focus
on
communications
technology . . .

this month

- artificial radio aurora 18
- vhf channel scanner 26
- predicting harmonics 34
- low-frequency converter 49
- solar power 52
ORDER EARLY FOR CHRISTMAS DELIVERY

This year, invest in an ALL American made Swan 300B Cygnet de novo transceiver. You'll never get a better deal for yourself or that special ham on your Christmas gift list.

- 300 watts P.E.P. input (SSB)
- Internal 110V AC power supply
- USB, LSB, AM and CW modes
- 5 Bands, 10 through 80 meters
- Natural sounding voice
- Convenient financing with NO MONTHLY PAYMENTS UNTIL 1975 on your Swan Revolving Credit Service Plan.

HOLIDAY PACKAGE BUY #1
Swan 300B transceiver PLUS TD-80/40 trap-dipole antenna for 80 and 40 meters. Regular list value of $595.85, now just $536.25 complete.

HOLIDAY PACKAGE BUY #2
Swan 300B transceiver PLUS 14-A 12V DC converter PLUS 404 microphone PLUS 45 mobile 5-band antenna. Regular list value of $679.80 at only $611.95.

HOLIDAY PACKAGE BUY #3
Swan 300B transceiver PLUS 444 microphone PLUS TB-3HA beam antenna for 10, 15 and 20 meters. Regular list value of $715.85 reduced to $679.95.

Sorry, no substitutions/deletions to special packages. Reduced prices shown are restricted to combinations stated through December 25, 1974, only. California residents, please include sales tax when ordering direct from the factory.

Order through any participating Swan dealer or, if you prefer, complete and mail the coupon with your down payment (certified check or money order) to:

SWAN ELECTRONICS, 305 Airport Road, Oceanside, CA 92054.

Gentlemen:

Please ship, best way — collect, the items checked to:

Name
Address
City State Zip
Amateur Call Phone

PACKAGE BUY #1 - $536.25
PACKAGE BUY #2 - $611.95
PACKAGE BUY #3 - $679.95
PACKAGE BUY #4 - $694.95
PACKAGE BUY #5 - $385.95
300B Cygnet de novo - $519.95

TOTAL AMOUNT OF ORDER = $
TOTAL AMOUNT ENCLOSED = $

☐ Full Payment Enclosed. ☐ 20% down payment encosed, ship C.O.D. ☐ 20% down payment enclosed, charge remainder to BankAmericard #

expires . ☐ 20% down payment enclosed, charge remainder to Mastercharge #

expires . 4-digit Interbank #

☐ 10% down payment enclosed, charge remainder to Swan Account #

(Signature) (Date)
The Inside Story on Amateur Slow Scan TV

PART 1
SEND FOR OUR 7 PC. 10,000 WORD SSTV STORY. Everything from SSTV frequency allocations to reprints of ham magazine SSTV articles that you may have missed.

PART 2
WE'LL SEND YOU OUR DIRECTORY OF SSTV OPERATORS! Talk with them yourself and see how much they enjoy SSTV. You might find that old friend you used to work on 6 meters has gone to SSTV.

PART 3
TUNE TO 14.230 mHz AND SEE ALL THE SSTV ACTION There is almost continuous SSTV activity on 14.230. A good way to get the inside SSTV story is to monitor this frequency.

PART 4
WE'LL SHIP YOU OUR MONITOR AND/OR CAMERA ON OUR 100% SATISFACTION OR MONEY BACK GUARANTEE See for yourself why SSTV is the fastest growing amateur radio activity.
MODEL 70A SSTV MONITOR $345
MODEL 80A SSTV CAMERA $345
MODEL 61 VIEWFINDER $265

Please send me the following:
☐ Free 7 pc SSTV literature ☐ Model 70A SSTV monitor ☐ Model 80A SSTV camera ☐ Model 61 Viewfinder

NAME ________________________ CALL ________________________
ADDRESS ______________________
CITY ________________________
STATE ___________ ZIP _______

ORDER FACTORY DIRECT TODAY

ROBOT RESEARCH INC.
7591 Convoy Court
San Diego, CA 92111
Ph. (714) 279-9430

More Details? CHECK-OFF Page 94

November 1974
INTRODUCING THE

MODEL CX-11... Deluxe Integrated Station

New Features

New solid state broadband linear power amplifier 10-160 meters. 175 Watts DC output — requires no tuning, operates into any VSWR — continuous duty at full rated output.

New concept front-end design — utilizing double active balanced mixers for unmatched sensitivity, blocking and cross-modulation rejection.

Solid-state modular construction utilizing gold-plated, pins and plug-in sockets for all transistors, IC's, and circuit board connectors.

Five Bandwidths of selectivity are standard — 2.4, 1.5, 1.0, .4, .1 kHz.

Peak notch filter with adjustable frequency notch depth and Bandwidth controls.

RTTY narrow and wide shift FSK-LSB.

Built-in electronic Keyer with independent speed and weight control and partial or full dot memory.

Power supply completely self-protecting — both thermal and current overload, integrated circuit controlled.

New six-digit frequency counter utilizing new ½ inch amber or red LEDs optimized for a non-blinking, stable display.

Additional Features

Dual VFO's for transceive, split operation, or dual receive.

Adjustable IF shift.

Receive or transmit offset tuning.

Push Button spotting.

Adjustable R.F. clipping.

Instantaneous break-in CW.

Built-in Wattmeter.

Built-in noise blanker.

Adjustable R.F. power output.

Pre-IF, adjustable noise blanker.

Distributed by

PAYNE RADIO

BOX 525, SPRINGFIELD, TENNESSEE 37172

Phone (615) 384-5573 — Nights (615) 384-5643

In Europe contact:

SB COMMUNICATIONS

Palmtorpsvagen 3
S-640 20 BJORKVIK, Sweden

Due to our tremendous growth — openings now available for communications design engineer, engineering aids and technicians.

Up date your CX7, CX7A to the CX7B with the all new 4-digit LED freq. counter and the new IC self-protecting CX7B power supply.

Complete Parts & Service At

Box 127 Franklin Lakes, NJ 07417

Tel: (201) 891-0459

signal/one For those who demand the finest...
November, 1974
volume 7, number 11

staff
James R. Fisk, W1DTY
editor-in-chief
Joseph Schroeder, W0JUV
editor
Patricia A. Hawes, WN1QJN
assistant editor
J. Jay O'Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, WA6IAK
associate editors
Wayne T. Pierce, K3SUK
cover
T.H. Tenney, Jr. WJ1NLB
publisher
Hilda M. Wetherbee
assistant publisher
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is published monthly by Communications Technology, Inc
Greenville, New Hampshire 03048

Subscription rates, world wide
one year, $7.00, three years, $14.00
Second class postage paid at Greenville, N. H., 03048
and at additional mailing offices

Foreign subscription agents
United Kingdom
Radio Society of Great Britain
35 Doughty Street
London WC1N 2AE, England

All European countries
Eskil Persson SM5CJP
Frotunagrand 1
19400 Upplands Vasby, Sweden

African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1974 by Communications Technology, Inc
Title registered at U.S. Patent Office
Printed by Wellesley Press, Inc
Framingham, Massachusetts 01701, USA

Microfilm copies of current
and back issues are available
from University Microfilms
Ann Arbor, Michigan 48103

contents

8 low-power cw transceiver
Wesley H. Hayward, W7ZOI

18 scattering characteristics of
artificial radio aurora
Victor R. Frank, WB6KAP

26 vhf fm channel scanner
Gerald F. Vogt, WA2GCF

32 measuring peak envelope power
Carl C. Drumeller, W5JJ

34 harmonic prediction
Fin K.L. Utne

38 the code mill
H.E. Thomas, W6CAB

44 automatic phone controller
for repeaters
Robert C. Heptig, K0PHF
Robert D. Shriner, WA9UZO

49 tunable low-frequency converter
Guenter Ruehr, OH2KT

52 solar power
Edward M. Noll, W3FQJ

4 a second look 60 ham notebook
94 advertisers index 94 reader service
58 comments 6 stop press
83 flea market

november 1974 3
Here's a new technology that you're going to be hearing a lot more about in the not too distant future: additive printed circuit wiring. If you're wondering what's new, the process used to manufacture most of the PC boards used nowadays is called the subtractive process: you start with a copper-clad board and etch out the desired conductor pattern. In the additive process the copper is deposited on the board in the desired conductor pattern. The big advantage is that the process uses up to 75% less copper — obviously important to an industry that is facing a real squeeze by the world-wide copper shortage.

Additive printed-circuit wiring has been around for several years, but until recently users have been troubled by peeling and edge lifting, as well as warpage and cracking. Now, however, many of these problems have apparently been solved, and it appears that the additive technique is about to produce a substantial portion of the PC boards now manufactured by the conventional subtractive process. In fact, some industry spokesmen indicate that the additive process will account for up to 50% of the market by the end of 1975.

In addition to the conservation of copper, the additive printed-circuit process eliminates undercutting due to etching and offers improved circuit design capabilities such as closer line-width tolerances. For example, in standard etched printed-circuit boards with 1-ounce copper foil, the minimum line width is about 10 mils; with the additive process 5-mil line widths are routine. Closer manufacturing tolerances in the near future are expected to allow line widths down to 2 mils.

In addition, when used for high production quantities, the cost of boards produced by the additive technique are considerably less expensive. In mass applications such as television sets and stereo systems, the savings over subtractive PC boards can be as much as 35%. And high production is not the only promising area for additive circuits — because of the smaller line widths and spacings the technique is expected to find wide use in high-density interconnection applications such as computer peripherals.

The principal problem that had to be solved before the additive technique became a viable manufacturing process was finding a way to make the electroless-copper stick to the glass-epoxy laminate. This adhesion (typically 8- to 10-pounds pull) is provided by micro pores on the laminate surface. This is no easy task, but one successful approach is to coat the bare laminate with a special adhesive which is activated by a chromic-acid etch. The etchant produces micro pores in the adhesive surface and is similar to the treatment used in the plating of plastics.

I don't expect that this technique will replace the various subtractive systems that amateurs have developed to make their own printed circuit boards, not in the near future anyway. However, printed-circuit boards were being used by the manufacturers of television sets long before the process was even considered for one-off amateur projects, so nothing will surprise me. Perhaps one of the chemists among us will come up with a simple additive PC process that we can use in our own home workshops.

Jim Fisk, W1DTY
editor-in-chief
FREQUENCY RANGE 2 - 30 MHz Continuous
STABILITY and SETABILITY ± 1 Hz at constant ambient
MODES .. SSB/CW, AM, FM
IF BANDWIDTHS SUPPLIED 500 Hz CW
 3.2 kHz USB/LSB/ISB
 6 kHz
 16 kHz
SENSITIVITY (10dB S+N/N) 0.6 µV SSB
 2.5 µV AM
CROSS MODULATION Signals removed by ± 10% from the displayed
 frequency may be 80 dB greater than the specified
 sensitivity without producing more than 10% modula-
 tion of the desired signal.
INTERMODULATION DISTORTION Two tones in the RF passband must be
 at least 65 dB above 1 µV to produce a 3rd
 order product equal to a 1 µV signal

For more information, send for our data sheet
MODEL 1230A RECEIVER — $3930
FCC AMATEUR RADIO ADVISORY COMMITTEE PROJECT, proposed in ARRL/FCC meeting May 10th beginning to warm up as Amateur and CB Division staff lay groundwork for a formal presentation to the Commissioners. A letter has been sent to quite a number of amateurs outlining the purposes and responsibilities of the ARAC.

Letter was Definitely NOT An Invitation to membership in the ARAC, but instead was sent out as a means of determining whether there would be sufficient support from amateurs to insure ARAC success if the Commissioners were to approve it. Letter proposed basic 12-15 member "Steering Committee" to be chaired by FCC representative, a number of Ad Hoc subcommittees (each chaired by a Steering Committee member) to consider specific problem areas. Steering Committee membership would be by invitation of the Commission, with broad geographical as well as interest-area representation.

ARRL PREPARATIONS FOR 1979 World Telecommunications Conference should be aided by WlRU and KlZND having participated in a frequency management seminar in Geneva during September.

BLOCKBUSTER TRANSCEIVER FROM HEATHKIT announced this month (see centerfold). The new SB-104 is all solid state, totally broadband, digital readout and covers all ham bands from 3.5 to 29.7 MHz! Delivering 100 watts SSB or CW, the SB-104 operates from 13 Vdc, weighs only 20 pounds and measures about 6x14x14 inches; its 6-digit readout provides 100-Hz resolution, 200-Hz accuracy.

New Accessories Complement the SB-104 -- SB-230 linear with conduction-cooled output tube; SB-614 Station Monitor; SB-634 Station Console; SB-644 Remote VFO. Truly state-of-the-art!

GENAVE GOING TO DIRECT SALES IN THE AMATEUR MARKET, with change becoming official November lst. Inflationary pressures, determination that 75-80% of Genave's ham gear has been selling by mail order anyway are cited as the reasons. High proportion of mail-order sales has meant most service has been factory responsibility, so change to factory selling is a logical one.

Genave's Pricing will reflect the change -- list on the popular GTX-200 will go from $399.95 to $299.95, and other models will show similar reductions.

HILDA WETHERBEE LEAVES HAM RADIO. Hilda, a key part of HR since its beginning and well known to many amateurs and the ham industry for her participation in many hamfests and highly effective ad selling, has joined a research firm in New Hampshire.

MOBILERS BEWARE: Minnesota has joined Florida and Virginia in forbidding the wearing of headphones while driving.

ANOTHER 10-METER BEACON PLANNED, this one proposed for San Diego by K6HME and WB6KNC. Request for Special Temporary Authority has been returned for justification of proposed 100-watt power and SSB ID, but as soon as questions are resolved it should be operative using K6HME call. Proposed frequency is 29.0 MHz, same as German DL0AR beacon.

"COMMERCIAL" USE OF HAM BANDS subject of concern in Washington, confusion among hams. Recent League Lines item (August, 1974 QST) caused most nets to scrub "swap shop" sessions, but one subsequent interpretation seems to permit such activities providing they are scrupulously "non-commercial" and any given individual limits himself to "infrequent" participation (whatever that means)...

JA STATIONS TO GET NEW 80 METER "WINDOW" within the next month or so. Present JA allocations are 3500-3525 CW, 3525-3575 for phone; the new band is a 10-KHz slice from 3793-3803 kHz, will help JA-Europe and JA-U.S.A. QSOs.

Slow-Scan Enthusiasts can also look for a big increase in JA SSTV activity very shortly. Although over 100 stations have been licensed for slow-scan in Japan since April, 1973, reorganization of the Japanese Ministry of Post and Telecommunications has caused a big backlog to develop. Kinks are now being worked out, and a big influx of JA SSTVers is expected momentarily.
You will add a real plus to your SSB station when you give it complete 160-meter receive and transmit capability with the exciting new Dentron 160 XV Transverter. Just two simple connections with no modifications and you’re on the air.

- 5 watts drive gives 100 watts DC input
- 3.8 to 4.0 MHz input
- Matches 50 ohm antenna
- Built in 110/220 V 50/60 Hz supply

Dentron 160 XV Transverter
$199.50 ppd. USA

plus even more!

