A PHASING-TYPE SINGLE-SIDEBAND TRANSMITTER

this month

- slim-line touch-tone 23
- uhf prescaler 32
- crystal oscillators 34
- noise-figure measurements 42
BUY OUR ANTENNA... OPEN THE BOX... ASSEMBLE IT EASILY...

IT WORKS

NEW FM GAIN RINGO RANGER... you'll say "IT WORKS" when you try this exciting new antenna! Ringo Ranger is even better than the popular Ringo. Ranger has more gain for extended range. Easily mounted on a mast or existing tower, Ranger consists of a one eighth wave phasing stub and three half waves in phase to concentrate your signal at the horizon where it can do you the most good. Your present AR-2 can be extended with a simply installed RANGER KIT.

- **ARX-2** 100 watts 146-148 MHz $26.50
- **ARX-220** 100 watts 220-225 MHz $26.50
- **ARX-450** 100 watts 435-450 MHz $26.50
- **ARX-2K** Ranger Kit $10.95

NEW FM MOBILE... Fiberglass 5/8 wave professional mobile antenna for roof or trunk mount. Superior strength, power handling and performance.

- **AM-147T** 146-175 MHz mobile $29.50

NEW 4 POLE... economically priced for primary repeater or home QTH, this antenna has been proven in hundreds of repeater installations. It is a four dipole gain array for mast or tower mounting. It has sealed coax harness for direct 52 ohm feed.

- **AFM-4D** 1000 watts 146-148 MHz $52.50
- **AFM-24D** 1000 watts 220-225 MHz $48.50
- **AFM-44D** 1000 watts 435-450 MHz $46.50

center support mast not included

IN STOCK WITH YOUR LOCAL DISTRIBUTOR

cushcraft corporation

621 HAYWARD ST., MANCHESTER, N.H. 03103
for those who demand the finest

the completely new

MODEL CX-11 . . . Deluxe Integrated Station

Many New Features

New solid state broadband linear power amplifier 10-160 meters. 360 watts input — requires no tuning — completely self-protected.

New concept front-end design — utilizing TWO revolutionary double active quad J-FET balanced mixers — for the ultimate in cross-mod, inter-mod, and overload prevention.

Solid-state modular construction utilizing gold-plated, pins and plug-in sockets for all transistors, IC's, and circuit board connectors.

Five Bandwidths of selectivity are standard — 2.4, 1.5, 1.0, .4, .1 kHz.

Peak notch filter with adjustable notch and peak frequency.

RTTY narrow and wide shift FSK-LSB.

Built-in electronic Keyer with independent speed and weight control and partial or full dot memory.

Built-in Power Supply completely self-protecting — both thermal and current overload, integrated circuit controlled.

New six-digit frequency counter utilizing new ½ inch LEDs optimized for a non-blinking, stable display.

ADDITIONAL FEATURES

Dual VFO's for transceive, split operation, or dual receive.

Adjustable IF shift.

Receive or transmit offset tuning.

Push Button spotting.

Adjustable R.F. clipping.

Instantaneous break-in CW.

Built-in Wattmeter.

Built-in noise blanker.

Adjustable R.F. power output.

Pre-IF, adjustable noise blanker.

Now in production at $2900

Distributed by
PAYNE RADIO
BOX 525, SPRINGFIELD, TENNESSEE 37172

Phone/write DON PAYNE, K41D, for a brochure, and trade on your gear. Dial direct day or evenings (615) 384-2224. Personal phone answered only by Don Payne.

Contact the factory for parts and service only

Box 127 Franklin Lakes, NJ 07417
Tel: (201) 891-0459

June 1975
THE ATLAS 210 AND 215
SOLID STATE SSB TRANSCEIVERS

Plug-In-and-Go-Power!

This may sound like just another catchy headline, but this is the best, and quickest way we can think of to describe the Atlas transceiver.

Plug-In

For mobile operation all you have to do is make a one time installation of the Plug-In Mobile Mount, and thereafter, when you want to operate mobile, just slide your Atlas transceiver into the mount. All connections are made automatically, as shown below. It takes only seconds, and you are ready to operate. Fixed station operation is achieved in the same easy manner, since the Atlas AC Console has the same plug-in system as the mobile mount.

Go-Power!

No Transmitter Tuning!

This is another outstanding feature of the Atlas transceiver. There is no transmitter tuning what-soever. This permits instant QSY or band-switching. Simply tune in to your frequency and GO!

No other rig on the market will provide you with so much operating pleasure.

When you combine the simplicity of operation with unparalleled selectivity, immunity to cross modulation or overload, solid state reliability, 200 watts P.E.P. input power and 5 band coverage... the Atlas 210/215 has everything you could want in a transceiver.

Model 210 covers 80 through 10 meters.
Model 215 covers 160 through 15 meters.

Plug-in and GO! $599

Available NOW at your Atlas dealers. See him for complete details, or drop us a card and we'll mail you a brochure and dealer list.
June, 1975
volume 8, number 6

staff
James R. Fisk, W1DTY
editor-in-chief
Patricia A. Hawes, WNIQJN
assistant editor
J. Jay O'Brien, W6GGDO
fm editor
James A. Harvey, WA6IAK
James W. Hebert, WABOB
Joseph J. Schroeder, W0JUV
Alfred Wilson, W6NIF
associate editors
Wayne T. Pierce, K3SUK
cover
T.H. Tenney, Jr., W1NLB
publisher
Fred D. Moller, Jr., WN1USO
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is
published monthly by
Communications Technology, Inc
Greenville, New Hampshire 03048

subscription rates
U.S. and Canada: one year, $8.00
two years, $13.00; three years, $18.00
Worldwide: one year, $10.00
two years, $17.00; three years, $24.00

Foreign subscription agents
Canada
Ham Radio Canada
Box 144, Goderich
Ontario, Canada, N7A 3Y5

Europe
Ham Radio Europe
Box 444
194 04 Upplands Vasby, Sweden

France
Ham Radio France
20 bis, Avenue des Clarions
92000 Auteuil, France

United Kingdom
Ham Radio UK
Post Office Box 64, Harrow
Middlesex HA3 6HS, England

African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1975 by
Communications Technology, Inc
Title registered at U.S. Patent Office
Printed by Wellesley Press, Inc
Framingham, Massachusetts 01701, USA

Microfilm copies of current and
back issues are available from
University Microfilms
Ann Arbor, Michigan 48103

Second-class postage
paid at Greenville, N.H. 03048
and at additional mailing offices

contents

8 phasing-type ssb transmitter
G. Kent Shubert, WA8JYK

23 slim-line touch-tone conversion
Joseph M. Hood, K2YAH

26 hi-fi interference - causes and cures
Harry Leeming, G3LLL

32 500-MHz prescaler
Wayne C. Ryder, W6URH

34 stable crystal oscillators
Ulrich L. Rohde, DJ2LR

38 speech processor for the Heath SB-102
Timothy A. Carr, W6IVI

42 noise-figure measurements
Norman J. Foot, WASHUV

46 Collins S-line drift reduction
Marvin H. Gonsior, W6VFR

50 cosmos integrated circuits
Edward M. Noll, W3FQJ

4 a second look
94 advertisers index
50 circuits and techniques
56 comments
83 flea market
58 ham notebook
64 new products
94 reader service
59 short circuit
6 stop press

june 1975
As I pointed out in this space last month, the FCC is considering various new ways of determining the power limitations of amateur transmitters. These range from dc power input and power output to manufacturer’s plate dissipation ratings. All of these methods, however, contain one or more variables which are subject to interpretation and policing. Dc input measurements, for example, must be done with calibrated meters at the time of operation. Output power measurements are complicated, and require accurate instrumentation. Plate dissipation ratings are arbitrary numbers established by tube manufacturers which are based upon a given amount of air and back pressure to establish a desired plate dissipation rating. However, it is conceivable that a manufacturer could rate a large tube at a lower plate dissipation rating, or conversely, by requiring more air flow, considerably increase the dissipation capability of the tube. This variation is brought about by the fact that different types of service are used in communication systems (class A, B or C); flexible data ratings for different classes of service must be established because of the variations in plate efficiency from one class of operation to another.

As has been pointed out by Jack Quinn, W6MZ, of EIMAC, there is only one common denominator in a vacuum tube which determines the maximum capability of that device, and that is the manufacturer’s rated heater, or filament, power. This is a parameter which is very carefully established by all tube manufacturers and follows rigid, fixed laws of physics. These current/voltage relationships of the emitter cannot be increased with any degree of freedom without suffering short tube life or catastrophic failure.

Rather than establishing new amateur power limitations based upon plate dissipation ratings or publishing a list of approved tube types which must be continually maintained and up-dated, Quinn has proposed that certain maximum filament or cathode heater power ratings be established. For example, Extra, Experimenter and Advanced class licensees could use a final amplifier having one or more thoriated-tungsten filament tubes with a total filament power rating which does not exceed 200 watts. An amplifier with an indirectly-heated oxide cathode tube would have a total heater power which does not exceed 60 watts, according to the manufacturer’s ratings. If this were done, the ratings would be based upon a common ground and good, sound, technical background. This would also be compatible with amateur equipment in common use today as shown in table 1.

Power levels for the General-Technician and Communicator-Novice classes could be scaled down by whatever percentage the Commission deems (continued on page 60)
The perfect companion for your IC-21A, the DV-21 is an all new unique digital VFO to complete your ICOM 2 meter station. The DV-21 will operate in 5 or 10 KHz steps over the entire 2 meter band. It can also scan either empty frequencies, or the frequencies being used, whichever you select. Complete, separate election of the transmit and receive frequencies, is as simple as touching the keys. When you transmit, bright easy to read LEDs display your frequency. Release the mic switch, and the receive frequency is displayed. There are also two programmable memories for your favorite frequencies. You won't believe the features and versatility of the DV-21 until you've tried it. It's new, and it's from ICOM.
ARRL FORUM AT DAYTON HAMVENTION in late April, led by League president W2TUK, was primarily a question and answer session. As expected, restructuring was the primary subject but, since the League position isn't officially set until the Director's meeting in May, Harry's answers had to be his own personal opinions. Other subjects included possible ARRL insurance program (under active consideration but hard to find an underwriter to cover all states), how to communicate with the FCC, protecting the ham bands from incursions by other services, and type acceptance of commercially made gear.

ARRL 20282 Survey has had an outstanding response—about 56,000 of the League's 100,000 members returned their surveys in time to be processed!

RESPONSE TO RESTRUCTURING so far received by FCC summarized by Prose Walker at Dayton. Two-thirds support 20282, one-third oppose. Most want 10 meters shared. Of the 80% discussing power, more than half are against reductions to Generals and Techs and all oppose levels offered Novice/Communicator. Measuring output power is opposed by the majority.

TYPE ACCEPTANCE of amateur gear is becoming more and more of an active issue at the FCC. The subject was discussed at the Dayton Hamvention Novice forum, which featured both Charles Higginbotham, Chief of the FCC's Safety and Special Services Bureau, and Ray Spence, W4QZW, Chief Engineer of the FCC.

Type Acceptance has some good features but some bad ones, too. It might clean up some problem-causing commercial gear and thus help reduce the RFI problem. At the same time it could prove very stifling if, for example, it forbade the individual amateur from modifying his equipment to meet his own needs.

PROPOSED NEW HF HAM BANDS won't be ours without a stiff fight in 1979. North Atlantic broadcasters would like to increase the international BC allocations between 3 and 27 MHz by another 7 MHz at the forthcoming world conference! For reference, that's more than twice what they're presently allocated.

NEW MOTOROLA COMMERCIAL FM GEAR is pushing the amateur price range—Maxar line of 150- and 450-MHz transceivers starts at $395 for a 10-watt out model with several channels. For repeaters their new Spectra-Tac voting system looks very competitive, and finally, they have a new pager receiver which shakes in your pocket when you get a call.

JAIANG VISITED AMSAT early last week and reported JAMSAT is well along in construction of a two-meter-to-435-MHz transponder in anticipation of the next OSCAR. Other JAMSAT projects are also in the mill.

T1DX on Cocos Island was heard on OSCAR recently, and TU2EF reports he's been quite active on Mode A—his log would make a serious 20-meter DXer drool. FY7AS, A2CJP, 4W1ED and ZS3E are samples—he reports EA8CS may also be on soon.

"Area Coordinator" is the tentative title for a position established by the AMSAT board. Purpose for the Area Coordinator, who should be an active OSCAR user, is to advise amateurs interested in getting on OSCAR and provide local clearinghouse for OSCAR activities. Active satellite users who want to help out in this capacity should contact AMSAT headquarters.

FCC TAKING A CRITICAL LOOK AT SPEECH PROCESSING—if footnote at the end of Docket 20282 is any indication, but no response to the restructuring docket filed so far has even acknowledged that paragraph's existence. Since DXers are the most frequent users of processors, we better take another look at that paragraph and its implications— mushy and broad signals have all too often caused problems on the lower ends of the DX bands.

MORE NON-AMATEUR OPERATIONS THREATEN 420-450 MHz band, as TI in Dallas attempts to get a new Special Temporary Authority to continue operating a high-powered navigation system on 430 MHz. The 20 kW ERENS (Extended Range Electromagnetic Navigational System) transmitter has a range of 250 miles and has been on since last September. They have also filed requests for similar systems on Cape Cod and Montauk Point, Long Island. If permitted, these pulsed navigational systems would make a large portion of the 420-450 MHz band practically unusable.
Once you actually use an ALPHA 374 on the air, we don’t think you’ll be willing to part with it. QST (April 1975) says, in part, “A combination of modern compact components and a judicious use of ... space has resulted in an amplifier fully capable of continuous operation at the legal power limit. It is also ... hardly larger than the average ssb transceiver ... The ETO ALPHA 374 was used almost daily for ... months, including two contest weekends when it was subject to constant use. At no time did the writer feel that the amplifier capabilities were even close to being taxed ... In the BANDPASS mode, high-power operation requires no more adjustment than that involved in operating the exciter.”

But don’t take our word (or even QST’s) for it. You can actually check out a new ALPHA 374 in your own station without risk! Buy one now from ETO (or a participating dealer). Use it for a few days. Then if you decide that you’re willing to go on operating without a ’374, return it for prompt refund of your purchase price. If there’s any risk involved, it’s ours!

Why not call or write ETO or your dealer right now for full details of this limited-time offer, and a reprint of QST’s 4-page report? (Dealer participation is optional, and the number of ALPHA 374’s available under this offer is limited.) ALPHA 374, $1295.

NOW AVAILABLE ... THE NEW ULTIMATE in ultra-deluxe, high performance linear amplifiers: ALPHA 77D. Substantially huskier and an even more superb performer than its renowned predecessors. Call or write for the full ALPHA 77D story. “THE ULTIMATE” $2695.

ETO
EHRHORN TECHNOLOGICAL OPERATIONS, INC.
BROOKSVILLE, FLORIDA 33512
(904) 596-3711
A 300-watt PEP solid state linear power amplifier will be the subject of a future article and will round out the Phase II system including vfo, transmit/receive switching, vox, filtering, and a regulated, low-voltage, high-current power supply.

Readers of the Phase II receiver article have indicated an interest in a more elaborate receiver with additional frequency coverage. New circuits for improving the receiver and ideas for future development will be discussed. The possibilities for the receiver and transmitter pair are far too numerous to present in full detail, so individual circuits and interconnect information will be given, leaving the final enclosure and layout to the individual builder. Layout might vary drastically between a receiver-transmitter for a single, crystal-controlled frequency, and one designed for the three lower amateur bands with vfo control.

ssb reciter

Fig. 1 is the classic diagram of a phasing-type ssb transmitter that has appeared in the electronic handbooks for three decades. The 90-degree rf phase is developed in the Phase II receiver and it will be necessary to refer...
to the receiver article for additional information on this aspect of the circuit. Since the transmitter may be operated independently if this portion of the receiver is duplicated in the transmitter, this oscillator and phase-shift circuit are described later in the article.

Much of the research done on phasing circuits in the 1940s occurred during the development of telephone carrier systems and many of the schematics bear the Western Electric title box. Engineering texts tell us that a single-sideband-suppressed-carrier signal can be regarded as the resultant of quadrature modulation of a carrier by a pair of signals in phase quadrature, further explained with some pretty involved mathematics.\(^3\) It is possible to switch the phase-quadrature rf to in-phase rf and generate phase-modulated signals. Perhaps this is why the phasing technique was popular in the late 1940s and early 1950s when narrow-band fm was far more popular on the high-frequency bands than the then newer mode, single sideband.

Fig. 2 is a block diagram of the entire Phase II system. The digital phase-shifter in the receiver is used to supply phase-quadrature rf to the exciter. This means the parts cost for the exciter will be considerably less than for the receiver. The exciter uses exactly the same audio lowpass filter and audio phase-shift network as the receiver. It is better to duplicate these components in the interest of simplicity of switching and balancing circuits.

Although these components are not particularly expensive, they may be a little difficult to locate. The 1% precision film resistors are standard MIL-BEL values as are the 0.1-\(\mu F\) capacitors. The 0.028-\(\mu F\) capacitors may have to be made up by paralleling a 0.027-\(\mu F\) and a 1000-pF silvered-mica capacitor. Remember that ultimate sideband suppression depends upon the accuracy of these components, so be as accurate as possible.

A circuit board has not been seriously considered for several reasons. One very obvious reason is that a circuit board takes time to develop and debug, not to mention the problems encountered when you try to make modifications. The exciter is much simpler than the receiver and has fewer ICs (the digital rf phase shifter is the complicated part and it is already on the receiver board). Even the regulated 10-volt supply of the receiver may be tapped. However, if the 10-volt receiver supply is used, a larger heatsink is necessary and a heavier transistor may be needed.

A Motorola MC7812 or Fairchild
μA7812 can be used to replace the 10-volt supply in the receiver and will supply all the 12-volt current (up to one amp) that is required in both the receiver and exciter. However, a good 15- to 24-volt dc supply will be required to maintain good regulation with this voltage-regulator IC. Mobile operation with a 12-volt supply would be impossible with this IC, and the MC7808 voltage-regulator IC is a little too low.

There is sufficient room left on the 5 x 6-inch (12.7 x 15.2-cm) board (same as the receiver board) for vox or a small 10- to 15-watt PEP linear amplifier.* Remember that a transmitter needs a good, heavy, continuous ground plane under all the components. Preserving maximum ground area helps isolate the receiver from the transmitter as well as keeping the transmitter calm. The receiver is actually operating all the time but is muted during periods of transmission.

One very versatile method of making permanent breadboards is to use double-sided PC board material with push-in Teflon terminals which can occasionally be purchased on the surplus market. Press-in terminals are about twenty cents each when purchased in small quantities so you may want to use a circle cutter to isolate small islands from the board or use small pieces of PC board material cemented to the main board with a hot-melt glue gun. Layout is not particularly critical except for location of the mixers as detailed later. The large copper area provides both grounding and shielding.

circuit operation

The schematic for the reciter is shown in fig. 3. The microphone amplifier is a high-gain, high-impedance stage followed by an emitter follower which provides 1000-ohm output impedance to drive the audio lowpass filter. The audio lowpass filter is identical to the one used in the receiver. It is possible to get by with a two-coil filter in the transmitter but the design from the receiver was convenient and provides a little better performance. If a different filter is desired it can be designed from the available literature. If tradeoffs are to be made in the filter, or an improvement made, the outcome can be predicted with the help of graphs. Selective bypassing of the audio amplifiers also helps to roll-off the low audio frequencies. The ferrite pot-core assemblies have metal frames and are better shielded from rf fields than the toroids. If power in excess of 100 watts is contemplated, a metal rf shield may be needed to cover the 88-mH coils.

The audio agc system uses a Motorola MC1590G or the less expensive consumer products counterpart, the MC1350P. This versatile gain-controlled amplifier has its internal circuitry revealed in fig. 4. For layout purposes, pin 1 is interchangeable with pin 3 (pin 6 with pin 4 of the MC1350) and pin 5 may be interchanged with pin 6 (pin 1 with pin 8 of the MC1350). These terminals are the differential input and output of the amplifier. In the reciter it is being used as a single-ended amplifier because it is easier to keep it stable and maximum available power gain is not required.

The detector for this gain-controlled amplifier is at the output of the exciter where the rf power level is about 1-watt PEP. Detector drive could be obtained from a higher level stage with a voltage

*A printed-circuit board for the Phase II receiver is now available from D.L. McClaren, W8URX, 19721 Maplewood Avenue, Cleveland, Ohio 44135, for $10.50. The transformers for the receiver are still available from the author, WABJVX (the same transformers are used in the Phase II reciter). The price will remain at $10 for the set of three required for the receiver; the pair required for the reciter is priced at $8. A complete set of five transformers is available for $16.00. This price will be valid only until the present supply is exhausted—new supplies will probably be priced 10% higher to meet the demands of inflation.
fig. 2. The Phase II ssb transceiver consists of phasing-type receiver, above, and phasing-type ssb generator, below. An optional linear amplifier is discussed in the text.

divider arrangement but it is not desirable to have too much gain in the agc loop. Any imbalance in the balanced modulators will cause some carrier to be present and will be detected by the agc detector. This carrier is interpreted by the detector to be a ssb signal caused by voice modulation and it will promptly turn down the modulation level which will, of course, reduce the level of ssb to carrier and further aggravate the situation.

It is possible to transmit compatible a-m by unbalancing one balanced modulator and sending one sideband with as much carrier injected as is desired. Full a-m can be transmitted by disabling one balanced modulator entirely and unbalancing the other. The combination of audio shaping with the lowpass filter and low-frequency rolloff caused by the audio transformers and selective bypassing (below 300 Hz) with audio compression caused by the agc system makes an effective built-in speech processor. There is no need for any additional speech processing since the percentage of average-to-peak power is quite high already.

The output of the agc-controlled amplifier is fed to another amplifier which has enough power capability to
drive the transformers and audio phase-shift networks. It might be possible to directly drive the transformers from the MC1590G ICs if special transformers were designed to do the job, but in the interest of saving time I used the same transformers that were used in the receiver.

The audio phase-shift network is also identical to the one in the receiver and it must work into a relatively high impedance. The input impedance of the
balanced mixers is low, on the order of 200 ohms (set by the bias resistors), so a low-gain buffer stage is necessary between the audio phase-shifter and the balanced modulators. The reversing switch at the primary of one of the audio transformers allows selection of the desired sideband. The switch may be remotely mounted on a panel or the edge of the board with twisted leads since the level at this point is relatively high. The receiver sideband selector switch doesn't offer this option because of the extremely low audio levels.

balanced modulators

The balanced modulators are a pair of Motorola MC1496G integrated circuits. The National LM1496H or Fairchild μA796HC may also be used.
better performance over a wider temperature range is desired, the Motorola MC1596G or National LM1596H can be used but other components should also be of premium quality. The plastic cased version of this IC should be avoided in this application. The balanced modulators should be located directly under U6 in the receiver so that 0.1-μF disc ceramic capacitors can be connected from pins 2 and 14 of U6 in the receiver, through feedthrough terminals on the exciter board, and terminating at pins 7 (or pin 8) on each of the balanced modulators.

Fig. 5 shows the internal schematic of the MC1496 which presents some possibilities for a simplified board layout. There was some confusion about the MC1496 product detectors used in the receiver because pins 1 and 4 were interchanged on the two detectors to aid in board layout. Careful inspection of fig. 5 shows that pin 1 can be interchanged with pin 4 and pin 6 may be interchanged with pin 9 because these are the inputs and outputs of differential stages. This can be quite a help when laying out a PC board or making a breadboard and trying to minimize the number of crossover leads. This transposition of pins is similar to that mentioned for the MC1590G (or MC1350) earlier. The MC1496 is difficult enough to bias for single supply operation because of the 11 resistors, so this trick is well worth remembering.

