN HILL, CA. 95037
"NEW LOCATION"
PHONE (408) 779-7363

More Details? CHECK—OFF Page 126

november 1975
The new Rohde & Schwarz directional rf power meter, type NAUS-80, provides simultaneous measurement of incident and reflected power over the frequency range from 25 to 1000 MHz without any switching or changing measuring heads. The indication accuracy of the power meter is within 4% of the reading and ±1% of full scale - this is a vast improvement over the accuracy of most rf power meters which is usually specified only as a percentage of full-scale deflection. Although the NAUS-80 power meter is designed for operation over the range from 25 to 525 MHz, it is usable to 1000 MHz. If desired, the factory can calibrate the instrument to 1500 MHz at slight additional charge. Power ranges are 3.2, 10, 32, 100 and 320 watts full scale.

The NAUS-80 rf power meter consists of two units: the measuring head, and the indicating unit. The measuring head contains a symmetrical directional coupler which measures both incident and reflected power. Networks within the measuring head compensate for the voltage coupled out, which rises with frequency. The coupling attenuation and voltage division in the directional coupler are adjusted so that the rf rectifying diodes operate only in the square-law region. This permits the use of easy-to-read, linear meter scales.

The small rectified voltage (10 μV to 25 mV) from the directional coupler is amplified in a chopper amplifier which converts the dc input voltage to a square wave which is boosted 50 dB in a series-connected amplifier. The amplified signal is then applied to an attenuator which is ganged with another attenuator in the feedback path. In the 3.2 watt position attenuation is 0 dB, increasing 10 dB with each measurement range. Since the attenuation in the feedback path is reduced simultaneously in corresponding amounts to the main attenuator, the loop gain of the chopper amplifier is the same on all measurement ranges so the meter indications are free of oscillation and transient response remains constant.

The attenuator is followed by the final amplifier where the signal is boosted by another 50 dB and then fed to a synchronous detector. The transistors in the synchronous detector are driven together with the same square-wave generator which drives the chopper amplifier. The synchronous detector operates into a charging capacitor; a series resistor is included to form a low-pass filter with a low cutoff frequency. The voltage at the output of the lowpass filter (approximately 300 mV on all measurement ranges for full-scale deflection) is connected to the panel meter.

The feedback voltage to the chopper amplifier is fed back through a thermistor which compensates for the slight
temperature effect on the rf rectifying diode in the directional coupler. Temperature effect on the meter indication is less than 0.25% (referenced to indication at 25°C).

Although the directivity of the directional coupler is 30 dB or more above 30 MHz, finite reflected power would be indicated when working with matched terminations. The designers compensated for this effect by connecting the inverting output of one channel to the non-inverting input of the other channel through resistors. The rectified voltage of the incident power being measured in channel A is attenuated such that the voltage available at the inverting input of the channel B chopper (reverse power channel) is virtually the same as the voltage present at the non-inverting input which develops because of the finite directivity of the directional coupler. The two voltages balance out and, as a result, there is no indication on the reflected power meter. The effect is the same as if the measurement were made with a match-terminated directional coupler with infinite directivity.

Our staff had an opportunity to evaluate the NAUS-80 recently, and it proved invaluable in setting up the tuned input circuit of a high-power two-meter linear for minimum VSWR, and measuring drive power. Its high reflected power sensitivity and panel meters for both incident and reflected power are especially helpful in quickly evaluating the effect of circuit adjustments. Since the instrument is completely portable, it can also be taken to the top of your tower for precise antenna checks.

The Rohde & Schwarz NAUS-80 rf power meter is available for 50, 60 or 75 ohms. Various types of connectors are available including type N, BNC and UHF, and may be changed in the field. The built-in power supply uses five 1.5-volt D-size dry cells with an estimated operating life greater than 7000 hours (total power drain is 1 mA or less,
The design, craftsmanship and technical excellence of Telrex—

Communication Antennas

have made them the standard of comparison throughout the world! Every Telrex antenna model is engineered, precision machined, tuned and matched, then calibrated for easy and correct assembly at your site for repetition of our specifications without 'cut and try' and endless experimentation.

"the-performance-line"

with a "MATERIAL" difference!

two-meter fm transceiver

The Horizon 2 is a new, 12-channel, 25-watt two-meter radio developed by Standard Communications Corporation. This rig is an outgrowth of Standard Communications' land/mobile and maritime equipments, which must meet rigid FCC type acceptance requirements for the transmitter section. The receiver section meets the proposed maritime FCC receiver specifications as well as the current receiver DOC type acceptance requirements for use in Canada.

Some of the features of the Horizon 2 include 25 watts nominal output; 23 watts minimum. The unit is capable of using 12 channels; three are included: 94/94, 52/52, and 16/76. Crystal net capacitors are included for both transmit and receive. The receiver front end has a selective ceramic filter that provides -65 dB minimum selectivity.
Plenty of audio power is available — more than 3 watts — perfect for the noisiest mobile installation. The rig is center tuned to 146.94 MHz and will operate on the low and high ends of CAP and MARS frequencies.

The Horizon-2 amateur net price is $225.00, which includes the three channels mentioned above. For other channel options and more data, write Standard Communications Corporation, P.O. Box 92151, Los Angeles, California 90009, or use check-off on page 126.

250-MHz frequency counter

The K-Enterprises model 4X6 six-digit frequency counter covers the frequency range from 500 kHz to 250 MHz with sensitivity of 80 mV or less at 150 MHz. The input impedance of the counter is 50 ohms and maximum input voltage is 15 Vrms or 50 Vdc. The time base uses a crystal clock with an accuracy of 10 ppm over the temperature range from zero to +40°C. The model 4X6, which contains a built-in power supply for operation from 117 Vac, is priced at $250. The model 4X6C, which includes a temperature compensated crystal oscillator with 0.0005% accuracy from -30° to +60°C, is priced at $270. Add $2.50 to cover postage and insurance.

For more information on the K-Enterprises 250-MHz frequency counters, write to them at 1401 East Highland, Shawnee, Oklahoma 74801, or use check-off on page 126.

fm power amplifier

Specialty Communications Systems has introduced a new Porta-Pack 25-watt power amplifier system with a self-contained battery pack which can be carried over your shoulder. Designed for use with the popular H-T fm trans-
LOW COST DIGITAL KITS

NEW Bipolar Multimeter: AUTOMATIC POLARITY INDICATION

Model ES 210K
Displays Ohms, Volts or Amps in 5 ranges. Voltage from 100 Microvolts to 500 V. Resistance from 100 Megohms to 1 Megohm. Current from 100 Nano Amps to 1 Amp. $80.00 Case included. (Optional probe $5.00).

40 MHz DIGITAL FREQUENCY COUNTER:
- Will not be damaged by high power transmission levels.
- Simple, 1 cable connection to transmitter's output.

ES 220K - Line frequency time base.
1 KHz resolution . . . 5 digit: $79.50. Case extra: $10.00
ES 221K - Crystal time base.
100 Hz resolution . . . 6 digit: $109.50. Case extra: $10.00

DIGITAL CLOCK:
ES 112K/124K - 12 hour or 24 hour clock: $46.95. Case extra: Metal $7.50

CRYSTAL TIME BASE:
ES 201K - Opt. addition to ES 112K, 124K or 500K
Mounts on board. Accurate to .002%. . . . $25.00
ES 200K - Reminds operator that 9 minutes and 45 seconds have passed. Mounts on ES 112 or 124 board. Silent LED flash: $10.95. Optional audio alarm $4 extra.

SPECIAL OFFER: Ask about our unique Clock Kit Special. Prices as low as $20.00!
Each kit contains complete parts list with all parts, schematic illustrations and easy to follow, step by step instructions. No special tools required.

ORDER YOURS TODAY:
Use your Mastercharge or Bank Americard
Money Back Guarantee

505½ Centinela • Inglewood, Ca. 90302 • (213) 674-3021

radio-sentry mini-meter

Mini-Meter, a new amateur fm transmitter monitor, has been introduced by Electronic Specialists. The transmitter field strength is continuously monitored, with the status displayed on a miniature meter. Ultra compact, Mini-Meter operates without batteries or wires and can be carried in your pocket for on-the-spot transmitter checks. Deteriorating performance can be spotted early, allowing timely maintenance. The unit is supplied with a convenient, detachable mounting arrangement. State frequency. $27.95 postpaid from Electronic Specialists, Box 122, Natick, Massachusetts 01760.
The Clegg FM-DX has many advantages over competitive 2-meter transceivers. Here's seven reasons why you should look to Clegg's FM-DX before you invest in any FM rig.

1. **FULL** 2-meter coverage from 143.5 to 148.5... includes most MARS frequencies.

2. **CLEAN**, beautiful 35-watts transmitter output... enough for good simplex range when you want to escape the repeater crowd.

3. **SIMPLICITY** of operation... stability and accuracy of the Clegg synthesizer.

4. **RUGGED** modular construction... will outlast most of the lesser quality radios in today's marketplace.

5. **UNPRECEDENTED IMMUNITY** from intermod... thanks to a super single-conversion receiver. Forget about those police, taxi cab, and other spurious response problems you may have encountered in the past.

6. **PRECISE** large LED frequency readout... just like having a frequency counter.

7. **ACCEPTANCE**... tells the gang that you own the very best in a dependable American-made transceiver.

For complete Info, Call Clegg TOLL FREE now... (800) 233-0250.
In Pennsylvania, Call COLLECT (717) 299-7221.

Amateur Net $645.0
Factory Direct Only
Three new reasons why Heath is the leader in amateur radio.

New 5-Band SSB/CW
New 2-Meter Synthesized
New 2-Meter Hand-Held
NEW HW-104 5-Band SSB/CW Transceiver — the latest in broadband technology at lower cost... only 539.95

In keeping with the tradition of the famous Heathkit HW-series, the new HW-104 is the inheritor of the advanced technology of the SB-104 and the high value concept of the HW-101. Completely solid-state. Frp, receiver front end to transmitter output. Cool and quiet.

Totally broadbanded. Instant QSY. Just choose the band, frequency and mode. Move anywhere in any band without preselector, load, or tune controls.

Clean transmissions. 100 watts out or 1 watt. Low harmonic and spurious radiation. At 100 watts, third order distortion is down 30 dB and carrier and unwanted sideband suppression are down 55 dB. Broadband design keeps it that way.

Clear reception. Broadband design minimizes cross-modulation and intermodulation so signals stand-out from a quiet background. Active devices are minimized ahead of the 4-pole crystal filter. Adjacent signal overload is minimized yet sensitivity is less than 1 μV. Convenient 15 MHz VFO receive position on the band switch with a "pull-to-calibrate" position on the RF gain control.

Easy-to-read circular dial. Covers from 3.5 MHz to 29.0 MHz. The dial spinner covers about 15 MHz per turn. Built-in 100 kHz and 25 kHz calibrator insures accuracy with 2 kHz (dial markings are 5 kHz). Backlash less than 50 kHz. The VFO is the same basic circuitry as in the SB-104 with less than 100 Hz/hour drift after warmup. To cover the top end of the 10-meter band, order the HWA-104-1 accessory.

Easy to build and align. Phenolic plug-in circuit boards and 2 wiring harnesses. Aligns with just a dummy load, mic. and VTVM.

Super operating, super value. You get both in the HW-104.

Kit HW-104, 31 lbs., mailable 539.95
Kit HP-1144 AC power supply, 28 lbs. 89.95
Kit HS-1661 Matching speaker, 5 lbs. 19.95
Kit HWA-104-1, Ten-meter accessory, 1 lb. 16.95
SBA-104-1, Noise blanker, 1 lb. 26.95
SBA-104-2, Mobile mount, 6 lbs. 36.95
SBA-104-3, 400 Hz CW crystal filter, 1 lb. 39.95

NEW HW-2026 gets you on 2 with synthesis for 50% less... only 289.95

True digital frequency synthesizer. No crystals to buy, no channel limitations. Digital technology with a voltage controlled oscillator and crystal time base whose outputs are divided down and phase-detector compared. You control the divisor and therefore the frequency from the front panel. Lever switches.

Lever-switched channel selection with digital readout. Just flip the levers to any frequency in any 2 MHz segment of 144 to 147.995 MHz. 5 MHz steps open all channels to you.

Automatic repeater offset plus built-in tone encoder. Burst and continuous. Simplex or offset. 10 watts minimum output; infinite VSWR without failure. True FM for great audio, too.

Hot receiver; 0.5 μV sensitivity; dual conversion; 8-pole crystal filter; linear audio; built-in speaker. Best value going in synthesized 2-M.
Kit HW-2026, 12 lbs., mailable 289.95
Kit HWA-202-1, AC supply, 7 lbs. 32.95

NEW HW-2021 2-M 1-watt Hand-Held with 5 receive & 10 transmit channel capability, batteries & charger for only 169.95

One crystal does the work of two — gives both receive and transmit frequencies. Works offset, too, so each crystal gets you one receive and two transmit channels. Buy just four crystals (not pairs); we include 146.94 MHz and 600 kHz to get you started.

One watt minimum output — 0.005% stability. And frequency modulation plus built-in separate noise for better audio.

Optional "Auto-Patch" Encoder accesses landlines through repeaters with touch-tone input. 12 digit keyboard & circuit board fits HW-2021.

Built-in Battery Saver, rechargeable Battery Pack & Battery Charger — all included.

Compact, rugged. High-impact, black plastic case; glass epoxy circuit board; wt. 2 lbs. w. batteries. Not recommended for beginner kit builders due to compactness.

It's the best value in go-anywhere 2-M rigs.
Kit HW-2021, 5 lbs. mailable 169.95
Kit HWA-202-1, carrying case, 1 lb. 12.95
Kit HWA-202-1, Auto-patch, 2 lbs. 39.95

See them in the FREE Heathkit Catalog
NEW! from Genave

This New Unit meets the best spec of all: Low Price! The GTX-1 is NOT a “cheap” import. It IS identical to Genave’s Land Mobile and Aircraft units for high quality and reliability. Compare performance to Motorola, GE, RCA or any other hand-holds that sell for $700 or more.

GTX-1
HAND-HELD
2-Meter FM Transceiver

NOW CHECK THESE FEATURES:
- All Metal Case
- American Made
- Accepts standard plug-in crystals
- Features 10.7 MHz crystal filter
- Trimmer caps on TX and RX crystals
- 2.5 watts output
- Battery holder accepts AA regular, alkaline or nicad cells
- Mini Handheld measures 8” high x 2.625” wide x 1.281” deep
- Rubber ducky antenna, Wrist safety-carrying-strap included
- 6 Channels
- Factory-direct to You

Accessories Available:
- Nicad Battery Pack
- Charger for GTX-1 battery pack
- Leather carrying case
- TE III Tone Encoder for auto patch

GTX-1
2 Meter 6 channel Hand-Held (without encoder) $279.95
(Reg. $299.95)

GTX-1T
with Built-In Tone Encoder $329.95
(Reg. $349.95)

ORDER NOW FOR BEFORE-CHRISTMAS DELIVERY

USUAL IMMEDIATE SERVICE ON ALL OTHER GENAVE FACTORY-TO-YOU EQUIPMENT
THIS PAGE IS YOUR ORDER BLANK!
ORDER NOW AND SAVE!
Specials at Unbeatable Prices

GENAVE, 4141 Kingman Dr., Indianapolis, IN 46226 (317-546-1111)

Hey, Genave! Thanks for the nice prices! Please send me:

Operate Auto-Patch

- GTX-200-T
 - 2-meter FM, 100 channels, 30 watts
 - (incl. 146.94 MHz)
 - Special Price: $259.95

- GTX-200
 - 2-meter FM, 100 channels, 30 watts
 - (incl. 146.94 MHz)
 - Special Price: $219.95

- GTX-100
 - 1½-meter FM, 100 channels, 12 watts
 - (incl. 223.5 MHz)
 - Very Special: $199.95

- GTX-10
 - 2-meter FM, 10 channels, 10 watts
 - Special Price: $169.95

- GTX-2
 - 2-meter FM, 10 channels
 - 30 watts was $299.95
 - (incl. 146.94 MHz)
 - Special Price: $199.95

- GTX-600
 - 6-meter FM, 100 channels, 35 watts
 - (incl. 52.525 MHz)
 - Special Price: $199.95

- PSI-11 Battery Pack (with charger)
 - @ $109.95

- ARX-2 2-M Base Antenna
 - @ $29.95

- Lambda/4 2-M Trunk Antenna
 - @ $29.95

- TE-I Tone Encoder Pad
 - @ $59.95

- TE-II Tone Encoder Pad
 - @ $49.95

- PSI-9 Port. Power Package (less batteries)
 - @ $29.95

- PS-1 AC Power Supply
 - @ $69.95

- and the following standard crystals @ $4.50 each: ____________________________

Non-standard crystals @ $6.50 each: ____________________________

(allow 8 weeks delivery.)

For factory crystal installation add $8.50 per transceiver.

IN residents add 4% sales tax:

CA residents add 6% sales tax:

All orders shipped post-paid within continental U.S.

NAME ____________________________

AMATEUR CALL ____________________________

ADDRESS ____________________________

CITY ____________________________

STATE & ZIP ____________________________

Payment by: □ Certified Check/Money Order □ Personal Check □ C.O.D. Include

Note: Orders accompanied by personal checks will require about two weeks to process.

20% Down Payment Enclosed. Charge Balance To:

□ BankAmericard # ____________________________ Expires ____________________________

□ Master Charge # ____________________________ Expires ____________________________ Interbank # ____________________________

Sub-Total: ____________________________

TOTAL: ____________________________

(minimum order $12.00)

IN residents add 4% sales tax:

CA residents add 6% sales tax:

All orders shipped post-paid within continental U.S.

Payment by: □ Certified Check/Money Order □ Personal Check □ C.O.D. Include

Note: Orders accompanied by personal checks will require about two weeks to process.

20% Down Payment Enclosed. Charge Balance To:

□ BankAmericard # ____________________________ Expires ____________________________

□ Master Charge # ____________________________ Expires ____________________________ Interbank # ____________________________

Note: Orders accompanied by personal checks will require about two weeks to process.