Let the Dentron 160 AT antenna tuner solve your 160-meter antenna problems the easy uncomplicated way. This transmatch will load any random length antenna from a short whip to an extra-long wire. Use it with virtually any existing HF antenna you already have. Handles maximum legal power. Use with the 160-XV or any other 160 meter equipment requiring a 52 ohm antenna.

Dentron 160 AT Antenna Tuner
$49.95 ppd. USA

Dentron
27587 Edgspark Dr.
North Olmsted, Ohio 44070
Telephone (216) 734-7388
There is little doubt that low-power (QRP) operation has become one of the more popular amateur radio activities in recent years. I got hooked on the QRP game a little over ten years ago when a need arose for light-weight portable gear for use on mountaineering trips. Although this goal was easily and quickly realized, my interest continues. Even today, after a few thousand QSOs with a power of only a few watts, I still get a thrill when another QRP contact is completed.

While some manufacturers are now seriously aiming products at the QRP market, the area is still ripe for the home experimenter. To many QRP enthusiasts, the only equipment which is considered for construction is that which is as simple as possible. While simplicity certainly has its merits, especially for portable operation in a severe environment,\(^1\,2\) home-station operation is greatly enhanced with equipment which is a bit more elaborate. This article describes a transceiver for 20-meter CW which is aimed at this improved performance.

One of the more significant deficiencies of many QRP stations is the lack of selectivity and dynamic range in the receiver. Although it is possible to obtain superb performance from a direct-conversion design, as demonstrated by the recent work of DeMaw,\(^3\) there is still no substitute for a cleanly operating superhet. Hence, this approach was taken in this design.
Some of the simplicity of a direct-conversion design is retained by eliminating virtually all of the gain usually found at the intermediate frequency. The result is a receiver which is more than adequately sensitive and selective, but is still easy to duplicate. Provision is made for receiving both CW and ssb in the unit described, with sideband included mainly for use with vhf converters. Further simplification and reduced cost will result if one of the modes is deleted.

The transmitter portion of the package was designed with a number of objectives in mind. First, full transceive operation was desired. However, it was not acceptable to sacrifice the cleanliness of the system output. Experience with an earlier 40-meter transceiver demonstrated that this objective is not easily met with a casual design. The unit described in this article has been evaluated with lab quality test equipment, and all spurious outputs were more than 50-dB below the desired 1.5-watt output.

Additional design criterion for the transmitter included the desire for a double-sided board is highly recommended since it provides the low-impedance ground paths required for clean, spur-free performance.

vfo design

Shown in fig. 2 is the variable-frequency oscillator which controls both the receiver and the transmitter. The design offered several years ago by Hanchett was used, although the original mosfet was replaced with a junction fet. I keep coming back to this design since it is...
both stable and reliable. As with most oscillators, the selection of components is a large part of achieving stability. The inductor is wound on a ceramic form which was originally tuned with a powdered-iron slug. However, the slug was removed to enhance stability, and the number of turns on the coil was pruned to obtain the proper inductance. The vfo is tuned with the ever reliable and easy-to-use capacitor from a surplus ARC-5 Command transmitter. Although becoming scarce, these capacitors can still be found in junk boxes and at hamfest flea markets. With the components shown, the oscillator tunes from 5.0 to 5.55 MHz.

A number of commonly available field-effect transistors can be used in this oscillator. I used a TIS88 which is a plastic device very similar to the popular 2N4416. The Motorola MPF102 also performs well in this circuit. The oscillator supply voltage is stabilized with a 6.8-volt zener diode. The voltage rating here is not critical.

The vfo is buffered with a single-stage feedback amplifier using a pair of 2N3904 transistors. Again, transistor type is not critical in this application, although devices with an f_T of at least 250 MHz should be used. The output of the buffer is 3 volts, peak-to-peak and sinusoidal. If it is suspected that significant harmonic energy might be present in the oscillator output, a lowpass filter could be included.\(^5\)

receiver front-end and i-f filtering

Presented in fig. 3 is the front-end and filter section of the receiver. For the most part, the design is quite standard and is easily duplicated. Both the rf amplifier
and the mixer circuits use RCA 40673 dual-gate mosfets. Since my transceiver tunes a 500-kHz range, a dual-section variable capacitor was included for front-panel preselector tuning. An earlier version of this transceiver tuned only the CW portion of the band, and front-panel tuning was not needed. The toroid cores used in the receiver and in the transmitter section described later are very similar in on the respective coils. The minimal degradation in gain and noise figure should present no problem in typical applications. The dynamic range of this receiver has not yet been measured.

A coarse rf gain control is provided by a front-panel switch which decreases the gate-2 bias from the nominal 4-volt level to ground. This yields a gain reduction of about 15 dB. Since the application of

![Fig. 2. VFO for the deluxe QRP transceiver tunes from 5.0 to 5.55 MHz. Inductor L1 is 3.5 μH, wound on 1/4" (6 mm) ceramic form, no tuning slug.](image)

inductance and Q to the Amidon T-50-6.* Substitution of Amidon cores should be possible using the same number of turns shown.

Sensitivity measurements revealed a system noise figure of around 7 dB. Hence, the receiver is probably quite a bit hotter than can be used in normal locations. Much of the dynamic range possible with mosfets was retained by terminating the mixer output with a 330-ohm resistor. Since drain nonlinearity is the usual mechanism for blocking in a fet mixer, a decrease in output load impedance results in relative freedom from this problem. Similarly, the load resistance presented to the drain of the rf amplifier is about 1000 ohms. If dynamic range problems are encountered, further improvement would result if the gate of each stage were driven from a tap gain reduction can often decrease the immunity of an fet rf amplifier to cross-modulation and IMD, passive front-end signal attenuation would be a better means of gain control.

The output of the mixer is routed through a coax cable to the first crystal filter. This filter is always in the signal path and is used for ssb reception. The filter I chose was the WF-8 model manufactured by Wheatlands Electronics.† This eight-pole unit performs well in this application, and probably represents one of the better component buys around.

The output of the first filter is applied to a low-gain amplifier. A junk box 2N3137 was used, although this stage is not critical, and could probably be replaced with a 2N3904 or a 2N4124. Alternately, if some impedance matching is done at the input, a dual-gate mosfet

*Amidon Associates, 12033 Otsego Street, North Hollywood, California 91607.

†Wheatlands Electronics, P.O. Box 343, Arkansas City, Kansas 67005.
with a 510-ohm drain load resistor should perform well in this slot. The main function of this stage is to provide a proper driving impedance for the second filter with a minimum gain.

During CW operation, a KVG type XF-9M four-pole crystal filter is switched into the system.* The switching is done with a pair of inexpensive slide switches which are mounted on the circuit board.

Input resistors have been chosen to properly terminate the KVG crystal filter. The bfo is a simple fet crystal oscillator which is trimmed from the front panel with an 80-pF variable capacitor.

The audio section consists of a pair of 2N3565 transistors and provides around 70-dB of gain to drive high-impedance headphones. This amplifier is built on the same board that contains the sidetone oscillator and control circuitry and is shown in fig. 7.

Although the lack of gain at the intermediate frequency makes the possibility of adding agc a bit difficult, this simplified distribution does have its virtues. The main advantage is that product detection occurs at fairly low signal levels. This minimizes the noise modulation effects which often occur in product detectors. Another problem which is avoided is the effect of bfo leakage. Often, stray bfo energy finds its way into a high gain i-f amplifier, causing both intermodulation and noise modulation to occur. This is avoided in a system of this kind. The overall result is a receiver which sounds exceptionally crisp and clean, a virtue usually limited to direct-conversion

*KVG crystal filters are available from Spectrum International, Box 1084, Concord, Massachusetts 01742.

![fig. 3. Receiver rf amplifier and mixer are followed by ssb and CW filters. Toroids are wound on Amidon T-50-6 toroids or similar (see text).](image-url)
receivers and some well designed superhets.

transmitter mixer

Shown in fig. 5 is the transmitting mixer and carrier oscillator for the transceiver. Although it would be possible to replace the carrier oscillator with some energy from the BFO, this would necessitate the introduction of some offset of the main system VFO during transmit. The use of a separate crystal oscillator was considered to be the simpler solution.

The transmitting mixer itself uses another Motorola MC1496G doubly-balanced modulator IC. This chip is ideally suited for this application due to the excellent balance available. This significantly reduces the amplitudes of many of the spurious products in the output from those which would appear in the output of a single-ended mixer. I have also used the RCA CA3028A and diode rings in this application, although the 3-turn link. An alternate output network would be realized by shunt-feeding the MC1496G output collectors with RF chokes. Then, the high-impedance end of a tuned circuit could be lightly coupled to one of the output terminals. This method would have the advantage of being more easily bandswitched.

The input levels feeding the mixer IC are not extremely critical, although severe overdriving should be avoided since this will cause some deterioration in the rejection of spurious output products. In the mixer shown, the carrier port is driven

Motorola chip is by far the more satisfactory and is easily applied.

Balance is maintained in the mixer by using a center-tapped tuned circuit in the output. This is realized by putting a bifilar winding of 15 turns on a toroid core and tuning the series combination. The required power-supply voltage is injected on the center tap and output is extracted from the tuned circuit with a

![fig. 4. Product detector and bfo for the receiver used in the QRP transceiver. Transformer is wound on Amidon T-50-6 toroid or similar.](image-url)
with a little over 0.5 volt, rms, and the signal port has about 200 millivolts of drive. During receive periods, the supply voltage is removed from the mixer/carrier-oscillator board.

transmitter power chain

The three-stage power amplifier which completes the transmitter is shown in fig. 7. The 2N3904 pre-driver and the gain might be provided by a single stage. First, I have found that it is usually worthwhile to add an additional stage with a decreased gain-per-stage to insure stability. The cost increase is minimal, but the unconditional stability is quite assuring.

Class-A operation has the advantage of preserving linearity. This is somewhat important, even in a CW rig. In previous

fig. 5. Transmit mixer and carrier-oscillator circuits. The frequency of the 9-MHz crystal oscillator is adjusted to the center of the 9-MHz i-f with the crystal filter (fig. 3) switched in. Transformers are wound on Amidon T-50-6 toroids or similar.

2N5859 driver are keyed. The final amplifier also uses a 2N5859. This Motorola TO-5 device is an excellent, general-purpose QRP device with a price tag of under one dollar. Since it has an f_T of around 250 MHz, it should be usable up as high as the six-meter band, with power output up to about two watts.

Both the pre-driver and the driver stages are operated as class-A amplifiers with emitter degeneration. There are a couple of reasons for this, even though sufficient transmitters it was noted that the spurious components in the output would be increased if an amplifier was allowed to saturate. The reason is that saturation would occur for the primary driving frequency, but the amplifier would still behave in a fairly linear fashion for spurious products. The net effect was that much of the filtering prior to the amplifier was negated.

The bandwidth of the amplifier strip of fig. 6 is rather restricted. With the
system aligned at 14.065 MHz, the commonly used QRP frequency on 20 meters, the output was down by about 30 dB when the vfo was tuned to the middle of the phone band. Most of the output power could be obtained, however, by retuning the output of the pre-driver. If operation of the transmitter over the total 20-meter band is required, the builder should provide for front-panel

adjustment of this tuned circuit. As shown, the system is flat over the CW portion of the band.

The output power of the transmitter was measured at 1.5 watt into a 50-ohm load. When the output of the transmitter board was investigated with a lab-quality spectrum analyzer, it was found that the second harmonic was down by only 27 dB. However, all other spurious outputs were over 60 dB down. Additional harmonic rejection is easily obtained with the half-wave filter at the transceiver antenna terminal. With two class-A stages being keyed, the backwave was more than 70 dB below the usual output.

control circuits

Shown in fig. 7 is the final board which completes the transceiver. This board contains not only the audio system mentioned earlier but the sidetone oscillator, a keying transistor and the T/R circuitry. The sidetone is obtained from a simple relaxation oscillator using a programmable unijunction transistor (PUT). The sawtooth output is attenuated and applied to the input of the audio amplifier. Transmitter keying is accomplished with a series switch using a 2N4036 silicon TO-5 transistor. Almost any silicon pnp device can be used in this slot.

In the circuits discussed above, the power supplies on the schematics have been labeled as +12V, +12R or +12T. All circuits labeled with +12V have voltage applied at all times. However, those with the R or T suffix have power applied only during receive or transmit intervals, respectively. The two voltages are derived from the antenna relay, K1. I used a dpdt relay with an 800-ohm, 12-volt coil, with the second set of contacts switching the antenna.

You may have noted that the product detector has power applied at all times, even during transmit intervals. Initially, the detector was muted during transmit. However, an objectionable click appeared when the receiver came on again. This was the result of the large current surge in the 50-µF decoupling capacitor used on the detector board.

The transmit-receiver logic is based upon a µA741C operational amplifier IC used as a differential comparator. Under key-up conditions, the 2.2-µF capacitor is fully charged. However, when the key is
closed, this capacitor is discharged. When this happens, the voltage on the inverting input of the op amp (pin 2) drops below half of the power supply potential. This causes the op amp output to switch to a high state, near the 12-volt supply, and saturates the 2N3904 relay driver. When the key is released again, the timing capacitor begins to charge toward the 12-volt supply through the 220-kilohm resistor. When the capacitor passes the

keyer. This keyer is based upon differential comparator logic similar to that used for the T/R control.

additional thoughts

The transceiver described and shown in the photographs was packaged in an LMB type CO-2 cabinet. The extra holes shown in the chassis are a reminder of an earlier receiver which resided in the same enclosure. Although there is an abundance of extra room left, this will eventually be used for a variety of accessories, including equipment for at least one vhf band.

An obvious extension of this design would be the addition of other bands. Of the possible combinations, the easiest would be a 20- and 80-meter CW transceiver. The receiver can be made operative on 80 meters merely by switching the tuned circuits in the front end.

There's plenty of room under the chassis. Crystal filters are at right, next to transmit mixer and carrier oscillator. Transmit power chain is at bottom with control, keying and audio circuits to the left.

6-volt point, the op amp changes state again and the relay opens. The hold-in time can be varied from the 0.5 second I used by changing the 220-kilohm timing resistor.

There are two keying inputs shown. One is for the usual hand key. The other uses a two-circuit phone jack, with +12 volts available on the second pin to supply power to an external electronic
The transmitter mixer is moved to 80 meters by changing the output network in the transmitting mixer as described earlier. The output of the mixer should then be well filtered for the band in use. In this case, a lowpass filter would be suitable for 3.5 MHz with a bandpass filter being switched in for 14-MHz operation.

The transmitter power chain could be replaced with a broadband design with appropriate lowpass filters switched into beyond the relatively simple systems considered in this article.

The performance of this transceiver has been more than satisfactory. Using only a ground-plane antenna, contacts have been made all over the United States and Canada as well as with VK, JA, UA0 and DM. While the unit does not represent the absolute ultimate in simplicity, the superior performance is well worth the minimal extra effort and expense.

![Diagram of T/R control circuits, half-wave filter, sidetone, keying and audio system for the 20-meter QRP transceiver.]

the output. If such an approach is taken, it is important that the filtering between the mixer and power amplifier be sufficient to provide an output free of spurious products. In most cases, a two- or three-section bandpass filter will do the job.