The 50k carrier-balance pots may be run to the edge of the board for convenience. For ease of adjustment it’s a good idea to use multi-turn units. If the balance pots are mounted on a panel the leads should be bypassed for rf. The metal can of the MC1496G is internally connected to pin 10 which is grounded but it is helpful to run a piece of number-18 or -16 wire across the tops of both ICs and solder it to the cans and to the board. This forms a very stiff ground plane between the input and output of the balanced modulators. Carrier suppression and noise improved 6 dB with the extra ground strap. The MC1496G is a very well balanced mixer and feed-around becomes greater than actual feedthrough.

The outputs of the two balanced modulators are summed in the rf transformer T3, an extremely broadband ferrite-core transformer. The broadband coupling eliminates any tuneup procedure but presents some other problems. The balanced modulators will suppress the carrier by 60 dB or so, but the second harmonic of the carrier is suppressed only about 30 dB. The exact amount of suppression will vary with individual units as well as with temperature, layout and frequency.

This second harmonic poses no particular threat but does point out the need for the lowpass filter following the exciter in addition to a lowpass filter after the final linear power amplifier. If the second harmonic of the carrier went unsuppressed to the antenna it would only amount to a few milliwatts but if it were allowed to pass through the solid-state linear power amplifier it would come out at about a quarter watt and, due to the agc action in the linear itself, when there was no voice modulation it could go to two or three watts.

The ferrite core used for transformers T3, T4 and T5 is the Ferronics 12-360J, an ideal configuration for small receiver and transmitter coils in the high-frequency range. Several of these cores are also used in the solid-state linear power amplifier. These two-hole ferrite beads may be wound with all leads coming out one end or with leads coming out opposite ends, depending on which is more convenient for mounting and conserving board space.

linear amplifier

Transformer T3 drives a class-A amplifier stage. A number of transistors will work in this stage but the Motorola
MPSH-10 is economical and performs quite well. A 2N3904 will work too. The base configuration of the MPSH-10 is unconventional and is shown in fig. 3.

The output stage is operated push-pull to cancel the even-order harmonics and is transformer-coupled with broadband transformers. This push-pull stage is biased for pseudo-class-AB2 operation since class-B will result in too much distortion and class-A is too inefficient. The 330-ohm bias resistor may have to be adjusted over the range from 220 to 470 ohms so that the final collector resting current is between 10 and 20 mA. The final collector current will rise to 100 mA on voice modulation.

The final transistors are 2N3866s and are occasionally available on the surplus market for under a dollar. The 2N3866 is rated to frequencies as high as 500 MHz and many of them have an actual f_T of 1000 MHz, so many of the units that are factory rejects because of low
f_T or low current gain are usable in this circuit. The emitter resistors are not bypassed and parasitic suppression networks are used between the base and collector leads. More power can be coaxed from the finals by bypassing the emitter leads but there is no protection for load mismatch so spare devices should be on hand.

About 1 watt PEP is available from the exciter without bypassing the emitters and that is a very conservative watt. However, even with an excellent signal and good signal processing it will still take perserverence and a good antenna to work stations. If your goal in life is QRPP, the mode best suited is CW, but a surprising number of stations can be worked with one watt of sideband.

The 1-watt PEP is more than adequate for driving the companion linear to a full 300 watts PEP input. As a matter of fact, a watt is too much drive for the linear and a 10-dB pad is used but the pad provides isolation that helps keep the exciter agc working properly. High-power linear transistors are still expensive but there is a flood of "illegal for class-D" linear amplifiers hitting the marketplace now and these linears are rated at more than 100-watts output. If these transistors work well at 27 MHz, they will work nearly as well on all the lower amateur bands and production quantities should be sizable judging from past reports on CB gear. In the meantime it might be well to consider a lower power linear or one with surplus vhf transistors.⁷^{,8}

Operation

The entire 1-watt transceiver draws a maximum of 800 mA on transmit and from 150 to 500 mA on receive. The power supply drain on receive can be reduced by switching the entire transmitter with the R/T switching transistor. The collectors of the 2N3866s need not be switched because they don't conduct with the bias removed. The main problem encountered in switching everything is that the bias on the balanced mixers takes about half a second to stabilize and a short burst of full carrier goes out over the air. This would be a small price to pay for portable operation and is not really noticable since the carrier is zero beat at the receiving station and would not normally be audible. However, vox operation is not recommended because the numerous times that the unit would cycle from receive to transmit would make the unit sound like slow CW with all the little bursts of carrier. For vox operation, only the bias to the last three transistors is switched. The audio and balanced mixers are left live and there is a signal being generated but it is isolated well enough that it is not heard.

It would be a shame to spoil an all
solid-state rig with an electro-
mechanical monster for antenna switch-
ing. Full-fledged diode antenna switching would require standing off 80 volts or more of rf with the unit running at the 100-watt PEP output level. Where do you get 80 volts in a low voltage radio? There must be a simpler way — not a better way — just a simpler way to get around the use of complicated, noisy, unreliable hardware.

Since a lowpass filter was required anyway, it was decided to try to get some signal for the receiver from the lowpass filter. It seemed logical that one of the shunt capacitors in the lowpass filter could be lifted from ground and enough signal could be sampled to supply the receiver. Some tests were made and it was found that the middle capacitor of the filter was the best. In addition, it only requires standing off 3 volts of rf which is easily done with a single inexpensive diode. The voltage to switch the diode is fed down the coax from the receiver by inserting the voltage into the link on the receiver input tank coil and bypassing it to ground. This circuit will protect the receiver to some extent even if the dc control voltage fails. It also helps protect the receiver from strong local signals. This is a good system with multi-transmitter setups. The only bad part is the 10-dB of loss for the receiver, but the receiver is quite sensitive and signals on the lower bands are usually so strong that the rf gain is turned down to prevent cross-modulation anyway.

There may be a more elegant way of solid-state switching but this method requires only a resistor, a capacitor and a diode, about 15 cents worth of components. The 10-dB of loss could be greatly reduced if the filter were redesigned and the impedances were matched properly, but this is no trivial task and would best be done with a computer. Switching to transmit is swift and silent leaving the operator with the

feeling that the rig just died, but after a few minutes on the air, confidence will be restored . . . if the 300-watt linear is being used.

The filter used to remove the harmonics output is one of the filters described in complete detail in a previous article. These filters are probably more than adequate, but it is better to be overcautious. For the sake of simplicity, the same lowpass filter is repeated: once between the exciter and final power amplifier and again after the power amplifier. The filter between the exciter and final certainly could be of simpler design and still be adequate. Elliptic function filters are degraded drastically by severe mismatch and shouldn’t be operated with vswr exceeding 3:1 at full rated power.

The dc voltages to the transmitter are switched by a medium power pnp transistor. As mentioned earlier, if low power consumption is desired, all power may be switched. If plenty of idle power drain can be tolerated, only the bias voltage to the last two stages need be switched. The collector voltages to these two stages may be left connected if desired. Positive voltage is sent through the primary of the receiver antenna coil, out through the receiver coax to the lowpass filter and the T/R switching diode. Positive voltage is also sent through a diode and 1000-ohm resistor to the receiver for muting.

The LM380 audio amplifier in the receiver can be muted by applying the voltage from the 1000-ohm resistor and diode to pin 2 but there will be some pop when the receiver is un-muted. If the receiver is improved by using the MC1590G (or MC1350P) to replace the Q4 stage, then the mute voltage from the resistor and diode is applied to pin 2 of the MC1590G (pin 5 if it’s the MC1350P) and muting and un-muting is rapid and silent. This smooth and silent keying is a natural for vox operation. Some experimenting has been done with
"instant voice interruption" but very few amateurs have actually used it on the air.10,11

Since speaker operation with vox complicates things, there is no anti-vox included in the simple vox circuit shown in fig. 6. Operation with a boom-microphone type headset was the primary objective and it has worked quite well for that purpose. Surprisingly, it works fairly well with a speaker at moderate volume and using an Astatic 10-C microphone that is only slightly directional.

It is desirable to apply a little of the receiver signal to the headphones when transmitting and the resistor in the mute control line can be increased to allow the amount of desired audio sidetone if the MC1590G or MC1350P is the controlled amplifier in the receiver. Audio sidetone is used in aircraft radios as an audible output indicator and to prevent the pilot from talking too loudly and overmodulating.

other frequencies

The transmitter is capable of operation at higher frequencies than the 10 MHz maximum limit arbitrarily imposed by the digital rf phase-shifter. The digital phase-shifter has provided the key to wideband operation and in itself will work well from the kilohertz region up to 10 MHz with nearly perfect phase quadrature. In fact, the Phase II transceiver may be the first ssb rig capable of operating on the experimental 160- to 190-kHz band. Of course, the ferrite transformers would have to be rewound with more turns (the same ratios) and a low-frequency vfo would be necessary.

At the other frequency extreme, it would be possible to use the rig at higher frequencies if phase-quadrature rf were derived from means other than digital ICs. The most promising and economical method is coaxial phasing lines similar to the phasing lines used for large antenna arrays. A quick check with a vector-voltmeter confirmed that above 14 MHz, complete phone-band segments can be covered with coaxial lines and the technique looks good for six and two meters. Coaxial lines are relatively insensitive to temperature variations that give other types of phase-shifters real problems. The coaxial line should be driven and terminated in the characteristic impedance of the line and the parallel paths of the two channels should be of the same impedance even if no coax is used in one side. Don't forget that the required quarter-wavelength line is an electrical quarter wavelength and must be multiplied by the velocity factor for the particular coaxial cable being used. For the twenty-meter band,
and to cover complete amateur bands, it would be necessary to include a small trimmer at the termination of the coax to trim from one end of the band to the other.

alignment

Alignment of the transmitter is very simple. Just adjust the two 50k pots for minimum carrier or minimum collector audio filter) so that some compression becomes obvious. This setting will have to be developed on an individual basis to suit each voice and amount of desired compression.

If further control of compression is desired the 15k resistor that feeds the agc signal back from the detector to the MC1590G can be altered as well as the value of the 56-\(\mu\)F capacitor at the current then adjust the 2k pot on the balanced-modulator for maximum sideband suppression. It is best to use a separate receiver for both of these operations but it is possible to monitor the transmitters unwanted sideband in the receiver since the sideband selection is independent. The mute line must be disabled to monitor its own transmitter.

The carrier can be nulled by watching final collector current with no audio input or with the audio pot turned down and should be quickly checked after switching bands. Adjust the microphone gain pot (the 10k pot after the detector. The 2N3866s should draw about 100 mA on voice peaks but it is possible to compress until the valleys are only about 80 mA but the audio sounds compressed at this level.

The audio sections, including the lowpass audio filter and the phasing networks, may be checked by applying the output from pin 1 of one balanced mixer to the horizontal input of an oscilloscope and the output from pin 1 of the other balanced-modulator to the vertical input of the scope. Both scope inputs should be sensitive enough to read one volt with good deflection.
audio from the microphone will cause perfect, multiple, concentric circles. If the circles are slightly oblate but concentricity is good there is no problem because the gain of one balanced modulator is adjustable and will compensate for this gain error. If the circles are not concentric there is an error in the phase-shifter values or a misplaced component. If there are circles with no audio input, the unit is oscillating! Back up and try to isolate the flying stage. Oscillation is probably being caused by insufficient bypassing of the supply line or coupling through the power supply leads to the microphone preamplifier or the MC1590G.

If an audio signal generator is available it may be used to check the flatness of the filter response and the accuracy of the phase-shifter. One and only one circle will be present with a single audio tone fed into the microphone input. The circle should remain perfectly circular and of constant diameter with signal inputs from 300 to 2700 Hz.

performance

A great deal of time went into the breadboard just to clean up the audio and rf amplifiers and checking to make sure they were linear. Excellent signal quality has been the payoff and the ability to communicate better than the other guys who are running much higher power. A scope is a valuable tool for checking linearity, but both the rf and audio class-A amplifier stages have one simple check that can be made with a cheap voltmeter. The collector voltage should be exactly one-half the supply voltage.

An on-the-air roundtable with Collins, Heath, Swan, Drake and Phase II transceivers was recorded and the Phase II was definitely among the top two for quality. The unwanted sideband of the Phase II transceiver is garbled and unintelligible while the suppressed sideband of filter-type transmitters remains understandable even though attenuated. This leads people to believe that the sideband suppression of the Phase II is better than it actually is. It does, however, live up to the expectation of 40-dB unwanted sideband suppression.

The full transceiver with the 300-watt PEP input solid-state linear has been directly compared to a Heathkit Marauder, model HX-10, running comparable power. Input to the solid-state linear was held to 4 amps at 30 volts. Stations always rated the Phase II as "better copy" though most reported the same S-meter reading for both. Sideband suppression was equally as good as the crystal filter of the Marauder and some reports were in favor of the Phase II. When carefully questioned about the sideband suppression it usually amounts to "unintelligible."

Direct conversion is the ideal experimental transmitter for the amateur because there are fewer and more predictable spurious responses from direct conversion. The only spurs likely are harmonics and they are very effectively removed by the lowpass filtering. Conventional superheterodyne-type transceivers have possible images at the intermediate frequency or frequencies, depending upon the number of conversions. Of course, there is always a chance of parasitic oscillations in either the audio or rf of a direct-conversion transceiver, but these are more easily recognized and easier to troubleshoot with the direct-conversion method.

The thing that saves a lot of troubleshooting time is that the same spurs will appear in both the receiver and transmitter. For example, if the vfo being used has a parasitic and is effectively supplying two separate and non-harmonically related signals to the rf digital phase-shifter, two separate signals will be received and two separate signals will also be transmitted. However, don’t get too excited about receiving two signals at once. Not only the two signals
but the sums, differences, and an endless collection of products also enter in and make it impractical.

The transceiver always listens where it talks, providing the receiver input is broadband like the transmitter, but it is usually better to have a little more selectivity in the receiver to protect the oscillator. The output signal tends to be fm at the reference oscillator frequency and this should be carefully investigated by those intending to use a synthesis scheme.

For those of you wishing to use the Phase II reciter as a transmitter paired with some other receiver, the rf digital from out-of-band signals. It is also very important to have a clean vfo signal.

variable-frequency oscillator

Close-in noise in the vfo signal is more important in this case than the harmonics that might be present. The close-in noise on a vfo may be caused by fm of the oscillator and that in turn is caused by poor voltage regulation. Close-in noise is a particular problem when using a frequency synthesizer with a phase-locked, voltage-controlled-phase shifter and crystal oscillator schematic is shown in fig. 7. The same scheme can be used with other ICs, but a dual-D flip-flop should be used to help preserve good tracking with temperature changes.

A good vfo is necessary for amateur-band use except in the rare cases when a crystal is used for net operations. The vfo shown in fig. 8 was originally described in QST and has appeared in many transmitters and transceivers over the last eight years.\(^\text{12}\) The mosfet is an
extremely stable element and the addition of a toroidal inductor makes it more compact. An MC7808 or µA7808 IC voltage regulator provides stable 8-volt regulation and filtering which is important for the elimination of fm and drifting in any vfo.

The most important part of the vfo and the most difficult to locate is the variable capacitor. Good variable capacitors just are not used much in commercial equipment anymore and the really good ones invariably are salvaged from some old piece of tube-type military gear; they have plate spacings of 1/16 inch (1.5 mm) or more and are mechanical monsters. That is the price of progress. Some mechanical genius should start marketing a log-variable inductance similar to the units used in the famous Collins linearity-tuned-oscillator (PTO) and solve all our problems.

Almost any value variable capacitor can be adapted for vfo use by using series and parallel silver-mica capacitors to set the range and frequency. The values given in fig. 8 are only ball-park figures. The L/C ratio of this particular vfo can be varied quite a lot without degrading the performance. An hour or two with a slide-rule, calculator, or ouji board will allow the use of practically any capacitor that comes out of your junk box.

Also consider the use of a high-frequency vfo at 40 MHz or higher and dividing down to the desired frequency with digital ICs. The stability of the higher frequency vfo is notoriously poor but it is as good percentage-wise as the lower frequency counterpart and the frequency errors will be divided along with the frequency. The higher frequency vfo will allow use of smaller components and more readily available variable capacitors.

output filtering

A Drake TV100-LP or TV1000-LP lowpass filter should follow any transmitter, be it commercial or homebrew and particularly a transmitter with a broadband linear. The Drake filter does an exceptional job of suppressing TVI, is recognized by the FCC, and cannot be duplicated in the average ham shack. The lowpass filters used in the Phase II reciter are not designed to be TVI filters as such because the silver-mica capacitors used will display a resonance somewhere in the vhf region and filter performance will deteriorate rapidly. If better vhf filtering is desired from the lowpass filter, the capacitors going to ground should be made up of two or more smaller capacitors of differing values and even different types of capacitors, such as ceramic.

references
A telephone handset combining touch pad, microphone and speaker into a single unit

Tone signalling for amateur repeater autopatch access, repeater secondary control access, or selective calling is a rapidly expanding technique in FM circles. Many amateurs are using a touch-pad mounted in a separate enclosure as a source of these tones. While this method is acceptable, it does have disadvantages; finding a place for the bulky touch-pad enclosure and switching the associated microphone and push-to-talk circuit interfaces with the transceiver to make the touch-pad approach somewhat inconvenient.

A solution to this inconvenience is to replace the separate touch-pad and microphone elements with a unit which contains both, a Slimline, Touch-Tone.

Touch-Tone is a Registered Trademark of the Bell System.
handset. The handset also has the additional advantage of an earphone, which can be used for private listening when operating with a car full of sleeping children or other persons you don’t wish to annoy with the receiver audio.

modification

The Slimline phone is not very useful for amateur radio use as wired for telephone service and will require some electrical and mechanical surgery to make it compatible with fm transceiver input/output circuitry. The modification is begun by opening up the unit by removing the two screws found under the removable, transparent plastic, telephone number cover. With the unit open, you can see the plastic printed circuit which contains the interwiring for the handset. This printed circuit must be removed by extracting the screws on the earpiece, touch pad, and microphone connections, and then carefully unsoldering the remaining solder connections. Don’t lose the screws as they will be used when the unit is rewired.

Since the handset has no push-to-talk button, one will have to be installed. The first thing you will notice is that there isn’t much room for one anywhere in the unit. However, a miniature push-button switch, available from Lafayette Radio and Electronics (part number 99P62184), will fit in the space between the earphone assembly cover and the side of the handset, as shown in fig. 1.

Care should be taken in locating the specific spot where the switch will be mounted. When this is determined, drill a small guide hole in the handset case using a slow drill speed. Then follow with a drill large enough to allow switch mounting. Again, use a slow drill speed and exercise care in drilling. When the switch is installed the handset is ready for rewiring.

rewiring

To use the handset it must be wired as shown in fig. 2. This circuit uses contacts inside the touch-pad to switch the microphone element in the audio
output line when no touch-pad buttons are depressed; conversely, the touch-pad’s output replaces the microphone’s whenever a touch-pad button is actuated. The output connector on the telephone is a tricky area. When you view its connection points and output pins there seems to be a one-to-one, geometric association. Not true! Some of the pins do not connect with their most adjacent input point; use an ohmmeter to check which pin goes to which output point and you won’t be fooled.

interconnecting

The rewired handset may be connected directly to any transceiver having an audio input compatible with a carbon microphone. This connection is shown in fig. 3A, and may also be used with transceivers designed to use dynamic microphones having integral preamplifiers. If your radio uses a low impedance (500 ohm) dynamic microphone without an integral preamp, the circuit of fig. 3B should work. If the rig uses a high-impedance ceramic microphone the circuit of fig. 3C is suggested. The potentiometer should be adjusted to give the same modulation level as the original microphone.

The input/output to the radio may be made with the coiled telephone handset cable. However, you will find this cable is very difficult to solder. The conductors are a combination of coiled copper and cotton thread; this makes them very flexible but makes soldering to them somewhat tedious. However, by carefully removing the thread and keeping the heat to a minimum, it can be done.

The connector used at the transceiver input should be one which provides effective strain relief for the handset cable. If a good strain relief isn’t provided, the small coiled copper wires, which become brittle when soldered, will surely break. An Amphenol type 91-MC6M cable plug and 91-PC6F chassis receptacle are recommended.

The handset approach to fm mobile operation relieves the “where to put the touch-pad” dilemma in first-class style. The carbon microphone element in the telephone produces surprisingly good audio quality, and the private listening feature is a nice bit of serendipity which is quite useful. If nothing else, the handset will enhance your “Frank Cannon” image immeasurably.
audio-radio frequency interference — its cause and cure

Most cases of rf interference to audio hi-fi and stereo equipment can be cured — typical solutions are discussed here.

Having an active hobbyist’s and a commercial interest in the fields of amateur radio as well as in stereo and high-fidelity equipment, I am very concerned about hi-fi interference and its possible cures. It would seem that many audio equipment manufacturers leave their products wide open to the reception of unwanted radio signals, and to determine to what extent, I decided to run some tests.

An amateur single-sideband transmitter with about 200 watts power output was connected to a center-fed dipole with a coaxial transmission line; the antenna and transmitter were located about 50 feet (15 meters) from my company’s audio equipment showroom. Test transmissions were made at both 21.2 and 3.6 MHz. With no external inputs (phono pickup or tuner), half of the fourteen amplifiers tested proved susceptible to interference on 80 meters, and five suffered interference on 15. When the phono pickup

*Holdings Photo Audio Centre, Mincing Lane, Darwen Street, Blackburn BB2 2AF.
was connected the interference became quite severe on nine amplifiers, and when the tuner and antenna were connected, all amplifiers except one suffered heavy interference.

Since the tests were made in our hi-fi showroom the speaker leads were rather long, and possibly resonant near the 80-meter band, so this probably explains the greater incidence of interference on the lower frequency. Shorter leads would possibly have reduced interference on 80 meters and increased it on 15.

I think it would be fair to say that the circumstances and power used were pretty average, and it would be reasonable to expect similar results within a few doors of an amateur radio station, or within less than a mile or so of a high-powered commercial station. In all of these tests, and in some more severe tests undertaken at home, the amplifier which came out best was the Quad which, from an examination of the circuit diagram, was found to have considerable built-in RFI protection as well as being completely enclosed in a metal cabinet.

In the future, as radio transmitters for broadcasting, business radio and amateur radio multiply in power and number, and the RFI rejection of amplifiers gets worse (due to the advent of the transistor and the printed circuit), the problem needs immediate attention. Fortunately a few manufacturers are now taking note of the problem; it is to be hoped that others will soon follow suit.

external pickup

Before delving into the equipment itself, let's see what can be done externally to help when unwanted radio transmissions are already being picked up. The first move is to determine the frequency of the transmitting station, as knowledge of this will enable you to make a more intelligent approach to the problem. Calculate the wavelength of the interfering signal and take a look at the lengths of the various leads used in the audio installation. A lead only a fraction of a wavelength long (say 1/20th) makes quite a good antenna, and any lead which is a quarter-wavelength long (or any multiple thereof) will make a very effective antenna.

If no work is contemplated inside the amplifier, the only possible approach is to try to establish how the RFI is entering the circuit. A simple step is to remove the input leads one at a time, and note which one reduces or eliminates the interference. The speaker leads are quite likely causes of trouble and hence, experimentally, they can be shortened to less than 1/20th of a wavelength, or can be disconnected in favor of a pair of headphones with short leads.

If the RFI is still present with the leads all disconnected, the trouble is due either to rf pick-up on the amplifier's internal wiring, or it is coming in through the power lines. Check for interference arriving via the ground lead by disconnecting it. To test for pick-up from the power lines simply pull the plug out quickly while the interference is manifesting itself. If RFI is entering by the ac line it will disappear the instant the plug leaves the socket; if it is being picked up in the internal wiring of the amplifier it will slowly fade away as the power-supply filter capacitor discharges.

If the interference is arriving through

fig. 1. Loudspeaker lead can be formed into an rf choke by winding the lead around a ferrite antenna rod.
the ac power lines, install an ac line filter which is effective at the frequency of the unwanted transmission. This type of filter is used to suppress vacuum cleaners, electric shavers, etc., and is available from most electronic distributors. Alternatively, the hot, neutral and ground leads can be treated with ferrite cores, as is described later in connection with speaker leads.

speaker leads

If RFI via the speaker leads is the trouble, check that the leads are not a multiple of a quarter wavelength, and if they are, alter the length, preferably by shortening. If this does not cure the trouble, connect four 0.01-µF disc ceramic capacitors from plus and minus speaker sockets, with the shortest possible connections, directly to the chassis. If the interfering signal is lower than about 5 MHz, larger capacitor values may be required, but they should be used with caution in case they affect the high-frequency stability of the amplifier.