20% Down Payment Enclosed. Charge Balance To:

□ BankAmericard # ____________________________ Expires ____________________________

□ Master Charge # ____________________________ Expires ____________________________ Interbank # ____________________________

Prices and specifications subject to change without notice.
Wilson Electronics Corp.

CHRISTMAS SUPER SPECIAL

1405SM HAND HELD
5 WATT
TRANSCEIVER
SPECIAL INCLUDES:
RUBBER FLEX ANTENNA
52-52 CRYSTAL

$239.95

1402SM HAND HELD
2.5 WATT
TRANSCEIVER
SPECIAL INCLUDES:
RUBBER FLEX ANTENNA
52-52 CRYSTAL

$164.95

90 DAY
WARRANTY

10 DAY
MONEY
BACK
GUARANTEE

CAN BE
MODIFIED
FOR
MARS
OR
CAP

ORDER EARLY FOR CHRISTMAS DELIVERY
Wilson Electronics Corp.
FACTORY DIRECT
CHRISTMAS SUPER SPECIAL

FEATURES

1405 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- .3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 5 Watts Minimum Output @ 12 VDC
- Current Drain: RX 14 MA TX 400 MA (lw) 900 MA (5W)
- Microswitch Mike Button
- Unbreakable Lexan® Case

1402 SM
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 IF and 455 KC IF
- .3 Microvolt Sensitivity for 20 dB Quieting
- Weight: 1 lb. 14 oz. less Battery
- S-Meter/Battery Indicator
- Size: 8 7/8 x 1 7/8 x 2 7/8
- 2.5 Watts Minimum Output @ 12 VDC
- Current Drain RX 14 MA TX 500 MA
- Microswitch Mike Button

ACCESSORY SPECIALS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REGULAR SPECIAL PRICE</th>
<th>CHRISTMAS SPECIAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1 - BATTERY CHARGER FOR 1402 SM AND 1405 SM</td>
<td>$36.95</td>
<td>$29.95</td>
</tr>
<tr>
<td>BP - NI-CAD BATTERY PACK</td>
<td>$15.00</td>
<td>$10.95</td>
</tr>
<tr>
<td>LC1 - 1402 LEATHER CASE</td>
<td>$14.00</td>
<td>$8.50</td>
</tr>
<tr>
<td>LC2 - 1405 LEATHER CASE</td>
<td>$14.00</td>
<td>$8.50</td>
</tr>
<tr>
<td>SM2 - SPEAKER MIC FOR 1402 SM AND 1405 SM</td>
<td>$29.95</td>
<td>$24.95</td>
</tr>
<tr>
<td>TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED</td>
<td>$39.95</td>
<td>$34.95</td>
</tr>
<tr>
<td>TTP - TOUCH TONE PAD INSTALLED</td>
<td>$59.95</td>
<td>$44.95</td>
</tr>
<tr>
<td>XF1 - 10.7 MONOLITHIC IF XTAL FILTER</td>
<td>$10.00</td>
<td>$8.95</td>
</tr>
<tr>
<td>CRYSTALS: TX OR RX (Common Freq. Only) Add $7.50 per Transceiver for Factory Crystal Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVER 1,000 UNITS IN STOCK FOR CHRISTMAS SPECIAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACCESSORY SPECIAL
VALID ONLY WITH RADIO PURCHASE

TO: WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NEVADA 89103 (702) 739-1931

CHRISTMAS SUPER SALE ORDER BLANK

1402 SM @ $164.95. 1405 SM @ $239.95. FACTORY XTALS INSTALLED @ $7.50. BC1 @ $29.95. BP @ $10.95. LC1 @ $8.50. LC2 @ $8.50. SM2 @ $24.95. TE1 @ $34.95 SPECIFY FREQUENCY.

TTP @ $44.95. XF1 @ $8.95. TX XTALS @ $3.00 ea. RX XTALS @ $3.00 ea.

EQUIP TRANSCEIVER AS FOLLOWS: XTALS A. 52/52 B. C. D. E. F. ENCLOSSED IS CHECK MONEY ORDER MC BAC CARD # EXPIRATION DATE.

XTALS NAME ADDRESS CITY STATE ZIP.

SIGNATURE

SHIPPING AND HANDLING PREPAID FOR CHRISTMAS SPECIAL

SALE ENDS DECEMBER 31, 1975

NEVADA RESIDENTS ADD SALES TAX.
"WE'VE EDGED-OUT OUR COMPETITION!"

NEW LOWER PRICE

ANTENNA PACKAGES

SM40 **"MINI MAST" 40' PKG**

(6 Sq. Ft.-50 MPH) Self-supporting CDE CD-44 rotor
100 ft. RG8/U Coax & Control Cable
Complete with one of the following antennas

HY-GAIN	TH2MK3	$499
HY-GAIN	TH3JR	499
HY-GAIN	TH3MK3	529
*HAM II rotor add	40	

THD-354 "STD" 54' PKG

(7 Sq. Ft.-70 MPH) Guyed crank-up
CDE CD-44 rotor
100 ft. RG8/U Coax & Control Cable
Complete with one of the following antennas

HY-GAIN	TH2MK3	$619
HY-GAIN	TH3JR	619
HY-GAIN	TH3MK3	669
HY-GAIN	HY-QUAD 669	
*HAM II rotor add	40	

W-51 "DELUXE" 51' PKG.

(9 Sq. Ft.-50 MPH) Free-standing
CDE CD-44 rotor
100 ft. RG8/U Coax & Control Cable
Complete with one of the following antennas

HY-GAIN	204BA	$829
HY-GAIN	TH3MK3	829
HY-GAIN	HY-QUAD	859
HY-GAIN	TH6DXX	869
*HAM II rotor add	40	

Prices subject to change without notice.

Substitutions ... write FREIGHT: Motor Freight collect.

CRYSTAL SPECIALS

Frequency Standards
- 100 KHz (HC 13/U) $4.50
- 1000 KHz (HC 6/U) $4.50
- Almost all CB sets, TR or Rec (CB Synthesizer Crystal on request)

Amateur Band in FT-243 ea. $1.50

80-Meter $3.00 (160-meter not avail.)

Crystals for 2-Meter, Marine, Scanners, etc. Send for Catalog.

For 1st class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.

ELECTRONIC ENGINEERS

RF COMMUNICATIONS has immediate openings for Electronic Project Engineers and Design Engineers experienced in HF, SSB, VHF/UHF - FM communications equipment, or both.

Call or write Ken Cooper, W2FLZ
(716) 244-5830

RF Communications Division

RF Communications and Information Handling

1680 University Avenue
Rochester, New York 14610 U.S.A.

An Equal Opportunity Employer M/F

RADIO KING

25326 S. CRENSHAW BLVD, TORRANCE, CA 90505
(213) 534-4456 • Closed Sun & Mon

WE'RE FIGHTING INFLATION NO PRICE RISE IN '75

FOR FREQUENCY STABILITY

Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS

Frequency Standards
- 100 KHz (HC 13/U) $4.50
- 1000 KHz (HC 6/U) $4.50
- Almost all CB sets, TR or Rec (CB Synthesizer Crystal on request)

Amateur Band in FT-243 ea. $1.50

80-Meter $3.00 (160-meter not avail.)

Crystals for 2-Meter, Marine, Scanners, etc. Send for Catalog.

For 1st class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.

Div. of Bob Whan & Son Electronics, Inc.
2400 Crystal Dr., Ft. Myers, Fla. 33901
All Phones: (813) 936-2397

Send 10¢ for new catalog with 12 oscillator circuits and lists of frequencies in stock.

HY-GAIN HY-QUAD 669

HY-GAIN HY-QUAD 669

HY-GAIN TH2MK3 $499
HY-GAIN TH3JR 499
HY-GAIN TH3MK3 529
*HAM II rotor add 40

W-51 "DELUXE" 51' PKG.

(9 Sq. Ft.-50 MPH) Free-standing
CDE CD-44 rotor
100 ft. RG8/U Coax & Control Cable
Complete with one of the following antennas

HY-GAIN	204BA	$829
HY-GAIN	TH3MK3	829
HY-GAIN	HY-QUAD	859
HY-GAIN	TH6DXX	869
*HAM II rotor add	40	

Prices subject to change without notice.

Substitutions ... write FREIGHT: Motor Freight collect.

SPECIAL" OF THE MONTH

HY-GAIN -or- *HY-GAIN*
1/4w 2 meter mobile 3.5db- 450 Mhz
with trunk-lip mount base
AND CABLE your choice! PREPAID $15.95

More Details? CHECK-OFF Page 126

CRYSTAL FILTERS and DISCRIMINATORS
1 27/64" x 1 3/64" x 3/4"

by K.V.G.

10.7 MHz FILTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF107-A</td>
<td>14 kHz</td>
<td>NBFM</td>
<td>$40.60</td>
</tr>
<tr>
<td>XF107-B</td>
<td>16 kHz</td>
<td>NBFM</td>
<td>$40.60</td>
</tr>
<tr>
<td>XF107-C</td>
<td>32 kHz</td>
<td>WBFM</td>
<td>$40.60</td>
</tr>
<tr>
<td>XF107-D</td>
<td>38 kHz</td>
<td>WBFM</td>
<td>$40.60</td>
</tr>
<tr>
<td>XF107-E</td>
<td>42 kHz</td>
<td>WBFM</td>
<td>$40.60</td>
</tr>
</tbody>
</table>

10.7 MHz FILTERS CONT'D.

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XM107-SO4</td>
<td>14 kHz</td>
<td>NBFM</td>
<td>$18.95</td>
</tr>
<tr>
<td>XF102</td>
<td>14 kHz</td>
<td>NBFM</td>
<td>$7.95</td>
</tr>
</tbody>
</table>

10.7 MHz DISCRIMINATORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XD107-01</td>
<td>30 kHz</td>
<td>NBFM</td>
<td>$22.10</td>
</tr>
<tr>
<td>XD107-02</td>
<td>50 kHz</td>
<td>WBFM</td>
<td>$22.10</td>
</tr>
</tbody>
</table>

CRYSTAL SOCKET (for XM107-SO4) type DG1 $1.50

Shipping 50¢ each

Export inquiries invited

146 ↔ 440 TRANSVERTER

We are pleased to announce the introduction of our 146 MHz/440 MHz TRANSVERTER, model QM440. This "add-on" module will complement your existing 2 meter FM transceiver, enabling the latter to be used on the new 440 MHz repeater sub-band.

The QM440 operates automatically in both transmit and receive modes. A front panel switch, and coaxial connector for the 2 meter antenna, permit normal operation of your 2 meter transceiver on 146 MHz when desired.

Write for full details.

Power supply: 12 volt D.C.
Construction: Glass-epoxy board in aluminum box.
Size: 4" x 1 1/4" x 7".
Broad band design, NO tuning required.
Shipping: Filters 50¢; Transverter $1.50

500 MHz SCALER MODULE

ONLY 1.55 x 1.65 x .4 INCHES
FITS RIGHT INTO EXISTING EQUIPMENT

HIGH SENSITIVITY: 35 MV. AT 500 MHZ,
15 MV. AT 150 MHZ.

INPUT IMPEDANCE: 50 OHMS
REQUIRES 12 TO 15 VDC AT 100 MA. MAX.

TTL COMPATIBLE OUTPUT F IN/10
OVERLOAD PROTECTED

PS-M PRESCALER MODULE WIRE & TESTED
$ 99.00 plus $.85 shipping
Calif. residents add 6% sales tax
WRITE FOR DATA ON ENTIRE LINE OF PRESCALERS

LEVY ASSOCIATES
P.O. BOX 961 TEMPLE CITY, CA. 91780

Synthesizer-for binaural reception

POWERED SYNTHESIZERS

SPECTRUM INTERNATIONAL
BOX 1084 CONCORD
MASSACHUSETTS 01742
U. S. A.

Drilled PC board with instructions- $6.95 ppd
Assembled and tested PC board Model 400—$17.95
PC boards include extra circuitry for trimming & excited cross-over

Brochures—
Hildreth Engineering
P.O. Box 3 Sunnyvale
Cal. 94088

• STABILITY
• HIGH QUALITY
• QUICK DELIVERY

Write or Call
R/T LABS., INC.
4126 COLEMAINE AVE., CINCINNATI, OHIO 45223
513/681-3444

More Details? CHECK—OFF Page 126

November 1975
NEW NEW NEW!!

TOUCH TONE ENCODERS

SOLID STATE CRYSTAL CONTROL TONE ENCODERS

- 12 or 16 Touch Tone digits
- Ideal for hand held units
- Choice of 4 keyboard styles
- RF proof
- Temperature, -20° to 150°F
- CMOS IC Encoder
- Bell System Compatibility
- Easy Installation
- Sub-miniature size
- Crystal Controlled
- Single Tone capability
- Low cost

Style A Style B Style C Style D

SELF-CONTAINED KEYBOARD ENCODERS

Complete 12 or 16 digit Touch Tone keyboard encoders for mounting directly to side of hand-held transceivers. All electronics included WITHIN keyboard, nothing to add inside of transceiver. Only ¼" thick. Ready for easy installation, just add three connections to unit. RF proof. Select keyboard style when ordering.

DTM $49.50

SUB-MINIATURE TOUCH TONE ENCODER AND KEYBOARD

Touch-Tone encoder for mounting INSIDE hand-held transceiver, keyboard mounts on side of transceiver. P.C. board only 0.8" x 1.2". RF proofed. Assembled and ready for easy installation. Select keyboard style when ordering.

SME $29.50

DO IT YOURSELF ENCODERS

Now buy all the major parts — "ala-carte" and build your own Touch Tone Encoder. All you need is a Keyboard, Digital Touch Tone Encoder, a 1-MHz crystal, and P.C. board. Parts come with complete set of application notes, schematics and instructions.

Keyboard, your choice of keyboard style $8.50
Digital T. T. Encoder with 1-MHz HC-6 Crystal............ $12.50
Digital T. T. Encoder with 1-MHz Slim HC-6 Crystal.... $13.50
P.C. board 0.8" x 1.2".. $2.50
All resistors, capacitors, and P.C. board FREE
(With purchase of keyboard, encoder and crystal)

AUTOMATIC TOUCH TONE DIALER

Automatic mobile telephone dialing is now available. By the push of a single button you can automatically dial up to six separate 7-digit numbers. All solid-state micro-power COS-MOS design. Automatic PTT operation. Programmable to send telephone number only, access code plus telephone number or telephone number plus an identification number. Low profile dash mount, easy installation. Compatible with most radio equipment. Available with keyboard for manual dialing of numbers. Manual operation provides automatic PTT operation with ½ second transmitter hold.

AD-6 $99.50
AMD-6 $119.50

Factory programming of numbers $7.50.

ORDER TODAY — SEND FOR FREE NEW CATALOG

DATA SIGNAL, INC.

2212 PALMYRA ROAD, ALBANY, GA. 31701
912-435-1764

November 1975 More Details? CHECK-OFF Page 126
TOUCH TONE TO DIAL PULSE CONVERTER
Convert standard 0-9 touch tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art Phased Locked Loop anti-falsing touch tone decoder, large capacity 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function. 0-9 digits are decoded and provided for remote control purposes. Available as p.c. board or rack mounting.

DPC-121 P.C. Board $195.00
DPC-121R Rack Mount $285.00

ANTI-FALSING TOUCH TONE DECODER
Now, a true anti-falsing decoder/receiver. Virtually immune to high noise or audio falsing. Twelve or 16 digit capability. Completely solid state, uses latest Phased Locked Loop decoding. Single 5-volt power supply. Heavy duty transistor output. Available as p.c. board or 19" rack.

TDD-126-12 12 digit P.C. $149.95 Rack $219.95
TDD-126-16 16 digit P.C. $169.95 Rack $239.95

REPEATER AUTO PATCH
It's complete — a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dialing capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.

RAP-2 PC $99.50 Rack $149.50

DELUXE P.C. KEYER
In either a 5 volt TTL or a 9 volt C-MOS version this new module type IC keyer can be easily adapted to your own custom package or equipment. Versatile controls allow wide character weight variation speeds from 5 to 50 w.p.m. plus volume and tone control. Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuitry. With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.

TTL Keyer Wired $19.95
TTL Keyer Wired $14.95
C-MOS Keyer Wired $24.95
C-MOS Keyer Wired $19.95

DELUXE RECEIVER PREAMP
Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signal with a Data Preamplifier.

ORDER TODAY — SEND FOR FREE NEW CATALOG
DATA SIGNAL, INC.
2212 PALMYRA ROAD, ALBANY, GA. 31701
912-435-1764
We’ve Got POWER
80 Watts for $93.00

POWER is important on any band, even 2 meters. It means that they hear you, or they don’t. Most 2 meter transceivers have 10 watts out and that’s enough for local repeaters. But for hams who want more than just a few local contacts, you should hear RF POWER by PRA Industries. The PRA 10/80 amplifier will give your signal TALK POWER. It makes 10 watts a BIG 80 WATTS. That’s the difference between being just one of the guys, and being the guy with the STRONG SIGNAL. BIG SIGNAL TALK POWER FOR JUST $93.00!

Don’t forget our MINI AMP KIT will give hand held units 25 watts of talk power too!

Call our toll free number or see your local dealer and then PUT SOME POWER IN YOUR TALK!

2285 South Main Street
Salt Lake City, Utah 84115

Call Toll Free 800-453-5717

THE BIG LIST

On October 31, 1975, Buyers & Sellers radio brokerage will publish the biggest list of used ham gear ever. A nationwide listing by manufacturer having over $250,000 in xmrts, xcvrs, etc. will be available free.*

Like your gear to be on this list? We must receive your listing by 5pm, Oct. 30. Sellers pay 10% commission if a sale is made; there’s never a charge to buyers.

FOR THE LARGEST SELECTION OF USED GEAR ANYWHERE, CONTACT:

BUYERS & SELLERS
P.O. Box 73
Kemore Station
Burlington, MA 02177

617-536-8777
Weekdays, 9am-5pm
Week & Sun, 7-midn.

*SEND AN S.A.S.E. WITH 20 CENTS POSTAGE

TROPICAL HAMBOREE

JANUARY 24-25, 1976
(MIAMI BAYFRONT AUDITORIUM)
MIAMI, FLORIDA

ADVANCE REGISTRATION $2.00

FOR SPECIAL HOTEL RATES
AND MORE INFORMATION
WRITE:
DADE RADIO CLUB
P.O. Box 73, B.A.
Miami, Florida 33152

More Details? CHECK-OFF Page 126
BULLET ELECTRONICS

10 MHz CERAMIC FILTER

$1.69

NEW! UNIVERSAL BREADBOARD

The most versatile breadboard we have ever!