If bands other than 80 and 20 meters are considered, it will be necessary to derive other local-oscillator signals. This could be achieved either by band-switching the VFO or by premixing the existing 5-MHz signal. Other, more elaborate synthesis techniques would yield superb performance, but they go beyond the relatively simple systems considered in this article.

The performance of this transceiver has been more than satisfactory. Using only a ground-plane antenna, contacts have been made all over the United States and Canada as well as with VK, JA, UA0 and DM. While the unit does not represent the absolute ultimate in simplicity, the superior performance is well worth the minimal extra effort and expense.

references

ham radio
scattering characteristics of artificial radio aurora

Artificial aurora, created at will by high-power, high-frequency transmitters, may prove useful for long-distance vhf communications.

The U.S. Department of Defense has recently disclosed that it is now possible for man to create his own artificial radio aurora (ARA) capable of scattering radio waves of frequencies up to 450 MHz. The ARA can be produced in either the ionospheric E- or F-regions over a source of very powerful high-frequency radio waves directed upwards. Don’t, however, expect to see this “aurora.” The optical effects of ionospheric modification are very weak, corresponding to less than a 30% change in the level of some characteristic lines in the night airglow spectrum.¹

Research has taken place at three sites. One,² near Platteville, Colorado, operated by the Institute for Telecommunications Sciences (ITS), uses a transmitting system with an effective radiated power of 40 megawatts. Two transmitting arrays are used; one, for the frequency range 2.5 to 5 MHz is composed of five crossed dipoles, and the other, usable between 5 and 10 MHz, uses ten crossed dipoles. The crossed-dipole elements are fed in phase quadrature to produce circular polarization. It has been found that the ordinary magnetoionic component³ produced by right-hand circular polarization (in the northern hemisphere) produces the strongest ARA. The second ionospheric heating facility at Arecibo, Puerto Rico, operated by Cornell University, uses a transmitter with one tenth the power output and an antenna with 10 dB more gain (the 1000-foot dish). A third facility, located at Gorki, 400 km east of Moscow, USSR, uses a transmitter with 60-kW average power and 22-dB antenna gain.⁴

In the ionosphere, just below the reflection height, the high-frequency wave is retarded and energy is imparted to the electron gas, raising its temperature. It is forced to expand along the magnetic field lines, creating field-aligned ionization irregularities. Although the fractional change in ionization density through these irregularities may be only a percent or so, each irregularity scatters coherently. Many of these long, thin irregularities are capable of scattering high-frequency and vhf signals just as the natural aurora does. The primary differences as far as the radio amateur is concerned are that this is a very localized aurora, it may be turned on and off within seconds, and its height is determined by the frequency of the heating transmitter.

Since the scattering region is localized....
and the Doppler spreading is not great, voice signals reflected by ARA are still intelligible although there is rapid and deep flutter fading.

A companion article appearing in *QST* this month describes ARA sounding and communications experiments and the directional properties of the scatterers. Since I will go into further detail here, it may be to the reader's advantage to read the *QST* article first.

F-region scatter observed

Soon after the announcement of the triggering of spread F by the Platteville facility, experimenters noted echoes on high-frequency sounding paths that were determined to be due to reflection from field-aligned irregularities from the F-region over Platteville. Fig. 1 shows a chart recording made in March, 1971, at an SRI field site in central California of experimental transmissions from a station in Arkansas. The frequency was chosen on the basis of oblique soundings to be a few MHz above the direct path MOF. A clear cause-and-effect relationship is shown, with the 20-MHz signal fading into the noise some 20 seconds after turnoff of the ionospheric modification transmitter. A-m voice modulation on this signal was quite readable.

The fading rate and the lengths of time

that the scattered signal remained after turnoff of the heating transmitter varied with the frequency and with the scattering angle. The lower frequencies and the forward scatter paths had lower fading rates and were more persistent than higher frequencies and backscatter paths.

High-frequency soundings had indicated that even higher frequencies might be usable, so equipment for receiving TV video carriers was set up at another field site near Bakersfield, California. The receiving system used an array of eight commercial LPA antennas (fig. 2), crystal-controlled converters and narrow-band receivers with recording on chart and tape. Fig. 3 shows chart recordings of some of the signals observed while the Platteville transmitter was being operated on a one-minute on, one-minute off cycle.

It is difficult to identify a television station solely on the basis of its video carrier frequency.* Signals were never strong enough to demodulate and, in addition, too much co-channel interference existed from stations in northern and southern California. Based on ray-

*In the United States, Canada and Mexico, vhf TV stations are assigned video carrier frequencies of either 1.24, 1.25 or 1.26 MHz above the lower edge of the channel. These are referred to as minus-, zero- or plus-offset, respectively.
tracing calculations, these TV signals are believed to have originated from stations in northern Mexico and southwest Texas.

E-region scatter

One of the most recent developments in ionospheric modification has been the observation of artificial radio aurora in the E-region over Platteville, Colorado. This development was made possible by 110 km over Platteville, Colorado. (A similar picture for F-region reflectors is shown in the companion *QST* article.) Specular scattering may take place between stations located on intersections of supplementary cone angles (their sum equals 180°). These curves were derived for a single field-aligned scatterer. Actually, such scatterers are present in a scattering region of 100-km diameter and 10-km thickness. This distribution will spread the coverage by a similar distance. Soundings were made over a path from a transmitter site south of Albuquerque, New Mexico, to an ITS receiving site near Haswell, Colorado, where there is a 60-foot parabolic dish antenna (fig. 5). One of the sweep frequency soundings taken over this path, fig. 6, shows time delay, frequency coverage and radar cross section versus frequency. The sounding transmitter was turned off during those portions of the frequency sweep that fell within TV channels 4, 5 and 7.

fig. 2. Array of log-periodic TV antennas used at site near Bakersfield, California, to monitor TV video carrier signals scattered by ARA.

Actually, most amateur experience with natural field-aligned scattering is that from the E-region, since the aurora rarely penetrates far enough south for echoes to be obtained from the F-region. Fig. 4 shows the intersection with the earth of scattering cones of various angles to the magnetic field at a height of the addition of five low-frequency crossed dipoles in an array at Platteville, which allowed operation at frequencies as low as 2.8 MHz. These frequencies are reflected from the E-layer during the daytime.
Radar cross section may be a new concept to some of you. It is here defined by the radar formula

\[\sigma = \frac{P_r (4\pi)^3 r_1^2 r_2^2}{P_t G_t G_r \lambda^2} \]

where \(P_t \) is the transmitted power output, \(P_r \) is the received power input, \(\lambda \) is the wavelength and \(r_1 \) and \(r_2 \) are the distances from transmitter and receiver to target, respectively, in meters, and \(G_t \) and \(G_r \) are the transmitting and receiving antenna power gains over an isotropic radiator. This value of received power, \(P_r \), must compete with the noise power, \(P_n \), which is

\[P_n = FkTB \]

where \(F \) is the ratio of cosmic noise power to that produced by a termination (Johnson noise), \(k \) is Boltzmann's constant \((1.38 \times 10^{-23})\), \(T \) is the absolute temperature in degrees Kelvin, and \(B \) is the receiver bandwidth in Hz. To spare the reader the exercise of going through the numbers, I have calculated the minimum detectable cross section for an amateur CW station in various amateur bands having the following characteristics:

- \(P_t = 500 \) watts
- \(r_1 = r_2 = 10^6 \) meters
- \(B = 100 \) Hz
- \(P_r/P_n = 1 \)
- \(G_t = G_r = 10 \) (10 dB) 28 MHz
 - 20 (13 dB) 50 MHz
 - 40 (16 dB) 144, 220 MHz
 - 60 (18 dB) 432 MHz

The minimum observable cross sections are about \(10^3 \) to \(10^4 \) square meters (30 dBsm to 40 dBsm). These are shown in fig. 7 along with the range of cross sections observed from the Platteville heated region under ideal conditions for both E- and F-region heating. You can see...
that detection at 50 and 144 MHz is well within the capabilities of the advanced amateur station.

It is quite possible that some amateurs may have already communicated two-way via ARA without realizing they were doing so. During the last test series at Platteville, about 264 hours of heating ionospheric modification at Arecibo

Since the Arecibo heating antenna beam is narrower than that at Platteville, the expected cross sections are some 10 dB lower. Also, since Arecibo is not licensed at present for frequencies below 5 MHz, E-region heating is not possible

Fig. 5. Sixty-foot dish and LPA feed at ITS field site near Haswell, Colorado.

experiments were conducted (between September 10 and November 2, 1973). Of these, 47 were in the prime evening time interval, 0000-0600 UT. It is hoped that radio amateurs will have a chance to participate in future tests presently scheduled for Platteville, Colorado, some time during the first half of 1975 and for Arecibo, Puerto Rico, during the first weeks of April, 1975.

and F-region heating is possible only during daylight and early evening hours. Fig. 8 shows a map of intersections with the earth of scattering cones from a field-aligned scatterer at 300-km height over Arecibo, Puerto Rico.

Most likely to benefit from Arecibo ARA are the Caribbean, Venezuela, Columbia and possibly Central America—areas with very little amateur vhf activity.
Perhaps some VHF DXpeditions would be in order. These are good areas, and April is a good time of year for transequatorial scatter.

Other Possibilities

If you are not fortunate enough to be in the ARA coverage areas of Platteville or Arecibo, do not despair. Much remains to be learned about what is really happening during ionospheric modification. There is another form of scattering caused by plasma and ion-acoustic waves\(^7,8\) which, though very weak, may be usable for stations within line-of-site of the ARA. Amateurs, being spread all over the country, are in a unique position to investigate paths not previously available to researchers.

In addition, much of what we have learned during these experiments will be of use to the radio amateur interested in scatter and auroral communication. Field-aligned ionization in nature? Yes, even at mid-latitudes, if you know how to look for it.\(^9\) Further information on coverage areas for scattering by the natural aurora may be found in an article by R.L. Leadabrand.\(^10\) I am convinced that the so-called X-mode (50-MHz signals back-scattered from sporadic E-patches) is due to field-aligned ionization in those patches.\(^11\) And transequatorial propagation is also probably due to forward scattering from field-aligned irregularities in the equatorial F-region.\(^12\) In addition, experimenters have found that meteor-trail debris becomes field-aligned.\(^13,14\)

Ranging capability, something lacking in most radio amateur stations, would prove invaluable in identifying these propagation modes. It is possible some may have been used for decades without proper identification. Ranging capability implies pulse or linear sweep-frequency CW operation, neither of which is in amateur use in the VHF bands. But here, perhaps, is an opportunity for the radio amateur to use some of those radar
signals in the 220- and 420-MHz bands for scientific investigation.

acknowledgements

I wish to thank W.F. Utlaut and his associates at the Institute of Telecommunications Sciences, Boulder, Colorado, for their cooperation in the conduct of these experiments and for graciously allowing us to use their Haswell facility. Acknowledgment should also be made to the other organizations that were part of the team that explored the scattering properties of ARA. They are Raytheon Corporation, Sudbury, Massachusetts; Riverside Research Institute, New York City, New York; Barry Research, Palo Alto, California; and the Aeronomy Corporation, Champaign, Illinois. This research was sponsored by the Defense Advanced Research Projects Agency through the Office of Naval Research.

references

Savoy

$3.75
Postpaid in U.S.A.

TYPE 900 A

HIGHER ACCURACY CRYSTALS
FOR OVER 30 YEARS

Either type for amateur VHF in Regency, Swan, Standard, Drake, Vari-tronics, Tempo, Yaesu, Galaxy, Trio, Sonar, Clegg, SBE, Genave.

Quotes on request for amateur or commercial crystals for use in all other equipments.

Specify crystal type, frequency, make of equipment and whether transmit or receive when ordering.

BASSETT VACUUM BALUN

The famous sealed helium filled Balun . . .

employed with the DGA Series Antenna Systems. Solderless center insulator and easily handles more than full legal power while reducing unwanted coax radiation.

Equipped with a special S0-239 type coax connector and available either 1:1 or 4:1.

MODEL DGA-2000-B . . . $12.95
Postpaid in U.S.A.

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc.
P.O. Box 5727 - Fort Lauderdale, Florida - 33310
Tel: 305-563-1333 or 305-947-9925

BASSETT

High efficiency mobile and portable antennas for all amateur bands, VHF, MARS, CB, SECURITY, PUBLIC SERVICE, MARINE, AND GOVERNMENT USE.

- 2-6-10-15-20-40-75
- Identical size, cost, and appearance

FULLY ADJUSTABLE TO FREQUENCY IN FIELD

Low weight, low drag, high strength fiberglass

Polished chrome brass standard 3/4-24 thread

High gain collinear on 2 meters

MODEL DGA-2M
$29.50 postpaid in U.S.A.

BASSETT VACUUM TRAP ANTENNA SYSTEM

Complete packaged multi-band antenna systems employing the famous Bassett Sealed Resonators and Balun from which air has been removed and replaced with pure helium at one atmosphere. Operating bands are indicated by model designation.

MODEL DGA-4075 $59.50
MODEL DGA-204075 $79.50
MODEL DGA-2040 $59.50
MODEL DGA-152040 $79.50
improved channel scanner for vhf fm

A complete four-channel vhf fm scanner that can be built for ten dollars

If someone were to tell you that an integrated-circuit receiver scanner could be improved by redesigning it with discrete components, you’d say they were crazy! But, forced with difficulties in obtaining TTL logic elements for the K2LZG scanner kit,¹ and having previous experience in simplifying communications circuitry by eliminating ICs, I redesigned the scanner circuit with discrete components. This produced many unexpected side benefits.

The scanner built with discrete components (fig. 1) offers the following advantages, in addition to availability and cost of components.