These moves should almost certainly reduce the strength of interference, but if it is still present, form the speaker leads near the amplifier into radio frequency chokes (fig. 1 and 2). This can be done by wrapping the lead around a ferrite antenna rod, or better still, by winding the lead around a ferrite core. About twenty turns will be needed to form an effective choke for frequencies in the range of 10 to 20 MHz, with proportionally more turns for lower frequencies.

Reception on the pickup leads themselves is only common at higher frequencies where the leads begin to form an appreciable fraction of a wavelength. If possible, the simplest solution is to shorten the leads. Alternatively, the pickup leads can be wound around a ferrite rod or ferrite core to form an rf choke (fig. 3). While investigating this side of the problem, check the pickup grounding as the wiring scheme shown in fig. 4 sends any signal picked up on the ground lead straight into the phono socket of the amplifier. Fig. 5 is a much better arrangement.

tuners

If RFI via the tuner leads appears to be the trouble, try disconnecting the fm antenna as the coaxial feedline makes an excellent shortwave antenna with the signal going to ground through the tuner leads and the amplifier printed-circuit boards. The answer here, as is shown in fig. 6, is to provide a 1:1 transformer in the antenna lead which will pass the vhf fm signal but isolate the lower-frequency interfering signal. Fig. 7 shows a simple way of doing this with a slight loss of signal; if you cannot afford to lose a little signal the transformer...
fig. 4. Correct grounding connection for external pickup is shown in (A), improper ground connection is shown in (B). In the circuit of (A) the only input signal is the desired one, while in (B) any signal picked up on the ground lead goes directly to the input socket of the amplifier.

shown in fig. 8 can be made quite simply.

If the feedline is not grounded, a 1-megohm static discharge resistor should be connected between the primary and secondary of the transformer. If you are not able to purchase the small ferrite core, it can be obtained by dismantling a balun transformer from an old TV set.

If the interference continues, even with the fm antenna disconnected, the audio connecting leads can be treated with a ferrite core as described previously.

equipment modifications

In addition to the external connections discussed so far, I decided to see what internal modifications would be needed to improve an amplifier's performance from the RFI point of view. I quickly realized that more RFI was getting in through the shields of the input leads and through the ground side of the speaker leads than was traveling via the live conductors. To reduce problems with hum caused by ground loops, most good quality amplifiers do not have the speaker or input connectors grounded near their mounting points, but return them to the chassis through the circuit-board panels. This arrangement is fine from an audio point of view, but does nothing to stop rf from entering the circuit.

The problem was investigated further with the use of an rf signal generator and it was soon realized that no single component was going to cure the trouble, and a “belt and suspenders” attack was decided on.

Rf interference to audio amplifiers is caused primarily by the transistor junctions rectifying, and therefore demodulating, the radio frequency energy. The answer here is to short-circuit the junction sensitive to radio frequency by the use of bypass capacitors. All the transistors in my preamplifier seemed sensi-

fig. 5. The 1:1 transformer in the transmission line from the fm antenna prevents the signal on the coaxial shield from going to ground through the tuner and amplifier. In difficult cases at lower frequencies the cable shield should be grounded directly with a very short lead.
tive, and in the end it was decided that they should all be bypassed. As has been noted previously, much of the rf was entering through the shields on the phono and tuner leads, so these were also bypassed to the chassis; it was not found necessary to bypass the speaker leads once the preamplifier had been attended to.

The results of a handful of bypass capacitors were so successful that it is now possible to operate the amplifier with only very slight breakthrough with a high-power transmitter and antenna in the same room as the amplifier. Previously, with the two units 100 feet (30 meters) apart, the interference was at a deafening level.

Successful as the modification seemed from tests in my company's workshop, it was decided in the interests of science (and amateur radio) to see what happened when the equipment and transmitter were operated in my own home. When the modified amplifier was first connected, results with the transmitting antenna 20 feet (6 meters) away were rather disappointing as interference still varied between "quite loud" and "deafening," depending upon the operating frequency.

The interference was not too bad when the tuner was switched in, but was very objectionable when switched to the phono pickup. Further investigations showed that the trouble disappeared if the fm antenna (which was only about 3 feet [1 meter] from the transmitter antenna) was disconnected. The feedline to the fm antenna was fitted with a 1:1 transformer, and while I do not normally make a habit of listening to my hi-fi setup when talking to someone on the other side of the world, this would now theoretically be possible! Of course, the signal injected into the amplifier at this range is more than you would normally expect in the average home, but it does illustrate that many manufacturers could considerably improve their equipment in this respect at negligible cost.

bypass capacitors

Those readers contemplating similar modifications should remember that there is no such thing as a perfect capacitor; all have some inductance. In general, the larger the value of the capacitor, the larger its self-inductance, so the theoretical circuit of a practical

fig. 6. Details of Faraday double-loop filter are shown in (A). Two of these loops are placed next to one another as shown in (B), taking care to insulate all wires and shields. Be sure the two loops are laced or taped firmly together.

fig. 7. Simple 1:1 transformer uses two-hole ferrite bead salvaged from old television set.
capacitor appears as a series LC circuit as shown in fig. 9. At high radio frequencies, the inductance of, say, a metal-foil capacitor can have a reactance of hundreds or even thousands of ohms, making the capacitor useless when it comes to bypassing such radio frequencies.

If you are to effectively short out the base-emitter junctions of transistors, or bypass the shields of connecting cables to the chassis, the reactance of the capacitor you use should not be more than an ohm or two at the frequency in question. A very suitable capacitor for this type of work is the disc ceramic capacitor, which has a very low self-inductance. From an RFI point of view a 0.01 μF disc ceramic capacitor with minimum-length leads will present a reactance of only a few ohms from about 5 to 100 MHz.

At lower frequencies higher value capacitors may be needed, but they may affect response at the highest audio frequencies so unless the interference is severe from a transmitter on 160 or 80 meters, capacitors of lower value should be fitted between the base and emitter junctions. In practice, values between 500 and 5000 pF appear in the circuits of manufacturers who have taken precautions in this direction.

If the trouble is with breakthrough of television audio or business radio transmissions in the 50-200 MHz range, a smaller value capacitor, say 50-200 pF, may be even better; when connected with the minimum practical lead length it is possible for such a capacitor to form a series-resonant circuit to provide an almost dead short.

Whether or not a particular value capacitor will affect the audio response of an amplifier is difficult to predict, as much depends upon the impedance of the circuit. When adding components it is advisable first to modify only one channel of a stereo amplifier, so that the square-wave and frequency response can then be compared with the unmodified channel to ensure that the audio response has not been upset.

At frequencies beyond 100 MHz or so, it becomes increasingly impractical to add capacitors to a circuit with short enough leads for them to be really effective. At this frequency the best approach is to fit ferrite beads on to the transistor leads. These beads increase the inductance of the transistor lead and operate as an rf choke.

Summary

Since doing the tests and modifications to my own amplifier, several cases have occurred where customers have had serious trouble with rf interference, and the following modifications have always produced a cure:

1. **Input connectors.** Install a 0.01 μF disc ceramic capacitor from ground side of all input connectors to chassis.
2. **Transistors.** Install a 1000 pF disc ceramic capacitor from base to emitter of all transistors in the preamplifier.
3. **Loudspeaker terminals.** Install a 0.01 μF disc ceramic capacitor from the live and ground side of these terminals direct to the chassis.

While modification 3 will be found quite effective on its own, as it can often be done externally, it has not generally been found necessary when the other work is done internally.

Ham Radio
500-MHz
decade prescaler

Using new
sub-nanosecond ICs
to build a
ten-to-one prescaler
that will extend
the frequency range
of your counter
to 560 MHz

About seven years ago, using the new emitter-coupled logic (ECL), I built a 100:1 digital prescaler that extended the range of my 1-MHz vacuum-tube counter to 100 MHz. Although the prescaler stopped well short of two meters, it was a significant improvement at the time. Recently I removed the old 100:1 prescaler circuitry from the chassis and installed a decade prescaler circuit that accurately counts to beyond 500 MHz. All that was required was two ICs and about two hours of bench time.

circuit
The circuit for the 10:1 500-MHz frequency scaler is shown in fig. 1. The first IC, a Fairchild 11C06, is a type-D flip-flop rated to 700 MHz by the manufacturer. However, with the circuit layout I used, the prescaler stops counting properly at about 560 MHz. The 95H91 is a Fairchild divide-by-5 counter IC from the same ECL family as the popular 95H90.* Input sensitivity of the prescaler is less than 100 mV from 10 to 500 MHz.

The two back-to-back diodes from pin 9 of the 11C06 to ground protect the input against overload. Nevertheless, the maximum input voltage should not exceed 1 volt rms. The 500-ohm pot sets the bias voltage on U1 to about 3 volts. This control should be adjusted for maximum sensitivity. The output from pin 8 of the

*Total price of the two ICs is about $36 in small quantities from your local franchised Fairchild distributor. Motorola and Plessey manufacture similar sub-nanosecond ICs, including several that are rated to 1000 MHz.
95H91 is connected to a 50-MHz frequency counter. If the connecting cable is more than about 12 inches (30cm) long, a 50-ohm termination should be used.

construction

In my prescaler all the components are installed on a small piece of copper-clad circuit board about 2-inches square (50x50mm). I used point-to-point wiring as shown in the layout in fig. 2. Make sure all the component leads are as short as possible.

In my unit I included a regulated +5 volt power supply for convenience (see fig. 3). Although the prescaler requires 180 mA and the Triad T90X transformer is only rated at 100 mA, it remains quite cool, even during extended periods of operation. If you are going to use this prescaler with a TTL-based counter that has a regulated +5 volt supply with sufficient reserve, you may be able to power the 500-MHz prescaler from the existing supply. Make sure, however, that your counter’s +5 volt supply can handle the additional 180 mA load.

reference

ham radio
A selection of stable crystal-oscillator circuits for 50 kHz to 80 MHz which minimize the influence of the transistor and the crystal's series resistance.

Crystal oscillators are commonly used wherever stable frequencies are required. The crystals selected for these circuits are not always completely known so far as their inner parameters are concerned, and many radio amateurs run into difficulties with the crystal's equivalent series resistance, R_s (if it is too high, many published oscillator circuits do not operate properly).

Since there is no practical oscillator circuit which will cover the entire frequency range from, say, 50 kHz to 150 MHz, it is the purpose of this article to describe some circuits, using transistors, which are fairly independent of crystal losses and will give extremely stable frequencies. Almost any general-purpose rf transistor may be used in these circuits provided that the transit frequency, f_T, is higher than 250 MHz.

500 to 800 kHz

Fig. 1 shows an oscillator circuit which can be conveniently used in the range from 50 to 800 kHz. The only requirement for the crystal is that it must be operated in its fundamental series mode. The adjustable trimmer capacitor permits enough pulling range, and the 0.7-volt rms output is more than adequate for most requirements. In most cases the frequency range of this oscillator can be easily extended to 100 kHz, using crystals widely found in calibrator circuits.

1 to 20 MHz

Fig. 2 shows an oscillator circuit which exhibits extremely low power dissipation in the crystal, thus giving ultimate frequency stability. Capacitors C1 and C2 must be selected according to the frequency range as shown. While most designers use almost the same value capacitor at both C1 and C2, the capacitance of C1 should be substantially higher than C2. This reduces the influence of the transistor on the stability of the circuit by more than five times. For some unknown reason, only a few people are apparently aware of this advantage.

In the circuit of fig. 2 the output voltage is taken across the parallel RC circuit made up by capacitor C3 and
resistor R1, a 22-ohm resistor. Together with the crystal R1 and C3 form a low-pass filter which suppresses the second harmonic by 60 dB.

In cases where high stability must be combined with the selection of many channels, the oscillator circuit and diode switching scheme shown in fig. 3 is highly recommended. In this circuit the crystals are used in their series-resonant mode, and depending upon the parallel capacitance of the fixed trimmer capacitor, 39 pF in the schematic, the individual frequencies may differ substantially from crystal to crystal. In this circuit, as well as in the others presented here, the influence of the external components is minimized.

Harmonic oscillators

Harmonic oscillators are used for higher frequencies. It is very difficult to build stable crystal oscillators using 5th or 7th overtone crystals because these crystals are usually BT cuts which result in very poor temperature coefficient characteristics. It is much more convenient to use an AT-cut, third-overtone crystal and take advantage of the inherent frequency-doubling capabilities of the transistor. These harmonic oscillator circuits are often found in mobile radio systems where a number of channels are required.

The circuit in fig. 4 shows a switchable overtone oscillator. The crystals, third-overtone types, may oscillate between 20 and 80 MHz. The series inductance, not required for each crystal, must be selected so that it is series resonant with 10 pF at the crystal's operating frequency. The total number of switchable channels may be as high as twenty, and the circuit will still remain stable without showing any uncontrollable oscillations.

The tuned circuit in the output of fig. 4, which can easily be modified into a bandpass filter from the single-tuned circuit, will provide about 500 mV rms into 50 ohms at two times the crystal frequency. If a bandpass filter is used at the output, subharmonic suppression will be greater than 60 dB.

Fig. 5 shows an overtone crystal oscillator circuit which can be either modulated or used as a very stable vcxo. In circuits where the final frequencies are derived by mixing one oscillator output with another, frequency adjustments can be made externally by applying a dc voltage.

For example, assume a single-conversion receiver is to be built for the 144-MHz band which will work only at
fig. 3. Switchable crystal-oscillator circuit for use over the frequency range from 2 to 20 MHz uses series-resonant, fundamental-mode crystals. Inductance at \(L_1 \) should be about 30 \(\mu \)H at 2 MHz, and about 1 \(\mu \)H at 20 MHz. Transistor \(Q_1 \) is a 2N708, HEPS0, BC108 or similar rf npn type. Diodes CR1, CR2 thru CRn are switching types such as the BAY67.

the ssb portion. Most ssb stations operate near 144.1 MHz, so if a 58-MHz oscillator is used and doubled in frequency to 116 MHz (for use with a 28-MHz i-f) the electronic tuning (pulling) range is about 60 kHz, more than enough range for typical two-meter ssb operation. There is practically no noticeable sacrifice in frequency stability if the tunable frequency range is not extended beyond 60 kHz.

Similar oscillators may be useful in portable high-frequency transceivers where the pulling range may be slightly less but still sufficient to cover the CW portion of an amateur band.

fig. 4. Switchable overtone oscillator uses third-overtone crystals in the 20 to 80 MHz range and frequency doubles in the transistor. Inductors \(L_1 \), \(L_2 \) thru \(L_n \) are series resonant with 10 pF at the crystal frequency. Inductor \(L_4 \) in the tuned circuit at the output is resonant at the desired output frequency with 10 pF; the input and output coupling inductors, \(L_3 \) and \(L_5 \), have one-third the number of turns as \(L_4 \). Transistor \(Q_1 \) is a 2N918, BF115, HEP709 or similar. Diodes CR1, CR2 thru CRn are switching types such as the BAY67.
The crystal-oscillator circuits discussed here are highly recommended for new designs since they do not require special crystal parameters. Even older crystals, which the amateur may find in his junk box, will provide extremely good results. The other major advantage of these circuits is that the influence of the circuitry surrounding the crystal is minimized.

fig. 5. Overtone oscillator circuit which frequency doubles in the transistor and can be frequency modulated or used as a stable vuco. Tuning range with a 70-MHz third-overtone crystal is typically 30 kHz at the crystal frequency (60 kHz at the output). L1 is resonant with C1 at the desired output frequency; varactor tap is at 1/4 the total number of turns. Transistor Q1 is 2N918, BF115, HEP709 or similar. Varactor diode CR1 is BB142 or Motorola BB105B.

Where more expensive crystals are used, perhaps in a heated oven, the stability of these circuits will be superior to most of the oscillator circuits which are usually used in amateur equipment. This is because of the special design and the use of slightly larger capacitors across the transistor which minimize its influence on circuit stability.

summary

ham radio
rf speech processor
for the Heath SB-102

Construction details for an rf speech processor which operates at the 3395-kHz i-f and provides up to 20-dB clipping does not affect any of the receiving circuitry. The 470-ohm resistor is added to the circuit so that transformer T1 is terminated with essentially the original load.

speech processor

The circuit of the rf speech processor I use with the SB-102 is shown in fig. 2. Although this circuit was designed specifically for use with the SB-102, it could be easily adapted to other sideband exciters which require a processor with the sideband selection filter at or near the input prior to signal processing (FL1 in fig. 2). The existing sideband filter is used to filter out the clipping products.

Transistors Q1, Q2 and Q3 provide the necessary signal amplification along with proper terminations for the Heath filter and automatic gain control for the two amplifier stages. The agc system is

The circuit of the popular Heath SB-102 sideband transceiver, shown in fig. 1, lends itself to the addition of an rf speech processor. Capacitor C22 couples the output of the balanced modulator transformer, T1, to the cathode of the 6AU6 filter isolation amplifier, V2. Since C22 is mounted on the foil side of the modulator circuit board it may be easily disconnected from V2 and used to reroute the ssb signal to the speech processor. The processed ssb signal is returned to the cathode of V2. This arrangement works out very well as it
very effective and provides a reasonably stable signal level before the actual signal processing takes place.

Transistor Q4 is a manually-controlled gain stage which allows setting of the desired clipping level, transistors Q5 and Q6 form the clipper, and Q7 is a source-follower output stage.

L1, L3 15 µH, 29 turns no. 22 on Amidon T-50-3 toroid core
L2 30 µH, 41 turns no. 22 on Amidon T-50-3 toroid core

fig. 2. Circuit diagram for the rf speech processor. Filter FL1 is the same as that used in the SB-102. The existing sideband filter in the transceiver is used to filter out the clipping products.

june 1975 39
to drive the cathode of the 6AU6. The metering circuit (Q8 and Q9) measures the relative amplitude of the signal prior to clipping; the meter is calibrated in voltage ratios (dB) above the initial clipping voltage level.

The clipper is actually a fet version of the old vacuum-tube dual-triode clipper which was popular years ago. This clipper circuit offers a high-impedance load to the preceding amplifier stage so it does not appreciably attenuate the signal prior to clipping. Gate rectification does not occur until the signal input is well above that required for 20 dB clipping. The variable tap on Q5's source resistor provides easy adjustment of clipping symmetry while Q6's drain load resistor determines the amplitude of the clipped signal.

construction

The three stages of amplification used in the processor described here result in a rather sensitive high-gain chain that is susceptible to internal feedback, oscillation and the transmitter signal pickup. When building this circuit, therefore, it's a good idea not to miniaturize the layout to the extent that you develop unwanted signal coupling between components. In addition, use toroid-cored coils to minimize inductive coupling, be liberal with bypass capacitors and decoupling resistors in the 15-volt supply line, and use plenty of shielding.

In the speech processor I built the two-stage amplifier and feedback circuit (Q1, Q2 and Q3) as well as the sideband selection filter, FL1, are located in a separate enclosure mounted toward the front panel. The gain-controlled amplifier, clipper, output source-follower and metering circuit are in another enclosure toward the rear of the chassis. All input and output connections are made through shielded cable.

The speech processor is easily connected to the transceiver. A miniature two-lug terminal strip may be installed on the mounting screw adjacent to solder point 15 (see pictorial 3-4 in the Heath SB-102 manual). Capacitor C22 may then be unsoldered from point 16 and this lead reconnected to the new terminal strip with the added 470-ohm resistor. Miniature coaxial cable (RG-174/U) may be routed from point 16 (and from the new terminal strip) through the small cutouts in the center shield adjacent to the new terminal strip — the other end of these shielded cables are connected to spare phono jacks A and B on the rear apron of the transceiver. Since no holes have to be drilled in the chassis of the transceiver, and no components are removed, the equipment can be immediately restored to original, if desired.

Kits such as the Heath SB-102 offer an economical approach to amateur radio, and this same approach was used in the construction of the speech processor circuit. More than 100 components are used in the processor, but with the exception of the 3395-kHz crystal filter, the transistors and the toroidal cores, all components were removed from surplus units of various kinds. Some of the component values are not optimum, but the circuit is not overly critical and there is more than enough gain available that some leeway is permissible — you can probably use the components you already have in your junkbox.

summary

Both the pre-clipping agc and the metering circuit have proven to be welcome additions to the speech processor. The unsolicited reports I have received on the quality of my ssb signal have, without exception, ranged from favorable to flattering, and have easily justified the construction of the unit.
Dress up your mobile installation with these multi-function mobile consoles by Motorola. You can place them on the seat right next to you or mount them on your transmission hump. The console can house a speaker, control head, etc., and provide storage space as well as a hard surface to write on. Plus with appropriate switches you can even control such things as dome lite, flashers, etc. You even have 4 styles to choose from.

control heads, mics, speakers & switches shown for illustration purposes only
A . . . Console with blank panel
B . . . Console with cut out for speaker
C . . . Console with cut out for speaker & switches
D . . . Console with cut outs for switches

The above units will be shipped prepaid within the 48 continental U. S. Speakers, mounting straps and some hardware not included. Up to 4 switches will be supplied with appropriate models at no charge. Limited quantities of each model available so state your preference (1st, 2nd, etc.). Better yet, to be sure of getting exactly what you want, give us a call.

ONLY $19.95 ea.

OTHER GOODIES

30 WATT STRIPS . . . Once again we can offer you the best buy around. 30 W. “G” series hi band transmit strips by Motorola. A REAL STEAL AT

3 for $12.00

UHF RX STRIP . . . Motorola “B” series UHF receiver strips. 2 freq, narrow band, dual squelch. Ideal for links.

$25.00

HT220 NICADS . . . GOOD, checked out nicads for the Motorola HT220 omni radio. Get yourself a spare at a reasonable price.

$10.00

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.

STORE HOURS: Mon.-Thurs. 9:30-6:00, Fri. 9:30-8:00, Sat. 9:30-3:00. Closed Sun. & Holidays

INQUIRIES WITHOUT ZIP CODE OR CALL . . . NO ANSWER

WANTED: Good used FM & test equipment. No quantity too large or small. Finders fees too.
estimating the
noise figure
of your
vhf system

A simple method
of getting a handle
on your
vhf system
noise figure

The vhf and uhf mixers and rf preamplifiers used by amateurs come in assorted sizes, colors and noise figures. Some are homebrew, others are commercially made. In either case, unless you happen to be lucky enough to own or have access to laboratory type noise generators, you probably don't know positively what your vhf system noise figure really is.

The title of this article is not intended to suggest a quick way to accurately determine your particular receiving system noise figure. However, if you will take the time to read on, and then perform a few simple experiments, you can determine in what ballpark your vhf converter and preamp are playing.

You need two things to play the game: first, a signal source, preferably remotely located, providing a signal which can be picked up on the antenna and fed into the shack; and, secondly, a receiver with a well calibrated S-meter. The latter can be accomplished by inserting a step attenuator* in the i-f circuit between the converter output

*Such as that manufactured by Hewlett-Packard, Kay and others.
and the receiver input. If left in the circuit, the attenuator can be used as a calibrated i-f gain control. In any case, 1-dB accuracy is desirable.

the experiment

Fig. 1 shows a family of curves for a preamplifier with a 3-dB noise figure. The curves correspond to preamplifier gains of 4, 6 and 9 dB. Part of the experiment is to measure rf gain so you will know which curve to use. The curves show the signal-to-noise ratio improvement \(\Delta S/N \), with the preamplifier, in terms of mixer noise figure.

If that last statement is confusing, don't give up. First, ask yourself, "What do I think the noise figure of my mixer is? 8 dB?" Okay, then perform the following experiment:

1. With the antenna connected to the mixer and the receiver tuned away from the signal, set the i-f gain so the noise level registers zero S-units on the S-meter. This is the reference. Now tune in the signal and note the S-meter reading.