+ 48 HOUR MAIL SERVICE
+ CASH REFUNDS ON OUT-OF-STOCK ITEMS

POWER SUPPLY SPECIAL

We brought a large quantity of parts to make a quality power supply for TTL & linear work.

5V 1.5A, 25V, 150 ma

+5V regulated 0.400 MA, with overload protection

I'll take care of TTL work!

12.95

MINI POWER SUPPLY KIT

Build your own #5 volt power Module

at a fraction of commercial cost!

$28.75

SEND 25¢ for Catalog POSTAGE PAID ON ALL ORDERS OVER $2.00

BULLET ELECTRONICS
P. O. BOX 1466
LAKE WORTH, FLORIDA 33460

NO C.O.D.'S
CHECK OR MONEY ORDER
INCLUDE 5¢ for handling on all orders less than $5.00.

MEATSHRIK TUBING
1 FOOT CUT LENGTHS

assorted sizes: 1/4, 1/8

$1.99

& 1/16 PACK OF 10

NEW!

50 or 60 HZ TIME BASE KITS

TB-60
TB-90

either model

9.95

KIT INCLUDES:

drilled plated board

tall parts

Use with most clock chips

Direct interface

ultra low current

1 min., week accuracy (adjustable)

4.95

3 for 1250

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

MINI POWER SUPPLY KIT

Build your own #5 volt power Module

at a fraction of commercial cost!

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All components including

transformer

Complete instructions

12.95

MINI POWER SUPPLY KIT

Build your own #5 volt power Module

at a fraction of commercial cost!

$16.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,

with overload protection

low ripple for TTL work!

Drilled & Plated Board

All Components

Complete Instructions

Transformer

12.95

-5 volt regulated @ 0.400 MA,
At last! High quality, laboratory-grade test instruments... at prices everyone can afford!

for the professional and hobbyist...
wire to interconnect discrete components... resistors, transistors, linear/digital ICs in TO5 or DIP packages (8-40 pins), and more. Plus, you get 5-15VDC up to 600mA (9 watts) of variable regulated power, with a built-in 0-15V voltmeter for internal power or external circuits. Now, that's design flexibility! And look at the low, low price!

DESIGN MATE 2

FUNCTION GENERATOR
Troubleshooting? Design Testing? DM-2 gives you all the signal source capacity you need... at a very modest price. This 2-form Function Generator has: short-proof output, variable signal amplitude and constant output impedance. Completely wired, tested, calibrated, ready to test audio amplifiers, op-amp and educational lab designs... as well as complex industrial Lab projects. Complete with easy-to-read instructions/operations manual, application notes, operation theory and more, DM-2 works hand-in-hand with DM-1 for total versatility.

SPECIFICATIONS
Frequency Range: 0Hz-10KHz (5 ranges: 0-01Hz, 100-1KHz, 1KH-10KHz, 10-100KHz, 100-1000KHz). Dial Accuracy: Calibrated @ 10Hz, 100Hz, 1KHz, 10KHz, freq. accurate to 5% of dial setting. Wave Forms: Sine <2% THD over freq. range. Triangle wave linearly, <1% over range. Square wave rise time <0.5 microseconds — 600Ω, 20pF termination. Output Amplitude: (all wave forms) variable-0.1V-10V peak to peak into open circuit. Output Impedance: 600Ω constant over ampl./freq. ranges. Wgt.: 2 lbs. Power Needed: 117V, AC @ 60Hz 5W.

Have you been bugged by your current lack of readable component markings? Forget it! DM-3, the low cost R/C Bridge, measures true component values... in seconds... to better than 5%. And, it's all done with only 2 operating controls and a unique solid-state null detector, to zero-in on exact component selection... instantly! Completely wired, calibrated and tested, DM-3 includes an extensive instruction/applications manual, and operational theory too.

SPECIFICATIONS
Resistance Range: 10Ω-100Ω megΩ. (6 Ranges: 10Ω-10Ω, 100Ω-100Ω, 1KΩ, 10KΩ, 100KΩ megΩ, 1000Ω megΩ.) Capacitance Range: 10pF-1μF-1mF-10μF-100μF (5 Ranges: 1pF-10pF, 10-100pF, 100-1000pF, 0.01-0.1μF, 0.1-1μF, 1-10μF.) Null Detector: 2 hi-intensity LEDs—10Ω-10Ω markings. Accuracy: <5% of null dial, range switch setting. Wgt.: 2 lbs. Power Needed: 117V, AC @ 60Hz 5W.

Each measures 6.75"L x 7.5"W x 3.25"H; completely assembled, ready to start testing at once. Order your DESIGN MATES today! *220V @ 50Hz available at slightly higher cost.

All DESIGN MATES are made in USA; available off-the-shelf from your local distributor. Direct purchases from CSC can be charged on Bank Americard, Master Charge, American Express. Plus, you get a FREE English/Metric Conversion Slide Rule with each order. Foreign orders please add 10% for shipping/handling. Prices are subject to change.

CONTINENTAL SPECIALTIES CORPORATION
44 Kendall Street, Box 1424, New Haven, CT 06509 • 203/624-3103
West Coast Office: Box 7809, San Francisco, CA 94119 • 415/421-8872
Canada: Len Finkler Ltd., Ontario

© Copyright Continental Specialties Corporation 1975
The DELA-BRIDGE I

Analyzes antenna characteristics, simplifies adjustment.
The DELA-BRIDGE I, when tied into your grid dip meter or low power exciter, quickly and easily analyzes: (1) Existing antenna & feed line characteristics, (2) Tuning & loading coils, (3) Filter & interstage coupling networks. Direct readout then lets you adjust for optimum performance.

DELA-BRIDGE I Specifications:
FREQUENCY RANGE: 50 Khz to 250 Mhz
RESISTANCE RANGE: 0 to 500 Ohms, balanced or unbalanced, log scale
SIGNAL REQUIREMENTS: 1 MW to 2 Watts maximum from any grid dipper or signal generator
POWER REQUIREMENTS: Internal 9V battery
ACCURACY: ±3% at 50 Ohms
TO READ & INTERPRET: Complete null and reactance determination—not frequency sensitive—internal integrated circuit amplifier allows use with low signal inputs

GENTLEMEN:
☐ Please send me one DELA-BRIDGE I at $39.95, completely assembled and tested
☐ Please send me one DELA-BRIDGE I ready-to-assemble Kit at $29.95
Add $2.50 to cover postage and shipping charges. Arizona residents also add 5% state Sales Tax.

DELA-BRIDGE I guaranteed for 1 year by Delavan Electronics, Inc.
Delavan Electronics' new Amateur Products Group might be a new name to you, but we're no stranger to amateur radio operations and equipment. Delavan is well funded and deeply involved in aerospace and industrial controls. Delavan stands behind its products 100% and guarantees the DELA-BRIDGE I unconditionally for 1 full year.
Order your DELA-BRIDGE I today!

DELANAV ELECTRONICS, INC.
AMATEUR PRODUCTS GROUP
1441 North 73rd Street • Scottsdale, Arizona 85260 • (602)948-6350
*Distrib. Number: 05-689-6756

CFP COMMUNICATIONS
HAS MOVED!
Your new Ham Headquarters, located in the southern tier of New York, is at your service. Jim Beckett, WA2KTJ, is pleased at your terrific response and is looking forward to meeting and assisting even more Amateurs.
Send us a SASE for a map indicating our new location along with our used equipment list.
Mail orders are handled promptly from this new store. BankAmericard and Mastercharge accepted.
NEW — CUSTOM VACUUM-FORMED PLASTIC SIGNS!
Our regular store hours are:
Tues.-Fri. 11:00-1:00 p.m.
4:00-9:00 p.m.
Sat. 10:00-12:00 noon
1:00-5:00 p.m.
(Sat. subject to change due to HAMFESTS)

CFP Communications
Division of CFP Enterprises
211 NORTH MAIN STREET
HORSEHEADS, NEW YORK 14845
Phone: 607-739-0187

OLD OLD RELIABLE
OLD RELIABLE
OLD RELIABLE
$495.00 RX 1 ROTATOR $495.00
10 YEARS OF PROVEN SERVICE. THE HEAVY DUTY ROTATOR THAT WILL TURN ANY BEAM ARRAY YOU WANT TO INSTALL. CONTROL BOX TO MATCH S LINE. 115VAC SELSYN IND. 380 DEGREES ROTATION. LIMIT SWITCH UNIT IS 9½" DIA. 28" IN HEIGHT.
Mastercharge & BankAmericard accepted.
Designed Built Backed by ANTENNA MART
Box 7, Rippey, Iowa 50235
Semiconductor Supermarket

ALL DEVICES AND COMPONENTS ARE FACTORY FIRSTS — NO SECONDS OR FALLOUTS

VHF PRESCALER DEVICES AND KITS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>95H90</td>
<td>300 MHz 10 prescaler</td>
<td>$15.95</td>
</tr>
<tr>
<td>95B2</td>
<td>Prescaler</td>
<td>$3.25</td>
</tr>
<tr>
<td>95H91</td>
<td>Prescaler</td>
<td>$15.95</td>
</tr>
<tr>
<td>11C06</td>
<td>500 Mz scaler</td>
<td>$21.95</td>
</tr>
<tr>
<td>2N5179</td>
<td>Wideband preamp trans.</td>
<td>$0.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250 MHz SCALER KIT includes 2N5179 Circuit Board, small parts and instructions. Requires 5V power source — not included.</td>
<td>ONLY $24.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$43.95</td>
</tr>
</tbody>
</table>

7-SEGMENT READOUT SALE

JUMBO 747

- Large .6" high seven segment characters for wide angle and distance viewing. Choice of red, yellow or green. $3.25 each
- **KING SIZE**
 - An industry first. Full 1" high characters. High contrast ratio for long distance viewing. Specify common anode or cathode. Red only. $3.95 each
- **REGULAR SIZE**
 - Standard .3" characters. Available in red, green or yellow. $1.99 each

BARGAINS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 IN914</td>
<td></td>
<td>$1.00</td>
</tr>
<tr>
<td>20 .01 TTL bypass</td>
<td></td>
<td>$1.00</td>
</tr>
<tr>
<td>10 .1 TTL bypass</td>
<td></td>
<td>$1.00</td>
</tr>
<tr>
<td>RCA 40673</td>
<td></td>
<td>$1.25</td>
</tr>
</tbody>
</table>

8038 FUNCTION GENERATOR WITH FREE CIRCUIT BOARD

- $5.50

TOROID CORES

PRICE — $1.00 PACKS

Quantity Core Color Frequency

<table>
<thead>
<tr>
<th>Core</th>
<th>Color</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T50-2</td>
<td>Red</td>
<td>To 20 MHz</td>
</tr>
<tr>
<td>T66-2</td>
<td>Red</td>
<td>To 20 MHz</td>
</tr>
<tr>
<td>T50-6</td>
<td>Yellow</td>
<td>To 75 MHz</td>
</tr>
<tr>
<td>T50-10</td>
<td>Black</td>
<td>To 200 MHz</td>
</tr>
<tr>
<td>T44-10</td>
<td>Black</td>
<td>To 200 MHz</td>
</tr>
</tbody>
</table>

ALSO

- T200-2 ONLY $2.00 ea.

POPULAR IC's

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1550</td>
<td>Motorola RF amp</td>
<td>$1.50</td>
</tr>
<tr>
<td>CA3002</td>
<td>RCA 1/2 W audio</td>
<td>$2.99</td>
</tr>
<tr>
<td>CA3002A</td>
<td>RCA 1 audio</td>
<td>$3.49</td>
</tr>
<tr>
<td>CA3028A</td>
<td>RCA RF amp</td>
<td>$1.77</td>
</tr>
<tr>
<td>CA3001</td>
<td>RCA</td>
<td>$5.00</td>
</tr>
<tr>
<td>MC1306P</td>
<td>Motorola 1/2 W audio</td>
<td>$1.10</td>
</tr>
<tr>
<td>MC1350P</td>
<td>High gain RF amp/IF amp</td>
<td>$1.15</td>
</tr>
<tr>
<td>MC1357P</td>
<td>FM IF amp Quadrature det</td>
<td>$2.25</td>
</tr>
<tr>
<td>MC1496</td>
<td>Hard to find Bal. Mod.</td>
<td>$2.00</td>
</tr>
<tr>
<td>MFC9020</td>
<td>Motorola 2-Watt audio</td>
<td>$2.50</td>
</tr>
<tr>
<td>MFC9040</td>
<td>Multi-purpose wide-band amp</td>
<td>$1.25</td>
</tr>
<tr>
<td>MFC8040</td>
<td>Low noise preamp</td>
<td>$1.99</td>
</tr>
<tr>
<td>MC1303P</td>
<td>Dual Stereo preamp</td>
<td>$2.75</td>
</tr>
<tr>
<td>MC1304P</td>
<td>FM multiplexer stereo demod</td>
<td>$4.95</td>
</tr>
</tbody>
</table>

FETs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPF102</td>
<td>JFET</td>
<td>$0.60</td>
</tr>
<tr>
<td>MPF105/2N5459</td>
<td>JFET</td>
<td>$0.96</td>
</tr>
<tr>
<td>MPF107/2N5486</td>
<td>VHF/UHF JFET</td>
<td>$1.26</td>
</tr>
<tr>
<td>MPF121</td>
<td>Low-cost dual gate VHF RF</td>
<td>$1.40</td>
</tr>
<tr>
<td>MFE3007</td>
<td>Dual-gate</td>
<td>$1.98</td>
</tr>
<tr>
<td>40673</td>
<td>Dual-gate</td>
<td>$1.25</td>
</tr>
<tr>
<td>3N140</td>
<td>Dual-gate</td>
<td>$1.95</td>
</tr>
<tr>
<td>3N141</td>
<td>Dual-gate</td>
<td>$1.86</td>
</tr>
</tbody>
</table>

CONTINENTAL SPECIALTIES

QT Breadboards

- QT-59S | $12.50
- QT59B | $2.50
- QT-47S | $10.00
- QT-47B | $2.25
- QT-35S | $8.50
- QT-35B | $2.00

DUAL COLOR LED

RED/GREEN | $1.00

PHASE LOCK LOOP DEVICES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC4044</td>
<td>PHASE DET</td>
<td>$2.95</td>
</tr>
<tr>
<td>MC4024</td>
<td>VCO</td>
<td>$2.95</td>
</tr>
<tr>
<td>MC1648</td>
<td>VCO</td>
<td>$3.75</td>
</tr>
</tbody>
</table>

RCA ICs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3130T</td>
<td></td>
<td>$1.45</td>
</tr>
<tr>
<td>CA3102E</td>
<td></td>
<td>$3.40</td>
</tr>
<tr>
<td>CA3132EM</td>
<td>5W AUDIO AMP with heat sink</td>
<td>$4.50</td>
</tr>
</tbody>
</table>

2194F

- 10.7 MHz Crystal Filter
- For FM Receivers
- $7.95
- For USE WITH CA3090E
- $3.99

NE555

- **SIGNETICS**
- **PRIME QUALITY**
- **$1.00**

NE555

$1.00

DUAL COLOR LED

RED/GREEN | $1.00

DUAL COLOR LED

RED/GREEN | $1.00

PHASE LOCK LOOP DEVICES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC4044</td>
<td>PHASE DET</td>
<td>$2.95</td>
</tr>
<tr>
<td>MC4024</td>
<td>VCO</td>
<td>$2.95</td>
</tr>
<tr>
<td>MC1648</td>
<td>VCO</td>
<td>$3.75</td>
</tr>
</tbody>
</table>

RCA ICs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA3130T</td>
<td></td>
<td>$1.45</td>
</tr>
<tr>
<td>CA3102E</td>
<td></td>
<td>$3.40</td>
</tr>
<tr>
<td>CA3132EM</td>
<td>5W AUDIO AMP with heat sink</td>
<td>$4.50</td>
</tr>
</tbody>
</table>

SEND FOR FREE CATALOG

Please add 40¢ for shipping

CIRCUIT SPECIALISTS CO.

Box 3047, Scottsdale, AZ 85257

More Details? CHECK-OFF Page 126

November 1975
PARTS SURVEY

I read the letter from Robert Briner in the June issue of R-E about his problem of obtaining parts overseas for projects. I now have nine months experience with several firms and received all the parts ordered. The time it took to receive the parts varied from firm to firm. Here is a list of my experiences with the firms.

James Benall, Co. 7-10 days
Electronics
Poly Pak
International
Unlimited
Southwest
Technical
Products
Media
Electronics
Solid State

Electronic

All the times are from the day I wrote the letter until I received the parts.

H. K. BERKHOUT
Rotterdam (23)

Here's a low cost, big IC capacity board with built-in supporting circuitry. All ICs are mounted on DT Sockets and the best of the Proto Board was...complete down to the nut, bolt and screw. Includes 20 JST Sockets, 1 JST 359 Bus, 50 25-way binding posts, 4 rubber feet, screws, nuts, bolts and small assembly instructions.

COMPLETE KIT...

*Special...