1. Simpler type of readout.
2. Ease of maintenance — troubleshooting is easier with discrete components and spare parts are no problem (almost any silicon transistors provide proper operation).
3. Unit operates directly from a 10- to 15-volt power supply. IC version requires a 5-volt regulator.
4. Less current drain — about 8 times less than the IC version with regulator.
5. Smaller — PC board layout is one-quarter to one-third the size of the IC version. Actual size of board is 2x2-1/8 inches (51x54 mm). This is primarily due to the flexibility of discrete components in crossover-free, small area layout.
6. Flexibility of design — unit can be adapted easily for less than the full four channels without having to skip channels between the active ones. The unit is also adaptable to any desired scan rate with a simple component change.
The new design also takes into account several variable factors which you may run into when applying the scanner to your particular receiver. The unit can be used with either positive or negative logic from your squelch circuit. That is, scanning can be stopped with either a positive or ground signal. The input circuit is very sensitive; therefore, almost any voltage, theory of operation

Transistors Q3 and Q4 form an astable multivibrator, operating at a pulse repetition rate of approximately 10 pulses per second. Transistor Q2 turns on to stop the multivibrator when Q2's base is high. Q2 does this by shorting the base of Q4 to ground. Normally, squelch circuits have a high output available when closed

![Schematic diagram of the improved fm receiver scanner. Additional channels may be added by connecting additional ring-counter stages, as discussed in the text.](image-url)

typical test voltages, volts

<table>
<thead>
<tr>
<th>Component</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 collector</td>
<td>0.6/0</td>
</tr>
<tr>
<td>Q3/Q4 base</td>
<td>0/0.6</td>
</tr>
<tr>
<td>Q3/Q4 collector</td>
<td>0/12</td>
</tr>
<tr>
<td>Q5 base</td>
<td>0.6</td>
</tr>
<tr>
<td>Q5 collector</td>
<td>0.1</td>
</tr>
<tr>
<td>Q6/Q8/Q10/Q12 base</td>
<td>12/4</td>
</tr>
<tr>
<td>Q6/Q8/Q10/Q12 collector</td>
<td>0/5</td>
</tr>
<tr>
<td>Q7/Q9/Q11/Q13 emitter</td>
<td>0/3.8</td>
</tr>
</tbody>
</table>

from a few volts up, may be used to operate the scan-stop circuit. The unit normally puts out +5 volts to turn on (enable) the oscillator. However, simple additional inverter transistors used with the oscillator turn-on circuits allow the scanner to operate with oscillator circuits requiring a ground signal to enable.
Transistors Q6 to Q13 form a four-stage ring counter. Normally each stage is turned off by the base-emitter biasing on the pnp transistor. When power is first applied, the 33-μF capacitor in the biasing circuit for the base of Q6 ensures that the first stage will turn on by momentarily upsetting the normal bias. Subsequent-

The collector of the pnp transistor in each stage provides a +5 volt output directly to the oscillator to be enabled and also through a 270-ohm current-limiting resistor to the LED readout corresponding to the enabled channel. It is important to note that the 270-ohm resistor in each stage must be connected to the LED for proper biasing to be maintained. If LEDs are not used, adjustments in the circuit or dummy resistor loads must be used to maintain the same current flow in other parts of each ring-counter stage.

The outputs of the scanner can be used to turn on oscillators in various ways, depending on the particular oscillator. Since this subject has been treated in several magazine articles, only a few examples will be given. Refer to fig. 2 for examples of two common types of oscillators which may be encountered. The examples illustrate, in general, how oscillators may be enabled by the scanner.

The first circuit (fig. 2A) shows a typical +5 volt turn-on type of oscillator. This circuit is used in a vhf fm receiver described in a previous article. The oscillator has no internal bias; therefore, it cannot oscillate by itself. The base of the transistor, connected through a coil to the crystal and to the enable line through a resistor and 0.01-μF bypass capacitor, is biased on by +5 volts from an external source. The resistor and bypass capacitor block the flow of rf on the control line. Application of approximately +5 volts from a scanner circuit to the control line will turn the desired oscillator on.

The second circuit (fig. 2B) shows a conventional oscillator circuit adapted to multichannel operation by using diode switching. This circuit was commonly used a few years ago to modify older tube-type equipment for multichannel operation. In this circuit the crystal is essentially turned on at appropriate times by grounding the corresponding control line. In this case each leg is turned on when desired by a ground from an added
inverter transistor which turns on when +5 volts is applied to its base from the scanner through an isolation resistor.

It can be seen from these examples and the referenced articles that almost any fm transceiver or receiver can be modified to provide scanning operation. Application of one or more of the ideas instead of the next stage. This effectively shortens the ring. The Q6/Q7 stage must always be used since the bias circuit for the base of Q6 includes a capacitor and resistor which ensure that the ring counter operates when power is first applied. On the PC board shown in fig. 3 this is best done by reconnecting the last

![Printed-circuit layout for the improved fm receiver scanner. Component layout is shown in fig. 4.](image)

illustrated can be used to convert almost any oscillator circuit.

scanner circuit modifications

There are at least four possible modifications which may be of interest to other system requirements, if necessary.

1. **Less than four-channel scan.** This may easily be accomplished by reconnecting the 0.05-μF capacitor at the bottom of the last ring-counter stage to be used. It should be rewired to the first stage 0.05-μF capacitor to the line along the bottom of the board running back to the first stage.

2. **Changing scan speed.** The speed was set up to be the optimum compromise between proper squelch triggering and ability to catch short transmissions. If the approximate 10 channel/second rate requires change for some reason, different values for the two 33-μF capacitors in the multivibrator will change the oscillation rate of that stage.
3. Increasing number of channels. If you can stand the confusion of scanning more than four channels, more than one board may be used. Link the ring counter stages on the two (or more) boards, and use only the triggering and timing circuits of the first board.

4. Programming channels. Switching schemes can be used between the scanner pads darkened in on the layout drawing, fig. 4, and the top leads are looped back down to the pads which are circled. Polarity should be observed on the diodes and electrolytic capacitors. Install the 2N3644 transistors first to avoid any mixup later with the 60132 (general purpose npn) transistors.

Pads which are circled and have an X in them are inputs and outputs and will accept wire such as number-22 hookup wire, for connections to the outside world. The +12-volt terminal should be connected to a source of filtered +10 to +15 Vdc. The input terminal should be connected to the collector of the receiver's squelch switch stage. If the alternate input is used, Q1 and the 100k resistor from +12 volts to the base of Q2 can be eliminated and the 100k resistor from the input terminal can be connected.

diagram

fig. 4. Component layout for the improved fm receiver scanner. Dark circles indicate bottom of resistors (or diodes) installed in vertical position; the other lead is looped over to the open circle.

construction

Assembly is straightforward. If the etched circuit board shown in fig. 3 is used, most of the resistors and all of the diodes are installed standing up on the outputs and the various oscillators to disable one or more channels at certain times or to select particular channels to be monitored out of a bank of the available channels.

30 november 1974
directly to the base of Q2. The oscillator outputs should be connected to individual oscillator stages, and the LED outputs should be connected to the anodes of the LEDs.

The cathodes of the LEDs should be connected to ground. Using the type of LED supplied in the kit,* the orange dot on the base indicates the cathode terminal. Be sure you observe polarity or the LED won’t illuminate. The LEDs supplied with the kit may be mounted by inserting them in 13/64-inch (5-mm) holes drilled in the front panel of the radio. A spot or two of epoxy cement on the base of each LED behind the panel should hold them in place. Alternate LEDs sometimes have one short lead to indicate the cathode. Likewise, alternate 1N4148 diodes used in ring counters have their cathodes identified by a shorter lead.

If you wish to use both the scanner and a regular channel switch, this may be done by first connecting the oscillators to operate with the scanner and then wiring up a rotary channel switch to supply +5 volts to select oscillators when the scanner is turned off. A five-position switch can be used for this purpose with the fifth position turning on the scanner. In positions 1 through 4, the scanner is turned off, and +5 volts is connected through the switch to the oscillators corresponding to the selected channel positions on the switch.

references

*In conjunction with this article a kit is available, complete with undrilled G-10 PC board, all components, the LED indicators and an instruction manual. Price of the kit is $10, including domestic parcel post. If desired, add 50¢ for a number-66 drill bit or 40¢ for air-mail delivery. To order, or to obtain information on other fm kits, write to Hamtronics, Inc., 182 Belmont Road, Rochester, New York 14612.
how to measure peak envelope power

Don't depend on your meters for accurate measurement of PEP input power — use the technique discussed here.

It's unfortunate that the FCC requires amateur radio stations to compute power input for logging purposes. This is simple for FM or CW or even the almost-obsolete "conventional a-m" (6A3). For the user of single sideband (3A3J), however, the undertaking is far from simple. The purpose of this article is to identify those aspects that contribute to the difficulty of measurement and to present methods whereby the measurement may be made with a reasonable degree of accuracy.

Because the input power to an ssb transmitter continually varies when transmitting voice signals, custom and law stipulates that peak input power must be that which is measured. How do you catch that fleeting, almost ethereal peak of power induced by the upper excursion of a complex waveform? No meter can follow it without unpredictable lag or overshoot. Even if it could, what eye could register a needle flick of less than a thousandth of a second? Being knowledgeable of the instantaneous plate current, assuming you're using a vacuum tube in the metered stage, is, by itself, a formidable undertaking. But power computation also requires knowledge of instantaneous plate voltage. Unless the transmitter's power supply has superb dynamic regulation, far better than you have any right to assume, you're faced with another (but not quite so formidable) task of super-quick information gathering.

We've coasted along for years with the possibly-right, probably-wrong assumption that the peak needle excursion of a plate current meter equals one-half of the actual peak current. The FCC gives a quasi blessing to this assumption by accepting it, but only if the meter is that supplied by the original equipment manufacturer. It's highly doubtful that any FCC engineer has illusions regarding the accuracy of this method of ascertaining peak plate current. It's accepted only because not accepting it would rule off nearly every ssb transmitter in the Amateur Radio Service.

Unless the input power is within 10% of the maximum permitted, the FCC will also accept the nominal rated voltage of the plate power supply.

Now, let's review what we have for making our educated guess as to the peak...
input power of a voice-modulated ssb transmitter:

1. A plate meter indication that is dependent upon the dampening characteristics of the meter as well as upon the voice characteristics of the speaker. These voice characteristics vary not only from person to person, but also as to type of speech used by the individual. If you talk close to the microphone, with the gain turned up, using a monotone normal to confidential conversation, the meter will give one type of deflection. On the other hand, if you’re back from the microphone, talking in a quick, excited tone, the deflection will be quite different for a given peak excursion.

2. The plate voltage may be measured, or it may be taken from the manufacturer’s specifications. If measured, it may have been under no load condition. If under loaded conditions, the fall-off under syllabic current loads may possibly be gradual enough to be read on the voltmeter. Unless a huge filter capacitor is used, it’s probable that voice-peaks markedly load down the voltage.

The probabilities of truly accurate measurement of peak input power are about the same as those of rolling a seven ten times running at a Las Vegas gambling table! How, then, can you make an accurate measurement?

Assuming, for a start, that you have a child-like trust in the utter trueness of the stated plate voltage, I’ll delve into the matter of plate current measurement. Let’s hope your transmitter permits an easy access to its negative high-voltage lead so that this lead may be broken for the insertion of a small resistor. Otherwise you’ll need, in addition to the normal equipment, an isolation transformer (good for quite high voltage), a well-insulated oscilloscope cart and the type of constitution that permits playing Russian roulette!

But let’s say your transmitter is metered in the negative lead, as are most modern designs. You break the lead at a point that does not present any unintentional shunt paths, insert a resistor of a few ohms, connect an oscilloscope across this resistor, and then calibrate the scope in terms of current. It’s best to use a scope with a long-persistence CRT. This lets you take a deliberate view of a trace that flicks across the face in less than a thousandth of a second. Now, as you speak into the microphone, you’ll be able to see the maximum current drawn, reading it off the calibrated oscilloscope graticule.

For a better idea of your peak input power (if you can scrape up another scope), you can build a resistive voltage divider across the output of your power supply, tapping off a little potential for your scope input. Here, again, you have a simple calibration job to do. With two measuring devices which are not burdened by inertia and yet hold a reading (peak for current, dip for voltage) long enough to permit accurate observation, you’re all set to read peak input power. (Provided that you’re using a common-cathode triode operating in class A or class AB1.)

Have you noticed the way the FCC is currently grading its operator examinations? Power input to a vacuum tube no longer is measured by just its plate power input. You must also consider the power fed into the screen grid (if used), the suppressor grid (if used) and the control grid! That last is rf power. The others are dc, of course.

Most high-power rf amplifiers use common-grid triode vacuum tubes (also called grounded-grid). If yours does, coming up with the total power input is comparatively easy. All you need to do is to first measure the vswr on the line between the exciter and final. Make it unity. Then measure the instantaneous rf voltage on it with another calibrated oscilloscope. Compute the rf power by E^2/R, where R is the cable impedance. Add this power to the measured dc input power, and you should have fully satisfied all the requirements for ascertaining the peak input power of your ssb transmitter!
how to predict harmonic output

Determining drive points for optimum harmonic generation

Why are certain oscillator circuits better suited for frequency doubling than others? Why are other circuits more suitable for frequency tripling? Questions like these have bothered many amateurs and experimenters. It is the aim of this article to shed some light on the subject of the harmonic content of some common non-sinusoidal waveforms.

A signal of pure sine waves contains only its fundamental frequency. Any departure from this sine-wave pattern, no matter how small, is due to the presence of additional frequencies that are multiples (harmonics) of the fundamental frequency. If this non-sinusoidal wave can be given an exact mathematical description, the amplitude and phase of each harmonic frequency it contains may be calculated.

analysis

For example, assume that we have a series of waves, all alike, each looking like that pictured in fig. 1. This is a sine wave with a small amount of negative peak clipping. Graph shows relative amplitudes of the resulting harmonic products.
with the tip of the lower loop sliced off. Such a waveform might be produced when an amplifier is driven slightly beyond the cutoff point.

A Fourier analysis will show that this deformation of the sine wave gives rise to an endless number of harmonics, with amplitudes that tend to decrease with growing frequency. However, this tendency is not uniform.

The chart in fig. 1 illustrates the relative amplitude of each harmonic frequency up to the 30th. The scale is logarithmic, and the columns show the amplitudes of the harmonics as a percent of the original waveform's amplitude.

As mentioned before, the general trend is for the amplitude to decrease with increasing harmonic number, but this tendency is not uniform. A curve joining the tops of the relative amplitude columns makes a kind of wave pattern of its own, with minimum values at the 9th, 15th, 21st, and 27th harmonics.

Fig. 2 shows the situation when a still larger portion of the lower half of a sine wave is sliced off. In this case it would seem that an amplifier is driven into cutoff for a third of the duration of a period. In this case harmonic content is maximum for every harmonic divisible by three. Peculiarly, the two intervening harmonics have amplitudes of equal magnitude.

Another point worth noting is that the fundamental frequency (or the first harmonic) has an amplitude about 7% larger than the original deformed sine curve. What a temptation to drive an amplifier just a trifle over saturation, to get that little extra gain at the fundamental frequency! Actually, for this series of idealized waveforms the fundamental frequency increases to a maximum of 107.305% when the portion of the sliced-off sine wave represents 31.9% of the period.

half sine waves

Fig. 3 shows the case where the lower excursion of the sine wave has been clipped off entirely—a rectified half wave. Note that every harmonic with an uneven number has disappeared. The fundamental frequency has an amplitude equal to the actual amplitude of the half wave.

Fig. 4 shows a sine wave sliced off even more, so that only a third of the period is left. The envelope over the harmonic columns shows a pattern much like fig. 2, but the fundamental frequency has an amplitude of only 78% of the curve's amplitude. The higher harmonics, though, have larger amplitudes than those of fig. 2.
In fig. 5 the sine wave is sliced off so much that only one-sixth of the period remains. The fundamental frequency has an amplitude of only 43% of the curve but the harmonics are quite prominent. As in fig. 1, the envelope over the harmonic amplitude columns shows a wave pattern with minima at the 9th, 15th, 21st and 27th harmonic. For more precise harmonic amplitude values for fig. 1 through fig. 5, see table 1.

what this means

Now we can return to the questions asked at the beginning of this article. Why are certain circuits better suited for frequency doubling than others? Looking at table 1, you can see that the second harmonic in the column under 2/3 is larger than all the others. This means that slicing off two-thirds of the sine wave would give better second harmonic performance than any of the other clipped waveforms pictured. Actually, for the highest second harmonic content, 66.68% of the sine wave must be clipped off. This represents a conduction angle of 119.9° and provides a second-harmonic amplitude of 55.133% of the basic curve's amplitude.

table 1. Harmonic amplitudes as a percentage of the basic sinusoidal waveform for various amounts of clipping.