2. Now add the rf stage. Note the new S-meter reading. the gain of the rf stage in dB will be the difference in the S-meter readings in dB with and without the preamp. Assume it is 6 dB.

3. Next, tune away from the signal and reset the i-f gain so the S-meter is back at the original reference setting.

4. Finally, tune the signal in again and note the final S-meter reading. The improvement in signal-to-noise ratio, \(\Delta S/N \), is the difference between this reading and that of the mixer alone. Assume it is 3 dB.

5. Locate the \(\Delta S/N = 3 \) dB point on the 6-dB gain curve (Fig. 1). Reading down from this point, you find that you guessed quite well — the mixer noise figure is about 8.5 dB.

This is fine and dandy, you say, but how do I know the preamp noise figure is 3 dB? Very likely you don't, but you probably know what it should be. Assume for example that the noise figure is 6 dB, not 3 dB. Using the 6-dB noise-figure curves shown in fig. 2, locate the \(\Delta S/N = 3 \) dB on the 6-dB gain curve. Reading down from this point, you see that the corresponding mixer noise figure is about 12 dB. If preamp noise figure is really 6 dB, you ought to do something about the mixer noise figure.

At this point you're learning that there are all sorts of interesting possibilities to this game. For example, if the mixer noise figure is truly low, say 5 dB,
then signal-to-noise improvement with the preamp is harder to come by. The $\Delta S/N$ is less than 1 dB if the preamp gain is 6 dB. On the other hand, if preamp gain is 9 dB, then the noise figure improvement can be as high as 1.5 dB. But it can’t be 2 dB. This is a good example of how the game is played.

Note that in spite of the low preamp noise figure (3 dB), the poor performance of the mixer degrades the overall noise figure to 9.75 dB!

Note also that if you use two rf amplifiers, you can still use the curves. Treat the rf amplifier feeding the mixer as the “mixer” and repeat the steps outlined above, adding the other rf amplifier to the combination.

summary

You may not be able to determine your overall receiving system noise figure accurately based solely on the instructions presented here, but if there is something seriously wrong in your system, you should be able to recognize it at once.

And remember, when you play this game, that a small $\Delta S/N$ is a sign of one of two things: a mixer noise figure almost as low as the rf stage noise figure or an rf stage noise figure almost as high as the mixer’s noise figure.

appendix

The curves of fig. 1 and 2 were developed from the following equation:

$$\Delta B = 10 \log \frac{F_2 G_1}{F_1 + F_2 - 1}$$

This equation is derived by subtracting the overall noise factor F_o from the mixer noise factor F_2 as follows:

$$F_o = F_1 + \frac{F_2 - 1}{G_1}$$

$$NF_o = 10 \log \left[F_1 \frac{F_2 - 1}{G_1} \right] \text{ dB}$$

$$NF_2 = 10 \log F_2 \text{ dB}$$

$$\Delta NF = 10 \log F_2 - 10 \log \left[F_1 + \frac{F_2 - 1}{G_1} \right] \text{ dB}$$

$$\Delta NF = 10 \log \left[\frac{F_2}{F_1 + \frac{F_2 - 1}{G_1}} \right] \text{ dB}$$

$$\Delta NF = 10 \log \left[\frac{F_2 G_1}{F_1 G_1 + F_2 - 1} \right] \text{ dB}$$

system noise figure

Before we end our guessing game, note that the small numbers along the curves represent overall noise figure of the mixer and rf amplifier together. These numbers are the most important of all because they represent your overall system noise figure.

Suppose $\Delta S/N$ is very large, say 8 dB, and the rf gain measures 9 dB. This means the mixer noise figure is 17.5 dB.
The HAL ST-6 terminal unit has been hailed by experienced RTTY amateurs. Its immunity to interference and noise is the talk of the RTTY world as the best in the business. In fact, we built it to highest standards — but kept the price in a range that you can afford.

The features of this unit tell the story of why it’s so popular: Auto-start operation, separate input filters for each shift, an antispac feature, and switch selection of 850 and 170 Hz shifts are standard. An extra discriminator for a 425 Hz shift is available as an option. A space-saving special power transformer is part of the package; it includes windings for low voltage and loop supplies, and a 115/230 VAC primary. Dual-in-line IC’s are mounted in sockets for ease of testing and replacement. Seven G10 epoxy glass boards with reliable wiping contacts hold all circuitry. Tuning is read from a 1 ma. panel meter which, at the flick of a switch, serves as a loop current readout. Other visual indicators display AC power on, Mark, and Space conditions. Two other lamps indicate whether the ST-6 is in the receive or standby mode. For maximum safety, a three-wire grounding cord and grounding outlet for the printer are included. The power supply card contains easy-to-replace clip-in fuses. The ST-6 is available factory assembled and aligned, or in kit form. The PC boards and cabinet only are also available.

A popular option designed to plug right in to the ST-6 is HAL’s AK-1 AFSK oscillator. Available assembled or in kit form, the AK-1 is an AFSK oscillator that demonstrates stability and reliability. It provides switch selection of 170 Hz and 850 Hz shift using standard AFSK tones. The AK-1 may also be mounted in its own cabinet for use as an independent unit. Frequencies are set by 15-turn trimmers for ease of accurate tone adjustment. The AK-1 operates on 12 VDC, or directly from the ST-6 power supply.

If you’re ready for the very best RTTY at an attractive price, look into the HAL ST-6 TU, the 425 Hz discriminator, and the AK-1 AFSK oscillator. They’ll give you all the help you need. Order yours today!

Prices:
- Assembled: $310 — ST-6 Terminal Unit
- $350 — ST-6 Table or Rack Cabinet
- $29.00 — 425 Hz Discriminator
- $29.00 — AK-1 AFSK Unit

Kit Form:
- $310 — ST-6 Terminal Unit
- $350 — ST-6 Table or Rack Cabinet
- $29.00 — 425 Hz Discriminator
- $29.00 — AK-1 AFSK Unit

All prices postpaid, USA. For air shipment add $4 for the ST-6 kit or cabinet, $1 each for the 425 Hz kit or the AK-1 kit, $10 for the assembled ST-6 with any options.

HAL Communications Corp
2365, Urbana, Illinois 61801
Telephone: (217) 367-7373

Enclosed is $ for the following items:
- ST-6 Assembled
- ST-6/425 Hz Disc
- ST-6/AK-1
- ST-6 Cabinet
- 425 Hz Disc kIt
- AK-1 kIt
- Charge to my Master Charge BankAmericard #
- Master Charge/Interbank # and Exp. date

Please send me the HAL catalog.

Name
Address
City/State/Zip

HAL Communications Corp
Box 365, Urbana, Illinois 61801
Telephone: (217) 367-7373

Illinois residents add 5% sales tax.
reducing warm-up drift in the Collins S-line

Pre-heating the S-line PTO considerably reduces warm-up drift — the same technique may be applied to other equipment.

The warm-up drift of the Collins S-line may be substantially reduced by means of the relatively simple circuit addition of a two-dollar resistor, without any drilling or other circuit modifications. Applications to other receivers may be readily accomplished by experiment. All that is required is one Dale type RH-25, 25-watt, 1000-ohm resistor, or equivalent. This resistor is only about one inch (2.5mm) long, and is attached to the center of the rear vertical panel of the 70K-2 oscillator enclosure with a very small amount of cement. These resistors are designed for flat-surface, chassis mounting to assure proper heat dissipation, so they are ideally suited for the job.

The modification functions only in the receiver's off, inoperative mode. The resistor, R1, is wired across the power switch terminals on the receiver's control switch, S5, as shown in fig. 1 so that a few watts of energy are heatsunk to the PTO enclosure. Once the receiver is turned on, the switch, S5, automatically shorts R1 and the PTO resumes its normal operating temperature. In the pre-heat mode, the receiver's S-meter will move slightly up from zero, and an almost imperceptible glow will be noted in the dial lamp. The power transformer will be absolutely cold. The PTO enclosure should then remain at about the same temperature, whether or not the receiver is in operation. The mechanical configuration for the installation of R1 is shown in fig. 2.

There are two alternative procedures for mounting the resistor. First, clean
Fig. 1. The 1000-ohm pre-heating resistor, R1, is connected into the circuit of the Collins receiver only when it is turned off.

T3 until the epoxy cures. Hobby-type, five-minute epoxy works well.

The second method is to coat the bottom of the resistor with a very thin layer of a thermally conductive adhesive, such as Wakefield’s 151-1-A, and attach it to the PTO in the same manner.

Wire the resistor according to good practice, using shrink tubing or equivalent on its terminals, since it is directly involved with the 117-volt ac line. A miniature spst switch may be mounted on the power switch and wired in series with the resistor to inactivate it during extended standby periods or, alternatively, the power cord may be unplugged.

The frequency measurement data at 14 MHz were taken on a H-P model 5381A, a seven-digit frequency counter in combination with a precision external time base. This was used in conjunction with a Rec-Counter. The Δφ curves shown in Fig. 3 reveal the relative improvement in my 75S3-B, a worthwhile four-to-one warm-up drift reduction, in the first hour, for chasing DX on cold winter mornings.

Reference
DenTron introduces

[Image of DenTron equipment]
Whether it's opening up new bands to you or giving you a better grip on the bands you work, look to DenTron for new and better ways of getting out like you never could before.

A. New! The DenTron TopBanderm™ 160 meter transverter.

If you're working 80 now, put yourself on 160, too, with DenTron's remarkable new TopBanderm™. Just 5 watts drive between 3.8 and 4.0 MHz gives you 100 watts DC input of clean SSB on 160. Two connections do it, the TopBanderm™ is already matched to your 50 ohm antenna. And the 220 volt 50/60 Hz supply is built in. Plus there's a special TopBanderm™ for 2 MHz MARS. Just $199.50 postpaid in the U.S.A.

B. New! The DenTron SkyMatcher™ antenna tuners.

DenTron has two SkyMatchers™, the model 160AT for (of all things) 160 meters, and the model 80-10 for (you'll never guess) 80 through 10. Both models are designed to handle the full legal limit, matching your 52 ohm transceiver to whatever hunk of wire you have to use. Got an antenna for the wrong band? A longwire between two trees? A sneaky stick sticking out of your apartment? You can tune to it with SkyMatcher.™ Just $59.50, either model, postpaid in the U.S.A.

C. New! The DenTron SuperTuner™ antenna tuner. And a Super SuperTuner.

Want to match everything between 160 and 10 through balanced line, coax line, random line or whatever you have, pump out the full legal limit and look and sound good doing it? Sounds like a job for SuperTuner™! Just $119.50 postpaid in the U.S.A.

New! The DenTron SkyClaw™ 40/80/160 tunable monoband vertical antenna.

Which would you rather be, jack-of-all-bands or master of one? SkyClaw™ gives you no-compromise performance on 160 (50kHz bandwidth), 80 (200kHz bandwidth) or 40 (the whole band). It's self-supporting. Weatherproof. Easy to put up alone. Able to take 100 mph winds. And capable of the full legal limit. Tuning it to your band is easy and reliable. And it's almost embarassingly easy to own. Just $79.50 postpaid in the U.S.A.

DenTron Radio Co., Inc.
2100 Enterprise Parkway
Twinsburg, Ohio 44087
(216) 425-8073
In the months ahead this column will be devoted primarily to two subjects: power generation using solar energy and wind, and new solid-state technology. My plans for generating electrical power with solar energy and wind have been previously discussed in this column. A 200-watt wind generator has been ordered, and by the time you are reading this I hope to have the system in operation. The amateur station and workshop at W3FQJ will be powered completely by solar and wind energies.

The second major subject, solid state, will include discussions of bipolar, fet, mosfet, integrated-circuit and cos/mos technologies. Electronics, more than many other industries, has always been interested in the conservation of electrical energy. Solid-state devices are a revealing example. Their low operating voltages and lack of current-demanding filaments and high-voltage power supplies make them ideal for powering with the non-polluting sun and wind. Radio amateurs are to be commended for their leadership in these endeavors. In fact, their enthusiasm for QRP operation and the use of minimum power in the sustaining of any QSO are exemplary.

Many amateurs would like to take these devices on mentally, but have procrastinated or take little pleasure from learning the theory of a device without doing some practical experimentation. While it is true that many amateurs have built complex solid-state devices following detailed construction information supplied with kits or in magazine articles, what happens within the device and circuit is often vague. There are a good number of amateurs who, as yet, have not built their first solid-state stage. Perhaps this column will be able to lead you to a better understanding of device function and circuit.

The plan is to combine individual projects with experimental steps (which I call expros). First you will experiment with the device, learning about its inners and external operating characteristics. Then you will build a project
using the one or several of the devices. *Expro 1* will be the jfet and will conclude with the construction of a two-stage QRP transmitter. Most expros will be built on perf boards which, if desired, can be used over and over again.

cosmos logic

In previous columns there have been basic presentations on the fabrication and general operation of most solid-state devices. One which was overlooked was the cosmos. Fundamentally, the cosmos device incorporates enhancement-mode mosfets into integrated circuits. Uniformity, balance, stability, versatility, reliability and compact size are the reward of IC fabrication. The special star of the cosmos device is its conservation of power.

The enhancement mode of mosfet operation, integrated fabrication and complementary symmetry circuitry combine to form the increasingly popular RCA series of cosmos integrated circuits. These devices require very little power (standby power measured in microwatts), operate over a wide supply voltage range (less than 2 to more than 15 volts), a wide temperature range and have the high input impedance characteristic of all mosfet devices. Cosmos devices are ideally suited to logical, digital and switching, as well as linear applications. Typical package dissipation is 200 milliwatts.

What is complementary symmetry? It is the basic circuit that makes cosmos tick and be so conservative in power demand. It is the jewel of the modern watch.

fig. 1. Two enhancement-mode mosfets in complementary symmetry.

Field-effect transistors come in two forms, n-channel and p-channel. One type is the complement of the other. The channel charges move in opposite directions. When two such devices are connected in parallel, *fig. 1*, unusual operating conditions arise. The top transistor is a p-channel enhancement-mode mosfet; the bottom transistor, an n-channel type. A positive voltage applied to the parallel gates causes the n-channel device to conduct. The p-channel unit remains off.

fig. 2. Equivalent operation of a complementary-symmetry pair (see text).

What is the output of the complementary symmetry stage? Assume that the gate voltage is made positive by the amount of the supply voltage V_{DD} (6 volts). The lower transistor, Q2, conducts, presenting a low-resistance path (perhaps one to several thousand ohms) between the drain and common. The top transistor, Q1, is cutoff. The resistance of its path is in the thousands of millions of ohms. Under this condition what is the output voltage, assuming that the load placed on the output is the
gate circuit of a second high-impedance enhancement-mode mosfet?

As shown in the equivalent circuit, fig. 2, a two-resistor voltage divider is set up. Inasmuch as the top resistance is very high in comparison to the lower one, there is practically no voltage drop across the lower one and the output is in effect zero volts (ground or common potential). Furthermore, very little current is drawn from the supply line because of the extremely high resistance of the series combination of R1 and R2.

If the gate voltage is zero (common potential), transistor Q1 conducts while a cutoff bias is applied to transistor Q2. Why does transistor Q1 conduct with zero voltage applied to the gate? Note that its source is at positive potential so the gate of the p-channel device is negative in comparison to the source; therefore, it conducts. In fig. 2B the upper transistor presents an approximate 1000-ohm path between VDD and output, while the path between the output and common is in the millions of ohms.

Now the high value resistance is in the path between output and common; the low value between the supply voltage and output. Consequently the output voltage is positive and essentially the same value as VDD. Again the summation of the two resistances is extremely high and there is little current demand made from the supply source.

In summary, swinging the gate voltage between the supply voltage value and zero causes the output to change between zero and the supply voltage value. This is an ideal situation for digital and switching applications.

It should be noted that in both cases the resistance of the path between supply voltage VDD and common (assuming no low-resistance load is placed on the output) is in the millions of ohms. Therefore, for both steady-state conditions, the resting power demand is exceedingly low. This is great for logic circuits. Logical zero and logical 1 states make the same low power demand on the supply.

In fact, the only time that any significant power is drawn occurs when the gate voltage is in transition between the two steady states. Furthermore, the higher the speed of the transition (rate of rise and fall of the leading edges), the lower the power demand made on the supply. This is to state that the power demand will be less when an incoming signal is a steep-sided pulse or square wave; more if the incoming signal is a sine wave.
The complementary symmetry circuit is basic to the cosmos device. Why the need for integration? In practice it is difficult to obtain exact symmetry between n- and p-channels. The greatest advantage of the complementary symmetry connection can be made when it is applied to integrated-circuit technology. In the single monolithic chip, uniform and balanced channels can be processed using the diffusion procedure.

A basic RCA cosmos device begins with a silicon substrate and silicon dioxide islands that have been deposited on its top surface using heat deposition and photolithographic procedures, fig. 3. Diffusion steps are then used to form the various elements and isolating barriers. When using the n-type substrate it is necessary to first diffuse a p-type well in that substrate to serve as the base needed in the formation of the n-channel transistor. The basic makeup of the two-transistor complementary devices is shown in fig. 3C. On the left, in its well, is the n-channel unit. On the right, diffused directly into the substrate, is the p-channel unit of the complementary pair.

The complete RCA package arrangement is shown in fig. 4. In addition to the complementary stages there are guard bands which surround and protect the separate mos devices, well, diodes, etcetera. They provide isolation and prevent leakage. Guard bands also provide conduction paths to the external supply voltages.

Included as a part of the fabrication are protective diode systems. The input diode arrangement, fig. 5, protects the device from static charges and input voltage transients. This diode clamping keeps the device and extraneous voltages at safe levels. Nonetheless, the device must be handled carefully in accordance with the usual mosfet precautions.

The complementary symmetry circuit, when connected as shown in fig. 1 and included in the cosmos integrated circuit, is called an inverter. As mentioned, a positive voltage applied to its gate results in a decrease in the output voltage. A positive change at the input results in a negative change at the output.

In terms of logic language, a logical 1 input (+ voltage) causes a logical zero output. A logic inversion has taken place. Conversely, with the logical zero input, there is logical 1 output.

Three complementary symmetry circuits are built into the RCA CD4007A cosmos integrated circuit, fig. 6. The first two configurations are referred to as complementary symmetry circuits. Note that separate drain terminals are brought out (pins 1, 5, 8 and 13). This provides versatility in interconnecting the two stages into various forms of complementary-symmetry stages. The third stage is the basic inverter and its
The circuit described is identical to that of Fig. 1. It differs only in that the two drains are connected together internally at pin 12.

One complementary pair and the inverter can be connected into a monostable multivibrator as shown in Fig. 7. In a resting state, the p-channel mosfet of the stage on the left is biased off; the n-channel is on. As a result, the C output is low and the inverter D output is high because the output of the first stage is connected to the gate of the second.

When a negative pulse is applied by way of capacitor C1, the p-channel mosfet is turned on and the n-channel is off. Capacitor C2 begins to charge to the supply voltage and this positive voltage on the gate of the inverter drives output D low. This happens very quickly aided by the feedback path between output D and the input of the n-channel section of the input pair, eventually shutting off the n-channel of the first stage.

When the turnover or threshold voltage of the p-channel transistor of the inverter is reached, the device is turned on. The output voltage at D then begins to rise and the n-channel device of the first stage is switched on, providing a low resistance discharge for capacitor C2. This causes the operation of the first stage to go from high to low and the cycle is completed. The multivibrator then remains in its resting state until another negative pulse arrives at point A.

The circuit of Fig. 8 shows how a single complementary pair can be connected as a high-frequency crystal oscillator. The output is taken at the common drain circuit. The feedback arrangement is Pierce-like in the form of a lowpass crystal filter that is connected between the drain circuit and gate input. The small trimmer capacitor permits fine adjustment of the crystal oscillator frequency.

Capacitor C1 now begins to charge to the supply voltage, V_{DD}, through resistor R1. The p-channel mosfet remains on until the charge interval is such that the p-channel device is shut off by the declining negative voltage on capacitor C1. However, the n-channel device of the first inverter also remains off until capacitor C2 discharges sufficiently through resistor R2 toward common.
Space age communication equipment demands a crystal that meets all standards of technical advancement. Crystals that were acceptable some years ago do not meet present day specifications. As a general rule, your crystal must be selected from the best quartz... (no throw off cuts). Tight tolerances demand selected angles of cut. The x-ray is important in making this selection. The crystal should be preaged with stress cycling. It should be checked for frequency change vs temperature change. It must be checked for optimum spurious response. It should be calibrated to frequency with the correct oscillator. International Crystals are manufactured to meet today's high accuracy requirements. That's why we guarantee all International crystals against defective materials and workmanship for an unlimited time when used in equipment for which they were specifically made.

WRITE FOR CATALOG

INTERNATIONAL
CRYSTAL MFG. CO., INC.
10 NORTH LEE
OKLAHOMA CITY, OKLA. 73102
Dear HR:

While interest in speech processing is understandably high, I wonder why the same degree of interest is not shown for the CW mode. Perhaps as amateurs we are convinced we know all there is to know. A little research can, however, raise some interesting questions. Consider the question of minimum bandwidth requirements which are expressed by Shannon’s formula in terms of bits per second per Hz of bandwidth as

$$\log_2 (1 + s/n)$$

where s/n is the signal-to-noise ratio. For 50-bit words and Morse code at 25 wpm the bit rate is close to 20 bits per second. With an arbitrary signal-to-noise ratio of 15 the formula gives 4 bits per second per Hz, or 5-Hz bandwidth for this example.

Unfortunately, we cannot achieve this signaling rate in practice, and for a two-state amplitude-modulated signal such as CW the bandwidth requirements would be approximately three times the theoretical minimum (15 Hz in this case). Since bandpass audio filters with this degree of selectivity are easily built, why are filters of 100 and 150 Hz in common use, and filters of 50 Hz or less very unusual?

One reason is that some CW operators rely almost exclusively on their personal selectivity built into their ears and brain. I believe there is a lot to learn in this area, but in my own particular case, the better the signal-to-noise ratio reaching my ears, the better I copy. The most common reason for the rarity of minimum-bandwidth filters is the phenomenon of filter ringing. I cannot recall seeing a single article on this aspect in the amateur magazines, and the purpose of this letter is to stimulate some correspondence on this subject.

My own knowledge is inadequate, but it appears that filter ringing arises basically from two effects. First, the filter’s group-delay characteristic, and second, the filter’s transient response. From experience with active bandpass filters I believe that the delay characteristic can be adjusted for minimum distortion of the keyed audio envelope so bandwidths of about 50 Hz can then be used. The question of transient response remains, and at the moment I don’t...
have an answer, although I have hopes of minimizing this, too.

In the commercial world of data transmission many signaling modes other than two-state a-m have been evaluated. Generally they succeed in trading signaling rate for immunity to interference. Some of these signaling modes may well have amateur applications. Also, the technique of coherent detection seems promising. The question of spectrum shaping has been studied and optimum relationships between transmitter and receiver filter characteristics have been established. Perhaps in our case we should pay more attention to the optimum design of key-click filters and receiver audio filters.

For anyone who has not yet tried a variable-frequency, variable-bandwidth audio filter, I would recommend the circuit shown in fig. 1. Or, more simply, the IC package made by Kinetic Technology, Inc.* Their FX60 active band-pass filter requires only one fixed and two variable external resistors and costs about $6.00.

Ron Skelton, 6Y5SR
Kingston, Jamaica

memory keyer mods
Dear HR:

I found in my memory keyer that the 1101A random-access memories (used in place of the 25L01s) would play back a message erratically. This can be cured by placing a 1000 ohm, 1/4-watt resistor from the data output (pin 12) of the 1101 to ground. Note that pin 12 of memory A is connected to pin 12 of memory B. The resistor can be soldered to the foil side of the PC board. Put insulating tubing on the resistor leads to prevent the leads from shorting to the foil.

