focus
on
communications
technology...

this month

- 220-MHz frequency synthesizer 8
- circularly-polarized satellite antenna 28
- touch-tone decoder 37
- IC voltmeter 42
Now there is enough power, from a completely solid-state transceiver, to enjoy clean contacts everytime — without the bother of tuning! Swans’ NEW SS-200A provides you with a nominal P.E.P. input of 300 watts on all single sideband transmissions. Turn it on and you’re on the air. You don’t have to wait for the set to warm up. And look at all the extra features this rugged station includes:

* Broadband circuits to eliminate transmitter tuning on 10, 15, 20, 40 and 80 meters
* Infinite VSWR protection
* Minimized front-end overload, distortion and cross-modulation
* Variable VOX gain
* Variable threshold noise-blanker
* Semi-break-in CW with CW monitor
* 25 kHz calibrator
* Fast attack/controlled decay AGC
* And, more! It’s all in this NEW SS-200A transceiver. An ordinary 12V automobile battery supplies the nominal 13.5V DC power required. * Only 0.5 amps current drain on receive mode. Here is an easy to install, reliable, mobile unit.

Your home station can be readily equipped by adding a PS-20 matching 110V AC power supply. Optional accessories include: 610X crystal controlled oscillator, SS-208 VFO, Mark II 2000 watt P.E.P. linear amplifier, microphones, and mobile mounting kits.

See this modern transceiver on your next visit to an authorized Swan dealer or, if you prefer, order direct from Swan Electronics.

ALL AMERICAN MADE

FULLY SOLID-STATE

BROADBAND TUNING

300 WATTS P.E.P.

WHEREVER THERE’S VALUE IN AMATEUR RADIO, YOU’LL FIND SWAN ELECTRONICS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-200A</td>
<td>300 Watt Transceiver</td>
<td>$799.95</td>
</tr>
<tr>
<td>PS-20</td>
<td>110V AC Power Supply</td>
<td>$159.95</td>
</tr>
<tr>
<td>610X</td>
<td>Crystal Oscillator</td>
<td>$54.95</td>
</tr>
<tr>
<td>SS-208</td>
<td>VFO</td>
<td>$189.95</td>
</tr>
<tr>
<td>Mark II</td>
<td>Linear Amplifier</td>
<td>$749.95</td>
</tr>
<tr>
<td>444</td>
<td>Desk Microphone</td>
<td>$35.95</td>
</tr>
<tr>
<td>404</td>
<td>Hand-held Microphone</td>
<td>$24.95</td>
</tr>
<tr>
<td>SS-MTK</td>
<td>Mobile Mounting Kit</td>
<td>$16.95</td>
</tr>
<tr>
<td>SS-GMTK</td>
<td>Gimbal Mounting Kit</td>
<td>$11.95</td>
</tr>
</tbody>
</table>

THE BEST PRACTICAL DEVELOPMENTS IN AMATEUR RADIO

DEALERS THROUGHOUT THE WORLD

or order direct from SWAN ELECTRONICS

Home Office: 305 Airport Road • Oceanside, CA 92054
Telephone: (714) 757-7525

THE BEST PRACTICAL DEVELOPMENTS IN AMATEUR RADIO
Give Your Signal A DOUBLE BOOST TO START THE NEW YEAR

AN ALPHA LINEAR BY ETO

will handle all the power you can legally use, in any mode, continuously!

Buy a “No-Tune-Up” ALPHA 374 during December and then strengthen that big signal even more with your choice of these proven signal-enhancers:

Any WILSON HF beam — or any popular tower — for $100 off regular price. Or,

A HAM II rotator, or a Magnum Six or DX Engineering RF speech processor, for 1/3 price!

Order a new ALPHA 77D “Ultimate Linear” during December and apply $200 credit to a beam or tower, or choose a free rotator or RF speech processor.

With a new ALPHA maximum-legal-power linear you’ll enjoy a new level of convenience and operating pleasure. Don’t miss this chance to save — see your dealer or contact ETO immediately for full details.

ETO
EHRHORN TECHNOLOGICAL OPERATIONS, INC.
BROOKSVILLE, FLORIDA 33512
(904) 596-3711

More Details? CHECK-OFF Page 136
MODEL CX-11... Deluxe Integrated Station

New solid state broadband linear power amplifier 10-160 meters. 175 Watts DC output — requires no tuning, operates into any VSWR — continuous duty at full rated output.

New concept front-end design — utilizing double active balanced mixers for unmatched sensitivity, blocking and cross-modulation rejection.

Solid-state modular construction utilizing gold-plated, pins and plug-in sockets for all transistors, IC's, and circuit board connectors.

Five Bandwidths of selectivity are standard — 2.4, 1.5, 1.0, 0.4, 0.1 kHz.

Peak notch filter with adjustable frequency notch depth and Bandwidth controls.

RTTY narrow and wide shift FSK-LSB.

Built-in electronic Keyer with independent speed and weight control and partial or full dot memory.

Built-in Power Supply completely self-protecting — both thermal and current overload, integrated circuit controlled.

New six-digit frequency counter utilizing new 1/2 inch amber or red LEDs optimized for a non-blinking, stable display.

ADDITIONAL FEATURES

Dual VFO's for transceive, split operation, or dual receive.

Adjustable IF shift.

Receive or transmit offset tuning.

Push Button spotting.

Adjustable R.F. clipping.

Instantaneous break-in CW.

Built-in Wattmeter.

Built-in noise blanker.

Adjustable R.F. power output.

Pre-IF, adjustable noise blanker.

Now in production at $2600

Distributed by

PAYNE RADIO

Box 525, Springfield, Tennessee 37172

Phone (615) 384-5573 — Nights (615) 384-5643

Phone or Write DON PAYNE, K41D

for a brochure and a trade on your gear.

Due to our tremendous growth — openings now available for communications design engineer, engineering aids and technicians.

Complete Parts & Service At The Factory

Box 127 Franklin Lakes, NJ 07417

Tel: (201) 891-0459
December, 1974
volume 7, number 12

contents

8 220-MHz frequency synthesizer
 Henry D. Olson, WGGXN

16 understanding Q
 Carl C. Drumeller, W5JJ

24 Collins 75A4 PTO maintenance
 Paul D. Rockwell, W3AFM

28 circularly-polarized satellite antenna
 Dale W. Covington, K4GSX

37 fm touch-tone decoder
 John F. Connors, W6AYZ

42 IC vtm conversion
 Mike A. Kaufman, K6VCI

46 vhfer’s view of solar cycle 20
 Patrick J. Dyer, WA51YX

54 improving vertical antennas
 Raymond H. Griese, K6FD

4 a second look 60 ham notebook
136 advertisers index 64 new products
58 comments 136 reader service
109 cumulative index 62 short circuits
97 flea market 6 stop press
Earlier this fall, an engineer from General Electric made news, if not the headlines, with a five-watt handie-talkie and an antenna fashioned from an old golf umbrella. His stunt? He had sent a Morse message through a communications satellite by depressing the mike switch on his handie-talkie, dramatically demonstrating the potential of space satellites for earth-bound search-and-rescue missions. I don’t want to belittle his accomplishment, but many amateurs whose two-meter equipment was limited to small, hand-held fm transceivers used almost exactly the same technique to work through Oscar 6 during its early orbits.

Nevertheless, the long-distance transmission showed that simple radio gear and a collapsible antenna — plus a space satellite orbiting somewhere overhead — would enable persons in distress to summon help from any point on earth. In the demonstration, conducted for officials of NASA, Roy Anderson sent the Morse message from NASA Headquarters in Washington to the ATS-3 satellite in geostationary orbit over the mouth of the Amazon River, which in turn relayed the signals to GE’s Radio-Optical Observatory near Schenectady, New York, which is equipped with a 30-foot dish.

After receiving the message, Observatory personnel transmitted voice signals back through the satellite to Anderson, showing that downed pilots, survivors of shipwrecks and others in need of help could readily receive a voice reply from a search-and-rescue station, acknowledging the SOS and providing rescue information.

Anderson, who holds the basic patent on locating vehicles by ranging measurements from satellites, has proposed a global search-and-rescue system which would require only six geostationary satellites to provide worldwide coverage (except for the polar regions). The satellites would be monitored by three ground stations that could use ranging measurements to locate persons in trouble, and then dispatch assistance. The six satellites could routinely be used for other important activities since the search-and-rescue function would require less than 0.1% of the satellite’s transmission power. By equipping future geostationary satellites with a modified antenna, reliable voice signals could even be transmitted from a person in distress to the monitoring station.

On the surface this sounds like a worthwhile proposal, one that could save hundreds, perhaps thousands, of lives. However, who decides what emergency situations should be relayed through the system? Or those that should not? Downed airplanes, foundering ships and other major disasters obviously qualify. How about a man and his family whose Jeep breaks down in the desert? Or a hunter lost in the mountains? The system couldn’t possibly handle all the emergencies that occur on the earth at any one time, but human nature being what it is, if everyone is allowed access to the system, it would shortly be hopelessly clogged. On the other hand, not allowing everyone access to the search-and-rescue system defeats its whole purpose. Who is to make that possibly life or death decision?

Jim Fisk, W1DTY
editor-in-chief
The acceptance of this quality radio by discriminating Hams has reduced manufacturing and distribution costs, so... We at ICOM feel that it is time somebody lowered a price instead of raising one! For a time we have reduced the price of the fantastic value packed IC-22. Just in time for Christmas. Now you can start the New Year with a really good FM transceiver that comes equipped with five of the most popular frequencies in the country. All of the features that made this radio a best buy at $289 are still available, the Five Helical Resonators, 22 Channels with 94 simplex, 94 repeat, 88 repeat, 82 repeat, and 52 simplex Supplied With The Radio. There is even a plug in the back through which to connect Touchtone®, tone burst, PL** and meter the discriminator. Once you have seen it you will know the ICOM IC-22 is the rig you want. Act now, see your ICOM Dealer TODAY!

*Touchtone is a servicemark of AT&T **PL is a trademark of MOTOROLA, INC.

Distributed by:

ICOM WEST, INC.
Suite 232 - Bldg. II
300 - 120th Ave. N.E.
Bellevue, Wash. 98005
(206) 454-2470

ICOM EAST Div. ACS Inc.
Suite 501
13777 N Central Expwy
Dallas, Texas, 75231
(214) 235-0479

ICOM - Dealerships Available
OSCAR 7 LAUNCH AGAIN DELAYED, due to continuing problems with Thor-Delta launch vehicle, but should be in orbit by the time you receive this issue. The new satellite won't be available for use for several days after it is finally launched, as it has to stabilize and undergo complex telemetry checkout — after that, however, its round-the-clock operation will greatly increase satellite communicators' QSO time.

AMSAT Has Some Fine Slides of Oscar 7, other material for a first-class club program, available on request. Write to AMSAT, Box 27, Washington, D.C. 20044.

HR Report will become the "official information source" for AMSAT news in an arrangement currently being worked out. Details will be announced shortly by AMSAT.

FCC COMMISSIONER LEE APPLAUDS AMATEUR SERVICE in "A Tribute and a Challenge," his banquet speech before the Quarter Century Wireless Association annual convention in Orlando, Florida. Lee's speech was both a review and a look forward. He had obviously done his homework, particularly with some of the people who are preparing for the 1979 World Administrative Conference of the ITU. He endorsed the proposals to eliminate sharing of the amateur bands with other services and to establish new bands at 10.1, 18.1 and 24 MHz, recognizing that a great deal of effort would be required before adequate support can be mustered for such far-reaching ideas to have any chance of success.

REPEATER AUTOMATIC TRANSMISSION of "public service" information is the subject of a recent FCC policy letter. The problem is that unrequested regular weather or time announcements can be interpreted as "broadcasting" and are thus illegal; any repeater with automatic time ID, weather or similar automatically transmitted information must discontinue it as soon as possible.

Repeaters May Still Provide this type information, but only on request. It's OK to dial up a phone company's time or weather with an autopatch, or program a repeater to transmit time and ID for logging purposes while it's being used.

FCC "ORIGINAL AND 14 COPIES" REQUIREMENT attacked in Petition for Rule Making submitted by WB5BBH and WA5VTA on behalf of the Handicappers Information Net. Though there are good logistical reasons for continuance of this FCC requirement, there is no doubt that it stifles amateur participation in the rule-making process. Ham Radio Magazine will help anyone without access to a copy machine meet the 14 copy requirement. Simply send your original response to Ham Radio, Greenville, NH 03048 and we'll make and collate 14 copies and send them First Class mail to the FCC, all for a less-than-cost $1.00 per original page.

FCC LICENSE BACKLOG is on the increase again, after having been under control just a few months ago. Turn-around time for a "typical" amateur application is running about 25 days with any special considerations likely to extend those times considerably. FCC is working very hard to reverse the situation, has even started contracting for outside data-handling assistance.

RSGB PLANNING HISTORICAL UPDATE, and editor Ron Ham is looking for useful inputs particularly concerning the last ten years. RSGB's first half century (1913-1963) was covered in "World At Their Fingertips," and now the RSGB plans a sequel. Anyone with info to contribute should write to Ron Ham, Faraday, Greyfriars, Storrington, Sussex, England as soon as possible.

SEVERE RECESSION HITS JAPANESE ELECTRONICS INDUSTRY, with a number of firms reported to be threatened with failure. Parts industry is operating at an estimated 60% of capacity, with lay-offs and early retirements widespread. No firms directly involved with the amateur field have as yet been reported in difficulty, and it may well be the U.S. and European amateur markets that are keeping those firms healthy.
You will add a real plus to your SSB station when you give it complete 160-meter receive and transmit capability with the exciting new Dentron 160 XV Transverter. Just two simple connections with no modifications and you’re on the air.

- 5 watts drive gives 100 watts DC input
- 3.8 to 4.0 MHz input
- Matches 50 ohm antenna
- Built in 110/220 V 50/60 Hz supply
- Units are available for the 2 MHz MARS Frequency.

Dentron 160 XV Transverter

$199.50 ppd. USA

plus even more!

Let the Dentron 160 AT antenna tuner solve your 160-meter antenna problems the easy uncomplicated way. This transmatch will load any random length antenna from a short whip to an extra-long wire. Use it with virtually any existing HF antenna you already have. Handles maximum legal power. Use with the 160-XV or any other 160 meter equipment requiring a 52 ohm antenna.

Dentron 160 AT Antenna Tuner

$49.95 ppd. USA

160-meters is fun, and it’s easy besides when your equipment comes from Dentron.
frequency synthesizer

for 220 MHz

Construction details

for a simple

frequency synthesizer

for the 220-MHz

amateur band

The business of generating a crystal-controlled 220-MHz signal is usually accomplished by using a high-frequency crystal oscillator followed by frequency multipliers. For example, you can use any of the systems described in fig. 2. The multiplier chain using an 8-MHz crystal (fig. 2A) has a familiar look because it is much like many two-meter systems that use surplus FT243 crystals. In fact, crystals between 8.148 and 8.222 MHz may be used for both 2 meters and 220 MHz (8150-, 8175- and 8200-kHz crystals in the standard FT243 series).

At about 20 MHz, fundamental-mode crystals are replaced (in availability) by higher-mode types. This means that the systems in figs. 2A through 2D will probably use fundamental-mode crystals, in parallel-resonance, to control their oscillators. The systems in figs. 2E through 2G use higher-mode crystals (3rd or 5th overtone) in series-resonance. As it happens, there are some surplus crystal types (CR-8U and CR-24U) that encompass this latter 18.333- to 27.5-MHz region.

By purchasing more expensive higher-mode crystals which operate in the vhf

![Diagram](image)

fig. 1. Frequency multipliers that use higher-mode crystals require less multiplier stages and provide greater separation between undesired harmonics.
fig. 2. Several frequency-multiplying schemes using low-frequency crystals which are suitable for operation on 220 MHz.

spectrum, the number of multipliers can be reduced. Several systems of this type are shown in fig. 1. The use of vhf crystals has one important advantage: the Q of the tuned circuits in the frequency multipliers becomes less important because of the wider percentage difference between undesired, adjacent harmonics. That is, when you multiply 8.148 MHz by 27 to get to 220 MHz, there is also a probability of producing times-26 (211.8 MHz) and times-28 (228.1 MHz). If significant 211.8-MHz energy is present, you will no doubt be hearing from your neighbors trying to see the football game on Channel 12. On the other hand, multiplying to 220 MHz from 110 MHz involves only one step: times 2. While it's possible to have both 110-MHz and 330-MHz energy present in the output (times 1 and times 3), these other components differ by such large frequency percentages the output tank circuit usually discriminates against them.

There is also a difficulty which arises when using vhf crystal oscillators and few multiplier stages. This difficulty is in the crystal oscillator itself, and is in addition to the fact that the crystals themselves are not usually available at low cost. The vhf crystals used in the systems shown in fig. 1 are usually 5th-, 7th- or 9th-overtone types. To ensure that the crystal oscillates on the desired mode, the oscillator circuit must have some built-in mode suppression to prevent oscillation at lower modes. The oscillator has a tendency to oscillate in lower modes simply because the Q of the crystal is generally higher in these lower modes (i.e., the series resistance at series resonance is lower).

For third- and fifth-overtone crystals a simple parallel circuit, resonant at the desired frequency of operation, formed by the crystal holder capacitance and an added inductor is often adequate. Such a circuit is shown in fig. 3. For 7th- and 9th-overtone oscillators it is sometimes necessary to add series-resonant traps at the frequencies of the undesired lower-frequency modes as shown in fig. 4. In short, 7th- and 9th-overtone crystals tend to have more complex oscillator circuits, requiring more critical tuning.

fig. 3. Crystal oscillator for third- and fifth-overtone crystals. Mode suppression is provided by the 10-㎌H inductor which, with the 4.5-㎌F holder capacitance of the crystal, is series resonant at 24 MHz.
A relatively new method of frequency multiplication that has become practical with modern frequency synthesis techniques is shown in fig. 5. With the newer ECL (emitter-coupled logic) ICs capable of frequency division up to 1 GHz, the 220-MHz band falls easily within the synthesis method of frequency multiplication. The particular system shown in fig. 5 uses a divide-by-ten from a 220-MHz vco and a 22-MHz crystal oscillator, but the choice of multiplication ratio is almost arbitrary with this method. The primary requirement for being able to multiply by N is that you find a way to digitally divide by N. Since, at least at lower frequencies, N can be any integer, frequency multiplication by even large prime numbers is possible.

For an actual circuit look at the times-10 multiplier shown in fig. 6. Here, a Fairchild 95H90 (U3) is used to divide the vco output frequency by 10. The 22-MHz output of the 95H90 is compared in phase with the output of the 22-MHz crystal-controlled oscillator. The phase comparator (U1) in fig. 6 is a standard doubly-balanced mixer, manufactured by a number of firms. The doubly-balanced mixer can even be home made, but there are several commercial units available for less than $10. Fig. 7 shows how a typical doubly-balanced-mixer performs as a phase detector; note that the dc output voltage is only a few tenths of a volt.

The output of the phase detector is passed through a special form of active low-pass filter. This low-pass filter (fig. 8) is often called a tracking filter, and one form of it or another is almost always used in phase-locked-loop systems. The active low-pass filter shown here not only provides filtering, it also provides gain. The gain makes up for the low sensitivity of the doubly-balanced mixer used as the phase detector. The maximum gain of the active filter (at dc) is ten, the ratio of 1 megohm to 100 kilohms.

The output of the tracking filter is used to control the vco. The vco circuit and its buffer amplifier are shown in fig. 9. The vco is a type of Colpitts oscillator commonly used at vhf, modified to allow for voltage-tuning by means of diodes CR1 and CR2 - 6.8-pF varicaps (capacitance specified at a reverse bias of four volts). In this circuit they are operated in series with a reverse bias of five volts. Therefore, the total capacitance across
inductor L3 from varicaps CR1 and CR2 is only about 3 pF.

A very simple buffer amplifier using a common gate fet (Q3) is used to isolate the vco from the stages it drives. The gate buffer are in one cast-aluminum box (Pomona 2906). The tracking filter is in a small aluminum box (LBM-00) and the rest of the rf circuitry is in a second cast-aluminum box (Pomona 2906).

fig. 6. Crystal oscillator (Q1), phase detector (U1) and divide-by-10 counter (U3). U2 is a 5-volt voltage regulator for the 95H90. Phase detector output vs phase difference is plotted in fig. 7.

is at dc ground and the source is untuned; the dc source current flows through the link on L3. The output link on L5 is used to couple the 220-MHz signal back to the input of U3 (fig. 6). A second link may be used to couple 220-MHz energy out to succeeding amplifier stages, but I only used one - mismatching a bit.

A dual regulated power supply was used to provide the plus and minus 15-volt supplies needed for the operational amplifiers (U4 and U5); +5 volts is derived from the +15 volt line using two three-terminal voltage regulators (U2 and U6). Separate five-volt regulators were used to power U3 and vco (Q2) because of possible coupling through the power supplies. The power supply is shown in fig. 10.

fig. 7. Typical dc output vs phase difference for the doubly-balanced mixer phase detector (U1 in fig. 6).

Three short coaxial cables connect the three enclosures. It is important to tie the crystal down with a copper strap, as shown, for grounding and acoustical reasons.

The rf circuitry in the two cast-

construction

The photograph shows the complete 220-MHz system. Note that the vco and
L3 3½ turns no. 20, 3/16" (4.5 mm) ID, 1/4" (6.5 mm) long. Output link is 1 turn on cold end of L3.

L4 5 turns no. 28, 1/8" (3 mm) ID, 3/16" (4.5 mm) long.

L5 hairpin of no. 16 wire, 1.5" (76 mm) long, 7/16" (11 mm) wide, spaced 1/4" (6.5 mm) above board. Output link is 1" (25.5 mm) long.

Fig. 8. Active low-pass filter used in the 220-MHz frequency synthesizer. U4 and U5 are operational amplifier ICs.

Fig. 9. Voltage-controlled oscillator and buffer stages. U6 is a 5-volt regulator for the VCO.
the gdo as an absorption wavemeter). Then the buffer should be tuned for maximum 220-MHz output.

Connect the vco to the input of U3 (vco input still shorted) and adjust the threshold adjust pot until the divider is triggering. Assuming that the input is still nearly 220 MHz and the output of U3 is nearly 22 MHz, you can repeak all the adjustments except the crystal oscillator and vco frequency. This should result in the output (i-f) port of the doubly-balanced mixer having relatively low-frequency energy present. This can be seen with a scope at the i-f port, or by connecting a meter to the output of op amp U5 and slowly and carefully adjusting the vco frequency. As the vco goes through exactly ten times the crystal frequency, the meter will deflect back and forth.

If all goes well, connect the output of the tracking filter to the vco input and re-tweak the vco frequency for a lock. Locking can be observed by a dc reading at the output of U5 which responds directionally to vco tuning. The dc output of the phase-detector (U1) is often called loop stress and it is the best indication of the loop being locked or not. For this reason, a meter was added to the amplified phase-detector output (output of U5) for continuous monitoring.

Several precautions should be mentioned. IC U3 is mounted in a unique way; it is soldered in, with the bottom of its ceramic package in contact with the copper laminate and all grounded pins soldered down. This is for maximum heat transfer, which directly affects the upper frequency at which the IC will count. For more details see references 2 and 3. Do not ground pin 14 of U3.

There is also the problem of false
locking; this occurs at the points where the 95H90 is marginally triggering—even with the vco input grounded. It occurs as the vco gets too far from the center frequency of the buffer amplifier’s pass-band and the output begins to fall. Less voltage will cause the counter to miss carrier are visible, but they are all more than 50-dB down.

Phase modulation

Finally, it must have occurred to some of you that it is possible to phase modulate the vco by simply operationally adding an audio voltage into the vco (after the tracking filter). The only trouble with this is that the audio is only allowed to swing the phase ±90° (at most) as seen at the phase detector. This means the vco phase may be swung ±30° because of the divide-by-ten circuit between it and the phase detector—not much deviation. However, by going to three decades and a 220-kHz crystal, you can get up to ±90,000°. If this seems to be bringing back the days of the old Serrodyne modulation, it is—except that the times-1000 multiplier is easier. Fig. 12 shows a block diagram with suggested digital ICs in a system for phase modulation of this type.

![fig. 12. Basic system for phase modulating a 220-MHz frequency synthesizer. Similar technique could be used for other amateur vhf bands.](image)

Circuitry for the 220-MHz frequency synthesizer is packaged in three enclosures which are cabled together.

References

Super Mast
Small in a big way.

For the low profile Ham operator.

It had to happen! The enormous success of Tri-Ex's original Sky Needle—by popular demand—has brought about the design of a miniature Sky Needle for the Tri-Band Beam. We call it Super Mast.

It's a special tower for the low profile HAM operator. A roof-topper stretching to 40-feet up. Attaches easily, simply to the side of your garage or house. A super-easy Super Mast. A top-quality Tri-Ex product. Hot dipped galvanized TOWER CORPORATION Order now and save!

7182 Rasmussen Avenue, Visalia, Calif. 93277

Tri-Ex® because of rising steel costs, is subject to immediate change.

Shown here in its nested position at 21-feet, this Super Mast is supporting a three element 15 meter antenna & rotor assembly. Rush your order now. Visit or call your local Tri-Ex Tower dealer today. Price of this under-$300-tower, to 40-feet up. Attaches easily, simply to the side of your garage or house. A super-easy Super Mast. A top-quality Tri-Ex product. Hot dipped galvanized TOWER CORPORATION Order now and save!

7182 Rasmussen Avenue, Visalia, Calif. 93277

Tri-Ex® because of rising steel costs, is subject to immediate change.

Shown here in its nested position at 21-feet, this Super Mast is supporting a three element 15 meter antenna & rotor assembly. Rush your order now. Visit or call your local Tri-Ex Tower dealer today. Price of this under-$300-tower, to 40-feet up. Attaches easily, simply to the side of your garage or house. A super-easy Super Mast. A top-quality Tri-Ex product. Hot dipped galvanized TOWER CORPORATION Order now and save!

7182 Rasmussen Avenue, Visalia, Calif. 93277

Tri-Ex® because of rising steel costs, is subject to immediate change.

Shown here in its nested position at 21-feet, this Super Mast is supporting a three element 15 meter antenna & rotor assembly. Rush your order now. Visit or call your local Tri-Ex Tower dealer today. Price of this under-$300-tower, to 40-feet up. Attaches easily, simply to the side of your garage or house. A super-easy Super Mast. A top-quality Tri-Ex product. Hot dipped galvanized TOWER CORPORATION Order now and save!
understanding Q

A discussion of the Q of LC tank circuits, and its effect on transmitters, receivers and antennas

In World War I some merchant ships were heavily armed but disguised to appear as unarmed trawlers. German submarines, not wanting to expend an expensive and scarce torpedo on a mere merchant vessel, would surface to sink it with gun fire. Then the Q ship would drop its false sides, revealing mighty guns that would destroy the submarine. Maybe that’s how Q got a reputation of being not only a deep mystery but also something not really on the up and up. Many of the references to Q in the literature have done little to dispel the confusion.

Q is a “figure of merit,” every textbook tells. If it’s good, why don’t we use lots of it in the plate tank of a transmitter? Oh, no, say the books; too much Q will make the circuit inefficient! A contradiction? A high Q dissipates little power in the form of heat, but a high-Q antenna is to be avoided like a plague! Why?

A high-Q circuit is one with little resistance, one page of a text tells us; three pages later in the same book you read, “Use a high value of resistance in the circuit so as not to lower its Q.” Which do you believe? High Q means a good flywheel effect. Flywheel? What has that got to do with electronics? Q concerns the relation of stored energy to released energy. Oh, so we measure the efficiency of lead-acid storage batteries by their Q? Seemingly, there’s just no logic to Q!

There is logic, but you must have a clear
concept of the many faces of Q before that "logic" appears logical! Let's start with a look at fig. 1. Fig. 1A shows a basic LC circuit, one with provision for applying a momentary pulse of power to it. Although a battery and a switch are shown, the switch could be replaced by a vacuum tube pulsed into conduction by the application of a positive-going spike to its grid. Now glance at fig. 1B and imagine a very brief closure of the switch, with its reopening a tiny fraction of a second later. During the small period of time it was closed, energy flowed from the power source into the LC circuit. Because of this ability to accept energy, an LC circuit often is called a tank.

While considering this tank, let's see what the incoming current attempts to do and what it does, step by step. It attempts to flow equally through both legs of the tank. It can't, initially, for the very nature of inductive reaction in the inductance leg retards the effort of the current to traverse that path. But a portion of the current flows unimpeded into the capacitance leg, building up an electrostatic change in the form of excess electrons on the surface of the dielectric adjacent to the upper plate of the capacitor.

If it helps your understanding, you might say that an equal number of electrons flowed out of the dielectric next to the bottom plate, leaving an excess of holes there. That might sound more familiar to those of you who have become accustomed to thinking in terms of semiconductors.

While the electrostatic charge was accumulating in the capacitor, the current hadn't abandoned its attempt to flow through the inductor. It was slowly making its way down that leg. As it moved through the inductor, it created an inductive field which spread out from the coil. This field contained, in the form of electromagnetic lines of force, a portion of the initial energy supplied by the power source. As the initial energy pulse was very brief compared to the natural period of the tank (the period = 1/\(f\), where \(f\) equals the frequency at which \(X_L = X_C\)), additional energy from the excess electrons accumulated on the capacitor's upper plate join in the attempt to push current through the inductor. In time, they succeed.

As these incoming electrons neutralize the excess of holes on the lower plate, current flow tries to stop. It can't, just yet. For as it falters, the inductive field collapses. The energy stored in it is returned to the coil, causing a continuing flow of current. But this flow has to stop, too. When it does, the excess electrons built up on the lower plate by the current flow caused by the collapsing magnetic field tries to return to the upper plate, which now has a deficiency of electrons.

This flow of electrons, a current slightly weakened by unavoidable losses, meets the same obstacles as did the initial flow through the inductor. Like the other it succeeds, and one cycle of oscillation has taken place in the LC tank. Then starts a new cycle of oscillation, duplicating the original cycle but less the pulse of energy from the external power source. Again the cycle is accomplished. But, this time, the magnitude of current flowing, the magnitude of electrostatic potential built up on the capacitor, and the magnitude of electromagnetic force built up in and returned from the inductor's field will all be less than previous cycles. This is where Q comes in.

circuit losses

Let's think about why those three magnitudes decayed. The decay was caused by losses. Where did the losses lurk? The capacitor leg is a good place to start. This is an imperfect world, and no insulator is perfect; therefore some losses came about from leakage across the insulation incidental to the capacitor. Even though the capacitor may have had silver plates, some ohmic losses were present. And the dielectric itself contributes to the loss total by requiring the expenditure of
some energy to rearrange its molecular structure in order to accommodate the excess of electrons (or holes) on first one plate and then the other. All of these losses are additive.

In the low-frequency (30 to 300 kHz), medium-frequency (300 kHz to 3 MHz) and high-frequency (3 to 30 MHz) ranges,

![Diagram of an LC tank circuit]

\[A. \text{Initial state.} \quad B. \text{Start of initial charge half-cycle. Electromagnetic force being stored in field of inductor and electrostatic charge being stored in capacitor.} \quad C. \text{Continuation of first half-cycle. Electrostatic charge contributing to build up of electromagnetic force.} \]

D. Final phase of first half-cycle. Electromagnetic field collapsing and returning energy to the capacitor.

E. Start of second half-cycle. Electrostatic charge causes flow through inductor, buildup of electromagnetic field.

F. Final phase of second half-cycle. One full cycle will have been completed. Return to (c) for start of next cycle.

fig. 1. Oscillation cycle in an LC tank circuit.

the total losses associated with the capacitor are so low they usually are not considered. The capacitor accepts energy during one half-cycle and restores it to circulation during the following half-cycle with an efficiency approaching perfection!

Instead, for those frequencies, we look to the inductor to find the main source of loss. Like the capacitor, it has certain insulation losses, divided between leakage and dielectric hysteresis. Unique to it, however, is the fact that not all the electromagnetic force stored in its field is restored to the inductor when the field collapses. Some of it is radiated, some of it is transliterated into heat by hysteresis effect in nearby metallic and dielectric objects. All of these add up to a quite considerable sum of losses. So large, in fact, that we think of the inductor exclusively when we talk about losses that deteriorate Q in a high-frequency circuit.

You should not lose sight of the phenomenon of energy being extracted from the tank and stored in the electromagnetic field during one part of the oscillation cycle and then being returned to the inductor during the next half-cycle. If the inductor losses are low, then a very substantial portion of the stored power will be recaptured. Low losses contribute to a high circuit Q so we associate high Q with a high percentage of...
stored power being returned to the circuit.

In considering the matter of stored and returned power, you should not overlook one striking difference between energy stored in a capacitor and that stored in the field of an inductor. The electrostatic charge stored in a capacitor can be retained there for long periods. A well-insulated capacitor will hold a high percentage of its charge for days. The electromagnetic force contained in the field of an inductor, however, can never be static. It must be in a state flux. The moment it ceases expanding from the impetus of current flowing through the coil, then it starts collapsing.

Usually all losses are lumped into one heap when we talk about Q. As these losses dissipate energy as a resistor dissipates energy, it's both convenient and accurate to label these several losses as resistive, to lump them as one, and to refer to the aggregate as the "equivalent resistance" of the circuit. That agreed upon, let's look at fig. 2, which shows circuits with lumped losses depicted as resistors. Fig. 2A has the resistor in series with the inductive leg. In such a circuit, losses are lower when the resistance is low. With losses low, Q is high, and the formula \(Q = \frac{X}{R} \) applies. We usually have this circuit in mind when we talk about keeping Q high by cutting resistive losses.

Fig. 2B takes on more meaning when you glance on to fig. 2C. You know from experience that having a grid resistor that is too low in value results in circuit losses that reduce both signal strength and circuit selectivity. For this arrangement you'd use the Q formula \(Q = \frac{R}{X} \).

With a little mathematical juggling, you can transform the circuit in fig. 2A to that of 2B or vice versa. As this article is concerned only with identifying Q, I'll refer you to any of the numerous texts that explain the mathematical manipulations.

Knowing that high Q relates to low circuit losses, let's talk about ways of increasing Q by decreasing effective resistance. We'll limit our consideration to circuits in the low-, medium- and high-frequency spectrum. That means we'll be talking about only the inductive leg.

practical inductors

The turns of wire (usually) constituting an inductor provide a fertile ground for Q improvement. If you can have the same inductance with fewer turns (shorter wire length), it stands to reason that ohmic losses will be reduced. This suggests a ferrite core. Good, providing that the proper type of ferrite is used because ferrite is frequency sensitive. Ferrite can be very lossy so be sure that the type you select won't contribute more hysteresis loss than it deletes ohmic loss!

The magnetic field is another good spot for a bit of spade work. The field can be confined by winding the inductor in the form of a toroid. Although air-core toroids have been made (and once were very popular in TRF receivers), most now are made with ferrite or powdered-iron cores. Even better than the toroid is the cup-core or pot-core configuration. Although very effective in field containment, it's not convenient to work with, is rather expensive, and is not often used by amateurs.

If you prefer not using a confined-field type of inductor, you must be careful not to introduce excessive loss by mounting the inductor too close to other objects. Especially guard against getting it too close to shielding. Copper is bad enough, but iron and steel are much worse! An old rule-of-thumb is to keep the coil at least a half-diameter away from any shielding. Insulators also introduce loss so keep down the amount of insulating material in the inductor's field. Air-core coils have quite small losses, especially when wound with spaced turns, and ridged coil forms have lower losses than those which provide continuous support to the wire. Since some insulating materials have much lower loss than others, investigate and select the type that'll serve you best.

Thus far we've talked about the Q of the tank circuit by itself, but tank circuits just don't live that way in real life. You'll always find them associated with other
circuits or circuit elements. These associations inevitably tend to reduce the Q. This is too bad, for you make careful effort to keep the tank's Q high, then, when you put it to use, the Q is sliced down in a disheartening manner. However, don’t let this situation keep you from designing and using a high-Q tank because any losses caused by a low Q in the basic tank are lost to you forever! On the other hand, the lowered Q that comes about from coupling the tank to other circuits may mean only that you’ve used power from the tank, used to excite a following stage or to be radiated from an antenna. So it was not lost, just transformed.

Let’s look at a circuit that lowers Q yet serves a desired purpose (fig. 3). This is the plate tank circuit of a transmitter. It’s coupled, by means of an adjustable pick-up link, to an antenna through a 72-ohm transmission line. We’ll assume that the line is matched to the feedpoint of a resonant antenna so there’ll be a 72-ohm resistive load presented to the pick-up link. This is a form of output coupling that was in common use 30 or 35 years ago.

With the link very loosely coupled to the tank coil, very little of the 72-ohm load will be reflected into the inductive leg of the tank. The tank’s impedance (and Q), therefore, will be high. When the tank is tuned to resonance only a little plate current will flow. When tuning into resonance, a sharp and deep dip in plate current will be seen. When the link is moved into closer relationship with the plate coil it will reflect more resistance into the tank and its impedance (and Q) will decrease. Plate current will increase. The plate current dip, at resonance, will be broad and shallow. Power is being extracted from the tank and fed to the antenna. You don’t regret lowered Q in such instances!

This circuit depicts another contributor to lowered Q. It’s the vacuum tube supplying power to the tank. Every power-generating (or power-converting) device has internal resistance. The vacuum tube is no exception. Its resistance is in parallel with the tank, as shown in fig. 2B. The Q of the tank circuit, therefore, is lowered.

flywheel effects

While looking at the circuit of fig. 3 let’s think about another aspect of Q, the flywheel effect. The vacuum tube, unless it’s operating class A, does not supply a steady flow of power into the plate tank. Instead, the power is applied in pulses. As the tank is tuned (synchronized) to the frequency (repetition rate) of the pulses, a burst of power is fed to the tank in such a time relation that it is in phase coincidence with the power circulating within the tank. To illustrate, at the moment when the top plate of the capacitor is providing its excess electrons to reinforce those pushing their way down through the inductor, the plate of the tube also is providing a pulse of current to further reinforce the flow.

You’ll recall from the foregoing discussion that, unless “recharged” from an external power source, each reversal of
the oscillating electron flow in the tank circuit results in less current and less voltage than the preceding one. Nevertheless, there is a current flow and there is a voltage developed. This phenomenon, the fact that current continues to flow after the initiating energy pulse has been cut off, is known as the flywheel effect. It is desirable that there be a very minimum of deterioration of power circulating in the tank between energy pulses because any drop in power is conducive to the generation of harmonics.

Also touched upon previously is the fact that low circuit losses tend to keep the circulating current constant. This leads to the conclusion that low losses indicate high Q which, in turn, means good flywheel effect.

loaded and unloaded Q

Now, let’s take up the matter of unloaded and loaded Q. It’s not complex. The tank circuit, isolated from all else exhibits unloaded Q. When you associate it with anything else, the Q will deteriorate; this is loaded Q. Usually loaded Q refers to the Q at some stipulated load and the total load is often made up of several contributory loads.

Thus far I’ve talked about tank circuits in relation to transmitters. There’s a reason for this. With the meters associated with a well-designed transmitter you can observe the effects of changes in Q and the manipulations that cause changes in Q. This is not so easily done in receivers.

Before leaving transmitters, let’s consider the importance of Q. The prime purpose of a transmitter is to produce a signal on one selected frequency. It is not desired to produce signals on harmonics of that frequency or upon any other spurious frequency. It’s unfortunately true that all efficient generators of radio-frequency power tend to generate something other than a pure sinusoidal wave; they generate waves rich in harmonics. A high-Q tank circuit introduces a healthy element of selectivity into the situation. The tank selects the desired frequency, passes it, and rejects (to a degree) all others including those troublesome harmonics. So, following an active device (vacuum tube, transistor, etc.) in an rf circuit we like to insert a tank circuit of moderate Q.

Why “moderate” Q? Let’s go back to fig. 1. You’ll recall that, as this is a resonant circuit, \(X_L = X_C \), and therefore if L is reduced in an effort to raise Q by reducing the length of wire in the inductor, C must be made larger to restore resonance. Circuit power remains unchanged. To accommodate this power, a tremendous store of electrons must accumulate on one plate of the capacitor. As the circuit oscillates, this great store of electrons must flow through the inductor to reach the other plate, creating a much heavier current flow than would have been the case had the capacitance been less and the inductance greater. The heavy current encounters some ohmic resistance in the coil, which results in the generation of heat. For heat, read, “unretrievable loss of radio-frequency power.” Not only is power lost, but the resultant heat often damages the coil and adjacent components. So, you see, the effort to increase efficiency by going too enthusiastically after high Q can lead to greatly reduced efficiency. Here, as in many other aspects of life, moderation is the keyword!

receiver selectivity

In association with receivers, Q performs perhaps an even more important role than in transmitters. Although the
growing use of filters (active, crystal, mechanical and ceramic) for setting the ultimate selectivity of a receiver has taken over a function in fixed-frequency circuits that was once reserved for high-Q LC tanks, there are applications for which no better alternatives have been found.

Why? Because, with the possible exception of the beam-deflection tube, it introduces a degree of non-linearity. Non-linearity means intermodulation products can be generated when a strong undesired signal is present along with the desired signal. Once generated, these products are very difficult to cope with. So you'd like to eliminate that strong undesired signal before it reaches an active device. This calls for highly-selective tuned circuits. One way of getting these is by using LC circuits of sufficiently-high Q.

Only by the use of superconductivity can a single LC tank achieve such a remarkable Q, but cryogenic superconductivity is expensive so its use is limited almost exclusively to receivers for reception of signals from outer space. The designers of ordinary receivers must look to other means of achieving selectivity. Fortunately, a ready solution lies in the fact that the Q of two or more cascaded circuits are multiplicative. For example, if you have two cascaded tuned LC circuits, each with a Q of 10, the total Q of the chain is 100. Add another like circuit, and the total Q becomes 1000. This phenomenon permits achieving the high Q needed for reasonable selectivity but does so at the cost of requiring a multiplicity of tuned circuits, circuits that must be ganged and tracked for convenience in tuning. Each of these tuned circuits introduces some unavoidable losses, but it's a price you must pay.

There are many ways of cascading tuned circuits. Each has its proponents, but there seems to be little difference in their performance. Several of the many available circuits are shown in fig. 4. Two bottom-coupled circuits appear in 4A and 4B, and 4C shows top-coupling. Conventional inductive coupling is illustrated in 4D. Link coupling appears in 4E, with a variant in 4F. The choice of which circuit to use seems to lie with consideration of physical rather than electrical characteristics.

The magnitude of Q needed to achieve a specific amount of selectivity, say, 6-dB down at 10-kHz bandwidth, varies
with the frequency of the signal being processed. When bandwidth is an appreciable fraction of the signal’s frequency, selectivity can be had with reasonable Q. On the other hand, if the bandwidth is very small in relation to the frequency, extremely high values of Q are needed.

fig. 5. Signal enhancement through circuit Q.