<table>
<thead>
<tr>
<th>harmonic number</th>
<th>1/6 (fig. 1)</th>
<th>1/3 (fig. 2)</th>
<th>1/2 (fig. 3)</th>
<th>2/3 (fig. 4)</th>
<th>5/6 (fig. 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104.089</td>
<td>107.267</td>
<td>100.000</td>
<td>78.200</td>
<td>43.045</td>
</tr>
<tr>
<td>2</td>
<td>2.843</td>
<td>18.378</td>
<td>42.441</td>
<td>55.133</td>
<td>39.598</td>
</tr>
<tr>
<td>3</td>
<td>2.462</td>
<td>9.189</td>
<td>8.488</td>
<td>5.513</td>
<td>34.293</td>
</tr>
<tr>
<td>4</td>
<td>1.990</td>
<td>1.838</td>
<td>0.000</td>
<td>5.513</td>
<td>27.719</td>
</tr>
<tr>
<td>5</td>
<td>1.477</td>
<td>2.100</td>
<td>3.638</td>
<td>6.301</td>
<td>20.576</td>
</tr>
<tr>
<td>6</td>
<td>0.975</td>
<td>0.656</td>
<td>0.000</td>
<td>1.969</td>
<td>13.577</td>
</tr>
<tr>
<td>7</td>
<td>0.528</td>
<td>0.656</td>
<td>2.021</td>
<td>1.969</td>
<td>7.349</td>
</tr>
<tr>
<td>8</td>
<td>0.169</td>
<td>0.919</td>
<td>0.000</td>
<td>2.757</td>
<td>2.357</td>
</tr>
<tr>
<td>9</td>
<td>0.082</td>
<td>0.334</td>
<td>1.286</td>
<td>1.002</td>
<td>1.143</td>
</tr>
<tr>
<td>10</td>
<td>0.224</td>
<td>0.334</td>
<td>0.000</td>
<td>1.002</td>
<td>3.120</td>
</tr>
<tr>
<td>11</td>
<td>0.269</td>
<td>0.514</td>
<td>0.890</td>
<td>1.542</td>
<td>3.741</td>
</tr>
<tr>
<td>12</td>
<td>0.239</td>
<td>0.202</td>
<td>0.000</td>
<td>0.606</td>
<td>3.323</td>
</tr>
<tr>
<td>13</td>
<td>0.162</td>
<td>0.202</td>
<td>0.653</td>
<td>0.606</td>
<td>2.261</td>
</tr>
<tr>
<td>14</td>
<td>0.069</td>
<td>0.328</td>
<td>0.000</td>
<td>0.985</td>
<td>0.957</td>
</tr>
<tr>
<td>15</td>
<td>0.018</td>
<td>0.135</td>
<td>0.499</td>
<td>0.405</td>
<td>0.245</td>
</tr>
<tr>
<td>16</td>
<td>0.079</td>
<td>0.135</td>
<td>0.000</td>
<td>0.405</td>
<td>1.106</td>
</tr>
<tr>
<td>17</td>
<td>0.109</td>
<td>0.228</td>
<td>0.394</td>
<td>0.683</td>
<td>1.513</td>
</tr>
<tr>
<td>18</td>
<td>0.106</td>
<td>0.097</td>
<td>0.000</td>
<td>0.290</td>
<td>1.471</td>
</tr>
<tr>
<td>19</td>
<td>0.078</td>
<td>0.097</td>
<td>0.319</td>
<td>0.290</td>
<td>0.506</td>
</tr>
<tr>
<td>20</td>
<td>0.036</td>
<td>0.167</td>
<td>0.000</td>
<td>0.501</td>
<td>0.089</td>
</tr>
<tr>
<td>21</td>
<td>0.006</td>
<td>0.073</td>
<td>0.264</td>
<td>0.218</td>
<td>0.559</td>
</tr>
<tr>
<td>22</td>
<td>0.040</td>
<td>0.073</td>
<td>0.000</td>
<td>0.218</td>
<td>0.813</td>
</tr>
<tr>
<td>23</td>
<td>0.058</td>
<td>0.128</td>
<td>0.221</td>
<td>0.384</td>
<td>0.826</td>
</tr>
<tr>
<td>24</td>
<td>0.059</td>
<td>0.057</td>
<td>0.000</td>
<td>0.170</td>
<td>0.633</td>
</tr>
<tr>
<td>25</td>
<td>0.045</td>
<td>0.057</td>
<td>0.189</td>
<td>0.170</td>
<td>0.311</td>
</tr>
<tr>
<td>26</td>
<td>0.022</td>
<td>0.101</td>
<td>0.000</td>
<td>0.303</td>
<td>0.042</td>
</tr>
<tr>
<td>27</td>
<td>0.024</td>
<td>0.045</td>
<td>0.163</td>
<td>0.136</td>
<td>0.336</td>
</tr>
<tr>
<td>28</td>
<td>0.036</td>
<td>0.045</td>
<td>0.000</td>
<td>0.136</td>
<td>0.507</td>
</tr>
<tr>
<td>29</td>
<td>0.038</td>
<td>0.082</td>
<td>0.142</td>
<td>0.245</td>
<td>0.529</td>
</tr>
</tbody>
</table>

table 2. Sine waveform clipping required to optimize different harmonics.

<table>
<thead>
<tr>
<th>harmonic number</th>
<th>clipping required</th>
<th>conduction angle (maximum)</th>
<th>amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.9%</td>
<td>245.1°</td>
<td>107.305%</td>
</tr>
<tr>
<td>2</td>
<td>66.7%</td>
<td>119.9°</td>
<td>55.133%</td>
</tr>
<tr>
<td>3</td>
<td>77.9%</td>
<td>79.7°</td>
<td>36.908%</td>
</tr>
<tr>
<td>4</td>
<td>83.4%</td>
<td>59.8°</td>
<td>27.719%</td>
</tr>
<tr>
<td>5</td>
<td>86.7%</td>
<td>47.7°</td>
<td>22.190%</td>
</tr>
<tr>
<td>6</td>
<td>89.0%</td>
<td>39.8°</td>
<td>18.498%</td>
</tr>
<tr>
<td>7</td>
<td>90.5%</td>
<td>34.1°</td>
<td>15.859%</td>
</tr>
<tr>
<td>8</td>
<td>91.7%</td>
<td>29.9°</td>
<td>13.878%</td>
</tr>
<tr>
<td>9</td>
<td>92.6%</td>
<td>26.5°</td>
<td>12.337%</td>
</tr>
<tr>
<td>10</td>
<td>93.4%</td>
<td>23.9°</td>
<td>11.104%</td>
</tr>
<tr>
<td>11</td>
<td>94.0%</td>
<td>21.7°</td>
<td>10.095%</td>
</tr>
<tr>
<td>12</td>
<td>94.5%</td>
<td>19.9°</td>
<td>9.254%</td>
</tr>
</tbody>
</table>
fig. 1. Severely clipping a sine wave so that only the positive peak remains results in lower-order harmonic output very nearly as strong as the fundamental.

In table 2, the optimum slice-fractions (conduction angles) are given for harmonics up to the 12th, with their corresponding highest possible amplitude for this set of non-sinusoidal curves.

Summary

An oscillator producing an output curve in the form of a horizontally amputated sine wave will provide good second harmonic content if the horizontal part of the curve is approximately two-thirds of the total period. If frequency tripling is wished, the horizontal part of the curve (that is, the duration of the cutoff) should be in the neighborhood of three-quarters of the total period. Conversely, if a specific harmonic must be minimized the data of table 1 can be used to determine the best operating point.

APPENDIX

A Fourier-series of the form \(f(X) = a_0 + a_1 \cos X + a_2 \cos(2X) + \ldots \) for a sine wave clipped off by a fraction \(2V \) of the total period \(2\pi \) will have the following coefficients:

\[
\begin{align*}
a_o &= \frac{2}{\pi} \left[\frac{1}{1 + \cos V} \right] \\
&= \frac{2}{\pi} \left[\frac{1}{1 + \cos V} \right] \\
a_1 &= \frac{2}{\pi} \left[\frac{1}{1 + \cos V} \right] \\
&= \frac{2}{\pi} \left[\frac{1}{1 + \cos V} \right] \\
a_n &= \frac{2}{\pi} \left[\frac{1}{1 + \cos V} \right] \\
&= \frac{2}{\pi} \left[\frac{1}{1 + \cos V} \right]
\end{align*}
\]

\(a_o \) represents the value of the direct current present, and has no significance in this discussion. The absolute values of \(a_1, a_2, \) and so on, give the relative amplitudes of the corresponding harmonics.
A Morse keyboard that provides perfect character generation as well as perfect letter and word spacing, regardless of the operator's keyboard skill.

Almost without exception, any person who uses Morse code can attain highest copying speed only when the code is sent perfectly. Because of this, and also in many cases as a matter of pride, most amateurs have tried to improve their sending technique. Many different kinds of equipment have been devised which can assist in this, but none of these, reasonably available to the average amateur, can produce perfect code, despite claims to the contrary.

Perfect International Morse code consists of five parts: the dot, which is one time unit or baud; the dash, which is three bauds; the space between each element of a Morse character, which is one baud; the space between letters, which is three bauds; and the space between words, which is seven bauds. Each and every one of these five parts of International Morse must be produced with machine-like precision - not a single one can be produced by human estimation if perfect code is to be the result.

The typical bug can make dots quite well but the other parts of the code are up to the operator. Some types of electronic keyers can produce dots, dashes and the spaces between them in proper form, but the operator is responsible for...
the letter and the word spaces. The latest device, which goes a step beyond the electronic keyer, is what I call a code mill. In radio parlance a typewriter is a mill, so what better name for keyboard keyers?

These code mills create perfect dots, perfect dashes, perfect spacing between elements of the characters and terminate each character with a perfect letter space. Whether this letter space remains perfect depends on the availability of the succeeding letter at precisely the right time. This in turn depends on whether the operator is successful in punching the key of the succeeding letter during what might be called its launch window. This launch window becomes quite narrow as the code speed increases and is almost intolerably narrow for any character which may follow the letter E (the launch window in this case is less than a tenth of a second at 30 wpm).

Some keyboard keyers provide a one-character storage latch at the input of the circuitry but even this partial solution requires the operator to anticipate various letter combinations. The varying length of the different Morse characters is not compatible with the smooth rhythm of good typing, particularly at the higher speeds. And, of course, the usual code mill does nothing whatsoever about word spacing. Listening on the air will give ample evidence of the inability of such devices to produce perfect code.

The solution

The obvious answer to the problem is to design a code mill which will automatically produce all five parts of the Morse code. Since this includes word spaces, a space bar for the keyboard is required, as in teletype equipment. Furthermore, to maintain exact letter spacing, the availability of successive characters must also be automatic. This means that the operator and his sometimes erratic operation of the keyboard must be isolated from the code transmitting circuits.

The electronic equivalent of a vending machine can best meet this requirement. The keyboard operator dumps the merchandise in at the top in the proper sequence and at whatever rhythm suits, including the “hunt and peck” system. The code transmitting circuit puts the “coin in the slot” and extracts the merchandise in the same sequence but at precisely the correct instant.
the circuit

This and the following paragraphs describe a code mill with an electronic vending machine having a storage capacity of 64 Morse characters. This code mill produces perfect code at any speed between 7 and 70 wpm as long as the operator keeps the storage partially filled and does not exceed its storage capacity at any time.

The block diagram of fig. 1 shows the basic arrangement which uses two Fairchild 3341 mos ICs for storage. Each 3341 is a 64 by 4-bit FIFO (first-in-first-out) serial memory, and is available in a standard ceramic 16-pin dual-inline package. A detailed description of circuit operation will not be given here since the circuit, excluding the FIFOs, is a modernized version of a circuit which was described in fine detail in a previous article. However, a brief description follows.

The oscillator is a variable-speed pulse generator which runs continuously. It triggers dual flip-flop 1 whose second Q output gives the required square wave. This square wave will produce transmitted dots through gates NAND 1, and NAND 2 and NOR 1 if none of these gates is inhibited. When no character is being processed through the shift register, the control line will be high and this inhibits NAND 2 via an inverter. Also, with the control line high, the K input of flip-flop 2 is high and this flip-flop is then triggered back and forth by the output of flip-flop 1. Whenever the Q output of flip-flop 2 is high, the FIFOs and the shift registers are ready to process Morse characters for transmission.

At this point it should be mentioned that the mos chips used in this circuit require a bit higher than normal high level. For this reason flip-flop 2 is one-half of a Signetics SP321A dual J-K flip-flop. Flip-flop 3 is the other half. Despite the fact that the Fairchild 3341 has internal pull-up circuits to make them compatible with TTL logic, the 3.8 volts minimum high of the SP321A looks a lot better than the 2.4 volts minimum high for the TTL flip-flops. A 7473 TTL could probably be used to replace the SP321A, but it was not tried.

The set input of flip-flop 2 may be grounded with a switch near the keyboard. This blocks the output of the mill while the FIFOs are being filled. With the lockup switch blocking the mill, calls may be typed up while still listening to the transmission from the other station or stations in a two-way or round-table QSO. It is also nice to use when setting up for a repetitive transmission using the recirculating shift registers to be described later.

When any key on the keyboard other than the space bar is depressed, the inputs to the FIFOs are actuated by the 74121

* * *

fig. 2. Bottom view, or foil side, of the ICs used in the first-in first-out serial memory and shift register.
one-shot multivibrator, the character enters the FIFOs and almost instantly appears at the outputs. By the action of flip-flop 2 and the output of NAND 1 on the FIFOs' shift out controls and the shift registers' mode controls and clocks, the character enters the shift registers and eventually appears at the inputs of the hex inverter. This drops the control line output of the shift registers, the control line goes low because of the E, enabling NAND 2 and the left-hand gate of the space latch. The high on line 1, via NAND gate 3, sets the latch, which in turn inhibits NOR gate 1 and prevents transmission of the E. Note that NAND 3 is inhibited by the output of flip-flop 2 except during the loading of the shift.

to a low which enables NAND 2 (via the inverter) and the character is transmitted. NOR gate 2 and flip-flop 3 serve with NAND 1 to bridge the gap between two successive dots to produce a dash when required.

word space

When the space bar is depressed the letter E is formed and matrix line 1 is also activated (raised to a high). When the E and the high on line 1 appear at the registers. This prevents line 1 from setting the space latch when it goes high due to the shifting of highs along the shift registers. At the completion of every character the control line goes high, resetting the space latch through an inverter.

The letter E is used for the space character because it's one-baud length plus the three-baud automatic letter space adds to the previous three-baud letter space to become a seven-baud word.
space. The letters I, S, H or the numeral 5 may be used if wider word spaces are desired. A switch is provided for this purpose, although it has seldom been used except while teaching code to beginners.