A feature which will increase the versatility of the keyer when using it as a straight electronic key without a memory is to replace the memory select switch, S3, with a center-off spdt switch. Placing S3 in the center position will not allow either memory to send an output to the keying transistor. The keyer can then be used as a normal electronic key without worry that the memories will inadvertently trigger and send an output to the keying transistor.

I would like to thank my friend Bob Thing, WA3WKJ, for the ideas presented here.

Sam Guccione, W3GVP
Camden, Delaware

information needed to update RSGB history
Dear HR:

Many readers of ham radio are also members of the Radio Society of Great Britain, and are familiar with the book, World at Their Finger Tips. This book was written by the late John Claricoats and covers the history of the society and the work of many of its members from 1913 to 1963.

The RSGB has honored me with the task of writing a sequel to this book in order to bring the society’s historical records up to date. During the past decade the RSGB and numerous members have contributed to the tremendous advance in all fields of radio communications throughout the world.

In order for me to make a success of this book, and do the society justice, I must have information, therefore I appeal to RSGB members who read ham radio to send me details of their radio achievements during the past ten years. I would like to have this information as quickly as possible because there is a lot to do, and I hope to have the work completed within a couple of years.

Ron Ham
Faraday, Greyfriars
Storrington, Sussex
RH20 4HE England

*Kinetic Technology, Inc., 3393 De La Cruz Boulevard, Santa Clara, California 95051.
fm equipment interface problems

In trying to use two current pieces of fm equipment, a 10-watt transmitter (Regency HR-2) and a 100-watt amplifier (Dycom), it was found that the two pieces would not work together. To begin with, the transmitter is well designed and has excessive standing wave protection — a very good move, especially if the wrong antenna is inadvertently connected, or left disconnected. This safety device will probably save replacement of expensive power transistors.

The amplifier has an “automatic switching” feature, meaning that dc power is applied at all times, and as rf excitation is applied, the unit turns itself on. When the transmitter is turned on (microphone button pressed), rf appears across diode CR1 (see fig. 1), and a dc voltage appears at point A. The rf choke isolates the rf voltage at point A and conducts dc to the base of transistor Q4, placing a positive bias on the base, and transistor Q4 turns on, picking up relays K1 and K2. Unfortunately, the moment K1 and K2 start to transfer, the back contacts open, opening up the line from the transmitter, and the swr protection circuit in the exciter cuts in, shutting off the power. The relays then open, remaking the exciter output circuit and terminating the line. The cycle then starts over (since the transmitter is still on). The relays just sit and vibrate like an old fashioned door bell — a revolting state of affairs.

The fix is ridiculously easy. Just connect a 500-μF capacitor (12 volts or more) between the base of Q4 and ground. As diode CR1 conducts, the 500-μF capacitor, C4, is charged and holds its charge long enough for the relays to pull completely in. Once the relays are picked up, the line from the transmitter is terminated by C2-C3-L1, usually with less than 1.2:1 vswr, particularly if adjusted carefully.

Capacitor C1 series resonates with the interconnecting leads and relay elements to allow maximum receiver performance and proper transmitter operation when the amplifier is not in use. Power may be switched from the 100-watt amplifier to low power only by opening the circuit at the fuse.

The changes suggested in these notes should make the use of the equipment much more satisfactory and enjoyable.

Dave Chapman, W9DPY

Heath SB102 modifications

I have two Heath SB102 transceivers and both have shown the same two difficulties, which appear to be generic: First, objectionable audio hum level,
and secondly, one resistor that runs hotter than it should. As for the hum, an additional filter did not help, and shorting the arm of the volume control had no effect. As a part of the cable harness there is a shielded lead from the arm of the volume control to capacitor C308 which couples the signal into the grid of V14A, the audio amplifier. Replacing this lead with a separate shielded lead eliminates the objectionable hum level.

Resistor R955 is a 100 kΩ, ½-watt resistor which avalanches down in value and burns up. Replacing it with a 1 or 2 watt, 100 kΩ resistor clears up this problem.

Lowell White, W2CNO

zener-diode noise

Recently I was asked to convert some vhf preamplifiers and replace the original 417A tube with a low-noise transistor. This required the addition of a zener diode to provide the correct voltage for the transistor. The zener was originally mounted very close to the low-noise transistor and a noise generator was used to determine the noise figure. The results were nearly the same as when the original tube was in use. The zener was then mounted away from the transistor, near the power source. A noise figure measurement indicated a noise reduction of 2 dB.

Vern Epp, VE7ABK

short circuit

The 67-pF ceramic capacitors used in the lowpass filter described in the March, 1975, issue of Ham Radio have all been sold. An alternate capacitor is the 140-pF APC capacitor available for 50 cents from CPO Surplus, Box 189, Braintree, Massachusetts 02184. Remove one plate for 136 pF, fully-meshed capacitance. Since CPO Surplus has a handling charge of 50 cents on orders less than $3.00, the two capacitors for the lowpass filter can be obtained for $1.50, postpaid.
complete stock of the following lines:

- ITC MULTI-2000 ATLAS VHF ENG.
- STANDARD REGENCY BOMAR CRYSTALS FOR 2 MTR FM EMERGENCY BEACON
- NEW-TRONICS CUSH CRAFT TEN-TEC DUPLEXER KITS
- 73 MAGAZINE PUBLICATIONS QST PUBLICATIONS CALLBOOK

Largest inventory of used equipment in the Boston area.

Tufts Radio Electronics

SALES AND SERVICE
386 MAIN STREET
MEDFORD, MASS. 02155

a second look *(from page 4)*

table 1. Partial listing of power amplifier tubes in current use on the amateur bands.

<table>
<thead>
<tr>
<th>tube type</th>
<th>number</th>
<th>total filament/heater power (watts)</th>
<th>equipment manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>572B</td>
<td>2</td>
<td>51</td>
<td>Heathkit</td>
</tr>
<tr>
<td>811</td>
<td>4</td>
<td>100</td>
<td>Collins 30L1</td>
</tr>
<tr>
<td>813</td>
<td>2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>833A</td>
<td>2</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>3-400Z</td>
<td>2</td>
<td>140</td>
<td>Henry</td>
</tr>
<tr>
<td>3-500Z</td>
<td>2</td>
<td>140</td>
<td>Drake, Heath</td>
</tr>
<tr>
<td>3-1000Z</td>
<td>1</td>
<td>157</td>
<td>BTI</td>
</tr>
<tr>
<td>3CX1000A7</td>
<td>1</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>3CV1500A7</td>
<td>1</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>4-125A</td>
<td>2</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>4-250A</td>
<td>2</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>4-400A</td>
<td>2</td>
<td>140</td>
<td>E. F. Johnson</td>
</tr>
<tr>
<td>4-500A</td>
<td>2</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>4-1000A</td>
<td>1</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>4CX1500A</td>
<td>1</td>
<td>200</td>
<td>Henry</td>
</tr>
</tbody>
</table>

indirectly-heated oxide cathode

<table>
<thead>
<tr>
<th>tube type</th>
<th>number</th>
<th>total filament/heater power (watts)</th>
<th>equipment manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8072</td>
<td>1</td>
<td>17</td>
<td>CX-7A</td>
</tr>
<tr>
<td>8122</td>
<td>2</td>
<td>35</td>
<td>National</td>
</tr>
<tr>
<td>8873</td>
<td>2</td>
<td>40</td>
<td>Heath, Henry</td>
</tr>
<tr>
<td>8874</td>
<td>2 or 3</td>
<td>40 or 60</td>
<td>ETO, Henry</td>
</tr>
<tr>
<td>8877</td>
<td>1</td>
<td>50</td>
<td>ETO, Henry</td>
</tr>
<tr>
<td>4CX1000A</td>
<td>1</td>
<td>57</td>
<td>Collins 30S1</td>
</tr>
<tr>
<td>4CX1500B</td>
<td>1</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

desirable. If the 6-dB differences proposed in Docket 20282 are used, then one-quarter and one-eighth, respectively, of the above emitter wattages would coincide.

If a filament power limitation for each class of license were to be adopted, Quinn has suggested that no input or output power limitations be imposed upon the amateur service. The filament power limitation would predetermine maximum operation conditions as the tube could only be driven up into plate current saturation. The individual operator could exercise his own initiative and technical ability, using any tube which fell within the authorized emitter power limits. This is the same sort of initiative which prompts some amateurs to build large antenna systems to enhance their signal strength, and adds to the competitive spirit of the hobby and advances...
tors who will obtain a few more watts and minimize short tube life by reducing filament power during standby, and increase filament power during rf drive conditions, or increase plate voltage, to maximize plate efficiencies. However, as the old saying goes, “You can’t get something for nothing,” and equipment and tube manufacturers can tell upon inspection if their product has been abused. One or two dB would not be worth the effort.

Presently, it is very difficult, if not impossible, for the FCC to monitor and police amateur power limits. If the technique suggested by W6MZ were adopted, and an amateur was found to be using a power amplifier which used tubes with manufacturer’s filament/heater ratings in excess of the maximum specified wattages, it would be a simple black or white infringement of the rules.

Jim Fisk, W1DTY
editor-in-chief

NEW! NEW! NEW!
HERE’S THE BEST FOR MOBILE OR MARINE VHF!
MODEL SS-2
LIFE — Bright stainless steel housing, s.s. whip, along with brass beat the effects of salt.

PERFORMANCE — 150 w.
Gain 6 dB over coax ant.
3.7 dB over isotropic
1.5 dB over dipole
Requires no ground plane

PHYSICAL DATA —
1 1/2” x 46 1/2”, 8 oz.
Alternate mounting.

PRICE — $45.00 List
Optional bracket $4.60 list

GAM Electronics
191 Varney Street
Manchester, NH 03102
Tel. (603) 627-1010
DATA SIGNAL SCORES AGAIN
NOW WELL ESTABLISHED IN THEIR NEW FACILITIES THE SUCCESSORS TO DATA ENGINEERING ARE LEADING OFF WITH BOTH EXCITING NEW PRODUCTS AND TIME PROVEN FAVORITES. YOU CAN DEPEND ON DATA SIGNAL FOR THE FINEST IN AMATEUR RADIO ACCESSORIES.

AUTOMATIC TOUCH TONE DIALER
Now, by the push of a single button you can automatically dial up to six separate 7-digit telephone numbers. All solid state with automatic PTT operation. Can send telephone number only, or repeater access code plus telephone number automatically.
AD6 Sh. Wt. 2 lbs. without keyboard 99.50
AMD-6 Sh. Wt. 2 lbs. with keyboard 119.50
Factory programming of #s 7.50

DELUXE REPEATER AUTO PATCH
The auto-patch your club will be proud to own. It's complete in every aspect. Two 1-4 digit access codes, one 1-4 digit disconnect, rotary dial or regenerated Touch Tone output, dial-in capability, "1", "0" and numerical disconnects, ID by-pass, audio monitor, keyboard, digital readout, plus many more features. Send for brochure. Rack mount only.
RAP-101 Sh. Wt. 15 lbs. 549.00

TOUCH TONE REGENERATOR
Give your Auto Patch users and the telephone exchange a break. Now all touch tone digits received by the telephone exchange is from ONE touch tone standard and not from a multitude of individual pads. Regeneration eliminates miss-dials caused by pads with off-frequency tones, incorrect amplitude adjustments, improper tone length, split tone bursts, etc. Includes complete 16-digit decoder plus rotary dial capability. PC board and rack mounting available.
DCR-71 PC 249.00 Rack 325.00

REPEATER AUTO PATCH
It's complete — a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dial-in capability, two way audio monitor plus remote control. When used with a rotary dial exchange, Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.
RAP-2 PC 99.50 Rack 149.50

62 June 1975
More Details? CHECK—OFF Page 94
TOUCH TONE TO DIAL PULSE CONVERTER

Don’t let the lack of a Touch Tone telephone exchange prevent your repeater club from going auto-patch. Convert 0-9 TT digits to Bell System compatible dial pulse code. Uses anti-falsing TT decoder, 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not overload. Cancel function. # and output provided for control purposes. PC Board and rack mount available.

DPC-121
PC 195.00
Sh. Wt. 2 lbs.
Rack 285.00
Sh. Wt. 10 lbs.

TOUCH TONE KEYBOARD/ENCODER

The smallest, thinnest keyboard with built-in touch tone encoder. Only ¼” thick. Completely self-contained, designed for mounting directly to hand-held portables. Operating temperature -20°F to +150°F. R. F. proof.

DT-4M Miniature Encoder 2¼” x 3” x ¼” 89.95
Sh. Wt. 1 lb.

TOUCH TONE PADS

Standard size 12 and 16 digit Touch Tone Pads. Automatic PTT operation with 1½ second transmitter hold. Self powered via internal 9V battery. Audio and PTT outputs, TTP-1 and TTP-2 also has low volume audio monitor for acoustically coupling of tones to microphone. Zero quiescent current. Operating temperature -20°F to +150°F. R. F. proof.

TTP-1 16 digit 3” x 5½” x 1½”. Sh. Wt. 2 lbs. 79.50
TTP-2 12 digit 3” x 5½” x 1½”. Sh. Wt. 2 lbs. 59.50
TTP-3 12 digit 2¼” x 4½” x 1½” Sh. Wt. 2 lbs. 59.50

ANTI-FALSING TOUCH TONE DECODER

Now, a true anti-falsing decoder, immune to high noise and voice falsing. 12 to 16 digit capability. Single 5-volt power supply. Heavy duty transistor output. Complete p. c. board or standard 19” rack available.

TDD-126-12 12 digit PC 149.95
Rack 219.95
TDD-126-16 16 digit PC 169.95
Rack 239.95
Sh. Wt. 2 lbs. Sh. Wt. 10 lbs.

ORDER TODAY OR WRITE FOR COMPLETE DETAILS

DATA SIGNAL, INC.
Successor to Data Engineering, Inc.
2212 PALMYRA ROAD, ALBANY, GA. 31701
912-435-1764

More Details? CHECK-OFF Page 94
electronic keyer

Data Signal recently introduced a new printed-circuit electronic keyer which is offered in two versions: one for TTL, the other for CMOS logic. The keyer is complete, including potentiometers, a large speaker and all mounting hardware. The user must supply an enclosure, a keying paddle and a small 5-volt power supply for the TTL version or a 9-volt transistor battery for the CMOS version.

The keyer circuit includes fully automatic, self-completing dots, dashes and spaces. Each dot and dash is provided with its own jam-proof space, eliminating any chance of jamming dots and dashes together. At the instant the paddle is closed, the start-stop oscillator starts sending the code element. Key closures extending to the end of the dot-dash space are allowed with assurance of no additional dot or dash. This wide keying tolerance makes this keyer extremely easy to use, for beginners and old timers alike. A variable weight ratio control is provided to allow the operator to adjust the dot-dash to space ratio of each character. The built-in audio system includes a full-range audio oscillator, volume control, tone control and speaker. Keying speed is adjustable from 5 to 50 wpm.

These keyers eliminate the number-one source of keyer failure — the output keying relay. The reed relays used in many electronic keyers are subject to pitting, sticking and breakage. In the Data Signal unit output keying is accomplished with specially selected high voltage, high current transistors. These heavy-duty transistors require a small amount of current for operation and are designed to handle the two most often used keying systems — grid block keying and solid-state transmitters.

The two versions of the keyer, TTL and CMOS, allow the user to select the keyer best suited to his own requirements. The TTL version is ideally suited for home stations where a common 5-volt supply is available, while the CMOS version requires very low current and is just right for QRP or portable operation.

The TTL version of the electronic keyer, model TTL/PCK-1, is priced at $19.95 wired ($14.95 kit); the CMOS version, model CMOS/PCK-1, is $24.95 wired ($19.95 kit). For more information, write to Data Signal, Inc., 2212 Palmyra Road, Albany, Georgia 31701, or use check-off on page 94.

500 MHz frequency counter

The new UHF 500B frequency counter from Levy Associates features laboratory accuracy in a portable instrument.
at an inexpensive price. This counter, which uses the latest state-of-the-art advances, provides all of the features of instruments costing three times as much: built-in nicad battery with charger for easy portability, 7-digit display, high sensitivity, high-stability temperature-compensated crystal oscillator, and response to at least 500 MHz (575 MHz typical). The bright LED displays and polarizing filter make reading easy in high ambient light conditions. Adjustable display storage provides for minimum transmitter on time.

The sensitivity of the new UHF 500B frequency counter is 35 mV or less to 50 MHz; less than 150 mV from 50 to 500 MHz. With the uhf preamp option ($85) the sensitivity is 30 mV or less to 500 MHz. Other options include 1000 MHz capability ($195), high-stability time base with ±0.0001% accuracy from zero to 40°C ($50), and green or yellow displays [red is standard] ($15). The standard UHF 500B is priced at $525. For more information, use check-off on page 94 or write to Levy Associates, Post Office Box 961, Temple City, California 91780.

specialized communications techniques for the radio amateur

This new book from the ARRL was written by those experienced in each of the fields which it covers. The seven chapters provide practical details on communications techniques, amateur television, slow-scan television, facsimile, RTTY, space communications and advanced techniques.

The chapter on amateur television contains circuit details and applications information for television cameras, transmitters and receiving techniques. The section devoted to facsimile in-
NEW**mTa** KEYBOARD and ENCODER KIT

* 53 Keys
* One Chip MOS Encoder
* Upper and Lower Case
* Standard ASCII Output
* Two Key Lockout

We are happy to announce a new addition to our keyboard and encoder line. Our new KBD-3 uses a one chip MOS encoder system to give you maximum possible features with a minimum number of parts.

This keyboard produces a standard ASCII coded output that is compatible with TTL, DTL, RTL, and MOS logic systems. You have the option of wiring the kit for normal typewriter style output in both upper and lower case letter, or all upper case format. All common machine control commands such as "line feed", "return", "control", etc. are provided on the keyboard. Four uncommitted or extra keys are available for your specific requirements. Two of these have isolated output lines to the connector for special functions such as "here is".

Keyswitches are standard, full travel style with gold plated contacts for long troublefree service. Requires +5 Volts and -12 Volts.

KBD-3 Keyboard and Encoder Kit $49.50 ppd

SOUTHWEST TECHNICAL PRODUCTS CORP.
219 W. Rhapsody Dept. HR
San Antonio, Texas 78216

cludes conversion of Telefax transceivers and reception of weather-satellite pictures. Radioteletype is thoroughly covered with sections on equipment and hardware, AFSK, RTTY measurements, and much more. Moon-bounce (EME), satellites, laser fundamentals and communications and digital communications are covered in the chapter on space communications and advanced techniques. Softbound, 208 pages, $3.00 from Ham Radio Books, Greenville, New Hampshire 03048.

gutter clamp mobile antenna

Answering the need for quick-on, quick-off mobile antenna mount is the Larsen Gutter Clamp Antenna Mount that goes on or off the vehicle faster than you can tell about it. Styles of the clamp are available to fit all popular makes of antennas. Complete mounts and antennas of both the quarter-wave type and gain antennas for low, high and vhf bands, complete with the clamp, are available.

Finished in weather-resistant iridium, the Larsen Gutter Clamp features a high-tension spring that clamps the unit to any make of vehicle. A
special rubber bumper prevents marring the car's finish. Provision is also made to assure a proper ground plane for maximum radiation efficiency of the antenna. The Larsen Gutter Clamp Mount comes complete with ten feet (3m) of coax and plug already installed.

For more details regarding the Larsen Gutter Clamp Mobile Antenna Mount write to Larsen Antennas, Post Office Box 1696, Vancouver, Washington 98663, or use check-off on page 94.

linear ic handbook

A new *Linear Integrated Circuits* handbook is now available free of charge from National Semiconductor Corp. The handbook gives complete descriptions and specifications of 280 linear IC devices that are useful in building nearly all types of electronic systems, ranging from communications and consumer-oriented circuits to precision instrumentation and computer designs. It covers product-line categories that include voltage regulators, operational amplifiers, voltage comparators and buffers, functional blocks (timer circuits), ICs for consumer products, transistor and diode arrays, and analog switches.

Most of the product descriptions are accompanied by application advice, and the text is supported by graphs, charts and diagrams. Selection guides are provided for operational amplifiers, fixed-voltage regulators, variable-voltage regulators, and voltage comparators. Cross reference guides are provided for fet-input op amps and the linear products of Texas Instruments, Motorola, Signetics and Fairchild.

For a free copy of the *Linear Integrated Circuits* handbook, send a postcard to the Marketing Services Department, National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara California 95051, or use check-off on page 94.

Zulu 10... precise GMT plus 10-minute identification alarm.

Only $39.95

From Corvus, a unique 100% solid-state digital clock packed with features any ham radio operator will appreciate.

Built around a single MOS integrated circuit, Zulu 10 provides 24-hour GMT with to-the-second accuracy. The special alarm alerts you every 10 minutes with a soft, pleasant signal to help you meet station identification requirements. And it’s reset with a single “flick of the wrist” motion of the clock.

Feature-packed, trouble-free operation.
- Bright LED display for hours and minutes.
- Seconds are indicated by a pulsing lamp.
- Automatic display dimming for easy viewing.
- Attractive, compact silver case.
- Pushbutton controls neatly tucked in base.
- 60 Hz AC operation.
- Full year written warranty.

Designed and engineered for the ham radio operator by Corvus Corporation, Dallas-based subsidiary of Mostek Corporation, an industry leader in MOS integrated circuit technology.

Order yours today.

Corvus

13030 Branch View Lane, Dallas, Texas 75234

Please send me Zulu 10(s) at $39.95 each, plus $2.65 for postage and handling (add local and state tax where applicable). I’ve enclosed □ check □ money order.

Name ____________________________

Address ____________________________

City __________________ State _______ Zip _______

Money back guarantee. If you are not totally satisfied with your Zulu 10, send it back to us within 10 days and your money will be refunded.

HR

More Details? CHECK-OFF Page 94
Operate Auto-Patch

use antenna and power . . . The GTX-200-T does all the rest!

The 12-digit tone encoder is an integral part of the 2-meter VHF-FM transceiver (WOW!) Separate controls allow independent transmit and receiver frequency selection.

The GTX-200-T is all solid state, transmits at 30 watts (nom.), also features super-sensitive dual-gate MOS FET preamp receiver. Same old GTX-200—but what an addition!

Your Low Price

$249.95

Use coupon to order direct from factory

TE-II Tel Encoder . . .

so small and compact it can be mounted on the faceplate of most any transceiver, including smaller-sized walkie-talkies. Completely self-contained: connect to B+ ground and signal output, and it's ready to operate.

The TE-II produces all standard double frequency tones used in telephone signalling circuits. It is completely shielded.

Your Low Price

$44.50

Use coupon to order direct from factory

Use This Handy Order Form
Hey, Genave! Thanks for the nice prices! Please send me:

GTX-200-T
- 2-meter FM, 100 channels, 30 watts (incl. 146.94 MHz)
- Special Introductory Price: $249.95

GTX-200
- 2-meter FM, 100 channels, 30 watts
- Now: $199.95

GTX-100
- 1¾-meter FM, 100 channels, 12 watts (incl. 223.5 MHz)
- Now: $219.95

GTX-10
- 2-meter FM, 10 channels, 10 watts (incl. 146.94 MHz)
- Now: $169.95

GTX-2
- 2-meter FM, 10 channels, 30 watts (incl. 146.94 MHz)
- Now: $189.95

GTX-600
- 6-meter FM, 100 channels, 35 watts (incl. 52.525 MHz)
- Now: $219.95

- ARX-2 2-M Base Antenna: @ $29.95
- Lambda/30 2-M Base Antenna: @ $39.95
- Lambda/4 2-M Trunk Antenna: @ $29.95
- TE-I Tone Encoder Pad: @ $59.95
- TE-II Tone Encoder Pad: @ $44.50
- PSI-9 Port. Power Package (less batteries): @ $29.95
- PS-1 AC Power Supply: @ $59.95
- and the following standard crystals @ $4.25 each:
- Non-standard crystals @ $5.75 each:

Sub-Total: $________

IN residents add 4% sales tax:
CA residents add 6% sales tax:
All orders shipped post-paid within continental U.S.