Other than the matter of selectivity, there’s another aspect of Q that’s important to the receiver designer. It concerns the voltage presented to a vacuum tube’s grid or an fet’s gate. Look at fig. 5. If a voltage e is induced from the adjacent link into the inductive leg of the tank, the magnitude of the voltage available between the grid and cathode of the tube will be e times Q. Therefore, high Q in receiver tank circuits contributes to the overall gain of the receiver.

antenna Q

When we consider Q in relation to antennas, several factors must be kept in mind. Usually, the ohmic resistance (and, therefore, the ohmic loss) is so small it is swallowed by the much greater “radiation resistance” of the antenna. Quotes are used to head off any assumption that the term has anything to do with real resistance. An antenna, to serve its purpose, radiates radio-frequency power. A resistor will transliterate radio-frequency energy into heat. Each disposing of power so they have a common element of action and the power could be measured in watts by the formula $W = I^2R$. In a resistor true resistance is used in the formula. For the antenna, however, we create an imaginary resistor which, if it existed, would consume the same amount of watts. For example, if a radio-frequency current of two amperes were fed into a 50-ohm resistor, 200 watts of power would be dissipated in the form of heat. If that same two-amperes of current were fed into an antenna and 200 watts of power were fed into an antenna and 200 watts of power were to be radiated into space (less that tiny bit lost in heat because of the small ohmic resistance), then we could conclude that the antenna’s “radiation resistance” was 50 ohms.

It would appear that the higher the radiation resistance, the greater (for a given amount of antenna current) would be the radiated power. Unfortunately, that radiation resistance appears as a series resistance in the equivalent circuit of the antenna. What’s it going to do to the antenna’s Q? Lower it, of course! From these considerations we can conclude that low-Q antennas are desirable, but that’s true only when the low Q comes about because of high radiation resistance and not because of high ohmic resistance, high losses or any of the other factors that can lower Q.

summary

In preparing this article, I’ve intentionally avoided the more conventional approaches for presenting facts relating to Q. There are many excellent texts that deal with such aspects in a thorough and rigorous treatment. I have found Radio Engineering, by F.E. Terman especially useful and recommend it highly.

What I’ve tried to present is an easily-read but factual identification of Q, an account of how it is achieved and enhanced in a circuit, and a limited number of examples of how optimum values of Q are used to accomplish the desired results in transmitters, receivers and antennas.

reference

Many amateur radio operators believe the Collins 75A4 to be the best amateur receiver ever made. Particularly for CW use, there is much truth to this. Unfortunately, the 75A4 is long out of production and—for some, at least—out of style.

Some of the reasons for this fine receiver's going out of style include: Size, weight and (relatively) high power consumption, old-fashioned appearance (black crackle, square corners), not set up for transceive operation, not equipped for break-in muting, vacuum tube instead of solid-state design, objectionably high noise figure, especially on 10 and 15 meters, and insufficient dynamic range and front-end selectivity.

Of these factors, the latter two are true of all receivers, no matter what their vintage, but the 75A4 actually does better with them than almost any current receiver! The noise figure and dynamic range problems have been attacked before, and a good preamp can help the former at the expense of the latter. Another factor, one of the most frustrating and yet most easily overcome, is the age-connected problem of stiff tuning and
frequency jump. Solving this difficulty is the subject of this article.

The 75A4 is at its best as a CW receiver, and CW requires delicate and smooth tuning. As 7A4s age, however, many begin to get stiff and require irregular torque on the tuning knob and some may jump frequency a kHz or two even while not being tuned. Both of these problems have their cause in the permeability-tuned oscillator and dial assemblies. Many amateurs have learned to live with sticky tuning, at least up to a point, but frequency jump is intolerable. It is probably safe to say that these problems account for many of the 75A4s being offered on the market today.

Some discussion of the causes of frequency jump was given in the previously cited article. It is now believed that the two problems are inter-related, and that if sticky tuning is tackled first, the frequency-jump problem will usually disappear along with it.

fig. 1. Inside the Collins 75A4 permeability-tuned vfo (PTO). The numbers identify the critical parts of the PTO assembly, described below.

1. Cam idler wheel, which rides on cam stack to control idler.

2. Lead screw, whose rotation moves the tuning slug through the tuning coil.

3. Lead-screw lubricating washer; should be saturated with oil.

4. Cam idler assembly, whose movement makes minor adjustments in oscillator tuning linearity.

5. Tuning slug.

6. Moisture-absorbing silica-gel sacks, blue when dry and pink when saturated.

7. Cam stack, used to compensate for non-linearities in oscillator tuning.

8. Tuning coil, wound with varying pitch to approximate linear tuning with slug travel.

9. Padding capacitor, which establishes oscillator tuning range.

10. Cover for tube bases and non-critical PTO components.

11. Trimming inductor, used to set the PTO tuning range to precisely one MHz for ten turns of the lead screw.
The bulk of the problem exists inside the PTO (fig. 1), and this is where you are going to have to go. Pay no attention to the manufacturer’s caution about not breaking the seal of the PTO—these units were never hermetically sealed, even when brand new. They could breath through the bearings and, perhaps, the rubber O-ring. Moisture-laden air, breathed in a little at a time each time the receiver was turned off and cooled down, usually turned the silica-gel sack pink within the first year’s operation—and that was a long time ago. If moisture is a worry, as it might be in a basement shack or in a particularly humid part of the country, you could let the receiver run around the clock (bad from the energy point of view). Better, install a 7½-watt, 115-volt pilot lamp near the PTO, wired directly to the power line, and let it run all the time to keep the PTO warm. At any rate, moisture is not a problem with 99.9% of the 75A4s around, but sticky tuning is present to some degree in almost all of them.

This operation will be a painful one for anyone who doesn’t like working with tools. Assuming only the usual number of minor problems along the way, you can expect the complete job of removal, repair and reinstallation of the PTO will consume the better part of a day. If your time and patience are too thin, you might try a partial job—but then don’t expect miracles.

pto removal

The first step (after taking the receiver out of the cabinet) is to set the tuning dial to 14.000 MHz. Next remove the vernier knob, mounting plates, ring gear and pinion. Put the metal parts into a half-pint jar of mineral spirits to soak, or better, clean them in an ultrasonic cleaner if you happen to have one. Make sure all dried grease is removed before you take out the parts and dry them. Set up a row of saucers or ash trays so that all the small hardware can be placed in them in sequence as it is removed. This not only keeps them from getting lost, but is also a nice memory jogger when reassembly time comes.

From the top of the receiver remove the tuner dust cover, top and side screws of the PTO rear cover plate, and set screw and spring of the passband-tuning bronze band. Loosen the two set screws of the tuning shaft, immediately to the rear of the flexible coupling.

Remove the bottom plate from the bottom of the receiver. On the middle-bracing chassis cover plate remove the front two screws and loosen the rear two screws. This will permit the plate to be tilted so the PTO can be pulled out of its shaft coupler when the time comes. Make a sketch of the PTO connections and mark the chassis with a felt-tipped pen to facilitate reconnecting the wiring correctly when the unit is reinstalled. Unsolder the three power leads and the coax.

Pull out the PTO. The first thing to examine and repair is the tuning-shaft grounding wiper. This is the small L-shaped arm at the front, secured by two tiny Phillips-head screws. Its purpose is to provide a good ground return on the shaft

Inside the 75A4. The PTO is hidden by the square cover although the two 6BA6 oscillator tubes, V14 and V15, are clearly visible.
so that rf currents do not have to circulate through the front bearing. When the receiver is new, this wiper rides on the polished finish of the shaft. However, continued use may have caused the shaft to gall at this point—check it with your fingernail. Roughness here can be a major contributor to sticky tuning, so if the shaft is rough loosen the screws, bend the wiper slightly forward so it rides on a smooth portion of the shaft, and apply a touch of grease to the contact point.

lubricants

There are a lot of misconceptions about lubricants. For purposes such as this one, plain axle grease and 3-in-1 Oil are well up on the list. Axle grease is not as strange a choice as it sounds, as pressures (i.e., pounds per square inch) at some contact points can become very high and axle grease is very good at staying put. For those who want something better than axle grease, Aero Shell 7—a general-purpose aircraft grease—is excellent. However, it is hard to find, expensive, and sells in five-pound (minimum) cans. Shell calls it a “Microgel Diester Synthetic,” and it has an operating temperature range of -100 to +300°F. Silicone grease is not good for this purpose because of its inferior high pressure performance.

inside the pto

Now comes the moment of truth! Ignoring the red-lettered warning decals, remove the screws holding the PTO cover and carefully slide it off. Examine the PTO assembly, noting the locations of the various components identified in fig. 1. Drop a few drops of 3-in-1 Oil on the front bearing, on the rear felt washer, and on the cam rollers. Put a dab of grease in the rear sleeve bearing (inside the rear of the PTO can). Rotate the tuning shaft back and forth a few times—it should be easy to turn at this point, even with greasy fingers. Work the cam followers in and out about an eighth-inch (3-mm) or so and lubricate them. Grease the cam surfaces. You can now replace the PTO cover.*

reassembly

Replace and reconnect the PTO. Oil the turns counter, located between the PTO and the front panel. It should be possible, from the front panel, to turn the dry shaft with bare fingers. Grease the vernier knob assembly, gears and bearings, and remount the knob. Reset the knob to 14000 kHz, using the crystal calibrator to make sure the receiver is actually tuned to 14000 kHz, and try it out. Feels like a new receiver, doesn’t it?

frequency jump

If your 75A4 was one of those that suffered from this annoying problem before, it should be gone now. The explanation is that the cam follower in a dried out, sticky PTO no longer rode easily on the cam. Instead, when the cam pitch changed slightly the follower hung up on dust off the cam, later dropping into proper position and causing that annoying jump in frequency.

One final caution. Keep your eyes open, both inside the PTO and around the drive train and dial mechanism, for dried grease, dirt, metal chips, galled surfaces, loose rivets or screws, or misaligned shafts or bearings. These can all be taken care of much more easily now, when the receiver is all apart, than they can late some night during the middle of the DX contest!

* A previous article on servicing Collins 51J series PTOs has several worthwhile suggestions that apply to Collins 75A-series receivers as well. One of these is to replace the relatively unreliable tubular ceramic bypass capacitors in the PTO with disc ceramics, an easy job with the PTO removed from the receiver. editor

references

circularly-polarized ground-plane antenna for satellite communications

Combining the characteristics of two popular satellite antennas to yield a novel design optimized for satellite communications

Signal fading is a frequent source of frustration in amateur satellite communications. Much of the fading can be attributed to foibles in the patterns of simple ground-station antennas. The search for a stationary antenna with improved pattern characteristics led to the development of a circularly-polarized ground-plane antenna. This is a novel design that combines the best antifading features of two antennas often used in satellite work — the turnstile and the tilted-vertical, ground plane.¹

The discussion of the circularly-polarized, ground-plane antenna has been organized in the following fashion: Two theoretical sections present the basic concept and the computed patterns. The next section examines certain problem areas which arise in achieving a practical antenna. Details of the construction, tune-up and operation of a two-meter prototype provide concrete illustrations of the design concepts.
the basic idea

Before plunging into the theoretical aspects of antenna design, let's list some general requirements placed upon fixed antennas used to communicate with OSCAR satellites. As indicated in the appendix, undesirable fading can be reduced if the ground-station antenna provides a good response overhead while focusing additional energy near the horizon where path losses are greater. Furthermore, vertical plane patterns should be independent of bearing azimuth, and the antenna should preferably be circularly polarized. The basic concept developed below is that each of these requirements is approached by a simple arrangement of two tilted-vertical antennas.

In discussing satellite applications for fixed antennas, it is convenient to map the far field radiation on an imaginary hemisphere centered over the antenna. Grid coordinates locating any observation point on the hemisphere are designated by an azimuth angle and an elevation angle. Fig. 1A shows a far field hemisphere over a quarter-wavelength vertical erected above a perfectly conducting ground plane. Vectors indicating the electric field magnitude and direction at selected points on the hemisphere are represented by arrows.

While the magnitude of the electric field is independent of azimuthal bearing, it does vary with elevation angle. Notice how small the vectors become as elevation angles increase. The conventional plot of this effect is shown in the vertical-plane pattern in fig. 2. Here the dotted line plots the declining field intensity at elevation angles near 90 degrees. The pattern null directly overhead can be eliminated if the vertical is tilted away from the normal. The heavy solid line in fig. 2 illustrates the relative pattern for a vertical antenna tilted at a 45-degree angle. In fact, this latter pattern does a good job of meeting the first two requirements listed above for ground-station antennas.

Returning to fig. 1A, observe that the electric-field vector is confined to oscillate in a plane containing the antenna and the observation point. The radiation under these conditions is linearly polar-
A maximum transfer of energy will occur if the polarization of the ground-station antenna matches that of the satellite antenna. However, a deep fade will develop if a linearly polarized wave emitted by the satellite, for example, becomes oriented along a line of constant elevation angle instead of a line of constant azimuth angle. Such a turn of events could be introduced by satellite spin and/or Faraday rotation. The cure is to make either the ground or satellite antenna sensitive to fields oriented along any angle lying in a plane perpendicular to the propagation direction. A turnstile antenna achieves this characteristic if the excitation currents for the two perpendicularly crossed dipoles are of equal magnitude and in phase quadrature.

Fig. 1B gives an indication of the electric field components for two tilted verticals located in perpendicular planes. These quarter-wavelength verticals are fed by currents that are equal in magnitude but 90 degrees out of phase. For the special case where observation points lie on the horizon, the field is linearly polarized along the hemispheric meridians. At other elevation angles the tip of the instantaneous electric-field vector is generally not confined to oscillate in a meridian plane. Instead, the locus of its motion describes an ellipse. Directly over the antenna the ellipse degenerates into a circle. The important point is that the elliptical polarization of this antenna offers a degree of freedom from the undesirable effects of rotation of the plane of polarization while maintaining desirable, tilted-vertical behavior in the vertical plane radiation patterns.

The results of a series of numerical calculations using these expressions are presented below for the antenna shown in fig. 1B. Tilt angles of 45 degrees were chosen for the quarter-wavelength radiators. While current amplitudes were identical for the two radiators, the current flowing on radiator 2 was adjusted to lag the current flowing on radiator 1 by 90 degrees.

Fig. 3 gives the transverse projection of the locus of the electric field vector for discrete observation points on the far field hemisphere. The points are spaced around the hemisphere at increments of 45 degrees in azimuth and 30 degrees in elevation.

As fig. 3 indicates, in general the field from the antenna is elliptically polarized. Right on the horizon, however, the field becomes linearly polarized. There is some dependence here upon azimuthal bearing. This is shown by the change in arrow length as the antenna is encircled and by the variation in the azimuthal pattern which is plotted in fig. 4A. The field strength on the horizon improves by 5.25 dB in moving from the position of minimum to maximum field. Fig. 3 also reveals that the polarization sense is largely right-handed for outwardly propa-
gating waves although one quadrant of the hemisphere contains significant amounts of left-handed polarization. This reversal is denoted by the reversed rotation of the field vector loci.

Changing the 90-degree phase shift of the excitation current for radiator 2 from lagging to leading reflects the radiation pattern of fig. 3 through the vertical plane which bisects the angle between the two radiators. This means that the field polarization directly over the antenna changes from right-handed circular to left-handed circular. Fig. 4 gives an example of the azimuthal pattern reflection arising from a relative phase reversal in the excitation currents.

practical considerations

The theory discussed so far deals with ground-based, quarter-wavelength verticals. However, planting verticals for the two-meter band among the roses and tulips in the backyard flower bed doesn’t hold particular promise in raising satellite contacts. The practical alternative at short wavelengths is to simulate the ground with a plane of quarter-wavelength radials. The resulting ground-plane antenna can then be installed in the clear where the electrical properties of local terrain features are less influential. It is difficult to evaluate the impact of such construction upon antenna radiation using simple theoretical models. Relatively little work has been reported which includes the effects of waves reflected from real ground beneath elevated ground-plane antennas cut for the satellite frequencies.

Experimental patterns of isolated verticals with limited ground planes exhibit the general characteristics of the ideal model where ground is infinite in extent and conductivity. The principal deviation in practice occurs as slightly enhanced radiation at high elevation angles and slightly reduced radiation at the horizon. Therefore, a reasonable conjecture is that the fundamental framework of the radiation pattern shown in fig. 3 remains essentially intact after the ground radials are introduced. Some experimental results supporting this premise are presented in a subsequent section.

Interesting matching problems were posed by the constraints placed upon radiator currents I_1 and I_2. The 90-degree phase shift is conveniently obtained with a quarter-wavelength section of transmission line. Equal currents require careful selection of impedance levels at each end of the phasing line. Since the radiation resistance at resonance for a thin, quarter-wavelength vertical tilted by 30 to 45 degrees is of the order of 25 ohms, and the impedances of popular coaxial lines lie near 50 and 75 ohms, some impedance juggling has to be done.

Three possible approaches were considered. They are outlined schematically in fig. 5. At first glance the mechanical simplicity of fig. 5A is appealing. A phasing section of 26-ohm line is formed by paralleling two lengths of 52-ohm
The net impedance at the antenna input is roughly 13 ohms. This is stepped up to 52 ohms by a 1:4 toroidal transformer. A definite drawback to fig. 5A is the lack of electrical tuning for trimming-up the radiator currents. Of course, some tuning could be accomplished by pruning the element lengths and varying the tilt angles. On balance, the design seems to be more suitable for low-frequency operation where lumped-circuit tuning elements could be used.

Fig. 5C supplies considerable tuning flexibility at the expense of greater mechanical complexity. Each gamma section is adjusted for a 50-ohm match, and a simple coaxial transformer matches the 25-ohm impedance of the antenna to a 52-ohm feedline.

construction details

Since ground-plane antennas have long been popular with amateurs, the construction of a circularly-polarized, ground plane poses no mystery once the basic design has been established. Formulas for the lengths of radiators, radials and quarter-wavelength coaxial lines at both hf and vhf have been listed recently. These formulas were used to determine the dimensions of a two meter prototype antenna based on the design given in fig. 5B.

Fig. 6 presents an exploded view of the gamma match along with the dimensions of the two tilted radiators. The radiators are cut slightly longer than necessary from 1/8-inch (3-mm) diameter copper wire (number 8, B&S gauge). A threaded end (6-32 thread) of each radiator is fastened to a 6-inch (15.2-cm) diameter ground-plane disk with lock-washers and nuts. The remaining end of the dipole radiator and the center ele-
fig. 5. Three different ways to feed the tilted radiators of circularly-polarized, ground-plane antennas. Technique shown in (B) was adopted for the two-meter prototype antenna described in the text.

portions of the SO-239 connectors should be protected from the weather with silicone sealant such as Dow Corning 3145. Otherwise moisture will seep into the coaxial phasing line and the feedline.

Sixteen slits are cut around the outer edge of the disk to receive the eight ground-plane radials. The radials are also cut from 1/8-inch (3-mm) diameter copper wire. As fig. 7 indicates, the disk is deformed slightly around each slit. This deformation not only holds the radials securely for soldering to the disk, it also adds considerable strength to the completed disk assembly. A right-angle bracket is a convenient way to attach the disk to a support mast.

tune-up

A simple tune-up procedure was devised for the two-meter antenna. The only instrumentation required is a transmitter and a vswr meter balanced for 50-ohm lines. Initially each radiator is individually pruned for resonance as indicated by a dip in vswr. Next, a 100-ohm carbon resistor is shunted across the dipole radiator, and the gamma section is installed on the single rod radiator. The vswr meter is connected to the gamma section input. The outer gamma tube and the sliding copper strap are alternately adjusted for a minimum vswr (below 1.3:1). The dipole resistor is removed, and the 75-ohm phasing line is then connected between the two radiators. A low vswr should now be observed at the antenna input (below 1.6:1). This figure may be improved by minor adjustments of the gamma section and the lengths of the phasing line and radiators. However, the primary reason for tuning adjustments at this stage is to balance the currents flowing in the radiators.

There are some simple ways to check the current balance. One check is to monitor the antenna vswr as the radiators are slightly detuned. Under balanced conditions the vswr will increase by the same amount when a wire stub is clipped on to either radiator.

Another check is to measure the actual
radiation pattern of the antenna. Unambiguous pattern and polarization measurements are not easily made for low gain antennas. Yet there are two pattern characteristics that can be examined with an auxiliary dipole antenna coupled to a field-strength detector. Does rotation of the auxiliary dipole over the test antenna produce a highly elongated, dumbbell-type response? Does the vertically-polarized azimuthal pattern at low elevation angles show deep nulls which differ markedly from the anticipated patterns of fig. 4? If the test range is working properly, neither question will be answered affirmatively when balanced currents are flowing on the ground-plane antenna.

operation

Operating experiences with the antenna shown in fig. 7 appear to validate the pattern characteristics predicted by the theoretical model. Once the radiator currents were balanced, spot checks of the azimuthal pattern at low elevation angles revealed no deep nulls. Turning a dipole probe from the vertical to the horizontal position during these measurements indicated that the horizontally polarized components were down by at least 12 dB. A point of near circular polarization (variation of 1.4 dB as the probe dipole rotated through 360 degrees) was observed to lie within 15 degrees of the zenith.

A 20-watt transmitter connected to the antenna has been used successfully in establishing two-way contacts through OSCAR 6. It must be admitted in all candor that this is a marginal uplink arrangement if a high density of operators are concurrently using the satellite. AMSAT recommends radiated power levels of 80 to 100 watts for consistent satellite operation. The antenna gives particularly satisfying results during portions of orbits defined by large elevation angles. Near the zenith signals were strong and steady. As the satellite approaches the horizon, there is a gradual increase of signal fading characteristic of polarization rotation. Although signal levels fall at the lowest elevation angles where ground-plane limitations become important, the uplink signals are returned even when the satellite is less than 10 degrees above the horizon.
It stretches the imagination to come up with a single, fixed antenna which has all three of the pattern characteristics listed for ground-station antennas. The circularly-polarized, ground-plane provides a realistic compromise approach. The antenna does more right things than either turnstiles or tilted verticals. Moreover, building and implementing the ground-plane design is a very simple process—a lot simpler than trying to translate dreams of a tracking helix or crossed Yagi into fiscal and physical reality!

It is a pleasure to acknowledge that creative ideas and practical assistance were supplied by W4LKB during the construction and test phases.

references

appendix
fading mechanisms
Many factors contribute to amplitude fluctuations in signal levels from OSCAR satellites revolving in circular, polar orbits. Some fading is inherent in the power-sharing feature of the linear satellite repeater. Other fading results from the changing geometric distance separating the ground observer and satellite. More complex fading is associated with the propagation of electromagnetic fields in an inhomogeneous and anisotropic ionosphere. The rich variety of the principle fading mechanisms is shown by the diverse entries in the first column of table 1:5,7

The second column in table 1 gives some feeling for the physical conditions which enhance the individual fading mechanisms. Admittedly these statements are generalizations. Nevertheless, they are a useful guide in selecting antennas and operating conditions which minimize fading.

The last column in table 1 lists several design techniques for improving the performance of ground station antennas. Examination of these techniques suggests three pattern characteristics that are desirable for stationary antennas: vertical plane pattern which is independent of azimuthal bearing, vertical plane pattern showing a gradual increase in radiation as elevation angles decrease and circular polarization. A qualifying word should be added about the sense of circular polarization if both the satellite antenna and the ground station antenna are circularly polarized. Both antennas should be polarized in the same sense, i.e., right-handed, circular polarization (RHCP) or left-handed, circular polarization (LHCP). The vhf antennas planned for AMSAT OSCAR B will be circularly polarized. Once the satellite has stabilized, the correct polarization sense for ground station antennas are as shown below for stations in the Northern Hemisphere.

<table>
<thead>
<tr>
<th>polarization sense</th>
<th>mode</th>
<th>2-10 m</th>
<th>432-145.9 MHz</th>
<th>435.1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>transmitting</td>
<td>RHCP</td>
<td>repeater</td>
<td>RHCP</td>
<td>beacon</td>
</tr>
<tr>
<td>receiving</td>
<td>LHCP</td>
<td>*</td>
<td>RHCP</td>
<td>LHCP</td>
</tr>
</tbody>
</table>

The senses are reversed for stations in the Southern Hemisphere.

When a satellite using circularly-polarized antennas tumbles in space, the polarization sense becomes more difficult to define. In any event, the problem can be avoided for fixed ground-station antennas by installing a switch which selects the correct sense. The selection may be derived either from two separate antennas of opposite sense or from a single antenna which possesses sense reversal capabilities. The latter approach can be implemented...
<table>
<thead>
<tr>
<th>Fading Mechanism</th>
<th>Conditions Enhancing the Fading Mechanism</th>
<th>Design Techniques for Ground Station Antennas Which Minimize Fading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator Loading</td>
<td>Operators using excessive radiated power
 Satellite moving in regions of the local sky visible to a high density of operators</td>
<td>Position antenna for increased radiation along weak signal directions</td>
</tr>
<tr>
<td>Satellite Moving Over Pattern Nulls of Fixed Ground-Station Antennas</td>
<td>Multi-lobed antenna patterns</td>
<td>Select antenna type and height with a minimum number of pattern lobes
 Switch in alternate antennas
 Mechanically steer the antenna to track the satellite</td>
</tr>
<tr>
<td>Changing Slant Range</td>
<td>Orbits passing over the local zenith</td>
<td>Increase radiation at low elevation angles while maintaining some high-angle radiation</td>
</tr>
<tr>
<td>Spinning Satellite</td>
<td>Observer direction lies within a cone generated by a dipole antenna moving around the spin axis
 Cross polarization between circularly-polarized ground and satellite antennas</td>
<td>Use circular polarization
 Use selectable antennas having orthogonal polarizations
 Switch polarization sense</td>
</tr>
<tr>
<td>Faraday Rotation</td>
<td>Low frequency
 Propagation along geomagnetic lines of force</td>
<td>Use circular polarization
 Use selectable antennas having orthogonal polarizations</td>
</tr>
<tr>
<td>Scintillation</td>
<td>Low frequency
 Nighttime
 Ray paths traverse auroral zone
 Ray paths traverse geomagnetic equatorial regions
 High sunspot activity</td>
<td>Space diversity operation (This is not very practical for amateurs)</td>
</tr>
<tr>
<td>Ionospheric Attenuation</td>
<td>Low elevation angles
 Low frequency
 Daytime
 Severe ionospheric disturbances</td>
<td>Increase radiation at low elevation angles</td>
</tr>
</tbody>
</table>

rather easily by simply moving the transformer to the opposite radiator in the symmetrical designs (fig. 5A and fig. 5C) of the antenna discussed in the text.

The above comments place emphasis on ham radio

It is clear from table 1 that careful choices of orbits, schedule times and operating frequencies also offer control over signal fading.
three-digit touch-tone decoder

for selective calling

Using tapped toroids to build a compact, low-cost Touch-Tone decoder

describes a Touch-Tone decoder that is suitable for a solo or group project and is inexpensive to build. It will allow the user to be alerted whenever his three-digit Touch-Tone number is received by his station by means of outputs which can ring bells, light lamps or enable speakers on receivers. The decoder is designed to operate on twelve volts, allowing mobile use, and it can be programmed to respond to any three-digit number.

basic design

Most commercial Touch-Tone decoders have separate filters for each tone channel to be decoded. The result is a large, expensive package. Since tapped toroid transformers are readily available, I decided to use a single tapped coil for each of the two groups of tones recognized by the decoder. By pulling the

With so many amateurs now occupying the limited number of channels in the whf/uhf bands, the ability to be paged without having to continually listen to the chatter on the channel is a real asset. Since many amateurs can already transmit Touch-Tone signals, a reliable selective-call system can be built using the Touch-Tone approach. This article

*Tapped Touch-Tone toroids can be salvaged from any scrapped (unrepairable) Touch-Tone pad, or purchased new from a number of commercial sources. Two such sources are: Aladdin Electronics, 701 Murfreesborough Road, Nashville, Tennessee 37210. L1 (low group) part number 426-847; L2 (high group) part number 426-848. Sangamo Electric Company, Communications Products Division, 11th and Converse Streets, Springfield, Illinois 62705. L1 (low group) part number 191983; L2 (high group) part number 191984.
appropriate tap to ground the coil can be tuned to the desired frequency.

In its initial state, the decoder toroids are tuned to the first digit pair of tones. Upon receipt of these tones the logic circuit switches taps on the toroid, tuning the decoder for the second digit pair of tones. Upon receipt of these tones the toroid taps are again switched and the decoder is tuned for the third digit tone pair. Upon receipt of the third tone pair the call latch is set and the decoder resets itself to the initial state; if only one or two of the three digits are received, the decoder will also reset.

The user may program the decoder for any three-digit number he wishes by rearranging the wiring between the two circuit boards. Six wires are used for this purpose. In this manner, each user on a channel or net can have his own private paging number within the group of 1000 possibilities.

circuit

The circuit was constructed on two boards. Board A contains the pre-
fig. 2. Touch-Tone decoder board B, which includes the logic circuits that sequence digit recognition, timing circuits and signal-activating output. Npn transistors are 2N3568, 2N2222, 2N4400 or similar; pnp devices are 2N2907, 2N3638, 2N4402 or similar.
ing the toroid filters convert the tones to standard logic levels. The power supply on board A (Q2) is a regulator to drop the 12-volt supply line down to 5 volts for the TTL logic.

The two logic signals, hi group and low group, are sent from board A to board B (fig. 2) where they are used to establish the sequencing of the decoder. The states are sequenced by U5 which counts up from 00 as each digit is successively recognized. Gates U1A, U1B and U1C decode the output states of the counter and enable the transistor drivers (Q10-15) which pull the taps of the toroids to +5 volts. Transistors Q4-Q9 are time delays used to slow the circuit to a reasonable dialing rate and ensure the tones are legitimate before allowing the counter to sequence up. The upper time delay (Q4-Q6) is about 0.1 second and the lower time delay (Q7-Q9) is about 0.5 second in duration.

The output of gate U2A is true if either tone is present; the output of gate U3A is true only if both tones are present.

construction

The construction of the decoder is a matter of individual taste. I used two 3x3-inch (7.6x7.6-cm) printed-circuit cards which will plug into any standard edge connector. It is possible to use additional logic to reprogram the program wires connected between boards and change the selective call number remotely. This might prove handy for those who desire an extra command for some particular application.

To program a selective call number, six jumper wires are required. These wires are run between the open collector outputs of logic board B (fig. 2) and the open taps of the toroids on decoder board A (fig. 1). More than one collector will be connected to the same tap in cases where digits of the selective call number share the same row or column on the Touch-Tone keyboard. In effect, the collector outputs are logically being "ORed" by a parallel connection. This is permissible and will not affect the performance. A programming example is shown in fig. 4.

Fig. 3 shows the wiring for the connections between boards. The two outputs, latch out and momentary out, are open collectors which pull to ground in the true state. They are capable of sinking limited amounts of current (10 to 20 mA), so external drivers should be added if your particular application requires more current than that. The reset switch resets the entire decoder.

timing requirements

Each digit of the three-digit selective-

40 december 1974
digit selective-call number must be transmitted for at least 0.5 seconds to be recognized by the decoder. Furthermore, there may not be a space between digits of more than 0.5 second or the decoder will reset. These requirements ensure good noise immunity and prevent triggering by voice or other signals on the channel.

fig. 5. Circuit for simple discriminator amplifier, needed when receiver audio emphasis makes decoder response unreliable. Transistor Q2 is 2N3568, 2N2222, 2N4400 or similar.

other considerations

For best performance of a selective-call system the following factors must be considered. Poor frequency response in the audio sections of transmitters and receivers have been found to cause severe imbalance between the levels of the low and high tones in Touch-Tone systems. In some instances this difference could be great enough to create unreliable performance. If a stubborn case of no workee occurs, check out the audio response of the offending transmitter and receiver. A simple discriminator amplifier is shown in fig. 5 for those readers who would like to recover unprocessed audio from their receiver to operate the decoder without butchering the existing audio circuits.

For best results when transmitting Touch-Tone selective-call signals, acoustical coupling of the Touch-Tone audio into the live mike should be avoided, and the transmitter microphone should be disabled while transmitting the tones.
how to convert your vtvm to an IC voltmeter

Simple solid-state vtvm conversion uses LM310H voltage-follower IC, costs less than five dollars or are new applications for parts used in the original IM-11 vtvm (R133 for example, was R33 in the original circuit). The only new parts required are C100, CR100-CR103, S100, U100 and two 9-volt batteries (B100 and B101).

Begin the conversion by removing the pilot lamp, the ac line cord, the power supply transformer, capacitor and diode, the ac balance pot, the ac balance resistors, both vacuum tubes, tube bias components and all zero adjust components except the zero adjust pot itself. If you are modifying a Heathkit IM-11, the components to be removed are C1, R5, R10-R16, V1, V2, R24, C5, C6, R32-R35. Components R33, C5 and C6 will be used in the ICvm as will the circuit board and all the components remaining on it.

It is necessary to install a dpst toggle switch (S100) to operate as the new on-off switch. The vtvm switch wafer cannot be used as it has only a single pole. The new toggle switch (S100) may be installed on the front panel of the cabinet. Next, mount the two 9-volt transistor-radio batteries (B100 and B101). These batteries may be inserted into a battery holder, or they may simply be tied, with lacing cord, to the metal bracket holding the 1.5-volt battery. The 9-volt batteries may be connected to S100 at this time. Incidentally, rather than buy connectors for B100 and B101, make your own by removing the tops from two old 9-volt transistor-radio batteries and soldering a length of wire to each terminal.

The vacuum-tube voltmeter is probably the most common piece of test equipment used by amateurs. This article describes how to convert your vtvm into a battery-operated IC voltmeter (ICvm) at a total cost of about $4.00. Input impedance of the ICvm is identical to your original vtvm, and accuracy on the dc and resistance scales is identical. On the ac scales there may be a slight error at the lower ranges, although I have not verified this.

the circuit

Fig. 1 is a complete schematic of the ICvm. While designed around the popular Heathkit IM-11 vtvm, the circuitry is applicable to virtually all vacuum-tube voltmeters. Components in fig. 1 with three-digit call outs (i.e., CR100) are new.
Diodes CR100 and CR101 are solid-state replacements for the two diodes in the original vacuum-tube detector, V1, a 6AL5 (see fig. 2). Use the V1 tube socket to make the diode connections. Connect the cathode of CR100 to V1, pin 5, and the anode to V1, pin 2. Connect the cathode of CR101 to V1, pin 1 or pin 2, and the anode of CR101 to V1, pin 7.

Next wire in U100, the LM310H high input impedance (1010 ohms), unity-gain voltage follower.* This same IC may be used in virtually any vtvm (see fig. 3).

The LM310H may be wired into the remaining tube socket, but remember to break all printed-circuit connections going to the socket. Wiring is not especially critical.

Capacitors C105 and C106 act to bypass the battery power supply and should be connected right at U100. Diodes CR102 and CR103 provide over-voltage protection in the event a large voltage is probed while the ICvm is switched to a low-voltage range. Regardless of how large a voltage is probed, CR102 and CR103 will limit the voltage at pin 3 of U100 to ±9 volts dc. Resistor R133 limits current into CR102 and CR103, and contributes to the protective circuitry.

*The LM310H is available for $1.45 postpaid from International Electronics Limited, Post Office Box 1708, Monterey, California 93940.
Capacitor C100 is used to ensure that there is no ac at the input of U100. Although the value of C100 is not critical, increasing its value beyond .001 μF will introduce a noticeable time lag into your measurements. Resistor R101 is the original zero adjust pot.

Connect the range and function switches to the new circuitry, remembering to ground pin 7 of the second deck of the function switch. Your wiring should now be complete as shown in fig. 1. Install the batteries and the LM310H, and you are ready for calibration.

calibration

First ensure that the mechanical zero position of the meter pointer is correct. Then turn the ICvm on and adjust the zero adjust for either dc- or dc+ zero reading with no probe input. There should be no appreciable change in the zero level when going from dc- to dc+. Next probe a known dc voltage and adjust the dc cal control to obtain the proper meter indication. Now put the function switch in the ohms position and set the ohms adjust control so that infinite resistance (probe open-circuited) registers full scale on the meter. Finally, put the function switch in the ac position and carefully adjust ac cal so that a known ac input (usually 117 Vac) registers properly on the meter. Unfortunately, it is rather difficult to obtain an accurate ac source voltage — nowadays the ac line is usually closer to 100 Vac than it is to 117 Vac.

The ICvm shown in fig. 1 has been in use for seven months with the original set of batteries. Since the LM310H draws about 4 mA from each 9-volt battery, it is well to remember to turn off the unit when it's not being used.

fig. 3. Solid-state replacement for the 12AU7 cathode follower uses a high-impedance, unity gain voltage-follower IC, the LM310H. The same circuit may be used to convert other dual-triode vtvm circuits.

fig. 2. Conversion of the original vacuum-tube detector is simple and requires two diodes. Original ac balance control is not required in the solid-state version. Same circuit may be used with older instruments using 6H6 detectors as well.
Don’t be misled by our prices... they are based on experience, large quantity buying of materials, great engineering and efficient office personnel. We are happy hams trying to hold the line on prices for you. So... why pay more when you can get the best for less!

FM 2 METER ANTENNAS

FM TWIST
Ten elements horizontal polarization for low end coverage and ten elements vertical polarization for FM coverage. For OSCAR buffs we have 144 MHz and 432 MHz models.

D-POWER PACK
The big signal (22 element array) for 2 meter FM uses two A147-11 yagis with a horizontal mounting boom, coaxial harness and all hardware.

4-6-11 ELEMENT YAGIS
The standard of comparison in VHF-UHF communications, now cut for FM and vertical polarization. There are models covering the 450 MHz, 220 MHz and 147 MHz bands. All are rated at 1000 watts with direct 52 ohm feed and PL-259 connectors.

IN STOCK WITH YOUR LOCAL DISTRIBUTOR

CUSHCRAFT CORPORATION
621 HAYWARD ST., MANCHESTER, N.H. 03103
As far back as the peak of Solar Cycle 19 in 1957 I had casually noticed sunspots, but it was not until mid 1963 that regular plots were made and records kept. The whole period since has involved daily plot-counts, weather and other factors permitting, using a 3-inch reflecting telescope (f/10) with a 60-power eyepiece to produce a 5-inch diameter projected image of the solar disk. Only when sky conditions were deemed suitable would a record be made, thus avoiding the inherent inaccuracies of trying to observe the sun through even moderate cirrus clouds, etc. The only large lack of data was the period from June through September, 1971.

Fig. 1 shows the daily average sunspot count by month. As some months may have involved as many as 25 or more plots and others as few as 10 or less, the smoothed averages shown in fig. 2 are more meaningful. These smoothed averages are made by taking sunspot data for six months before and after a given month and then averaging it. The so-called Wolf numbers from my data (made by taking ten times the number of sunspot groups and adding to the spot count) show substantially the same features as those presented in figs. 1 and 2.

Unlike the official records made by the Swiss, this data shows a rather later
peak of Cycle 20 in 1970 vs the late 1968 or 1969 peak often cited elsewhere. A peak daily count occurred on November 17, 1970, with some 67 spots plotted in four groups. The Wolf-count peak for a given day was on February 1, 1968, with 53 spots in ten groups (W = 153). The results of this plot are shown in fig. 3.

The later stages of Solar Cycle 19 in 1963 are very evident in the graphs. This period was followed by a rather prolonged minimum running through 1964 and well into 1965. During these lean years the sun was spotless for many days at a time. A rebirth of activity was dramatic in 1966. In fact, the spotless sun of November, 3, 1966, was not duplicated until October 13, 1972. However, during the past year the incidences of zero counts have been becoming more and more frequent.

Lacking more sophisticated equipment, I was unable to view the other associated solar events such as prominences and flares.

For those readers who are interested in conducting their own solar observations just about any astronomy book will provide the necessary information. My method of projection viewing and plotting is the simplest and the most safe. Photographic setups provide the most accurate record but the cost factor there can be limiting. Regardless of the method you use, do not observe the sun directly without adequate filtering devices. Both visible and infrared, as well as ultraviolet rays, must be reduced to safe levels to prevent permanent eye damage (which can occur quickly and painlessly).

vHF propagation

The ionospheric effects of a solar cycle depend greatly on the location of the observer. My interest in vHF propagation came about in the early 1960s first in the realm of TV-DXing and sporadic-E. I became an amateur in late 1963, and the results of 50-MHz Es observations made during the period from 1964 to 1970 have appeared elsewhere.1,2

Much to my regret, suitable equipment for monitoring 30- through 50-MHz spectrum was not available until the fall of 1967. Even since then equipment has been on the simple side: a Radio Shack
Patrolman, and, in 1970, an Allied A-2586. Recently a Hallicrafters SX-62 has been revamped. Simple random-wire or whip antenna systems have been the rule.

On 50-MHz a low-power a-m transceiver and a five-element Yagi at 20 feet (6.1 meters) was used until the fall of 1968 when a higher power ssb rig was acquired.

Detailed records of F_2 MUFs in the 30- to 50-MHz region were not kept regularly until the fall of 1968. The late 1969, early 1970 data has been cut due to various receiver-related problems. Actually, the term MUF (maximum usable frequency) in these cases should be taken as MOF (maximum observed frequency) as no method (e.g., backscatter radar) was available to determine if the band was "open" higher than the highest incoming signal frequency.

Figs. 4 and 5 show the number of days each month that F_2 signals were observed in the contiguous United States and from Latin America at the indicated frequencies. As most of the latter are unidentified signals, there is a possibility that E_s propagation was inadvertently included at times. However, as will be discussed in more detail later, E_s often played a big role in providing link-ups but, on other occasions the MUFs in the United States almost seemed to be keeping pace with those to Latin America.

In figs. 4 and 5 the F_2 "season" has been limited to September through April, although occasionally during the summer Latin American signals reached the 40-MHz region. Both seasonal and solar epoch variations are easily found. For U.S. MUFs the best months were October-December; this in striking contrast to the Latin American peaks of March and April. Year-to-year changes, while not always smooth, show the decline of Solar Cycle 20.

I should mention a word about the seemingly arbitrary frequency divisions used in figs. 4 and 5. The selection is natural for the U.S. as FCC assignments...
produce large groups at certain frequencies (i.e., fire departments at 33 MHz; pagers and mobile phones at 35 MHz; and law enforcement at 37 and 39 MHz). The Latin American situation is different as it is next to impossible to obtain station assignment information. Thus, no simple groupings are known which could make a more meaningful frequency division system than that used in figs. 4 and 5.

six meters

Since 50-MHz DX is of considerable interest to the vhf operator, it’s worthwhile to take a more detailed look at Solar Cycle 20’s F_2 effects on six meters. Table 1 gives a month-by-month summary of the number of days and minutes total open on 50 MHz by various modes. The mode determination is a rather simple process of considering the distances, peak antenna headings, fade rates, etc.

Fig. 6 shows the time of day of F_2 and TE openings on 50 MHz for the month of April summed over the period from 1967 to 1973. The time to be on the air is clearly in the afternoon. Almost without exception, I suspect that all the trans-equatorial scatter openings made it this far north with the help of an E_s link. The use of beacons by CE3QG and OA4C in those years was a priceless asset.3 The lack of TE since 1970 is believed to be due, in large part, to the loss of activity from these two stations.