Fig. 2 shows the bottom view, or foil side, of the ICs comprising the FIFO and the register. Fig. 3 shows the circuit for the power supply. Both the +5 volt and the -12 volt supplies are regulated by LM309K voltage regulators. The values of the resistors in the -12 volt supply were chosen to give an output of -11.5 volts.

last-character elimination

Fig. 4 shows a circuit which was added some time after the code mill was built. Without touching the keyboard, this circuit will trigger the FIFO inputs at the conclusion of a character (control line goes high) and when the output ready terminal of one of the 3341s indicates that the FIFO is empty. Unfortunately, the 3341 will never completely empty itself. The last character will remain at the output of the FIFO until another character enters and “falls through” to the output. This causes continuous repetition of the last character. The operator must either learn to punch the space bar as a last character or a circuit must be designed to prevent this repetition. By triggering the input without punching a key, a complete blank is entered and passes through, and in turn takes the place of the offending character.

Since the Fairchild 3341 memories require +5 volts and a -12 volts in addition to the usual ground connection, it was a simple matter to add the recirculating shift registers shown in fig. 5. The reason flip-flop 1 is a dual unit is now apparent: it permits triggering the recircu-

![Fig. 3. Regulated power supply for the code mill uses LM309K voltage-regulator ICs.](image)

![Fig. 4. Circuit for last-character elimination.](image)
lating shift registers with the output from the first \(\text{Q} \) which is equivalent to a trigger for every baud in the mill output.

The inverters at the input and output of the 2522 chips are used as buffers. The two 2522 chips will store every transmission from the code mill up to a limit of 528 bauds. When the spdt switch is thrown, the information stored in the 2522s will repeat over and over, and at any speed. Although not a necessary part of the code mill, this circuit is handy for preliminary callups prior to broadcasts, directional CQs or whatever, while you sip your coffee.

The code mill described in this article was built for just over one hundred dollars, and all chips were purchased at full list price. My keyboard itself is a surplus unit and similar types are available at several outlets. The price was not too high considering the very great pleasure and satisfaction derived from building the unit and operating it on the air. Without mentioning the code mill, almost every QSO elicits favorable comments on the keying. The code mill is just great for code practice, of course, but probably the best feature of all is the ability to send absolutely perfect code at fairly high speeds, hour after hour if need be, and with no great effort.

reference

\textbf{You HEAR the Difference...}

\textbf{when it's a Larsen Külrod Mobile Antenna}

Larsen Külrod Antennas are "solid" on all scores. They have a low, low silhouette for best appearance and minimum wind drag. Hi-impact epoxy base construction assures rugged long life. The Larsen mount gives you metal to metal contact, has only 3 simple parts and goes on fast and easily.

And performance! Larsen Antennas for the 144-148 MHz range deliver a full 3 db gain over a 1/4 wave whip. V.S.W.R. is less than 1.3 to 1. The exclusive Larsen Külrod assures you no loss of RF through heat. Handles full 150 watts.

It adds up to superior performance... and a difference you can \textbf{HEAR}! Available as antenna only or complete with mounting hardware coax and plug. Write today for fact sheet and prices.

\textbf{Sold with a full money back guarantee.}

\textbf{You hear better or it costs you nothing!}

Need a BETTER 450 MHz Antenna?
Get the Larsen 5 db gain Phased Collinear. Same rugged construction and reliability as the 2 meter Larsen Antennas including exclusive Külrod. Write for full fact sheet.

\textbf{Larsen Antennas}

11611 N.E. 50th Ave. P.O. Box 1686
Vancouver, WA 98663
Phone: 206/573-2722

\textbf{november 1974}
automatic telephone controller for your repeater

A simple, reliable and foolproof control system for remote control of your repeater

The problem of building a practical, positive remote-control system has plagued amateurs for years. Some of the suggested schemes used have been very complex while others have been simple, but not foolproof. The technique applied in the design described here uses the telephone line. Positive and automatic control in the event of line failure are the basic assets of this unique system. Don’t be alarmed at the apparent complexity of the schematic, fig. 1, as all the IC gates are contained in five, inexpensive SN7400 IC packages. Total cost of the circuit for ICs is less than $5.00 and a well stocked junk box will supply the balance. Although the circuit can be built on peg board, a custom made printed-circuit board is available and is recommended for simplicity.* See fig. 3 for a suggested parts layout.

construction

A small chassis was made from sheet aluminum and bent in a vise to form the chassis shown in fig. 2. The power supply and relays are mounted on the chassis for convenience. A small equipment box could have been used but one was not available at the time I built the system. It is suggested when you choose your chassis that you keep the top and bottom open to aid in troubleshooting. A coat of white paint on the front panel and instant press-on lettering may be used to dress it up.

The model illustrated is set up for a

*Printed-circuit boards and nonlatching relays are available from Circuit Board Specialists, 3011 Norwich Avenue, Pueblo, Colorado 81008. Circuit boards are $5.50 each; nonlatching relays, $2.00 each.
latching function—it turns our repeater off. If you happen to have a stepping relay, this is fine, but I didn’t, so another SN7473 was mounted in a socket off to the side and wired in as shown in the alternate circuit, fig. 4.

operation

An operating function, such as shut-down or turn-on of a remote station, requires a specific number of rings on the telephone, hang up, wait a specific length of time, then another specific number of rings and the function will be carried out.

In this discussion I will use 3 rings, hang up, wait 20 seconds, another 3 rings and hang up. Any combination of number of rings may be used so long as the total is less than nine. By examining the decoder (U2) you can see that it can be very easily programmed by the moving of only two jumper wires to the various outputs of U2.

Depending upon the type of relay used at relay K2, a momentary, latching or stepping function can be obtained. Relay K1 is used for validating the phone line. The remote station keying voltage can be taken through the contacts of this relay. If the phone line is interrupted, the transmitter cannot be activated.

circuit description

The phone line must be connected with the polarity as shown in the schematic. To assure the phone line being operational, the negative voltage is passed by CR1 and R1, charging C1, which will store the voltage during brief interruptions such as when the phone is ringing. The negative voltage applied to the gate of Q1 causes it to cease conducting. A high plus voltage will appear on the drain of Q1. This voltage is passed to the Q3 base by R4, causing Q3 to conduct and close relay K1. For repeater control K1 is connected in the push-to-talk or transmitter keying line so that it must be closed in order for the repeater to operate.

Although an explanation of the ring-counting circuit is a bit complicated, operation is actually very simple. In the ring circuit you are only interested in the ac signal. Capacitor C2 is used to block the dc and pass the ac signal to the rectifiers. The negative dc voltage is smoothed by C3 and C4 and applied to the gate of Q1, causing a rise in voltage on the drain of Q1. As soon as the ring signal disappears, R7 pulls the gate of Q1 to ground, resulting in full conduction of Q1, causing pin 14 of U1 low. Each shift from high to low on pin 14 will cause U1 to toggle once.

Therefore, the first ring will step the decade counter (U1) one count. The decoder-driver (U2) has now moved off zero position to its first count. When U2 leaves zero, pin 16 goes to +5 volts. This high is fed to pins 1 and 2 of gate 17 (U8A), and pin 3 goes low, causing the ready light to go out. Also, pins 4 and 5 of gate 18 are low, causing pin 6 to go high, turning on the start light indicating that a function has started. The high from gate 1B pin 6, is also fed to U7, pin 14, providing a set signal for flip-flop 1 (U7A), as well as providing the clear voltage to both flip-flops at pins 2 and 6.

To back up a little, to U2 pin 16, +5 volts is also fed to the emitter of Q4. This is the timing circuit of the telephone controller which provides the 20-second timing necessary for all phases of the function. The time is controlled by the RC network R11 and C5.

This all happens on the first ring of the telephone. The second ring simply advances the counter to count two. The third ring, the one that does the business, advances the decoder driver, U2, to count 3 position. The resultant low on pin 9 (count 3) of U2 is seen at pins 1 and 2 of gate 3. Gate 3, pin 3, will provide a high enabling voltage to pin 12, gate 1. Now, assuming that the telephone quit ringing on the third time, pin 12, gate 1 will remain high. After 20 seconds the unijunction transistor, Q4, will have charged up and fired a voltage spike out B1. This spike is fed to pin 13, gate 1. The output of this gate goes low, clocking FF1 (U7A) at pin 1. The Q output of FF1 goes high,
applying a set voltage to FF2. At the same time the phase 1 lamp comes on indicating that the first requirement of a function has been accomplished. Pin 11, gate 1, is also fed to gate 16, pin 2, which is used to reset the whole system if the telephone fails to ring again within the next twenty seconds.

When phase 1 has been successfully completed, the telephone must ring three more times to complete the function. The fourth and fifth rings will simply step the ring counter two more counts. On the sixth ring the phone must be hung up, leaving U2, pin 11, (count 6) low. This low is seen on pins 4 and 5 of gate 4, providing a high to pin 9 of gate 2. Twenty seconds after the last clock pulse from Q4 another clock pulse is sent to IL, pin 10, gate 2. Gate 2, pin 8, goes low, causing FF2 to toggle. Pin 9 of FF2 goes high, causing the phase 2 lamp to turn on. This action also turns on the relay driver, Q5, closing the function relay, K2. Transistor Q5 will remain turned on until the third pulse is received from Q4. This time the clock pulse is fed to pin 2, gate 14. Pin 1 is now high since it is controlled by the Q output of FF2. The pulse is fed through gate 14 and 15 to reset U1. This restores U2 to zero, clearing FF1, FF2 and turning on the ready light. Thus, one complete function has been performed.

![fig. 1. Schematic diagram of the automatic phone controller. All gates are SN7400 or equivalent. Relays K1 and K2 are sensitive dpdt relays with 8000-ohm coils. Resistor R11 is selected for the desired time setting. Resistors R14, R15, R16 and R17, in series with the LEDs, are adjusted for proper light output.](image-url)
At this point you may be asking what the rest of the gates are for? Well, there must be a means of discriminating between a valid function and an incoming phone call to your wife or teen-age daughter. A few instances of an invalid function would be:

1. Ring three times and hang up. The phone, not ringing again for the next 20 seconds, would allow the system to reset through gates 1 and 16.

2. The phone ringing any number of times except 3 or 6 then hung up, the system will be reset through gates 5, 6, 7 and 8.

3. The last possibility is a remote one but nevertheless it must be considered. In this case someone lets the phone ring three times and hangs up. By sheer stroke of luck or accident they call back twenty seconds later and let it ring any number of times other than three or six. Then the entire system will be reset through gates 13, 14 and 15.

This concludes the operation of the controller. As far as I know I have thought of all possibilities of mis-control and have provided protection against it. If, by accident, someone does get your function-control code it is a very simple matter to change the sequence to another code, such as ring 7, hang up and ring 2 more times. As you can see, there are 36 different combinations of sequences. If that isn't enough you can change the value of R11 and C5 for a different time duration. Needless to say, it isn't necessary to describe the multitude of combinations you can come up with using this arrangement.
troubleshooting

A high-impedance scope or a vacuum-tube voltmeter will be required in the event of trouble. However, the light-emitting diodes connected to each stage will generally suffice for troubleshooting.

After construction is completed and voltage is applied to the circuit check for the following: the ready light, 11, should be on and all others off. Pin 16, U2, should be low, pins 9 and 12, U7, should be low and pins 8 and 13, U7, should be high. Connect the positive terminal of a small 9-volt battery to ground and the negative side to the input. Relay K1 should close and remain closed for about 30 seconds after removing the 9-volt battery.

Next, apply the 9-volt battery lead momentarily to the junction of CR3 and R6. Approximately 2 seconds after removing the battery lead 12 should light, indicating a function has started. Make and break this connection, allowing about 2 seconds between pulses for the correct number that corresponds to the first number of rings that you have programmed for. About 15 seconds later 13 should light, indicating that the first phase of the system has been satisfied. Now make and break the battery connection in the same manner for the second combination of rings; in approximately 5 seconds 14 will light, indicating that the sequence has been completed and the function has been carried out.

In the event of difficulty check base 1 of the unijunction transistor with a scope for the pulse that controls the system. If the pulse is being generated, then trace the pulse through the system to determine which gate or flip-flop is not responding.
There is considerable interest in the very-low frequencies, particularly for the WWV transmissions on 20 and 60 kHz, and for operation on the no-license band around 1750 meters. One of the big problems in building receivers or converters for this part of the spectrum is in constructing a variable tuned circuit which will cover a substantial portion of the desired frequency range. Assuming that the desired band extends from 10 to 150 kHz, with a ratio of the corner frequencies of $150:10 = 15$, the tunable component must have a variation of $15^2 = 225$. Since this cannot be accomplished with conventional variable capacitors or inductors, the frequency range has to be divided into a number of sub-bands or the tuned circuit is eliminated altogether. The latter is done in most VLF converters—they are untuned.

tuned circuit

There is, however, a novel method of inductive tuning which will cover the required range. This method makes use of a toroidal ferrite core which is magnetically biased by a pair of small permanent magnets as shown in fig. 2. By rotating one of the magnets with respect to the other, the amount of flux penetrating the toroid is varied, changing the ferrite’s permeability and thus, the inductance. It is interesting to note that maximum flux penetration and minimum inductance occur when like poles are opposite one another.
fig. 1. Circuit for the vlf converter. The local oscillator uses a 7-MHz FT-243 crystal in the third-overtone mode.

L1, L2 magnetically tuned inductor (see text) L5 15 turns no. 20 on ¼" (6-mm) slug-tuned form
L3 10 turns no. 20 on ¼" (6-mm) slug-tuned form, tapped 5 turns from cold end L6 4 turns no. 20, center tapped, around cold end of L5
L4 2 turns no. 20 around cold end of L3 L7 2 turns no. 20 around cold end of L5

The two magnets used to bias the toroid inductor are of the button type with a half-inch (13-mm) outside diameter. The outside diameter of the toroid is also ½-inch. The whole tuning assembly is built around the bushing and shaft of a discarded potentiometer. The particular toroid core I used required 100 turns of...
stranded wire for an inductance variation of 100 µH to 12 mH (a 120:1 range). However, ferrite cores with higher permeability would require fewer turns. Measured Q values for my inductor were around 50 for frequencies between 10 and 150 kHz.

...toroidal ferrite core with two small button magnets. This technique provides an extremely wide inductance tuning range.

converter circuit
The circuit for my VLF converter, which has an output on 15 meters for use with a communications receiver, is fairly conventional as shown in fig. 1. The antenna is coupled directly to the hot end of the tuned circuit (or through a capacitor to provide a degree of matching to long antennas). The mixer uses a matched pair of germanium diodes and the local oscillator uses a FT-243-variety crystal in the third-overtone mode. To obtain third-overtone oscillation at 21.000 MHz, choose a crystal with a fundamental frequency a few kHz above 7 MHz. By simply changing the crystal frequency and the oscillator and i-f output coils, output can be changed to any desired frequency band.

references

hy-gain Antennas!

TH6DXX
6-Element Super Thunderbird DX
Superior Performance TriBander!
Impressive coverage 10-15-20 meters.

TH3MK3
3-Element Super Thunderbird
Popular Tri-Band Beam Improved!
Outstanding performance 10-15-20 meters at reasonable cost.

18AVT/WB
The Great Wide Band Vertical
Super Performer
80 through 10 meters!
Superb omnidirectional capabilities.