Payment by: □ Certified Check/Money Order □ Personal Check □ C.O.D. Include 20% Down

Note: Orders accompanied by personal checks will require about two weeks to process.

20% Down Payment Enclosed. Charge Balance To:
□ BankAmericard #_________ Expires_________ Interbank #_________
□ Master Charge #_________ Expires_________

For factory crystal installation add $8.50 per transceiver.
Prices and specifications subject to change without notice.
The IMPROVED CWF-2BX offers feature for feature the CMOS-440RS gives the most for your money:

- State of the art design uses digital CMOS ICS and NE555 sidetone
- Built-in key with adjustable contact travel
- Sidetone and speaker
- Adjustable tone and volume
- Jack for external key
- 4 position switch for TUNE, OFF, ON, SIDETONE OFF
- Two output jacks: direct relay, grid block keying
- Uses 4 penlight cells (not included)
- Self completing dots and dashes
- Jam proof spacing
- Instant start with keyed time base
- Perfect 3 to 1 dash to dot ratio
- Relay rated 250 VDC, 80 Hz bandwidth
- Center frequency: 750 Hz
- 9 volt transistor battery not included
- 80 Hz bandwidth
- Center frequency: 750 Hz
- 9 volt transistor battery not included
- 400 Hz or 1000 Hz center frequency available add $3.00

IMPROVED CWF-2BX, assembled $23.95
CWF-2, PC board, includes 4 position selectivity switch $16.95
CWF-2, kit $14.95

Dealer Inquiries Invited

MFJ Enterprises, P. O. Box 494, Miss. State, MS 39762, (601) 323-5869
Many hams say...

The only thing better than the Drake 4-Line is the
Drake C-Line

- 1 kHz Dual Concentric Dial Readout
- Receiver and transmitter lock together in transceive operation
- No side controls
- Iridited cadmium-plated chassis
- Compatible with all previous Drake lines

R-4C Receiver

R-4C FEATURES:
- 8-pole crystal filter combined with passband tuning, SSB filter supplied
- Provision for 15 additional accessory 500 kHz ranges
- Transistorized audio
- Optional high-performance noise blanker
- AVC with 3 selectable time constants
- Optional 8 pole filters available for CW, AM, RTTY

T-4XC Transmitter

T-4XC FEATURES:
- Plug-in relay
- More flexible VOX operation; Including separate delay controls for phone and CW
- Crystal control from front panel for amateur, Mars, commercial uses
- Provision for AFSK RTTY operation

For complete details on the C-Line and other Drake equipment, contact:

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288-017

More Details? CHECK-OFF Page 94
CRYSTAL FILTERS and DISCRIMINATORS

\[1 \frac{27}{64}'' \times 1 \frac{3}{64}'' \times \frac{3}{4}'' \]

by K.V.G.

<table>
<thead>
<tr>
<th>9.0 MHz FILTERS</th>
<th>9.0 MHz DISCRIMINATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF9-A 2.5 kHz</td>
<td>XD9-01 (\pm 5) kHz RTTY $24.10</td>
</tr>
<tr>
<td>XF9-B 2.4 kHz</td>
<td>XD9-02 (\pm 10) kHz NBFM $24.10</td>
</tr>
<tr>
<td>XF9-C 3.75 kHz</td>
<td>XD9-03 (\pm 12) kHz NBFM $24.10</td>
</tr>
<tr>
<td>XF9-D 5.0 kHz</td>
<td>XD9-04 (\pm 25) kHz RTTY $24.10</td>
</tr>
<tr>
<td>XF9-E 12.0 kHz</td>
<td>XD9-05 (\pm 50) kHz RTTY $24.10</td>
</tr>
<tr>
<td>XF9-M 0.5 kHz</td>
<td>XD9-06 (\pm 0.5) kHz RTTY $24.10</td>
</tr>
</tbody>
</table>

(Export Inquiries Invited)

<table>
<thead>
<tr>
<th>UHF VARACTOR MULTIPLIERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Frequency Range</td>
</tr>
<tr>
<td>Output MHz</td>
</tr>
<tr>
<td>Input Power max.</td>
</tr>
<tr>
<td>Output Power at Max.</td>
</tr>
<tr>
<td>Typical</td>
</tr>
</tbody>
</table>

PRICE

$75.20 $85.95 $122.80 $107.45

No Power Supply Required.
All specifications apply to 50 ohm input/output system.
Construction Die cast aluminum box.
Size 4.5 x 2.5 x 1.25 ins. + connectors.
Broad band design. NO tuning required.
Shipping: Filters 50c; Varactor Multipliers $1.00

FREQUENCY STANDARD

Only $37.50
(less batteries)
POSTPAID USA

- Precision crystal
- Fully guaranteed

- Markers at 100, 50, 25, 10 or 5 kHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Send for free brochure.

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

PRICE RESEARCH ASSOCIATES
2285 SOUTH MAIN STREET — SUITE 1
SALT LAKE CITY, UTAH 84115
Phones: 801-484-1672 or 801-487-6211
NEW!
2 MTR
RF Power Amplifiers

UP TO 150 WATTS OUTPUT

- All solid state
- Strip line design
- Broad band
- High efficiency

PA140/30 15-40 watts in for 100-150 watts out @ 13.6 volts
Typically 140 watts for 30 watts in
$159.95 wired & tested

PA140/10 5-15 watts in for 100-150 watts out @ 13.6 volts
Typically 140 watts for 10 watts in
$179.95 wired and tested

25 OR 40 WATT OUTPUT

PA2501 1-4 watts in for 20-30 watts out @ 13.6 volts
Typically 25 watts for 2 watts in
$59.95 kit $74.95 wired & tested

PA4010 2-12 watts in for 25-45 watts out @ 13.6 volts
Typically 40 watts for 10 watts in
$59.95 kit $74.95 wired & tested

WANT TO USE YOUR AMPLIFIER IN-DOORS?

PS24 Power Supply.................. $99.95 kit $114.95 wired & tested
PS12 Power Supply.................. $69.95 kit $85.95 wired & tested

hf engineering
PO Box 1921-HR Binghamton, N.Y. 13902 • 607-723-9574
DIVISION OF BROWNIAN ELECTRONICS CORP.

ORDER FORM

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Price</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name__________________________
Address_______________________
City__________________________ Zip__________________________
State________________________ Zip__________________________
Master Charge No__________________________ BankAmericard No__________________________

Total__________________________
Shipping_______________________
NYS Resident Sales Tax__________
Total Enclosed__________________
PA140/30 & PA140/10 ship wgt. 4 lbs.
PA2501 & PA4010 ship wgt. 2 lbs.

More Details? CHECK—OFF Page 94

june 1975 73
10 CHANNEL SCANNER
For All Regency HR series 2, 2A, & 2B
MT-15, MT-25, & AQUAFONE Transceiver

FEATURES:
- Selectable Priority Channel
 (Selected By Channel Selector Switch)
- 10 Second Delay Before Scan Resumes After Transmit
- 2 Second Delay Before Scan Resumes After Signal Loss
- Plugs Into Existing Crystal Sockets. Simple 5 Wire Hook-Up Without Major Modification To Radio
- Simple Modification For Selective Channel Bypass
- Optional Digital Channel Display

ORDER
MODEL NUMBER AMATEUR & DLR. NET PRICES
SCANN 10B 10 Channel Scanner $52.50
(D wired Only)
D10B Digital Channel Display $21.75
(D wired Only)
NET PRICE FOR BOTH . . . $74.25
(SUGGESTED LIST PRICE FOR BOTH - $109.95)

DUPLEXER KITS
PROVEN DESIGN OVER 150
SOLD IN US.
CANADA, EU-
ROPE, CON-
STRUCTION
WELDED
ALUMINUM IR-
DITE & SILVER
PLATED
CAN BE ASSEMBLED & TUNED IN ONE EVE-
NING. NO SPECIAL TOOLS. RECEIVER &
TRANSMITTER CAN BE USED FOR TUNE UP.

MOD. 62-1 6 CAVITY 135-165 MHz POWER
250W ISOLATION GREATER THAN
100dB 600 kHz. INSERTION LOSS .9 dB
MIN. TEMP STABLE OVER WIDE RANGE
PRICE $349.00

MOD. 42-1 4 CAVITY SAME AS 6 CAVITY EX-
CEPT ISOLATION GREATER THAN 80 dB
600 kHz INSERTION LOSS .6 dB MAX
PRICE $249.00

OTHER KITS SOON TO BE AVAILABLE
146 to 148 MHz band pass filter. 1296 & 2304 Interdigital Mixers
144 to 450 MHz 250w tube amp. 130 to 170 MHz notch filter kit

NORTH SHORE RF TECHNOLOGY
9 SOUTH ST SALEM MASS 01970
TEL. (617) 745-4177

500 MHZ
PRESCALER

EXTEND YOUR COUNTER TO 500 MHZ!!!
Can be used with Any counter capable of 5Mhz.
* F MAX greater than 500Mhz.
* HIGH INPUT SENSITIVITY: less than 150mv needed
 at 500Mhz - overload protected
* HIGH INPUT IMPEDANCE: 500 ohms
* OUTPUTS: +10 and -100 TTL compatible
* INCLUDES POWER SUPPLY

ORDER NOW!
PS-K kit...$89.00
PS-A wired and tested..................$109.00
plus $8.50 postage
Calif residents add 6% sales tax

LEVY ASSOCIATES
PO Box 961 R
Temple City. Calif. 91780

More Details? CHECK-OFF Page 94
What's All the Shouting About?

It's the All New Clegg FM-DX
Amateur Net $589.95 – Factory Direct Only

Owners are shouting their praise for all sorts of reasons
The ones we hear most often are,

- The operating simplicity, accuracy and stability of the Synthesizer and LED Frequency Readout.
- The unmatched receiver performance with super sensitivity and freedom from spurious responses.
- Those beautiful, clean 35 Watts of Transmitter Output.
- The rugged Modular construction.
- The 143.5 – 148.5 MHz coverage – opens a whole new world of SIMPLEX operation.

UNTIL YOU TRY ONE YOU WON'T KNOW WHICH FEATURE YOU WILL SHOUT ABOUT – PROBABLY ALL THE ABOVE - AND MORE! CALL CLEGG'S TOLL FREE NUMBER TODAY FOR DETAILS ON THE FM-DX.

Clegg
208 Centerville Rd. Lancaster, Pa.
Toll free sales & services phone (800) 233-0250
In Pa. call (717) 299-7221 (collect)
Don't miss Chicago's

RADIO EXPO

SEPTEMBER 6-7 '75

Thousands of dollars in door prizes
Manufacturer's displays - Giant flea-market

Lake County Fairgrounds - routes 45 & 120

Grayslake, IL HALFWAY BETWEEN CHICAGO & MILWAUKEE

For tickets in advance send $1.50 per to: EXPO, Box 1014, Arlington Hts, IL
Convention HQ: Holiday Inn, Mundelein, IL 312-949-5100 60006

DYCOMM for RF POWER

ECHO III REPEATER MODEL 34 WATTMETER

A COMPLETE LINE OF FM AMPLIFIERS
model - power output - gain - price

6 METER FM
A4050 50W - 10db $183.
A4950 50W - 8db $192.
A8949 100W - 10db $270.

450 - UHF
MODEL 25 30W - 7db $167.
MODEL 30 30W - 9db $194.
MODEL 50 50W - 5db $251.

OTHER PRODUCTS
ECHO III FM REPEATER - $949.
MODEL 34 WATTMETER - $70.

2 METER FM
MODEL C 25W - 4db $69.
MODEL D 50W - 7db $99.
SUPER D KIT 80W - 3.5db $60.
MODEL DS 80W - 3.5db $139.
MODEL E 35W - 10db $80.
SUPER E KIT 40W - 11db $60.
MODEL ES 40W - 11db $115.

10-0 - 100W - 7db $209.
1-100 - 100W - 14db $226.
35-0 - 100W - 4db $185.

ELECTRONIC ENGINEERS

RF COMMUNICATIONS has immediate openings for
Electronic Project Engineers and Design Engineers experienced in HF, SSB, VHF/UHF - FM communications equipment, or both.

Call or write Ken Cooper, W2FLZ
(716) 244-5830

RF Communications Division

HARRIS
COMMUNICATIONS AND INFORMATION HANDLING

1680 University Avenue
Rochester, New York 14610 U.S.A.
An Equal Opportunity Employer M/F

DECO
COMMUNICATIONS
948 AVE. "E" P.O. BOX 10116
RIVIERA BEACH, FLA. 33404
(305) 844-1323
The Wilson 204 is the best and most economical antenna of its type on the market. Four elements on a 26' boom with Gamma Match (No balun required) make for high performance on CW & phone across the entire 20 meter band.

The 204 Monobander is built rugged at the high stress points yet using taper swaged slotted tubing permits larger diameter tubing where it counts, for maximum strength with minimum wind loading. Wind load 99.8 lbs. at 80 MPH. Surface area 3.9 sq. ft., Weight 50 lbs., Boom 2" OD.

All Wilson Monoband and Duoband beams have the following common features:
- Taper Swaged Tubing
- Full Compression Clamps
- No Holes Drilled in Elements
- 2" or 3" Aluminum Booms
- Adjustable Gamma Match 52 Ohms
- Quality Aluminum
- Handle 4kw
- Heavy Extruded Element to Boom Mounts

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M204</td>
<td>4 ele. 20, 26', 2" OD</td>
<td>$119.95</td>
</tr>
<tr>
<td>M203</td>
<td>3 ele. 20, 20', 2" OD</td>
<td>$89.95</td>
</tr>
<tr>
<td>M155</td>
<td>5 ele. 15, 26', 2" OD</td>
<td>$119.95</td>
</tr>
<tr>
<td>M154</td>
<td>4 ele. 15, 20', 2" OD</td>
<td>$79.00</td>
</tr>
<tr>
<td>M105</td>
<td>5 ele. 10, 20', 2" OD</td>
<td>$69.00</td>
</tr>
<tr>
<td>M106</td>
<td>6 ele. 10, 26', 2" OD</td>
<td>$89.00</td>
</tr>
<tr>
<td>M104</td>
<td>4 ele. 10, 17', 2" OD</td>
<td>$49.00</td>
</tr>
<tr>
<td>M340</td>
<td>3 ele. 40, 40', 3" OD</td>
<td>$349.00</td>
</tr>
<tr>
<td>M240</td>
<td>2 ele. 40, 16', 3" OD</td>
<td>$199.00</td>
</tr>
<tr>
<td>M520</td>
<td>5 ele. 20, 40', 3" OD</td>
<td>$189.00</td>
</tr>
<tr>
<td>M715</td>
<td>7 ele. 15, 40', 3" OD</td>
<td>$159.00</td>
</tr>
<tr>
<td>DB45</td>
<td>4 ele. 15, 5 ele. 10, 26', 2" OD</td>
<td>$129.95</td>
</tr>
<tr>
<td>DB43</td>
<td>4 ele. 15, 3 ele. 10, 20', 2" OD</td>
<td>$99.00</td>
</tr>
<tr>
<td>DB54</td>
<td>5 ele. 20, 4 ele. 15, 40', 3" OD</td>
<td>$209.00</td>
</tr>
</tbody>
</table>

All Wilson Antennas are FACTORY DIRECT ONLY! The new low prices are possible by eliminating the dealer's discount. All antennas in stock. If you order any antenna you may purchase a CDR Ham II for $124.95 or a CDR CD44 for $84.95. Send check or money order, or phone in BankAmerica or Master Charge. All 2" Boom antennas shipped UPS or PP. 3" by truck.

Wilson Electronics Corporation
P. O. BOX 794 HENDERSON, NEVADA 89015 702-451-5791
PORTABLE PLEASURE
from ERICKSON...
SRC-146A SPECIAL
with your choice of
- Rubber antenna
- Leather case
- Ni-cad
- Charger
- Remote mike
- Speaker mike
- Extra crystals
- PL, tone burst and TT pad
Put together your own package... ...then call or write
for the ERICKSON deal!

plus ICOM/TPL/TEMPO/ASP
SBE/KENWOOD/CUSHCRAFT/LARSEN

Glade Valley School Radio Session
16th Year — July 26 thru August 8, 1975
Restructuring is coming!
Get that license now!
Let the experienced staff from the Glade Valley School Radio Session help you solve that license problem. Whether you are looking for your General, Advanced or Amateur Extra ticket they will help you in every way with their carefully prepared program to get the license you are looking for.
Have a “Vacation with a Purpose” at this beautiful location in the Blue Ridge Mountains. A highly qualified staff and excellent facilities combine to make license study a pleasant memorable experience.

C. L. PETERS, K4DJ
P. O. Box 458, Glade Valley, N. C. 28627
Please send me the Booklet and Application Blank for the 1975 Glade Valley School Radio Session

Name ____________________________
Address ____________________________
City/State/Zip _______________________

More Details? CHECK — OFF Page 94
High Performance
VHF-UHF Equipment

100 Channel 2 m FM Transceiver SE 285
Immediately ready-for-operation on 100 channels with a frequency spacing of 30 kHz between 145 and 148 MHz. Five preprogrammed repeater or simplex channels can be selected on a rotary switch. All other channels can be selected independently for transmit and receive using thumbwheel switches on the front-panel. Digital frequency selection using a frequency synthesizer. Receiver equipped with KVG 10.7 MHz crystal filter and crystal discriminator. Operating voltage 12 VDC. Completely silicon transistorized. Output power is 10 W RF. Insensitive to incorrectly matched antennas. Built-in squelch, calling tone, and loudspeaker. Connector provided for an external loudspeaker.

$684

SSB/AM/FM/CW 2 meter Transceiver SE 600 digital
A transceiver that really offers you everything. Extremely low noise figure with excellent selectivity, and high cross and intermodulation rejection.
True transceive or separate operation of transmitter and receiver, which can be switched independently to the CW, LSB, USB, AM and FM modes. This versatility allows problemless operation via repeaters, satellite and balloon-carried translators.
Digital frequency readout from the built-in frequency counter using 13 mm Nixie tubes. Direct readout of the transmit and receive frequency; the indication jumps from one to the other on depressing the PTT button etc.
Separate crystal filters for each mode. True AM with plate/screen grid modulation. Built-in speech processor. Product detector for SSB and a crystal discriminator for FM. VOX, antitrip and PTT facilities, as well as RF-output and S-meters. Built-in antenna relay. Built-in power supplies for AC and 12 VDC operation.

$1749

2m/70 cm Linear Transverter LT 702
An all mode transverter (SSB, AM, FM, CW, RTTY, SSTV) for transposing a 2 m signal to the 70 cm band and vice versa. The full 10 MHz between 430 and 440 MHz is covered in five bands of 2 MHz each. Each of these bands can be selected individually for transmit and receive so that it is especially suitable for operation over repeaters and transponders. The receive converter is synchronized to the transmit oscillator during transceive operation. Several coaxial relays are provided for dual band operation 2 m/70 cm and 70 cm/2 m. Output power is 10 W. Built-in meters for drive and output power. Built-in power supply. Built-in attenuator for input power levels of 1 W to 30 W PEP on 2 m.

$805

Please request our data sheets

Karl Braun • Communications Equipment
D-85 Nuernberg, Deichslerstrasse 13, W. Germany
Here is an interesting general electronics hobby magazine. It's loaded with lots of interesting simple circuits and ideas, not only about radio, but in all phases of electronics including test gear, audio, remote control and security electronics.

We are sure that you will find a number of worthwhile projects in this British magazine.

1 Year (12 issues) $9.50

Radio Constructor
Greenville, NH 03048
NEW! NEW! NEW!
DELUXE P.C. KEYER

The complete P. C. keyer you can't afford not to buy!

In either a 5 volt TTL or a 9 volt C-MOS version this new module type IC keyer can be easily adapted to your own custom package or equipment.

Versatile controls allow wide character weight variation, speeds from 5 to 50 w.p.m. plus volume and tone control.

Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuitry.

With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.

TTL Keyer Wired $19.95 Kit $14.95

C-MOS Keyer Wired $24.95 Kit $19.95

Write today for complete details

Data Signal, Inc.
Successor to Data Engineering, Inc.
2212 PALMYRA ROAD, ALBANY, GA. 31701
912-435-1764

CFP Enterprises
the home of
THIRD GENERATION FM
featuring
RP MFA-22
ICOM IC-230
ICOM DV-21
EBC-144JR

Trade-ins accepted. Write for quote. For the economy-minded, we have some of the best in second generation, too — new and used. Send SASE for our monthly used equipment list.

CFP Enterprises
866 RIDGE ROAD
LANSING, N. Y. 14882
Hours: Mon, Tues & Thurs 8:30-5:30
24-hour telephone 607-533-4297

MINI-METERS GALORE!

Order Now and save! We're selling these NEW IMPORTED MINI-METERS at these low prices to make room in our warehouse. At these prices you can stock up for that next project or two or three. Please specify first and second choices and we'll try to make all of you happy! Last time these will be offered!

NULL TUNING METERS — Pointer normally centered, scales without numerals, some graduated. 1” square, ¾” deep. Plastic body fits ¼” dia. or ⅜” x ⅜” opening. Scale can be rear lighted.

CURRENT RATINGS (µA)
100-0-100 $1.75 ea. or 200-0-200 4 for $5.50 pbd.

LEVEL METERS — Same size and style as above except these little beauties have zero at left of scale and are graduated from 0 to 5 (can be rear lighted).

CURRENT RATINGS (µA)
0-150 $1.75 ea.
0-300 or 4 for $5.50

TUNING METERS — Blue tinted plastic body, 0 to left, graduated scale, 200/A, 1½” W x 1½” H x ⅞” D. Scale can be rear lighted. Sylvania #18148-1 $1.95 ea. or 4 for $5.95

“STEREO BEACON” — Clear plastic body, 0 left, graduated scale 0 to 5, 200/A, 1½” H x 1½” W x ⅜” D. Can be rear lighted. Fisher #M21C604 $1.95 ea. or 4 for $5.95

“S” UNIT METER — Pearce-Simpson #3701-004. Scale 0, 3, 5, 7, 9, +10, +30. See sketch. 500/A rating 1½” W x 1½” H x ¼” D. $2.45 each

GRAB BAG — Buy any one of the above and add $1.25 for a MYSTERY µA METER. Sorry, only one of these gems to a customer!

SEND STAMP FOR BARGAIN LIST
Pa. residents add 6% State sales tax
ALL ITEMS PPD. USA.
Canadian orders for less than $5.00 add $1.00 to cover additional postage costs.

m. weinschenker
K 3DPJ BOX 353 - IRWIN, PA. 15642

More Details? CHECK—OFF Page 94

june 1975
DIGITAL CLOCK

Scientific Devices introduces the new any LED Kronos digital clock. That's right, you can choose ALL-bar types with the largest digital, at one price. Scientific Device first! It's easy to understand how to slip into the Kronos your choice and connect with easy instructions. Its overall design is simple and the unit is complete with famous black-and-white TEN-TRIC cathode plus all LED's. Features include 3 setting controls, 1-hour per second, 1-minute per second, and hold button.

$29.95

- **Type**
 - LED
- **Model**
 - KK-101: MAN-3
 - KK-102: MAN-7
 - KK-108: 7071
 - KK-109: 7047
 - KK-107: SLA-11: Red
 - KK-109: SLA-11: Green

Choose Your Readout

- 5 1/2" x 6" clock
- 2 1/2" x 3" clock
- 1 1/4" x 1/4" clock

MONEY BACK GUARANTEE

- On all items

LEAD MITY DIGIT "DCM'S"

Digital Counting Modules' outputs are more accurate than ever before! With d-cm's, you'll get more counts, more accuracy, more convenience! Scientific Devices introduces the new any LED Kronos digital clock. That's right, you can choose ALL-bar types with the largest digital, at one price. Scientific Device first! It's easy to understand how to slip into the Kronos your choice and connect with easy instructions. Its overall design is simple and the unit is complete with famous black-and-white TEN-TRIC cathode plus all LED's. Features include 3 setting controls, 1-hour per second, 1-minute per second, and hold button.