Backscatter, although not plotted in fig. 6, has much the same shape with earlier onset and later fadeout points. This is very consistent with the pattern of F_2 backscatter from the southeast, followed by direct F_2 from South America proper, ending with backscatter again from the South and Southwest.

The 50-MHz F_2 paths to South America’s more remote end, namely Argentina, Uruguay and Chile, are very likely the result of what are known as F_2-F_2 paths, shown in fig. 7. These are sometimes called trapezoidal paths due to their shape, and they provide very strong signals since an intermediate ground reflection with signal loss is eliminated. The geomagnetic equator, with its attendant “bulges” of F_2 ionization on each side, is responsible for these tilted layers.

The geometry of the F_2-F_2 path is likely a rather ticklish affair requiring several different conditions to coincide. For example, if the ionization on the more northerly bulge of the path is not correct, the path is disrupted. Too low a level will cause the 50-MHz signal to overshoot the second bulge to the south, while the level which is too high may cause undershooting. This may explain the often observed oddity of six-meter stations from Argentina and Uruguay appearing when all the stations in Ecuador and Venezuela were at 44 to 46 MHz.

Sporadic-E, often seen as a friend in linking up with an F_2 or TE opening, can just as easily ruin, by topside reflection, what would otherwise be a good path as shown in fig. 8. Since E_s may be partially transparent, the effect is very likely quite variable.

Six-meter F_2 backscatter can be either single or double-hop in nature (perhaps

table 1. Observed 50 MHz band openings.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>F_2</th>
<th>F_2 bs</th>
<th>TE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>April</td>
<td>1 (85)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>1 (55)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>-</td>
<td>1 (15)</td>
<td>-</td>
</tr>
<tr>
<td>1968</td>
<td>March</td>
<td>3 (80)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>14 (635)</td>
<td>6 (530)</td>
<td>3 (40)</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>2 (30)</td>
<td>-</td>
<td>1 (30)</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>-</td>
<td>-</td>
<td>3 (255)</td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>-</td>
<td>1 (5)</td>
<td>1 (80)</td>
</tr>
<tr>
<td>1969</td>
<td>February</td>
<td>1 (40)</td>
<td>1 (30)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>1 (5)</td>
<td>3 (410)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>11 (290)</td>
<td>6 (655)</td>
<td>4 (60)</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>-</td>
<td>-</td>
<td>1 (90)</td>
</tr>
<tr>
<td>1970</td>
<td>February</td>
<td>-</td>
<td>-</td>
<td>3 (150)</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>3 (45)</td>
<td>1 (135)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>9 (340)</td>
<td>6 (265)</td>
<td>3 (200)</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>2 (40)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>-</td>
<td>-</td>
<td>1 (10)</td>
</tr>
<tr>
<td>1971</td>
<td>March</td>
<td>1 (20)</td>
<td>2 (45)</td>
<td>-</td>
</tr>
<tr>
<td>1972</td>
<td>March</td>
<td>3 (60)</td>
<td>4 (170)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>8 (220)</td>
<td>3 (175)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>1 (10)</td>
<td>1 (45)</td>
<td>-</td>
</tr>
<tr>
<td>1973</td>
<td>April</td>
<td>1 (5)</td>
<td>1 (20)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>1 (15)</td>
<td>1 (20)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>1 (45)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1974</td>
<td>March</td>
<td>2 (35)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>1 (15)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
giving rise to a total path length of 9000 miles or more). The best earth reflection regions are over the oceans, or to the south and southwest of my station. This is ground backscatter and not direct backscatter from the ionized regions per se. \(E_s\) effects here are much the same as with the other two modes already discussed.

The following is an expansion with comments of the 50-MHz effects summarized in Table 1. Suitable references are noted in the cases of major events.

1967 The month of April brought me my first meeting of 50-MHz \(F_2\) DX. It was more than five months before it was heard again.

1968 With some openings in March, April proved to be the best month of the Cycle, helped along by vast amounts of early season \(E_s\), which also aided the first \(TE\) openings noted here. \(E_s\) also kept the \(F_2\) still alive well into May. The fall, though providing plenty of \(E_s\)-to-\(TE\) links, did not bring in the huge \(F_2\) openings that were anticipated by many operators.

1969 A very strong magnetic disturbance on February 2nd brought in backscatter here and several other modes elsewhere. An \(E_s\)-to-\(F_2\) link later in the month provided some 40 minutes of the ZK1AA beacon. March and April, in contrast to the previous spring, brought in much more backscatter than direct \(F_2\). The lack of \(F_2\) was probably due to the poor \(E_s\) season.

1970 Good \(E_s\) in February permitted \(TE\) once again. Overall, April was better than expected, with many instances of the Cook Island beacon. However, the high-light of the year and the Cycle was on March 8th where, in one 90-minute period 50-MHz \(F_2\) backscatter was noted in some 16 states as far north as Illinois, with direct paths to Puerto Rico. This was the largest magnetic storm of Cycle 20 and occurred during a time of year when it would do the \(F_2\) layer the most

![Fig. 3. Sunspot diagram for February, 1968. Diagram shows 53 spots in 10 groups (Wolfe-number = 153).](image)

![Fig. 4. F2 MUFs for the United States plotted here were determined by noting the highest frequency incoming signal that originated within the 48 contiguous states. This meant the skip for a given frequency was down to 3000 km or less. When theoretical considerations are applied, the transcontinental MUF (e.g., W4-W6) was considerably higher than I could observe. Using the ITS maps, the 4000 km MUF (nominal maximum 1-hop \(F_2\)) can be extrapolated knowing how short the skip is on 35 MHz, etc.](image)
good. The last incidence of TE here occurred during November, in the midst of an E\textsubscript{s} opening to Guatemala.

1971 50-MHz propagation might be best described as a recession, with only very scarce F2 effects in March.

1972 A rather unexpected upturn in solar activity in the spring provided the best spring March-April F2 in two years.

1973 Openings on 50 MHz, though very scarce, were amazing in that any occurred at all with such low solar levels.

Close followers of six-meter DX have probably noted by now a conspicuous absence of details on January 1, 1968.6 While this location is very good for Latin American F2 (though not as good as Florida), when it comes to transcontinental F2 on 50 MHz it is just too close to each coast to get any. On the date in question 46-MHz was in from the Pacific closest incident was June 5, 1967, when a magnetic storm created extremely fluttery E\textsubscript{s} (apparently) to Florida and perhaps either double-hop E\textsubscript{s} or single-hop F2 to Puerto Rico. With so much E\textsubscript{s} in June it is impossible to be sure of the modes without ionosonde evidence at hand. The prior week (May 25th) produced what were likely 49-MHz Latin American F2 signals while Florida had both visual and radio aurora.7,8

Along other lines, solar activity introduced vhf noise bursts to me in July, 1967. Although the event observed was nothing extraordinary, having the 50-MHz background noise rise by 40 or

fig. 5. Latin American F2 MUFs.

fig. 6. Graph showing 50-MHz F2 and TE openings during the month of April, 1967-1973.
50 dB for the first time was a memorable occurrence. During the ensuing years, while monitoring 30-50 MHz, numerous solar noise bursts have been logged incidental to MUF observations. A particular incident in April, 1973, when a solar noise burst was noted simultaneously with an increase in an F2 backscatter signal level, was vivid evidence of the association of flares, noise bursts and extra solar ionizing energy.

To step out of vhf for a moment, another equally dramatic trait of high solar levels is the high-frequency blackout (caused by extra D-layer ionization and consequent increase in collisions and absorption) when you are positive that your receiver has stopped working. Many of these blackouts were stumbled upon while attempting to get a WWV propagation forecast and the vhf E and F2 openings went along virtually unaffected.

future

While Solar Cycle 20 has not yet completely withered away, there is little doubt that it will be quite some time before the F2 effects on 50 MHz become as common as they were in 1968. However, devoted 50-MHz DXers might still be able to catch a few of the freak openings still left in the Cycle. For a better chance at catching the openings, the following suggestions are offered:

1. If you don't already have a receiver that will tune 30 to 50 MHz, by all means get one that does. While an SP-600 or one of its relatives is best, you can get by with a lot less.

2. Become familiar with the DX signals that frequent your area on the band. This can be helpful in looking for the more common E openings that might affect 6 meters. When the conditions appear favorable, don't just listen, call CQ. You may end up with a hoarse voice and not get a reply, but at least you tried. For those fortunate enough to have beacons, it will be a lot easier.

3. Obtain copies of the Telecommunications Research and Engineering Report

4. If you have high-frequency capabilities, do all you can with contacts in regions where 50 MHz might be likely to stir their interest in at least listening on that band, if not actually setting up a station. Innumerable openings have been lost due to lack of 50-MHz activity in Venezuela and other parts of northern South America - openings where all sorts of high-frequency harmonics were pouring

*Four volumes are available. Volume 1 is the instruction manual ($3.00), while Volumes 2, 3 and 4 are for smoothed sunspot levels of 10, 110 and 160, respectively ($3.00 each). Order from the Superintendent, U.S. Government Printing Office, Washington, DC 20402.
through on or near 50 MHz. In addition, the use of beacons on 50 MHz should be encouraged in these DX spots.

The foregoing and suggestions elsewhere are a valid formula for getting into shape for the next solar cycle peak—you have plenty of time as it will not likely occur until the latter part of this decade. I'm afraid that a lot of plans for Solar Cycle 20 got going too late to be of much benefit, particularly the set-up of some 50-MHz beacons.

collection

I hope that this article will serve as a stimulus to others to undertake similar observations and recording of their data. This is only one of the ways amateurs can justify the portions of the spectrum we occupy—by contributing to the basic understanding of vhf propagation.

Over the years I have been indebted to several fellow amateurs for their encouragement and advice. Bob Cooper, W5KHT, deserves special acknowledgement for getting me to keep more accurate notes on the F2 DX conditions in the 30-50-MHz region. I wish that I had started earlier in the Cycle.

references

\[\text{ham radio}\]
improving the performance of low-frequency vertical antennas

Three basic ideas for improving the efficiency of your antenna system

This article discusses certain ideas and methods that improve the efficiency of vertical antennas. If these methods are followed the resulting antenna will perform as it should, approaching textbook levels of efficiency.

The first idea to consider is that radiation from the antenna is a natural phenomenon. It is created by the changing current, either ac or pulsating dc, that is flowing in an electronic circuit. It’s that simple. As a matter of interest, all electronic circuits radiate to some degree but the amount of radiated energy is so small it is ignored. An antenna is a special type of electronic circuit that maximizes radiation.

The second idea is the counterpart of the first: radiation can be suppressed only by mirror-image currents. This is the principle that is used in 300-ohm TV ribbon line to prevent radiation. Each conductor carries a current equal to the other in amplitude and frequency but 180° out of phase. The radiation from each conductor cancels that from the other, or very nearly so, thus for practical uses the line is considered non-radiating.

Considering the first and second ideas leads to the conclusion that antennas should not be built like a two-wire transmission line; they should be arranged so that there is no suppression of radiation by mirror-image currents. Fortunately there are two basic methods available to accomplish this goal. One is to spread the two conductors apart so that the radiated field from one conductor will not completely cancel that of the other. Examples of this type of antenna are loops, quads and some types of rhombics.

The other method is to use a single conductor in which current is maximized by tuning it to resonance at the operating frequency. This is possible because the current in the conductor is reflected from
the open end. The reflected current is in phase with the original current and its radiation adds to that of the original current. The familiar wire antennas — long-wires, Zepps, Windoms and so on — use this technique and differ only in method of feed. It will be assumed that you are familiar with loops and single wires so they will not be discussed further. The grounded vertical version of the wire antenna will be discussed, however, in terms of its equivalent electrical circuit.

The antenna, shown in the form of its equivalent electrical circuit in fig. 1 consists of a power source, a two-wire line and a resistive load which represents the radiation and loss resistances of the antenna. Fig. 2 shows another form of the antenna circuit. Here, however, it must be remembered that the antenna is self-resonant at the operating frequency and presents a 73-ohm load (or thereabouts) to the line. Although diagrams such as these are helpful in understanding antenna operation, the circuit of fig. 3 is even more helpful.

In fig. 3 the antenna is considered to be two quarter-wavelength antennas in series, the actual case. The connection between the ends of the antenna is fictitious, but this is actually the type of load the power source sees. At dc it will be an open circuit, but at radio frequencies it acts just exactly as if it were a closed circuit. The standing wave of current in each quarter-wavelength antenna is responsible for this effect.

This circuit satisfies the dual requirements for the line and the antenna. The current into each quarter-wavelength antenna is 180° out of phase with the other, but one antenna is physically reversed 180°. This makes the two antenna currents in phase, maximizing radiation. Line currents, however, are 180° out of phase, minimizing radiation. This antenna is usually referred to as a half-wavelength, center-fed doublet or dipole. It is really two quarter-wavelength antennas operated in push-pull.

Suppose the two quarter-wavelength antennas in push-pull are exchanged for one quarter-wavelength antenna and a ground connection. This circuit is usually drawn as shown in fig. 4. Redrawn in the ac closed-circuit form (fig. 5) it looks exactly like fig. 3 except for the value of the ground resistance. The ground resistance will be from about 2 to 200 ohms, depending on the physical arrangement of the ground system. A 2-ohm ground resistance is typical of a broadcast station ground system composed of 120 radials; a 200-ohm ground is a typical value for a ground rod in sandy soil.

Applying series circuit power calculations to the antenna-ground circuit brings out some very useful and interesting information. Power delivered to the antenna-ground circuit divides proportionally according to the value of the resistances. With a 36.5-ohm quarter-wavelength antenna, a 2-ohm ground absorbs 5% of the power, a 36.5 resistance absorbs 50% and a 200-ohm resistance will absorb 85% of the power. This indicates that there are only two ways to improve efficiency. The first is to reduce the ground resistance to as low a value as possible. The second is to raise the antenna resistance to its highest possible value. Surprising as it may seem, this simple solution is a true engineering solution to the problem of achieving efficiency in grounded vertical antennas.
Reducing the ground resistance by using multiple ground rods is poor practice. Current distribution beneath the quarter-wavelength vertical is such that ground rods do not intercept much of it. Ground wires are much better, either on top of the ground or immediately below the surface, and should be roughly a quarter-wavelength long. One radial is roughly 40 ohms; two radials, 180° apart, are about 20 ohms; four radials get down to about 15 ohms. This is about the practical limit for amateur antennas — more radials are usually not worth the effort. It would, for example, take 116 more to get down to 2 ohms. Four radials should allow the antenna to operate at 70% efficiency — just 1.5 dB below maximum.

The radials don’t have to be on or in the ground, they can be elevated above ground as well. This leads to the type of antenna known as the ground plane. One quarter-wavelength radial (antenna) exhibits a resistance of 36 ohms. If there was no interaction, two would be 18 ohms and four would be 9 ohms. However, the currents are 180° out of phase and the radiation is low, so the resistance is lower than you would suspect. I have not been able to determine the effective resistance of the ground plane itself, but suspect it is lower than 9 ohms.

Excellent results can be obtained with two or more radials on the ground-plane antenna. However, in emergencies only one radial will work. The advantage of the ground plane is that it can be elevated above ground, out of the vicinity of all neighborhood “hardware.”

antenna resistance

Increasing the antenna resistance with respect to the ground system is also a good technique for improving antenna efficiency. For example, the feedpoint resistance of half-wavelength verticals runs from 500 to 3000 ohms — 500 ohms for towers that are wide compared to height and 3000 ohms for a very thin wire such as you might use for a balloon-supported antenna. A TV pipe mast, when used for an antenna, exhibits about 1000 ohms resistance. Considering this antenna on the basis of the third idea, it can be seen that any type of ground system will work well, including that 200-ohm ground rod! The major difficulty with the half-wavelength antenna is that it is twice as high as the quarter-wavelength antenna and the 1000 ohms or so input resistance is harder to match to a 50-ohm transmission line. This is especially true if you are running high power.

Remember that it isn’t mandatory to operate at the quarter- or half-wavelength points. The advantage is that these antennas are self-resonant and easier to match. Antennas that are not self-resonant can be resonated by the addition of tuning coils and capacitors which usually makes matching more difficult. Short antennas can be loaded with coils part way up the antenna, the tops can be folded over, and so on. All of these techniques are designed to raise the radiation resistance of the antenna so it will accept a higher percentage of the power delivered to the antenna-ground circuit.

![fig. 3. Ac equivalent of the antenna circuit.](image1)

![fig. 4. Common schematic for a vertical antenna.](image2)

Radials, too, can be loaded or tuned if space does not allow the use of radials a quarter-wavelength long. Radials can also be folded or bent quite severely without materially decreasing their effectiveness. Loading and folding are usually used on 1.8 and 3.5 MHz where full-size verticals
become physically large and difficult to erect on the normal city lot or apartment house roof. Many such arrangements are described in the textbooks that cover low-frequency radio engineering, and many of the old books from the spark era have a wealth of ideas for operating antennas on frequencies very much lower than the quarter-wavelength resonant frequency.

![fig. 5. Ac equivalent of the vertical antenna circuit.](image)

summary

To sum up the discussion for improving medium- and high-frequency vertical antennas, the following ideas should be thoroughly understood and put into practice:

1. Ac current flowing in a conductor radiates energy. This is a natural attribute and requires no special expertise.

2. Radiation can be suppressed only by mirror-image currents flowing in nearby conductors or structures. Hence, the antenna should be erected away from or above these obstructions if possible.

3. The antenna and ground resistances should be arranged to maximize antenna resistance and minimize ground resistance.

These ideas and rules are not new. They are sound engineering principles that have been in existence since radio first came into use. However, they seem to have been neglected in most recent antenna articles. There is an infinite variety of ways vertical antennas can be built, and if the construction meets the requirements embodied in these three basic rules, you can be assured the antenna will work properly.
Dear HR:

My article on pi networks in the May, 1974, issue of *ham radio* (page 62) has caused some confusion because of an honest (but neglectful) error in the example using eq. 1 for tube plate-load resistance. When the values given are plugged into the equation, the answer is 5000 ohms, not the 1800 ohms indicated. Since the table for the B&W 850A coil is for $R_L = 1800$ ohms, the values should have been $E_B = 1900$ volts and $I_B = 0.525$ A, which works out to 998 watts input for a plate-load resistance of 1810 ohms. These values would be typical for, say, a pair of 813 or similar tubes. However, the newer tubes designed for linear amplifier service use plate voltages on the order of 3000 to 4000 volts.

The principles in the article are still valid, however. If the curves of inductance vs plate-load impedance are extrapolated to include the higher values (see fig. 1) it is clear that something must be done to the popular B&W 850A coil to obtain optimum inductance (assuming a nominal Q of 12).

Inductance for plate-load resistance, $R_L = 5000$ ohms

<table>
<thead>
<tr>
<th>band</th>
<th>L(µH)</th>
<th>B&W 850A (µH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>20.0</td>
<td>13.50</td>
</tr>
<tr>
<td>7.0</td>
<td>10.0</td>
<td>6.50</td>
</tr>
<tr>
<td>14</td>
<td>5.0</td>
<td>1.75</td>
</tr>
<tr>
<td>21</td>
<td>3.3</td>
<td>1.00</td>
</tr>
<tr>
<td>28</td>
<td>2.5</td>
<td>0.80</td>
</tr>
</tbody>
</table>

The inductance values shown for the B&W 850A coil are those published in their data sheet. I have no axe to grind with B&W or their product, because the B&W 850A coil is well made and a pretty good bargain, even at today's prices. However, as I stated in the article, it is a design compromise, and to obtain optimum performance the coil must be modified to obtain the inductances shown.

Alf Wilson, W6NIF
Encinitas, California

memory keyer

Dear HR:

The electronic keyer with random-access memory described in the October, 1973, issue has generated considerable interest in this area. However, some operators have come to the conclusion that, "The (expletive deleted) thing doesn't work right." The first dot of a character following a character ending in a dash came out as a dash. Since the
keyer circuit is patterned essentially after the Micro-TO keyer, the problem isn't too difficult to solve — the toggle of the second J-K flip-flop should be connected to the Q output (pin 9) of the 7473, not the Q̄ output (pin 8) as shown in the schematic. (The Q output also goes to the 7402 NOR gate B.) With this simple change the keyer works perfectly.

The modification is easily made if the PC board is used. Simply bend pin 8 of the 7473 away from the IC so it will not short to the socket, and short pins 8 and 9 on the PC board.

Howard M. Berlin, K3NEZ
Edgewood Arsenal, Maryland

kilowatt linear modifications

Dear HR:

Regarding my five-band kilowatt linear amplifier which appeared in the January, 1974, issue of ham radio, following are two modifications which will improve its operation. The first, suggested by W1OR, provides monitoring of both plate and screen currents. By removing the ground from the plate meter and the positive screen supply, and connecting the plate- and screen-current meters as shown in fig. 2, both can be monitored.

The second modification provides better plate and screen efficiency when using the amplifier on CW. By adding a second zener diode in series with the one shown in the original circuit, the static plate current may be reduced to near zero for operation on CW. When this second zener diode is shorted out, the idling plate current returns to the proper level for linear ssb operation. Note, however, that the switch is at ~300 volts with respect to ground so it must be insulated from its frame by at least that amount.

Some readers are apparently having difficulty in determining the proper connections for the zener diode. When using a volt-ohmmeter on the ohms scale, the polarity is sometimes reversed at the pin jacks (plus or red jack is minus and vice versa). This can only be checked with another voltmeter or by checking a good diode that you know is properly marked. It's important to check zener diodes before installation because some manufacturers mark their product differently from others, and some diodes which appear on the surplus market are there because they were improperly marked in the first place.

John True, W40Q
Great Falls, Virginia

AFSK generator

Dear HR:

Having built and tested the AFSK generator described in the December, 1973, issue, I found that the oscillator was very sluggish in starting (delays up to two minutes). Once started however, the unit functions beautifully.

The problem appears to be in the feedback loop of the oscillator, namely the crystal and capacitor C1. The feedback gain (β) is dependent upon the ratio of Cx/C1 where Cx is the capacitance of the crystal. This circuit seemed to need a little more feedback gain. Changing C1 to 510 pF cured the problem.

If the crystal is a type cut for parallel-resonant circuits (as are most of the military surplus crystals) the capacitance is different than that of a crystal cut for a series-resonant circuit, such as the circuit used in the AFSK generator.

David L. Chute, WA1NYL
Groton, Connecticut
Heath HW-7 modifications

The Heath HW-7 QRP transceiver is a fine example of a compact rig for portable or home use. However, there are several minor modifications which will add to the ease of operations. These modifications are: an improved receiver blanking system, an adjustable sidetone volume level and the addition of a keyer.

The first modification is an improved circuit for cutting off the receiver during the keydown time. As is, a diode, CR2, is used to ground the high-gain audio amplifier’s input during the key-down mode (see fig. 1). However, the amplifier’s input is grounded during the time of key-down only, and not during key-up. Thus, an annoying clicking sound is heard as code is sent.

An improved method of blanking the receiver during the transmit mode is to actually short the audio amplifier’s input to ground during key-down and as long as the transceiver is in the transmit mode. The HW-7 has a time-delayed antenna transfer relay to switch between transmit and receive. By using the relay’s coil...
signal to switch a transistor gate, the receiver's audio amplifier's audio input will be grounded during the total transmit time.

The addition of a small signal transistor and a resistor is the only modification needed. Fig. 1 shows the placement of the transistor switch in the circuit diagram. During the transmit mode, relay coil K1 is energized by 12-volts. This same voltage is used to turn on the added transistor, thus shorting the receiver's input. Diode CR2 should be removed as it is not needed.

sidetone volume

The sidetone amplitude is fixed in the HW-7. The addition of a 500k variable resistor in series with C45 (0.05 µF) will allow the adjustment of the sidetone's volume to a comfortable listening level. I used a miniature *Helipot* potentiometer, but the type is not critical. One lead of C45 is lifted from the foil; the potentiometer is connected in series with the capacitor. The sidetone volume is then easily adjusted by varying the added series resistor.

The addition of a keyer will be a welcome modification for the CW man. Rather than give a full description of the keyer design, the placement of the keyer in the HW-7 will be described (the keyer I used is a cmos version of the Accu-Keyer). There is plenty of room inside the rig to allow for a great deal of flexibility. The keyer was placed in the rear, right-hand corner as shown in fig. 2. All of the keyer's controls were brought out to the rear panel since adjustments are seldom needed. A three-conductor phone jack replaces the phone jack originally used in the HW-7. This allows the use of a paddle-type key to be used externally. A tune pushbutton should also be mounted on the rear panel to facilitate tuning the rig. I recommend that a toggle switch not be used for the tuning control as the switch might be left on accidentally.

sensitive rf probe

To detect the very low-level rf signals you may find in receivers or low-level transmitter stages, it's necessary to use a rectifier that will respond to small signals and yet give a respectable output. There are two tricks that will help get this done.

One is to hand pick the signal diodes. Most amateurs have the needed test equipment on hand. All it takes is a source of dc readily varied from zero to 0.7 volts, a voltmeter you can read accurately in that range, a current-limiting resistor and a microammeter. Hook them up as shown in fig. 3. Take a handful of diodes such as you get for just about zero cost on surplus circuit boards and test each for its forward-conduction voltage. Select the germanium diodes with the lowest forward-conduction voltage.

Then go back and rescreen that group for the ones with the least reverse-conduction current. Select two for use in the voltage-doubler rectifier shown in fig. 4.

This circuit, with selected germanium diodes, resulted in a change from zero to a full volt deflection on my fet-vom when used to pick up the output of a feeble rf signal generator.

short circuits

L-network design

The radical sign in equation 7 on page 27 of the February, 1974, issue should extend over the expression \((X^2 + R_2^2)\) at the end of the line. This also applies to the formula for the constant k in the practical example on page 28.

ssb transceiver

In the article on the 40-meter ssb transmitter and receiver in the March, 1974, issue of *ham radio* the author used the wrong nomenclature for the Collins mechanical filter by calling it an FA21-7102. The correct nomenclature for this filter is F455FA21 (where F indicates a mechanical filter, 455 indicates a 455-kHz center frequency, FA is the case style [FA is used in the S-line] and 21 indicates a nominal 6-dB bandwidth of 2.1 kHz). The “7102” on the author’s filter is simply a date code used by the manufacturer.

lowpass filters

The construction data for the 40-meter lowpass filter described in fig. 3 on page 39 of the March, 1974, issue is in error. L1 should be 15 turns number-16 on an Amidon T80-6 toroid (1.08 \(\mu\)H). L2 is 13 turns number-16 on an Amidon T80-6 core (0.76 \(\mu\)H). Insertion loss is approximately 0.14 dB.

two-meter transverter

In the final amplifier schematic (fig. 5) for the two-meter transverter on page 12 of the February, 1974, issue of *ham radio* the symbol for the CTC byistor, BY1, is incorrect – the arrowhead should be at terminal S, the tail of the arrow at terminal I. Also, there should be a 68-ohm, 12-watt resistor in series with the line from terminal I of BY1 to the junction of the 0.1-\(\mu\)F capacitor and L104.

Yaesu sideband switching

A serious flaw appeared in the article on Yaesu sideband switching which appeared in the *ham notebook* column on page 57 of the December, 1973, issue. When the conversion is made as described, the USB and LSB are both on the same frequency on transmit and receive as claimed, but the tune and CW modes are shifted 3 kHz on receive but not changed on transmit, and the a-m mode is not changed on either transmit or receive! The problem is that pin 2 of MJ5 must be at ground potential to obtain the desired frequency shift — it is not in all cases with W2MUU’s modification.

Fortunately, the solution is quite simple: simply add two silicon diodes as indicated in the schematic below.

The two diodes in this circuit operate as an OR gate so that whenever the emitter of Q6 (a-m/CW oscillator) or Q3 (USB oscillator) is grounded for operation, it also grounds the frequency-shift circuit.

cosmos electronic keyer

In the cosmos IC electronic keyer which was featured on page 6 of the June, 1974, issue, the circuit occasionally hangs up when first switched on. This can be corrected by removing pin 4 of U6A from ground and connecting it to pin 10 of U4B. Thus, when power is turned on, if the dot and dash generators both come on in the on state, the dash generator can now directly reset the dot generator, resulting in the emission of a single dash. After that the spurious state is permanently suppressed.

A second problem, where hang-up is induced by rapid deflection of the keyer paddle, is also eliminated by this modification. This problem is caused by the difference in propagation delays in the circuitry of the dot and dash generators (the delays in the dash generator are greater because the signal must travel through more gates). This problem is especially evident when going rapidly from dash to dot.
Whatever your Amateur interests are on the HF bands, the TRITON will give you new operating convenience and pleasure. Fully solid state with the latest semi-conductor technology. Instant band change, high articulation SSB and a host of new and exciting features. Write for details.
Barlow Wadley's new XCR-30 receiver is the first moderately-priced (around $260.00) all solid-state portable to feature direct frequency readout. Using a multiple heterodyne circuit (interpolation and crystal oscillators), the XCR-30 is a high sensitivity receiver designed to provide precision no-gap tuning from 500 kHz to 30 MHz. A 1-MHz crystal — in conjunction with the famous Wadley Loop circuit found in expensive ($2500 plus) Racal receivers — stabilizes the received frequency and eliminates drift. The tuned frequency is displayed mechanically as a composite function of two dials; the whole number (in MHz) is shown on one dial drum, and the decimal portion (in kHz) is shown on the second.

Reception modes include a-m, CW and switchable single sideband.

The XCR-30 is metal-cased with external padding, not the usual plastic, and measures less than 300x200x100mm. Access to internal parts is through removal of the front or rear panel. The receiver has a built-in loudspeaker, but has facilities for headphones, external speaker, and 9-12 volt dc power source. In addition to the built-in, collapsible whip, an external antenna can be attached.

For more information on this exciting new receiver from South Africa, write to the American distributor, Gilfer Associates, Inc., Post Office Box 239, Park Ridge, New Jersey 07656, or use check-off on page 136.

hand-held two-meter transceiver

A new portable solid-state two-meter fm transceiver, designed to provide radio amateurs with reliable commercial quality performance at low cost, is now available from the Clegg Division of International Signal and Control Corporation. The two-watt, 5-channel unit features a unique battery saver design that results in less than 5-mA standby current drain while the high reliability battery offers up to 4 or 5 years of life under normal use.

The new HT-146 also features a single-conversion receiver, a monolithic crystal filter, and solid state T/R switching. Plug-in crystals make channel change fast and easy. Jacks for external microphone, speaker, and earphone are included along with BNC antenna connector and heliflex antenna. Accessories available include a tone encoder/decoder, microphone, leather case, earphone and an automatic battery charger.

The HT-146 hand-held transceiver is priced at $289.00. For additional information, write to Technical Literature Department, Clegg Division, International Signal and Control Corporation, 3050 Hempland Road, Lancaster, Pennsylvania 17601, or use check-off on page 136.
Drake gear keeps getting better and better...

NOW, OUR FINEST...

THE

Drake C-Line

NEW FEATURES:
- 1 kHz Dual Concentric Dial Readout
- Receiver and transmitter lock together in transceive operation
- No side controls
- Iridium cadmium-plated chassis
- Compatible with all previous Drake lines

NEW R-4C FEATURES:
- 8-pole crystal filter combined with passband tuning, SSB filter supplied
- Provision for 15 additional accessory 500 kHz ranges
- Transistorized audio
- Optional high-performance noise blanker
- AVC with 3 selectable time constants
- Optional 8 pole filters available for CW, AM, RTTY

R-4C Receiver
The receiver hams have dreamed of...

NEW T-4XC FEATURES:
- Plug-in relay
- More flexible VOC operation; including separate delay controls for phone and CW
- Crystal control from front panel for amateur, Mars, commercial uses
- Provision for AFSK RTTY operation

T-4XC Transmitter
The one worthy of the R-4C

See for yourself—at your dealer's.

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342
Phone (513) 866-2421
Telex 288-017
KBD-2 Kit..$39.95 ppd

CMFT50, 25-54 MHz., 12 volt, 50 watts, transistorized power supply, partially transistorized receiver, fully narrow band with accessories $118

CMCT30, 150-170 MHz., 12 volt, 30 watts, transistorized power supply, fully narrow band, complete with accessories $98

* 53 Keys
* ASC II Encoder
* For: Terminals
 TV Typewriters
 Calculators
 RTTY Displays
 CATV and more

More keys—more features and still the same price. Our KBD-2 comes with “Line Feed”, “Cancel” and “Escape” functions for more convenient teletype and computer operation. Two user defined keys are connected to isolated output lines on the connector to allow use as “Here Is”, or other such special functions.

Keyswitches are full typewriter travel and response type, arranged in a modified ANSI layout. Full length spacebar with equalizer. Keyswitches are mounted on a fiberglass circuit board. The encoder provides a standard ASC II output and includes a debounce circuit. ASC II code includes shift and control functions with three user defined keys available. Keytops are first quality double-shot molded types for permanent good appearance. Gold plated contacts on keyswitches. NEW—no surplus parts. Typewriter style—NOT a modified keypunch board.

DEPT H
219 W. RHAPSODY
SAN ANTONIO, TX 78216

More Details? CHECK—OFF Page 136
Is this the Atlas-180?

Well, not exactly. It’s the SouthCom AN/URC-87(V) Man-Pack Military Radio. The URC-87 is a completely solid state portable man-pack and vehicular HF-SSB radio set for military, police, survey, and point-to-point communications throughout the world. It is today’s and tomorrow’s outstanding portable radio set.

So what does this have to do with the Atlas-180?

THE URC-87 and the Atlas-180 are what you might call ‘first cousins.’ Atlas Radio is licensed by SouthCom International, and thus has access to the advanced state-of-the-art circuit designs by Les Earnshaw, President of SouthCom. Les is widely recognized as one of the foremost solid state radio engineers in the world, and the URC-87 is an outstanding example of his work.

The Atlas-180 uses the same basic circuitry as the URC-87. There are some differences of course, such as a tuneable VFO in place of the frequency synthesizer, and we can’t guarantee underwater operation. But the outstanding receiver and transmitter performance is there, and accomplished with far fewer components than any comparable equipment. Together the URC-87 and the Atlas-180 enjoy a reputation for performance and reliability that make them truly superior transceivers, the envy of competitors.

There are now over 1000 Atlas-180’s on the air all over the world. Their growing reputation for excellent quality, receiver sensitivity, selectivity, and transmitter punch, all ties back to the URC-87. Immunity to overload and cross modulation from strong adjacent channel stations is nothing short of fantastic. Selectivity is provided by a new 8 pole ladder designed super filter, with shape factor and ultimate rejection superior to practically any other receiver or transceiver! And the front end design permits full utilization of the filter’s capabilities.

The one area where we have an edge over the URC-87 is in transmit power, and that’s because the Atlas-180 doesn’t have to operate on self contained batteries. The 100 watts of output speaks out with real authority!

Modular construction with plug in circuit boards permits easy servicing, when required. However, built to top commercial specs, this isn’t very often. But when service is needed, Atlas Radio backs every set with a service policy second to none. Your satisfaction is guaranteed.

73
Herb Johnson, W6QKI

Season's Greetings from all the Gang at Atlas Radio.

ATLAS RADIO INC.
490 Via Del Norte Phone (714) 433-1983
Oceanside, California 92054

See your Atlas dealer for complete details, or drop us a card and we'll be pleased to mail you a brochure and dealer list.
How to win the fist fight... with CW equipment from HAL.

The economical HAL 1550 keyer.
The easy-to-use 1550 keyer is your answer if you're looking for an electronic keyer that lets you send accurate CW effortlessly. Send from 8 to 60 WPM with conventional, iambic, and dot memory operation. Operates with dual or single lever keys. The optional 1550/ID automatically sends "DE" followed by your station call. For fast, accurate CW, order the HAL 1550/ID or 1550 today.

Price: 1550/ID, $95; 1550, $75; ppd USA. Air shipment, add $3.

Send perfect CW every time with the MKB-1.
A complete Morse keyboard. Code speed variable from 10-60 WPM with variable dot-to-space ratio (weight). All solid-state, featuring computer-grade components. Complete alphanumeric and punctuation keys, plus an optional "DE-call sign" key factory programmed for you. Includes built-in speaker/oscillator monitor.

ID-1A repeater identifier.
Commercial quality, low price.
The HAL ID-1A brings the radio amateur a commercial-quality repeater identifier that complies with FCC ID requirements. It has a unique read-only-memory that you can easily reprogram yourself. Capacity of the ROM is 39 dots, dashes and spaces. TTL IC's assure immunity from noise and temperature. ID intervals available: 3, 6, 12 or 24 min. Specify call.

Price: $115, ppd USA. Air shipment, $3.

CW—and RTTY on one keyboard! The HAL DKB-2010.
All solid-state. Type out CW at 8-60 WPM. Adjustable dot-to-space ratio (weight). Complete alphanumeric keys, plus 11 punctuation marks. Five standard two-character keys, 2 shift keys, break-for-tuning key, 2 three-character function keys, and a "DE-call sign" key. We'll program your call right into the DKB-2010. Plus complete RTTY capabilities. Built-in three-character buffer. Optional 64 or 128 key buffer also available.

Price: $425 Assembled, $325 Kit, ppd USA. 64 key buffer $100, 128 key buffer $150. Air shipment, $10.

HAL Communications Corp.
Box 365, Urbana, Illinois 61801
Telephone: (217) 359-7373

Enclosed is $ for: □ DKB-2010 □ MKB-1 □ 1550 □ ID-1A
Please specify □ Assembled □ Kit □ Options
Please send me more information on the following HAL products...
□ DKB-2010 □ MKB-1 □ 1550/1550 ID □ ID-1A
□ Complete HAL catalog

Name ____________________ Address ____________________ Call Sign ________________

City/State/Zip ____________________

Illinois residents add 5% sales tax.

68 december 1974

More Details? CHECK—OFF Page 136
Explore the world of RTTY... with sophisticated equipment from HAL.

The RVD-1002. The silent, reliable RTTY video display unit from HAL.
The revolutionary HAL RVD-1002 RTTY video display unit "prints" an RTTY signal from any TU at the four standard data rates (60, 66, 75 and 100 WPM), using a TV receiver with slight modification. Or it will directly feed a TV monitor. Power consumption is low, thanks to the RVD-1002's solid-state construction. So turn on to silent, trouble-free RTTY—with the RVD-1002.
Price: $575 ppd, USA. Air shipment $10.

The silent RTTY keyboard—that's the HAL RKB-1.
The RKB-1 RTTY keyboard is loaded with features to make sending RTTY easy and fun. You get automatic letter/number shift at all four speeds, typewriter keyboard layout, and no clatter! The loop keying transistor is isolated from other keyboard circuits—wire it into any convenient point in your loop. Plus TTL logic, glass epoxy PC board, commercial grade keyswitches and more.
Price: $250 Assembled, ppd USA. Air shipment $5.

RTTY—and CW on one keyboard!
The HAL DKB-2010.
All solid-state. Transmit at data rates of 60, 66, 75 or 100 WPM at the flick of a switch. Complete alphanumeric keys, 15 punctuation marks, 3 carriage control keys, 2 shift keys, break key, 2 character function keys, a "DE-call sign" key, even a "Quick brown fox..." test key.
The DKB-2010 is equally versatile in the CW mode, with complete alphanumeric and punctuation keys, speeds from 8-60 WPM, and a "DE-call sign" key. The DKB-2010 includes a three-character buffer operational in either the RTTY or CW mode. Optional 64 or 128 key buffer also available.
Price: $425 Assembled, $325 Kit, ppd USA. 64 key buffer $100, 128 key buffer $150. Air shipment $10.

Commercial quality on an amateur's budget—the HAL ST-6 TU
Every amateur who knows his RTTY respects the ST-6 terminal as being the best. Autostart operation, an antispace feature and switch selection of 850 and 170 Hz shifts are standard. Circuitry is state-of-the-art, including DIP IC's on plug-in PC cards. Filters and discriminators are designed for standard RTTY tones. A 425 Hz shift discriminator is an option which allows superior reception when copying commercial press transmissions. Another option is the AK-1 audio frequency shift keyer for input to an SSB transmitter. The ST-6 and its options are available in assembled or kit form. Cabinet not included in kit.
Price: ST-6 $310 Assembled, $147.50 Kit, ppd USA. 425 Hz Discriminator $40 Assembled, $29 Kit, ppd USA. AK-1 AFSK $40 Assembled, $29 Kit, pdd USA. Air shipment: Assembled ST-6 with any or all options $10, ST-6 Kit $4, 425 Hz Kit $1, AK-1 Kit $1.

HAL Communications Corp.
Box 366, Urbana, Illinois 61801
Telephone: (217) 359-7373

Enclosed is $____ for: [] RVD-1002 [] RKB-1 [] DKB-2010 [] ST-6
Please specify [] Assembled [] Kit [] Options__________
Please send me more information on the following HAL products
[] RVD-1002 [] RKB-1 [] DKB-2010 [] ST-6
[] Complete HAL catalog

Name_________________________ Address_________________________
Call Sign______________________

City/State/Zip__________________ Illinois residents add 5% sales tax.

More Details? CHECK-OFF Page 136
december 1974 B 69
SUPER CW FILTER

The IMPROVED CWF-2BX offers RAZOR SHARP SELECTIVITY with its 80 Hz bandwidth and extremely steep sided skirts. Even the weakest signal stands out. Plugs into any receiver or transceiver. Drives phones or connect between receiver audio stage for full speaker operation.

- Drastically reduces all background noise
- No audible ringing
- No impedance matching
- No insertion loss
- 8 pole active filter design uses IC's
- Bandwidth: 80 Hz, 110 Hz, 180 Hz (selectable)
- Skirt rejection: at least 60 db down one octave from center frequency for 80 Hz bandwidth
- Center frequency: 750 Hz ± 9 volt transistor battery not included.
- 400 Hz or 1000 Hz center frequency available add $3.00.

IMPROVED CWF-2BX, assembled $22.95
CWF-2, PC board, includes 4 position selectivity switch $15.95
CWF-2, kit $13.95

Dealer Inquiries Invited

MFJ Enterprises, P. O. Box 494, Miss. State, MS 39762, (601) 323-5869

PORTA-PAK

The accessory that makes your mobile radio really portable. Models available to fit most transistor transceivers. No holes to drill. It fastens with and thru the mounting holes provided for the mobile bracket.

PORTA-PAKs are attractively finished in textured vinyl or black wrinkle and are baked for durability and lasting good looks. The DELUXE PORTA-PAK features a battery with no free electrolyte to spill. A charger and plug-in for it are provided.

Models in stock include: Regency HR6, HR2B, BTL, BTH, MT25, MT15; Genave, all models; Heathkit HW202; Icom 230; Midland; Standard.