18 HT
Incomparable Hy-Tower
Finest Multiband on the Market!
Automatic band selection 80 through 10 meters.

Also a complete selection of Hy-Gain accessories including: rotators, baluns, mounts, springs, switches, phone patches and lightning arrestors!
W3FQJ goes solar power

On April 15, 1974, the solar-powered QRP station at W3FQJ made an initial radio contact with Hank Brazeal, WB4ZXJ, in Birmingham, Alabama on 15 meters. The transceiver was the five-watt PEP Ten-Tec Argonaut. The same evening W3FQJ checked into the RF Hill Amateur Radio Club’s 10-meter net.

The essential units of the solar-powered station are the Argonaut transceiver, charging panel and 5.5-ampere-hour motorcycle battery (fig. 1) and a roof-mounted light-energy converter, (fig. 2). The 5×2½×5½-inch (12.7×6.6×14-cm) battery is positioned behind the charging panel for normal operation. Such batteries can be purchased at local motorcycle shops or by mail from one of the auto accessory houses or from Sears. The Sears batteries are shipped with a dry electrolyte which must be added to the battery along with water according to the instructions. In most shops the electrolyte is added when the battery is purchased.

The Spectrolab light-energy converter has a rating of 12-volts at 0.3 amperes. When the solar panel is so operating it is supplying 3.6 watts. This is an average figure. At dawn and dusk and during dark, overcast days the power level is significantly lower. When the rays of the sun are striking the panel directly, the delivered power is slightly more. Nevertheless, it will make available more than enough electrical energy for a very busy five-watt QRP station.

The solar panel can be operated as a continuous float-voltage charger or it can be operated whenever you wish to recharge the battery. As I am writing this column in the early morning hours of a high-overcast day the float-voltage connection is supplying 50 milliamperes.
Yesterday in bright sunlight a series resistor was inserted to keep the trickle charge current below the 100 mA level. As set up now the station plan is very conservative and would provide continuous operation for normal back-and-forth amateur chatter. Over a period of time I will learn the limits of the system, pressing high-powered transmitters into operation.

Such is not conducive to the furthering of corporate empires.

charging panel

Several components are needed for the charging panel. Refer to the schematic diagram and parts list shown in fig. 3. About 50-feet (15-meters) of two-conductor cable (number-12 or -14 conductors) connects the solar power converter to the charging panel. The panel itself supports a dc milliammeter, a 1-ampere diode, CR1, and a number of binding posts that permit ease in monitoring and experimentation.

The two binding posts at the top right of the front panel, fig. 4, can be used for monitoring the voltage delivered by the solar panel. The meter to the left reads the actual current being delivered by the solar cells. The two binding posts underneath the meter permit the insertion of a jumper if you want to take the meter out of the circuit for those experiments where you want to draw maximum current under the condition of bright sunlight directly striking the cell surface.

The battery terminals are at the lower right. In a continuous service application

Reports will appear in this column from time to time.

solar power cost

Today solar electric power is expensive. The small 3x39-inch (7.6x9.1-cm) unit I am using lists for more than 150 dollars. Much about it is handcrafted and as yet systems have not been adapted to mass production. Unfortunately, it must be the American citizen that is obliged to set up a widespread clamor for solar power. One cannot anticipate that the oil institute, the electric power industry or the atomic energy bureaucracy will do too much to further the cause of this non-polluting method of power generation. Such power would offer a degree of independence for many homes, small businesses and small industrial plants.
The two load terminals at the bottom center of the panel permit you to supply energy directly from the solar panel to a 12-volt device. In this application the battery is disconnected completely by making certain there is no jumper or resistor connected across the two charge terminals.

Diode CR1 is an important part of the charging system. The actual charging current declines as the battery reaches full charge. This is to be anticipated because the charging battery attains a voltage ever closer to the voltage of the charging source. However, it is possible, especially when the battery climbs to full charge voltage, that the impinging light will not be great enough to maintain the charging source voltage above the level of the battery voltage. Without the diode in the circuit, the battery would then discharge into the solar source. This is avoided because under the condition of high battery voltage and low charging source voltage the diode is reverse biased (cath-
ode connected to positive side of battery
and anode connected to the positive side
of the charging voltage).

roof mount

The basic physical support for the solar panel is the vent pipe on the roof of my house, fig. 1. At one time the two standoff brackets supported an antenna mast. A shortened 5-foot mast section and a homemade bracket arrangement supports the solar panel. It was arranged to permit ease in experimenting with the tilt of the panel. A U-bolt permits the top of the panel to be moved up and down the mast. At the bottom of the panel a flat piece of aluminum with a series of holes permits easy accommodation of various tilt angles.

The recommended tilt for the panel corresponds to the latitude of your station (degrees north [or south] from the equator). My station is reasonably near the 40° north latitude line. This figure refers to the angle of tilt away from the horizontal as shown in fig. 6. The nearer you approach the equator, the nearer the optimum mounting angle approaches a horizontal position.

In setting up the mounting arrangement the solar panel becomes the hypotenuse of a right triangle, fig. 7. Sine and cosine functions can then be used to determine the vertical and horizontal sides. The overall panel length is 39 inches (99.1 cm); this becomes the length of the hypotenuse. Therefore, the horizontal and vertical side dimensions become:

\[
\begin{align*}
\text{b} &= h \sin a \\
\text{a} &= h \cos A \\
\text{b} &= 39 \text{ inches (99.1 cm)} \\
\times \sin 50° \\
\text{a} &= 39 \text{ inches (99.1 cm)} \\
\times \cos 50° \\
\text{b} &= 30 \text{ inches (76.2 cm)} \\
\text{a} &= 25 \text{ inches (63.5 cm)}
\end{align*}
\]

The vertical side is an appropriate section of the 1½-inch (32-mm) mast section. The horizontal support is two 1½-inch (32-mm) aluminum strips bolted together but separated where they wrap around the mast section and where they connect to the short length of aluminum strip that permits the adjustment of tilt angle.

battery data

A 5.5-ampere-hour capacity battery provides a conservative and well-regulated source for the 5-watt Argonaut transceiver. Transceiver specifications suggest a 12-volt, 1-ampere source although peak current demand by the transceiver is less than this value. At any rate, such a battery would supply the unit for continuous overnight operation. In fact, the battery could supply almost a continuous demand of 1 ampere for 4 to 5 hours.

Based on a 20-hour, 5.5-ampere-hour rating, the continuous current demand for this period of time would be:

\[
I = \frac{5.5}{20} = 275 \text{ milliamperes}
\]

A charging current of the same value would recharge the battery in the same amount of time plus additional time, depending upon the charging efficiency of the battery.

In normal amateur applications deep discharge of the battery and continuous high-current charging are not necessary. Once the battery is fully charged a float
charge arrangement is quite adequate. If you assume a charge rate of 1/4 to 1/6 of the rated current value, you are considering a minimum charge current in the 45- to 70-mA range. In the set-up described this level of current and higher is readily available for hazy-bright days. A generous, up to 300-mA, current is available during bright sunny days. Even on a high overcast day the solar panel supplies current at the low end of the range. Charging current is limited for dark days but the battery capacity is adequate, even for the very active QRP operator.

solar power QSO record

Correspondence from Edgar Janes, G2F WA, disclosed two solar-powered CW contacts made on October 27, 1954. Initial contact was made between G3HMO (solar-powered station) Bucking- ham, England and G5RZ, Leighton Buzzard, England. Here is an account from the December, 1954, issue of Short Wave Magazine:

"Fortunately, the sun was shining fairly strongly, and the photo-electric cell battery was giving ample output — about 2 mA at 4 volts — to energize the transmitter... Two-way CW contacts (were made) with G5RZ (Leighton Buzzard, 15 miles) at 1505 gmt and with G3IYX (Bradwell, Bucks, 7½ miles) at 1515 gmt. The daylight powered transmitter signals on 1820 kHz were reported as RST 559 in Leighton Buzzard and RST 569 in Bradwell. These contacts, though pre-arranged, were initiated on the transistor trans-

fig. 6. Tilt angle of the solar panel.

mitter running on the photo-cell battery alone and were carried through under normal band conditions, with quite troublesome interference on the frequency."

Thank you, Edgar, and Austin Forsyth, G6F0, Managing Editor of Short Wave Magazine.

My contact with WB4ZXJ on April 15, 1974, is degraded to the first solar-powered ssb contact, not arranged. Maybe? The paramount question, however, is why we have waited so long (except for satellite communications) to take advantage of this limitless source of energy.

new applications

More small companies are now producing small solar energy converters. Zurn Industries* sells two models with peak ratings of 1.5 and 6 watts. These two 12-volt models are covered with a transparent waterproof and detergent-proof coating. A major application of the Zurn models is for marine batteries. Under the condition of a week of normal daylight, sufficient charging power is available that

*Zurn Industries Incorporated, 5533 Perry Highway, Erie, Pennsylvania 16509.
A bilge pump can pump 600 gallons of water with the small energizer and 3000 gallons with the larger model. Such a device is particularly useful for maintaining battery charge during long idle periods, as during winter storage of a small boat.

Another active organization, Solar Energy Company, sells solar power converters as well as wind-powered electrical sources. Their devices find application in VHF/UHF repeaters, microwave relays, wire and wireless telephone systems, TV translators, monitors, offshore platforms, data buoys, railroad signals and controls, plus traffic and security systems. They also make a unit that maintains the charge on batteries used to power farm electric fences.

Why haven't such devices been used to supply a portion of the power needed in the average household? Needed is a solar heater for the home with its electrical blowers, fans and circulators powered by a solar energy converter. At least there should be a home furnace capable of using a variety of fuels with its electrical accessories powered completely by battery and solar power converters.

Experimental approaches

There are several avenues of experimentation. What are the operating limits using direct drive to 12-volt devices and no battery? Some voltage-regulator device would be required. How bright would it have to be to provide operation of a 12-volt zener diode? How much longer a period of operation would be feasible using the solar source for 9-volt regulated operation? What are the limits of a particular solar panel in terms of higher power demand and keeping a higher capacity battery fully charged relative to your normal operating schedule?

Connecting solar panels in parallel increases current capability. How many panels would be required to provide adequate charging current for a high capacity battery system? How many panels and what battery capacity would provide enough power to match normal operating time for your 200-watt sideband transceiver? What advantages are to be obtained from series-parallel groupings of solar panels?

†Solar Energy Company, 810 18th Street, NW, Washington, D.C. 20006.

What additional capacity can be gained by using a mechanical mount that would permit you to chase the sun across the sky? Would an equatorial mount and clock-drive be practical? How would you hold the weight of the assembly down? What percentage of the derived power would be needed to power the drive system? Perhaps drive power could be conserved by changing positions only once each hour, or half-hour. I will be discussing these and similar subjects in the months ahead.
Dear HR:

I would first like to commend Steve Maas, K3WJQ, for his article bringing modern communication theory into the area of amateur RTTY in the June, 1974, issue of *ham radio*. However, I feel that a few areas need comment. First, the numbers in Table 1 (page 32) for coherent FSK probability of error are slightly in error. The published data is based on a shift between the mark and space frequencies of $f_s = 0.7/T$, where T is a baud time. For 60 wpm RTTY, $T = 0.022$ second, resulting in an f_s of only 32 Hz. It can be shown that this shift results in the lowest probability of error for coherent demodulation of FSK. However, for many practical reasons, this is too narrow a shift, so for standard 170- or 850-Hz shifts, that column should be amended to

<table>
<thead>
<tr>
<th>input snr</th>
<th>probability of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB</td>
<td>0.16</td>
</tr>
<tr>
<td>2 dB</td>
<td>0.10</td>
</tr>
<tr>
<td>3 dB</td>
<td>0.08</td>
</tr>
<tr>
<td>6 dB</td>
<td>0.02</td>
</tr>
<tr>
<td>9 dB</td>
<td>0.002</td>
</tr>
</tbody>
</table>

The probability of error, as well as the Rayleigh and Rician probability density functions, are derived assuming no fading, with white noise having a Gaussian density function at the inputs of the mark and space filters. This is sometimes a good assumption, but primarily at vhf and above. Since most RTTY activity is in the high-frequency spectrum, this white Gaussian noise assumption needs examination.

The National Bureau of Standards has attempted to model atmospheric noise. They have found that the performance of an FSK demodulator can be several orders of magnitude worse than calculated by the white Gaussian noise assumptions, and this study didn’t include QRM, which seems to be the most prevalent type of "noise" in our crowded bands.

The high-frequency spectrum is time varying with frequency-selective fading (QSB). This fading results in a tremendous degradation in the probability of error performance. Fading is thought to be due to constructive and destructive combining of various received signals that have been reflected from different layers of the ionosphere, resulting in a received signal with varying amplitude and with a random phase angle. So, while the transmitted phase may be constant, because of the varying time delays through the propagation path, the received signal can have any phase. It appears that demodulation schemes which require phase information, such as coherent FSK, are degraded more than noncoherent schemes.

By requiring that a PLL (fig. 4 in K3WJQ's article) remain close to the previously transmitted phase while the

other channel is being transmitted would result in a very long time constant in the lowpass filter. This would also have the effect of increasing the time it takes for the PLL to lock up. PLLs in amateur demodulators have usually had the additional problem of locking on to a strong nearby interfering signal. Finally, there is evidence that the use of two oscillators at the transmitter end, which results in discontinuities in the phase of the transmitted signal, will have poorer performance than shifting the frequency of a single oscillator.4

Most mathematical analysis of systems like the one described in K3WJQ's article ignore the effect of one bit on the next. This problem is called intersymbol interference, and is found in any receiver having narrow bandpass filters. The degrading effects of intersymbol interference are extremely difficult to analyze, but they are of concern, as evidenced by the multitude of articles on attenuation and delay equalizers in the technical journals.5

The major causes of errors in an amateur's RTTY system thus seem to be those caused by fading, high atmospheric noise levels, interfering stations and intersymbol interference introduced by the propagation medium and receiver. Table 1, while slightly in error in practice, does point up the fact that a small increase in antenna gain can tremendously improve the performance. Also, for those fortunate hams with forty acres and unlimited resources, space diversity antenna systems reduce the effects of fading. Other known techniques for removing the effects of interference or fading, such as frequency diversity, error correcting codes and spectrum spreading methods, aren't looked upon favorably by the FCC.

I hope that the above comments will stimulate thinking on the design of FSK demodulators. The articles, such as the ones referenced, should provide indications as to the directions a design should take. I hope that I have shown that while I am enthusiastically for more theoretical articles in the amateur magazines, they should be tempered with the idea that mathematical analysis of various systems can be, at best, extremely difficult. The only way that a majority of amateurs, including myself, will be convinced of a new method's effectiveness is by seeing a working model perform as well or better than existing models.

John Fehlauer, WA2WTL
Gibbstown, New Jersey

bequests amateur gear

Dear HR:

Your March editorial was interesting and to the point regarding the disposition of a deceased ham's equipment. Specifically, it takes into account the fact that there is a big difference between good junk and junk. Too many of today's hams consider homebuilt equipment to be in the latter category, but I think I have the solution.

My will specifies that all of my equipment which can be categorized as amateur radio equipment and support parts shall be made available to the County Board of Education, with specific instructions that such items be sent to the local high school (which happens to have an amateur station). Further, I have specified that any taxes, fees and/or delivery costs be paid from my estate because I wanted to prevent any failure of delivery because of some cost or expense that the Board of Education might elect not to pay.