$17.95

Special Requested Items
DISPLAY LEDS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FN700</td>
<td>Common Cathode</td>
<td>750, 59</td>
</tr>
<tr>
<td>MA1</td>
<td>Common Anode</td>
<td>750, 59</td>
</tr>
<tr>
<td>MA2</td>
<td>5x7 Matrix</td>
<td>350, 3.93</td>
</tr>
<tr>
<td>MA3</td>
<td>Common Cathode</td>
<td>750, 59</td>
</tr>
<tr>
<td>MA4</td>
<td>Common Anode</td>
<td>300, 3</td>
</tr>
<tr>
<td>MA7</td>
<td>Common Anode</td>
<td>125, 3</td>
</tr>
<tr>
<td>DL747</td>
<td>Common Anode</td>
<td>625, 6.15</td>
</tr>
</tbody>
</table>

DISCRETE LEDS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY1</td>
<td>Red</td>
<td>9.5 $</td>
</tr>
<tr>
<td>MY2</td>
<td>Red</td>
<td>6.1 $</td>
</tr>
<tr>
<td>MY3</td>
<td>Yellow</td>
<td>1.8 $</td>
</tr>
<tr>
<td>MY4</td>
<td>Orange</td>
<td>5.3 $</td>
</tr>
<tr>
<td>MY5</td>
<td>Yellow</td>
<td>5.3 $</td>
</tr>
<tr>
<td>MY6</td>
<td>Red</td>
<td>5.3 $</td>
</tr>
</tbody>
</table>

SOLDERTAIL - LOW PROFILE TIN SOCKETS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
</table>
| 8 pin | 5 \$
| 10 pin | 5 \$
| 16 pin | 5 \$
| 18 pin | 5 \$
| 20 pin | 5 \$

WIREWRAPE Sockets (GOLD) LEVEL 3

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
</table>
| 10 pin | 5 \$
| 14 pin | 5 \$
| 18 pin | 5 \$
| 24 pin | 5 \$

50 PCS. RESISTOR ASSORTMENTS $1.75 PER ASST.

<table>
<thead>
<tr>
<th>ASST 1</th>
<th>Value</th>
</tr>
</thead>
</table>
| 10 ohm | 1.2 \$
| 15 ohm | 1.2 \$
| 18 ohm | 1.2 \$
| 22 ohm | 1.2 \$

<table>
<thead>
<tr>
<th>ASST 2</th>
<th>Value</th>
</tr>
</thead>
</table>
| 100 ohm | 1.2 \$
| 120 ohm | 1.2 \$
| 130 ohm | 1.2 \$
| 150 ohm | 1.2 \$
| 180 ohm | 1.2 \$

<table>
<thead>
<tr>
<th>ASST 3</th>
<th>Value</th>
</tr>
</thead>
</table>
| 100 ohm | 1.2 \$
| 120 ohm | 1.2 \$
| 130 ohm | 1.2 \$
| 150 ohm | 1.2 \$
| 180 ohm | 1.2 \$

ZENERS - DIODES - RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
</table>
| IN14 | 3.3 V | 4 \$
| IN15 | 4.7 V | 4 \$

CAPACITOR CORNER 50 VOLT CERAMIC DISC CAPACITORS

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 100nm | 0.01 \$
| 220nm | 0.02 \$
| 470nm | 0.04 \$

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 100V | 0.06 \$
| 220V | 0.08 \$
| 470V | 0.10 \$

MINIATURES ALUMINUM ELECTROLYTIC CAPACITORS

<table>
<thead>
<tr>
<th>Asst Lead</th>
<th>Diameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 \$
| 10 \$
| 22 \$
| 47 \$
| 100 \$

THUMBWHEEL SWITCHES

6" POWER SUPPLY CORDS . . . 2 CONDUCTORS SPECIAL $3.00

THUMBWHEEL SWITCHES

2 CONDUCTORS SPECIAL $3.00

DATA HANDBOOKS

Pin-out & Description of S400/7400ICS $2.95

Pin-out & Description of S4000 Series ICS $2.95

LINEAR PIN-out & Functional Description of Linear Circuits $2.95

6" POWER SUPPLY CORDS . . . 2 CONDUCTORS SPECIAL $3.00

SATISFACTION GUARANTEED $5.00 MIN. ORDER. U.S. FUNDS.

JAMES

P.O. BOX 822, BELMONT, CA. 94002

PHONE ORDERS - (415) 592-8097

Note: The text seems to be a catalog page listing various electronic components and parts, formatted in a tabular and list format. It includes descriptions of various types of components such as LEDs, resistors, capacitors, and diodes, along with their values and descriptions. The page also contains advertisements and pricing information for different products. The content is typical of a technical catalog for electronic components.
Put your best fist forward.

To be one of the best fists on the air, all you need is a little practice and the HAL 2550 Keyer and its precision-built companion, the FYO Key.

The 2550 features a triggered clock pulse generator, sidetone monitor, iambic keying and dot memory. There's an optional tailor-made ID too.

Many amateurs remember the famous FYO Key, a key infinitely adjustable to every fist. Now it's back again, better than ever, and available only from HAL. The 2550 Keyer and the FYO Key make a great combination.

So to put your best fist forward, send today for a detailed brochure on these two great products.

HAL Communications Corp.
Box 365 Urbana, Illinois 61801
Telephone (217) 367-7373

CLEAN SIGNAL

ALL CHANNELS

Actual Spectrum Analyzer Photograph of an RP Synthesized Radio

ONLY RP GIVES YOU BOTH

PLUS

• SUPER ACCURACY (.0005%)
• FULL 2M FM COVERAGE
144-148 MHz

WORKS WITH MOST FINE AMATEUR OR COMMERCIAL GRADE RADIOS

MFA-22 SYNTHESIZER

SEND FOR FULL DETAILS

Electronics
810 DENNISON DRIVE
BOX 1201
CHAMPAIGN, IL 61820
Phone: 217-352-7343

Radio Amateurs Reference Library of Maps and Atlas

WORLD PREFIX MAP — Full color, 40" x 28", shows prefixes on each country . . . DX zones, time zones, cities, cross referenced tables

$1.25

$1.25

RADIO AMATEURS MAP OF NORTH AMERICA! Full color, 30" x 25" — includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones. FCC frequency chart, plus useful information on each of the 50 United States and other Countries.

$2.50

WORLD ATLAS — Only atlas compiled for radio amateurs. Packed with world-wide information — includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica — a complete set of maps of the world, 20 pages, size 8½" x 12½"

$3.75

Complete reference library of maps — set of 4 as listed above

See your favorite dealer or order direct.

Mail orders please include 75¢ per order for postage and handling.

WRITE FOR FREE BROCHURE!

RADIO AMATEUR catalog INC.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

More Details? CHECK-OFF Page 126
FM AM CW SSB MOBILE/BASE

2 METER AMPLIFIERS

Case Dimensions
A 2-1/2" H x 3-7/8" W x 4" Deep
B 2-1/2" H x 5-1/2" W x 7" Deep
C 2-1/2" H x 5-1/2" W x 11" Deep

<table>
<thead>
<tr>
<th>Model</th>
<th>Drive Power</th>
<th>Output Power</th>
<th>Current Drain</th>
<th>Max. Drive</th>
<th>Case Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA-3-40-HB</td>
<td>3 Watts</td>
<td>40 Watts</td>
<td>4 Amps</td>
<td>5 Watts</td>
<td>B</td>
<td>$129.95</td>
</tr>
<tr>
<td>RFA-3-60-HB</td>
<td>3 Watts</td>
<td>60 Watts</td>
<td>7 Amps</td>
<td>5 Watts</td>
<td>B</td>
<td>159.95</td>
</tr>
<tr>
<td>RFA-3-110-HB</td>
<td>3 Watts</td>
<td>110 Watts</td>
<td>14 Amps</td>
<td>5 Watts</td>
<td>C</td>
<td>199.95</td>
</tr>
<tr>
<td>RFA-3-200-HB</td>
<td>3 Watts</td>
<td>200 Watts</td>
<td>24 Amps</td>
<td>5 Watts</td>
<td>C</td>
<td>349.95</td>
</tr>
<tr>
<td>RFA-10-75-HB</td>
<td>10 Watts</td>
<td>75 Watts</td>
<td>8 Amps</td>
<td>15 Watts</td>
<td>B</td>
<td>129.95</td>
</tr>
<tr>
<td>RFA-10-100-HB</td>
<td>10 Watts</td>
<td>100 Watts</td>
<td>13 Amps</td>
<td>15 Watts</td>
<td>B</td>
<td>189.95</td>
</tr>
<tr>
<td>RFA-10-150-HB</td>
<td>10 Watts</td>
<td>150 Watts</td>
<td>17 Amps</td>
<td>15 Watts</td>
<td>C</td>
<td>239.95</td>
</tr>
<tr>
<td>RFA-25-150-HB</td>
<td>25 Watts</td>
<td>150 Watts</td>
<td>17 Amps</td>
<td>40 Watts</td>
<td>C</td>
<td>249.95</td>
</tr>
<tr>
<td>RFA-25-200-HB</td>
<td>25 Watts</td>
<td>200 Watts</td>
<td>22 Amps</td>
<td>40 Watts</td>
<td>C</td>
<td>299.95</td>
</tr>
<tr>
<td>RFA-1-75-HB</td>
<td>1 Watt</td>
<td>75 Watts</td>
<td>9 Amps</td>
<td>5 Watts</td>
<td>B</td>
<td>179.95</td>
</tr>
<tr>
<td>RFA-1-25-HB</td>
<td>1 Watt</td>
<td>25 Watts</td>
<td>3 Amps</td>
<td>4 Watts</td>
<td>A</td>
<td>99.95</td>
</tr>
</tbody>
</table>

All models will operate with reduced output from as little as one watt drive.
Amplifiers are supplied pre-tuned for band portion in which they are to be used.
Comparable models for 6 and 10 meters are also available.

Dealer and Distributor Inquiries solicited

More Details? CHECK-OFF Page 126

November 1975 Page 103

2204 Foster Avenue • Wheeling, Illinois 60090 • 312/392-6030
Great New Turn On

Howard Microsystems introduces MOCO II, the newest and most efficient Morse Code translator in the state of the art.

MOCO II ushers in a new generation of Morse Code readers. Its central processing unit is combined with computer programmed firmware totalling more than 8,000 bits of memory, which permit MOCO II to translate standard alphanumeric Morse Code, even punctuation, automatically.

Simply connect MOCO II to the speaker leads and then just turn it on. No knobs, no adjustments. One switch calibration automatically determines and displays sending speed.

MOCO II is not a kit. It's completely assembled and tested, includes integral power supply, parallel ASCII and Baudot outputs for existing display units.

PRICE: $199.00

Available as options are a video display, or a teletype driver with 60 ma. loop supplies.

Order from Howard Microsystems, Inc., 6950 France Avenue South, Minneapolis, MN 55435 (612) 925-2474.

DISPLAY OPTIONS

A. Baudot Driver/Interface for TTY...$75.00

B. Video Character Display with VHF TV Modulator............................$325.00

(Kit..$175.00)

FREQUENCY STANDARD

Only **$37.50**

(less batteries) POSTPAID USA

- Precision crystal
- Fully guaranteed

- Markers at 100, 50, 25, 10 or 5 kHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Send for free brochure.

DYCOMM for RF POWER

ECHO III REPEATER

A4950 A8949

A COMPLETE LINE OF FM AMPLIFIERS

- model - power output - gain - price

6 METER FM

A4950 - 50W - 10db - $183.
A4960 - 50W - 8db - $192.
A8940 - 100W - 10db - $270.

450- UHF

MODEL 25 - 30W - 7db - $167.
MODEL 30 - 30W - 9db - $194.
MODEL 50 - 50W - 5db - $251.

OTHER PRODUCTS

ECHO III FM REPEATER - $949.
MODEL 34 WATTMETER - $70.

2 METER FM

MODEL C - 25W - 3db - $69.
MODEL D - 50W - 7db - $99.
SUPER D KIT - 80W - 3.5db - $60.
MODSEL DS - 80W - 3.5db - $139.
MODEL E - 35W - 10db - $80.
SUPER E KIT - 40W - 11db - $60.
MODEL ES - 40W - 11db - $115.
MODEL 50 - 50W - 5db - $194.

OTHER PRODUCTS

MODEL 34 WATTMETER - $70.

PALOMAR ENGINEERS

BOX 455, ESCONDIDO, CA 92025

DYNAMIC COMMUNICATIONS

946 AVE. "E" P.O. BOX 10116 RIVIERA BEACH, FLA. 33404 (305) 844-1322

104 November 1975
JAMES ELECTRONICS
P. O. BOX 822
BELMONT, CALIFORNIA 94002
(415) 592-8097

DIGITAL VOLTMETER

$39.95 Per Kit
printed circuit board

LOGIC PROBE

The Logic Probe is a unit which is for the most part independent of trouble shooting logic families. TTL, DTL, RTL, CMOS. It identifies the power it needs to operate directly off of the circuit under test, drawing a giant 10 mA max. It uses a MAN3 readout to indicate any of the following states by these symbols: HI-1 (LOW)-0. It can be used at MOS levels or circuit damage will result.

$9.95 Per Kit

MINI POWER SUPPLIES

These power supplies offer small size, with a wide choice of voltage outputs. They are all capable of delivering 300mA and have dimensions of 1" x 1" x 3".

$9.95 per kit

LOW COST DIGITAL CLOCK KIT

Other companies have offered a low cost digital clock kit, but do not offer important extras such as, printed circuit boards, power supplies cases, etc. We at James are doing just the opposite by offering a complete clock kit, that includes everything down to the line cord. This kit uses 25" FND JD displays, for HOURS, MINUTES, and SECONDS, in conjunction with the MIN314 clock chip. The printed circuit board is of high quality fiberglass, which is plated. The case is a 6 x 11 x 1 walnut case with a plexiglass front, and is similar to the one in our TV WALL Digital clock. It is available without the case for $18.95.

$19.95 per kit.

a NEW antenna principle

PROVEN IN EXACTING TESTS AND MANY YEARS ON THE AIR AT W0MBH - KQAST - KBVRM

The Little GIANT BEAM ANTENNA

only 27 inches high
by 22 inches wide

A COMPLETELY NEW ANTENNA

Here is an ultra compact beam antenna which can be tuned to any frequency between 7.0 and 14.5 MHz. Weighing only 18 lbs. this antenna may not outperform a full sized beam but it sure will give you your share of DX and state-side contacts. Will handle 1 KW over a 100 kHz bandwidth.

- Fully weather proof
- Hi-Q, attenuates harmonics
- Mounts easily on TV mast
- Comes assembled & tested

LITTLE GIANT MODEL 100X1000-40

$149.50

Other models available for 10, 15 & 20 meters

Add $3 trans.

Little Giant Antenna Labs, Box 245, Vaughnsville, Ohio 45893
Subsidiary "Apollo Products" Village-Twig Co.
419-646-3495

ELECTRONIC ROULETTE

Complete kit with all components case and transformer.

8" x 8" x 1"
A 56 page book on the facts of Roulette included.

$29.95 Per Kit

ELECTRONIC CRAPS

Complete kit with all components case and transformer.

A 56 page book on the facts of Craps included.

$19.95 Per Kit

Satisfaction Guaranteed. $5.00 Min. Order. U.S. Funds. Add $1.25 for Postage. Write for FREE 1975 Catalog

California Residents — Add 6% Sales Tax

JAMES
P. O. BOX 822, BELMONT, CA. 94002
PHONE ORDERS — (415) 592-8097

More Details? CHECK--OFF Page 126

November 1975 105
Communications Division

2-Meter Mobile: 15 Watts, 12 Channels

Dual conversion receiver with complete multiple FET front end, high-Q helicalized cavity resonators, zener regulated oscillators.

15-watt/1-watt transmitter with zener regulated crystal oscillator, high-Q and shielded stages, encased low-pass filter, instant automatic VSWR protection system.

External speaker, tone burst/discriminator meter jacks.

...and Midland's RSVP. See your dealer for details.

Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished.

Regularly $67.00. Now, over 30% discount (only $46.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax.

Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmericard accepted

D-D ENTERPRISES
DEPT. A P.O. BOX 7776
SAN FRANCISCO, CA 94119

MEMORY

B2512Q
1024 bit ROM (256x4 PROM)
-access time 50 NS
-Power dissipation 5W/BIT
-Tri-state output
-Field programmable
-16 pin DIP
Each $5.00 8 for $34.95

2N3555 NPN TO-106
3v Beta 150 min. 500 mw.
Each $.15
10 pak $1.00

DIP RC NETWORKS

14 and 16 pin IC packages containing precision resistors and capacitors. NO SCHEMATICS AVAILABLE.
Sample indicates most contain 10 to 15R and 1 or 2C.
Assortment of 15 $1.00

VOLTAGE REGULATORS TO-3

I AMP POSITIVE 1 AMP NEGATIVE

EACH 10 PAK 10 PAK

LM 309K 5V $1.25 510.00 5V $1.95 517.50
7805 6V 1.50 13.00 5V 1.95 17.50
7812 12V 1.95 17.50 12V 1.95 17.50
7815 15V 1.95 17.50 12V 1.95 17.50
7824 24V 2.25 20.00

SEND FOR FREE FLYER

YEAR-END SALE!
With a $25 minimum order we'll include a CT5091 4-function, 12 digit calculator IC with data.

Send for FREE FLYER

All merchandise is new unused surplus and is sold on a money back guarantee. Five dollar minimum order. Free first class postage on all orders. California residents please add sales tax.

Write to: VALU-PAK
P.O. Box 41778 Sacramento, CA 95811
ME-3 microminiature tone encoder

Compatible with all subaudible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.
- Powered by 6-Volt, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Output level adjustable over 14 dB
- Tone lines in and out of tone frequencies 67.0 Hz to 203.5 Hz
- Copper wire antenna to RF
- Complete polarity protection built-in

$29.95 each

communications specialist
F.D.O. BOX 146
BAINA, CALIFORNIA 93011
171-1500-2021

NEW FROM MFJ

SUPER LOGARITHMIC SPEECH PROCESSOR
MODEL LSP-520BX

UP TO 400% MORE RF POWER is yours with this plug-in unit. Simply plug LSP-520BX into the circuit between the microphone and transmitter and your voice suddenly is transformed from a whisper to a DYNAMIC OUTPUT!

Look what happens to the RF Power Output on our NCX-3. It was tuned for normal SSB operation and then left untouched for these "before" and "after" oscillograms.

Fig. 1 SSB signal before processing. See the high peaks and the low valleys. Our NCX-3 is putting out only 25 watts average power.

Fig. 2 SSB signal after processing with LSP-520BX. The once weak valleys are now strong peaks. Our NCX-3 now puts out 100 watts of average power.

Three active filters concentrate power on those frequencies that yield maximum intelligence. Adds strength in weak valleys of normal speech patterns. This is accomplished through use of an IC logarithmic amplifier with a dynamic range of 30dB for clean audio with minimum distortion.

This unit is practically distortion-free even at 30dB compression! The input to the LSP-520BX is completely filtered and shielded for RF protection.