DELUXE PORTA-PAK $59.95 ups prepaid
REGULAR PORTA-PAK $39.95 ups prepaid

PORTA-PAK
P. O. Box 67
SOMERS, WISCONSIN 53171

More Details? CHECK--OFF Page 136
FMsPUNCH
AM-CW-SSB
FM-AM-CW-SSB MOBILE/BASE

2 METER AMPLIFIERS

Medium Power

High Power

<table>
<thead>
<tr>
<th>Model</th>
<th>Drive</th>
<th>Output</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFL-301*</td>
<td>3W</td>
<td>40W</td>
<td>$99.95</td>
</tr>
<tr>
<td>RFL-401*</td>
<td>3W</td>
<td>60W</td>
<td>149.95</td>
</tr>
<tr>
<td>RFL-501*</td>
<td>3W</td>
<td>110W</td>
<td>199.95</td>
</tr>
<tr>
<td>RFL-701*</td>
<td>10W</td>
<td>75W</td>
<td>99.95</td>
</tr>
<tr>
<td>RFL-801*</td>
<td>10W</td>
<td>100W</td>
<td>149.95</td>
</tr>
<tr>
<td>RFL-901*</td>
<td>10W</td>
<td>150W</td>
<td>199.95</td>
</tr>
<tr>
<td>RFL-1101*</td>
<td>25W</td>
<td>150W</td>
<td>229.95</td>
</tr>
<tr>
<td>RFL-1201*</td>
<td>25W</td>
<td>200W</td>
<td>299.95</td>
</tr>
<tr>
<td>RFL-1301*</td>
<td>3W</td>
<td>200W</td>
<td>349.95</td>
</tr>
<tr>
<td>RFL-1401*</td>
<td>1W</td>
<td>75W</td>
<td>179.95</td>
</tr>
</tbody>
</table>

* 2½"H x 4"W x 9"D

Dealer and Distributor
Inquiries solicited

All models will operate with reduced output from as little as one watt drive.
Amplifiers are supplied pre-tuned for band portion in which they are to be used.
For SSB and CW use, delayed dropout is available — add “SSB” to model number and $5.00 to price.
Comparable models for 6 and 10 meters are also available.

VIBRATROL
DIVISION OF EGI ELECTRONICS GROUP INC.
2204 Foster Avenue • Wheeling, Illinois 60090 • 312/392-6030

More Details? CHECK-OFF Page 136
HEATH'S 4510 IS THE FIRST KIT-FORM SCOPE DESIGNED FOR TODAY'S HIGH SPEED CIRCUITS

For keeping your ham gear in tune, you won't find a better scope than the 4510. It's an easy-to-operate, triggered, dual-trace, DC to 15 MHz lab-grade instrument. And its portability and 1 mV input sensitivity make it an ideal service and design tool.

The 4510 has the features you wished your scope had every time you tackled a modern digital or analog circuit. Like the post-deflection accelerated CRT for a brighter trace and faster writing speeds — no more "doubtful" measurements because of poorly-visible traces.

Pulse analysis is no problem with the 4510. It will typically trigger on signals up to 45 MHz and is guaranteed to trigger up to 30 MHz. And the digitally-controlled trigger circuits need no stability control. Complete triggering controls are provided with choice of AC or DC coupling, triggering at any point on the vertical signal. Choice of automatic or normal sweep uses any one of 22 time bases from 0.2 sec/cm to 0.1 μsec/cm. And when the X5 sweep control is pulled out, sweep speed can be increased up to 100 nsec/cm.

Maximum input sensitivity is 1 mV/cm over the entire vertical bandwidth. With a X10 probe and the 4510, you can read low-level waveforms to 10 mV/cm, not the 50 or 100 mV/cm found on other scopes.

To ensure that the complete waveform is always displayed, (a necessity with logic analysis) Heath engineers have added internal delay lines in the vertical amplifiers to insure start of the horizontal sweep prior to the beginning of the vertical signal. They allow display of at least 20 nanoseconds of the pretriggered waveform — making pulse analysis a lot easier.

True X-Y operation is simple with the 4510. Channel 1 is used for horizontal deflection and Channel 2 for vertical deflection. Phase measurements can be made using the standard vertical inputs, not the horizontal input as other scopes require.

Servicing the 4510 is remarkably easy. All major circuitry is contained on five easily removed circuit boards. The CRT can be removed and replaced in a matter of minutes.

The best feature of the 4510 is its low price. The SO-4510 comes completely factory assembled and calibrated for only $750. Or order the kit-form IO-4510 at $549.95 and save by building it yourself. Shipping weight 34 lbs.
OUR 1271 IS A TRUE FUNCTION GENERATOR WITH 0.1 Hz TO 1 MHz RANGE...for only $99.95* kit, $140.00* assembled

A good low frequency generator is a necessity for every ham shack. And now Heath has the replacement for the traditional sine-square generator - the 1271 Function Generator. It offers a greater frequency range (0.1 Hz to 1 MHz), more waveforms (sine, square and triangle) and a usable low output impedance (50 ohms, not 600). Output is 10 volts p-p... attenuation is 0 to 50 dB in 10 dB steps with up to 20 dB additional variable attenuation for each step, for a total of 70 dB... triangle waveform non-linearity is 5% max., with waveform symmetry within 10%... square wave rise & fall times of 100 nsec max.... adjustable handle for easy carrying and positioning. The kit SG-1271 is only $99.95* and the assembled SG-1271 is only $140.00*, with complete factory calibration. Shipping weight 7 lbs.

THE HEATHKIT IC-2100 - A SLIDE RULE CALCULATOR THAT'S BIG ENOUGH TO USE

Put away your slide rule and scratchpad. The Heathkit IC-2100 is the easy way to calculate those circuit impedances and phase angles. And it's easy to use — it's desk size, not a pocket calculator. It has contoured, finger-size keys and bright %'-tall displays. To make it convenient to use, we built in cumulative memory and register changes that eliminate scratchpad work. Of course, it performs the functions you need — trig and arc trig in degrees or radians, common and natural logs, e^x, inverses, square roots, π and exponential functions. It can even be wired for 120 or 240 VAC. Assemble it easily in a few evenings. Kit IC-2100, only $119.95*. Shipping weight 4 lbs.
This rubber duckie is one tough antenna!

When the going gets tough, Hy-Gain's flexible 2-meter antenna is the one to have. So short, it goes where whips can't. Continuously loaded for optimum performance and completely insulated with a special vinyl coating, it won't crack or break, no matter how you bend it. Cannot be shorted out accidentally! Designed with the same care and excellence in engineering that produces our superb commercial and mobile antennas. Whether your 2-meter hand-held is one of the fine commercially available units or a beauty you built yourself, this is the antenna that can go where you go!

Available with three connector types and tuned for optimum performance:

Order No. 274 BNC or 'snap' fitting, fits Tempo, Wilson, Ken Product, Klegg and other popular hand-held 2-meter transceivers.

Order No. 275 Accepts SO-239 connector, fits Drake and Motorola.

Order No. 269 Male screw 5/6 x 32, fits Motorola, GE, Johnson, RCA and CommCo.
Space age communication equipment demands a crystal that meets all standards of technical advancement. Crystals that were acceptable some years ago do not meet present day specifications. As a general rule, your crystal must be selected from the best quartz... (no throw off cuts). Tight tolerances demand selected angles of cut. The x-ray is important in making this selection. The crystal should be preaged with stress cycling. It should be checked for frequency change vs temperature change. It must be checked for optimum spurious response. It should be calibrated to frequency with the correct oscillator. International Crystals are manufactured to meet today's high accuracy requirements. That's why we guarantee all International crystals against defective materials and workmanship for an unlimited time when used in equipment for which they were specifically made.

WRITE FOR CATALOG

INTERNATIONAL
CRYSTAL MFG. CO., INC.
10 NORTH LEE
OKLAHOMA CITY, OKLA. 73102
NOW! BUY DIRECT

WHAT DOES THIS MEAN?

It means that GENAVE'S outstanding line of Amateur radios is now available to you at new, inflation-beating prices. A glance at the new prices confirms that the dealer's discount has been entirely eliminated, to your benefit. The same fine radios that you've seen in his shop may now be ordered on a Factory-Direct basis. *You* pocket the savings. Warranty policies remain the same: if your new GTX fails within three months of purchase, send it back. We'll fix it or replace it, **fast**.

Order TODAY—Orders will be processed as they are received!

| Standard crystal frequencies in stock @ $3.75 each: |
|---------------------------------|---------------------------------|---------------------------------|
| **1 ¼ Meter** | **2 Meter** | **6 Meter** |
| TXRX | TXRX | TXRX |
| 222.30223.50 | 146.10146.34 | 52.2552.38 |
| 222.34223.90 | 146.12146.61 | 52.52552.525 |
| 222.38223.94 | 146.16146.70 | 52.7052.60 |
| 223.14223.98 | 146.19146.72 | 52.7652.64 |
| 223.26224.74 | 146.22146.76 | 52.8252.68 |
| 223.30224.86 | 146.25146.79 | 52.8852.72 |
| 223.34224.90 | 146.28146.82 | 52.9252.79 |
| 223.50224.94 | 146.34146.85 | 53.1553.05 |
| | 146.52146.88 | 53.2553.08 |
| | 146.94 | 53.68 |

Contact factory for prices on other crystal frequencies.

Made in U.S.A.

USE THIS HANDY ORDER FORM TO HELP YOURSELF TO GIANT SAVINGS!

General Aviation Electronics, Inc., 4141 Kingman Drive, Indianapolis, Indiana 46226—Area 317-546-1111

76 December 1974

More Details? CHECK—OFF Page 136
for GIANT SAVINGS!

GTX-600 6-Meter FM
100 channels, 35 watts
WAS $309.95

NOW $219.95
(Incl. 5.2.525 MHz)

GTX-200 2-Meter FM
100 channels, 30 watts
WAS $299.95

NOW $189.95
(Incl. 146.94 MHz)

CLIP OUT AND ORDER NOW!

GTX-100 1¼-Meter FM
100 channels, 12 watts
WAS $309.95

NOW $219.95
(Incl. 223.5 MHz)

GTX-10 2-Meter FM
10 channels, 10 watts
WAS $239.95

NOW $169.95
(Incl. 146.94 MHz)

Hey, Genave! Thanks for the nice prices! Please send me:

☐ GTX-600 @ $219.95 $ ☐ Lambda/30 2-M Base Antenna @ $59.95 $
☐ GTX-200 @ $199.95 $ ☐ Lambda/6 2-M Trunk Antenna @ $29.95 $
☐ GTX-100 @ $219.95 $ ☐ TE-1 Tone Encoder Pad @ $59.95 $
☐ GTX-2 @ $189.95 $ ☐ PSI-9 Port. Power Package @ $29.95 $
(less batteries)
☐ GTX-10 @ $169.95 $ ☐ PS-1 AC Power Supply @ $49.95 $

and the following standard crystals @ $3.75 each:

Sub-Total $ Ind. residents add 4% sales tax: $ TOTAL: $
Cal. residents add 6% sales tax: $ All orders shipped post-paid within continental U.S. For C.O.D., include 20% Down.

NAME ____________________________ AMATEUR CALL ____________________________
ADDRESS ____________________________ CITY ______ STATE & ZIP ________________

Payment by: ☐ Certified Check/Money Order ☐ Personal Check ☐ C.O.D.
☐ 20% Down Payment Enclosed. Charge Balance To:
☐ BankAmericard # ____________________________ Expires ________
☐ Master Charge # ____________________________ Expires ________

Note: Orders accompanied by personal checks will require at least two weeks to process.

Prices and specifications subject to change without notice.

More Details? CHECK-OFF Page 136
Unmatched for versatility, dependability and mobility the Collins KWM-2A maintains a reputation of outstanding mobile and fixed station performance.

Collins filter type SSB Generation plus the famous Collins PTO insure the cleanest and most stable signal on the air anywhere.

An added feature of the KWM-2A is an additional 14 crystal positions which enable you to cover additional frequencies outside the amateur bands.

Let Electronic Center quote on your Collins needs. We carry the full line of Collins amateur equipment and would like to serve you.

An exciting — expanding opportunity
Ham Radio Sales/Technical Representative
We have several excellent inside sales positions available for the people with at least a General Class Amateur or Second Class Phone license.

Only $37.50 (less batteries) POSTPAID USA

- Precision crystal
- Fully guaranteed

- Markers at 100, 50, 25, 10 or 5 kHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Send for free brochure.

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

SUPER CRYSTAL
THE NEW DELUXE DIGITAL SYNTHESIZER!! FROM Rp

MFA-22 DUAL VERSION
Also Available MFA-2 SINGLE VERSION

- Transmit and Receive Operation: All units have both Simplex and Repeater Modes
- Accurate Frequency Control: 0.0005% accuracy
- Stable Low Drift Outputs: 20 Hz per degree C typical
- Full 2 Meter Band Coverage: 144.00 to 147.99 MHz, in 1.0KC steps
- Fast Acting Circuit: 0.15 second typical setting time
- Low Impedance (50 ohm) Outputs: Allow long cable runs for mobiles
- Low Spurious Output Level: similar to crystal output

SEND FOR FREE DETAILS Rp

Prices
MFA-2 $210.00 BOX 1201H
MFA-22 $275.00 CHAMPAIGN, ILL.
Shipping $3.00 extra 61820

More Details? CHECK-OFF Page 136
Shed unwanted QRM and Foreign Broadcast signals with a 25 db front-to-back. Work stations you never knew existed. Let the Hy-Gain 402BA help you make 5 Band DXCC and 5 Band WAS. Designed with only one objective... optimum performance in a small package, the 402BA offers mechanical and electrical superiority at an affordable price. A unique linear loading stub delivers maximum performance without the loss of center loading coils. Can be easily stacked with tri-band or 20 meter beams and requires only 10' separation. The exclusive Hy-Gain Beta Match gives positive DC ground to drain away precipitation static. For best results, use with Hy-Gain BN-86 Balun.

- 4.9 db forward gain.
- 12-25 db Front/Back ratio.
- SWR 1.5:1 or less at resonance.
- Takes maximum power, 1 KW AM, 2 KW PEP.
- Boom length 16', longest element 43'.
- Only 6.5 sq. ft. surface area.
- Weighs just 47 lbs.
- Turns in only 24' radius.
- DC grounded, driven element.
- Wind survival - 80 mph.

Order No. 397

For prices and information, contact your local Hy-Gain distributor or write Hy-Gain.
ANNOUNCING HCV-2A SSTV MONITOR

Now from the designer of the world famous HCV SSW equipment, Dr. James Thomas, WB4HCV, we are proud to announce the new and improved HCV-LA SSTV Monitor. This monitor is similar to that produced by THOMAS ELECTRONICS only much improved. The special features have now been patented and carry U. S. Patent #DD-033468. Be watching for our HCV-3KB SSTV Keyboard and our Hard Copy SSTV copy machine. Call or write us for complete specifications on the HCV-2A. 24 hour telephone answering service and personal on the air technical assistance from WB4HCV if needed, to better serve you.

SPECIFICATIONS — HCV-2A SSTV MONITOR

- 6.25" Diagonal Screen.
- Removable Picture Tube Filter for added viewing flexibility.
- Manual Vertical Trigger Pushbutton allows restart of scan at any time.
- Tuning Meter, instead of LED, to aid tuning in of SSTV signal.
- Noise immunity circuits and special filtering to allow for excellent “closed circuit” pictures under high noise conditions. Copy pictures with 3 db or less signal strength.
- The only SSTV Monitor with Transistors, ICS and Op Amps mounted in plug-in sockets on a G.10 glass epoxy-gold flashed printed circuit board.
- CRT (Picture Tube) burn protection and sweep failure protection. 11-14 KV adjustable anode voltage power supply provides very bright, sharp picture. Special CRT phosphur mix allows for black and white picture, with neutral density filter installed, instead of the usual yellow. Optional yellow/amber filter also provided.
- 29 Transistors, 11 ICS, 30 Diodes, Special phosphur Mix CRT.
- Optional Built In Fast Scan Viewfinder allows viewing of HCV-1B Camera or similar SSTV Camera fast scan sampling rate on the same CRT used for SSTV. By viewing the picture in real time, the camera can be focused and set-up instantly. Eliminates the need of a separate fast scan viewfinder monitor. Add $95.00, to basic HCV-2A price for this optional feature, factory installed or purchase the HCV-70FSFVK modification kit for $69.95, and install it yourself.
- Built to rigid industrial specifications for long trouble free service. Full 1 year warranty — 90 days on CRT. Printed circuit board exchange program and complete service department available if ever needed. On the air technical assistance from designer, WB4HCV, plus 24 hour telephone answering service to better serve our customers.
- Fully meets or exceeds all currently accepted SSTV standards — Worldwide.

Regular Price $425.00. Special Introductory Cash With Order Price $398.00. (Note: Credit Cards pay regular price $425.00.) F.O.B. Hendersonville, Tennessee. 5 ways to purchase: Cash, C.O.D., Mastercharge, BankAmericard, SEEC financing plan (up to 36 months), HCV-2A Monitor with built-in fast scan viewfinder $493.00. Regular Price $520.00.

ACCESSORY LIST

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sony TC110A Cassette Tape Recorder</td>
<td>$134.95</td>
</tr>
<tr>
<td>Grey Scale Calibration Tape</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>Pre-Recorded, Call Sign, etc. — Specify</td>
<td>$ 8.00</td>
</tr>
<tr>
<td>Blank Scotch Brand Tape:</td>
<td></td>
</tr>
<tr>
<td>45 minute</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>60 minute</td>
<td>$ 3.00</td>
</tr>
<tr>
<td>90 minute</td>
<td>$ 4.00</td>
</tr>
<tr>
<td>120 minute</td>
<td>$ 5.75</td>
</tr>
<tr>
<td>HCV70FSFVK Fast Scan Viewfinder Kit HCV-2A</td>
<td>$ 69.95</td>
</tr>
<tr>
<td>Spare Printed Circuit Board HCV-2A</td>
<td>$175.00</td>
</tr>
</tbody>
</table>

If you need something not listed, please call or write us for price and delivery information.

SUMNER ELECTRONICS & ENG. CO., INC.
P. O. BOX 572 HENDERSONVILLE, TENNESSEE 37075
TELEPHONE 615-824-3235

80 December 1974

More Details? CHECK-OFF Page 136
ANNOUNCING

HCV-1B

SSTV

CAMERA

Now from the designer of the world famous HCV SSTN equipment, Dr. James Thomas, WB4HCV, is proud to announce the new and improved HCV-1B SSTV Camera. This camera is similar to that produced by THOMAS ELECTRONICS only much improved. The special features have now been patented and carry U. S. Patent #DD-033471. Be watching for our HVC-3KB SSTV Keyboard and our Hard Copy copy machine for SSTV. Call or write us for complete specifications on the HCV-1B. 24 hour telephone answering service and personal on the air technical assistance if needed by WB4HCV, to better serve you.

SPECIFICATIONS — HCV-1B SSTV CAMERA

• ¾-¼-¾ Frame Rate Selector.
• Positive/Negative (Black or White Background) Color Reversal.
• Normal/Reverse Horizontal Deformation Contour Switch (Mirror Image Reading).
• The Only SSTV Camera With Transistors, ICs and Op Amps mounted in plug-in sockets on a G-10 glass epoxy gold flashed printed circuit board.
• The only SSTV Camera commercially made with a built-in power supply for 115/230 V 50/60 Hz, which does not produce 50/60Hz hum bars in the slow scan picture.
• F1.9-22 25MM Cosmicar TV Lens Supplied.
• Fast Scan (sampling rate — 5kHz horizontal, 15/30Hz vertical) R.F. or Video output for viewing fast scan on standard TV set — Channels 2-8 or on a video monitor to aid as a focusing aid only in camera setup, etc.
• Fast scan sampling rates also available for connection to HCV-2A equipped with fast scan viewerfinder modification, which displays fast scan in the same format as on slow scan, except in real time, to allow for instant focus and set-up of scene.
• ALC Option. Automatic Light Control may be added if desired. This optional feature allows the operator to leave the iris of the lens at one F setting (all the way open if desired), as the camera will adjust itself to light changes automatically. The light can then be varied on the scene, thus eliminating adjustment of the lens opening or the camera Contrast control, Auto/Manual switch which allows the operator to return the camera to normal operation when ALC is not being used. Add $40.00 to basic HCV-1B price for this optional feature.
• Fully meets or exceeds all currently accepted SSTV standards — Worldwide.
• Built to rigid industrial specifications for long trouble free service. Full 1 year warranty — 90 days on Vidicon Tube. Printed Circut Board exchange program and complete service department available if ever needed. A separate lab facility is also available which is involved in making improvements and testing out new designs prior to production. Modifications, improvements, etc., are sent out as they are made. On the air technical assistance from designer, WB4HCV, plus a 24 hour telephone answering service to better serve our customers.
• 48 Transistors, 14 ICs, 26 Diodes. Industrial Grade 7735A Vidicon. Regular Price $475.00. Special Introductory Cash With Order Price $452.00. (Note: Credit Cards pay regular price $475.) F.O.B. Hendersonville, Tennessee. 5 ways to purchase: Cash, C.O.D., Mastercharge, BankAmericard, SEEC Financing Plan (up to 36 months). HCV-1B Camera with built-in ALC (Automatic Light Control) — Special Cash Price $492.00., Regular Price $515.00.

ACCESSORY LIST

Heavy Duty Tripod
Lenses: Cosmicar TV
#2514 25mm F1.4-22 C-Mount $34.95
#2519 25mm F1.9-22 C-Mount Standard $40.00
#1219 12.5mm F1.9-22 C-Mount Wide Angle $35.00
#Z-9015 22.5-90mm F1.5 C-Mount Zoom Lens $60.00
#504 75mm F1.4 C-Mount Telephoto $135.00
#2514DH 25mm F1.4-22 C-Mount Macro Close up $138.95
#EX-C6 Extension Tube (Close up) Kit C-Mount $15.95
Close Up Lens for 2514 and 2519 — Specify $14.95
#MC-1 Microscope Adapter C-Mount $6.95
Spare P.C. Board for HCV-1B $195.00

If you need something not listed, please call or write us for price and delivery information.

SUMNER ELECTRONICS & ENG. CO., INC.
P. O. BOX 572 HENDERSONVILLE, TENNESSEE 37075
TELEPHONE 615-824-3235
ER-4 COMPLETE PHOTO ETCH SET postpaid $24.95
AT YOUR DISTRIBUTOR OR DIRECT
The DATAK corp. • 65 71st St. • Guttenberg, N. J. 07093
The ultimate Tri-band
Up to 9.5 db Gain

No other antenna gives you the performance on 10, 15 and 20 meters equal to that of the Thunderbird. Built, without compromise, to be electrically and mechanically superior to everything else.

- Separate "Hy-Q" traps for each band. Tuned at the factory for peak performance. Get optimum results for your preferred mode on transmission, phone or CW, using factory supplied charts.
- Cast aluminum, tilt-head, boom-to-mast bracket accommodates masts from 1¼" to 2½" and provides mast feed-through for stacking. (Extra heavy gauge, formed element-to-boom brackets used throughout.)
- All taper-swaged, slotted aluminum tubing for easy adjustment, lightweight, with full circumference, compression clamps instead of usual self-tapping screws used throughout.
- Exclusive Beta Match for optimum matching on all three bands and positive DC ground path.
- 3 active elements on 20 and 15 meters, 4 on 10.
- 25 db front-to-back ratio.
- SWR less than 1.5:1 on all bands at resonance.
- 24' boom, longest in the industry.
- 20' turning radius, 6.1 sq. ft. surface area, 61.5 lbs. net weight.

6-Element Super Thunderbird
Model 389

Other Popular Tri-band Beams by Hy-Gain:
3-Element Thunderbird 2-Element Thunderbird 3-Element Thunderbird Jr.
Model 388 Model 390 Model 221

For best results, always use a BN-86 Balun with your beam.

For prices and information, contact your local Hy-Gain distributor or write Hy-Gain.

Hy-Gain Electronics Corporation: 8001 Northeast Highway Six; Lincoln, NE 68507; 402/464-9151; Telex 48-6424.
Branch Office and Warehouse: 6100 Sepulveda Blvd., #322; Van Nuys, CA 91401; 213/785-4532; Telex 65-1359.
Distributed in Canada by Lectron Radio Sales, Ltd.; 211 Hunter Street West, Peterborough, Ontario.
LOW COST DIGITAL KITS

NEW BIPOLAR MULTIMETER:
AUTOMATIC POLARITY INDICATION

Model ES 210K
Displays Ohms, Volts or Amps 5 ranges • Voltage from 100 Microvolts to 500 V • Resistance from 100 Milliohms to 1 Megohm • Current from 100 Nanoamps to 1 Amp

$82.00 Case extra $12.50
(Optional probe) $5.00

40 MHz DIGITAL FREQUENCY COUNTER:
• Will not be damaged by high power transmission levels.
• Simple, 1 cable connection to transmitter's output.

ES 220K — Line frequency time base.
1 KHz resolution . . . 5 digit: $79.50. Case extra: $10.00

ES 221K — Crystal time base.
100 Hz resolution . 6 digit: $109.50. Case extra: $10.00

DIGITAL CLOCK:

ES 112K/124K • 12 hour or 24 hour clock: $46.95.
Case extra: • Metal $7.50

CRYSTAL TIME BASE:

ES 201K — Opt. addition to ES 112K, 124K or 500K
Mounts on board. Accurate to .002% $25.00

I.D. REMINDER:

ES 200K — Reminds operator that 9 minutes and 45 seconds have passed. Mounts on ES 112 or 124 board. Silent LED flash: $10.95. Optional audio alarm $4 extra.

Dependable solid state components and circuitry. Easy reading, 7 segment display tubes with clear, bright numerals. These products operate from 117 VAC, 60 cycles. No moving parts. Quiet, trouble free printed circuit.

Each kit contains complete parts list with all parts, schematic illustrations and easy to follow, step by step instructions. No special tools required.

ORDER YOURS TODAY:

Use your Mastercharge or Bankameriscard
Money Back Guarantee

ESF
505½ Centinela • Inglewood, Ca. 90302 • (213) 674-3021

SLINKY!

a lot of antenna in a little space

New Slinky® dipole* with helical loading radiates a good signal at 1/10 wavelength long!

This electrically small 80/75, 40 & 20 meter antenna operates at any length from 24 to 70 feet. *Patents pending

Money Back Guarantee

if returned within two weeks

TELETRON CORP.
Suite 200
Box 84
Kings Park NY, 11754

"Complete Kit" no.40-20
$12.95 plus $1 shipping

"Complete Kit" no.40-40
$17.95 plus $1 shipping

(NY residents add 7% sales tax)

name
street
town
zip

enclose check with order • we ship UPS upon receipt of order • Code X extra

RADIO & ELECTRONICS CONSTRUCTOR

Here is an interesting general electronics hobby magazine. It's loaded with lots of interesting simple circuits and ideas, not only about radio, but in all phases of electronics including test gear, audio, remote control and security electronics.

We are sure that you will find a number of worthwhile projects in this British magazine.

1 Year (12 issues) $7.00

Radio Constructor
Greenville, NH 03048
IF YOU NEED A COMMUNICATIONS TOWER UNDER 100' HIGH, COMPARE BEFORE YOU BUY:

<table>
<thead>
<tr>
<th></th>
<th>Free-standing Ascom/Universal Aluminum Tower</th>
<th>Typical Free-standing Commercial Steel Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>60'</td>
<td>60'</td>
</tr>
<tr>
<td>Wind rating</td>
<td>6 Sq. Ft. @ 80 MPH (EIA Standard)</td>
<td>3 Sq. Ft. @ 80 MPH (EIA Standard)</td>
</tr>
<tr>
<td>Erection requirement</td>
<td>1 man, 3 hr.</td>
<td>3 men, 8 to 12 hr.</td>
</tr>
<tr>
<td>Tower weight</td>
<td>153 lbs.</td>
<td>571 lbs.</td>
</tr>
<tr>
<td>Maintenance</td>
<td>none</td>
<td>annual</td>
</tr>
<tr>
<td>Mfr. sugg. list</td>
<td>$466.20</td>
<td>$590.00</td>
</tr>
</tbody>
</table>

Now—can you think of one good reason to buy a steel tower?

K-ENTERPRISES

PD 301 PRESCALER with Power Supply

Kit $43.50 Assembled $55.50
Add $1.50 Postage & Insurance

Model PD 301 is a 300 MHz prescaler designed to extend the range of your counter ten times. This prescaler has a built-in preamp with a sensitivity of 50 mV at 150 MHz, 100 mV at 260 MHz, 175 mV at 300 MHz. The 95H90 scaler is rated at 320 MHz. To insure enough drive for all counters, a post amp was built-in. The preamp has a self contained power supply regulated at 5.2V ±.08%. (Input 50 Ohms, Output Hi Z).

All prescalers are shipped in a 4" by 4" by 1½" cabinet. All are wired and calibrated.

Division of Bob Whan & Son Electronics, Inc.
2400 Crystal Drive
Ft. Myers, Florida 33901
All Phones (813) 936-2397

Send 10¢ for new catalog with 12 oscillator circuits and lists of frequencies in stock.

More Details? CHECK-OFF Page 136
IRON POWDER

R.F. TOROID CORES

Postage: USA, Canada and Mexico — only 50 Cents

AMIDON

 Associates

12033 OTSEGO STREET
NORTH HOLLYWOOD, CALIF. 91607

Our FREE FLYER is still FREE. Write Today.

FERRITE CORES

We supply AMIDON equivalents to the popular sizes and mixes of Ferrite Toroid Cores. Please include all information in your inquiry. Same famous fast service that we have featured since 1963.

BEADS

Use Amidon Ferrite Beads for Parasitic Suppression, Shielding, Noise Suppression, Spike and Transient Clipping, RFI Suppression, Antenna Loading and for Special Inductors. The Regular 3 mm bead accepts up to #18 wire. The Husky 7.5 mm bead accepts #12 AWG. Each Husky bead exhibits an inductance of 1.25 Microhenry. Permeability Factor: 900.

Regular Beads $2.00
Husky Beads $3.00

LELAND ASSOCIATES

18704 GLASTONBURY RD.
DETOUR, MI.
48219

VHF/UHF CONVERTERS

Ten meters through 432 MHz. A post card will bring our full 1974 Catalog.

JANELL laboratoires

BOX 112. SUCCASUNNA. NJ 07876
Telephone 201 584 6521

LEARN RADIO CODE

THE EASY WAY!

- No Books To Read
- No Visual Gimmicks To Distract You
- Just Listen And Learn

Based on modern psychological techniques—This course will take you beyond 13 w.p.m. in LESS THAN HALF THE TIME! Available on magnetic tape $9.95 — Cassette, $10.95.

EPIsOns RECORDS

508 East Washington St., Arcola, Illinois 61910

More Details? CHECK—OFF Page 136
APOLLO PRODUCTS

by “Village Twig”

“L” package enclosure “Shadow Box” machined with: 2-SO239, 1-Pilot Light, 3 Rocker Switches, and 2-Knob pkg. $33.00

2500X-2 Trans-Antenna Systems Matcher
KW plus 52 ohm and random wire. $149.50

MODEL WIDTH-HEIGHT-DEPTH RESALE NET

<table>
<thead>
<tr>
<th>MODE</th>
<th>WIDTH x HEIGHT x DEPTH</th>
<th>RESALE</th>
<th>NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5-3/4 x 2-1/2 x 3</td>
<td>4.25</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>4 x 3-7/16 x 3-1/2</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5-11/16 x 3-1/2 x 3-3/4</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>9 x 2-1/2 x 3-1/2</td>
<td>5.90</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7-1/4 x 3-1/4 x 5</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>8 x 2-1/2 x 8-1/2</td>
<td>9.85</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>6-1/2 x 3-15/16 x 7-1/16</td>
<td>9.25</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>7-1/2 x 4-1/2 x 10</td>
<td>11.15</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>10-1/16 x 3-5/16 x 9</td>
<td>11.15</td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>5-1/4 x 5-1/2 x 4</td>
<td>7.85</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>Mfg. bracket set for D</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>5 x 3-1/2 x 5-1/2</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>4-1/4 x 7-3/4 x 11</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>11-1/8 x 6-1/8 x 12-1/4</td>
<td>22.95</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>11-1/8 x 6-1/8 x 16-1/4</td>
<td>24.40</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>12-1/8 x 5-3/8 x 12-1/16</td>
<td>23.80</td>
<td></td>
</tr>
</tbody>
</table>

700X-4 KW Wattmeter
Dummy Load Wattmeter for 52 Ohm input. Measures RF in 4 ranges to 1000 watts. Front panel frequency counter jack-attenuated per range for frequency counter take-off. Portable $139.95

2200X-2 SWR Bridge and Antenna Tuner
Both mounted in slope front cabinet $62.50

200X-2 Wattmeter
Measures RF in 2 ranges 25 and 500 watts. 52 Ohm input. $33.95

900X-2 Wattmeter
Measures RF in 2 ranges 25 and 500 watts. 52 Ohm input. $33.95

APOLLO “SHADOW BOX ENCLOSURES”
are fabricated of heavy, cold rolled steel. The front panels are of 20-gaule brushed chrome steel; some models are line screened and have a red Rocker DPDT switch installed with gold plated contacts and terminals. Covers are baked on Wrinkle enamel.

All cabinets are completely assembled and supplied with four rubber feet riveted in. Individually packed in a heavy-duty corrugated mailing carton.

Chassis C thru M are CRS, nickle-plated over copper for excellent RF conductivity.

PRODUCTION CABINETS TO YOUR SPECIFICATIONS ON SPECIAL QUOTATION; 250 PIECE MINIMUM. WRITE FOR QUOTATION.

APOLLO PRODUCTS

BOX 245 - VAUGHNSVILLE, OHIO 45893 - Phone (419) 646-3495 - Evening Phone (419) 646-3495

a NEW antenna principle

PROVEN IN EXACTING TESTS AND MANY YEARS ON THE AIR AT WOBMBH — KOAST — KBVRM

THE Little GIANT BEAM ANTENNA

only 27 inches high by 22 inches wide

A COMPLETELY NEW ANTENNA

Here is an ultra compact beam antenna which can be tuned to any frequency between 7.0 and 14.5 MHz. Weighing only 18 lbs. this antenna may not outperform a full sized beam but it sure will give you your share of DX and state-side contacts. Will handle 1 KW over a 100 kHz bandwidth.

- Fully weather proof
- Hi-Q, attenuates harmonics
- Mounts easily on TV mastng
- Comes assembled & tested
- Figure 8 pattern

LITTLE GIANT MODEL 100X1000-40

KITS 10-40 $74.50

$149.50

Little Giant Antenna Labs, Box 245, Vaughnsville, Ohio 45893 Subsidiary “Apollo Products” Village-Twig Co. 419-646-3495

More Details? CHECK-OFF Page 136
Tired of Wild Claims and Not So Wild Performance?
Try a KLM Amplifier and/or Antenna for a Pleasant Surprise

186dB gain ... OVER AN ISOTROPIC NOODLE INSIDE A COPPER BOX SUNK IN A FULL CESSPOOL ...

KLM ELECTRONICS Dept. H
1600 DECKER AVENUE
SAN MARTIN, CA 95046 408-683-4240

YOUR BEST BET FOR FM!
- PREAMP KITS $6, WIRED $10 — FREQ. FROM 20 TO 230 MHZ
- LED SCANNER KITS $10
- FM RCVR KITS FOR 6 & 2M AND COMMERCIAL FREQ. $49.95
- COMPONENTS FOR VHF PROJECTS
- SEND SASE FOR LITERATURE

HAMTRONICS, INC.
182 BELMONT RD. ROCHESTER, N. Y. 14612

Webster radio
2602h E. Ashlan
Fresno, Calif. 93726
Phone (209) 224-5111

RTTY
- Phase-lock loop RTTY PC boards
- CMOS RTTY regenerator PC boards
- Phase-coherent afsk PC boards
AOK for Oscar 7 DIGICOM send S.A.S.E. for Info.
Telemetry

88 \textit{Ham} December 1974
NEW RCA METERS AT SPECIAL TECO SAVINGS

UP TO 15% OFF ON ALL B&K/DYNASCAN
NEW INSTRUMENTS

— CALCULATORS —
CORVUS, BOWMAR, MELCOR, SINCLAIR (WE TAKE TRADE-INS)

— CITIZENS BAND RADIO —
COBRA, HY-GAIN, MIDLAND, E. F. JOHNSON, & OTHERS

— AMATEUR RADIOS —
GENAVE, MIDLAND, TEN-TEC, HY-GAIN, & MANY OTHER MODELS

— ANTENNAS —
ANTENNA SPECIALISTS, CUSHCRAFT, HY-GAIN, ROHN, CDE, & MORE

— NEW TEST EQUIPMENT —
B&K/DYNASCAN, LEADER, PHILLIPS, WESTON, FLUKE, RCA, & OTHERS

— USED TEST EQUIPMENT —
HEWLETT-PACKARD, TEKTRONIX, GENERAL RADIO, FLUKE, & OTHERS

— COMPONENTS —
WORKMAN, G-C (CALECTRO), RCA, GOLD LINE, & MANY MORE

— TECHNICAL PUBLICATIONS —
SAMS' BOOKS, TAB BOOKS, ARRL BOOKS, HAM RADIO, '73, CQ, ETC.

Dick McDonald, KSWOR
CALL: (214) 348-1560
WRITE: PO BOX 1050, GARLAND, TEXAS 75040

TECO a subsidiary of Tucker Electronics Co.
P.O. BOX 1050 1717 S. Jupiter Rd. GARLAND, TX. 75040
214—348-1560
CRICKET 1 ELECTRONIC KEYER
A popularly-priced IC keyer with more features for your dollar. Cricket 1 is small in size and designed for the beginner as well as the most advanced operator. It provides fatigue-free sending. Easy to copy at all speeds. Turn on its side and use as a straight key for manual keying. AC/DC.

Shipping Weight 3 lbs. $49.95

SPACE-MATIC 21-B
The Switchable Keyer. It's up to eight-keys-in-one. Use the switches to make this your very own personal keyer, both today and tomorrow. Add such features as dot dash memory or adjust spacing with the turn of a switch. Completely perfect.

Sh. wt. 4 lbs. $119.50

TOUCH-TONE DECODER
A highly reliable twelve digit decoder with input protection, and PLL circuitry for extremely stable operation. Heavy duty output relays, small size, plug-in circuit board. All these major features at an UNBEATABLE price.

Sh. wt. 1 lb. $114.50
TTD-12K Kit $114.50
TTD-12 Touch-Tone Decoder $129.50

Data Signal, Inc.
Successor to Data Engineering, Inc.
2212 Palmyra Road
Albany, Ga. 31701
912-435-1764
The New Hy-Gain 270 brings state-of-the-art design to 2 meter mobile.

The Hy-Gain 270 is specifically designed to solve the problems of gain 2 meter mobile antennas... hard tuning, high VSWR, poor pattern due to irregular ground plane, and fade from whip flex.

The all white fiberglass and chrome design develops 6 db gain through the use of 2 stacked 5/8 wave radiators with a self-contained 1/4 wave decoupling system. Because the Hy-Gain 270 operates independent of the car body ground, you get minimum pattern distortion for maximum range in all directions. Independence from the car body also means the end to tune-up problems. The fiberglass design solves the fading problem due to upper whip flex.

Since the antenna and feedpoint are sealed in fiberglass, the Hy-Gain 270 will deliver top performance year after year without loss due to corrosion. The Hy-Gain 270 can be mounted anywhere... bumper, cowl, deck or mast ... for fixed, land mobile or marine service using Hy-Gain mounts listed below.

- 6.0 db gain.
- 250 watt rated.
- 144-148 MHz.
- VSWR less than 1.5:1 at resonance. 6 MHz Bandwidth.
- 96" whip height.
- No pruning required, completely factory tuned!
- 50 ohm input.
- 3/8 x 24 standard mobile thread.
- Comes with 18' coax and PL-259 connector.

Order No. 270

Mounts—Universal No. 271
Flush Body No. 499
Bumper No. 415

Get maximum range... get a Hy-Gain 270!

For prices and information, contact your local Hy-Gain distributor or write Hy-Gain.

Hy-Gain Electronics Corporation 8601 Northeast Highway Six, Lincoln, NE 68507 402/464-9151 Telex 48 6424
Branch Office and Warehouse: 6100 Sepulveda Blvd. #322, Van Nuys, CA 91401 213/785-4532 Telex 65-1359
Distributed in Canada by Lectron Radio Sales, Ltd., 211 Hunter Street West, Peterborough, Ontario

More Details? CHECK—OFF Page 136
SABA-5 PREAMPLIFIER
WB4TPI (Jerry) says “*#*? does that thing work?”
WB4LIS (Hugh) says “I couldn’t have made the weak station contacts without it.”
WB4VE (Frank) says “Will enhance any station’s capabilities.”
WB4PFC (Max) says “Well worth while.”
Note: Above evaluations on Collins 75AA, S-Line, Drake R4-B, R4-C Signal-One, FPM 300

High Quality Communication

More Details? CHECK-OFF Page 136

- COIL KITS -
for HIGH EFFICIENCY 35 WATT CLASS D R.F. AMPLIFIER
as described in October “Ham Radio” page 20
L2, T1, T2, T3 Postpaid $8.25
L1, L3 for 160 meters $3.50—80 meters $3.30—40 meters $2.90
for MINIATURE 7-MHz TRANSCIEVER
as described in July “Ham Radio” page 16
L1, L2-3, L4, RFC1, 2, L5-6-7 Postpaid $7.00
SEND FOR LIST OF COIL KITS
Coll Winding Quick Quotes Stock Coils
Send Specs or Sample Coll & Choke Farms

CADDELL COIL CORP.
POULTNEY, VT. 05764 802-287-4055

High Quality Communications

More Details? CHECK-OFF Page 136

Craig
IC-230 Icom
P.O. Box 615
Portsmouth, N.H. 03801
Phone (207) 439-0474
(603) 436-9062

QUALITY • THE SIZE • THE FEATURES • CHECK THE
CTCSS • MINI ENCODER

• COMMUNICATION PRODUCTS & ENGINEERING
• P.O. Box 261 • Milford, Michigan 48042

A Christmas MESSAGE TO ALL...

Is money scarce this Christmas season? Has your budget blown up? There’s no doubt that these are times of economic confusion. What’s worse, it seems that no one has presented really foolproof solutions to the problems. Here is a time tested plan, guaranteed to work.

Israel in approximately 400 BC faced a situation in many ways similar to ours. God spoke through Malachi, saying, “You have robbed me of the tithes and offerings due to me.” And so, the awesome curse of God came upon you, for your whole nation has been robbing me. But all the tithes into the storehouse so that there may be food enough in heaven for you and pour out a blessing so great you won’t have room enough to take it in!” (Mal. 3:8-10).

Jesus said about the material things of life “Your heavenly Father already knows perfectly well that you need them, and he will give them to you if you give him his first place in your life and live as he wants you to.” (Matt. 6:32, 33). Jesus also said, “Anyone who believes in me will have eternal life.” (John 3:15). Our call this Christmas season is to turn from man’s way, your way, and follow God’s way. It will work...HE PROMISED!
Advance Registration, $11.00 per person, includes:
1. Advance Registration ticket.
2. Regular Registration ticket.
3. Admission ticket to Social Hour, hosted by T. P. L. Communications and TRI-EX Tower Corp. with SAROC on Friday.
4. Admission to Exhibit Area and Technical Sessions.
5. Ladies will receive an additional ticket.
6. Admission ticket to Social Hour, hosted by Ham Radio Magazine with SAROC on Saturday.
8. Tax and Gratuity on all items listed.