$38.88

- **Type**
 - LED
- **Model**
 - KK-101: MAN-3
 - KK-102: MAN-7
 - KK-108: 7071
 - KK-109: 7047
 - KK-107: SLA-11: Red
 - KK-109: SLA-11: Green

Choose Your Readout

- 5 1/2" x 6" clock
- 2 1/2" x 3" clock
- 1 1/4" x 1/4" clock

MONEY BACK GUARANTEE

- On all items

KEYBOARD KIT

- **Model**: $4.95

BEEPER

- **Model**: $5.95

BEEPER & DATER CLOCK ON THE CHIPS

- **Model**: $5.95

SCRIS! TRIACS! QUADRAYS!

- **Model**: $5.95

SCREW LEAD TABPLATE

- **Model**: $5.95

FULL EPOXY SILICON BRIDGE RECTIFIERS

- **Model**: $1.25

BIGGEST MAN-7 SALE

- **Model**: $1.25

POLY PAKS

- **Model**: $1.25

More Details? CHECK-OFF Page 94
ANDERSON, INDIANA HAMFEST, June 8, at the Old Linwood School north of Anderson on S. Road 9 and 600 N. 9:00 a.m. - 4:00 p.m. Call-in .22-82. Details WA9IVB.

HAMFEST, Manassas, Virginia, Sunday, June 8, 1975, Prince William County Fairground, 1/2 mile south of Manassas on Rt. 234. Grand stand prize drawings; parking for 1000 cars, hand standing for 200+; flea market spaces: indoor and outdoor exhibits; refreshments on grounds. Door prizes: 1st - $100, 2nd - $50, 3rd - $25.00 and many merchandise prizes! Several special activities: 2 YL programs, ECARS, FM clinic, Others. Tailgating $2.00. Dealers are planned; tour guides for special sightseeing. Advance Registration $1.50, $2.50 at gate. Under 12 no charge. For tickets write, Mrs. Virginia Hams A.R.C., Inc., c/o The Richmond Times, WA4GVX, 1708 Sharp Drive; Woodbridge, Virginia 22191.

HANDICAPPED HAM would like both 6 meter & OSCAR gear. Also looking for part time job in radio (perhaps a dispatcher etc.). Please contact WB2PBY, 125 Lincoln Ave., Apt. #204, Trenton, N. J. 08604.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Esten Engineering, 930 Marine Dr., Port Angeles, WA 98362.

POLICE CALL, A complete listing including frequency and location of VHF-UHF public service stations. Nine volumes cover the whole USA. Order the volume for your state. Only $4.95 plus 25¢ shipping. HAM RADIO, Greenville, N.H. 03048.

GOLDEN SPREAD SWAPFEST in Amarillo, Texas at the Villa Inn Convention Center, I-40 & Grand Street. Various activities are planned for Saturday the 23rd and swapping will take place Sunday the 24th. Information from Golden Spread Swapfest, P. O. Box 7002, Amarillo, Texas 79109.

QSL'S — BROWNIE W3CJI — 3035B Lehigh, Allen-town, Pa. 18103. Samples with cut catalog 35¢.

MEMPHIS is beautiful in October! The Memphis Hamfest, bigger and better than ever, will be held at State Technical Institute, Interstate 40 at Macon Road, on Saturday and Sunday, October 4 and 5. Demonstrations, displays. Advances in electronics, XYL Market, XYL entertainment, prizes. Informal dinners Saturday night. Dealers and Distributors welcome. T17 721-3380 or 34-94-7138. Contact Harry Simpson W4SCF, Box 27015, Memphis, TN 38127 or telephone 901 358-5707.

LOW & MEDIUM FREQUENCY RADIO SCRAPBOOK. Unique new handbook dedicated to the experimenter. Receivers, converters, coil winding, antennas, lots of nonlicensed communication bands and the FCC rules. Over 100 pages chock-full of diagrams and data. Nostalgia for the old-timers and an intro- duction to radio communications for the newcomer. $4.75, Cornell, 225 Baltimore Avenue, Point Pleasant Beach, N. J. 08742.

NEW CANADIAN MAGAZINE, "Electronics Work Shop", $5.00 yearly, sample $1.00. ETCOB, Box 741, Montreal, H3C 2V2.

"HAM FAMILY DAY" on Sunday, June 22 at Beck's Drive-in, next west of Beck's Expressway. Distinctive Exhibits, Call letters, county or political program for all ages - technical talks, meetings, contests, equipment displays, ladies' and children's fun programs, flea market, famous chicken & steak dinner. Admission 5 a.m. Advance and gate $2.50, children under 12 $4.00, under 6 free. At the gate 50¢ higher. Tickets at the gate without dinner: Adults $2, children free. Send to Rome Club, Box 721, Rome, N. Y. 13440.

THE 3rd ANNUAL DES MOINES HAWKEYE HAM- FEST will be held on Sunday, June 8, 1975 at the Iowa State Fairgrounds. Plenty of free parking. Flea market, covered display booths available, small charges on arena, no charge. Dealer dis- plays, prizes, XYL activities. Camping available, small charge. Registration $1.50 advance/$2.00 at gate. Write Des Moines Radio Amateur Association, Box 88, Des Moines, Iowa 50301.

5TH ANNUAL WORLDWIDE VHF ACTIVITY is open to all single op. stations of the world. Club stations may be used but only if single op. for each band. 6 p.m. June 26 to 10 p.m. July 27, all times local. Each band is a separate contest. Eligible bands 50 MHz, 144 MHz, 220 MHz. Each station may be worked once per band. Only simplex and no mode modulation. Log sheets are in the hands of the FCC for distribution, and state or province or judicial district. Logs should show exchange, band, time and date spoke to each station worked. Entries to W3ANU by August 31, 1975.

TRAVEL-PACK QSL KIT — Send call and 25¢; re- ceive your call sample kit in return. Samco, Box 203, Wynantskill, N. Y. 12198.

AUCTION sponsored by Brooklyn College A.R.S. and Radio Society of Greater Brooklyn. June 6 at Brooklyn College, Bedford Ave. between Campus Road and Avenue G, room 148, Ingersol Extension. Doors open 7:30 p.m.; auction starts 8 p.m. sharp. Admission $1 non sellers; $1.50 sellers, NO COM- MISSION CHARGE!

BINDERS!!! HR Report binders $4.00 each post- paid. Ham Radio binders $4.95 each, 3 for $13.50 post-paid. Order today from Ham Radio, Green- ville, NH 03048.

38TH ANNUAL "ROUNDUP" at the Bakersfield Inn, Bakersfield, CA on June 14, 15, 1975. For informa- tion and reservations contact Norm Berg, WA6JFB any evening at 1900 PDT on 3928 kHz.

INDIANAPOLIS HAMFEST, Sunday, July 13, 1975. Marion County Fairgrounds. Admission $2.00 per person, children under 12 years, free. Free, for all day, ladies' and children's activities. Good food, free coffee and donuts until 10 a.m. Inside flea market, outside flea market, tent and many merchandise booths. Free outside flea market. Commercial booth avail- able, $25.00. For information or tickets write: Indian- apolis Hamfest Association, Inc., P. O. Box 1002, Indianapolis, Indiana 46206.

TELL YOUR FRIENDS about Ham Radio Magazine.
ANNUAL SOUTHEASTERN WISCONSIN SWAP-FEST, Saturday, July 12, 1975 at Shepard Park (American Legion Post 434), 9327 South Shepard Avenue, Oak Creek, Wisconsin. 2:00 a.m. to 5:00 p.m. later. Parking, picnic area, hot and cold sandwiches and liquid refreshments. Camping is available. Admission $1.00 and includes a "Happy Hour" Prizes. Talk-in 146.94 MHz. Details from: WA9KFB, 104 Brookdale Drive, South Milwaukee, WI 53172.

COMING TO FLORIDA? Use our Club station or your own rig and our all-band antennas to work DX or your home town. All hams welcome. Details; H. E. Saxton, W4QED, c/o Spanish River Inn, Delray Beach, Fla. 33444.

OHIO: THE GOODYEAR ARC (Akron) will hold its Annual Fathers Day (Hamfest) Picnic, on June 15th at Wingfoot Lake Park, east of Akron, one mile west of U. S. Route 60 on County Rd. #87 and #43. Entertainment, Swap and Shop, refreshments, displays, prizes, huge flea market. Picnic tables and children's games available. 10:00 a.m. to 6:00 p.m. Family $2.00 prepaid, and $2.50 at the gate. Details, tickets, map write to W9BALK, 1976 Newdale Ave., Akron, Ohio 44320.

MONTREAL HAMFEST 75, Aug. 3, MacDonald College Farm, Ste. Anne de Bellevue, Prizes, giant flea market, technical sessions, family fun $2.50/adult. Info contact — Montreal Hamfest, Box 201, Pointe Claire-Dorval, Quebec H9R 4N9.

CAPACITORS: 50 assorted disc ceramics, $1.00 prepaid. All useful values. CPO Surplus, Box 189, Braintree, MA 02184.

TWO PLASTIC HOLDERS frame & display 40 QSL's for $1.00, or 7 holders enhance 140 cards for $3.00. Complete stock of transistors, PC parts, etc. $0.95 & up, prepaid, TEPASCO, Box 198H, Gallow, Tennessee 37066.

BUY—SELL—TRADE. Write for monthly mailer, give name, address, call letters. Complete stock of major brands of new and reconditioned equipment. Call us for best deals. We buy Collins, Drake, Swan, etc. NSS & FM. Associated Radio, 8012 Consher, Overland Park, Kansas 66204. 913-381-5901.

NEW YORK CITY Second Annual Hall of Science Radio Auction. Noon to 6:00 p.m. at the Hall of Science, 3000 Whitestone Blvd. Saturday, June 7 at World's Fair Grounds, Flushing, L. I. No sellers commission but 10% fee on auctioned items. Admission $2.00. Zoo, boating, children's farm and science museums adjacent. Field Day goodie galore. Box 1032, Flushing, 11352.

VHF-UHF RECEIVE CONVERTERS for 144, 220 and 432 MHz amateur bands. Send for information. Carmichael Communications, P. O. Box 256, Carmichael, CA. 95608.

DIET-URSEK EXPEDITION — Stay at ZF1SB Cayman Island. Vertical antenna and Carribbean at your doorstep. Diving/fishing if band holds. Write Spanish Bay Reef Resort, Box 800K, Grand Cayman, B. W. I.

THE MARYLAND MOBILEERS Amateur Radio Club, Inc. will hold its 5th annual Hamfest, Rain or Shine, June 15, 1975 at Anne Arundel Community College. The college is approximately 12 miles south of Baltimore just off of Route 2. Registration $2.00, tailgating $2.00. Talk-in 10/70, 16/76, 94, 52, and others.

RADIO MUSEUM NOW OPEN. Free admission. 25,000 pieces of equipment from 1850 telegraph instruments to amateur and commercial transmitters of the 1920's. Amateur Station W2AN. Write for information. Antique Wireless Association, Main St., Holcomb, N. Y. 14446.

More Details? CHECK—OFF Page 94

ELECTRONIC PRINTING CALCULATOR — Unicomp Model 101P — Brand new — still in box. Original cost $195. Received as gift. Want to trade for anything of kind ham gear. PAT. P. O. Box 314, Shiremans- town, PA. 17011.

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company. Box 126, Agincourt, Ontario, Canada. MIS 384.

YAESU FT101 FOR SALE — in nearly new condition, original carton, CW filter and cooling fan installed. Manual, all connector plugs and mike. $475.00. Dick Joslin, Post Office Box 90133, Los Angeles, Calif. 90009.

SURPLUS TEST EQUIPMENT, VHF and microwave gear; write for bulletins. David Edsall, 2843 St. Paul, Baltimore, Md. 21218.

EASTERN SHORE OF MARYLAND HAMFEST — sponsored by The Eastern Amateur Radio Club on June 8th. 1975 from 10 a.m.-4 p.m. rain or shine. Only 35 minutes south of the Bay Bridge, one block off Rt. 50, in Trappe, Md. between Easton and Cambridge, at the old Trappe Elementary School on Main St. Talk in on 146.52 & 91.4/146.445/147.045 rpt. Cambridge. Tables, food, drinks, ladies program, prizes and plenty of room for tailgaters. Admission $2.00. Tickets for those wanting to tailgate. Contact, K3RQU.

RADIO ARCHIVES, amateur anecdotes solicited for (SASE subscription) monthly PR newsletter. Electronic Avocations, 3207 4th St. N., Minneapolis, Minn. 55412.

TELETYPEWRITER PARTS, gears, manuals, supplies, tape, toroids. SASE list. Typeptronics, Box 8973, Ft. Lauderdale, Fl. 33310. Buy parts, late machines.

SWAN 500CWX w/new matching speaker & power supply. R. Heckert, Box 426, Elwood, KS 66024.

COAX RELAYS WANTED — Transco Series Y. Write to: Torsten Pettersson, SM4ETO, Dirigentgatan 1 3tr, S-42138 Vastrafrola, Sweden.

MANUALS for most ham gear made 1940/65, some earlier. Send SASE for specific hobby. Hobby Industry, WCJAK, Box H-864, Council Bluffs, Iowa 51501.

2-METER SYNTHESIZER BOARDS, June 1973 QST, current modifications and instructions, 3" x 5" G-10 boards 15.50 postpaid. K1JZH, 324 Allen St., Hampden, Ma. 01036.

TELETEYPE EQUIP. FOR SALE: Model 28 printer, keyboard, cabinet, loudspeaker, all complete. Also, military R-390 receiver and URA-17A converter. All equipment like new. Make best offer. Floyd Martin, W4VVA, Rt. Box 56-D, Pensacola, Fla. 32503, (904) 477-9684.

ANELEX HIGH SPEED PRINTER, Model 4-58-80-DL, 80 column, complete with P.S. and driver cards. SASE for details. Best offer. Mike Vande Voort, Route 1, Leighton, Iowa 50143, 515-626-3195.

WANTED: tubes, transistors, equipment, what have you? Bernard Goldenst, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.

FOR SALE. Model 28 KSR, floor cabinet, excellent condition. $250.00. Pick up if possible, W2NQW, 66 Franklyn, Port Jarvis, N. Y. 12771.

COLLINS 75A4 RECEIVER, $350. WA80BG/1, 24 East St., Stratford, CT 06947, 203/375-6679 evenings.
LEARN CODE THE EASY MODERN WAY on 60 minute cassettes. Novice 0-5, progressive 5-13, general 13-15, extra 20, $3.00 each or all four for $10.00. Royal, Box 2174, Sandusky, Ohio 44870.

AC LINE VOLTAGE REGULATOR
SOLUTION TO BROWNOUTS
A "MUST" for all labs.
Input 102 to 125v 50/60 Hz. Output 120v ± 2v. SOLID STATE PURE SINE WAVE; from 400 to 1500 watts! Also 24v DC. 1.8 A. Note: In a cabinet, mounted on a metal plate 9 x 11". With schematic. 40 lbs. each $75.00
BNC, cable male, co-ax connectors. KINGS' #59.25. Identical to UG-275/Or takes RG-99, 62 & 71/U (72 ohm cable) includes sleeve and lining, conversion, to take RG-58/U, 52 ohm cable, crimping tool. Necessary to make crimp sleeve to cable shield. Tefton insert, and sleeve to fit over center pin.

AC LINE VOLTAGE REGULATOR
SOLUTION TO BROWNOUTS
A "MUST" for all labs.
Input 102 to 125v 50/60 Hz. Output 120v ± 2v. SOLID STATE PURE SINE WAVE; from 400 to 1500 watts! Also 24v DC. 1.8 A. Note: In a cabinet, mounted on a metal plate 9 x 11". With schematic. 40 lbs. each $75.00
BNC, cable male, co-ax connectors. KINGS' #59.25. Identical to UG-275/Or takes RG-99, 62 & 71/U (72 ohm cable) includes sleeve and lining, conversion, to take RG-58/U, 52 ohm cable, crimping tool. Necessary to make crimp sleeve to cable shield. Tefton insert, and sleeve to fit over center pin.

LEARN CODE THE EASY MODERN WAY on 60 minute cassettes. Novice 0-5, progressive 5-13, general 13-15, extra 20, $3.00 each or all four for $10.00. Royal, Box 2174, Sandusky, Ohio 44870.

AC LINE VOLTAGE REGULATOR
SOLUTION TO BROWNOUTS
A "MUST" for all labs.
Input 102 to 125v 50/60 Hz. Output 120v ± 2v. SOLID STATE PURE SINE WAVE; from 400 to 1500 watts! Also 24v DC. 1.8 A. Note: In a cabinet, mounted on a metal plate 9 x 11". With schematic. 40 lbs. each $75.00
BNC, cable male, co-ax connectors. KINGS' #59.25. Identical to UG-275/Or takes RG-99, 62 & 71/U (72 ohm cable) includes sleeve and lining, conversion, to take RG-58/U, 52 ohm cable, crimping tool. Necessary to make crimp sleeve to cable shield. Tefton insert, and sleeve to fit over center pin.
HAM RADIO has all the license manuals you need! Write for details.

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Braintree, Mass. 02184.

SOCIETY OF WIRELESS PIONEERS offers Life Membership to active and former C.W. operators on comment, military, govt., etc. wireless/radio circuits. Contact: Society of Wireless Pioneers, Dept. H, P. O. Box 530, Santa Rosa, California 95402.

PORTA-PAK the accessory that makes your mobile really portable. $59.95 and $39.95. Dealer inquiries invited. P. O. Box 67, Somers, Wisc. 53171.

signal/One Owners: Special one year service contract. Write for details. CX7A, mint, $1295. Tuneable audio filter, 50dB notch, also has peak and low-pass included, $69.50. Pace Electronics, 5717 Genenmatas, Tucson, Arizona 85704. (602-888-5234).

paying $2000.00 and up for ARC-94/618T ARC-102/618T. $1200.00 and up for ARC-518X, $1500.00 and up for 490T-1 antenna couplers. We also need these control boxes: C-6287/ARC-518X, C-54610/ARC-518X C714E-2. We also need R-1057/ARC-106 receivers, RT-662/GRC-106 transceivers. We buy all late aircraft and ground radio equipment. Also paid radios. We are buyers not talkers. Bring your equipment in, you are paid on the spot. Ship it in, you are paid within 24 hours. We pay all shipping charges. If you want the best price for your equipment, call us. Call collect if you have and want to sell or trade. We also sell. What do you need? D. R. Elkins, 3805 N. River Rd., Milwaukee, Pa. 17847. Phone - 717-742-4604 - 9:00 a.m.-9:00 p.m.

reciprocating detector, write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

oscar Slides, set of 5, $1.25. Launch and spacecraft. Proceeds AMSAT. KGPGX, P. O. Box 463, Pasadena, CA 91102.

reconditioned test equipment for sale. Catalog $5.00. Walter, 2697 Nickel, San Pablo, Ca. 94806.

wanted: Hallcrafters T-54, early 7-inch TV receiver in metal cabinet with pushbutton tuning. Any condition, including parts only. Also manufacturer's service manual (not Photofact). Please write: Carl Saver, 6011 N. River Rd., Waterville, Ohio 43566.

world QSL Bureau. The only QSL bureau in the world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 6c each. 5200 Panama Ave., Richmond, Ca. 94804.

Confidential frequency list. A real Ham Radio Special. Here is the book with exclusive listings of who's using what frequencies from 10 kHz to 27 MHz. Special sections include Military Stations, Foreign Embassies, CIA, CW Press schedules, Spy Stations, and much more. Especially interesting to anyone with RTTY receiving capability.

manufacturers. Distributors! The Memphis Hamfest will be bigger than ever. The dates are Saturday and Sunday, October 4 and 5. Best location possible. State Technical Institute, Interstate 40 at Macon Road. Security. Contact Chairman, Harry Simpson W4SCF, Box 27015, Memphis, TN 38127, phone 901 358-5707.

Your AD belongs here too. Commercial ads 35¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.

more Details? CHECK-OFF Page 94

june 1975
K-ENTERPRISES

250 MHz FREQUENCY COUNTER
MODEL 4XGC
(includes temp. compensated oscillator — .0005% from -30° to +60°C.)

SPECIFICATIONS

Frequency Range 500 kHz - 250 MHz
Sensitivity Less than 80 mV at 150 MHz
Input Z 50 ohms
Max. Input Voltage 15 V rms, 50 V dc
Time Base Crystal Clock plus minus 10 ppm
0° to 40° C ambient
Readout 6 Digit 7 Segment LED
Power 120 V ac
Dimensions 2½” H, 10” L, 7” D
Cabinet Light blue

PRICE $270.00 fob Shawnee (Wired and Tested)

Include $2.50 to cover
Postage and Insurance

K-ENTERPRISES
1401 East Highland • Shawnee, OK 74801

ATT. ALL FT-101 OWNERS
5-10 dB extra talk power. Better RX gain and selectivity. "In terms of
cost effectiveness the best investment for years" - G5RP. Price
$115, post paid. Details, Holdings Ltd., 39/41 Mincing Lane,
Blackburn. BB2 2AF, England.

NEW! IMPROVED VHF FM
RECEIVER KIT $64.95
• VHF CONVERTER KIT $25
• SUPER VHF PREAMP, KIT $9, WIRE $14
• UHF CONVERTER FOR 432-450-470 MHz, ETC.
 KIT $20, XTALS $5.50
• PREAMP FOR 432-450-470 MHz, ETC.
 KIT $15/WIRE $25
• VHF PREAMP KITS $6, WIRE $10 —
 FREQ. FROM 20 TO 230 MHz.
• LED SCANNER KITS $10.
• CLUB & DEALER INQUIRIES INVITED.
 SEND SASE FOR LITERATURE —

HAMTRONICS, INC.
182 BELMONT RD., ROCHESTER, N. Y. 14612

WORLD PREFIX MAP — Full color, 40° x 28", shows
prefixes on each country. DX zones, time zones.
cities, cross referenced tables $1.25

RADIO AMATEURS GREAT CIRCLE CHART OF THE
WORLD — from the center of the United States! Full
color, 30° x 25°, listing Great Circle bearings in de-
grees for six major U.S. cities; Boston, Washington,
D.C., Miami, Seattle, San Francisco & Los Angeles.
$1.25

RADIO AMATEURS MAP OF NORTH AMERICA! Full
color, 30° x 25° — includes Central America and the
Caribbean to the equator, showing call areas, zone
boundaries, prefixes and time zones, FCC frequency
chart, plus useful information on each of the 50
United States and other Countries $1.25

WORLD ATLAS — Only atlas compiled for radio ama-
teurs. Packed with world-wide information — includes
11 maps, in 4 colors with zone boundaries and coun-
try prefixes on each map. Also includes a polar pro-
jection map of the world plus a map of the Antarctica
— a complete set of maps of the world. 20 pages,
size 8½” x 12” $2.50

Complete reference library of maps — set of 4 as listed
above $3.75

See your favorite dealer or order direct.
Mail orders please include 50¢ per order for postage and handling.

Radio Amateur Callbook INC.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

VHF/UHF CONVERTERS PREAMPS
Ten meters through 432 MHz. A post card will bring our
full 1975 Catalog.

Janel Laboratories
Box 112, Succasunna, N.J. 07876
Telephone 201-584-6521

ARR-52 SOLID STATE
VHF RECEIVER

ARR-52... $19.95
OVER 200 SOLD
Postpaid
BankAmericard & COD Welcome

Electronic Equipment Bank, Inc.
516 Mill Street, N.E. Vienna, Virginia 22180
(703) 938-3350

TIRED OF CRANKING?
MOTORIZE YOUR TOWER WITH OUR ELECTRIC HOIST/MINCH
• STURDY—RELIABLE—EASILY INSTALLED
• 1½-TON LOAD HANDLING CAPACITY

$195

TOWTEC CORP. Dept. H fob Yonkers, NY
118 Rosedale Rd., Yonkers, NY 10710
Tel. (914) 779-4142

Radio Amateurs Reference Library of Maps and Atlas
NEW KIT INCLUDES:
BLADES
SPECIAL ALTERNATOR
CONTROL UNIT
FABRICATION INSTRUCTIONS
BASIC KIT AS LOW AS:
$147.00

1/2 KW WIND ELECTRIC GENERATOR
FOR AMATEUR RADIO USE

PD 301 PRESCALER
with Power Supply
Kit $43.50 Assembled $55.50
Add $1.50 Postage & Insurance

Model PD 301 is a 300 MHz prescaler designed to extend the range of your counter ten times. This prescaler has a built-in preamp with a sensitivity of 50 mV at 150 MHz, 100 mV at 260 MHz, 175 mV at 300 MHz. The 95H90 scaler is rated at 320 MHz. To insure enough drive for all counters, a post amp. was built-in. The preamp has a self contained power supply regulated at 5.2V ± .08%. (Input 50 Ohms, Output Hi Z)

All prescalers are shipped in a 4" by 4" by 1½" cabinet. All are wired and calibrated.