Size is a mere 2½ x ½ x 3½". $95.00 each. Money back if not delighted and ONE YEAR UNCONDITIONAL GUARANTEE.

Order now or write for FREE brochure.

LSP-520BX ... $49.95
ADD $1.50 SHIPPING & HANDLING

DEALER INQUIRIES INVITED
601-323-5869

MFJ ENTERPRISES
P. O. BOX 494(H)
MISS. STATE, MS 39762

DON'T MISS THAT CW QSO!!!

15 WATTS FULL BREAK-IN

CW TRANSMITTER MODEL 50
- Built-in Antenna Relay
- 160, 80, or 40M Plug-in Coil
- Crystal Control
- Zener Regulated Chirpless Keying
- Clean Output - "T" Network
- Built-in 115 VAC Supply

MODEL 50K - BASIC KIT $39.95
ADD-ON OPTIONS:
SIDETONE 200-21K 5.95
KEYER 200-22K 13.95

MODEL 50W - BASIC WIRING $49.95
MODEL 50WS WITH SIDETONE $59.95
MODEL 50WK WITH KEYER $69.95
MODEL 50WEX WITH SIDETONE & KEYER $79.95

ORDER DIRECT OR WRITE FOR BROCHURE AND NAME OF NEAREST DEALER.

PHONE: (814) 432-3647
BOX 185-A • FRANKLIN, PA. 16323

More Details? CHECK-OFF Page 126

november 1975 HP 107
VANGUARD NOW HAS THE WORLD’S LARGEST SELECTION OF FREQUENCY SYNTHESIZERS FROM $129.95

SEND NO MONEY.
WE SHIP C.O.D.
ORDER BY PHONE AND SAVE TIME.

We ship open account only to U.S. and Canadian government agencies, universities and selected AAA rated corporations.

Available for Aircraft, Fire, Police and Amatuer Frequencies

Check these features:

- Smallest size of any commercially available synthesizer — only 1-3/8" x 3-3/4" x 7".
- Excellent spectral purity since no mixers are used.
- 0.0059% (5 parts per million) accuracy over the temperature range of — 10 to +60 °C.
- Immune from supply line voltage fluctuations when operated from 11 to 16 volts D.C.
- Up to 8000 channels available from one unit. Frequency selected with thumbwheel switches.
- Available from 5 MHz to 169.995 MHz with up to 40 MHz tuning range and a choice of 1, 5 or 10 kHz increments (subject to certain restrictions depending on the frequency band selected).
- Top quality components used throughout and all ICs mounted in sockets for easy servicing.
- All synthesizers are supplied with connecting hardware and impedance converters or buffers that plug into your crystal socket.

Vanguard frequency synthesizers are custom programmed to your requirements in 1 day from stock units starting as low as $129.95 for transmit synthesizers and $139.95 for receive synthesizers. Add $20.00 for any synthesizer for 5 kHz steps instead of 10 kHz steps and add $10.00 for any tuning range over 10 MHz. Maximum tuning range available is 40 MHz but cannot be programmed over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless the i-f is greater than 10.7 MHz and uses low side injection. Tuning range in all cases must be in decades starting with 0 (i.e. — 140,000 — 149,995 etc.). The output frequency can be matched to any crystal formula. Just give us the crystal formula (available from your instruction manual) and we’ll do the rest. We may require a deposit for odd-ball formulas. On pick-up orders please call first so we can have your unit ready.

Call 212-468-2720 between 9:00 am and 4:00 pm Monday through Friday.

196-23 JAMAICA AVE. HOLLIS, N. Y. 11423

SSB...CW...FM...80-10...VHF...UHF

PERSONALIZED SERVICE FOR ALL YOUR AMATEUR NEEDS

New Equipment
Transmitters
Receivers
Keyers

Used Equipment
Publications
OSCAR Antennas
Coax

FM Transceivers
Preamps
Mobile Antennas
Beams

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

WANTED FOR CASH

490-T Ant. Tuning Unit
(Also known as CU1658
and CU1669)

ARC-51 Control Box
ARC-51 Transceiver

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106 and PRC74 also required. See HR last issue for other equipment required.

618-T Transceiver
(also known as MRC95,
ARC94, ARC102, or VC102)

THE TED DAMES CO.
308 Hickory Street
Arlington, N.J. 07093
Afternoons (201) 998-6475

108
More Details? CHECK-OFF Page 126
10 CHANNEL SCANNER
For All Regency HR series 2, 2A, & 2B
MT-15, MT-25, & AQUAFONE Transceiver

FEATURES:
- Selectable Priority Channel (Selected By Channel Selector Switch)
- 10 Second Delay Before Scan Resumes After Transmission
- 2 Second Delay Before Scan Resumes After Signal Loss
- Plugs Into Existing Crystal Sockets. Simple 5 Wire Hook-Up Without Major Modification To Radio
- Simple Modification For Selective Channel Bypass
- Optional Digital Channel Display

SCANN 10B 10 Channel Scanner (Wired Only) $52.50
D10B Digital Channel Display (Wired Only) $21.75
NET PRICE FOR BOTH $74.25
HR-2B With Both Installed $299.99
6T-HR2-3 Crystal Deck (6 more FO's in HR2, HR-2A) Kit $11.50, Wired $15.50
HF 144 U MOSFET Preamp Kit $11.95, Wired $17.95

METRUM I1 IN STOCK — WRITE FOR INFORMATION!

THE TIGER
15% Savings on Gas
A Capacitive Discharge Ignition system absolutely guaranteed NOT to interfere with your radios & equally guaranteed to improve your auto's operation and gas mileage.

No rewiring necessary. Engine cannot be damaged by improper installation. Either of three models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil & distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.

Write for free booklet that not only is the BEST description of CDIs, but also explains the need for such a system. Current prices assured til Jan. '76.

D-D ENTERPRISES
P.O. Box 7776
San Francisco, CA 94119

A&W Electronics is your source for:
STANDARD'S NEW Horizon/2!

low cost high performance

- 12 channels — 20+W out
- front facing speakers — 3 W audio
- 70 dB adjacent channel rejection
- 4+ MHz spread includes MARS, CAP
- Standard's unique 6 month warranty
- Call or write now for additional information, including price.

— ALSO —

SEASON SPECIALS ON BOMAR CRYSTALS
A & W is now stocking xtals for most common repeater pairs for installation in:

STANDARD ICOM
REGENCY WILSON
DRAKE CLEGG
GENAVE HEATH

SPECIAL OFFER . . . $3.25
(Expires Jan. 1, 1976)

Cystals also available for 220, 450 MHz

Prepaid Orders accompanied by M.O. or Bank Checks are shipped immediately. U.P.S. C.O.D. also available if specified. Please add $1.00 for Shipping/Handling.

THE TIGER
15% Savings on Gas
A Capacitive Discharge Ignition system absolutely guaranteed NOT to interfere with your radios & equally guaranteed to improve your auto's operation and gas mileage.

No rewiring necessary. Engine cannot be damaged by improper installation. Either of three models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil & distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.

Write for free booklet that not only is the BEST description of CDIs, but also explains the need for such a system. Current prices assured til Jan. '76.

D-D ENTERPRISES
P.O. Box 7776
San Francisco, CA 94119

A&W Electronics
491 Riverside Ave.
Medford, MA 02155
(617) 396-5550

More Details? CHECK—OFF Page 126

november 1975
Regency HR-2B gives a lot to talk over

Full 12 Channel, 15 Watts with HI/LO power switch

Here is everything you need, at a price you like, for excellent 2 meter FM performance. The 12 transmit channels have individual trimmer capacitors for optimum workability in point-to-point repeater applications. Operate on 15 watts (minimum) or switch to 1 watt. 0.35 uv sensitivity and 3 watts of audio output make for pleasant, reliable listening. And the compact package is matched by its price. **$299.00**

Amateur Net

Regecy ELECTRONICS, INC.
7707 Records Street
Indianapolis, Indiana 46226

An FM Model For Every Purpose . . .

Every Purse

[Ad for EEB Announces New Industrial Division]

[Ad for EEB's price new in factory cartons $765]

CLOSE OUT SPECIAL – $19.95 while they last ppd. USA

ARR-52 SOLID STATE VHF RECEIVER

Easily converted to 2-meter FM. Now set for 163-173 MHz, 16 channels. Includes schematic diagram and conversion details. As described in the Surplus Sidelights Column, (Pg. 58 Oct. CQ).

OVER 400 SOLD
BankAmericard & COD Welcome

Electronic Equipment Bank, Inc.
516 Mill Street, N.E., Vienna, Virginia 22180
(703) 938-3350

NEW! HAM'S ALMANAC 1976

Special Pre-Publication Offer: $2.25 each postpaid for direct orders received before Nov. 21. (Available at participating dealers or direct for $3.00 in December) Number of copies determined by this offer and by advanced dealer sales so act now to assure getting a copy.

Alken Products • Box 3494 • Scottsdale, Ariz. 85257

More Details? CHECK—OFF Page 126
INTERNATIONAL MORSE DECODER
INTERNATIONAL MORSE CODE IN
Parallel ASCII OUT
$73

Television Display Circuit
ASCII IN; Display a single row of up to 30 characters on your TV screen; No internal connection to TV set required.
$118

Audio Converter Unit
Couple your receiver to the International Morse Decoder; Two stage active filter plus level detector; Can also be used to drive an audio oscillator for static free CW reception
$19

The above circuit boards are shipped assembled and tested.

PIÑON
ELECTRONICS
P. O. BOX 2192
MESASON, ARIZONA 85204

RTTY VIDEO DISPLAY UNIT
ASCII IN, ASCII OUT
$550

LELAND ASSOCIATES
18704 Glastonbury Rd.
Detroit, MI. 48219

RTTY VIDEO DISPLAY UNIT
ASCII IN, ASCII OUT
$550

Make Professional Looking PC. Boards Fast and Easy
Sensational Revolutionary Fantastic

STAMP-IT
ETCH-IT.

Reduces Printed Circuit Board Art Work From 2 Hours to 10 Min.
Simple as A.B.C.

We are happy to announce a new addition to our keyboard and encoder line. Our new KBD-3 uses a one chip MOS encoder system to give you maximum possible features with a minimum number of parts.

This keyboard produces a standard ASCII coded output that is compatible with TTL, DTL, RTL and MOS logic systems. You have the option of wiring the kit for normal typewriter style output in both upper and lower case letter, or all upper case format. All common machine control commands such as "line feed", "return", "control", etc. are provided on the keyboard. Four uncommitted or extra keys are available for your specific use requirements. Two of these have isolated output lines to the connector for special functions such as "here is".

Keyswitches are standard, full travel style with gold plated contacts for long troublefree service. Requires +5 Volts and -12 Volts.

KBD-3 Keyboard and Encoder Kit $49.50 ppd

SOUTHWEST TECHNICAL PRODUCTS CORP.
219 W. Rhapsody Dept. HR
San Antonio, Texas 78216
The "STANDARD" by Heights

Light, permanently beautiful ALUMINUM towers

THE MOST IMPORTANT FEATURE OF YOUR ANTENNA IS PUTTING IT UP WHERE IT CAN DO WHAT YOU EXPECT.

RELIABLE DX — SIGNALS EARLIEST IN AND LAST OUT.

ALUMINUM
Self-Supporting
Easy to Assemble and Erect
All towers mounted on hinged bases
Complete Telescoping and Fold-Over Series available

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.

Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

ALSO TOWERS FOR WINDMILLS

HEIGHTS MANUFACTURING CO.
In Almont Heights Industrial Park
Almont, Michigan 48003

K-ENTERPRISES

250 MHz FREQUENCY COUNTER
MODEL 4X6C
(includes temp. compensated oscillator — .0005% from —30° to +60°C.)

SPECIFICATIONS

Frequency Range 500 kHz — 250 MHz
Sensitivity Less than 80 mV at 150 MHz
Input Z 50 ohms
Max. Input Voltage 15 V rms, 50 V dc
Time Base Crystal Clock plus-minus 10 ppm
0°C to 40°C ambient
Readout 6 Digit 7 Segment LED
Power 120 V ac
Dimensions 2½" H, 10" L, 7" D
Cabinet Light blue

PRICE $270.00 fob Shawnee
(Wired and Tested)

Include $2.50 to cover
Postage and Insurance

K-ENTERPRISES
1401 East Highland • Shawnee, OK 74801

NOVICES!

NOW — A QSL BUREAU FOR YOU!
FOR ONLY $2 PER YEAR THE NOVICE QSL BUREAU WILL HANDLE ALL YOUR QSL CARDS TO OTHER NOVICES. SAVE $4 ON 100, $10 ON 200 CARDS A YEAR SENT THROUGH US. SAVES TIME, MONEY AND ENDS TRYING TO EXCHANGE ADDRESSES THROUGH THE QRM. JUST PUT YOUR CARDS IN AN ENVELOPE AND MAIL TO US — WE DO THE REST. ALL NOVICES MAY KEEP A SASE ON FILE WITH US.

NOVICE QSL BUREAU BOX 1111
BENTON HARBOR, MI 49022

Year End Specials

Freq. Counter Kit - 0-250 MHz $120.00
Basic Clock Kit - full 6 digit $17.95
Calculator Kit, 9 function, 8 digit readout — with memory $17.95
Electronic Dice Game Kit $10.95
Function Generator Kit $10.95
Various other kits and electronic components available. Send SASE for flyer.

HAL-TRONIX
P. O. BOX 1101 SOUTHGATE, MICH. 48195
(313) 285-1782

112 HR

November 1975

More Details? CHECK-OFF Page 126
MILITARY SURPLUS
WANTED
Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect for our high offer. 201 440-8787.

NEW ADDRESS
SPACE ELECTRONICS CO. div. of Military Electronics Corp.
35 Ruta Court
S. Hackensack, N.J. 07606

LEARN RADIO CODE
REVOLUTIONARY NEW WORD METHOD to learn RADIO CODE
Runs Saturdays $1.00

$9.95
Album contains 12" LP's 2 1/2 hr. Instruction

EPSILON [a] RECORDS
508 East Washington St., Arcola, Illinois 61910

FREE DATA SHEETS
WITH EVERY ITEM
749 IC WITH
EVERY $10 ORDER*

• REDUCE YOUR PROJECT COSTS
• MONEY-BACK GUARANTEE
• 24-HOUR SHIPMENT
• ALL TESTED AND GUARANTEED

TRANSISTORS (NPN)
2N3958 TYPE RF Amp & Sw to 1 GHz (pl. 2N918) 6/$1.00
2N3953 TYPE Gen. Purpose High Gain (TO-92/106) 6/$1.00
2N3567 TYPE High-CURRENT Amplifier/Sw 500 mA 4/$1.00
2N3865 TYPE RF Power Amp 1.5 W @ 450 MHz 1/$1.50
2N3933 TYPE GP Amp & Sw to 100 mA and 30 MHz 6/$1.00
2N3919 TYPE RF Power Amp 10-25 W @ 3-30 MHz 3/$3.00
2N2274 TYPE Ultra-High Speed Switch 12 ns 3/$1.00
MP5615 TYPE High-Gain Amplifier I.F. 250 3/$1.00
Assort. NPN GP TYPES, e.g. 2N918, 2N2274, etc. (15) 4/$2.00
2N3583 TYPE (PNP) GP Amp & Sw to 300 mA 4/$1.00
2N2429 TYPE (PNP) Low Noise Amp 1 µA to 50mA 4/$1.00

FET's:
N-CHANNEL (LOW NOISE)
2N2901 TYPE RF Amp & Switch (TO-18/106) 3/$1.00
2N4416 TYPE RF Amplifier to 450 MHz (TO-72) 2/$1.00
2N5163 TYPE Gen. Purpose Amp & Switch (TO-106) 3/$1.00
2N4580 TYPE RF Amp to 450 MHz (plastic 2N4416) 4/$1.00
E180 TYPE Low Cutoff Audio Amplifier 1/$0.50
ITE 4888 TYPE Ultra-Low Noise Audio Amplifier 2/$1.00
TS74 TYPE High Speed Switch 5012 3/$1.00
Assort. RF & GP FET's, e.g. 2N5163, MPF102, etc. (8) $2.00

P-CHANNEL
2N3460 TYPE Gen. Purpose Amp & Sw (TO-106) 3/$1.00
E175 TYPE High-speed Switch 12512 (TO-106) 3/$1.00

NOVEMBER SPECIALS:
1N4145 DIODE 30 V/10mA 1N914 except 30V 25/$1.00
2N2222 NPN TRANSISTOR GP Amp & Switch 5/$1.00
2N2907 NPN TRANSISTOR GP Amp & Switch 5/$1.00
2N3353 RF Power Amp 5 W @ 150 MHz, 10 W @ 50 MHz 2/$2.00
2N3004 NPN TRANSISTOR GP Amp & Switch 5/$1.00
2N3906 NPN TRANSISTOR GP Amp & Switch 5/$1.00
2N1008 RF Power Amplifier 2 W @ 450 W 1.5 1 GHz 3/$1.00
E101 N-CHANNEL FET Low Current, Low Vp Amplifier/Sw 5/$1.00
MPF102 P-CHANNEL RET RF Amp 200 MHz 3/$1.00
340 T 1A VOLT. REC. Specify 5, 6, 12, 15 or 24 V/Chk 5/$1.75
556 DUAL 555 TIMER 1 µsec to 1 hour (DIP) 1/$0.10
8038 WAVE FORM GENERATOR (T) 7 Wave/Chk $4.50
MMS316 DUAL CLOCK-Snooze/Alarm/Timer $5.50
Hrs, Min, Secs, 4 or 6 Digit With Schematics

LINEAR IC's:
368 Micro Power Op Amp (TO-5/MINI-DIP) $1.00
309 V Regulator 5 V @ 1 A (TO-3) $1.50
324 Quad 741 Op Amp, Compensated (DIP) $1.75
380 2.5 Watt Audio Amplifier 34 dB (DIP) $1.29
555 Timer 1 µsec-1 hr. NE555, LM555, etc. (MINI-DIP) $1.65
705 Poplar Op Amp (DIP/TO-9) $1.29
725 Voltage Regulator 3.3 V @ 250mA DIP/TO-9 $0.50
739 Dual 741 Op Amp/Comp/Amp (DIP) $1.00
1458 Dual 741 Op Amp (MINI-DIP) $0.65
741 Freq. Comp. Op Amp (DIP/TO-5/MINI-DIP) $1.00

DIODES:
ZENER- Specify Vppp and current 2.2, 2.4, 2.6, 2.8, 3, 5, 6, 8, 8.2 400 mW/4/$1.00
S. 1.40, 1.5, 1.6, 1.8, 3.3, 5.6, 7, 11.10 Volt units 3/$1.00
1N3600 TYPE Hi-Speed Sw 75 V/200 mA 6/$1.00
1N3983 RECTIFIER Stud Mount 400 V/12 A 2/$1.00
1N914 or 1N4148 TYPE Gen. Purp. 100V/10mA 15/$1.00
DS VARACTOR 5-50 W Output @ 30-250 MHz, 7-70 pF $5.00
F7 VARACTOR 1-3 W Output @ 100-500 MHz, 5-30 pF $1.00

*MAIL NOW! FREE DATA SHEETS supplied with every item. FRED ON REQUEST-749 Dual Op Amp $1.00 value with every order of $10 or more, postmarked before 12/31/75

ORDER TODAY-All items subject to prior sale and prices subject to change without notice. All items are new surplus parts-100% functionally tested

WRITE FOR FREE CATALOG offering hundreds of semiconductors not listed here. Send 10¢ stamp.