Advance Registration, with midnight show, $21.00 per person:
Includes all items 1 thru 8, plus Hotel Sahara's midnight show with two drinks in the Congo Room starring Totie Fields.

Advance Registration, with dinner show, $27.42 per person:
All items 1 thru 8, plus Hotel Sahara's Dinner Show, no drinks, in the Congo Room starring Totie Fields.

Mail your SAROC Advance Registration check now to SAROC, P. O. Box 945, Boulder City, Nevada 89005, must be received before 15 December 1974.

Full refund on advance registration if written request is received in SAROC, P. O. Box 945, Boulder City, Nevada before 2 January 1975.

Special airfares via United Airlines round trip to Las Vegas, Nevada from selected cities, includes three nights accommodations, SAROC Advance Registration, Dinner Show, Tax and Gratuity. Request complete details from SAROC, P. O. Box 945, Boulder City, Nevada 89005.

Call toll free 800-634-6666 for Del Webb's Hotel Sahara accommodations, for SAROC special room rate of $15.00 per night, plus room tax, single or double occupancy, effective January 2-6, 1975.
amateur radio's only air mail twice monthly newsletter

a new standard of excellence in news reporting for today's involved amateur

1 year - 24 issues - $12.00

HR Report Greenville, NH 03048

Think of it as the best tester in your bag. Only $299

Now you can get a high performance Model 8000A Digital V.O.M. from Fluke, America's foremost maker of quality digital multimeters, especially designed for TV, radio, stereo and audio service. No other digital V.O.M. gives you the resistance range to check breakers and switches, the high resolution voltage to look at emitter base and other transistor voltages, excellent ac accuracy and full accuracy with a 30 second warm-up. Measures in 26 ranges 100 µV to 1200 V, 0.1 a to 2A, and 100 miliA to 20 meg with a basic dc accuracy of 0.1%. Full year guarantee. Low cost options include rechargeable battery pack, printer output, deluxe test leads, HV, RF & 600-amp ac current probes, carrying case, and rack mount. Unique self zero eliminates offset uncertainty. Electronics securely mounted in high-impact case. Service centers throughout U.S., Canada, Europe and Far East for 48-hour turnaround repair.

P. O. Box 7428, Seattle, Washington 98113.

Get all the details from your nearest Fluke sales office. Dial toll-free 800-426-0361 for address of office nearest you.

YOU ASKED FOR IT!

ECM-58 FM Modulation Meter
Only $99.95 less batteries and crystals

- 0.75 kHz deviation peak reading
- Meets commercial requirements
- Operates 30-500 MHz
- Crystal controlled for easy operation
- Telescopic antenna

Write or call for complete info
Send check or money order for $99.95 plus $1.50 for shipping. Indiana residents add 4% sales tax. Crystals for 146.94 MHz $3.95. All other freq: $1.95

ECM Corporation
412 North Weinbach Ave.
Evansville, Indiana 47711
812-476-2121

Signal discriminators for superior CW reception through DRM & QRM. Plug in installation, one year warranty, & 15 day return privilege.

DE-101 for phones only 115 VAC $32.95
DE-101A for SPKR & phones 115 VAC $34.95
DE-101B for SPKR & phones 12-18 VDC $32.95
DE-103C for phones only 12-18 VDC $24.95
CR-1 Twisted 50nF Circuit Board $15.95
CR-2 Twisted Audio PKW amplifier BD $11.95
CR-3 Twisted DE-1018 Circuit Board $21.95

Add $2 ship. for AC models. $1 for DC models.

PRINTED CIRCUIT BOARDS
Available for any amateur project appearing with artwork in any amateur periodical.

Write for complete details and prices
D. L. "Mac" McClaren, WBURX
Printed Circuit Service for the Amateur
19721 Maplewood Ave. Cleveland, Ohio 44135
216-267-3263

$99.95
december 1974

More Details? CHECK-OFF Page 136
COMMUNICATIONS INTEGRATED CIRCUITS

IC Type	Description	Case ea.	Price
NA555 | Versatile Timer | 8-DIP | 0.99
NA555-2 | Dual Timer | 16-DIP | 1.55
NA370 | AGC/Squelch/VOX | 10-T05 | 1.20
NA371 | Versatile RF/IF | 10-T05 | 1.29
NA3018 | 4-Trans. Array | 12-T05 | 0.89
NA3026 | Dual Diff. Array | 12-T05 | 0.99
NA3086 | 5-Trans. Array | 14-DIP | 0.45
NA3036 | Dual Darlington | 10-T05 | 0.75
NA1595 | Analog Multiplier | 14-DIP | 1.90
NA8038 | VCO/Sine/Sq/Tri. | 14-DIP | 4.50
NA1596 | Bal. Mixer/Mod. | 10-T05 | 1.20
NA376 | Voltage Reg., Pos. Low Stability | 8-DIP | 1.25
NA723 | Voltage Reg., Pos./Neg. | 10-T05 | 0.99
NA741 | Op. Amp. | 8-DIP | 0.45
NA1130 | Stereo Preamp | 14-DIP | 0.99
NA1140 | Stereo Preamplifier | 14-DIP | 1.20
NA2111 | FM IF Strip/Quad. Detector | 14-DIP | 1.90
NA3075 | FM IF Strip/Det./Preamp | 14-DIP | 2.25

COD-PHONE

(408) 867-5900

AUTOMATIC RECORDER 24 HOUR COD TELEPHONE ORDER SERVICE

1. Name & Full Street Address (NO P.O. Boxes) Include ZIP
2. Your telephone number, including area code.
3. Your Order - Type, Price, Quantity.

C F P ENTERPRISES
866 RIDGE ROAD, LANSONG, N.Y. 14882

No other amplifier even comes close

ALPHA 374 by ETO

Here is the latest radio's only state-of-the-art broad-band linear amplifier.
- Instant Bandchange without tune-up
- Self-contained desk-top cabinet
- Eimac ceramic tubes (1200 watts rated dissipation)
Write today for complete details on this exciting new linear.
Office & Salesroom Hours by Appointment Only
24-Hour Phone: 607-533-4297
Send SASE for Monthly Listing of Used Equipment and Bargain Goodies

THE ELECTRONICS STORE
RMS CORPORATION
675A GREAT ROAD (ROUTE 119)
LITTLETON, MASS. 01460

7400 SERIES I.C.'s
MATRIC-KEYERS
HUSTLER ANT.
GOTHAM ANTENNAS
VHF ENG. KITS — VHF-HT-144 — VENUS SSTV
LARGE INVENTORY OF COMPONENTS
I-495 to Rte. 119, Groton Exit 19
2 Miles On The Right

CASH
AN/MRC-95, SPACE ELECTRONICS CO.
76 Brookside Drive, Upper Saddle River, N.J. 07458
(201) 327-7640

NASEM, Box Al, Cupertino, Ca. 95014

EXCLUSIVE 66 FOOT
75 THRU 10 METER DIPOLE
NO TRAPS — NO COILS — NO STUBS — NO CAPACITORS

Model 75-10HD $60.00 66 Ft 75 Thru 10 Meters Model 75-40HD $40.00 66 Ft 75 Thru 40 Meters
Model 75-20HD $50.00 66 Ft 20 Thru 40 Meters Model 80-40HD $42.00 69 Ft 80-40-15 Meter (CW)

More Details? CHECK-OFF Page 136
december 1974
FLEA MARKET

- RATES Commercial Ads 35¢ per word; non-commercial ads 10¢ per word payable in advance. No cash discounts or agency commissions allowed.
- COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue. Deadline is 15th of second preceding month.
- SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

MOTOROLA PORTABLES — Expert repairs, reasonable prices, fast turn-around time. More details and flat rate catalog FREE. Ideal Technical Services, 6663 Industrial Loop, Greendale, WI 53129.

SURPLUS TEST EQUIPMENT, VHF and microwave. Tape, toroids. SASE list. Typetronics, Box 8873, Ft. Lauderdale, Fl. 33310. Phone 913-262-6565.

MIDLAND 2M FM TRANSCEIVERS — THE BUY OF THE YEAR. Sales agent sample and display units available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue. Deadline is 15th of second preceding month.

TELETYPEWRITER PARTS, gears, manuals, supplies, tape, toroids. SASE list. Typetronics, Box 8873, Ft. Lauderdale, Fl. 33310. Buy parts, late machines.

3.5 MHz YU-DX CONTEST — 2100 GMT, 11th Jan. 80m CW only. YU stations call: "CQ TEST!" Rest of world calls: "CQ YU." Exchange consists of RSTI-QSO number, starting 001. Only one contact with the same station is permitted. Categories: Single operator, multi operators. Club stations multi in any case. Log date, time in GMT, call sign stn. wkd, exchange controls, country/YU prefix/if new multiplier/and points. Summary sheet must include signed usually used declaration that station has been operated in accordance with "ham spirit" amateur radio regulations and contest rules. Logs must be postmarked before 15th March to: YU-DX Club SRJ, P. O. Box 48, 11000, Belgrade, Yugoslavia.

PLAY CHESS. Radio Amateur's Chess Players Net 3928 kHz daily, 7:30 p.m. Eastern Time, Saturdays, Sundays, Holidays 11:00 a.m. NE USA. Details from W2OLT.

QSL's, Sample catalog 20¢. N & S Print, P. O. Box 11184, Phoenix, Ariz. 85061.

WANTED: Information on CMC model 706B frequency-period counter (NIDT optional feature). Operating or maintenance manual would be especially welcome, but if you only have a schematic diagram, that would be a big help. Will copy and return. Must have operating or maintenance info on LAC-2 uhf signal generator. Jim Fisk, W1DNY, Ham Radio Magazine, Greenville, NH 03048.

MANUALS for most ham gear made 1940/65, some earlier. Send SASE for specific quote. Hobby Industry, W0JJK, Box H-864, Council Bluffs, Iowa 51501.

THE VETERAN WIRELESS OPERATORS ASSOCIATION is planning a celebration and banquet in New York City on February 22, 1975, observing the Golden 50th Anniversary of the original organization of wireless operators. All veteran wireless operators are invited to participate in this gala affair. For information — write W.V.O.A., Inc., Post Office Box #35, Church Street Station, New York, New York 10006.

WANTED: GENERAL CLASS (or higher) hams to join 4500 member Morse Telegraph Club. Hunders of hams already belong. Send modest $ annual dues (includes subscription to great slick paper newspaper "Dots and Dashes") to GST A. J. Long, 520 West Schwartz Street, Salem, Ill. 62881 for membership card and assignment to nearest chapter.

MERRY XMAS and HAPPY NEW YEAR from W3CVU. First amateur in the world awarded the RSGB Empire Award on two way SSB in 1962.

EXCLUSIVELY HAM TELETYPE 21st year. RTTY Journal, articles, news, DX, VHF, classified ads. Sample 30¢. $3.00 per year. Box 837, Royal Oak, Michigan 48068.

2 METER FM MOBILE "CARTOP" ANTENNA. Unique, secure, compact, non-external mount. No magnets, no drilling holes. XYL will approve. Outperforms trunk lid mounted antennas. Tuneable 1:1 SWR. Money-back guarantee. $16.95 plus $1.00 shipping. (Conn. resi- dents add State Tax.) Marsh Devices, P. O. Box 154, Old Greenwich, Connecticut 06870. Literature available.

PC's, Send large S.A.S.E. for list. Semtronics, Rt. 3, Box 1, Bellaire, Ohio 43906.

QSL's samples 20¢. John Hull Printing, Rte. 6, Box 41, Duluth, Minn. 55804.

NEED PARTS? We carry parts for most ham gear for trade. We have it or can get it. Also we want to buy or trade. We have ex. Signal/One equipment and test equipment. Mot., GE and RCA etc. No doggies please. CAL-COM Systems, Inc., 701-51A Kings Row, San Jose, Calif. 95112. Tel. 408/998-4444.

TELL YOUR FRIENDS about Ham Radio Magazine.
ONLY "THE FM PEOPLE" CAN PROVIDE YOU WITH THE BIG 4 IN CRYSTAL FREE FM OPERATING. TAKE A LOOK FOR YOURSELF AND NEVER BUY CRYSTALS AGAIN.

ICOM IC-230
- Compact only 2 1/4" x 6 1/4" x 9 1/4"
- 30 kHz channel capability starting at 146.01 to 147.99.
- 600 kHz repeater offset.
- 10 watt output.
- Helical front end.
- $489.95 List

CLEGG FM27B
- Crystiplex coverage any freq. 146-148 MHz
- 25 watts output
- Exclusive anti theft lock.
- Many special package deals available.
- List $479.95

The SPEC II 2 meter transceiver combines the RP MFA-22 synthesizer with a transceiver circuit board of "Motorola Quality". With the SPEC II's 400 channel capability you are not limited to only 30 kHz channels or 600 kHz spaced repeaters. Write for complete specs on the only radio of its kind made and delivered at this time. $489.00

MFA-22 SYNTHESIZER BY RP
- Full 2mtr band coverage
- Exceptionally clean output
- Both simplex & repeater modes
- Adaptable to any radio
- 1 year warranty

Basic Model $325.00

SO HERE'S YOUR CHANCE TO BE YOUR OWN SANTA THIS CHRISTMAS. COME UP OR TRADE UP TO THE WORLD OF CRYSTAL FREE OPERATING.

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.

STORE HOURS: Mon.-Thurs. 9:30-6:00, Fri. 9:30-8:00, Sat. 9:30-3:00. Closed Sun. & Holidays. INQUIRIES WITHOUT ZIP CODE OR CALL . . . NO ANSWER

WANTED: Good used FM & test equipment. No quantity too large or small. Finders fees too.

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

98 december 1974

More Details? CHECK-OFF Page 136
FREE IC

With Every $10 Order

- **REDUCE YOUR PROJECT COSTS**
- **MONEY-BACK GUARANTEE**
- **24-HOUR SHIPMENT**
- **ALL TESTED AND GUARANTEED**

TRANSISTORS:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
</table>
| 2N3653 | TYPE RF Amp & OSC to 1GHz (pl. 2N918) | $6.00 |}
| 2N3585 | TYPE Gen Purpose High Gain (TO-106) | $6.00 |}
| 2N3691 | TYPE GP Amp to 25mA and 50MHz | $6.00 |}
| 2N3805 | TYPE RF Pwr Amp 1W @ 100-500MHz | $1.50 |}
| 2N3901 | TYPE GP Amp & Sw to 100mA and 30MHz | $6.00 |}
| 2N3904 | TYPE GP Amp & Sw to 100mA (TO-92) | $5.00 |}
| 2N3918 | TYPE RF Pwr Amp 3.5W @ 3.30MHz | $3.00 |}
| Assy. | NPN GP TYPES, 2N3656, 2N3641, etc. (15) | $2.00 |}
| PNP | 2N3638 TYPE Gen Purpose Amp & Sw | $4.00 |}
| 2N2429 | TYPE Low Noise Audio Amp 1uA to 50mA | $4.00 |}

FET's:

- **N-CHANNEL (LOW NOISE):**
 - 2N4415 TYPE RF Amplifier to 450MHz (TO-72) | $2.00 |
 - 2N4548 TYPE RF Amp to 450MHz (plastic 2N4418) | $3.00 |
 - 2N1563 TYPE Gen Purpose Amp & Sw (TO-72) | $3.00 |
 - 2N4091 TYPE RF Amp & Switch (TO-72) | $3.00 |
 - 1TE4868 TYPE Ultra Low Noise Audio Amp | $2.00 |
 - Assy. | RF & GPFET's, 2N1563, 2N4868, etc. (8) | $2.00 |

- **P-CHANNEL:**
 - 2N3430 TYPE Gen Purpose Amp & Sw (TO-72) | $3.00 |
 - M104 TYPE MOSFET (Diode protected) 0.3pF | $3.00 |

LINEAR IC's:

- 555X Timer 1-μs 1hr. Diff. pinout from 555 (DIP) | $9.00 |
- 790 Popular OP AMP (DIP/TO-5) | $3.50 |
- 723 Voltage Regulator 3 30 V DC 250mA (DIP/TO-5) | $3.00 |
- 739 Dual Low Noise Audio Preamp/OP AMP (DIP) | $1.00 |
- 741 Free, Compensated OP AMP (DIP/TO-5/MINI-DIP) | $1.50 |
- 2556 Dual 555 Timer 1 usec to 1hour (DIP) | $1.50 |
- LM305 Positive Voltage Regulator (TO-5) | $1.25 |
- MC14518 Dual 741 OP AMP (DIP) | $1.50 |
- Assorted Linear IC's (741/709/723, etc. (4) | $2.00 |

DIODES:

- 1N514 TYPE Gen. Purpose 100V/10mA | $1.00 |
- 1N3606 TYPE HP Special 75V/200mA | $6.00 |
- 1N4608 TYPE GP & SW, 80V/500mA | $6.00 |
- 1N3893 TYPE RECTIFIER Stud Mount 400V/12A | $2.00 |
- 1N749 ZENER 4.3 Volt 400mA | $3.00 |
- 1N753 ZENER 6.2 Volt 400mA | $4.00 |
- 1N755 ZENER 7 Volt 400mA | $4.00 |
- 1N757 ZENER 8 Volt 400mA | $4.00 |
- 1N758 ZENER 10 Volt 400mA | $4.00 |
- 1N965 ZENER 15 Volt 400mA | $4.00 |
- 1N968 ZENER 20 Volt 400mA | $4.00 |
- Di Varactor 50 50 W Output @ 30 250 MHz, 7.70 pF | $5.00 |
- F Varactor 13 W Output @ 100 500 MHz, 5.90 pF | $4.00 |

MAIL NOW! With every order of $10 or more, postmarked prior to 12/31/74. FREE 739 or 749 Low Noise Dual OP AMP included—$1 VALUE.

ORDER TODAY—All items subject to prior sale and prices subject to change without notice. DATA SHEETS included with all items.

WRITE FOR FREE CATALOG offering hundreds of semiconductor parts not listed here. Send 10¢ stamp.

TERMS: All orders prepaid. We pay postage. $1.00 handling charge on orders under $10. Calif. residents add 6% sales tax.

ADVA ELECTRONICS

BOX 41448-P, WOODSIDE, CA 94062

Tel. (415) 851-0455
CRYSTAL FILTERS and DISCRIMINATORS

9.0 MHz MODELS

9.0 MHz FILTERS
- XF9-A: 2.5 kHz SSB TX $31.95
- XF9-B: 2.4 kHz SSB RX $45.45
- XF9-C: 3.75 kHz AM $48.95
- XF9-D: 5.0 kHz AM $48.95
- XF9-E: 12.0 kHz NBFM $48.95
- XF9-M: 0.5 kHz CW $34.25
- F-05: Hc25/u Socket .50

9.0 MHz DISCRIMINATORS
- XD9-01: $24.10
- XD9-02: $24.10
- XD9-03: $24.10

9 MHz CRYSTALS (Hc25/u)
- XF900: 9000.0 kHz Carrier $3.80
- XF901: 8998.5 kHz USB $3.80
- XF902: 9001.5 kHz LSB $3.80
- XF903: 8999.0 kHz BFO $3.80

10.7 MHz MODELS

10.7 MHz FILTERS
- XF107-A: 14kHz NBFM $40.60
- XF107-B: 16kHz NBFM $40.60
- XF107-C: 32kHz WBFM $40.60
- XF107-D: 38kHz WBFM $40.60
- XM107-S04: 14kHz 4 POLE $18.95
- XF102: 14kHz 2 POLE $7.95

10.7 MHz DISCRIMINATORS
- XD107-01: ±30kHz NBFM $22.10
- XD107-02: ±50kHz WBFM $22.10

10.7 MHz CRYSTALS (Hc25/u)
- MMv432: 140-153 MHz 20 watts max. $75.20
- MMv1296: 420-459 MHz 14 watts typ. $85.95

VHF CONVERTERS UHF

RF Freq. (MHz) ±
- 50-54
- 28-32
- 2.5dB
- 30db
- $53.70

IF Freq. ±
- 144-148
- 28-32
- 2.8dB
- 30dB
- $53.70

N.F. (typical)
- 2.5dB
- 28-32

Nom. Gain
- 50-54
- 28-32
- 30dB
- $53.70

Nom. Power
- 12V D. C.

Power 12V D. C.

 Very low N. F. units on special order.

VHF VARACTOR TRIPLERS UHF

MMv 432
- INPUT: 140-153 MHz
- 20 watts max.
- OUTPUT: 420-459 MHz
- 14 watts typ.
- Size: 4½" x 2½" x 1½" + connectors
- High(er) Power units MMv432H and MMv1296H available.
- $75.20

MMv 1296
- INPUT: 420-459 MHz
- 20 watts max.
- OUTPUT: 1260-1377 MHz
- 12 watts typ.
- Size: 4½" x 2½" x 1½" + connectors
- $85.95

All of us at SPECTRUM INTERNATIONAL
wish our customers and readers
a Very Happy Christmas
and a Successful New Year
FREE BARGAIN CATALOG. LEDS, transistors, IC's, PITS, relays, unique micro miniature components, misc. Chaney's, Box 15431, Lakewood, Colo. 80215.

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. MIS 384.

CANADIANS — OR ANY — HW100, mike, 117VAC ground supply. And a spkr (mint condition) $340.00; Simpines semimeter $35.00 offer — you ship, Kevin Doyle, R. R. #1, Green Bay Road, Westbank, B. C. V2H 2A0.

QRP TRANSMATCH for HW7, Ten-Tec and others. Send stamp for details to Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

MUST SELL: Motorola HT-200 19/79, 2 NICADs, charger, collapsible whip, antenna patchcord. $185 or R. T. Ron Law, WA3PXM, RD 1, Box 279, Hartley, DE. 19953.

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Braintree, Mass. 02184.

FREE: 12 Extra crystals of your choice with the purchase of a new Regency HR-28 at $229. Send cashier's check or money order for same-day shipment. For equally good deals on Collins, Drake, Yaesu, Kenwood, Ten-Tec, Swan, Atlas, Standard, Clogg, Icon, Tempo, Venus, Alpha, Hy-Gain, CushCraft, Mosley, and Hustler, write to Hoosier Electronics, your ham headquarters in the heart of the Midwest. Become one of our many happy customers. Write or call today for our low quote and try our individual, personal service. Hoosier Electronics, R. R. 25, Box 403, Terre Haute, Indiana 47802. (812)-894-2397.

QB'S — BROWNIE W3CJI — 3035B Lehigh, Allenstown, Pa. 18103. Samples with cut catalog. $1.00.

SB-300, all filters, 150. HRO-50, 1.8-30 MHz, $140. Drake MN-4, $65. CV-89A RTTY TV, $55. John Limbach, WB4VUP, Box 462, Shalimar, Fla. 32579.

MUST SELL: EVERYTHING! SASE please. WA7DKZ, 508 Clark, Laramie, Wyo. 82070.

NOW PAYING $2000.00 and up for ARC-94/5187 ARC-102/618T. $1200.00 and up for ARC-51BX. $1500.00 and up for 490T-1 antenna couplers. We also need these control boxes — C-6287/ARC-51BX, C-6476/ARC-51BX, C-714E2. We also need R-1051 receivers, RT-562/GRC-106 transceivers. We buy all late aircraft and ground radio equipment. We buy all aircraft and ground radio equipment. We pay all shipping postpatd. Fremerman, 4041 Central, Kansas City, Mo. 64111.

OSCAR SLIDES set of 5. $1.25, launch and spacecrafts. Proceeds. AMAT. K6PGX, P. O. Box 463, Pasadena, CA 91102.

USED MYLAR TAPES — 1800 foot. Ten for $5.50 postpaid. Fremerman, 4041 Central, Kansas City, Mo. 64111.

SELL GALAXY V, AC, DC, good conds; no mods. $325. W7CFL, 700 Park Lane, Pocatello, ida. 83201. 208-237-0379.

TELETYPE EQUIPMENT FOR SALE for beginners and experienced operators. RTTY machines, parts, gears. Send us a list of your teletype needs. Atlantic Surplus Sales Co., 1902 Mermaid Ave., Brooklyn, New York 11224. Call us first (212) 266-2629.

NEW CANADIAN MAGAZINE. "Electronics Work Shop". $5.00 yearly, sample $1.00. ETCOB, Box 741, Montreal, H3C 2V2.

COOL 30-0-30 V - 2.5 AMP SHIELDED TRANSFORMER — NEW — AMERICAN MADE YES 3 pound with 1/2" deep core vertical end bell mount. 1 1/4" w. x 3" h. x 3 1/4" deep, with 6.3 V - 1A winding. $4.85 ppd.

NEW — IMPORTED MINI-METERS 500-0 14" square, 3/4" deep. Center zero plastic body fits 3/4" dia. or 3/4" x 3/4" opening. White scale can be rear lighted. Ideal for tuning null. $1.25 ppp.

NEW — UNUSED ORGAN MFR. SURPLUS AUDIO AMPLIFIER — Med. Power 4 1/4" x 6" P.C. PLUG-IN ASSEMBLY Uses 4 amp-70V Complimentary pair output transistors with 2nd set as drivers, 2 full wave power supply sections — need only 26 and 5V AC and signal. Complete Board/untested $4.80 ppp

INTEGRATED CIRCUITS
7400 33¢ ea. 7473 60¢ ea. 7474 Dual Op Amp $1.25 ea. 7475 90¢ ea. 723 Regulator $1.00 ea.

UNPOTTED TOROIDs — All toroids are center tapped, 88 MHY Price is a low 5 for $2.75 ppp

PRINTED CIRCUIT BOARD MATERIAL — ALL GI0 — Direct from the factory mfg. by Westinghouse. All board is 1/16" with 2 oz. copper. 3" x 3" $45¢ 3" x 6" 85¢ 6" x 6" $7.25 12" x 12" $6.00

All pdd. U.S.A.

VERTICAL MOUNT PC BOARD POTENTIOMETERS American made (CRL) high quality pots. Available in the following sizes: 25,000 ohms, 50,000 ohms, 100,000 ohms. Price is 5 for $1.00 pdd.

3 inch 4 ohm VC Square frame with 4 mounting holes. $1.20 each pdd.

PL-55 TYPE PHONE JACKS High quality American made jacks. 3/8" inch mounting with hex nut. Extends 1 1/8" behind the panel. Price: 50¢ each or 3 for $1.25 pdd.

ILLUMINATED ROCKER SWITCH American made UL approved. Rating: 125 Volt AC 3 Amp 125 Volt DC DPDT with a 6 volt illuminating bulb. Your choice of color. Red or White. Price is 80¢ each or buy 3 for $2.25 pdd. USA

9 PIN SOCKET — SNAP-IN MINIATURE for P.C. Board Model 222 $6 for $1.00 pdd.

m. weinschenker
K 3DPJ BOX 383 - IRWIN, PA. 15642
The Perfect Holiday Gift
Is The NEW HT-144B

TWO METER
FM PORTABLE

CRYSTAL SOCKETS INCLUDED!
IMPROVED TRANSMIT AUDIO!
UP TO 6 KC DEVIATION!
.35 uV SENSITIVITY OR BETTER!
.25 SQUELCH SENSITIVITY!
IMPROVED INSTRUCTION MANUAL!
F.C.C. TYPE APPROVAL PENDING!

KIT ONLY $129.95 COMPLETE less batteries
AND for a limited time only we will furnish
ONE SET OF CRYSTALS FREE!
Your choice of 94-94; 52-52; or 34-94.

IT'S AN EVEN BETTER BUY NOW!!!!!!!

ACCESSORIES: “Rubber Duckie” Antenna (BNC Connectors) $12.95
Nicad Battery Charger $ 4.95
Sealed 12v Nicad Battery Pack $29.95

Please include $1.00 for Shipping and Handling - N.Y.S. residents add sales tax

Wardest Season's Greetings
from
BOB BROWN, W2EDN DAVE AGARD, K2TOS
WILL KUPFRIAN, W2BVA

Vhf engineering
DIV. of BROWNIAN ELECTRONICS CORP.
320 WATER ST. P.O. BOX 1921 BINGHAMTON, NY 13902 607-723-9574
STOLEN Sept. 26th. Regency HR2B. Serial 49-01726. Engraved on left side of chassis N. J. plate CFH-6 W2EKB. If found contact Cherry Hill, N. J. Detective Bureau or Fred Holler, W2EKB, Tel. 609-795-0577, Cherry Hill, N. J.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Estes Engineering. 543-H West 184th, Gardena, California 90248.

FOR SALE - Globeking 500C transmitter with built-in VFO in good condition. KDYBC, John H. Smith, P. O. Box 156, LaCygne, Kansas.

FOR SALE: Swan 350C & 117XC. $325. Includes PP & calibrator. Also Delco CVT-1 2m FM converter to ARRL specs. with cont. head. $70. TH3 Jr., EV 619. You pay ship. Randy, W8GEB, 815-399-7277.

SELL AN/URR-27A VHF RECEIVER. $160.00. AN/URR-35A UHF receiver, $125. TED-4 transmitter $100.00. All near new condition. James Walter, 2697 Nickel, San Pablo, Ca. 94806.

1296 MHZ GEAR — Oscillator, multiplier and power amp. Extra tubes and parts. Navy TCS xmitter and P.S. modif. for 100W. 1.5-12 MHz. All military gear. Send stamp for full list. Gordon Hammon, Windsor Drive, Amherst, New Hampshire 03031.

BUY—SELL—TRADE. Write for monthly mailer. Give name, address, call letters, complete stock of major brands new and reconditioned equipment. Call us for best deals. We buy Collins, Drake, Swan, etc. SSB & FM. Associated Radio, 8012 Conser, Overland Park, Kansas 66204. 913-381-5901.

QSLs. SECOND TO NONE. Same day service. Samples airmailed 25¢. Include your call for free decal. Ray, K7HLR, Box 331, Clearfield, Utah 84015.

VHF ACTIVITY WEEK. Dec. 23, 1974 thru Jan. 1, 1975. Contacts on any band above 50 MHz. Work the club station and 5 club members and receive a Knight Raider Award certificate. Those who work at least 10 of the 16 municipalities in Passaic County will receive a Passaic County Award certificate. Stations within Passaic County are eligible for both awards. One dollar must be sent for each certificate. Knight Raiders VHF Club, P. O. Box 1054, Passaic, New Jersey 07055.

FOR SALE: Drake R4-C, used only 20 hours, $375. WB4 SFD, 1139 Knollwood Lane, Kingsport, TN 37660.

YOUR AD belongs here too. Commercial ads 35¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.
The DELA-BRIDGE I

Analyzes antenna characteristics, simplifies adjustment.

The DELA-BRIDGE I, when tied into your grid dip meter or low power exciter, quickly and easily analyzes: (1) Existing antenna & feed line characteristics, (2) Tuning & loading coils, (3) Filter & interstage coupling networks. Direct readout then lets you adjust for optimum performance.

DELA-BRIDGE I Specifications:

| Frequency Range: 50 KHz to 250 Mhz |
| Resistance Range: 0 to 500 Ohms, balanced or unbalanced, log scale |
| Signal Requirements: 1 MW to 2 Watts maximum from any grid dipper or signal generator |
| Power Requirements: Internal 9V battery |
| Accuracy: ±3% at 50 Ohms |

TO READ & INTERPRET: Complete null and reactance determination—not frequency sensitive—internal integrated circuit amplifier allows use with low signal inputs.

DELA-BRIDGE I guaranteed for 1 year by Delavan Electronics, Inc.*

Delavan Electronics' new Amateur Products Group might be a new name to you, but we're no stranger to amateur radio operations and equipment. Delavan is well funded and deeply involved in aerospace and industrial controls. Delavan stands behind its products 100% and guarantees the DELA-BRIDGE I unconditionally for 1 full year.

Order your DELA-BRIDGE I today!

Gentlemen,

☐ Please send me one DELA BRIDGE I @ $39.95 completely assembled & tested
☐ Please send me one DELA BRIDGE I ready to assemble Kit @ $27.95

Arizona residents add 4% sales tax. Out-of-state residents add $2.50 to cover handling and airmail postage.

LOW PRICES
ON POPULAR COMPONENTS

IF FILTERS
- Monolithic crystal filters at 10.7 and 16.9 MHz
- Ceramic filters at 455 KHz

SEMICONDUCTORS
- VHF power transistors by CTC/Varian
- J and MOS FETS
- Linear ICs — AM/FM IF, Audio PA
- Bipolar — RF and AF popular types

INDUCTORS
- Molded chokes
- Coil forms — with adjustable cores

CAPACITORS
- Popular variable types

QUALITY COMPONENTS
- No seconds or surplus
- Name brands — fully guaranteed
- Spec sheets on request

GREAT PRICES
- Price breaks at low quantities
- Prices below large mail-order houses

WRITE FOR CATALOG 173
AMTECH, INC.

P. O. BOX 624, MARION, IOWA 52302
(319) 377-7927 or (319) 377-2638

RK-4 PLUG-IN
SCANNER MODULE

FEATURING INSTANT
PRIORITY CHANNEL
SEARCHBACK WITH
MEMORIZED RETURN TO
THE ACTIVE CHANNEL.

Simple plug-in and hookup. Fits most all Regency radios — HR-2, HR-2A, HR-2B, HR-212, HR-220, MT-15, MT-25, MT-20, Aquaphone, BTH-200 series and BTL-300 series. Ideal for hams who are policemen, firemen, repeater controllers, MARS operators, or monitor your own private channel with the priority searchback. Complete w/instruction manual — $24.95 plus $5.50 postage
Kit form w/instruction manual — $17.95 plus $5.50 postage
Four micro-LED channel display kit — $3.00

WRITE FOR INFORMATION:
R & K PRODUCTS
4295 KENTRIDGE S.E., GRAND RAPIDS, MI. 49508
PHONE EVENINGS 616-455-3915

QUALITY, VALUE, INTEGRITY,
VARIETY AND FAST PPD. DELIVERY.

WANT SOME? Try TRI-TEK

10c Stamp For Latest Flyers Full of New and Surplus Electronics Bargains.

Tri-Tek, Inc. Box 14206, Phoenix, Az. 85063
Store Location: 6522 N. 43rd Ave., Glendale, Az.

HERE IS AN EXCELLENT CAREER OPPORTUNITY FOR A LICENSED RADIO AMATEUR.
WE ARE SEEKING CANDIDATES WITH ANTENNA DESIGN EXPERIENCE OR A GOOD PRACTICAL RF BACKGROUND TO FILL A POSITION IN OUR ANTENNA DESIGN AND TEST LAB.

CUSH CRAFT
621 HAYWARD STREET
MANCHESTER, NH 03103

104 december 1974
More Details? CHECK—OFF Page 136
Like everything else in these mixed-up times, the price of Ham Radio, whether by subscription or newsstand, is going to be raised.

You can SAVE by subscribing or extending your existing subscription at today’s low rates, but you must do it before the end of the year when our new rates take effect.

Remember, you can save even more with our low priced three year subscriptions where you get three years for the price of two.

Please enter my

☐ new ☐ extension subscription
☐ 1 YEAR $ 7.00 These rates expire
☐ 3 YEARS $14.00 Dec. 31, 1974
☐ LIFE $99.00

Name__________________________Call__________________________
Address__________________________
City__________________________Zip__________________________

DADE RADIO CLUB
P.O. Box 73, B.A.
Miami, Florida 33152

DADE RADIO CLUB
SLEP SPECIALS

TS-413/U SIGNAL GENERATOR 75kHz TO 40 MHz IN 6 BANDS, PRECISE CALIBRATION FROM 1 MHz CRYSTAL OSCILLATOR, HAS 9% MODULATION METER, CV OR AM 400/1000 VARIABLE 0-50%. ALSO RF LEVEL METER 0 TO 1OV, 115V/60HZ. IDEAL FOR AMATEUR, MARINE, AIRCRAFT AND HOBBIIST FOR 1F AND RECEIVER ALIGNMENT OR DEVELOPMENT WORK. $95.00.

SG-3/1 FM SIGNAL GENERATOR BY MEASUREMENTS CORP. COVERS 50MHz TO 1000MHZ IN 3 BANDS, 01 TO 100MHz/V CALIBRATED OUTPUT FULLY METERED, AN EXCELLENT SIGNAL GENERATOR FOR FM ALIGNMENT IN THE AMATEUR, MARINE, AND COMMERCIAL FIELD. 115V/60HZ, AND COMMERCIAL FIELD. 115V/60HZ, AND COMMERCIAL FIELD. 115V/60HZ. $100.00.

ALL-BAND ANTENNA CONNECTOR

ALL-BAND ANTENNA CONNECTOR

RADIO MAN WANTED PART TIME

New England News & Photo Company, located in Boston, is looking for a person possessing a Second Class license or better to do occasional work (at your workshop) for $10 per hour. You must be located within 20 miles of Boston and be competent on scanners and two-way radios. Also, you must have up-to-date test equipment and be innovative and skilled in mobile applications and antenna theory. This would be only part time work (about 20 hours a month at your convenience, weekends & nights are ok).

Please reply with a resume or letter to New England News & Photo, P. O. Box "Y", Brookline, Mass. 02146.
YOUR GEAR WANTED!

WE PAY TOP DOLLAR OR TRADE!

Tell us what YOU have. Here's a partial list of what we want.

- RT-742/ARC-518X and control boxes...
- RT-743/ARC-512A
- RT-662/GRC-106...
- RT-698/ARC-102...
- RT-823/ARC-131 or Magnavoxy FM-622...
- RT-857/ARC-134...
- RT-859/APX-791...
- RT-2467/VRC...
- RT-369A/VRC...
- RT-390A/URR...
- RT-648/ARC-94...
- AN/TRC-68...
- AN/VRC-24...
- AN/URC-9...
- CU-1669/ARH...
- 490-T...
- 618-T...
- C-6287/ARC-518X...
- Wilcox 807...
- AN/PRC-25-T4...
- AN/ARC-114, 115, 116...

We buy all types of military test equipment, radios, etc. Do you have a TS-683/TSM Crystal Impedance Meter, H-P, or Tektronix equipment?

If you hate money, we'll trade for NEW ham gear!

But if you love that green stuff, or even like it a little bit — LET'S TRADE YOUR EQUIPMENT FOR OUR DOUGH!

COLUMBIA ELECTRONICS SALES, INC.

Box 9266-C, No. Hollywood, CA. 91609

Phone: (213) 764-9030

CURTIS KEYER

$24.95?

A remarkable new CMOS IC, created specifically for the CW op brings Curtis keying within everyone's reach. One 16 pin IC contains all features of the EK-420 (Oct. '73 QST review) — semi-completing dots, dashes and spaces; iambic option; dot memory; weight control; key debouncing; sidetone and almost zero power drain. You add pots, pwr supply, speaker, chassis and customize as you like.

8043-1 ... Type 8043 IC, PCB, socket and manual...

8043-2 ... Above plus partial kit excluding pots, spkr., chassis, jacks, etc. Solid state...

$49.95

Postage anywhere in U.S.A. by air...

$1.50

CURTIS ELECTRO DEVICES, INC.

Box 4090, Mountain View, CA 94040

WORLD QSL BUREAU

THE ONLY QSL BUREAU to handle all of your QSLs to anywhere; next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 6c each.

2500 Panama Ave., Richmond, CA USA 94804

For Your Operating Pleasure — A NEW TUNABLE ACTIVE FILTER

How about a tunable active filter for all modes of operation — CW, RTTY, AN, SSB? We’ve evolved PEAK-N-NOTCH based upon the latest filter theory and integrated circuit technology to yield unparalleled performance. A single knob tunes a deep rejection notch or a high selectivity peak over the 5 to 5000 Hz band separating desired from undesired signals by more than 30 dB. Q of the filter may be adjusted to meet your individual preference.

RADIATION DEVICES CO., P. O. Box 8450, Baltimore, MD 21234
Thousands...

of Drake TR-3 and TR-4 Sideband Transceivers are giving dependable service...

many of them since 1963!

And now the Drake TR-4C is already surpassing their record!