K-ENTERPRISES
1041 East Highland, Shawnee, Okla. 74801
Phone: 405-273-9024
An Almost Perfect Package
NEW! Deluxe PORTA-PAK
Attaches Easily
No Holes To Drill
Attractive But Tough
Operates In Any Position
Comes With AC Charger

$59.95

WRAP A PORTA-PAK AROUND YOUR MOBILE RADIO AND YOU HAVE A POTENT PORTABLE THAT OPERATES FOR DAYS BETWEEN CHARGINGS. IN STOCK FOR IMMEDIATE SHIPMENT. MODELS TO FIT ALL POPULAR FM TRANSCEIVERS. SEE YOUR LOCAL DEALER OR DROP "CORK" A LINE AT

PORTA-PAK
P. O. BOX 67
SOMERS, WISCONSIN 53171

Dealer inquiries invited

WEATHERTIGHT ENCLOSURES
STURDY CAST ALUMINUM ALLOY ENCLOSURE FOR OUTDOOR PROTECTION OF ELECTRICAL CIRCUITRY.
MACHINED BODY & COVER PLATE TO INSURE WATERTIGHT SEAL.
RFI/EMI GASKET USED TO ATTENUATE NOISY CIRCUITS.
STAINLESS STEEL COVER BOLTS.
INSIDE DIMENSIONS 5" x 3" x 2¼".
THREADED INSERTS FOR MOUNTING P.C.B.
To order specify enclosure K4A and quantity.
$19.95 each. Allow 4-6 weeks delivery. Ppd.
For optional BNC female jack installed each end specify K4A-C and add $3.00.

DREXEL INDUSTRIES
P. O. BOX 40 • DREXEL, MO. 64742

OUR BROADBAND AMPLIFIERS ARE GREAT — TRY ONE!

Why? First they provide low noise, low intermod amplification over the band 1 to 250 MHz. Second, they can be located near your receiver for simplicity of installation, or at your antenna to overcome coax losses at VHF, increasing receiving system performance. Third, they are economical. With one amplifier you cover 249 MHz: For in-shack use order the BBA-1SR at $40.00 including power adapter kit. For BNC connectors add $2.00. All F.O.B. destination in USA via UPS or Parcel Post. For air add $1.00.

Here are the Specs: 30±1 dB gain from 2 to 225 MHz; -3 dB points at 1 and 250 MHz; less than 2.5 dB noise figure from 2 to 225 MHz; 50 or 75 ohms impedance; 9 to 15 volts supply at 10 to 20 ma; negative polarity for in-shack units and positive polarity for remotely located units; Phono. F or BNC connectors; cast aluminum case with anodized cover.

RADIATION DEVICES CO., P. O. Box 8450, Baltimore, MD 21234, U.S.A.

HAWAII WEEK
INCLUDING
SAROC's
FIRST HAWAIIAN CONVENTION
JULY 17-24, 1975

Eight fabulous days in exciting Hawaii with 7 nights at the Sheraton Waikiki on famous Waikiki Beach. Combine this with an exciting amateur radio convention and you'll have the experience of a lifetime.

All travel arrangements by the Dell Webb World Travel Co.

Write for further details

SAROC
BOX 945, BOULDER CITY, NEVADA 89005

CASHAROONIE
Money! You can get top dollars now for U.S. surplus electronics, particularly Collins. Write or call now for your bigger than ever quote.

Space Electronics Corp., 76 Brookside Ave., Upper Saddle River, N.J. 07458 (201) 327-7640.

OUR BROADBAND AMPLIFIERS ARE GREAT — TRY ONE!

Here are the Specs: 30±1 dB gain from 2 to 225 MHz; -3 dB points at 1 and 250 MHz; less than 2.5 dB noise figure from 2 to 225 MHz; 50 or 75 ohms impedance; 9 to 15 volts supply at 10 to 20 ma; negative polarity for in-shack units and positive polarity for remotely located units; Phono. F or BNC connectors; cast aluminum case with anodized cover.

For in-shack use order the BBA-1SR at $36.00. For remote installation, powered via coax center conductor, order the BBA-1SR at $40.00 including power adapter kit. For BNC connectors add $2.00. All F.O.B. destination in USA via UPS or Parcel Post. For air add $1.00.
New ATLAS
210 SSB
TRANSEIVER

200 watts • 10-15-20-40-80 meters. All solid state.

ELECTRONICS DISTRIBUTORS, INC.
Communication Specialists for over 35 years
1960 Peck St. Muskegon, Michigan 49441
Tel. (616) 728-3196 • Telex 22-8411

FOR ABOVE TOP DOLLAR PAID OR TRADE FOR NEW HAM GEAR WRITE OR PHONE BILL SLEE (704) 524-7519

SUPPLY VOLTAGE 12 VDC
MULTIPLICATION FACTOR 8X
NARROW BAND FM ± 5 KHZ
RUGGED BALANCED EMITTER OUTPUT TRANSISTOR
SIZE 3¾” X 1¾”
CRYSTALS NOT SUPPLIED
$27.95 plus $2.00 postage COD or money order only

DELUXE RECEIVER PREAMPS
Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signals with a Data Preamp.

<table>
<thead>
<tr>
<th>FREQ (MHz)</th>
<th>USE</th>
<th>STAGES</th>
<th>DELUXE PREAMPLIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>14, 21 or 29</td>
<td>HIGH FREQ</td>
<td>SINGLE</td>
<td>25 2 10.50 13.50</td>
</tr>
<tr>
<td>20 to 30</td>
<td>OSCAR SPECIAL</td>
<td>DOUBLE</td>
<td>25 2 12.50 15.50</td>
</tr>
<tr>
<td>50 to 54</td>
<td>6 METER</td>
<td>SINGLE</td>
<td>25 2 10.50 13.50</td>
</tr>
<tr>
<td>108 to 144</td>
<td>AIRCRAFT</td>
<td>SINGLE</td>
<td>20 2 9.90 12.90</td>
</tr>
<tr>
<td>135 to 139</td>
<td>SATELLITE</td>
<td>DOUBLE</td>
<td>20 2 10.90 14.50</td>
</tr>
<tr>
<td>144 to 148</td>
<td>2 METER</td>
<td>DOUBLE</td>
<td>20 2 10.90 14.50</td>
</tr>
<tr>
<td>146 to 174</td>
<td>HIGH BAND</td>
<td>SINGLE</td>
<td>20 2 10.90 14.50</td>
</tr>
<tr>
<td>220 to 225</td>
<td>3½ METER</td>
<td>SINGLE</td>
<td>18 2 9.50 12.50</td>
</tr>
<tr>
<td>225 to 300</td>
<td>VHF</td>
<td>SINGLE</td>
<td>15 2 9.50 12.50</td>
</tr>
<tr>
<td>1 thru 300</td>
<td>HF broadband</td>
<td>3 4 17.95</td>
<td></td>
</tr>
</tbody>
</table>

Write today for complete details

Data Signal, Inc.
Successor to Data Engineering, Inc.
2212 PALMYRA ROAD
ALBANY, GA. 31701
912-435-1764

WANTED

SLEEP ELECTRONICS & CO.
P.O. BOX 100, HIGHWAY 441, DEPT. HR
OTTO, NORTH CAROLINA 28763

WEBSTER RADIO
Everything from Set to Signal!
2602 E. Ashlan
Fresno, Calif. 93726
Phone (209) 224-5111

NEW!

Towers’
International Transistor Selector

This excellent new book lists over 10,000 US, Japanese, British and European Transistors giving operating data, physical information, manufacturer's codes plus European and American substitutions. This is one of the best books of this type we have seen so far.

$4.95 + 25c shipping & handling

Data Signal, Inc.
Successor to Data Engineering, Inc.
2212 PALMYRA ROAD
ALBANY, GA. 31701
912-435-1764

ELPROCON
1 WATT 2 METER TRANSMITTER

• TWO CHANNEL CAPABILITY
• FREQUENCY RANGE 144-146 MHz
• POWER OUTPUT 1 WATT INTO 50 OHM LOAD
• SUPPLY VOLTAGE 12 VDC
• MULTIPLICATION FACTOR 8X
• NARROW BAND FM ± 5 KHZ
• RUGGED BALANCED EMITTER OUTPUT TRANSISTOR
• SIZE 3¾” X 1¾”
• CRYSTALS NOT SUPPLIED
• $27.95 plus $2.00 postage COD or money order only

ELPROCON
DEPT. DS • 1907 W. CAMPBELL
PHOENIX, ARIZONA 85015
AMPLIFIERS with VERSATILITY

Introducing the first 220 MHz Band Amplifier. All authorized modes are compatible with this amplifier.

No compromise features:
- 10 W in yields min. 60 W out at 13.6 VDC
- Selectable biasing for true linear use
- Linear gain typically 9 db nominal
- No tuning across entire 220 MHz band
- Under 1 db loss in receive (0.7 db typ.)
- Fully VSWR and reverse voltage protected
- Switchable from SSB to Linear Class C. Compatible with existing 10 W FM rigs, 5-10 W SSB, ½-5 W RT, AM, SSB, FM, CW, SSTV.

Also offering the most versatile two meter amplifier available to you. Features similar to those outlined above. Write now for details on these exciting units or contact your Amateur Radio Equipment Dealer.

SPECIALTY COMMUNICATIONS SYSTEMS
4519 Narragansett Avenue
San Diego, CA 92104
Louis N. Anciaux, WB6NMT
(Dealer inquiries invited.)

THE ULTRA-BAL 2000

NOW———An extremely rugged, weather-proof BALUN!
- Full 2KW, 5-30 MHz, 1:1 or 1:4 ratios.
- Special Teflon insulation. May be used with tuned lines and tuners.
- With dipole insulator and hang-up hook.

ONLY $9.95ppd. (state ratio)
At your dealer or order direct.
K.E. Electronics
Box 1279, Tustin Calif. 92680

QUALITY, VALUE, INTEGRITY,
VARIETY AND FAST PPD. DELIVERY.
WANT SOME? Try TRI-TEK
10¢ Stamp For Latest Flyers Full of New and Surplus Electronics Bargains
Tri-Tek, Inc. Box 14206, Phoenix, Az. 85063
Store Location: 6522 N. 43rd Ave., Glendale, Az.

WANTED FOR CASH

618-T Transceiver
(also known as MRC95, ARC94, ARC102, or VC102)

THE TED DAMES CO.
308 Hickory Street
Arlington, N.J. 07032
Evenings (201) 998-6475

WANTED FOR CASH

490-T Ant. Tuning Unit
(Also known as CU1658
and CU1669)

Highest price paid for these units. Parts purchased.
Phone Ted W2KUW collect. We will trade for new amateur gear.
GRC106 and PRC74 also required.

40-T antenna tuning unit

ARC-51 Control Box

ARC-51 Transceiver

R1051 or T827

40-T antenna tuning unit

618-T Transceiver

(Also known as MRC95,
ARC94, ARC102, or VC102)

THE TED DAMES CO.
308 Hickory Street
Arlington, N.J. 07032
Evenings (201) 998-6475

More Details? CHECK—OFF Page 94
More Details? CHECK-OFF Page 94

C. D. Ham II Rotator

New Improved $159.95 net $139.95

8 conductor cable for HAM II or CD-44 16/ft. IC-230 in Stock now. Call or write.

Johnson small matchbox, Nye small matchbox and Milen KW Transmatch.

Bird

We are official distributors for Bird Wattmeters and elements.

Collins 516-F2 A.C. Power Supply — Used, good cond., lab tested O.K. $110.00

Antennas: TA-33, TA-36, TH-6-DDX, in stk.

Savoy DGA-2M 2 meter collinear $29.95

Trunk lip bracket for DGA-2M $14.95

HyGain 1/4 wave 2M grid plane $13.00

Hustler 4 BTV Vertical Antenna $79.95

HyGain 18V 10-80 m. vertical $33.00

HyGain BN86 Deluxe Balun $18.95

HyGain 18 AVT/BB 10-80 meters vertical $97.00

Newtonics C1G-144 5.2 dBi gain. Trunk lip mount $39.95

Newtonics G6-144A fixed station antenna 6dBi gain $52.00

Gold Line Single Pole, 5 position coaxial switch, wall bracket or panel mount, 1 kW AM $17.95

Times Wire & Cable, T-4-50, RG-8 foam $0.28C/ft.

Converter $469.00

We are official distributors for We have VIBROPLEX in stock.

Bird wattmeters and elements.

New Improved 5" $139.95

8 conductor cable for HAM II or CD-44 16/ft. IC-230 In Stock now. Call or write.

Johnson small matchbox, Nye small matchbox and Milen KW Transmatch.

ASTATIC UG-8 Stand for D-104 new $26.10

ASTATIC UG-8 Stand for D-104 new $19.55

B & W 850A or 852 for PiNet Band switching induction coils $66.75

B & W 334A Dummy Load-Wattmeter 0-300MHz $149.95

B & W 334A Dummy Load-Wattmeter 0-300MHz $175.00

Sockets for 8072, 8121, 8122 $5.95

EBC Jr-2 meter FM synthesized XCVR $599.00

WE'RE FIGHTING INFLATION NO PRICE RISE IN '75

FOR FREQUENCY STABILITY

Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS

Frequency Standards

100 KHz (HC 131U) $4.50

1000 KHz (HC 6/1) $4.50

Almost all CB sets, TR or Rec $2.50

(CM Synthesizer Crystal on request)

Amateur Band in FT-243 $1.50

80-Meter $3.00 (160-meter not avail.)

Crystals for 2-Meter, Marine, Scanners, etc. Send for Catalog.

For 1st class mail, add 20c per crystal. For Airmail, add 25c. Send check or money order. No dealers, please.

RACOM, INC.

EST. 1964

AUTOMATIC VOICE IDENTIFIER

- WILL NOT DISRUPT CHANNEL
- TAPE DISC — NO LOOPS
- 15 OR 30 MIN. BETWEEN I.D.
- CHANGE RECORDINGS EASILY
- SOLID STATE
- NO FALSING

RACOM, INC.

5504 State Road
Cleveland, Ohio 44134

Phone (216) 351-1755

Distributors & New Dealers Welcome
Advertsers

check-off

... for literature, in a hurry —
we'll rush your name to the companies
whose names you "check-off"

Place your check mark in the space between
name and number. Ex: Ham Radio √ 234

INDEX

Adva __ 265
Atlanta Ham Fest. * 199
Atlas __ 198
BC __ 221
Barry __ 8
Bauman __ 17
Braun __ 268
Budwig __ 233
CIF __ 222
Caldom __ 282
Clegg __ 202
Corvus __ 299
Curtis __ 334
Cush Craft __ 355
Dames __ 324
Data Signal __ 270
Dentron __ 259
Drake __ 339
Drexl __ 325
Dupage __ 287
Dycomm __ 400
E S Ent. __ 208
Ehtron __ 442
Emac __ 433
Electronic Dist. __ 304
Elect. Equip. Bank __ 288
ELPROCON __ 301
Erickson __ 047
Gam __ 237
Genave __ 168
Glade Valley __ 213
Hale __ 302
Ham Radio __ 150
Hamtronics __ 246
Henry __ 062
Holdings __ 252
Hy-Gain __ 046
Icom __ 065
International Crystal __ 066
Jan __ 067
Janel __ 068
K-Enterprises __ 071
K. E. __ 072
Larsen __ 078
Lealad __ 193
Levy __ 291
MFJ __ 082
Midland __ 086
National
Semiconductor __ 323
Northshore RF __ 296
Oneida __ 144
Palomar __ 093
Porta-Pak __ 274
Poly Paks __ 098
Public Research Assoc. __ 316
RF Comm. __ 305
RMS __ 239
RF __ 098
Racom __ 317
Radiation
Devices __ 099
Callbook __ 100
Radio Const. __ 150
Radio Expo __ 147
Regency __ 102
SAROC __ 146
Savoy __ 105
Signal/One __ 262
Slep __ 232
Southwest Tech. __ 263
Space Elect. __ 107
Specialty Comm.
Systems __ 318
Spectronics __ 191
Spectrum __ 108
Standard
Research __ 319
Topeka FM __ 115
Towtec __ 320
Ten-Tec __ 320
Tri-Tek __ 117
Tufts Radio __ 321
VHF Engineering __ 121
Valu-Pak __ 264
Webster __ 255
Weinschenker __ 122
Wilson __ 123

Please contact this advertiser directly

Limit 15 inquiries per request.

June 1975

Please use before July 31, 1975

Tear off and mail to

HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03048

NAME ________________________________

CALL

STREET _______________________________

CITY

STATE __________________ ZIP

Advertisers Index

Adva Electronics 85
Atlanta Ham Festival 70
Atlas Radio Co. 2
BC Electronics 86
Barry Electronics 30
Bauman 80
Braun Communications Equipment 79
Budwig Manufacturing Co. 90
CIF Electronics 81
Cal-Com Systems, Inc. 92
Clegg Division of ISC 75
Corvus Corporation 67
Curtis Electronic Devices 86
Cush Craft 85
Dames Co., The Ted 92
Data Signal, Inc. 62, 63, 81, 91
Dentron Radio Co. 48, 49
Drake, Co. R. L. 71
Drexel Industries 80
Dupage, FM, Inc. 87
Dycomm 76
E S Enterprises 65
Ehtron Technological Operations 84
Elco, Div. of Varian, Inc. 82
Electronic Distributors 91, 95
Electronic Equipment Bank, Inc. 88
ELPROCON 83
Erickson Communications 78
Gam Electronics 61
General Aviation 68, 59
Glade Valley School Radio Session 78
Hal Communications Corp. 45
Hale Electronics 92
Ham Radio 91
Hamtronics, Inc. 88
Henry Radio Stores 80
Holdings Ltd. 86
Hy-Gain Electronics Corp. 87
Icon 5
International Crystal Mfg. Co., Inc. 55
Jan Crystals 93
Janel Labs 88
K-Enterprises 88, 89
K. E. Electronics 92
Lealad Associates 92
Levy Associates 74
MFJ Enterprises 70
Midland Electronics Co. 88
Northshore RF Technology 74
Oneida Elect. Mfg. Co. 70
Palomar Engineers 72
Porta-Pak 90
Poly Paks 90
Price Research Associates 72
RF Communications 76
RMS Corporation 80
RP Electronics 93
Racom, Inc. 93
Radiation Devices Co. 90
Radio Amateur Callbook, Inc. 80, 88
Radio Constructor 80
Radio Expo '75, Chicago FM Club 76
Regency Electronics, Inc. 37
SAROC 90
Savoy Electronics 78
SIGNAL/ONE 76
Step Electronics Co. 91
Southwest Technical Products 66
Space Electronics Corp. 90
Specialty Communications Systems 90
Spectronics FM 41
Spectrum International 72
Standard Research 89
Topeka FM Communications 74
Towtec Corp. 88
Ten-Tec, Inc. 89
Tri-Tec, Inc. 89
Tufts Radio Electronics 60
VHF Engineering, Div. of
Brownian Elect. Corp. 73
Valu-Pak Devices 84
Webster Radio 91
Weinschenker 81
Wilson Electronics 77
Don’t settle for second. Get the best…

hy-gain Antennas!

TH6DXX
6-Element Super Thunderbird DX
Superior Performance TriBander!

Impressive coverage 10-15-20 meters. Separate, improved Hy-Q traps for each band... SWR less than 1.5:1 on all bands. Takes maximum legal power, up to 1 kw AM, 2 kw PEP. Exclusive Beta Match. Factory pre-tuned. Feeds with 52 ohm coax.

TH3Mk3
3-Element Super Thunderbird Popular TriBand Beam Improved!
Outstanding performance 10-15-20 meters at reasonable cost. Separate, matched Hy-Q traps for each band. Exclusive Beta Match for tapered impedance, DC ground. SWR less than 2:1 at resonance. Accepts maximum legal power and feeds with 52 ohm coax.

18AVT/WB
The Great Wide Band Vertical Super Performer 80 through 10 meters!

18 HT
Incomparable Hy-Tower Finest Multiband on the Market!
Automatic band selection 80 through 10 meters. Unique stub decoupling system isolates electrical 1/4 wavelengths for each band. Takes maximum legal power. Feeds with 52 ohm coax. 24’ tower is entirely self-supporting. Requires only 4 sq. ft. for installation.

GECC revolving credit available
Use your BankAmericard or Master Charge

ELECTRONIC DISTRIBUTORS, INC.
• Communications specialists for over 35 years.
1960 Peck Street, Muskegon, MI 49441 616/726-3196 Telex 228-411
Midland's Model 13-500 mobile 2-meter transceiver is very full

12-channel capability • Crystals for .16/.76, .34/.94, .94/.94 included
15-watt/1-watt power • Mobile mounting bracket and microphone

Follow it through: The dual conversion receiver has a complete multiple FET front end coupled with high-Q helicalized cavity resonators. Crystal controlled first and second oscillators are zener regulated.

In the transmitter, with 15 watts output (switchable to 1-watt), initial frequency stability comes through a zener regulated crystal oscillator. High-Q and shielded stages gives minimal interstage reaction...and there's an encased low-pass filter for extra insurance. Extra! VSWR bridge and four DC amplifiers monitor output and give instant automatic protection.

On the back are external speaker and antenna jacks, plus (we've thought of everything) a jack for tone burst and discriminator meter.

Operation is on 13.8-volt DC, negative ground, and compact size (2¼" h. x 6½" w. x 8½" d.) makes installation easy in most vehicles.

See Model 13-500 at your Midland Amateur Radio dealer now...and see how you can participate in Midland's R.S.V.P. in the positive support of your repeater service.

Write for Midland's FREE Amateur Radio Brochure
P.O. Box 19032, Kansas City, Missouri 64141

More Details? CHECK—OFF Page 94

...the 5 band Atlas-210 solid state SSB transceiver for 10, 15, 20, 40 and 80 meters
...and the Atlas-215 for 15, 20, 40, 80 and 160 meters

The same outstanding performance, reliability, and compact size as the Atlas-180... Only 3½ in. high, 9½ in. wide, 9½ in. overall depth, and only 7 lbs. total weight... Operates directly from 12-44 volts D.C. All solid state, modular construction... No transmitter tuning (special Braille dial available for blind operators at no extra cost).

POWER RATING: 200 watts P.E.P. input and CW input. *On 10 meters the power rating is 120 watts.

LUG-IN DESIGN, for quick removal from mobile mounting, and insertion into AC Console as illustrated.

PRICE: Model 210 or 215...$599 • AC console, 117V 50-60 cycles...$129

AC console, 117-230V...$139 • Mobile plug-in kit...$44

Why buy from Henry Radio?
Over 40 years experience. No finance charges if paid within 90 days. Low interest contracts - 8%/yr add on (14% annual rate) - as long as 24 months. 10% down or trade-in down payments. Good used equipment. Most makes and models. Used equipment carries a 15-day trial, 90-day warranty and may be traded back within 90 days for full credit towards the purchase of NEW equipment. Write for literature. Export inquiries invited.

Henry Radio is Exclusive Export Agent For
Atlas Radio Inc.
Here's EIMAC's family of zero-bias hi-mu triodes

Tube types: 8873, 8877, 3500Z, 3400Z, 31000Z

Here's our competitors' family......