TERMS: All orders must be prepaid. We pay postage. $1.00 handling charge on orders under $10. Calif. residents add 6% sales tax. Foreign orders- add postage. COD orders- add $1.00 service charge.

ADVA ELECTRONICS
BOX 4181 BA, WOODSIDE, CA 94062
Tel. (415) 861-0455
therefore would like to hear from you regarding Apts...

arrange shipping.

would appreciate possible that are offered to ham radio operators. We DEAF, HAMS.

the book which $600.00. Both like new and working any award your club, net, or organization may have components. CPO needed is as follows: Name of the award, given by net or club meeting: Send information to Joseqh requirements, price, licenses, and material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATEIJAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

DEAF HAMS. I would like to know about deaf hams' experiences as amateurs, how they got interested in the hobby, any problems they had in obtaining licenses, and whether there are deaf hams using modes other than CW, such as ATV or RTTY. Please write to Jerome Dine, W5NPC, 922 Suburban Apts., Swedesboro, N. J. 08091.

PLEASE HELP. We are in the process of publishing a book which will contain as many awards as possible that are available to ham radio operators. We therefore would like to hear from you regarding any award your club, net, or organization may have available. Also, if you know of any awards we would appreciate this information. The information needed is as follows: Name of the award, given by whom (net, club, etc.; description of the award, requirements, price, and name of awards chairman. Also list the time, dates, and frequencies of your net or club meeting(s). Send information to Joseph F. Williams, W4ATQ, 114 East Brown Street, Milwaukee, Wisconsin 53212. We want to be ready for the printers by December 1st. Your help will be greatly appreciated. Thank you.

HOME BREWERS: Sta-hp brings list of high quality components. CPO surplus, Box 189, Braintree Mass. 02184.

CANADIAN JUMBO SURPLUS and Parts Catalogs, Eclipses Galore, Send $1, ETCO-RR, Box 741, Montreal "A" H3C 2V2.

RTTY NS-1 PLLU (HR 2/75) wired/tested $29.95 pdd. Nat Stinnette Electronics, Tavares, FL 32778.

UHF 1/4KW REPEATER, Motorola $395, TTL/2 RTTY demodulator $75, Touchtone decoder $100, Speedcall Touchtone to dial pulse converter $150, 31/2" Questar telescope $1200, Tom Pappan, Box 147, Cornuma, MI 48817, 517-743-4607.

ROCHESTER HAMFEST 1976 is Saturday, May 22. Your name and address to mailing list. Please write: Rochester Hamfest, Box 1388, Rochester, N. Y. 14603.

ATTENTION HOBBIES: Complete line of high quality low cost universal printed circuit boards. NOT a kit, but complete ready to use. Boards complete with 22 single sided contacts, all holes drilled (over 700), tin plated copper, FR-4 glass epoxy for all now available. Each board guaranteed, or your money back. Will quote on custom work. Write for complete catalog. Camp Control Company, P. O. Box 174, Garland, Texas 75040.

SELL — Quality nylon cable ties 6 inch for $2.75 per hundred, etc. Mail orders only. P.O. Box 872, ARCO, AR.

JAPANESE TRANSISTORS — All Transistors original factory made. Over 500 types available. Write for complete catalog. West Pacific Electronics, P. O. Box 25837, W. Los Angeles, CA 90025.

PORTA-PAK the accessory that makes your mobile really portable. $59.95 and $99.95. Dealer inquiries invited. P. O. Box 67, Somers, Wisc. 53171.

MODERN 60 MIN. CODE CASSETTES. Novice 0-5 wpm, Professional 5-15, 15-20, 20-22 wpm. $3 each. W4VQD/QI, Box 189, Somers, Wisc. 53171.

VIDEO RECORDER-REPRODUCER ELECTRONIC ASSEMBLY. Contains power supply with adjustable regulated outputs of ± 10 to ± 18 VDC (± 15 VDC ± 1/2 amp) and ± 25 VDC ± 1/2 amp. Contains outputs 10 to 15 and 3 VDC, Perfect for CMOS, TTL, OP-amps. Contains over 900 useful parts with extremely long leads. Includes 100 transistors IC's, diodes, resistors, capacitors, crystals, inductors, delay lines and varicaps. Transistors will operate in HEATHKIT TV's. Schematics and semiconductor cross reference supplied upon request. Total price including shipping is $15.00. Write to Madision Electronics Company Inc., P. O. Box 369, Madison, Alabama 35758 for a free brochure.

SAROC ELEVENTH NATIONAL CONVENTION — Hotel Sahara Space Center, Las Vegas, Nevada, January 14-18, 1976. T.P.L. Communications and SEARC. Total cost per person includes: Regular registration; with hotel, room rate at Hotel Sahara $12.00 per person includes: Advance and regular registration tickets; Option to purchase up to ten additional tickets for main T.P.L. Communications and Tri-Ex Tower Corp., SAROC, adults only; Admission to exhibit area and technical sessions; Admission to Saturday social hour, hosted by Ham Radio Magazine with SAROC, adults only; Hotel Sahara Safari Brunch for Sunday; Accommodations reservations in Hotel Sahara special room rate at Hotel Sahara $17.00 or Thunderbird Hotel $14.00 per night, plus room tax, single or double occupancy; Tax and gratuity on all items taken to ADVANCE REGISTRATION, with Midnight Show, $22.00 per person includes all items above plus Hotel Sahara's Midnight Show, $35.00 per person includes all items above plus Hotel Sahara's Congo Show Room. ADVANCE REGISTRATION: with Dinner Show, $29.00 per person includes all items above plus Hotel Sahara's Prime Rib (no drinks) in Hotel Sahara Congo Show Room. Advance registrations accepted if received in SAROC P. O. Box on or before January 1, 1976. For reservations contact person's last name and address and phone number. In case of cancellation on reservation fee is non-Refundable. If written request is received in SAROC P. O. Box on or before January 8, 1976. Special SAROC Hotel Sahara modified Safari package available via most scheduled airlines serving Las Vegas, from selected principal cities. Write for details. SAROC, P. O. Box 945, Boulder City, NV 89005.

TELL YOUR FRIENDS about Ham Radio Magazine.
HIGH POWER NPN POWER TRANSISTORS

- HI AMPS
- HI VOLTS
- COST SAVINGS
- Solitron, TRW, Fairchild
- Some units $115 each!

4-DIGIT AM-PM FLUORESCENT CLOCK PANEL

TUNG-SOL $9.99

D2004 "PANEL OPTICS"

You are asked for it! Found only at Poly Pak at this low price! It's only 1 1/4 x 1 1/16 x 3/8" deep panel. Designed specifically for our MM-6116 fluorescent notwithstanding driving chip. Indicates 4 digits, AM-PM, pulsed second indicator. Requires no indicator lamp. Colors: BLUE-GREEN. You can use RED or GREEN filters. Character height 0.5". Filament voltage is 1.5V AC or 6V at 110V. Anode voltage is 25V. All units are guaranteed per segment. Specific clock construction diagrams, PC board layouts, and other GOVERNMENT ISSUE materials.

4-1/2 DIGIT DVM CHIP

Price: $14.95

4-VOLT NICAD POWER PACK

Includes a "A" cell nicad battery which gives you 4 volts for all types of voltages. A single battery pack will power many "A" cell batteries made of rechargeable.

LED Revolution!

7-SEGMENT READOUT! $1.98

A $30 item from G.E. Model 533A (made for xerox) that controls home, shop and industrial lighting tool! A very elaborate circuit for controlling many electrical and electronic devices. Easily controls speed of electric drills, brush type motors, etc. 110V, rated at 1300 Watts. With variable speed or dimming control in heavy-duty aluminum case. 3 x 2 1/2 x 2. With diagram and hookups.

TELECHIPS

- COM2502 UART, 40 pin
- COM2501 UART, 40 pin
- C6501 Dual baud rate gen.
- C65011 Keyboard ROM
- KR-3600T 10 channel multiplex
- CAL1022 12 digit digi-calculator

Wow! Incredible Prices

BUN ANY 10 TAKE 15%

BUY 100 TAKE 25%

LITRONIX "JUMBO'S"

- Single slots 1 x 3/4 x 5/16
- 7-Segment, 25-mils per segment

POLY PAKS

P.O. BOX 424H, LYNNFIELD, MASS. 01940

HAM MAGAZINES - NOVEMBER 1975
INFO-TECH MORS KEYBOARD

FEATURES:
- VARIABLE SPEEDS FROM 8 TO 35 WPM
- ADJUSTABLE WEIGHT
- 64 CHARACTER RUNNING MEMORY WITH BUFFER FULL INDICATOR
- BOTH GRID BLOCK AND CATHODE KEYING
- ADJUSTABLE GAIN SIDE TONE MONITOR
- CAN STORE 64 CHARACTERS FOR DELAYED TRANSMISSION
- INCLUDES THE FOLLOWING SPECIAL KEYS: BK, BT, AR, SK, CO AND DE
- 'N' KEY ROLLOVER TO AVOID MISSED CHARACTERS
- FULL ONE YEAR WARRANTY . . . AND BEST OF ALL . . . ONLY $239.50

Delivered in the Cont. USA
SEND FOR DATA SHEET FOR ADDITIONAL INFORMATION WATCH FOR INFO-TECH'S NEW FAMILY OF DIGITAL SYSTEMS . . . COMING SOON . . .

RTTY KEYBOARD, RTTY TO VIDEO DISPLAY, AND MORSE TO VIDEO DISPLAY.

INFO-TECH
P. O. BOX 84
CHESTERFIELD, MO. 63017

DRAKE
DRAKE DRAKE
NOW SHIPPING NEW IN FACTORY SEALED CARTONS, LATEST MODELS:
TR-4C TRANSCEIVER $599.95
R-4C RECEIVER $549.00
T-4XC TRANSMITTER $580.00
RV-4C REMOTE VFO $110.00
AC-4 POWER SUPPLY $120.00
MS-4 SPEAKER $24.95
L-4B LINEAR AMPLIFIER $825.00
MN-2000 ANTENNA MATCHBOX $220.00
DSR-2 VLF/HF DIGITAL RECEIVER $2,950.00
Spr-4 RECEIVER $599.00
TR-22C FM TRANSCEIVER $229.95

ALSO SHIPPING DRAKE WATTMETERS, FILTERS, NOISE BLANKERS, MICROPHONES.

TOP TRADES GIVEN. WRITE OR PHONE BILL SLEP (704) 524-7519.

VOY in-terest-ing! Next 4 big issues $1. "The Ham Trader," Sycamore IL 60178

TELETEY SPEED CONVERTER circuit pack with instructions, $9.50 plus $1.00 shipping. Other tele-type and microcomputer supplies. Wilcox Enterprises, 25W176 - 39th Street, Naperville, IL 60540.

QRP TRANSMATCH for H7W, Ten-Tec, and others. Send stamp for details to Peter Meacham Associates, 19 Loretta Road, Weilham, Mass. 02015.

AUCTION. Erie Amateur Radio Society's fourth annual Thanksgiving Auction will be held on Sunday, 11 a.m. - 1:30 p.m., November 30, 1975 at the Laborer's Union Hall, 2109 West Perkins Ave., Sandusky, Ohio, across from the New Departure Plant. Admission $1.00.

1000V 1 AMP DIODES, 10/$1.00. Zeners, capacitors, resistors, cmos & switches for projects; free catalog. NuData Electronics, 104 N. Emerson, Mt. Prospect, IL 60056.

WANTED: TOWER, motorized crank up, 80' W2POI, Route 2, Box 218, Buffalo, Mo. 65622.

SOCIETY OF WIRELESS PIONEERS offers Life Membership to active and former C.W. operators on committee, military, govt., etc. wireless/radio circuits. Contact: Society of Wireless Pioneers, Dept. H, P. O. Box 530, Santa Rosa, California 95402.

DRILLS - Carbide and high speed steel for work. Send SASE, Bob's Electronic Repair, Box 393, Bay City, MI 48706.

PC's, Send large S.A.S.E. for list. Semtronics, Rt. #3, Box 1, Bellaire, Ohio 43906.

BLIND HAM, would really appreciate any donated items, 160M thru 70Cm transceivers. Send to WA2YQQ, 137 N. Lawn, Apt. 1Q, Kansas City, Mo. 64123.

OSCAR SLIDES, set of 5, $1.25. Launch and spacecraft. Proceeds AMSAT. K6PGX, P. O. Box 463, Pasadena, CA 91102.

DC-4 POWER SUPPLY for sale at $90. Call Bob, WB2PRC at 914-477-3927 or write Maple St., Greenwood Lake, N. Y. 10925.

RECONDITIONED TEST EQUIPMENT for sale. Catalog $.50, Walter, 2697 Nickel, San Pablo, Ca. 94006.

FREE Catalog. LEDS, microphones, headsets, IC's, relays, ultrasonic devices, precision trimmer capacitors, unique components. Low Prices! Cheney's, Box 15431, Lakewood, Colo. 80215.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms. plus many other suppression accessories. Free literature. Estes Engineering, 28763 Island Highway, N. Y. 10925.

"HAM BUY LINES" Send name and address for Literature. Visual Jacopelli, 1720 77 St., Brooklyn, New York 11214.

SELL: Heath HW202, 2 meter FM. Just built and tested with 1404 tubes, $170. 564 magnetic modulated a.

NEW CANADIAN MAGAZINE. "Electronics Work Shop", $5.00 yearly, sample $1.00. ETCOB, Box 741, Montreal, H3C 2V2.
HT-220 — Mint condition, 2 frequency slimline with flexible antenna and rapid-charge Ni-Cad, $400. T. D. Shriver, WB7AH, P. O. Box 5441, Eugene, Oregon 97405.

FREE: 8 Extra Crystals of your choice with the purchase of a new ICOM IC-22A at $249. With the 10 crystals that come factory-installed in the IC-22A, this gives you a total of 18 crystals! For equally good deals on Kenwood, Drake, Collins, Ten-Tec, Tempo, Regency, Swan, Atlas, Midland, Alpha, CDE, Standard, Genave, Hy-Gain, Antenna Specialists, Cush-Craft, Mosley, Hustler, and others, call Hoosier Electronics, your ham headquarters in the heart of the Midwest and become one of our many happy and satisfied customers. Hoosier Electronics, P. O. Box 2001, Terre Haute, Indiana 47802. NOTE OUR NEW PHONE NUMBER! (812) 238-1456.

CLOSE OUT SALE — J-beam antennas, Model 2/14P, 2 meters, 15.2 dB over dipole, $45.00 each. Free stacking harness included with two antennas. VHF Communications, 83 St. Andrew, Rapid City, S. D. 57701.

TRAVEL-PAK QSL KIT — Send call and 25¢; receive your call sample kit in return. Samco, Box 203, Wynantskill, N. Y. 12198.

HW-101, $250; mint HP-23, $40; HD-15 (phon epatch), $25; 275 watt match box, $50; TWR-35, $35 with DC supply. SASE for info and more items. K6SRM, 274 2nd St. East, Sonoma, Ca. 95476.

DO-IT-URSELF DXPEDITION — Stay at ZF1SB, Cayman Is. Vertical antenna and J-beam at your doorstep. Diving/fishing if band falls. Write Spanish Bay Reef Resort, Box 900K, Grand Cayman, B. W. I.

CONTESTERS: Announcing the W7BBX programable contest keyer - four 512-bit memories, paddle programming, no-fail power supply, high rf immunity, designed for smooth synchronous operation, 10-60 wpm. SASE to HFB Enterprises, 12002 Cheviot Dr., Herndon, Virginia 22070.

160 METER TOP LOADING SECTIONS for vertical antennas, $34.50 ppd. 80 meter sections, $31.50 ppd. Details write Bill Turney, WA2RFF, 1414 East 9th St., Hutchinson, Kansas 67501.

HAM RADIO MAGAZINE, complete set mint condition $80. Shipping in U.S. prepaid for certified check or money order, otherwise add shipping and allow two weeks. Al Nowakowski, WJHDD, 316 Hickman St., Bridgeville, Pa. 15017.

FERRITE BEADS: Ferroxcube beads w/specification and application sheet — 10 @ $1.00 postpaid. Includes catalog, CPO Surplus, Box 189, Braintree, Mass. 02184.

3CX100A5/7289 PULLOUTS, untested but guaranteed good, $1.50 ea., 4/$5.00, 10/$10.00 ppd. Carmichael Communications, P. O. Box 256, Carmichael, Ca. 95608.

COLLINS: 305-1 in excellent operating and physical condition for Bendix R-1051B/E receiver. Sid Sidman, 3571 Gresham Court, Pleasanton, Calif. 94566.

SALE: Hallicrafter HT-32A, defective audio output. RF section good, $50.00. Alden Davis, 212 Santa Fe, Halstead, Ks. 67065.