Now at your dealer's

R. L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 Telex: 288-017
antennas and transmission lines

general

Antenna dimension (HN) WA9JMY p. 66, Jun 70
Antennas and capture area K6MO p. 42, Nov 69
Antenna and control-link calculations for repeater licensing W7PUG p. 58, Nov 73
Short circuit W5JL p. 59, Dec 73
Antennas and feedline facts and fallacies W5JJ p. 24, May 73
Antenna design, programmable calculator simplifies WA3DVO p. 70, May 74
Antenna gain, measuring K6JYO p. 26, Jul 69
Antenna switching, solid-state W2EEY p. 30, Nov 68
Bridge for antenna measurements, simple W2CTK p. 34, Sep 70
Cubical quad measurements W4YM p. 42, Jan 69
Dipole center insulator (HN) WA1ABP p. 69, May 69
Diversity receiving system W2EEY p. 12, Dec 71
Dummy load and rf wattmeter, low-power W2OLU p. 56, Apr 70
Dummy loads, experimental W8YFB p. 36, Sep 68
Dummy load, low-power vhf W8DQJ p. 40, Sep 73
Effective radiated power (HN) VE7CB p. 72, May 73
Feedpoint impedance characteristics of practical antennas W5JJ p. 50, Dec 73
Filters, low-pass, for 10 and 15 W2EEY p. 42, Jan 72
Gain vs antenna height, calculating WB8IFM p. 54, Nov 73
GDO, new uses for K2SQ G0, p. 48, Dec 68
Grounding, safer (letter) WA5KTC p. 59, May 72
Ground rods (letter) W7FS p. 66, May 71
Ground systems, vertical antenna W7LR p. 30, May 74
Headings, beam antenna W6FFC p. 64, Apr 71
Hook, line 'n sinker (HN) WA4NED p. 76, Sep 68
Horizontal or vertical (HN) W7YV p. 62, Jun 72
Impedance measurements, nonresonant antenna W7CS p. 46, Apr 74
Insulators, homemade antenna (HN) W7ZC p. 70, May 73

Isotropic source and practical antennas K6FD p. 32, May 70
Measurement techniques for antennas and transmission lines W4OQ p. 36, May 74
Measuring antenna gain K6JYO p. 26, Jul 69
Mobile mount, rigid (HN) VE7ABK p. 69, Jan 73
Power in reflected waves of Woods p. 49, Oct 71
Reflected power, some reflections on VE3AAX p. 44, May 70
Reflectometers K12ZW p. 65, Dec 69
Rf current probe (HN) W6PHP p. 76, Oct 68
Rf power meter, low-level WSOWF p. 58, Oct 72
Sampling network, rf — the milli-trap W6QJW p. 34, Jan 73
Smith chart, how to use W1DHTY p. 16, Nov 70
Correction W7IUP p. 76, Dec 71
Standing-wave ratios, importance of W2HB p. 26, Jul 73
Correction (letter) p. 67, May 74
Time-domain reflectometry, practical experimenter's approach WA5PIA p. 22, May 71
T-R switch K3KMO p. 59, May 72
Voltage-probe antenna W1DTY p. 20, Oct 70

high-frequency antennas

All band antenna portable (HN) W2INS p. 68, Jun 70
All-band phased-vertical WA7GXO p. 32, May 72
Antenna, 3.5 MHz, for a small lot W6AGX p. 28, May 73
Antenna potpourri W3FQJ p. 54, May 72
Antenna systems for 80 and 40 meters K5KA p. 55, Feb 70
Army loop antenna — revisited W3FQJ p. 59, Sep 71
Added notes W3FQJ p. 64, Jan 72
Beam antenna, improved triangular-shaped W6DL p. 20, May 70
Beam for ten meters, economical W1FFW p. 54, Mar 70
Beverage antenna W3FQJ p. 67, Dec 71
Big beam for 10 meters VE1TG p. 32, Mar 68
Botbail curtain array, forty-meter VE1TG p. 58, Jul 69
Coaxial dipole, multiband (HN) W4BDK p. 71, May 73
Compact antennas for 20 meters W4ROS p. 38, May 71
Converted-vee, 80 and 40 meter W6JKR p. 18, Dec 69
Cubical quad antenna design parameters K60PZ p. 55, Aug 70
Cubical-quad antennas, mechanical design of VE3II
Cubical-quad antennas, unusual W1DYT
Curtain antenna (HN) W4ATE
Dipole, all-band tuned Z56BT
Dipole antennas on non-harmonic frequencies (HN) W2CTK
Dipole beam W3FQJ
Dipole pairs, low SWR W6FPQ
Dipole sloping inverted-vee W6NIF
Double bi-square array W6FFF
Dual-band antennas, compact W6SAI
DX antenna, single-element W6FHM
Performance (letter) p. 65, Oct 73
Folded mini-monopole antenna W6SAI
Ground-plane, multiband (HN) JA1QY
Groundplane, three-band LA1EI
Correction (letter) p. 91, Dec 72
Footnote (letter) p. 65, Oct 72
High-frequency amateur antenna W2WR
High-frequency diversity antennas W2WR
Horizontal antennas, optimum height for W7AR
Horizontal antennas, vertical radiation patterns WA9QRY
Inverted-vee antenna (letter) W6GQF
Inverted-vee antenna, modified W2K1W
Log-periodic antenna, 14, 21 and 28 MHz W4AEO
Log-periodic antennas, 7-MHz W4AEO
Log-periodic antennas, feed system for W4AEO
Log-periodic antennas, vertical monopole, 3.5 and 7.0 MHz W4AEO
Log-periodic beam, 15 and 20 meters W4AEO
Log periodic feeds (letter) W4AEO
Log-periodic, three-band W4AEO
Long-wire multiband antenna W3FQJ
Low-mounted antennas W5FQJ
Mobile antenna, helically wound ZE6JP
Mono-loop antenna (HN) WBBW
Multiband dipoles for portable use, W6SAI
Quad antenna, multiband DJ4VM
Receiving antennas K6ZQQ
Simple antennas for 40 and 80 W5RUB
Simple 1, 2- and 3-band antennas W9EQQ
Sloping dipoles W5RUB
Performance (letter) W4YOT
Small-loop antennas W4YOT

Stub bandswitched antennas W2EY
Suitcase antenna, high-frequency VK5BI
Tailoring your antenna, how to KH6HDM
Three-band ground plane W6HPH
Triangle antennas W3FQJ
Triangle antennas W6KIW
Triangle antennas (letter) K4ZZV
Triangle beams W3FQJ
Unidirectional antenna for the low-frequency bands GW3NJY
Vertical antenna radiation patterns W7LR
Vertical antenna, low-band W4YIB
Vertical antenna, three-band W9BQE
Vertical antennas, improving performance of K6FD
Vertical antennas, performance characteristics W7LR
Vertical beam antenna, 80 meter VE1TG
Vertical dipole, gamma-loop-fed W6SAI
Vertical for 80 meters, top-loaded W2MB
Vertical radiators W4OQ
Vertical, top-loaded 80 meter VE1TG
Vertical-tower antenna system W4OQ
Whips and loops as apartment antennas W2EY
Windom antenna, four-band W4VUO
Correction (letter) p. 74, Sep 74
Zepp antenna, extended W6QVI
160-meter loop, receiving K6HTM
160 meters with 40-meter vertical W21MB

vhf antennas
Antennas for satellite communications, simple K4GSX
Circularly-polarized ground-plane antenna for satellite communications K4GSX
Collinear antenna for two meters, nine-element W6RJO
Collinear antenna (letter) W6SAI
Collinear array for two meters, 4-element WB6KG
Collinear antenna, four element 440-MHz WA6HTP
Collinear, six meter K4ERD
Corner reflector antenna, 432 MHz WA2FSQ
Cubical quad, economy six-meter W6DOR
Ground plane, 2-meter, 0.7 wavelength W3W2A
Ground plane, portable vhf (HN) K9DHD
J-pole antenna for 6-meters K4SDY
Log-periodic, yagi beam
K6RIL, W6SAI
p. 8, Jul 69
Correction
Microwave antenna, Low-cost
K6HIJ
p. 52, Nov 69
Mobile antenna, six-meter (HN)
W4PSJ
p. 77, Oct 70
Moobounce antenna, practical 144-MHz
K6HCP
p. 52, May 70
Parabolic reflector antennas
VK3ATN
p. 12, May 74
Parabolic reflectors, finding the focal length (HN)
WA4WDL
p. 57, Mar 74
Parabolic reflector, 16-foot homebrew
WB6OM
p. 8, Aug 69
Quad-yagi arrays, 432- and 1296-MHz
W3AED
p. 20, May 73
Short circuit
Simple antennas, 144-MHz
WA3NFW
p. 30, May 73
Switch, antenna for 2 meters, solid-state
K2SSQ
p. 48, May 69
Two-meter antenna, simple (HN)
W6BLZ
p. 78, Aug 68
Two-meter fm antenna (HN)
WB6KYE
p. 64, May 71
Two-meter mobile antennas
W6BLZ
p. 76, May 68
Vertical antennas, truth about %wavelength
K2DOK
p. 48, May 74
Vhf antenna switching without relays (HN)
K2SSQ
p. 76, Sep 68
Whip, %w, wave, 144 MHz (HN)
VE3DOD
p. 70, Apr 73
Yagi, 1296-MHz
W2CQH
p. 24, May 72
144-MHz vertical, %wavelength
K6KLO
p. 40, Jul 74
144-MHz antenna, %wavelength built from CB mobile whip (HN)
W6BWSU
p. 67, Jun 74

matching and tuning

Antenna coupler for three-band beams
ZS6BT
p. 42, May 72
Antenna coupler, six-meter
K1RAK
p. 44, Jul 71
Antenna impedance transformer for receivers (HN)
W6NIF
p. 70, Jan 70
Antenna matcher, one-man
W4SO
p. 24, Jun 71
Antenna tuner, automatic
WA2AQC
p. 36, Nov 72
Antenna tuner, medium-power toroidal
WB2ZH
p. 58, Jan 74
Antenna tuner for optimum power transfer
W2LLR
p. 28, May 70
Antenna tuners
W3FQJ
p. 58, Dec 72
Antenna tuning units
W3FQJ
p. 58, Jan 73
Balun, adjustable for yagi antennas
W6SAI
p. 14, May 71
Balun, Simplified (HN)
WA2KKC
p. 73, Oct 69
Baluns, wideband bridge
W6SAI, W6BAN
p. 28, Dec 68
Broadband Antenna Baluns
W6SAI
p. 6, Jun 68
Couplers, random-length antenna
W2EEY
p. 32, Jan 70
Gamma-matching networks, how to design
W7ITB
p. 46, May 73
Impedance bridge, low-cost RX
W6YFB
p. 6, May 73
Impedance-matching baluns, open-wire
W6MUR
p. 46, Nov 73
Impedance-matching systems, designing
W7CSD
p. 58, Jul 73

Loads, affect of mismatched transmitter
W5JJ
p. 60, Sep 69
Matching, antenna, two-band with stubs
W6MUR
p. 18, Oct 73
Matching system, two-capacitor
W6MUR
p. 58, Sep 73
Mobile transmitter, loading
W4YB
p. 46, May 72
Noise bridge, antenna
W6EGZ
p. 18, Dec 70
Noise bridge, antenna (HN)
K5EEE
p. 71, May 74
Noise bridge for impedance measurements
Y1AGM
p. 62, Jan 73
Added notes (letter)
W6MUR
p. 66, May 74
Phase meter, rf
VE2AYU, Korth
p. 28, Apr 73
Stub-switched, stub-matched antennas
W2EYE
p. 34, Jan 69
Swr alarm circuits
W2EY
p. 73, Apr 70
Swr bridge
W6VOT
p. 55, Oct 71
Swr bridge and power meter, integrated
W6DOB
p. 40, May 70
Swr bridge readings (HN)
W6PPO
p. 63, Aug 73
Swr meter
W6VSV
p. 6, Oct 70
Transmatch, five-to-one
W7IV
p. 54, May 74
Transmission lines, grid dipping (HN)
W7IV
p. 72, Feb 71
Transmission lines, uhf
WA2VTR
p. 36, May 71
Uhf coax connectors (HN)
W6LCP
p. 70, Sep 72

 renown and rotators

Antenna and rotator preventive maintenance
WA1ABP
p. 66, Jan 69
Antenna mast, build your own tilt-over
W6KRT
p. 42, Feb 70
Correction
Keeping your beam, tips for
W6BLZ
p. 50, Aug 68
Pipe antenna masts, design data for
W3MR
p. 52, Sep 74
Rotator, AR-22, fixing a sticky
WA1ABP
p. 34, Jun 71
Rotator, T-45, Improvement (HN)
WA2VAM
p. 64, Sep 71
Stress analysis of antenna systems
W2FZJ
p. 23, Oct 71
Telescoping tv masts (HN)
WA2KKC
p. 57, Feb 73
Tilt-over tower base, low-cost
WA1ABP
p. 86, Apr 68
Tower, homemade tilt-over
WA3EWH
p. 28, May 71
Tower, wind-protected crank-up
W2EY
p. 74, Oct 69
Wind loading on towers and antenna structures, how to calculate
K4JK
p. 16, Aug 74

transmission lines

Coax cable dehumidifier
K4RI
p. 26, Sep 73
Coax connectors, repairing broken (HN)
W2HKF
p. 66, Jun 70
Coaxial cable, checking (letter)
W2OL
p. 68, May 71
Coaxial cable connectors (HN)
WA1ABP
p. 71, Mar 69
Coaxial-cable fittings, type-F
K2MDO
p. 44, May 71
Coaxial-cable supports (HN)
W2GA
p. 56, Jun 68
december 1974
Coaxial cable, what you know about W9ISB p. 30, Sep 68
Coaxial feedthrough panel (HN) W3URE p. 70, Apr 69
Coaxial-line loss, measuring with reflectometer W2VCI p. 50, May 72
Coax, Low-cost (HN) KB6JH p. 74, Oct 69
Coaxial transmission lines, underground W0FCH p. 38, May 70
Single feedline for multiple antennas K2ISP p. 58, May 71
Solenoid rotary switches W2EEY p. 36, Apr 68
Tuner, receiver (HN) W0AKRE p. 72, Mar 69
Tuner, wall-to-wall antenna (HN) W20UX p. 56, Dec 70
Uhf microstrip swr bridge W4GC p. 22, Dec 72

audio

Audio agc principles and practice WASSNZ p. 28, Jun 71
Audio amplifier and squelch circuit W6AJF p. 36, Aug 68
Audio CW filter W7DI p. 54, Nov 71
Audio filters, aligning (HN) W4ATE p. 72, Aug 72
Audio filters, inexpensive W8YFB p. 24, Aug 72
Audio filter mod (HN) KB6HLL p. 60, Jan 72
Audio module, a complete K4DHC p. 18, Jun 73
Audio-oscillator module, Cordover WB2QKY p. 44, Mar 71
Correction W0AKRO p. 80, Dec 71
Compressor, dual channel W2EEY p. 40, Jul 68
Distortion and splitter KSLLI p. 44, Dec 70
Filter for CW, tunable audio WA1JSM p. 34, Aug 70
Filter-frequency translator for CW reception, integrated audio W2EEY p. 24, Jun 70
Filter, lowpass audio, simple OD5CG p. 54, Jan 74
Filter, simple audio W4NKV p. 44, Oct 70
Filter, tunable peak-notch audio W2EEY p. 22, Mar 70
Filter, variable bandpass audio W3AEX p. 36, Apr 70
Hang agc circuit for ssb and CW W1ERJ p. 50, Sep 72
Headphones, lightweight K6KA p. 34, Sep 68
Impedance match, microphone (HN) W5JJ p. 67, Sep 73
Intercom, simple (HN) W4AYV p. 66, Jul 72
Microphone preamplifier with agc Bryant p. 28, Nov 71
Microphone, using Shure 401A with the Drake TR-4 (HN) G3XOM p. 68, Sep 73
Oscillator, audio, IC W6SKN p. 50, Feb 73
Oscillator-monitor, solid-state audio WA1JSM p. 48, Sep 70
Phone patch W8BRG p. 20, Jul 71
Pre-emphasis for ssb transmitters OH2CD p. 38, Feb 72
Rf clipper for the Collins S-line K6JYO p. 18, Aug 71

rf speech processor, ssb W2MB p. 18, Sep 73
Speaker-driver module, IC W2AGCF p. 24, Sep 72
Speech amplifiers, curing distortion Allen p. 42, Aug 70
Speech clipper, IC K6HTM p. 18, Feb 73
Added notes (letter) W6MB p. 64, Oct 73
Speech clipper, rf G6XN p. 26, Nov, Dec 72
K6HTM p. 58, Aug 73; p. 72, Sep 74
Speech clipping in single-sideband equipment K1YWZ p. 22, Feb 71
Speech clipping (letter) W3JEJ p. 72, Jul 72
Speech processing WI0TY p. 60, Jun 68
Speech processor for ssb, simple K5PHT p. 22, Apr 70
Speech processor, IC VK9G p. 31, Dec 71
Speech processor, logarithmic WA3FIY p. 38, Jan 70
Squelch, audio-actuated K4MOG p. 52, Apr 72
Tape head cleaners (letter) K4MSG p. 62, May 72
Tape head cleaning (letter) Buchanan p. 67, Oct 72

commercial equipment

Alliance rotator improvement (HN) K6JVE p. 66, May 72
Alliance T-45 rotator improvement (HN) WA0VAM p. 64, Sep 71
CDR AR-22 rotator, fixing a sticky WA1ABP p. 34, Jun 71
Clegg 27B, S-meter for (HN) WA2YUD p. 61, Nov 74
Collins S-line power supply mod (HN) W6IL p. 61, Jul 74
Collins S-line, rf clipper for K6JYO p. 18, Aug 71
Correction WA1UQ p. 80, Dec 71
Collins S-line spinner knob (HN) W6VFR p. 69, Apr 72
Collins S-line transceiver mod (HN) W6VFR p. 71, Nov 72
Collins 325-3 audio (HN) K6KA p. 64, Oct 71
Collins 325-1 CW modification (HN) WIDTY p. 82, Dec 69
Correction WA2YUD p. 76, Sep 70
Collins 313 PTO restoration W6SAI p. 36, Dec 69
Collins 75A4 hints (HN) W6VF R p. 68, Apr 72
Collins 75A4 modifications (HN) W4SD p. 67, Jan 71
Collins 75A4 PTO, making it perform like new W3AFM p. 24, Dec 74
Collins 75A4 receiver, improving overload response in W6ZO p. 42, Apr 70
Short circuit WA2YUD p. 76, Sep 70
Collins R390A, improving the product detector W7DI p. 12, Jul 74
Comdel speech processor, increasing the versatility of (HN) W6SAI p. 67, Mar 71
Drake R-4 receiver frequency synthesizer for W6NBI p. 6, Aug 72
Modification (letter) p. 74, Sep 74
Drake R-4C, electronic bandpass tuning Horner p. 58, Oct 73
Drake TR-4, using the Shure 401A microphone with (HN) G3XOM p. 68, Sep 73
Drake W-4 directional wattmeter
WIDTY p. 86, Mar 68
Elmac chip and drift (HN) WSOZF p. 68, Jun 70
EX crystal and oscillator W6E2EZ p. 60, Apr 68
Galaxy feedback (HN) WASTKJ p. 71, Jan 70
Hallicrafters HT-37, increased sideband coverage W3CM p. 48, Nov 69
Hammarlund HQ215, adding 160-meter Heath CA1, ten-minute timer from (HN) K8HZ p. 74, Jul 68
Heath HG-108 vfo, independent keying of (HN) K4BRR p. 67, Sep 70
Heath HG-10 as RTTY monitor scope (HN) K9HVW p. 70, Sep 74
Heath HW-7 mods, keying and receiver Heath HW-110, the new Heath HW-100 incremental tuning Heath HW-17A, peaking up (HN) Heath HW-17, modifications (HN) WA5PWX p. 66, Mar 71
Heath HW-100, HW-101, grid-current Heath HW-100, the new Heath HW-100 tuning knob, loose Heath HW-101, using with a separate Heath HW-202, adding private-line Heath IM-11 vtm, convert to IC voltmeter WVCI p. 42, Dec 74
Heath SB-100, using an outboard receiver Heath SB-200 amplifier, modifying for the Heath SB-200 amplifier, six-meter conversion Heath SB-300, RTTY with WV2ARZ p. 76, Jul 68
Heath SB-303, 10-MHz coverage for (HN) WLJE p. 61, Feb 74
Heath SB-400 and SB-401, improving alc Heath SB-610 as RTTY monitor scope (HN) K9HVW p. 70, Sep 74
Heath SB-650 using with other receivers K2BMY p. 40, Jun 73
Heath SB receivers, RTTY reception with (HN) K9HVW p. 64, Oct 71
Heath SB-series crystal control and narrow shift RTTY with (HN) WA4VYI p. 54, Jun 73
Heath ten-minute timer K6KA p. 75, Dec 71
Heathkit Sixer, spot switch (HN) WA6FNR p. 84, Dec 69
Heathkit, noise limiter for (HN) W7CXX p. 67, Mar 71
James Research oscillator/monitor WIDTY p. 91, Mar 68

James Research permallex key WIDTY p. 73, Dec 68
Knight-kit inverter/charger review WIDTY p. 64, Apr 69
Knight-kit two-meter transceiver Heath W66HXU p. 36, Jul 67
Mini-meter II WA6SLQ p. 72, Dec 71
Motorola channel elements WBANEX p. 32, Dec 72
Motorola Dispatcher, converting to 12 volts WA1ETT p. 26, Jul 72
Motorola receivers, op-amp relay for Short circuit
Motorola fm receiver mods (HN) VE4RE p. 60, Aug 71
Motorola P-33 series, improving WB2AEB p. 34, Feb 71
Motorola receivers, op-amp relay for Short circuit
Motorola voice commander, improving W2DKU p. 70, Oct 70
Motrac Receivers (letter) K5ZBA p. 69, Jul 71
Quement circular slide rule W2DXX p. 62, Apr 68
Regency HR-2, narrowbanding WA8TMP p. 44, Dec 73
SBE line-up, modulator tips (HN) WA6DCW p. 71, Mar 69
SB301/401, Improved sidetone operation W1WLZ p. 73, Oct 69
Signal One review W1NBL p. 56, May 69
Spurious causes (HN) K6KA p. 66, Jan 74
Swan television interference: an effective remedy W2OUX p. 46, Apr 71
Swan 120, converting to two meters K6RIL p. 8, May 68
Swan 350 CW monitor (HN) K1KXXA p. 63, Jun 72
Correction (letter) p. 77, May 73
Swan 350, receiver incremental tuning (HN) K1KXXA p. 64, Jul 71
Swan 350 and 400, RTTY operation (HN) WB2MIC p. 67, Aug 69
Swan 250, update your (HN) K8HZ p. 84, Dec 69
Telefax transceiver conversion KOQMR p. 16, Apr 74
Ten-Tec Argonaut, accessory package for W7BBX p. 26, Apr 74
Ten-Tec VX10 communicators receiver W1NLB p. 63, Jun 71
T150A frequency stability (HN) WB2MCP p. 70, Apr 69
Yaesu sideband switching (HN) p. 56, Dec 73
Yaesu spurious signals (HN) K6KA p. 69, Dec 71
Units affected (letter) p. 67, Oct 73

construction

techniques

AC line cords (letter) W6EG p. 80, Dec 71
A dab of paint, a drop of wax (HN) VE3BUE p. 78, Aug 68
Aluminum's new face WA4BRS p. 60, May 68
Antenna insulators, homemade (HN) W7ZC p. 70, May 73
APC trimmer, adding shaft to (HN) W2ETT p. 68, Jul 69
Blower-to-chassis adapter (HN) W7KLYO p. 73, Feb 71
BNC connectors, mounting (HN) W9KKX p. 70, Jan 70
Printed-circuit tool (HN)
W2GZ
Printed circuits without printing
W4ZQ
Professional look, for that VE3GFN
Punching aluminum panels (HN)
W7DIM
Rack and panel construction
W7OE
Rack construction, a new approach K1EUJ
Rectifier terminal strip (HN)
W5PPK
Restoring panel lettering (HN)
W8CL
Screwdriver, adjustment (HN)
WA0KGS
Silver plating for the amateur W4KAE
Small parts tray (HN)
W5GA
Solder dispenser, simple (HN)
W2KID
Soldering aluminum (HN) ZE6JP
Soldering fluxes (HN)
K3HNP
Soldering tip (HN) Lawyer
Thumbwheel switch modification (HN) VE3DGX
Tilt your rig (HN) W4ANE
Toroids, plug-in (HN) K8EEG
Transformers, repairing W6NIF
Trimmers (HN) W6LMG
Uhf coax connectors (HN) W0LCP
Uhf hardware (HN) W6CMQ
Underwriter's knot (HN) W1DTY
Vectorboard tool (HN) WA1KWJ
Volume controls, noisy, temporary fix (HN) W9JUV
Watercooling the 2C39 K6MYC
Wiring and grounding W1EZT
Workbench, electronic W1EZT

features and fiction

Binding 1970 issues of ham radio (HN) W1DHZ p. 72, Feb 71
Dynistor, the W6GZ
Catalina wireless, 1902 W6BLZ
Early wireless stations W6BLZ
Electronic bugging KZSQ
Fire protection in the ham shack Darr p. 54, Jan 71
First wireless in Alaska W6BLZ p. 48, Apr 73
Ham Radio sweepstakes winners, 1972 W1NLB p. 58, Jul 72
Ham Radio sweepstakes winners, 1973 W1NLB p. 68, Jul 72
How to be DX W4ANX p. 58, Aug 68
Nostalgia with a vengeance W6HDM p. 28, Apr 72

Capacitors, oil-filled (HN)
W2OLU p. 66, Dec 72
Center insulator, dipole WA1ABP p. 69, May 69
Coaxial cable connectors (HN) WA1ABP p. 71, Mar 69
Coax connectors, repairing broken (HN) W0MKF p. 66, Jun 70
Coax relay coils, another use (HN) K0VQY p. 72, Aug 69
Cold galvanizing compound (HN) W5UNF p. 70, Sep 72
Color coding parts (HN) WA7BPO p. 58, Feb 72
Component marking (HN) WIJE
Deburring holes (HN) W2DXH p. 75, Jul 68
Drill guide (HN) WSBVF p. 68, Oct 71
Enclosures, homebrew custom W4YUU p. 50, Jul 74
Exploding diodes (HN) VE3FEZ p. 57, Dec 73
Ferrite beads W5JJ p. 48, Oct 70
Files, cleaning (HN) W2QJ p. 66, Jun 74
Ferrite beads, how to use K1ORV p. 34, Mar 73
Filter chokes, unmarked W0KMF p. 60, Nov 68
Grommet shock mount (HN) VE3BUE p. 77, Oct 68
Grounding (HN) W9KXJ p. 67, Jun 69
Heat sinks, homemade (HN) WA0WOZ p. 69, Sep 70
Homebrew art W0SEP p. 56, Jun 69
Hot etching (HN) K8EKG p. 66, Jan 73
Hot wire stripper (HN) W6BDW p. 67, Nov 71
IC lead former (HN) W5ICV p. 67, Jan 74
Industrial cartridge fuses, using (HN) VE3BUE p. 76, Sep 68
Magnetic fields and the 7360 (HN) W7DJ p. 66, Sep 73
Miniature sockets (HN) Lawyer p. 84, Dec 69
Minibox, cutting down to size (HN) W2OUX p. 57, Mar 74
Mobile installation, putting together W2FCH p. 36, Aug 69
Mobile mount bracket (HN) W4NIF p. 70, Feb 70
Modular converter, 144-MHz W6UAV p. 64, Oct 70
Neutralizing tip (HN) ZE6JP p. 69, Dec 72
Noise fans (HN) W6BUF p. 70, Nov 72
Correction (letter) p. 67, Oct 73
Nuvistor heat sinks (HN) WA0KKC p. 57, Dec 73
Parasitic suppressor (HN) WA9JMY p. 80, Apr 70
Printed-circuit boards, cleaning (HN) W5BVF p. 66, Mar 71
Printed-circuit boards, how to make K4EU p. 58, Apr 73
Printed-circuit boards, low-cost W6CMQ p. 44, Aug 71
Printed-circuit boards, practical photofabrication of Hutchinson p. 6, Sep 71
Printed-circuit labels (HN) WA4WTK p. 76, Oct 70
Printed-circuit standards (HN) W6JVE p. 58, Apr 74

Printed-circuit tool (HN) W2GZ p. 74, May 73
Printed circuits without printing W4ZQ p. 62, Nov 70
Professional look, for that VE3GFN p. 74, Mar 68
Punching aluminum panels (HN) W7DIM p. 57, Jun 68
Rack and panel construction W7OE p. 48, Jun 68
Rack construction, a new approach K1EUJ p. 36, Mar 70
Rectifier terminal strip (HN) W5PPK p. 80, Apr 70
Restoring panel lettering (HN) W8CL p. 69, Jan 73
Screwdriver, adjustment (HN) WA0KGS p. 66, Jan 71
Silver plating for the amateur W4KAE p. 62, Dec 68
Small parts tray (HN) W5GA p. 58, Jun 68
Solder dispenser, simple (HN) W2KID p. 76, Sep 68
Soldering aluminum (HN) ZE6JP p. 67, May 72
Soldering fluxes (HN) K3HNP p. 57, Jun 68
Soldering tip (HN) Lawyer p. 68, Feb 70
Thumbwheel switch modification (HN) VE3DGX p. 56, Mar 74
Tilt your rig (HN) W4ANE p. 58, Jun 68
Toroids, plug-in (HN) K8EEG p. 60, Jan 72
Transformers, repairing W6NIF p. 66, Mar 69
Trimmers (HN) W6LMG p. 76, Nov 69
Uhf coax connectors (HN) W0LCP p. 70, Sep 72
Uhf hardware (HN) W6CMQ p. 76, Oct 70
Underwriter's knot (HN) W1DTY p. 69, May 69
Vectorboard tool (HN) WA1KWJ p. 70, Apr 72
Volume controls, noisy, temporary fix (HN) W9JUV p. 62, Aug 74
Watercooling the 2C39 K6MYC p. 30, Jun 69
Wiring and grounding W1EZT p. 44, Jun 79
Workbench, electronic W1EZT p. 50, Oct 70

features and fiction

Binding 1970 issues of ham radio (HN) W1DHZ p. 72, Feb 71
Dynistor, the W6GZ
Catalina wireless, 1902 W6BLZ p. 49, Apr 68
Early wireless stations W6BLZ p. 32, Apr 70
Electronic bugging KZSQ p. 70, Jan 68
Fire protection in the ham shack Darr p. 54, Jan 71
First wireless in Alaska W6BLZ p. 48, Apr 73
Ham Radio sweepstakes winners, 1972 W1NLB p. 58, Jul 72
Ham Radio sweepstakes winners, 1973 W1NLB p. 68, Jul 72
How to be DX W4ANX p. 58, Aug 68
Nostalgia with a vengeance W6HDM p. 28, Apr 72
fm and repeaters

Amateur vhf fm operation

W6AYZ p. 36, Jun 68
Antenna and control-link calculations for repeater licensing
W7PUG p. 58, Nov 73
Short circuit
Antennas, simple, for two-meter fm
WA3NFW p. 30, May 73
Antenna, two-meter fm (HN)
WB6KYE p. 64, May 71
Antenna, 5/8-wavelength, two-meter
K6KLO p. 40, Jul 74
Antenna, 5/8 wavelength two-meter, build from CB mobile whips (HN)
WB4WSU p. 67, Jun 74
Audio-amplifier and squelch unit
W6AFJ p. 36, Aug 68
Automatically controlled access to open repeaters
W6GRG p. 22, Mar 74
Autopatch system for vhf fm repeaters
W8GRG p. 32, Jul 74
Base station, two-meter fm
W9TJQ p. 22, Aug 73
Carrier-operated relay
K0PHF, W2UZO p. 58, Nov 72
Carrier-operated relay and call monitor
VE4RE p. 22, Jun 71
Cavity filter, 144-MHz
WISNN p. 22, Dec 73
Channel scanner
W2FPP p. 29, Aug 71
Channels, three from two (HN)
VE7ABK p. 68, Jun 71
Collinear antenna for two meters, nine-element
W6RJO p. 12, May 72
Collinear array for two meters, 4-element
WB6KGF p. 6, May 71
Continuous tuning for fm converters (HN)
W1DHZ p. 54, Dec 70
Control head, customizing
VE7ABK p. 28, Apr 71
Deviation measurement (letter)
K5ZBA p. 68, May 71
Deviation measurements
W3FQJ p. 52, Feb 72
Deviation meter (HN)
VE7ABK p. 58, Dec 70
Distortion in fm systems
W5JJ p. 26, Aug 69
Encoder, combined digital and burst
K8AUH p. 48, Aug 69
Filter, 455-kHz for fm
WA2JYK p. 22, Mar 72
Fm demodulator, TTL
W3FQJ p. 66, Nov 72
Fm receiver frequency control (letter)
W3AFN p. 65, Apr 71
Fm techniques and practices for vhf amateurs
W6SAI p. 8, Sep 69
Short circuit
W9SEK p. 79, Jun 70

Fm transmitter, solid-state two-meter
W6AJF p. 14, Jul 71
Fm transmitter, Sonobaby, 2 meter
WA2UZO p. 8, Oct 71
Short circuit
Crystal deck for Sonobaby
W4JAZ p. 40, Jan 71
Short circuit
Frequency synthesizer, inexpensive all-channel, for two-meter fm
W2OA p. 50, Aug 73
Correction (letter)
Frequency-synthesizer, one-crystal for two-meter fm
W2MV p. 30, Sep 73
Frequency synthesizer, for two-meter fm
W6AFP p. 34, Jul 73
Identifer, programmable repeater
W6AYZ p. 18, Apr 69
Short circuit
If system, multimoode
WA2IKL p. 39, Sep 71
Indicator, sensitive rf
W69DNI p. 38, Apr 73
Interference, scanning receiver (HN)
K2YAH p. 70, Sep 72
Logic oscillator for multi-channel control
W1SNN p. 46, Jun 73
Mobile operation with the Touch-Tone pad
W2LPQ p. 58, Aug 72
Correction
Modification (letter)
W2TJR p. 72, Apr 73
Modulation standards for vhf fm
W6TEE p. 16, Jun 70
Monitor receivers, two-meter fm
W6SEMI p. 34, Apr 74
Motorola channel elements
WB4NEX p. 32, Dec 72
Motorola fm receiver mods (HN)
VE4RE p. 60, Aug 71
Motorola P-33 series, improving the
WB2AEV p. 34, Feb 71
Motorola voice commander, improving
W2DKU p. 70, Oct 70
Motrac Receivers (letter)
K5ZBA p. 69, Jul 71
Narrow-band fm system, using ICs in
W6AJF p. 30, Oct 68
Phase-locked loop, tunable, 28 and 50 MHz
W1KNI p. 40, Jan 73
Power amplifier, rf 220-MHz fm
K7JUE p. 6, Sep 73
Power amplifier, rf, 144 MHz
Hatchett p. 6, Dec 73
Power amplifier, rf, 144-MHz fm
W4CGC p. 6, Apr 73
Power amplifier, two-meter fm, 10-watt
W1DTY p. 67, Jan 74
Power supply, regulated ac for mobile fm equipment
WA8TMP p. 28, Jun 73
Preamplifier, two-meter
WA2GCF p. 25, Mar 72
Preamplifier, two meter
W6BBB p. 36, Jun 74
Private-line, adding to Heath HW-202
WA8AWJ p. 53, Jun 74
Push-to-talk for Styleline telephones
W1DRP p. 18, Dec 71
Receiver for six and two meters, multichannel fm
W1SNN p. 54, Feb 74
Receiver for two meter, fm
W9SEK p. 22, Sep 70
Short circuit
W1DTY p. 72, Apr 71
Receiver isolation, fm repeater (HN)
W1DTY p. 54, Dec 70
Receiver, modular fm communications
KBAUH p. 32, Jun 69
Correction p. 71, Jan 70
Receiver, modular, for two-meter fm
WA2GBF p. 42, Feb 72
Added notes p. 73, Jul 72
Receiver performance, comparison of
VE7ABK p. 68, Aug 72
Receiver, tunable vhf fm
KBAUH p. 34, Nov 71
Receiver, vhf fm
WA2GCF p. 6, Nov 72
Receiver, vhf fm (letter)
K8HQ p. 76, May 73
Relay, operational-amplifier, for Motorola receivers
W6GDD p. 16, Jul 73
Repeater control with simple timers
W2FPP p. 46, Sep 72
Correction p. 91, Dec 72
Repeater decoder, multi-function
WA6TBC p. 24, Jan 73
Repeater installation
W2FPP p. 24, Jun 73
Repeater problems
VE7ABK p. 38, Mar 71
Repeater, receiving system degradation
K5ZBA p. 36, May 69
Repeater transmitter, improving
W6GDD p. 24, Oct 69
Repeaters, single-frequency fm
W2FPP p. 40, Nov 73
Reset timer, automatic
W5ZHV p. 54, Oct 74
Scanner, vhf receiver
K2LZG p. 22, Feb 73
Scanning receiver, improved for vhf fm
WA2GCF p. 26, Nov 74
Scanning receiver modifications, vhf fm
WA5WOU p. 60, Feb 74
Scanning receivers for two-meter fm
K4IPV p. 28, Aug 74
Sequential encoder, mobile fm
W3JJU p. 34, Sep 71
Sequential switching for Touch-Tone repeater control
W8GRG p. 22, Jun 71
S-meter for Clegg 27B (HN)
WA2YUD p. 61, Nov 74
Squelch-audio amplifier for fm receivers
WB4WSU p. 68, Sep 74
Telephone controller, automatic for your repeater
K0PYF, WA2UZO p. 44, Nov 74
Test set for Motorola radios
K2BKD p. 12, Nov 73
Short circuit p. 58, Dec 73
Added note (letter) p. 64, Jun 74
Timer, simple (HN)
W2CCX p. 58, Mar 73
Tone-burst generator (HN)
K4COF p. 58, Mar 73
Tone-burst keyer for fm repeaters
W8GRG p. 36, Jan 71
Tone encoder and secondary frequency oscillator (HN)
K8AUH p. 66, Jun 69
Touch-tone circuit, mobile
K7QWR p. 50, Mar 73
Touch-tone decoder, multi-function
K0PYF, WA2UZO p. 14, Oct 73
Touch-tone decoder, three-digit
WA6AYZ p. 37, Dec 74
Transceiver for two-meter fm, compact
W6AOI p. 36, Jan 74
Transmitter for two meters, phase-modulated
W6AJF p. 18, Feb 70
Transmitter, two-meter fm
W9SEK p. 6, Apr 72
Tunable receiver modification for vhf fm
WB6VKY p. 40, Oct 74
Vertical antennas, truth about
K5ZDK p. 48, May 74
Whip, 5/8-wave, 144 MHz (HN)
WE3DDD p. 70, Apr 73
220 MHz frequency synthesizer
W6GNN p. 8, Dec 74

Integrated circuits
Amateur uses of the MC1530 IC
W2EEY p. 42, May 68
Amplifiers, broadband IC
W6GNN p. 35, Jun 73
Applications, potpourri of IC
W1DTY, Thorpe p. 8, May 69
Balanced modulator, an integrated-circuit
K7QWR p. 6, Sep 70
Counter gating sources
K6KA p. 48, Nov 70
Counter reset generator (HN)
W3KBM p. 68, Jan 73
Digital counters (letter)
W1GNN p. 76, May 73
Digital ICs, part I
W3FQJ p. 41, Mar 72
Digital ICs, part II
W3FQJ p. 58, Apr 72
Correction
W6GNN p. 66, Nov 72
Digital mixers
W8BIIFM p. 42, Dec 73
Digital multivibrators
W3FQJ p. 42, Jun 72
Digital oscillators and dividers
W3FQJ p. 62, Aug 72
Digital readout station accessory, part I
K6KA p. 6, Feb 72
Digital station accessory, part II
K6KA p. 50, Mar 72
Digital station accessory, part III
K6KA p. 36, Apr 72
Electronic counter dials, IC
K6KA p. 44, Sep 70
Electronic keyer, cosmos IC
WB2DFA p. 6, Jun 74
Short circuit
W9SEK p. 62, Dec 74
Emitter-coupled logic
W3FQJ p. 62, Sep 72
Flip-flops
W3FQJ p. 60, Jul 72
Flop-flop, using (HN)
W3KBM p. 60, Feb 72
Function generator, IC
W1DTY p. 40, Aug 71
Function generator, IC
K4OHC p. 22, Jun 74
IC power (HN)
W3KBM p. 68, Apr 72
IC-regulated power supply for ICs
W6GNN p. 28, Mar 68
Integrated circuits, part I
W3FQJ p. 40, Jun 71
Integrated circuits, part II
W3FQJ p. 58, Jul 71
Integrated circuits, part III
W3FQJ p. 50, Aug 71
Logic families, IC
W6GNN p. 26, Jan 74
Logic monitor (HN)
WASSAF p. 70, Apr 72
Correction
W9SEK p. 91, Dec 72
Logic test probe
VE6RF p. 53, Dec 73
Logic test probe (HN)
Rossman p. 55, Feb 73
Short circuit
W9SEK p. 58, Dec 73
keying and control

Break-in circuit, CW
WSYSYK
Break-in control system, IC (HN)
W9ZTK
Bug, solid-state
K2FV
Carrier-operated relay
KDPHF, WA9UZO
Contest keyer (HN)
K2UBC
CW reception, enhancing through a simulated stereo technique
WA1MKP
CW regenerator for interference-free communications
Leward, WB2EAX
Electronic hand keyer
K5TCK
Electronic keyer, cosmos IC
WB2DFA
Short circuit
K2FV
Electronic keyer, IC
VE7BFK
Electronic keyer notes (HN)
ZL1BN
Electronic keyer package, compact
W4ATE
Electronic keyer with random-access memory
WB9FHC
Correction (letter)
W4ATE
Electronic keys, simple IC
WA5TRS
Grid-block keying, simple (HN)
WA4DNU

Key and vox clicks (HN)
K6KA
Keyboard electronic keyer, the code mill
W6CAB
Keying the Heath HG-10B vfo (HN)
K4BRR
Memo-key
WA7SCB
Mini-paddle
K5RL
 Morse sounder, radio controlled (HN)
K5EQ
Oscillators, electronic keyer
WA6JNJ
Paddle, electronic keyer (HN)
KL7EDV
Paddle, homebrew keyer
W3NK
Push-to-talk for Styleline telephones
W1DRP
Relay activator (HN)
K6KA
Relays, surplus (HN)
W20LU
Relay, transistor replaces (HN)
W3JN
Relays, undervoltage (HN)
W20LU
Remote keying your transmitter (HN)
WA3HOU
Reset timer, automatic
WSZH
Sequential switching (HN)
W5OSF
Solenoid rotary switches
W2EEY
Station control center
W7OE
Step-start circuit, high-voltage (HN)
W6VP
Suppression networks, arc (HN)
WA5EKA
Transistor switching for electronic keyers (HN)
W3QBO
Transmitter switching, solid-state
W2EEY
Typewriter-type electronic keys, further automation for
W6PRO
Vox and mox systems for ssb Belt
W2EEY
Vox, IC
W2EEY
Vox keying (HN)
VE7IG
Vox, versatile
W9KIT
Short circuit
WA5D

measurements and test equipment

Ac power-line monitor
W20LU
AFSK generator, crystal-controlled
K76VT
AFSK generator, phase-locked loop
K72OF
Amateur frequency measurements
K6KA
A-m modulation monitor, vhf (HN)
K7UNL
Antenna gain, measuring
K6JOY
Antenna matcher
WA4D

december 1974
Sampling network, rf — the milli-tap

W6JW

Signal generator, tone modulated for two and six meters

WAB0IK

Signal generator, wide range

W6GXN

Signal injection in ham receivers

Allen

Signal source for 432 and 1296 MHz

K6RL

Signal tracing in ham receivers

Allen

Slow-scan tv test generator

K4EUE

Small-signal source for 144 and 432 MHz, stable

K6JC

S-meter readings (HN)

W1DTY

Spectrum analyzer, four channel

W91A

Spectrum analyzers, understanding

WA5SNZ

Ssb, signals, monitoring

W6VFR

Sweep generator, how to use

Allen

Sweep response curves for low-frequency i-f's

Allen

Switch-off flasher (HN)

Thomas

Swr bridge

WB2ZZH

Swr bridge and power meter, integrated

W6DOB

Swr bridge (HN)

WA5TFK

Swr bridge readings (HN)

W6FPO

Swr meter

W6SVS

Swr meters, direct reading and expanded scale

WA4WDK

Correction

p. 90, Dec 72

Time-domain reflectometry, experimenter's approach to

WA@PIA

Transconductance tester for fets

W6NSI

Transformer shorts

W6BLZ

Transistor and diode tester

ZL2AMJ

Transistor curve tracer

WA9LCX

Short circuit

p. 63, Apr 74

Transistor tester

WA6NIL

Transistor tester for leakage and gain

W4BRS

Transmitter tuning unit for the blind

W9NTP

Trapezoidal monitor scope

WE6CUS

Troubleshooting around fets

Allen

Troubleshooting by resistance measurement

Allen

Troubleshooting technician ham gear

Allen

Uhf tuner tester for tv sets (HN)

Schuler

Vacuum tubes, testing high-power (HN)

W2OLU

Vhf pre-scaler, improvements for

W6PBC

Voltmeter, improved transistor, part I

Maddener

Voltmeter, transistor, part II

Maddener

--

December 1974
miscellaneous technical

Alarm, wet basement (HN) W2OUL p. 68, Apr 72
Amateur anemometer W6QXN p. 52, Jun 68
Antennas and capture area K6YJO p. 36, Sep 71
Wave meter, indicating W6NIF p. 26, Dec 70
Short circuit W2PJB p. 72, Apr 71
Weak-Signal receiver, stable, variable-output W6KJO p. 36, Sep 71
WWV receiver, simple regenerative WASSNZ p. 42, Apr 73
WWV-2WWH, amateur applications for W3FQJ p. 53, Jan 72
Zener tester, low-voltage (HN) K3DPJ p. 72, Nov 69

FET biasing W3FQJ p. 61, Nov 72
Filter preamplifiers for 50 and 144 MHz, etched W5KHT p. 6, Feb 71
Filters, active for direct-conversion receivers W7ZOI p. 12, Apr 74
Fire extinguishers (letter) W5PGG p. 68, Jul 71
Freon danger (letter) WA5RTB p. 63, May 72
Fire protection Darr p. 54, Jan 71
Fire protection (letter) K7QCM p. 62, Aug 71
Fm techniques W6SAI p. 8, Sep 69
Short circuit p. 79, Jun 70
Frequency multipliers W6GXX p. 6, Aug 71
Frequency multipliers, transistor W6AJF p. 49, Jun 70
Frequency synchronization for scatter-mode propagation K2OV p. 26, Sep 71
Frequency synthesis W6SKSM p. 42, Dec 69
Gamma-matching networks, how to design W7ITB p. 46, May 73
Glass semiconductors W1EZT p. 54, Jul 69
Graphical network solutions W6JNK, W2CTK p. 26, Dec 69
Gridded tubes, vhf-uhf effects W6UOV p. 8, Jan 69
Grounding and wiring W1EZT p. 44, Jun 69
Ground plow W1EZT p. 64, May 70
Harmonic output, how to predict Utne p. 34, Nov 74
Heatsink problems, how to solve WASSNZ p. 46, Jan 74
Hybrids and couplers, hf W2CTK p. 57, Jul 70
Short circuit p. 72, Dec 70
Impedance-matching systems, designing W7CSD p. 58, Jul 73
Inductors, how to use ferrite and powdered-iron for W6GXX p. 15, Apr 71
Correction p. 63, May 72
Infrared communications (letter) K2OAW p. 65, Jan 72
Injection lasers (letter) Mims p. 67, Apr 71
Injection lasers, high power Mims p. 28, Sep 71
Integrated circuits, part I W3FQJ p. 40, Jun 71
Integrated circuits, part II W3FQJ p. 58, Jul 71
Integrated circuits, part III W3FQJ p. 50, Aug 71
Intermittent voice operation of power tubes W6SAI p. 24, Jan 71
Isotropic source and practical antennas K6FD p. 32, May 70
Laser communications W4KAE p. 28, Nov 70
LED experiments W4KAE p. 6, Jun 70
Lighthouse tubes for uhf W6UOV p. 27, Jun 69
Local-oscillator waveform effects on spurious mixer responses Robinson, Smith p. 44, Jun 74
Lowpass filters for solid-state linear amplifiers WA2JYK p. 38, Mar 74
Short circuit p. 62, Dec 74
L-networks, how to design
W7LR
Short circuit
W7NCT
Lunar-path nomograph
WAS6NT
Marine installations, amateur, on small boats
W3MR
Microwaves, getting started in
Roubael
Microwaves, introduction
W1CBY
Mini-mobile
KSUQN
Mismatched transmitter loads, affect of
W5JJ
Mnemonics
W6NIF
More electronic units
W1EZT
Multi-function integrated circuits
W3FQJ
Networks, transmitter matching
W2FRC
Neutralizing small-signal amplifiers
WA4WDK
Noise figure, meaning of
W6FV
Operational amplifiers
WB2EGZ
Phase detector, harmonic
W5TRS
Phase-locked loops, IC
W3FQJ
Phase-locked loops, IC, experiments with
W3FQJ
Phase-shift networks, design criteria for
G3NLR
Pi and pi-L networks
W6SAI
Pi network design
W6FFC
Pi network inducers (letter)
W7IV
Pi networks, series-tuned
W2EGH
Power amplifiers, high-efficiency rf
WB8LQK
Power dividers and hybrids
W1DAX
Power supplies, survey of solid-state
W6GXN
Power, voltage and impedance nomograph
W2TQK
Printed-circuit boards, photofabrication of
Hutchinson
Programmable calculator simplifies
antenna design (HN)
W3DVO
Proportional temperature control for crystal
ovens
VE5FP
Pulse-duration modulation
W3FQJ
Q factor, understanding
W5JJ
QRP operation
W7OE
Radio communications links
W1EZT
Radio observatory, vhf
Ham
Radio-frequency interference
WA3NFW
Radiotelegraph translator and transcriber
W7CUU, K7KFA
Eliminating the matrix
KH6AP
Ramp generators
W6GXN
Rating tubes for linear amplifier
service
W6UOV, W6SAI
Reactance problems, nomograph for
W6NIF
Resistor performance at high frequencies
K1ORV
Resistors, frequency sensitive (HN)
W8YFB
Resistors, frequency sensitive (letter)
W5UHV
RF power-detecting devices
K6JYO
RF power transistors, how to use
WA7KRE
Safety in the ham shack
Darr, James
Satellite communications, first step to
K1MTA
Added notes (letter)
W73, Apr 73
Satellite signal polarization
K9H6J
Signal detection and communication in the presence of white noise
WB6IOM
Silver/silicone grease (HN)
W6DDB
Single-tuned interstage networks, designing
K6ZGQ
Smith chart, how to use
W1DTY
Correction
Solar activity, aspects of
K3CHP
Solar energy
W3FQJ
Speech clipplers, rf, performance of
G6XN
Square roots, finding (HN)
K9DHD
Increased accuracy (letter)
W3FQJ
Standing-wave ratios, importance of
W2HB
Correction (letter)
Solar activity (HN)
KP3CH
Stress analysis of antenna systems
W2FZJ
Tetrodes, external-anode
W6SAI
Thermoelectric power supplies
K1AJE
Thermometer, electronic
W3ZNV
Three-phase motors (HN)
W6PH
Thyristors, introduction to
WA7KRE
Toroids, calculating inductance of
W8SPH
Toroids, plug-in (HN)
K9EEQ
Transistor amplifiers, tabulated characteristics of
W5JJ
Tuning, Current-controlled
K2ZSQ
TV sweep tubes in linear service, full-blast operation of
W6SAI, W6GOV
Vacuum-tube amplifiers, tabulated characteristics of
W5JJ
Warning lights, increasing reliability of
W3NK
Wind direction indicator, digital
W6GXN
Wind loading on towers and antenna structures, how to calculate
K4KJ
Y parameters, using in rf amplifier design
WA2TCU

December 1974 121
operating

Beam antenna headings
W6FFC p. 64, Apr 71
Code practice stations (letter) WB4LXJ p. 75, Dec 72
Code practice — the rf way WA4NED p. 65, Aug 68
Code practice (HN) W2OUX p. 74, May 73
Computers and ham radio WSTM p. 60, Mar 69
CW monitor W2EYY p. 46, Aug 69
CW monitor and code-practice oscillator K5RIL p. 46, Apr 68
CW monitor, simple W4OH p. 65, Jan 71
CW transceiver operation with transmit-receive offset W1DAX p. 56, Sep 70
DXCC check list, simple W2CNO p. 55, Jun 73
Fluorescent light, portable (HN) K6KY p. 62, Oct 73
Great-circle charts (HN) K6CA p. 62, Oct 73
How to be DX W4NXD p. 58, Aug 68
Identification timer (HN) K9UQN p. 60, Nov 74
Magnetic, use your old (HN) p. 52, Jan 70
Morse code, speed standards for VE2ZK p. 68, Apr 73
Added note (letter) p. 68, Jan 74
Protective material, plastic (HN) W6BBX p. 58, Dec 70
QSL return, statistics on WB6IUIH p. 60, Dec 68
Replays, instant (HN) W6DONS p. 67, Feb 70
Sideband location (HN) K6KA p. 62, Aug 73
Spurious signals (HN) K6KA p. 61, Nov 74
Tuning with ssb gear W0KD p. 40, Oct 70
Zulu time (HN) K6KA p. 58, Mar 73

oscillators

AFSK oscillator, solid-state WA4FGY p. 28, Oct 68
Blocking oscillators W6GZN p. 45, Apr 69
Clock oscillator, TTL (HN) W9ZTK p. 56, Dec 73
Crystal oscillator, frequency adjustment of W9ZTK p. 42, Aug 72
Crystal oscillator, high stability W6TNS p. 36, Oct 74
Crystal oscillator, miniature W6DOR p. 68, Dec 68
Crystal oscillators W6GZN p. 33, Jul 69
Crystal switching (HN) K6L2M p. 70, Mar 69
Crystal test oscillator and signal generator K4EEU p. 46, Mar 73
Crystals, overtone (HN) GB8AR p. 72, Aug 72
Local oscillator, phase locked VE6FP p. 6, Mar 71
Monitoring oscillator W2JIO p. 36, Dec 72
Multivibrator, crystal-controlled WN2MQY p. 65, Jul 71

Oscillator, audio, IC W6GZN p. 50, Feb 73
Oscillator, electronic keyer WA6JNJ p. 44, Jun 70
Oscillator, Franklin (HN) W5JJ p. 61, Jan 72
Oscillator, frequency measuring W6IEL p. 16, Apr 72
Added notes p. 90, Dec 72
Oscillator-monitor, audio WAIJSM p. 48, Sep 70
Oscillator, phase-locked VE5FP p. 6, Mar 71
Oscillator, two-tone, for ssb testing W6GZN p. 11, Apr 72
Oscillators (HN) W1DTY p. 68, Nov 69
Oscillators, cure for cranky (HN) WB4FB p. 55, Dec 70
Oscillators, repairing Allen p. 69, Mar 70
Oscillators, resistance-capacitance W6GZN p. 18, Jul 72
Oscillators, ssb Belt p. 26, Jun 68
Overtone oscillator (HN) W5UQS p. 77, Oct 68
Quartz crystals (letter) WB2EGZ p. 74, Dec 72
Vco, crystal-controlled WB6IOM p. 58, Oct 69
Vfo buffer amplifier (HN) W3QBO p. 66, Jul 71
Vfo, digital readout WB8IFM p. 14, Jan 73
Vfo for solid-state transmitters W3QBO p. 36, Aug 70
Vfo, high stability W8YFB p. 14, Mar 69
Vfo, high-stability, vhf OH2CD p. 27, Jan 72
Vfo, multiband fet K8EEG p. 39, Jul 72
Vfo, stable K4GBF p. 8, Dec 71
Vfo, stable transistor W1DTY p. 14, Jun 68
Short circuit W6OOP p. 34, Aug 68
Vfo transistors (HN) W1OOP p. 74, Nov 69
Vfo design, practical K5BIJ p. 22, Aug 70
455-kHz bfo, transistorized W6BLZ, K5XK p. 12, Jul 68

power supplies

Ac power supply, regulated, for mobile W4TRC p. 28, Jun 73
fm equipment W4TRC p. 28, Jun 73
Arc suppression networks (HN) WA5EKA p. 70, Jul 73
Batteries, selecting for portable equipment WB4DAK p. 40, Aug 73
Battery drain, auxiliary, guard for (HN) W1DTY p. 74, Oct 74
Battery power W3FQJ p. 56, Aug 74
Current limiting (HN) W2NLQ p. 70, Dec 72
Current limiting (letter) K5MKO p. 66, Oct 73
Diodes for power supplies, choosing W6BLZ p. 38, Jul 68
Diode surge protection (HN) WA7LUI p. 65, Mar 72
Added note p. 77, Aug 72
Dual-voltage power supply (HN) W1OOP p. 71, Apr 69
Short circuit W80, Aug 69
Dual-voltage power supply (HN) W5JJ p. 68, Nov 71
Filament transformers, miniature Bailey W3KBM p. 66, Sep 74
High-power trouble shooting Allen W3KBM p. 52, Aug 68
IC power (HN) W3KBM p. 68, Apr 72
IC regulated power supply W2FBW p. 50, Nov 70
IC regulated power supply W5SEK p. 51, Dec 70
IC regulated power supply for ICs W6GXN p. 28, Mar 68
Short circuit W2E2GZ p. 22, Apr 68
Klystrons, reflex power for (HN) W6BPK p. 71, Jul 73
Line transient protection (HN) W1DTY p. 75, Jul 68
Line-voltage monitor (HN) WA8VFK p. 66, Jan 74
Load protection, scr (HN) W5OZF p. 62, Oct 72
Low-value voltage source (HN) W5EKA p. 66, Nov 71
Low-voltage supply with short-circuit protection W2E2GZ p. 57, Jun 68
Meter safety (HN) W6VFR p. 68, Jul 72
Mobile power supplies, troubleshooting Allen p. 56, Jun 70
Mobile power supply (HN) WN8DJJ p. 79, Apr 70
Mobile supply, low-cost (HN) W4GEG p. 69, Jul 70
Motorola Dispatcher, converting to 12 volts WB6HXU p. 26, Jul 72
Operational power supply W2I2KL p. 8, Apr 70
Pilot-lamp life (HN) W2OLU p. 71, Jul 73
Polarity inverter, medium current Lauglin p. 26, Nov 73
Power supplies for single sideband receiver W3KDM p. 38, Feb 69
Power-supply hum (HN) W8YFB p. 64, May 71
Power supply, improved (HN) W4ATE p. 72, Feb 72
Power supply, precision W7SK p. 26, Jul 71
Power supply protection for your solid-state circuits W5JJ p. 36, Jan 70
Precision voltage supply for phase-locked terminal unit (HN) WA6TLA p. 60, Jul 74
Protection for solid-state power supplies (HN) W3NK p. 66, Sep 70
Rectifier, half-wave, improved Bailey W3NK p. 34, Oct 73
Regulated 5-volt supply (HN) W6GUNF p. 67, Jan 73
SCR-regulated power supplies W4GOC p. 52, Jul 70
Solar energy W3FQJ p. 54, Jul 74
Solar power W3FQJ p. 52, Nov 74
Step-start circuit, high-voltage (HN) W6VFR p. 64, Sep 71
Storage-battery QRP power W3FQJ p. 64, Oct 74
Survey of solid-state power supplies W6GXN p. 25, Feb 70
Short circuit W6GXN p. 76, Sep 70
Thermoelectric power supplies K1AJE p. 48, Sep 68

Transformers, high-voltage, repairing W6NIF p. 66, Mar 69
Transformer shorts W6BLZ p. 36, Jul 68
Transformers, miniature (HN) W4ATE p. 67, Jul 72
Transients, reducing W5JJ p. 50, Jan 73
Vibrator replacement, solid-state (HN) W8RAY p. 70, Aug 72
Voltage regulators, IC W7FLC p. 22, Oct 70
Voltage-regulator ICs, three-terminal WB5EMI p. 26, Dec 73
Zener diodes (HN) K3DPU p. 79, Aug 68

propagation

Artificial radio aurora, scattering characteristics of WB6KAP p. 18, Nov 74
Echoes, long delay WB6KAP p. 61, May 69
I onospheric E-layer WB6KAP p. 58, Aug 69
I onospheric science, short history of WB6KAP p. 58, Jun 69
Long-distance high frequency communications WB6KAP p. 80, Jul 68
Maximum usable frequency, predicting WB6KAP p. 70, Sep 68
Quiet sun, the WB6KAP p. 76, Dec 68
Scatter-mode propagation, frequency synchronization for K2OVS p. 26, Sep 71
Solar cycle 20, vhf'er's view of W4SIXY p. 46, Dec 74
Sunspot numbers WB6KAP p. 63, Jul 69
Sunspot numbers, smoothed WB6KAP p. 72, Nov 68
Sunspots and solar activity WB6KAP p. 60, Jan 69
Tropospheric duct vhf communications WB6KAP p. 68, Oct 69
6-meter sporadic-E openings, predicting WA9RAQ p. 38, Oct 72
Added note (letter) p. 69, Jan 74

receivers and converters

general

Antenna impedance transformer for receivers (HN) W5NF p. 70, Jan 70
Antenna tuner, miniature receiver (HN) WA7KRE p. 72, Mar 69
Anti-QRM methods W4USZ p. 50, May 71
Attenuation pads, receiving (letter) KO4HMQ p. 69, Jan 74
Audio agc amplifier W4SSN p. 32, Dec 73
Audio agc principles and practice W4SSN p. 28, Jun 71
Audio amplifier and squelch circuit W6AJF p. 36, Aug 68
Audio filter for CW, tunable WA1JSH p. 34, Aug 70
Audio filter-frequency translator for CW reception W2E2EY p. 24, Jun 70
Audio filter mod (HN) K6HIU p. 60, Jan 72
Audio filter, simple
W4NNV
p. 44, Oct 70

Audio filters, inexpensive
W8YFB
p. 24, Aug 72

Audio filter, tunable peak-notch
W2EY
p. 22, Mar 70

Audio filter, variable bandpass
W3AE
p. 36, Apr 70

Audio module, complete
KD4HC
p. 18, Jun 73

Batteries, how to select for portable equipment
WA2AIK
p. 40, Aug 73

Calibrator crystals (HN)
K6KA
p. 66, Nov 71

Calibrator, plug-in frequency
K6KA
p. 22, Mar 69

Calibrator, simple frequency-divider using mos ICs
W6GXX
p. 30, Aug 69

Communications receivers, design ideas for
Moore
p. 12, Jun 74

Communications receivers, designing for strong-signal performance
Moore
p. 6, Feb 73

Converting a vacuum-tube receiver to solid-state
W10OP
p. 26, Feb 69

Counter dials, electronic
K6KA
p. 44, Sep 70

CW filter, adding (HN)
W2OUX
p. 66, Sep 73

CW monitor, simple
WA90HR
p. 65, Jan 71

CW processor for communications receivers
W5NRW
p. 17, Oct 71

CW reception, enhancing through a simulated-stereo technique
WA1MKP
p. 61, Oct 74

CW reception, noise reduction for
W2EELV
p. 52, Sep 73

CW regenerator for interference-free communications
Leward, Libenscheck
p. 54, Apr 74

CW selectivity with crystal bandpassing
W2EY
p. 52, Jun 69

CW transceiver operation with transmit-receive offset
W1DAX
p. 56, Sep 70

Detector, reciprocating
W1SNN
p. 32, Mar 72

Detector, superregenerative, optimizing
W1SNN
p. 54, Mar 74

Detector, superregenerative, optimizing
Ring
p. 32, Jul 72

Detectors, ssb
Want
p. 22, Nov 68

Diversity receiving system
W2EY
p. 12, Dec 71

Filter, vari-Q
W1SNN
p. 62, Sep 73

Frequency calibrator, how to design
W3AE
p. 54, Jul 71

Frequency calibrator, receiver
W5UQS
p. 28, Dec 71

Frequency measurement of received signals
W4AAD
p. 38, Oct 73

Frequency spotter, general coverage
W5JJ
p. 36, Nov 70

Frequency standard (HN)
WA7JIK
p. 69, Sep 72

Frequency standard, universal
K4EEU
p. 40, Feb 74

Short circuit
W2EELV
p. 72, May 74

Hang agc circuit for ssb and CW
W1ERJ
p. 50, Sep 72

I-f cathode jack
W6HPP
p. 28, Sep 68

I-f system, multimode
WA2IKL
p. 39, Sep 71

Image suppression (HN)
W6NIF
p. 68, Dec 72

Intelligibility of communications receivers, improving
WA5RAQ
p. 53, Aug 70

Interference, electric fence
K6KA
p. 68, Jul 72

Interference, rf
W1DTY
p. 12, Dec 70

Local oscillator, phase-locked
VE5FP
p. 6, Mar 71

Local-oscillator waveform effects on spurious mixer responses
Robinson, Smith
p. 44, Jun 74

Noise blanker
KD4HC
p. 38, Feb 73

Noise blanker, hot-carrier diode
W4KAE
p. 16, Oct 69

Short circuit
W2EELV
p. 76, Sep 70

Noise blanker, IC
W2EY
p. 52, May 69

Short circuit
W2EY
p. 79, Jun 70

Noise figure, the real meaning of
K6MO
p. 25, Mar 69

Panoramic reception, simple
W2EY
p. 14, Oct 69

Phase-shift networks, design criteria
G3NRW
p. 34, Jun 70

Product detector, hot-carrier diode
VE3GFN
p. 12, Oct 69

Radio-direction finder
W6JJT
p. 38, Mar 70

Radio-frequency interference
W3AFW
p. 30, Mar 73

Radiotelegraph translator and transcriber
W7CUU, K7KFA
p. 8, Nov 71

Eliminating the matrix
K6SA
p. 60, May 72

Receiver impedance matching (HN)
W2ZFN
p. 79, Aug 68

Receiving RTTY, automatic frequency control for
W5NP
p. 50, Sep 71

Reproding detector converter
W1SNN
p. 58, Sep 74

RF amplifiers for communications receivers
Moore
p. 42, Sep 74

S-meter readings (HN)
W1DTH
p. 56, Jun 68

Selectivity, receiver (letter)
K4ZV
p. 68, Jan 74

Spectrum analyzer, four channel
W9IA
p. 6, Oct 72

Squelch, audio-actuated
K4M0Q
p. 52, Apr 72

Ssb signals, monitoring
W6VFR
p. 36, Mar 72

Superregenerative detector, optimizing
Ring
p. 32, Jul 72

Superregenerative receiver, improved
JA1BHG
p. 48, Dec 70

Threshold-gate/limiter for CW reception
W2EELV
p. 46, Jan 72

Added notes (letter)
W2EELV
p. 59, May 72

Weak signal reception in CW receivers
ZS6BT
p. 44, Nov 71

high-frequency receivers
Bandpass tuning, electronic, in the
Drake R-4C
Horner
p. 58, Oct 73

BC-603 tank receiver, updating the
WA6IAK
p. 52, May 68

BC-1206 for 7 MHz, converted
W4FIN
p. 30, Oct 70

Short circuit
W6VFR
p. 72, Apr 71

Collins 75A4 hints (HN)
W6VFR
p. 68, Apr 72

Collins 75A4-4 modifications (HN)
W4SD
p. 67, Jan 71
Communications receiver, five band K6SDX p. 6, Jun 72
Communications receiver for 80 meters, IC VE3ELP p. 6, Jul 71
Communications receiver, micro-power WB9FHJ p. 30, Jun 73
Short circuit p. 58, Dec 73
Communications receiver, miniaturized K4DHC p. 24, Sep 74
Companion receiver, all-mode WISNN p. 18, Mar 73
Converter, hf, solid-state VE3GFN p. 32, Feb 72
Converter, tuned very low-frequency OH2KT p. 49, Nov 74
Direct-conversion receivers W3FQJ p. 59, Nov 71
Direct-conversion receivers, improved selectivity K6BIJ p. 32, Apr 72
Direct-conversion receivers, simple active filters for W7ZIO p. 12, Apr 74
ESSA weather receiver WG6KN p. 36, May 68
Fet converter, band-switching, for 40, 20, 15 and 10 (VE3GFN) p. 6, Jul 68
postscript p. 68, May 69
Fet converter for 10 to 40 meters, second-generation VE3GFN p. 28, Jan 70
Short circuit p. 79, Jun 70
Frequency synthesizer for the Drake R-4 W6NBI p. 6, Aug 72
Modification (letter) p. 74, Sep 74
Gonset converter, solid-state modification of Schuler p. 58, Sep 69
Hammarlund HQ215, adding 160-meter coverage W2GHK p. 32, Jan 72
Heath SB-650 frequency display, using with other receivers K2BMY p. 40, Jun 73
Incremental tuning to your transceiver, adding VE3GFN p. 66, Feb 71
Monitoring oscillator W2JJO p. 36, Dec 72
Outboard receiver with a transceiver W1DTY p. 12, Sep 68
Outboard receiver with the SB-100, using an (HN) K4GMR p. 68, Feb 70
Overload response in the Collins 75A-4 receiver, improving W6ZO p. 42, Apr 70
Short circuit p. 76, Sep 70
Phasing-type ssb receiver WA0JYK p. 6, Aug 73
Short circuit p. 58, Dec 73
Added note (letter) p. 63, Jun 74
Preamplifier, emitter-tuned, 21 MHz WA5SNZ p. 20, Apr 72
Preamplifier, low-noise high-gain transistor W2EZY p. 66, Feb 69
Preselector, general-coverage (HN) W5OZF p. 75, Oct 70
Q5er, solid-state WSTKP p. 20, Aug 69
Receiver incremental tuning for the Swan 350 (HN) K1KXA p. 64, Jul 71
Receiver, reciprocating detector WISNN p. 44, Nov 72
Correction (letter) p. 77, Dec 72
Receiver, versatile solid-state W1PLJ p. 10, Jul 70
Receiving RTTY with Heath SB receivers (HN) K9HW p. 64, Oct 71
RF amplifiers, selective K6BIJ p. 58, Feb 72
Regenerative detectors and a wideband amplifier for experimenters W6YFB p. 61, Mar 70
RTTY monitor receiver K4EUE p. 27, Dec 72
RTTY receiver-demodulator for net operation VE7BRK p. 42, Feb 73
RTTY with SB-300 W2ARZ p. 76, Jul 68
Swan 350 CW monitor (HN) VE3DFX p. 63, Jun 72
Transceiver selectivity improved (HN) VE3BWD p. 74, Oct 70
Tuner overload, eliminating (HN) VE3GFN p. 66, Jan 73
Attenuators for (letter) p. 65, Jan 74
Two-band novice superhet Thorpe p. 66, Aug 68
Weather receiver, low-frequency W6GKN p. 36, Oct 68
WWV receiver, fixed-tuned W6GKN p. 24, Nov 69
WWV receiver, regenerative WA5SNZ p. 42, Apr 73
WWV receiver, simple (HN) WA3JBN p. 68, Jul 70
Short circuit p. 72, Dec 70
WWV receiver, simple (HN) WA3JBN p. 55, Dec 70
WWV-WWVH, amateur applications for W3FQJ p. 53, Jan 72
455-kHz bfo, transistorized W6BLZ, K5GRX p. 12, Jul 68
160-meter receiver, simple W6FPO p. 44, Nov 70
1.9 MHz receiver W3TMO p. 6, Dec 69
7-MHz ssb receiver and transmitter, simple VE3GSD p. 6, Mar 74
Short circuit p. 62, Dec 74
28-MHz superregen receiver K2ZSQ p. 70, Nov 68

vhf receivers and converters

Converters for six and two meters, mosfet WB2EGZ p. 41, Feb 71
Short circuit p. 96, Dec 71
Cooled preamplifier for vhf-uhf WA0RDX p. 36, Jul 72
Fet converters for 50, 144 and 220 and 432 MHz W6AJS p. 20, Mar 68
Filter-preamplifiers for 50 and 144 MHz etched W5KNT p. 6, Feb 71
Fm channel scanner W2FFP p. 29, Aug 71
Fm communications receiver, modular K8AUH p. 32, Jun 69
Correction p. 71, Jan 70
Fm receiver frequency control (letter) W3AFN p. 65, Apr 71
Fm receiver performance, comparison of VE7ABK p. 68, Aug 72
Fm receiver, multichannel for six and two WISNN p. 54, Feb 74
Fm receiver, tunable vhf K8AUH p. 34, Nov 71
Fm receiver, uhf WA2GCF p. 6, Nov 72
Fm repeaters, receiving system degradation in K5ZBA p. 36, May 69
HW-17A, perking up (HN) W6E6GZ p. 70, Aug 70

December 1974
Interdigital preamplifier and comb-line bandpass filter for vhf and uhf

WA5KHT p. 6, Aug 70

Interference, scanning receiver (HN)

K2YAH p. 70, Sep 72

Monitor receivers, two-meter fm

WB5EMI p. 34, Apr 74

Overload problems with vhf converters, solving

W10OP p. 53, Jan 73

Receiver, modular two-meter fm

WA2GF B p. 42, Feb 72

Scanning receiver for vhf fm, improved

WA2GC F p. 26, Nov 74

Scanning receiver modifications, vhf fm (HN)

WA5WOU p. 60, Feb 74

Scanning receivers for two-meter fm

K4IPV p. 28, Aug 74

Six-meter converter, improved

K1BQT p. 50, Aug 70

Six-meter mosfet converter

WB2EGZ p. 22, Jun 68

Short circuit

K2H4Q p. 34, Aug 68

Squelch-audio amplifier for fm receivers

WB4AUSU p. 68, Sep 74

Ssb mini-tuner

K1BQT p. 16, Oct 70

Two-meter converter, 1.5 dB NF

WA6SXC p. 14, Jul 68

Two-meter mosfet converter

WB2EGZ p. 22, Aug 68

Neutralizing

WA5VQ p. 77, Oct 68

Two-meter preamp, MM5000

WA4KAE p. 49, Oct 68

Vhf converter performance, optimizing (HN)

K2FSQ p. 18, Jul 68

Vhf fm receiver (letter)

K6HIH p. 76, May 73

Vhf receiver scanner

K2LZG p. 22, Feb 73

Vhf superregenerative receiver, low-voltage

WA5SNZ p. 22, Jul 73

Short circuit

WA5SNZ p. 64, Mar 74

50-MHz preamplifier, improved

WA2GC F p. 46, Jan 73

144-MHz converter (HN)

K6QVY p. 71, Aug 70

144-MHz converter (letter)

W2LER p. 71, Oct 71

144-MHz converter, hot-carrier diode

K8CJU p. 6, Oct 69

144-MHz converter, modular

WS6UVW p. 64, Oct 70

144-MHz converters, choosing fets for (HN)

K6JOY p. 70, Aug 69

144-MHz preamp, super (HN)

K6HCP p. 72, Oct 69

144-MHz preamplifier, Improved

WA2GCF p. 72, Mar 72

Added notes

WA2GCF p. 73, Jul 72

220-MHz mosfet converter

WB2EGZ p. 28, Jan 69

Short circuit

WA6SXC p. 76, Jul 69

432-MHz converter, low-noise

K6JC p. 34, Oct 70

432-MHz fet converter, low noise

WA6SXC p. 18, May 68

432-MHz preamp (HN)

W1D4Y p. 66, Aug 67

1296-MHz converter, solid-state

VK4J2 T p. 6, Nov 70

1296-MHz preamplifier, low-noise

WA2VTR p. 50, Jun 71

Added note (letter)

WA2VTR p. 65, Jul 72

2304-MHz converter, solid-state

K2JMG, WA2LTM, WA2VTR p. 16, Mar 72

2304-MHz preamplifier, solid-state

WA2VTR p. 20, Aug 72

test and troubleshooting

Converter, mosfet, for receiver instrumentation

WA92MT p. 62, Jan 71

Receiver alignment

Allen p. 64, Jun 68

Rf and l-f amplifiers, troubleshooting

Allen p. 60, Sep 70

Signal injection in ham receivers

Allen p. 72, May 68

Signal tracing in ham receivers

Allen p. 52, Apr 68

Small-signal source for 144 and 432 MHz

K6JC p. 58, Mar 70

RTTY

AFSK generator, crystal-controlled

K7BYT p. 13, Jul 72

AFSK generator, crystal-controlled

W6LLO p. 14, Dec 73

Slug giriş oscillator (letter)

WA4EGB p. 59, Dec 74

AFSK oscillators, solid-state

WA4FGY p. 28, Oct 68

Audio-shift keyer, continuous-phase

VE3CTP p. 10, Oct 73

Short circuit

WA6JYJ p. 64, Mar 74

Automatic frequency control for receiving RTTY

W5NPO p. 50, Sep 71

Added note (letter)

WA6JYJ p. 66, Jan 72

Autostart, digital RTTY

K4EUE p. 6, Jun 73

Autostart monitor receiver

K4EED p. 37, Dec 72

CRT intensifier for RTTY

K4VFA p. 18, Jul 71

Carrier return, adding to the automatic line-feed generator (HN)

K4EUE p. 71, Sep 74

Coherent frequency-shift keying, need for

K3WJO p. 30, Jun 74

Added notes (letter)

K4EUE p. 58, Nov 74

Crystal test oscillator and signal generator

K4EUE p. 46, Mar 73

CW memory for RTTY identification

W6LLO p. 6, Jan 74

Electronic speed conversion for RTTY teleprinters

WA6L4YJ p. 36, Dec 71

Frequency-shift meter, RTTY

K3WJO p. 53, Jun 70

Line feed, automatic for RTTY

K4EUE p. 20, Jan 73

Mainline ST-5 RTTY demodulator

W6FFC p. 14, Sep 70

Short circuit

W6FFC p. 72, Dec 70

Mainline ST-5 autostart and antispace

W6FFC p. 50, Feb 71

Mainline ST-6 RTTY demodulator

W6FFC p. 6, Jan 71

Short circuit

W6FFC p. 72, Apr 71

Mainline ST-6 RTTY demodulator, more uses for (letter)

W6FFC p. 69, Jul 71

Mainline ST-6 RTTY demodulator, troubleshooting

W6FFC p. 50, Feb 71

Message generator, RTTY

W6OXP, W8KCO p. 30, Feb 74

Monitor scope, phase-shift

W3CIX X p. 36, Aug 72

Monitor scope, RTTY, Heath

K6U-10 and SB-610 as (HN)

K3HVV p. 70, Sep 74

Monitor scope, RTTY, solid-state

WB2DIZ p. 33, Oct 71

Phase-locked loop AFSK generator

K7ZOF p. 27, Mar 73
semiconductors

- Antenna switch for meters, solid-state
 K2ZSQ p. 48, May 69
- Avalanche transistor circuits
 W4NVK p. 22, Dec 70
- Beta master, the
 K8ERV p. 18, Aug 68
- Charge flow in semiconductors
 WB68IH p. 50, Apr 71
- Converting a vacuum-tube receiver to
 solid-state
 W1OOP p. 26, Feb 69
- Converting vacuum tube equipment to
 solid-state
 W2EYY p. 30, Aug 68
- Curve master, the
 K8ERV p. 40, Mar 68
- Diodes, evaluating
 W5JJ p. 52, Dec 71
- Dynamic transistor tester (HN)
 VE7ABK p. 65, Oct 71
- Fet bias problems simplified
 WA5SNZ p. 50, Mar 74
- Fet biasing
 W3FQJ p. 61, Nov 72
- Fetrons, solid-state replacements for
 tubes
 W1DTY p. 4, Aug 72
- Added notes
 p. 66, Oct 72; p. 62, Jun 74
- Frequency multipliers
 W6GXXN p. 6, Aug 71
- Frequency multipliers, transistor
 W6AJF p. 49, Jun 70
- Glass semiconductors
 W1EZT p. 54, Jul 69
- Grid-dip oscillator, solid-state conversion of
 W6AJZ p. 20, Jun 70
- Heat sink problems, how to solve transistor
 WASSNZ p. 46, Jan 74
- Injection lasers, high power
 Mims p. 28, Sep 71
- Injection lasers (letter)
 Mims p. 64, Apr 71
- Linear power amplifier, high-power
 solid-state
 Chambers p. 6, Aug 74
- Linear transistor amplifier
 W3FQJ p. 59, Sep 71
- Long-tail transistor biasing
 W2DXH p. 64, Apr 68
- Mobile converter, solid-state modification of
 Schuler p. 58, Sep 69
- Mosfet transistors (HN)
 WB2EGZ p. 72, Aug 69
- Motorola fets (letter)
 W1CER p. 64, Apr 71
- Motorola MPS transistors (HN)
 W2DXH p. 42, Apr 68
- Neutralizing small-signal amplifiers
 WA4WDK p. 40, Sep 70
- Parasitic oscillations in high-power
 transistor rf amplifiers
 W3KGI p. 54, Sep 70
- Pentode replacement (HN)
 W1DTY p. 70, Feb 70
- Power dissipation ratings of transistors
 WN9CGW p. 56, Jun 71
- Power fets
 W3FQJ p. 34, Apr 71
- Power transistors, paralleling (HN)
 WASEKA p. 62, Jan 72
- Relay, transistor replaces (HN)
 W3NK p. 72, Jan 70
- Replace the unijunction transistor
 K9VXL p. 58, Apr 68
- RF power detecting devices
 K5YO p. 28, Jun 70

satellites

- Amateur radio in space, bibliography
 W6QLO p. 60, Aug 68
 Addenda p. 77, Oct 68
- Antennas, simple, for satellite
 communications
 K4GSX p. 24, May 74
- Circularly-polarized ground-plane
 antenna for satellite communications
 K4GSX p. 28, Dec 74
- Communications, first step to satellite
 K1LHA p. 52, Nov 72
 Added notes (letter) p. 73, Apr 73
- Oscar 7, communications techniques for
 G3ZCZ p. 6, Apr 74
- Picture transmission, recording satellite
 W6CCN p. 6, Nov 68
- Signal polarization, satellite
 KH6U p. 6, Dec 72

Phased-locke loop RTTY terminal unit
W4FQM p. 8, Jan 72
Correction p. 60, May 72
Power supply for p. 60, Jul 74
Precise tuning with ssb gear
W2KD p. 40, Oct 70
Printed circuit for RTTY speed converter
W7POG p. 54, Oct 72
Receiver-demodulator for RTTY net
operation
VE7BRK p. 42, Feb 73
Ribbon re-inkers
W6FFC p. 30, Jun 72
RTTY converter, miniature IC
K9MRL p. 40, May 69
Short circuit p. 80, Aug 69
RTTY distortion: causes and cures
WB61MP p. 36, Sep 72
RTTY for the blind (letter)
VE7BRK p. 76, Aug 72
RTTY, introduction to
K6JFP p. 38, Jun 69
RTTY line-length indicator (HN)
W2UVF p. 62, Nov 73
RTTY reception with Heath SB receivers (HN)
K9HWW p. 64, Oct 71
RTTY with the SB-300
W2ARZ p. 76, Jul 68
Signal Generator, RTTY
W7ZTC p. 23, Mar 71
Short circuit p. 96, Dec 71
Speed control, electronic, for RTTY
W3VF p. 50, Aug 74
ST-5 keys polar relay
W7LDP p. 72, May 74
Swan 350 and 400 equipment on RTTY (HN)
WB2MIC p. 67, Aug 69
Synchrophase afsk oscillator
W6FOO p. 30, Dec 70
Synchrophase RTTY reception
W6FOO p. 38, Nov 70
Teleprinters, new look in
W6JT p. 38, Jul 70
Terminal unit, phase-locked loop
W4FQM p. 8, Jan 72
Correction p. 60, May 72
Terminal unit, variable-shift RTTY
W3VF p. 16, Nov 73
Test generator, RTTY (HN)
W3EAG p. 67, Jan 73
Test generator, RTTY (HN)
W3EAG p. 59, Mar 73
Voltage supply, precision for
phase-locked terminal unit (HN)
WA6TIA p. 60, Jun 74

december 1974 p. 127
RF power transistors, how to use p. 8, Jan 70
Surplus transistors, identifying p. 38, Dec 70
Thyristors, introduction to p. 54, Oct 70
Transconductance tester for field-effect transistors p. 44, Sep 71
Transistor amplifiers, tabulated characteristics of p. 30, Mar 71
Transistor and diode tester ZL2AMJ p. 65, Nov 70
Transistors for vhf transmitters (HN) W1OOP p. 74, Sep 69
Transistor storage (HN) K8ERV p. 58, Jun 68
Transistor tester WA6NIL p. 48, Jul 68
Transistor tester for leakage and gain W4BRS p. 68, May 68
Transistor testing Allen p. 62, Jul 70
Transistor-tube talk p. 25, Jun 68
Trapadi diodes (letter) WA7NL A p. 72, Apr 72
Troubleshooting around fets Allen p. 42, Oct 68
Troubleshooting transistor ham gear Allen p. 64, Jul 68
Vfo transistors (HN) W1OOP p. 74, Nov 69
Y parameters in rf design, using WA2TCU p. 46, Jul 72
Zener diodes (HN) K3DPJ p. 79, Aug 68
Zener tester, Low voltage (HN) K3DPJ p. 72, Nov 69

single sideband

Balanced modulator, integrated-circuit K7QWR p. 6, Sep 70
Balanced modulators, dual fet W3FQJ p. 63, Oct 71
Communications receiver, phasing-type WA2JYK p. 6, Aug 73
Converting a-m power amplifiers to ssb service WA4GNW p. 55, Sep 68
Converting the Swan 120 to two meters K6RL p. 8, May 68
Detectors, ssb Belt p. 22, Nov 68
Detector, ssb, IC (HN) K4ODS p. 67, Dec 72
Correction p. 72, Apr 73
Double-balanced mixers W1DTY p. 48, Mar 68
Double-balanced modulator, broadband WA6NCT p. 8, Mar 70
Filters, single-sideband Belt p. 40, Aug 68
Filters, ssb (HN) K6KA p. 63, Nov 73
Frequency dividers for ssb W7BZ p. 24, Dec 71
Frequency translation in ssb transmitters Belt p. 22, Sep 68
Generating ssb signals with suppressed carriers Belt p. 24, May 68
Guide to single sideband, a beginner’s Belt p. 66, Mar 68
Hang agc circuit for ssb and CW W1ERJ p. 50, Sep 72

Intermittent voice operation of power tubes W6SAL p. 24, Jan 71
Intermodulation-distortion measurements on ssb transmitters W6VFR p. 34, Sep 74
Linear amplifier, five-band conduction-cooled W9KIT p. 6, Jul 72
Linear amplifier, five-band kilowatt W4OQ p. 14, Jan 74
Improved operation (letter) p. 59, Dec 74
Linear amplifier, homebrew five-band W7IV p. 30, Mar 70
Linear amplifier performance, improving W4PSJ p. 68, Oct 71
Linear, five-band nf W7DI p. 6, Mar 72
Linear for 80-10 meters, high-power W6HHN p. 56, Apr 71
Short circuit p. 96, Dec 71
Linear power amplifiers Belt p. 15, Apr 68
Linear, three bands with two (HN) W4NJE p. 70, Nov 69
Minituner, ssb K1BQT p. 16, Oct 70
Modifying the Heath SB-200 amplifier for the new 8873 zero-bias triode W6UOV p. 32, Jan 71
Oscillators, ssb Belt p. 26, Jun 68
Peak envelope power, how to measure W5JJ p. 32, Nov 74
Phase-shift networks, design criteria for G3NRF p. 34, Jun 70
Phase-shift ssb generators Belt p. 20, Jul 68
Power supplies for ssb Belt p. 38, Feb 69
Precise tuning with ssb gear W9KD p. 40, Oct 70
Pre-emphasis for ssb transmitters OH2CD p. 38, Feb 72
Rating tubes for linear amplifier service W6UOV, W6SAI p. 50, Mar 71
RF clipper for the Collins S-line K6JYO p. 18, Aug 71
Letter p. 68, Dec 71
RF speech processor, ssb W2MB p. 18, Sep 73
Sideband location (HN) K6KA p. 62, Aug 73
Solid-state circuits for ssb Belt p. 18, Jan 69
Solid-state transmitting converter for 144-MHz ssb W6NB1 p. 6, Feb 74
Short circuit p. 62, Dec 74
Speech clipper, IC K6HTM p. 18, Feb 73
Added notes (letter) p. 64, Oct 73
Speech clipper, rf, construction G6XN p. 12, Dec 72
Speech clipplers, rf, performance of G6XN p. 26, Nov 72
Added notes p. 58, Aug 73; p. 72, Sep 74
Speech clipping K6KA p. 24, Apr 69
Speech clipping in single-sideband equipment K1Y2W p. 22, Feb 71
Speech processing W1DTY p. 60, Jun 68
Speech processor for ssb K6PHT p. 22, Apr 70
Speech process, logarithmic WA3FIY p. 38, Jan 70
Speech processor, ssb VK9GN p. 31, Dec 71
Ssb exciter, 5-band K1UKX p. 10, Mar 68
transmitters and power amplifiers

general

Amplitude modulation, a different approach
WA5SNZ p. 50, Feb 70

Batteries, how to select for portable equipment
WAOAK p. 40, Aug 73

Blower maintenance (HN)
W6NIF p. 71, Feb 71

Blower-to-chassis adapter (HN)
K6JYO p. 73, Feb 71

Converting a-m power amplifiers to ssb service
WA4QDW p. 55, Sep 68

Efficiency of linear power amplifiers, how to compare
W5JJ p. 64, Jul 73

Fail-safe timer, transmitter (HN)
K9HVW p. 72, Oct 74

Filters, ssb (HN)
K6KA p. 63, Nov 73

Frequency multipliers
W6GKN p. 6, Aug 71

Frequency translation in ssb Transmitters
Belt p. 22, Sep 68

Grid-current measurement in grounded-grid amplifiers
W6SAI p. 64, Aug 68

Interruption voice operation of power tubes
W6SAI p. 24, Jan 71

Key and vox clicks (HN)
W6SAI p. 74, Aug 72

W6SAI p. 74, Aug 72

Linear power amplifiers
Belt p. 16, Apr 68

Lowpass filters for solid-state linear amplifiers
WAOYK p. 38, Mar 74

Short circuit p. 62, Dec 74

Multiple tubes in parallel grounding grid (HN)
W7CSD p. 60, Aug 71

Networks, transmitter matching
W6FFC p. 6, Jan 73

Neutralizing tip (HN)
Z6EJP p. 69, Dec 72

Parasitic oscillations in high-power transistor rf amplifiers
W0GKI p. 54, Sep 70