ENGRAVED RADIO LICENSE. Exact reproduction in solid brass. Permanent identification. Send good Xerox copy, with $5.00, to Metal Art Graphics, 1136 Potomac Ave., Hagerstown, Md. 21740.

COLOR VIDEO TAPE RECORDER, new, $250.00. TV camera, new, $150.00, video tapes $5.00, cartridge monitors, spare parts and bulk videotape. Send to; Dennis Trimble, 514 Roeder Rd., San Jose, Cal. 95111, 408-227-6330.

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. MIS 3B4.

TELETYPER WRITER PARTS, gears, manuals, supplies, tape, parts, SASE list. Typeretronics, Box 8873, Ft. Lauderdale, Fl. 33310. Buy parts, late machines.

SIX METER TPLS

RE 72 J83 — 42 to 50 MHz, 100 Watts Output. With NOISE BLANKER to eliminate ignition and other noises. Two frequency transmitter, single frequency receiver. These should be great for six meter use. With accessories. Regularly $165.00 only $135.00

RE/FE 72 JA3 — 42 to 50 MHz, 100 Watts Output. Single frequency transmit and receiver. With accessories. Regularly $225.00 only $185.00.

TWO METER TPLS

RE/FE 73 JA6 — 152 to 162 MHz, 80 Watts Output, single frequency transmitter and receiver. With accessories. Regularly $225.00 only $195.00

RE/FE 53 JA6 — 152 to 162 MHz, 35 Watts Output, single frequency transmit and receive. With accessories. Regularly $175.00 only $150.00

RE/FE 53 JC6 — 152 to 162 MHz, 35 Watts Output, TWO FREQUENCY TRANSMIT AND RECEIVE. With accessories. Regularly $200.00 only $180.00.

QUANTITIES ARE LIMITED PLEASE SPECIFY SECOND CHOICE

Send check or money order today.

DuPAGE FM INC.
P. O. Box 1, Lombard, IL 60148
(312) 627-3540

TERMS OF SALE: All items sold as is. If not as represented return for refund or exchange (our option) within five days of receipt, shipping charges prepaid. Illinois residents must add 5% sales tax. Personal checks must clear before shipment. All items sent freight collect. Accessories do not include crystals, relays, reads or antennas.

More Details? CHECK OFF Page 126
DON'T GET RIPPED OFF
Shur-Lok Mobile VHF Radio Lock

U.S. Patent #3410122
• SHUR-LOK will accommodate a unit with overall dimensions including mounting bracket up to 3/4" high and from 4 1/2" to 6 1/2" wide. Prevents access to rig's mounting hardware. No special tools needed. Tempered steel. No pick lock. Aisle great for tape decks. Satisfaction Guaranteed. Special pry-proof hardware. Dealer & Club inquiries invited.

You spent $200, $300 or $400 to put your VHF rig in the car. Why not spend $15 to keep it there?

PRUITT ENTERPRISES
Box 41H Tonopah, NV 89049 Tel: 702-482-3473

NEW! GLOW IN THE DARK "TT" PADS
GUARANTEED RF PROOF
WILL MODULATE ANY TRANSMITTER
LED TONE & BATTERY INDICATOR...

ADJ. LEVEL CONTROL 6-16 VDC & 15 mA max.
XTAL CONTROLLED DIGITAL CMOS

TEK SERIES (ALL 40" THICK)

TEK-125
1 5/8" x 2 9/8" $57.50

TEK-165
2 3/8" x 2 9/8" $65.00

CLUB DISCOUNT ON 10 OR MORE

SHIPPED FROM STOCK

SINGLE UNIT ABS CASE — FALSE TONE PROOF
SCHEMATICS FOR 3 WIRE HOOKUP ON REQUEST
SPECIFY POS OR NEG GROUND

(Quantity & OEM prices on application)
(714) 627-4287 — (714) 627-1753

MONEY BACK GUARANTEE
SEND CHECK OR M.O. (CA RESIDENTS ADD 6% TAX) WITH MAKE & MODEL OF TRANSMITTER TO:

ELECTROGRAFIX
P.O. BOX 369
CHINO, CA 91710

GET YOUR 1976 ARRL HANDBOOK. $6 ppd. from Ham Radio, Greenville, NV 89049.

RADIO ARCHIVES, amateur anecdotes solicited for (SASE subscription) monthly PR newsletter. Electronic Avocations, 3207 4th St. N., Minneapolis, Minn. 55412.

KWM-1 KWM-2/2A and S-Line booklet on Problems and Solutions is completed. Price $2.50 to cover printing, material, postage. Frank Andrei, W3OEL, MR 1, Saltburg, Pa. 15681.

WANTED: R-390A parts. W6ME, 4178 Chasinet Street, Oceanside, Ca. 92054.

MICRO-TO MK II deluxe epoxy-glass drilled circuit boards. $4.00 postpaid; with semicon $11.80. K3CWW, 1304B Mass Ave S.E., Washington, D. C. 20003.

MANUALS for most ham gear made 1940/65, some earlier. Send SASE for specific quote. Hobby Industries, W0JJK, Box H-844, Council Bluffs, Iowa 51501.

TELETYPE EQUIPMENT FOR SALE: for beginners and experienced operators. RTTY machines, parts, supplies. Special beginners package consists of Model 15 page printer and TH5-TG demodulator, $125.00. Atlantic Surplus Sales, 3730 Nautilus Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349.

WANTED: tubes, transistors, equipment, what have you? Bernard Coldstein, W2MMNP, Box 257, Canal Station, New York, N. Y. 10013.

QSL CARDS — Something completely different. Nothing even close to it on the market! Samples: 25c. W5UTT, Box 1171D, Garland, TX 75040.

EXCLUSIVELY HAM TELETYPE 21st year, RTTY Journal, articles, news, DX, classified ads. Sample 30c. $3.00 per year. Box 837, Royal Oak, Michigan 48068.

NEW FALL BOOK CATALOG available free from Ham Radio. Send postcard today to request your free copy. Ham Radio, Greenville, NV 89049.

RF CONNECTORS, PL259 or SO329, five for $3.50 postpaid. Free catalog. COAKIT, Box 101-D, Dumont, NJ 07628.

TELESTAR AND MADISON ELECTRONICS PRESENT the ultimate CW keyboard keyer with 72 character memories. One memory 369.95; three memory 409.95; six memory 469.95; write for literature. Madison Electronics, 1508 McKinney, Houston, TX 77002. 713/221-2668.

WHAT DO YOU WANT? BUYERS & SELLERS has the largest listings of used ham gear anywhere. See our display ad and find out how to get the gear you want.

STOLEN HR-2 Regency #04-02655 from E-Systems parking lot in Huntington, Indiana on August 28. Frequencies marked on paneling $15513 & E 14689. If you hold any information, contact owner Joe Shaw, W8695Q, Lot #90, Walls Trailer Park, Huntington, IN 46750.

BUG BOOKS! For the first time, here's the full scoop on microprocessors written at the experimenter's level. Write for full details. Ham Radio Magazine, Greenville, NV 89049.

YOUR AD belongs here too. Commercial ads 35c per word. Non-commercial ads 10c per word. Commercial advertisers write for special discounts for standing ads not changed each month.
TIRED OF IGNITION NOISE?
End your problems now with our SHIELDED IGNITION SYSTEMS. Easily installed kit provides all items necessary to reduce ignition noise to less than 1 "S" Unit. Kits for 1965-1975 U.S. autos except 1975 GM.
$30.95 — Kit for 6 cyl. U.S. Auto
$35.95 — Kit for 8 cyl. U.S. Auto
Add $4.90 for Electronic Ignition Systems.
— Mass. residents add applicable Sales Tax.
— Specify Year, Mfg. Engine, Model and
%" or 13/16" Hex Size of Spark Plug —
Order now or send SASE for details
SUMMIT ENTERPRISES
20 Eider Street
Yarmouth Port, Mass. 02675
617-399-3837

CATION CATALOG
GOVERNMENT SURPLUS
ELECTRONIC EQUIPMENT
For 1975
FREE UPON REQUEST! Write for
Copy of Catalog WS-75 Now!
Address: Attention Dept. HR
FAIR RADIO SALES
1016 E. EUREKA • Box 1105 • LIMA, OHIO • 45802

Crystal Products Co.

HIGH STABILITY CRYSTALS
• For Industrial, Commercial, Amateur & C.B.
• Competitive prices, normally 1 week delivery.
• All crystals shipped prepaid insured airmail.
QUANTITY USERS CALL FOR QUOTES
Write or call: WANDA BURCH
CRYSTAL PRODUCTS CO.
P. O. BOX "E" • COLLINSVILLE, OKLA. 74021
918-371-4269

NEW NEW NEW
Transistor and Relay Assembly
constists of (2) MJ2095
and (2) MJE2955 transistors
(10 amp, 90w, 60v complementary pairs) mounted in "U" channel heat sink. 21/4" x 11/8", (2) XTAL CAN RELAYS
PDPT, 28v, 8000Ω, 5.8 ma DC,
1 amp contacts mounted on PC board with resistors, MIL.
SPEC. PKD. $2.85 ea. ppd.

NEW 3/96
Factory New Full leads. Fairchild RTL IC's.
ul 900 ul 914. YOUR CHOICE
3 for $1.35 ppd.

CARBON TRIMMERS
Miniature 1/4 watt units for limited-space applications. PC type terminals. Max 500 volts. Ohm ratings are:
100, 200, 500, 700, 1000, 1.5K, 2.5K, 7.0K.
25¢ ea. or $6/1.35 ppd.
9 PIN SOCKET — SNAP-IN MINIATURE for P.C. Board Mfg.
6 for $1.10 ppd.

SPST SLIDE SWITCHES (Red) Made by Stackpole
— 4A, 125V A.C.
25¢ ea. ppd.

NEW NEW NEW
Sperry SP-332 contains two 7 segment readouts, .330 high, side by side layout, black glass face, orange characters with decimal. 3/4 in. square. W/specs.
$3.50 each, 3 for $10.00

NEW SIZES — VERTICAL MOUNT PC BOARD POTENTIOMETERS
American made (CRL) with quality pots. Available in the following sizes:
750 ohms, 1500 ohms,
25,000 ohms, 50,000 ohms, 100,000
Price is 5 for $1.00 ppd.

Canadian orders for less than 5.00 add $1.00 to cover additional postage costs.

m. weinschenker
K 3DPJ BOX 353 IRWIN, PA. 15642

R648/ARR-41 RECEIVER
Mini version of R-390A with many features of R390A
Digital Readout: 500 kHz to 24,999 MHz
1.4 kHz to 6 kHz Mechanical Filters
Crystal Calibrator: 500 ohm Output, 17 tubes.
Input: 28 Volt-115 V, 400 Hz — 220 V @ 100 MA
Size: 8"x7"x22", Weight: 34 lbs.
Information sheet available
Price: $199.50 tested: FOB Tucson, Arizona

KOLAR, INC.
4484 E. TENNESSEE ST., TUCSON, AZ. 85714
TELEPHONE: AREA 602-325-3391

More Details? CHECK-OFF Page 126
Improve Your Reception With An Ameco Preamp

MODEL PT — 6 thru 160 meters • 20 DB GAIN • IMPROVES SIGNAL-TO-NOISE RATIO • PROVIDES MASTER POWER CONTROL FOR ENTIRE STATION.

Model PT is a continuous tuning preamp, specifically designed for a transceiver. A frame grid pentode provides a low noise figure while improving sensitivity of receiver. Built-in transfer circuit enables PT to bypass itself while transmitting. Improves immunity to front end overload by use of its attenuator. No modification or re-wiring of existing equipment. Includes 4 additional power outlets and all cables and plugs.

Model PT 117V, 60 Hz $69.95

MODEL PLF — 6 thru 160 meters FOR RECEIVER USE ONLY USES DUAL GATE FET

With its low noise figure and 20 db gain, Model PLF improves weak signal performance of receiver.

For 117 volt AC 60 Hz $44.00

Model PCLP is identical in all respects to the PLF except that two n vibrators are used instead of FET.

117 V. AC 60 Hz $39.00

At leading ham distributors, or write

AMECO EQUIPMENT CO.
275 Hillside Avenue
Williston Park, New York 11596

NOW Open every nite until 9:00 p.m.!

If you're a HAM and live or travel in New England, you'll eventually discover us. Why wait? Come in now and let us assist you in your equipment selection.

NEW ENGLAND’S HAM HDQTRS.

Sells & Services:

- **ATLAS**
- **BOMAR CRYSTALS**
- **CUSHCRAFT**
- **DUPLEXER KITS**
- **EMERGENCY BEACON**
- **MANY OTHERS**

Our large inventory also includes kits, amateur radio publications and the largest selection of used equipment in the Boston area. Our business is devoted entirely to Amateur Radio!

TUFTS RADIO ELECTRONICS
386 MAIN STREET
MEDFORD, MASS. 02155

ALUMINUM TOWERS

- **TELESCOPING**
- **WALL MOUNTED**
- **GUED**
- **FREE STANDING**

EXCELLENT FOR:

- HAM COMMUNICATIONS
- QUALITY MADE • LOW PRICED

ALUMA TOWER DIVISION

FRED FRANK, INC.
BOX 2828HR VERO BEACH, FLA. 32960
PHONE (305) 567-3415
SOME TERRITORIES AVAILABLE

Infusion-Fighting DISCOUNTS DISCOUNTS

WEIRNU P.O. Box 942
Cotton, CA 93224

10% • orders take 5%; 20% • orders take 10%; 30% • orders take 15%; 50% • orders take 20%

TRANSMITTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3566</td>
<td>$20</td>
</tr>
<tr>
<td>2N3567</td>
<td>$20</td>
</tr>
<tr>
<td>2N3568</td>
<td>$20</td>
</tr>
<tr>
<td>2N3569</td>
<td>$20</td>
</tr>
</tbody>
</table>

1. Add 50% for postage & handling on orders under $10.
2. Send your order along with check or money order to WEIRNU, P.O. Box 942, Cotton, CA 93224
3. A list of our complete stock will accompany all orders, but if you are not ordering right now but would like the list sent to you, send a stamped envelope with your request.
4. Calif., residents include 6% tax. 5. All parts guaranteed.

DUPLEXER KITS

PROVEN DESIGN. HUNDRED SOLD IN US, CANADA, EUROPE. CONSTRUCTION WELDED ALUMINUM IRIDITE & SILVER PLATED, SEE JAN. 74 QST RECENT EQUIPMENT, ALL PARTS PROFESSIONAL QUALITY, EVERYTHING SUPPLIED. NO SPECIAL TOOLS. RECEIVER & TRANSMITTER CAN BE USED FOR TUNE UP.

MOD. 62-1 6 CAVITY 135-165 MHz POWER 250W ISOLATION GREATER THAN 100db 600 KHZ. INSERTION LOSS .6db MIN. TIGHT STABLE OVER WIDE RANGE.

PRICE $349.00

MOD. 42-1 4 CAVITY SAME AS 6 CAVITY EXCEPT ISOLATION GREATER THAN 80 db 600 KHZ INSERTION LOSS .6db MAX.

PRICE $249.00

NORTH SHORE RF TECHNOLOGY

Exclusive Distributor TUFTS Radio
386 MAIN ST, MEDFORD, MA 02155
617-395-8280

SUBAUBLE

FM GENERATOR

FM

- Inexpensive multi tone system
- Low distortion Sinewave
- Adjustable to any freq (98-250Hz). Lower freq avail.
- Rugged plastic encased
- Exceptional frequency stability over temp & voltage
- Input 8VDC unregulated

Price

- 19.95 Lyte Products
- 19.95 P.O. Box 2083
- 19.95 Santa Clara Calif.

120 November 1975

More Details? CHECK--OFF Page 126
Comcraft's NEW VHF Two-Band Transceiver for 2 and 1¼ meters with Digital Frequency Synthesis

The new CST-50 Two-Band Transceiver provides coverage of two complete amateur bands with all the features needed by most operators. Imagine! The two most popular VHF bands in one rig with Phase Locked Loop frequency synthesis. In the CST-50 all frequencies are generated digitally by reference to one highly accurate and easily adjustable crystal. As soon as a new repeater is on you can use it, no waiting for crystals. Write for further information.

AMPYERS with VERSATILITY

- Selectable bias - Linear Class AB for SSB, Class C for FM.
- Variable T-R delay
- SSB mode also usable for low power (<10W.) FM.
- Solid State and microstrip construction.
- No tuning across entire Amateur band.
- Full VSWR and reverse voltage protection.

The latest innovation, unique to our line, is a variable T-R delay on SSB and CW.

2 METER

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M10-140L</td>
<td>$199.95</td>
<td>10W IN</td>
<td>140W OUT</td>
</tr>
<tr>
<td>2M30-140L</td>
<td>$179.95</td>
<td>25-30W IN</td>
<td>140W OUT</td>
</tr>
<tr>
<td>2M10-70L</td>
<td>$139.95</td>
<td>10W IN</td>
<td>70W OUT</td>
</tr>
</tbody>
</table>

220 MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3M10-120L</td>
<td>$219.95</td>
<td>10W IN</td>
<td>120W OUT</td>
</tr>
<tr>
<td>1.3M30-120L</td>
<td>$199.95</td>
<td>25-30W IN</td>
<td>120W OUT</td>
</tr>
<tr>
<td>1.3M10-60L</td>
<td>$159.95</td>
<td>10W IN</td>
<td>60W OUT</td>
</tr>
</tbody>
</table>

Write now or contact your nearest dealer!

SPECIALTY COMMUNICATIONS SYSTEMS

4519 Narragansett Avenue, San Diego, CA 92107
Louis N. Anciiaux, W6BNM (Dealer inquiries invited.)
714-222-8381

FAST SCAN AMATEUR TELEVISION EQUIPMENT

- SOLID STATE
- BROADCAST QUALITY PERFORMANCE

AX-10 TRANSMITTER

AM-1A RCVR MODEM

For technical data and pricing, write to:

APTRON LABORATORIES
BOX 323 BLOOMINGTON IN 47401
ELECTRONIC DISTRIBUTORS, your Tower and Antenna Headquarters, now has the complete Cushcraft line in stock.

Cushcraft’s popular 11 element yagi — Model A147-11. This unit, a descendant of an industry standard, has been cut for FM and vertical polarization.