Parasitic suppressor (HN)
WA9JMY p. 80, Apr 70

Pi and Pi-L networks
W6SAI p. 36, Nov 68

Pi network design aid
W6NIF p. 62, May 74

Correction (letter)
W6NIF p. 58, Dec 74

Pi-network design, high-frequency power amplifier
W6FFC p. 6, Sep 72

Pi-network design, high-frequency power amplifier
W6FFC p. 6, Sep 72

Pi network inductors (letter)
W7IV p. 78, Dec 72

Pi networks, series tuned
W2EGH p. 42, Oct 71

Power attenuator, all-band 10-dB
K1CCL p. 68, Apr 70

Power fets
W3FQJ p. 34, Apr 71

Pre-emphasis for ssb transmitters
OH2CD p. 38, Feb 72

Relay activator (HN)
K6KA p. 62, Sep 71

television

Camera and monitor, sstv VE3EEO, Watson p. 38, Apr 69

Color tv, slow-scan
W4UMF, WBBDQT p. 59, Dec 69

Computer, processing, sstv pictures
W4UMF p. 30, Jul 70

Fast-scan camera converter for sstv WA9UHV p. 22, Jul 74

Fast-to-slow-scan conversion, tv W3EFG, W3YZC p. 32, Jul 71

Slow-scan television
WA2EMC p. 52, Dec 69

Sync generator, sstv (letter) W11A p. 73, Apr 73
RF power amplifiers, high-efficiency

W8BLQK

RF power transistors, how to use

WA7KRE

Screen clamp, solid-state

W03LRW

p. 4, Sep 68

Step-start circuit, high-voltage (HN)

W6VFV

p. 64, Sep 71

Swr alarm circuits

W2EEY

p. 73, Apr 70

Temperature alarms for high-power amplifiers

W2EEY

p. 48, Jul 70

Transmitter power levels, some observations regarding

WA5SNZ

p. 62, Apr 71

Transmitter, remote keying (HN)

WA3HDU

p. 74, Oct 67

Transmitter switching, solid-state

W2EEY

p. 44, Jun 68

Transmitter-tuning unit for the blind

W9NTP

p. 40, Jun 71

TV sweep tubes in linear service, full-blast operation of

W6SAI, W6UOV

p. 9, Apr 68

Vacuum tubes, using odd-ball types in linear amplifiers

WSJJ

p. 58, Sep 72

Vfo, digital readout

W6BIFM

p. 14, Jan 73

high-frequency

ART-13, Modifying for noiseless CW (HN)

K5GKN

p. 68, Aug 69

CW transceiver for 40 and 80 meters

W3NNL, K3OIO

p. 14, Jul 69

CW transceiver, low-power 20-meter

W7Z9I

p. 8, Nov 74

CW transmitter, half-watt

K2VQY

p. 63, Nov 69

Driver and final for 40 and 80 meters, solid-state

W3QBO

p. 20, Feb 72

Field-effect transistor transmitters

K2BLA

p. 30, Feb 71

Filters, low-pass for 10 and 15 meters

W2EEY

p. 42, Jan 72

Frequency synthesizer, high frequency

K2BLA

p. 16, Oct 72

Grounded-grid 2 kW PEP amplifier, high frequency

W6SAI

p. 6, Feb 69

Heath HW-101 transceiver, using with a separate receiver (HN)

WAIKMK

p. 63, Oct 73

Linear amplifier, five-band

W7IV

p. 30, Mar 70

Linear amplifier, five-band conduction-cooled

W9KIT

p. 6, Jul 72

Linear amplifier performance, improving

W4PSJ

p. 68, Oct 71

Linear, five-band hf

W7DI

p. 6, Mar 72

Linear, five-band kilowatt

W4OQ

p. 43, Jan 74

Improved operation (letter)

p. 59, Dec 74

Linear for 80-10 meters, high-power

W6HNN

p. 56, Apr 71

Short circuit

p. 96, Dec 71

Linear power amplifier, high-power solid-state

Chambers

p. 6, Aug 74

Linear, three bands with two (HN)

W4NIF

p. 70, Nov 69

Low-frequency transmitter, solid-state

W4KAE

p. 16, Nov 68

Modifying the Heath SB-200 amplifier for the new B873 zero-bias triode

W6UOV

p. 32, Jan 71

Phase-locked loop, 28 MHz

W1KNI

p. 40, Jan 73

Ssb exciter, 5-band

K1UXX

p. 10, Mar 68

Ssb transceiver, miniature 7-MHz

W7BBX

p. 16, Jul 74

Ssb transceiver using LM373 IC

W6BAA

p. 32, Nov 73

Ssb transceiver, 9-MHz, IC

G3ZVC

p. 34, Aug 74

Ssb transmitter and receiver, 40 meters

VE3GSD

p. 6, Mar 74

Short circuit

p. 62, Dec 74

Tank circuit, inductively-tuned high-frequency

W6SAI

p. 6, Jul 70

Transceiver, single-band ssb

W1MTY

p. 6, Jun 74

Transmitter, 3.5-MHz ssb

VE6AXB

p. 6, May 73

Transmitter, low-power

W6NIF

p. 26, Dec 70

Transmitters, QRP

W7OE

p. 36, Dec 68

Transmitter, universal flea-power

K2ZSQ

p. 58, Apr 69

Transverter, high-level hf

K4ERO

p. 68, Jul 68

3.500Z in amateur service, the transverter

W6SAI

p. 56, Mar 68

14-MHz vfo transmitter, solid-state

W3QBO

p. 6, Nov 73

28-MHz transmitter, solid-state

K2ZSQ

p. 40, Jan 73

40-meters, transistor rig for

W6BLZ, K5GXR

p. 44, Jul 68

vhf and uhf

Converting the Swan 120 to two meters

K6RIL

p. 8, May 68

Fm repeater transmitter, improving

W6GDO

p. 24, Oct 69

Linear for 2 meters

W4KAE

p. 47, Jan 69

Linear for 1296 MHz, high-power

W8610M

p. 8, Aug 68

Phase-locked loop, 50 MHz

W1KNI

p. 40, Jan 73

Transmitters for vhf transmitters (HN)

W10OP

p. 74, Sep 69

Transmitter, flea power

K2ZSQ

p. 80, Dec 68

Transmitting mixers for 6 and 2 meters

K2ISP

p. 8, Apr 69

Transverter for 6 meters

WA91GU

p. 44, Jul 69

Tunnel diode phone rig, 6-meter (HN)

K2ZSQ

p. 74, Jul 68

Vhf linear, 2kW, design data for

W6UOV

p. 6, Mar 69

50-MHz linear amplifier

K1RAK

p. 48, Nov 71

50-MHz linear amplifier, 2-kW

K6UOV

p. 16, Feb 71

50-MHz transmitter, solid-state

W62EGZ

p. 6, Oct 68

50-MHz transverter

K1RAK

p. 12, Mar 71

50/144 MHz multimode transmitter

K2ISP

p. 74, Sep 70

144-MHz fm transmitter

W9SEK

p. 6, Apr 72

144-MHz fm transmitter, solid-state

W6AJF

p. 14, Jul 71

144-MHz fm transmitter, Sonobaby

WA9UZO

p. 8, Nov 71

Short circuit

p. 6, Dec 71

144-MHz low-drive kilowatt linear

W6HNN

p. 26, Jul 70

144-MHz low-power solid-state transmitter

K2VQY

p. 52, Mar 70
144-MHz phase-modulated transmitter
W6AJF p. 18, Feb 70
144-MHz power amplifier, high performance
W6UOV p. 22, Aug 71
144-MHz power amplifier, 10-watt solid-state
W1DTV p. 67, Jan 74
144-MHz rf power amplifiers, solid state
W4CGC p. 6, Apr 73
144-MHz transmitting converter, solid-state ssb
W6NBI p. 6, Feb 74
Short circuit p. 62, Dec 74
144-MHz transceiver, a-m
K1AOB p. 55, Dec 71
144-MHz two-kilowatt linear
W6UOV, W6ZO, K6OC p. 26, Apr 70
144- and 432- stripline amplifier/tripler
K2RIW p. 6, Feb 70
220-MHz exciter
WB6DJV p. 50, Nov 71
220-MHz power amplifier
W6UOV p. 44, Dec 71
220-MHz rf power amplifier for
WB6DJV p. 44, Jan 71
220-MHz rf power amplifier, vhf fm
K7JUE p. 6, Sep 73
432-MHz amplifier, 2-kw
W6DAI, W6LNZ p. 6, Sep 68
432-MHz exciter, solid-state
W10OP p. 38, Oct 69
432-MHz rf power amplifier
K6JC p. 40, Apr 70
432-MHz ssb converter
K6JC p. 48, Jan 70
Short circuit p. 79, Jun 70
1296-MHz frequency tripler
K4SUM, W4API p. 40, Sep 69
1296-MHz power amplifier
W2COH, W2CCY, W2OJ, W1MU p. 43, Mar 70

test and troubleshooting
Aligning vhf transmitters
Allen p. 58, Sep 68
Ssb transmitter alignment
Allen p. 62, Oct 69
Transverter, 6-meter
K8DCC, K8TVP p. 44, Dec 68
Tuning up ssb transmitters
Allen p. 62, Nov 69

troubleshooting
Analyzing wrong dc voltages
Allen p. 54, Feb 69
Mobile power supplies, troubleshooting
Allen p. 56, Jun 70
Ohmmeter troubleshooting
Allen p. 52, Jan 69
Oscillators, repairing
Allen p. 69, Mar 70
Oscilloscope, putting to work
Allen p. 64, Sep 69
Oscilloscope, troubleshooting amateur gear with
Allen p. 52, Aug 69
Rf and i-f amplifiers, troubleshooting
Allen p. 60, Sep 70
Speech amplifiers, curing distortion
Allen p. 42, Aug 70
Ssb transmitter alignment
Allen p. 62, Oct 69
Sweep generator, how to use
Allen p. 60, Apr 70
Transistor testing
Allen p. 62, Jul 70
Tuning up ssb transmitters
Allen p. 62, Nov 69

vhf and microwave general
Amateur vhf fm operation
W6AYZ p. 36, Jun 68
Artificial radio aurora, vhf scattering characteristics
W8KAD p. 18, Nov 74
A-m modulation monitor (HN)
K7UNL p. 67, Jul 71
APX-6 transponder, notes on
WGOSA p. 32, Apr 68
Band change from six to two meters, quick
K2YQY p. 64, Feb 70
Bandpass filters, single-pole
W6PHP p. 51, Sep 69
Bandpass filters, 25 to 2500 MHz
K6RHI p. 45, Sep 69
Bypassing, rf, at vhf
WB6BHI p. 50, Jan 72
Cavity filter, 144-Mhz
W1SNN p. 22, Dec 73
Short circuit p. 64, Mar 74
Coaxial filter, vhf
WGSAl p. 36, Aug 71
Coaxial-line resonators (HN)
WA7KRE p. 82, Apr 70
Coil-winding data, practical vhf and uhf
K3SVC p. 6, Apr 71
Crystal mount, untuned
W1DTY p. 68, Jun 68
Effective radiated power (HN)
VE7CB p. 72, May 73
Frequency multipliers
W6GKN p. 6, Aug 70
Frequency multipliers, transistor
W6AJF p. 49, Jul 70
Frequency synchronization for scatter-mode propagation
K2OVS p. 26, Sep 71
Frequency synthesizer, 220 MHz
W6GKN p. 8, Dec 74
Gridded tubes, vhf/uhf effects in
W6UOV p. 8, Jan 69
Harmonic generator (HN)
W5GDQ p. 76, Oct 70
Impedance bridge (HN)
W6KZK p. 67, Feb 70
Indicator, sensitive rf
W8SPI p. 38, Apr 73
Klystron cooler, waveguide (HN)
WA4WDL p. 74, Oct 74
Lunar-path nomograph
WA6NCT p. 28, Oct 70
Microwave communications, amateur standards for
K6HJV p. 54, Sep 69
Microwave hybrids and couplers for amateur use
W2CTK p. 57, Jul 70
Short circuit p. 72, Dec 70
Microwaves, getting started in
Roubal p. 53, Jun 72
Microwaves, introduction to
W1CBY p. 20, Jan 72
Moonbounces to Australia
W1DTY p. 85, Apr 68
Noise figure, meaning of
K6MO p. 26, Mar 69
Noise figure measurements, vhf
WB6NMT p. 36, Jun 72
Noise generators, using (HN)
K2ZSQ p. 79, Aug 68
Phase-locked loop, tunable 50 MHz
W1KNI p. 40, Jan 73
Power dividers and hybrids
W1DAX p. 30, Aug 72
Proportional temperature control for crystal
ovens
VE5FP p. 44, Jan 70

december 1974
Radios and antennas

Radio observatory, vhf
Ham p. 44, Jul 74
Reflection klystrons, pogo stick for (HN)
W6BPK p. 71, Jul 73
RF power-detecting devices
K6JYO p. 28, Jun 70
Satellite communications
K1TMA p. 52, Nov 72
Satellite signal polarization
KH6JU p. 6, Dec 72
Solar cycle 20, vhf'er's view of
WA51YY p. 46, Dec 74
Tank circuits, design of vhf
K7UNL p. 56, Nov 70
Uhf hardware (HN)
W6CMQ p. 76, Oct 70
Vfo, high-stability vhf
OH2CD p. 27, Jan 72
Vhf beacons
K6EDX p. 52, Oct 69
Vhf pre-scaler, circuit improvements for
W6PQZ p. 30, Oct 73
50-MHz frequency synthesizer
WLKNI p. 26, Mar 74
144-MHz fm frequency meter
W4JAZ p. 40, Jan 71
Short circuit
W4JAZ p. 72, Apr 71
144-MHz frequency synthesizer
WB4FPK p. 34, Jul 73
144-MHz frequency-synthesizer, one-crystal
W2KMW p. 30, Sep 73
220-MHz frequency synthesizer
W6GKN p. 8, Dec 74
432-MHz ssb, practical approach to
WA2FSQ p. 6, Jun 71
40-GHz record
K7PMY p. 70, Dec 68

antennas

Circularly-polarized ground-plane
antenna for satellite communications
K4GSX p. 28, Dec 74
Ground plane, portable vhf (HN)
K90HD p. 71, May 73
Log-periodic yagi beam antenna
K6RL, W6SAI p. 8, Jul 69
Microstrip swr bridge, vhf and uhf
W4GCC p. 22, Dec 72
Microwave antenna, low-cost
K6HIJ p. 52, Nov 69
Parabolic reflector antennas
VK3ATN p. 12, May 74
Parabolic reflector, 16-foot homebrew
WB6IOM p. 8, Aug 69
Parabolic reflectors, finding focal length of (HN)
WA4WDL p. 57, Mar 74
Swr meter
W6S5V p. 6, Oct 70
Transmission lines, uhf
WA2YTR p. 36, May 71
Two-meter antenna, simple (HN)
W6BLZ p. 78, Aug 68
Two-meter mobile antennas
W6BLZ p. 76, May 68
Vhf antenna switching without relays (HN)
K2ZSQ p. 77, Sep 68
50-MHz antenna coupler
K1RAK p. 44, Jul 71
50-MHz collinear beam
K4ERO p. 59, Nov 69
50-MHz cubical quad, economy
W6DOR p. 50, Apr 69
50-MHz J-pole antenna
K4SDY p. 48, Aug 68
50-MHz mobile antenna (HN)
W4PSJ p. 77, Oct 70
144-MHz antenna, % wave vertical
K6KLO p. 40, Jul 74
144-MHz antenna, % -wave vertical,
build from CB mobile whips
WB4WSU p. 67, Jun 74
144-MHz antennas, simple
WA3NFW p. 30, May 73
144-MHz antenna switch, solid-state
K2ZSQ p. 48, May 69
144-MHz collinear antenna
W6RJO p. 12, May 72
144-MHz four-element collinear array
WB6KGF p. 6, May 71
144-MHz ground plane antenna, 0.7
wavelength
W3ZWA p. 40, Mar 69
144-MHz moonbounce antenna
K6QGP p. 52, May 70
144-MHz whip, 5/8-wave (HN)
VE3DDD p. 70, Apr 73
432-MHz corner reflector antenna
WA2FSQ p. 24, Nov 71
432- and 1296-MHz quad-yagi arrays
W3AEQ p. 20, May 73
Short circuit
W3AEQ p. 58, Dec 73
440-MHz collinear antenna, four-element
WAGHTP p. 38, May 73
1296-MHz Yagi
W2QOH p. 24, May 72

receivers and converters

Cooled preamplifier for vhf-uhf reception
WA0RXD p. 36, Jul 72
Fet converters for 50, 144, 220 and
432 MHz
WA6JF p. 20, Mar 68
Interdigital preamplifier and comb-line
bandpass filter for vhf and uhf
W6KHT p. 6, Aug 70
Overload problems with vhf converters,
solving
W10OP p. 53, Jan 73
Receiver scanner, vhf
K2LZG p. 22, Feb 73
Receiver, superregenerative, for vhf
WA55NZ p. 22, Jul 73
Signal detection and communication
in the presence of white noise
WB6IOM p. 16, Feb 69
Signal generator for two and six meters
WA80IK p. 54, Nov 69
Six-meter mosfet converter
WB2EGZ p. 22, Jun 68
Short circuit
WB2EGZ p. 34, Aug 68
Two-meter converter, 1.5-db NF
WA5SXC p. 14, Jul 68
Two-meter preamp, MM5000
W4KAE p. 49, Oct 68
Vhf converter performance,
optimizing (HN)
K2ZSQ p. 18, Jul 68
Weak-signal source, stable, variable output
K6JYQ p. 36, Sep 71
50-MHz deluxe mosfet converter
WB2EGZ p. 41, Feb 71
50-MHz etched-inductance bandpass filters
and filter-preamplifiers
W5KHT p. 6, Feb 71
50-MHz preamplifier, improved
WA2GCF p. 46, Jan 73
144-MHz converter (HN)
K0VQY p. 71, Aug 70
144-MHz converters, choosing fets (HN)
K6JYQ p. 70, Aug 69
144-MHz deluxe mosfet converter
WB2EGZ p. 41, Feb 71
Short circuit
W2QER p. 96, Dec 71
Letter, W2QER p. 71, Oct 71
144-MHz etched-inductance bandpass filters and filter-preamplifiers
W5KHT
144-MHz fm receiver
W9SEK
144-MHz fm receiver
WA2GBF
Added notes
144-MHz fm receiver
WA2GDCF
144-MHz preamplifier, improved
WA2GCF
144-MHz preamplifier, low noise
W8BBB
144-MHz preamp, super
W6AJ
144-MHz fm receiver
WA2QG
144- and 432-MHz small-signal source
K6JC
220-MHz mosfet converter
W8EKGZ
220-MHz receiver, low noise
K6JC
22-MHz fet converter, low-noise
WASXZ
322-MHz fet preamp (HN)
W1DTY
432- and 1296-MHz signal source
K6RI
1296-MHz converter, solid-state
W4ZCT
1296-MHz noise generator
W3BSV
1296-MHz preamplifier, low-noise
WA2VTR
Added note (letter)
WA6UAM
1296-MHz ssb receiver
W3BSV
2304-MHz converter, solid-state
K2JNG, WA2LTM, WA2VTR
2304-MHz preamplifier, solid-state
WA2VTR
2304-MHz preamplifiers, narrow-band solid-state
WASHUV
transmitters
Aligning vhf transmitters
Allen
Converting the Swan 120 to two meters
K6RI
External anode tetrodes
W6SAI
Lighthouse tubes for uhf
W6UOV
Pl networks, series-tuned
W2EGH
Six-meter transmitter, solid-state
W8EKGZ
Six-meter transmitter
K8DOC, K8TVP
Six-meter tunnel diode phone rig (HN)
K2SSQ
Ssb input source for vhf, uhf transmitters (HN)
FBMK
Transistors for vhf transmitters (HN)
W1OOP
Vhf linear, 2 kw, design data for
W6UOV
2C39, water cooling
K6MYC
50-MHz customized transverter
WIRAK
50-MHz 2 kw linear amplifier
W6UOV
50-MHz linear amplifier
WIRAK
50-MHz transverter
WASIGU
50/144-MHz heterodyne transmitting mixers
K2ISP
Correction
50/144-MHz multimode transmitter
K2ISP
144-MHz fm transceiver, compact
W6AOI
144-MHz fm transmitter
W6AJF
144-MHz fm transmitter
W9SEK
144-MHz fm transmitter, Sonobaby
WA2QG
Crystal deck for Sonobaby
W6AOI
144-MHz linear
W4KA
144-MHz linear, 2kw, design data for
W6UOV
144-MHz low-drive kilowatt linear
W6HHN
144-MHz phase-modulated transmitter
W4AJF
144-MHz power amplifier, high performance
W6UOV
144-MHz power amplifiers, fm
W4ZCT
144-MHz power amplifier, 10-watt solid-state (HN)
W1DTY
144-MHz power amplifier, 80-watt, solid-state
Hatchett
144-MHz transceiver, a-m
K1ABD
144-MHz transmitting converter, solid-state ssb
W6BBI
144-MHz transmitter
W6UOV
2-kW solid-state
W4ZCT
2-kW power amplifier
W6UOV, K6DC
432-MHz exciter, solid-state
W4ZCT
432-MHz exciter, solid-state
W1OOP
432-MHz exciter, solid-state
W1OOP
432-MHz fm receiver
W6UOV
432-MHz gm receiver
W6UOV
432-MHz linear amplifier
WIRAK
432-MHz preamplifier, low noise
K6JC
432-MHz ssb mixer
W6UOV
432-MHz ssb receiver
W6UOV
432-MHz ssb transmitter
W6UOV,
W6UOV,
W6UOV
432-MHz stripline transverser
W6UOV
50-MHz linear, 2 kw
WIRAK
Bird
We are official distributors for all Bird products
Bird Model 43 Wattmeters with either N or
SO239 connectors $100.00
2 to 30 MHz Slugs. Specify power. $35.00
Most VHF Slugs. Specify Power $32.00
C.D. Ham II Rotator
New Improved $149.95
Price Going Up Soon
write or call for Introductory offer
8 conductor cable for Ham II or TR-44
Rotators 16¢/ft.

From Drake
Drake T-4XC $580.00
TR-22C Transceiver $229.95
Drake TR-72, 2-meter FM transceiver, 23 chan-
nels, 1 or 10 watts output, 13.8 volts $350.00
Drake TR-4C Transceiver, new ... $599.95
Drake AC-4 Power Supply $120.00
Drake 4-C Receiver $549.00
Drake W-4 Wattmeter $74.00
Drake WV-4 Wattmeter $200.00
Drake MN-200 Matching Network $110.00

VENUS
SS-2, SLOW SCAN MONITOR - $349.00
SS-2K, SLOW SCAN MONITOR KIT $269.00
C1, FAST SCAN/SLOW SCAN
CAMERA & CONVERTER - $469.00

BARRY has Antennas
Savoy DGA-4075, 40-75 meter dipole $59.95
Savoy DGA-204075, 20-40-75 meter dipole $79.50
Savoy DGA-2M $29.95
CushCraft A-147-22 $68.50
HyGain 1/4 wave 2M grd plane for fixed station $13.00
CushCraft Blitzbug LAC-2 lightning arrestor, PL
250 both ends $4.45
LAC-1 PL-259 & SO-239 $3.95
B & W 376 5 position grounding Protag con-
switch .. $17.95
CushCraft A-147-4 $13.50
Hustler 4 BTV Vertical Antenna $66.95
HyGain 18V 10-80 m. vertical $33.00
HyGain BN86 QRP Cat $15.95
HyGain 18 AVT/MB 10-80 meters vertical $97.00
Neotronics CGT-144 5.2 dB gain. Trunk lid
mount .. $39.95
Gold Line Single Pole, 5 position coaxial switch,
wall bracket or panel mount, 1 KW AM $17.95

Hammarlund Dual Section 320 Xmitt’g Capac-
tor .. $24.95
B & W 850A PinNet Band switching inductor for
A-1000A, etc. $66.75
852 for 3-1000Z, 4CX-1000A $66.75
CONSTANT VOLTAGE TRANSFORMER. Input 115
VAC @ 60 Hz output, 24 Volts @ 15 amps regu-
lated (plus or minus 1%) requires 6 mfd. 560
VAC capacitor add $4.95 $60 value $14.95 ea.
Mallory UHF Inductor, covers 50-250Mc;
2500 watts $35.95 ea.
SWR Bridge less meter by Automatic Electric.
To 800 Nds, see July ’74 CQ pg. 43
TNC connectors, $50 value ... $10.95
Same with N connectors $14.95
See Barry for thousands of unadvertised specials

Clegg FM-27B, 146-148 Mc coverage without
buying a crystal. Fully synthesized 25 w.
out .. $479.95
Shipping prepaid on all FM-27B’s $89.95

HF Gear from Barry
SABA/2T 10-80M Solid State Preamp Broadband
with TR switch use with cvr or trans. $102.50
Millen 92200 Transmatch $177.00
Famous Triton-II by Ten-Tec. Fully solid-state, 200
wat transceiver. 5 bands - full break in or
CW .. $66.00
Ten-Tec 262 AC Power Supply with VOX $129.00
R-389/URR 15 to 1500 kc. Manual or motor
tuned with digital readout. Very good ... $395.00
Hunter Bandit Linear Amp., w/3-400Z’s $495.00
Millen, Solid State Dipper 1.7-300 MHz Model
90552 $125.00
Kenwood R-599a. With accessories
Nye (Johnson) 52 ohm low pass filter ... $19.50
Nye Heavy Duty transmitting Key $9.95
Nye 275 Watts Matchbox with relay ... $120.00

IC-230 by Inoue
Completely synthesized with phase locked
loop, Single Knob Control, Smart compact
styling $489.00

Tube Headquarters. Diversified Stock. Heavy
Inventories of Electron tubes, chokes, sockets,
etc. 3-500Z or 3-400Z Specify $50.00
4CX-1000A Special Unused Surplus $125.00
Tubes for worldwide and domestic, commercial
service

The Bassett DGA-2M high gain 2-meter colinear
featureing fiberglass construction and
polished chrome brass ½-24 thread
mounting, 6 db gain $29.95

From VHF Engineering
HT Kit 2 watts out, 4 channel 2 meter trans-
seiver kit HT-144B w/1 set xtal $129.95
RX 144C 2 meter receiver kit, 3µv sens. 2 watt audio
.. $69.95
TX 144 Transmitter kit $29.95

NPC POWER SUPPLIES
115 VAC Input - 24 VDC 4 amps out $29.95
Same as above but regulated $47.95
Model 108R $29.95
115 VAC/13.6 VDC 8 amps
continuous 12 amps surge. Regulated $69.95

From Barry
Deluxe Headsets, excellent for ham radio or audio
visual labs: 600 ohms, vinyl cushioned: $9.99
With volume control $11.99
Collins 152-J1 Phone Patch, good, removed from
equip with detailed schematic $24.95
DyCOM Block Booster “D” Kit, 10-15 watts in
45-55 watts out continuous $59.95
DyCOM Brick Booster “E” Kit, 1-3.5 watts in
12-30 watts out $59.95
MA-2 2 meter pre-amp with instructions ... $16.95
BARRY BUYS UNUSED TUBES
Send Your List.

BARRY 512 Broadway NY, NY 10012
DEPT. H-12
212-WA-5-7000
TELEX 12-7670

More Details? CHECK-OFF Page 136
seasons greetings

Advanced communications equipment for the discriminating Amateur
Available from these leading dealers.

ABC COMMUNICATIONS
17541 15th Avenue NE
Seattle, Washington 98155
206-364-6410

ADIRONDACK RADIO SUPPLY
185 W. Main Street
Amsterdam, New York 12010
518-842-8350

AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Avenue
Milwaukee, Wisconsin 53216
414-442-4200

AMATEUR ELECTRONIC SUPPLY
621 Commonwealth Avenue
Orlando, Florida 32803
305-894-3238

AMATEUR ELECTRONIC SUPPLY
1729 Euclid Avenue
Cleveland, Ohio 44112
216-466-7330

BURGHARDT AMATEUR CENTER
124 First Avenue NW
Wartell, South Dakota 57061
605-886-7314

COMMUNICATIONS HEADQUARTERS
930 W. Washington Street
San Diego, California 92103
714-258-0650

CONLEY RADIO SUPPLY
406 N. 24th Street
Billings, Montana 59101
406-259-6504

CW ELECTRONICS
1401 Blue street
Boise, Idaho 83702
208-263-5525

ED JUHAS ELECTRONICS
2505 Greenway
Fort Worth, Texas 76110
817-326-6221

ELECTRONIC INTERNATIONAL SERVICE CORP.
19000 S. Western Street
Weyauwega, Wisconsin 54983
315-948-1025

FRECK RADIO SUPPLY
612 South Avenue
Athens, Ohio 45701
740-595-9651

GRAHAM ELECTRONICS
133 S. Pennsylvania Street
Indianapolis, Indiana 46204
317-634-8486

HAM RADIO CENTER
8342 Olive Blvd
St. Louis, Missouri 63132
800-325-3636

HAM RADIO OUTLET
969 Howard Avenue
Burlingame, California 94010
415-342-5757

HAMTRONICS
4033 Brownewell Road
Trevose, Pennsylvania 19010
215-397-1400

HARRISON RADIO
50 Smith Street
Farmington, L.T. New York 11735
516-293-7990

HENRY RADIO
11240 W. Olympic Blvd.
Los Angeles, California 90064
213-272-0851

HONOLULU ELECTRONICS
810 Keawamoku Street
Honolulu, Hawaii 96814
808-946-5969

OREGON HAM SALES
491 W. First Avenue
Albany, Oregon 97321
503-926-4011

QUEEN CITY ELECTRONICS
1708 Hamilton Avenue
Cincinnati, Ohio 45211
513-271-9171

DUEMENT ELECTRONICS
109 S. Bascom Avenue
San Jose, California 95128
408-368-5990

RACOM ELECTRONICS
15651 S. E. 112th Street
Renton, Washington 98055
206-775-4066

RADIO INC.
1000 1st Street
Tulsa, Oklahoma 74119
918-587-9121

VICKERS ELECTRONICS
506 E Main Street
Durham, North Carolina 27702
919-683-5587

WEBSTER RADIO
2002 Ashton
San Jose, California 95126
202-371-0511

WILSON ELECTRONICS
4061 Boulder Highway
Las Vegas, Nevada 89144
702-451-5791

Specifications subject to change without notice.

Visit your dealer for details
or write for our new catalog.
All Yaesu products warranted by the selling dealer. Complete
after-warranty service available in Paramount, Calif.

More Details? CHECK-OFF Page 136
Advertisers V

check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 234

INDEX

A: 5 181
ATV * 106
Adva 265
Allied 99
Amertron 41
AMSAT 86
Amtech 106
Ascom 104
Apollo 85
Atlas 87
Barry 67
Bauman 134
Budwig 93
Budwig Manufacturing Co. 106
CFF Enterprises 95
Cadlel Controls Corp. 92
Columbia Electronics 107
Communications Products & Engineering 92
Craig Radio 92
Curtsi Electro Devices 107
Cush Craft 45, 104
DXer's Magazine 106
Datav Corp. 82
Data Signal, Inc. 90
Delavan Electronics, Inc. 104
Denton Radio Co. 7
Digicomm 88
Discovm 86
Dynamic Electronics, Inc. 94
ECM Corporation 94
E S Enterprises 84
Ehrhorn Technical Operations 107
Emac Div. of Varian Assoc. 78
Electronics Center, Inc. Cover IV
Electronic Distributors 107
Epsilon Records 107
Erickson Communications 57
General Aviation 76,
Ham Radio 65
HR Report 94
Ham Communications Corp. 68, 69
Ham Radio Co. 105, 108
Hamtronics, Inc. 88
Health Company 72
Henry Radio Stores Cover III
HyGain Electronics Corp. 74, 79, 83, 81
Icom 5
International Crystal Mfg. Co. Inc. 75
Jan Crystals 85
Janel Labs 86
K E. Electronics 90
KLM Electronics 85
K L M Enterprises 88
Leland Associates 86
Logic Newsletter 90
McClaren 94
MFJ Enterprises 70
Maric 88
Morn-Gain, Inc. 95
Nasem 95
New England News & Photo Co. 70, 78
Palomer Engineers 70
Poly Paks 96
Porta-Paks 76
R & K Products 104
RMS Corporation 95
RP Electronics 95
Radiation Devices Co. 107
Radio Amateur Callbook, Inc. 82, 84
Radio Constructor 84
Regency Electronics, Inc. 53
Saroc 93
Signal/One 2
Slep Electronics Co. 106
Southwest Technical Products 66
Space Military Electronics 95
Speclronics FM 98
Spectrum International 80, 81
Summer Electronics & Engineering 80, 81
Swan Electronics Cover IV
Symtek, Inc. 92
Teletron Corporation 84
Ten-Tec, Inc. 63
Tri-Ex Tower Corp. 15
Tri-Tek, Inc. 104
Tri-Tek, Inc. 104
Tropical Hamboree 89
Trio Tower Co. 82
Tucker Electronics 89
VHF Engineering, Div. of Brownian Elec. Corp. 102
Valley West 82
Valu-Pak 96
Vibratrol, Div. of E.G.I. 71
Webster Radio 88
Weinschenker 107
World QSL Bureau 107
Yaeus Musen USA 135

Advertisers Index

A: 5 Magazine 106
ATV Research 107
Adva Electronics 99
Allied Electrics 41
Amidon Associates 86
AMSAT 106
Amtech 104
Antenna Specialists 85
Apollo Products 87
Atlas Radio Co. 67
Barry 134
Bauman 93
Budwig Manufacturing Co. 106
CFF Enterprises 95
Cadlel Controls Corp. 92
Columbia Electronics 107
Communications Products & Engineering 92
Craig Radio 92
Curtsi Electro Devices 107
Cush Craft 45, 104
DXer's Magazine 106
Datav Corp. 82
Data Signal, Inc. 90
Delavan Electronics, Inc. 104
Denton Radio Co. 7
Digicomm 88
Discovm 86
Dynamic Electronics, Inc. 94
ECM Corporation 94
E S Enterprises 84
Ehrhorn Technical Operations 107
Emac Div. of Varian Assoc. 78
Electronics Center, Inc. Cover IV
Electronic Distributors 107
Epsilon Records 107
Erickson Communications 57
General Aviation 76,
Ham Radio 65
HR Report 94
Ham Communications Corp. 68, 69
Ham Radio Co. 105, 108
Hamtronics, Inc. 88
Health Company 72
Henry Radio Stores Cover III
HyGain Electronics Corp. 74, 79, 83, 81
Icom 5
International Crystal Mfg. Co. Inc. 75
Jan Crystals 85
Janel Labs 86
K E. Electronics 90
KLM Electronics 85
K L M Enterprises 88
Leland Associates 86
Logic Newsletter 90
McClaren 94
MFJ Enterprises 70
Maric 88
Morn-Gain, Inc. 95
Nasem 95
New England News & Photo Co. 70, 78
Palomer Engineers 70
Poly Paks 96
Porta-Paks 76
R & K Products 104
RMS Corporation 95
RP Electronics 95
Radiation Devices Co. 107
Radio Amateur Callbook, Inc. 82, 84
Radio Constructor 84
Regency Electronics, Inc. 53
Saroc 93
Signal/One 2
Slep Electronics Co. 106
Southwest Technical Products 66
Space Military Electronics 95
Speclronics FM 98
Spectrum International 80, 81
Summer Electronics & Engineering 80, 81
Swan Electronics Cover IV
Symtek, Inc. 92
Teletron Corporation 84
Ten-Tec, Inc. 63
Tri-Ex Tower Corp. 15
Tri-Tek, Inc. 104
Tri-Tek, Inc. 104
Tropical Hamboree 89
Trio Tower Co. 82
Tucker Electronics 89
VHF Engineering, Div. of Brownian Elec. Corp. 102
Valley West 82
Valu-Pak 96
Vibratrol, Div. of E.G.I. 71
Webster Radio 88
Weinschenker 107
World QSL Bureau 107
Yaeus Musen USA 135

December 1974

Please use before January 31, 1975

Tear off and mail to
HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03048

NAME

CALL

STREET

CITY

STATE ZIP

136 December 1974
today when you ask “how can i modernize my sSB operation?”, the answer certainly is KENWOOD. the deluxe TS-900 transceiver, the superb, go-anyplace TS-520 transceiver and the versatile R-599A receiver and T-599A transmitter offer today’s amateur advanced design, reliable solid-state performance, contemporary styling... and the cost is modest. now more than ever the answer is KENWOOD.

TS-900 Kenwood’s superb state-of-the-art sSB transceiver
... the ultimate transceiver. the promise of the transistor has been fulfilled. here is the transceiver you will want to own... whatever you have now, get ready to trade up. its important features are far too numerous to list. its specifications are superb. the TS-900 is unquestionably the best transceiver of its kind ever offered. the price.......................... $795.00
PS-900 (AC Supply) $120.00, the DS-900 $140.00

TS-520 Kenwood’s go everywhere transceiver
the new TS-520 is the transceiver you have wanted, but could not buy until now. it is a non-compromise, do everything, go everywhere 5 band transceiver for sSB or CW that performs equally well at home, in an automobile, airplane, boat or trailer. the TS-520 features built-in AC power supply, built-in 12 volt DC power supply, built-in VOX with adjustable gain delay and anti-VOX. the price.......................... $629.00

The “Twins” by Kenwood
The R-599A is the most complete receiver ever offered. it is solid state, superbly reliable, small and lightweight, covers the full amateur band... 10 thru 160 meters, CW, LSB, USB, AM, AMN and FM. the price.......................... $459.00
The T-599A is mostly solid state... only 3 tubes, has built-in power supply, full metering (ALC, IP. RF output & high voltage), CW-LSB-USB-AM operation. the price.......................... $479.00

The “Twins” by Kenwood
The R-599A is the most complete receiver ever offered. it is solid state, superbly reliable, small and lightweight, covers the full amateur band... 10 thru 160 meters, CW, LSB, USB, AM, AMN and FM. the price.......................... $459.00
The T-599A is mostly solid state... only 3 tubes, has built-in power supply, full metering (ALC, IP. RF output & high voltage), CW-LSB-USB-AM operation. the price.......................... $479.00

A one of these fine Kenwood dealers can make this a Christmas to remember

- ALABAMA / L & T Electronic Specialties, Birmingham
- ALASKA / Service Electric Co., Inc., Ketchikan
- ARIZONA / Ham Shack, Mesa
- ARKANSAS / Orbit Electronics, Little Rock
- CALIFORNIA / Communications Headquarters, San Diego
- COLORADO / Amateur Electronic Supply, Orlando
- CONNECTICUT / Amateur Radio Supply, New Britain
- DELAWARE / Gagnepain Electronics, Wilmington
- FLORIDA / Amateur Radio, Miami
- GEORGIA / Clayton Communications, College Park
- Idaho / United Electronics Wholesale, Twin Falls
- ILLINOIS / Klaus Radio, Inc., Peoria
- INDIANA / Grahams Electronics, Indianapolis
- INDIANA / Holister Electronic Supply, Indianapolis
- KANSAS / Associated Radio Communications, Overland Park
- KENTUCKY / Down East Ham Shack
- LARGO / Electronic International Service Corp., Wheaton
- MASSACHUSETTS / Professional Electronics, Boston
- MICHIGAN / Electronic Distributors, Muskegon
- MINNESOTA / Electronic Center, Minneapolis
- MISSOURI / Ham Radio Center, St. Louis
- MONTANA / Conley Radio Supply, Billings
- NEW JERSEY / Gene Hansen Company, Corrales
- NEW YORK / Adirondack Radio, Amsterdam
- NORTH Carolina / Ham Radio Outlet, Asheville
- NORTH DAKOTA / Terry Electronics, Joliet
- OHIO / Amateur Electronic Supply, Cleveland
- OKLAHOMA / Harriss Radio Corp., Norman
- ORANGE / Ham Radio Supply, New York
- OREGON / Portland Radio Supply, Portland
- PENNSYLVANIA / Electronic Exchange
- RHODE Island / JRS Distributors, Newport
- SOUTH Carolina / Freck Radio, Knoxville
- SOUTH Dakota / Burghardl Amateur Center, Watertown
- TENNESSEE / Douglass Electronics, Corpus
- TEXAS / Electronics, Dallas
- UTAH / Manwill Supply Company, Salt Lake City
- WASHINGTON / Amateur Radio Supply Company, Seattle
- WISCONSIN / Amateur Electronic Supply, Milwaukee

Prices subject to change without notice
For years, the industry-wide standard warranty for power grid tubes has been 1,000 hours.

For years, the operating lifetimes of EIMAC tubes have exceeded this warranty — reducing down-time and boosting on-the-air time in thousands of transmitters. So, EIMAC offers a new warranty policy for 81% of all standard power grid tubes: 3,000 hours/1 year, with prorated adjustment from 300 to 3,000 hours. Failure during the first 300 hours results in complete replacement.

This warranty is a direct result of reliability that has been built into every EIMAC product for the past 40 years. Our 3,000 hour warranty stands as proof.

For details about which tube types are covered by the new warranty, contact EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070. Or any of the more than 30 Varian/EIMAC Electron Device Group Sales Offices throughout the world.