- Boom - 144”
- Longest EL - 40”
- Gain - 13.2 dB
- F/B Ratio - 28 dB
- Freq. - 146-148 MHz

Ringo Ranger from Cushcraft

The one eighth wave phasing stub and three half waves in phase concentrate your signal at the horizon for super signal strength!

Model ARX-2: 100 watts, 137-160 MHz.

Call, write, or come in today to discuss the optimum antenna for your station.

ELECTRONIC DISTRIBUTORS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

WHY USE LESS THAN THE BEST?
The Quality designed and built into this M-Tech Amplifier allows us to include our famous ONE YEAR WARRANTY!

MODEL P50AI

Mode: Class C for CW and FM
DC Input: +13.6 V DC @ 8 amps for rated output
RF Input: 1-3 watts 140-165 MHz
RF Output: 40-60 watts 140-165 MHz
Load Sensitivity: internally protected for any VSWR
Connectors: low loss 50Ω BNC
COR switching w/LED indicator
Spurious output filter
Unique Low frequency negative feedback circuit
Send SASE for info - add’l models

$139.00 ppd. continental USA

ORDER TODAY FROM:
M-Tech Engineering, Inc.
Box C, Springfield VA 22151 (703) 354-0573
M-TECH ... The Quality Company

R-X NOISE BRIDGE

- Learn the truth about your antenna.
- Find its resonant frequency.
- Find R and X off-resonance.
- Independent R & X dials greatly simplify tuning beams, arrays.
- Compact, lightweight, battery operated.
- Simple to use. Self contained.
- Broadband 1-100 MHz.
- Free brochure on request.
- Order direct. $39.95 PPD U.S. & Canada (add sales tax in Calif.)

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

radio communication

Great Britain’s most popular amateur magazine. The official publication of the RSGB. Learn what English amateurs are building, learn what they are doing.

$10.50 per year (12 issues)
Includes RSGB Membership

HAM RADIO
GREENVILLE, NH 03048

Station Identifier

$75

The CWD-50 provides automatic ID for repeater stations in perfect Morse code. Has factory-programmed IC memory. Brochure describes CWD-50 and CWD rack models.
ELPROCON
1 WATT 2 METER TRANSMITTER

- TWO CHANNEL OPERATION
- FREQUENCY RANGE 144-148 MHz
- POWER OUTPUT 1 WATT INTO 50 OHM LOAD
- SUPPLY VOLTAGE 12 VDC
- MULTIPLICATION FACTOR 8X
- NARROW BAND FM ± 5 KHz
- RUGGED, BALANCED, EMMITTER OUTPUT TRANSISTOR
- SIZE 3/4" X 1 1/4"
- TESTED & FULLY ASSEMBLED (Less Xtal)
- $29.95 which includes postage

ELPROCON
DEPT. DS • 1907 W. CAMPBELL
PHOENIX, ARIZONA 85015

PARTS
IN STOCK
MILLEN
HAMMARLUND
JOHNSON AND OTHERS
Roller Inductors for KW Transmatch
18µh (10-80M) $30.00
28µh (10-160M) $32.00
Prices FOB. Excess Transportation Refunded

G. R. WHITEHOUSE & CO.
Newbury Drive Amherst, N. H. 03031

DIPOLE ANTENNA CONNECTOR
HYE-QUE (HQ-1) dipole connector has coax SO-239 socket molded into glass filled plastic body to accept coax PL-259 plug on feedline. Drip-cap keeps coax fittings dry. Instructions included. Guaranteed. At your dealers or $3.95 postpaid. Combination insulators 2 1/2.99.

BUDWIG MFG. CO.
PO Box 971, Ramona, CA 92065

WANTED - BOTH
EXPERIENCED VHF ENGINEER
and HAM-TYPE TECHNICIAN
for further details call or write
VHF ENGINEERING
320 WATER ST. P. O. BOX 1921-H
BINGHAMTON, N. Y. 13902
607-723-9574

RMS CORPORATION
THE ELECTRONIC STORE
675A GREAT ROAD (ROUTE 119)
LITTLETON, MASS. (617) 486-4973
ICOM MATRIC-KEYERS
HUSTLER ANTENNA SPECIALISTS
CONSIGNMENT EQUIP.
KLM RADIO PUBLICATIONS
LARGE INV. COMPONENTS USED EQUIP.
1-495 to Rte. 119 Groton Exit 19
2 miles on Right

SEE US FOR
ICOM'S IC-21A &
DV-21 COMBO.

NOW
is the time to order
YOUR

76
callbook

Don't wait until 1976 is half over. Get your new CALLBOOKS now and have a full year of the most up-to-date QSL information available anywhere.
The new 1976 U. S. CALLBOOK will have over 300,000 W & K listings. It will have calls, license classes, names and addresses plus the many valuable back-up charts and references you have come to expect from the CALLBOOK.
Specialize in DX? Then you're looking for the new, larger than ever 1976 FOREIGN CALLBOOK with over 225,000 calls, names and addresses of amateurs outside the USA.

On dealer shelves Dec. 1, 1975

Foreign Radio Amateur CALLBOOK
DX Listings $12.95
with 3 Service Editions $18.95

United States
CALLBOOK
All W & K Listings $13.95
with 3 Service Editions $19.95

RADIO AMATEUR CALLBOOK INC.
Dept. E 925 Sherwood Drive
Lake Bluff, III. 60044

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.00 shipping and handling per Callbook.
I

ham radio

1976

ham makes it BIG

You won't believe 1976 in HAM RADIO. We'll be wearing our new 8¼" x 11" format, a great new size with larger pictures, larger schematics and improved circuit layouts.

There will be a great bonus as each page contains over 50% more material. You'll find more to learn and more to enjoy each month from the NEW HAM RADIO.

Look for great new columns which will make your amateur activities more fun than ever before. Look for more bargains from our advertisers as they have the room to describe more of their products and in better detail.

SOME SAD NEWS

Yes, all of this is going to cost more, and a 30% postal increase will not help a bit. It will cost less per article and less per idea, but the total cost just has to go up.

ACT NOW & SAVE

You can still have the new HAM RADIO at the old HAM RADIO cost. Just get your order in before January 1, 1976 and you'll be all set to go at today's price.
Bird

We are official distributors for Bird Wattmeters and elements. RF Thruline Wattmeters & most elements now in stock.

C.D. Ham II Rotator

Includes brushed aluminum pin with your call!

New Improved

Savoir $159.95 net $139.95

7 conductor cable for HAM II or CD-44 16¢/ft.

Drake

In stock for immediate shipment.

AC-4 Power Supply

ANTENNAS

T.4XC complete with paddle.

Antenna Specialists

Antennas stock in depth.

8 conductor cable for HAM II or CD-44 16¢/ft.

New Item!

Patented strain axial antenna connector has hole in center of insulator for RG-8/U or smaller diam, coax. Has holes for open wire feed. Also will handle economical RG-8/U balun. Instructions furnished. Also handles coax with loading coils. Size 5" x 2/4" - Wt. 12 oz. $3.00

Ten Tec Model 505 Argonaut Transceiver SS8/ CW, QRP, 10-80 $329.00

Hi Power Matchbox for comm"l use — handles up to 10 kW $350.00

Sencore SM152 Sweep and Marker — Excellent physically & working only $250.00

Johnson

154-10 or equal. Single section 23 thru 347 pf for KW transmatch. Replaces Millen 16520 $36.00

229-202 18 m variable inductor 10 to 100 for KW transmatch $39.00

229-203 28 m variable inductor 10 to 160M for KW transmatch $39.00

TELLX

12.7670

_CheckedChanged OFF Page 126

Newtronics

HyGain HyGain CushCraft

Antennas now in stock.

Rohn Towers.

Rohn Towers.

Newtronics

HyGain CushCraft in stock.

Distributors

Freight

sales@

FOR

MONDAY-FRIDAY, 9 a.m.

BARRY

DEPT. H-11

212-WA-5-7000

TELEX 12-7670

ELECTRONICS

BARRY

512 Broadway NY, NY 10012

November Hours

Saturday, 10 a.m. - 4 p.m.

Monday - Friday, 9 a.m. - 6:30 p.m.

Major Test Equipment Manifac.

Seeks Sales Manager — With Technical Background to Service Distributor, Industrial, O.E.M., and Communications Market. Complete Resume to Fred M. Moller J.R., Main St., Green- ville, NH 03048.

BRIMSTONE

143 to 149 MHz

Extended range to 142 MHz optional

THE BRIMSTONE 144

143 to 149 MHz

Extended range to 142 MHz optional

Npc Power Supplies

Model 102 115VAC Input - 12 VDC 4amps $25.00

Model 104R same as above but regulated $25.00

Model 108R 115VAC/12VDC 8amps continuous 12amps surge. Regulated $72.00

CONSTANT VOLTAGE TRANSFORMER.

Input: 115VAC 400 watts. Output: 24VAC 150 watts. + 2% with matching AC capacitor. $19.95

Hammarlund Dual Section 320/320 100 watts. $29.95

Multi 2290 FM SSB & CW Synthesized 2 meter Transceiver. Call or write $49.95

Ameco Model PT Preamp. factory wired $69.95

Regency HR-6 6 meter AM Transceiver. New end $129.95

Swan 700-CX with matching 117XC power supply and speaker, plus WM-1500 Wattmeter. Allmint, like new with 12VDC power supply. $699.00

Lots of Meters! Lots of Parts! Lots of other Goodies!

BARRY BUYS UNUSED TUBES AND VACUUM CAPACITORS. Send Your List. Tube Headquarters. Diversified Stock. Heavy Inventory of Elema tubes, chneys, sockets, etc. 5-300Z or 3-400Z Specify $50.00.

More Details? CHECK-OFF Page 126

November 1975

125
The same state-of-the-art qualities that make the Hy-Gain 270 antenna a great 2 meter mobile, make it a great 2 meter base.

Hy-Gain design has eliminated hard tuning, high VSWR and poor pattern due to irregular ground plane. The 270's slim mobile configuration makes it ideal for apartment or urban installations where space is at a premium.

Fiberglass 270 develops gain through the use of 2 stacked 5/8 wave radiators with a self-contained 1/4 wave decoupling system. Gain that helps reach distant repeaters.

Since the antenna and feedpoint are sealed in fiberglass, the Hy-Gain 270 delivers top performance year after year without corrosion loss.

Get all the 2 meter base you need, for the price of a 2 meter mobile. The great Hy-Gain 270.

- 6 db gain
- 250 watt rated
- 144-148 MHz
- VSWR less than 1.5:1 at resonance, 6 MHz bandwidth
- 96" high
- Completely factory tuned
- 50 ohm input impedance
- Complete with 18' coax and PL-259

For information on Hy-Gain 2 meter and other amateur products contact your Hy-Gain distributor or write.

Hy-Gain Electronics Corporation: 8601 Northeast Highway Six; Lincoln, NE 68505; 402/464-9151; Telex 48-6424 • Branch Office and Warehouse: 6100 Sepulveda Blvd., #332; Van Nuys, CA 91401; 213/785-4532; Telex 65-1359 • Distributed in Canada by Lectron Radio Sales, Ltd.; 211 Hunter Street West; Peterborough, Ontario
6 Digit LED Clock Kit-12/24 hr.

$950 IN QUANTITIES OF 1 TO 5
$850 IN QUANTITIES OF 6 OR MORE

KIT INCLUDES:
- INSTRUCTIONS
- GUARANTEED COMPONENTS (Factory Prime)
- MONEY BACK GUARANTEE

6 - LED Readouts (FND-70.25 in.)
1 - MM5314 Clock Chip (24 pin)
13 - Transistors
3 - Switches
3 - Capacitors
ORDER KIT #850
5 - Diodes AN INCREDIBLE VALUE!
9 - Resistors

Improved Printed Circuit Board for above (Drilled Fiberglass) $2.95
Transformer (requires 7-11 VAC) for above $1.50

6 Digit LED Clock-Calendar-Alarm Kit

- 12/24 HR TIME • JUMBO DIGITS (MAN-64) • 28-30-31 DAY CALENDAR • AC FAILURE/BATTERY BACK-UP • 24 HR ALARM – 10 MIN.
SNOOZE • ALTERNATES TIME (8 SEC) and DATE (2 SEC) OR DISPLAYS TIME ONLY AND DATE ON DEMAND • THIS KIT USES THE FANTASTIC CT-7001 CHIP. FOR THE PERSON THAT WANTS A SUPER CLOCK KIT (TOO MANY FEATURES TO LIST)!

COMPLETE KIT, including
Power Supply, Line Cord,
Drilled PC Boards, etc.

ORDER KIT #7001B
(CASE NOT INCLUDED)

39.95

CABINET

3" HIGH
6 1/4" WIDE
5 1/2" DEEP

GREAT FOR ANY OF THE ABOVE KITS
WHITE VINYL CASE
$7.95

SPECIF RED OR GRAY
PLEXIGLAS CHASSIS
$6.50 WITH ANY CLOCK KIT

Chassis Serves As Bezel To Increase Contrast of Digital Displays, Use Gray With Any Color — Red With Red Displays Only (Red LED’s with Red Chassis Brightest)

PLEXIGLAS FOR DIGITAL BEZELS

Gray or Red Filter
3" x 6" x 1/8" Approx. Size
75¢ each

KIT #7001-C SAME AS #7001-B BUT HAS DIFFERENT LEDS. USES 4 DL-747 .63"
DIGITS & 2 DL-707 .3" DIGITS FOR SECONDS. COMPLETE KIT, LESS CASE.

Xtal Time Base Kit for 12 VDC operation
(100.800 kHz xtal) $9.95
For #7001 Kits Only

OPTOELECTRONICS, inc.
BOX 219 • HOLLYWOOD, FLA. 33022 • (305) 921-2056

BankAmericard, Mastercharge or C.O.D. orders accepted by phone day or evening.
We Pay All Shipping in Continental U.S.A. Orders under $15 add $1 handling, Fla. res. add 4%.
The TEMPO line... commercial quality at amateur prices

Compare this equipment with any other available. Compare their performance, their quality of construction, their ease of maintenance, and then compare prices. Your choice will have to be TEMPO.

TEMPO/CL 146A
- a VHF/FM mobile transceiver for the 2 meter amateur band. It is compact, ruggedly built and completely solid state. One channel supplied plus two channels of your choice. 144 to 148 MHz coverage □ Multifrequency spread of 2 MHz □ 12 channel possible □ Metering of output and receive □ Internal speaker, dynamic microphone, mounting bracket and power cord supplied. A Tempo "best buy" at $239.00.

TEMPO CL 220
As new as tomorrow! The superb CL-220 embodies the same general specifications as the CL-146A, but operates in the frequency range of 220-225 MHz (any two MHz without retuning). At $299.00 it is undoubtedly the best value available today.

TEMPO 6N2
The Tempo 6N2 meets the demand for a high power six meter and two meter power amplifier. Using a pair of Eimac 8874 tubes it provides 2000 watts PEP input on SSB and 1000 watts input on CW and FM. Completely self-contained in one small desk mount cabinet with internal solid state power supply, built-in blower and RF relative power indicator.

$795.00
The Tempo 2002... 2 meters only $695.00
The Tempo 2006... 6 meters only $695.00

TEMPO VHF/UHF AMPLIFIERS
Solid state power amplifiers for use in most land mobile applications. Increase the range, clarity, reliability and speed of two-way communications.

<table>
<thead>
<tr>
<th>VHF (135 to 175 MHz)</th>
<th>Drive Power</th>
<th>Output Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>130W</td>
<td>130A02</td>
<td>$199</td>
</tr>
<tr>
<td>10W</td>
<td>130W</td>
<td>130A10</td>
<td>$199</td>
</tr>
<tr>
<td>30W</td>
<td>130W</td>
<td>130A30</td>
<td>$189</td>
</tr>
<tr>
<td>2W</td>
<td>80W</td>
<td>80A02</td>
<td>$169</td>
</tr>
<tr>
<td>10W</td>
<td>80W</td>
<td>80A10</td>
<td>$149</td>
</tr>
<tr>
<td>30W</td>
<td>80W</td>
<td>80A30</td>
<td>$159</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UHF (400 to 512 MHz)</th>
<th>Drive Power</th>
<th>Output Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>70W</td>
<td>70D02</td>
<td>$270</td>
</tr>
<tr>
<td>10W</td>
<td>70W</td>
<td>70D10</td>
<td>$350</td>
</tr>
<tr>
<td>30W</td>
<td>70W</td>
<td>70D20</td>
<td>$270</td>
</tr>
<tr>
<td>2W</td>
<td>40W</td>
<td>40D02</td>
<td>$180</td>
</tr>
<tr>
<td>10W</td>
<td>40W</td>
<td>40D10</td>
<td>$145</td>
</tr>
<tr>
<td>2W</td>
<td>10W</td>
<td>10D02</td>
<td>$125</td>
</tr>
</tbody>
</table>

FCC Type accepted models also available.

Available at select dealers throughout the U.S.

Henry Radio

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127
EIMAC has powered communications via this satellite for 30 years.

The first moonbounce signal was heard nearly 30 years ago when the U.S. Signal Corps Engineering Laboratory (under the direction of W4ERI, the Project Officer) received echoes from the moon on 111.5 MHz. A pair of EIMAC 1000Ts, driven by EIMAC 450THs, were used in the transmitter. The first radio amateur EME (Earth-Moon-Earth) echoes were received by W4AO and W3GKP twenty-five years ago. Again, EIMAC was there.

The first two-way moonbounce QSO took place 15 years ago between W6HB and W1BU. EIMAC klystrons were used at both stations. From these early, controlled experiments, EME communication quickly grew as interested VHF operators turned to this new and exciting mode of communication.

Today, aided by EIMAC tubes, moonbounce QSO's are commonplace on the 144 MHz and 430 MHz bands using CW and SSB modes. On 2 meters, for example, W6PO has worked 7 countries and 28 states via moonbounce using an EIMAC 8877 in his transmitter. On 432 MHz, VE7BBG has worked 5 continents using two EIMAC 4CX250Bs.

VHF moonbounce is here! Interested? Send your QSL card for EIMAC's Amateur Service Bulletin AS-49 and get the latest information on this fascinating mode of communication. EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070. (415) 592-1221.

Photo courtesy of NASA