There are no strings attached, the high school will receive some valuable equipment and—hopefully—some youngster will learn something from the bequest.

Dean Young, W3FZ
Adelphi, Maryland
identification timer

Lengthy QSOs and time-consuming phone patches can lead to problems with the FCC if you do not identify your station every ten minutes. After becoming an Official Observer I became aware of times between ID—especially those of ragchewing stations and stations running phone patches. Operators in these two categories tend to let time ramble by without the proper 10-minute identification. To alleviate this problem at my station I set out to build a timer that would accurately reproduce a 10-minute time out, have a minimum number of parts, and could be assembled in one evening. The circuit is shown in fig. 1.

This timer was designed around the Signetics NE555 integrated circuit. Any 9- to 12-volt dc supply can be used to run the timer. Once the power supply is turned on, the red lamp (ident) will light. The run-test switch is placed in the test position and the reset button should be depressed and released. A ground at pin 2 will cause the green lamp to light and the red lamp to extinguish—indicating that the unit is timing. With the values shown the test position will allow a time cycle of 2 to 3 seconds after which the lamps will change from green to red (ident). Now place switch S1 in the run position. Again depress and release the reset button. The unit will time out between 7 and 11 minutes, depending on the setting of R1. I have R1 (500k pot) on my unit set to time out at 9 minutes. This allows a one-minute time frame in which to identify.

Even with ±10% variation from nominal supply voltage of 12-volt dc the timer retains a 9 minute, ±1 second, accuracy. If during a timing cycle you
wish to identify your station and return to zero time it is only necessary to depress and release the reset switch. It is recommended that the indicator lamps draw no more than 100 mA each so as not to strain the current-sinking ability of the NE555 (200 mA max).

The total cost to build this timer is under five dollars. Circuit layout is not critical and component minimization makes the unit very reliable. With a timer like this one next to your phone patch you don’t have to worry about being cited for lack of a correct 10-minute ID.

Don Backys, K9UQN

spurious signals

The October, 1973, issue of *ham radio* (page 67) carried details of Yaesu FTdx560/570 vfo frequency ranges, and the incorporation of the 6.358.6-kHz suck-out crystal in recent production. This was summarized in the December, 1972, issue (page 69), based on JA1MP’s letter earlier in the year. This modification eliminated a 28-MHz spurious, but does not appear to affect the clean lower-sideband phone signals appearing in the 14-MHz DX band in a manner similar to those reported from the Yaesu FTdx400.

W6PKK added the crystal to his FTdx560, then trimmed traps L18 and L19 (but not L23). His 14270-kHz upper-sideband transmissions caused lower-sideband spurious on 14080 kHz. Trimming eliminated the spurious completely at my location. In the case of a W7 who installed the suck-out crystal ($5 plus COD postage), the 14197 lower-sideband spurious caused by the 14212 kHz upper-sideband transmission was not reduced; it presumably requires adjustment of the two traps as accomplished by W6PKK.

It appears that all Yaesu amateur equipment may have one or more traps which must be properly adjusted and the performance confirmed by listening tests. A number of CW signals heard in the phone band may have been spurious from the CW band on 14 MHz, but were not all investigated when heard. One was on about 14345 kHz. Several RTTY signals around 14085/14090 kHz have also been heard in the vicinity of 14220 kHz, these being from HW100, SB101, SB400 and SB401 equipment, according to information received. Some of these sets appear to depend upon a “bandpass coupler” out of the first mixer to suppress any undesired second harmonics of the input frequencies, or of the resulting output frequency. If the bandpass coupler is not sufficient, suitable traps might be applied to the first mixer output or the second mixer input (if two mixers are incorporated) to suppress the undesired products.

Information should be accumulated on the spurious performance of all types of amateur equipment, and the necessary cure for any spurious emissions or responses, to eliminate unnecessary receiver interference.

Bill Conklin, K6KA

full-quieting meter for Clegg 27B

Many amateurs who use the Clegg 27B as a base rig have wanted a visual indication of incoming signal strength for peaking up mobile signals and for keying up repeaters. This can be simply accomplished as follows: Connect one end of a piece of miniature RG-74/U coaxial cable, center conductor to the orange wire on the squelch control and braid to the yellow wire of the squelch control. Run the RG-174/U coax back to the hole near the antenna connector and connect it to a miniature 1/8-inch female connector. For the meter, which is connected to the coax with a matching 1/8-inch male connector, I used a 0-500 microampere meter. A 0.01-μF capacitor across the meter will smooth out any needle movement. Make sure the cable braid is not grounded at any point as this will bypass the squelch circuit and make it inoperative.

Tom Clerk, WA2YUD
Explore the world of RTTY... with sophisticated equipment from HAL.

The RVD-1002. The silent, reliable RTTY video display unit from HAL.
The revolutionary HAL RVD-1002 RTTY video display unit "prints" an RTTY signal from any TU at the four standard data rates (60, 66, 75 and 100 WPM), using a TV receiver with slight modification. Or it will directly feed a TV monitor. Power consumption is low, thanks to the RVD-1002's solid-state construction. So turn on to silent, trouble-free RTTY—with the RVD-1002.
Price: $575 ppd, USA. Air shipment $10.

The silent RTTY keyboard—that's the HAL RKB-1.
The RKB-1 RTTY keyboard is loaded with features to make sending RTTY easy and fun. You get automatic letter/number shift at all four speeds, typewriter keyboard layout, and no clutter! The loop keying transistor is isolated from other keyboard circuits—wire it into any convenient point in your loop. Plus TTL logic, glass epoxy PC board, commercial grade keyswitches and more.
Price: $250 Assembled, ppd USA. Air shipment $5.

RTTY—and CW on one keyboard! The HAL DKB-2010.
All solid-state. Transmit at data rates of 60, 66, 75 or 100 WPM at the flick of a switch. Complete alphanumeric keys, 15 punctuation marks, 3 carriage control keys, 2 shift keys, break key, 2 character function keys, a "DE-call sign" key, even a "Quick brown fox..." test key.
The DKB-2010 is equally versatile in the CW mode, with complete alphanumeric and punctuation keys, speeds from 8-60 WPM, and a "DE-call sign" key. The DKB-2010 includes a three-character buffer operational in either the RTTY or CW mode. Optional 64 or 128 key buffer also available.
Price: $425 Assembled, $325 Kit, ppd USA. 64 key buffer $100, 128 key buffer $150. Air shipment $10.

Commercial quality on an amateur's budget—the HAL ST-6 TU
Every amateur who knows his RTTY respects the ST-6 terminal as being the best. Autostart operation, an antispase feature and switch selection of 650 and 170 Hz shifts are standard. Circuitry is state-of-the-art, including DIP IC's on plug-in PC cards. Filters and discriminators are designed for standard RTTY tones. A 425 Hz shift discriminator is an option which allows superior reception when copying commercial press transmissions. Another option is the AK-1 audio frequency shift keyer for input to an SSB transmitter. The ST-6 and its options are available in assembled or kit form. Cabinet not included in kit.
Price: ST-6 $310 Assembled, $147.50 Kit, ppd USA. 425 Hz Discriminator $40 Assembled, $29 Kit, ppd USA. AK-1 AFSK $40 Assembled, $29 Kit, ppd USA. Air shipment: Assembled ST-6 with any or all options $10, ST-6 Kit $4, 425 Hz Kit $1, AK-1 Kit $1.

HAL Communications Corp.
Box 365, Urbana, Illinois 61801
Enclosed is $______ for: RVD-1002 RKB-1 DKB-2010 ST-6
Please specify □ Assembled □ Kit □ Options________
Please send me more information on the following HAL products
□ RVD-1002 □ RKB-1 □ DKB-2010 □ ST-6
□ Complete HAL catalog

Name__________________________ Address__________________________ Call Sign__________
City/State/Zip__________________________ Illinois residents add 5% sales tax.
How to win the fist fight... with CW equipment from HAL.

The economical HAL 1550 keyer.
The easy-to-use 1550 keyer is your answer if you're looking for an electronic keyer that lets you send accurate CW effortlessly. Send from 8 to 60 WPM with conventional, iambic, and dot memory operation. Operates with dual or single lever keys. The optional 1550/ID automatically sends "DE" followed by your station call. For fast, accurate CW, order the HAL 1550/ID or 1550 today.
Price: 1550/ID, $95; 1550, $75; ppd USA. Air shipment, add $3.

Send perfect CW every time with the MKB-1.
A complete Morse keyboard. Code speed variable from 10-60 WPM with variable dot-to-space ratio (weight). All solid-state, featuring computer-grade components. Complete alphanumeric and punctuation keys, plus an optional "DE-call sign" key factory programmed for you. Includes built-in speaker/oscillator monitor.

ID-1A repeater identifier.
Commercial quality, low price.
The HAL ID-1A brings the radio amateur a commercial-quality repeater identifier that complies with FCC ID requirements. It has a unique read-only-memory that you can easily reprogram yourself. Capacity of the ROM is 38 dots, dashes and spaces. TTL IC's assure immunity from noise and temperature. ID intervals available: 3, 6, 12 or 24 min. Specify call.
Price: $115, ppd USA. Air shipment, $3.

CW—and RTTY on one keyboard! The HAL DKB-2010.
All solid-state. Type out CW at 8-60 WPM. Adjustable dot-to-space ratio (weight). Complete alphanumeric keys, plus 11 punctuation marks. Five standard two-character keys, 2 shift keys, break-for-tuning key, 2 three-character function keys, and a "DE-call sign" key. We'll program your call right into the DKB-2010. Plus complete RTTY capabilities. Built-in three-character buffer. Optional 64 or 128 key buffer also available.
Price: $425 Assembled, $325 Kit, ppd USA. 64 key buffer $100, 128 key buffer $150. Air shipment, $10.

HAL Communications Corp.
Box 365, Urbana, Illinois 61801
Telephone: (217) 359-7373

Enclosed is $____ for: [] DKB-2010 [] MKB-1 [] 1550 [] ID-1A
Please specify [] Assembled [] Kit [] Options
Please send me more information on the following HAL products...
[] DKB-2010 [] MKB-1 [] 1550/1550 ID [] ID-1A
[] Complete HAL catalog

Name_________________________Address_________________________Call Sign_________________________
City/State/Zip______________________
Illinois residents add 5% sales tax.

More Details? CHECK-OFF Page 94
The "STANDARD" by Heights
Light, permanently beautiful ALUMINUM towers

THE MOST IMPORTANT FEATURE OF YOUR ANTENNA IS PUTTING IT UP WHERE IT CAN DO WHAT YOU EXPECT.

RELIABLE DX — SIGNALS EARLIEST IN AND LAST OUT.

ALUMINUM
Self-Supporting
Easy to Assemble and Erect
All towers mounted on hinged bases
Complete Telescoping and Fold-Over Series available

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.

Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

HEIGHTS MANUFACTURING CO.
In Almont Heights Industrial Park
Almont, Michigan 48003
Advance Registration, $11.00 per person, includes:
1. Advance Registration ticket.
2. Regular Registration ticket.
3. Admission ticket to Social Hour, hosted by T. P. L. Communications and TRI-EX Tower Corp. with SAROC on Friday.
4. Admission to Exhibit Area and Technical Sessions.
5. Ladies will receive an additional ticket.
6. Admission ticket to Social Hour, hosted by Ham Radio Magazine with SAROC on Saturday.
8. Tax and Gratuity on all items listed.

Advance Registration, with midnight show, $21.00 per person:
Includes all items 1 thru 8, plus Hotel Sahara's midnight show with two drinks in the Congo Room starring Totie Fields.

Advance Registration, with dinner show, $27.42 per person:
All items 1 thru 8, plus Hotel Sahara's Dinner Show, no drinks, in the Congo Room starring Totie Fields.

Mail your SAROC Advance Registration check now to SAROC, P. O. Box 945, Boulder City, Nevada 89005, must be received before 15 December 1974.

Full refund on advance registration if written request is received in SAROC, P. O. Box 945, Boulder City, Nevada before 2 January 1975.

Special airfares via United Airlines round trip to Las Vegas, Nevada from selected cities, includes three nights accommodations, SAROC Advance Registration, Dinner Show, Tax and Gratuity. Request complete details from SAROC, P. O. Box 945, Boulder City, Nevada 89005.

Call toll free 800-634-6666 for Del Webb's Hotel Sahara accommodations, for SAROC special room rate of $15.00 per night, plus room tax, single or double occupancy, effective January 2-6, 1975.
hy-gain 2-meter antenna for hand-held transceivers
144-148 MHz

This rubber duckie is one tough antenna!

When the going gets tough, Hy-Gain's flexible 2-meter antenna is the one to have. So short, it goes where whips can't. Continuously loaded for optimum performance and completely insulated with a special vinyl coating, it won't crack or break, no matter how you bend it. Cannot be shorted out accidentally! Designed with the same care and excellence in engineering that produces our superb commercial and mobile antennas. Whether your 2-meter hand-held is one of the fine commercially available units or a beauty you built yourself, this is the antenna that can go where you go!

Available with three connector types and tuned for optimum performance:
- **Order No. 274** BNC or 'snap' fitting, fits Tempo, Wilson, Ken Product, Klegg and other popular hand-held 2-meter transceivers.
- **Order No. 275** Accepts SO-239 connector, fits Drake and Motorola.
- **Order No. 269** Male screw 5/6 x 32, fits Motorola, GE, Johnson, RCA and CommCo.

For information on the complete line of fine Hy-Gain Amateur products, see your Hy-Gain distributor or write:

Hy-Gain Electronics Corporation; 8601 Northeast Highway Six, Lincoln, NE 68507; 402/464-9151; Telex 48-6424
Branch Office and Warehouse: 6100 Sepulveda Blvd., #322, Van Nuys, CA 91401; 213/785-4532, Telex 65-1359
Distributed in Canada by Lectron Radio Sales, Ltd., 211 Hunter Street West, Peterborough, Ontario.
HERE IS A PILE OF GOODIES THAT WE THOUGHT YOU WOULD LIKE TO KNOW ABOUT . . . SOME ARE ONE OF A KIND, SO DON'T DELAY IF YOU SEE SOMETHING YOU LIKE.

RADIOs

GENERAL ELECTRIC, VOICE COMMANDER Ills. Hi band tech specials that need some work, with nicad $49.00
PT 300s . . . Lo band, 5 watt, 30-42 MHz units. "Tech Specials". Less nicad & mic. $70.00
250 WATT Lo Band Base . . . FSTR520BR, 30-40 MHz. Ideal for conversion to 10 meters $170.00

TEST EQUIPMENT

HEWLETT PACKARD, 400C AC VTVM. Calibrated $80.00
BECKMAN/BERKELEY 7570 amplifier with 7571 & 7573 converters to 220 MHz. Unchecked. $75.00
BECKMAN 5580 Reference Generator. Unchecked $75.00

ODDS & ENDS

HO3BNC NICADS . . . good condx out of code surplus 6/$10.00
HT220 NICADS . . . good used omni rapid charge units $10.00
MULTIPLE PL HEADS for Motracx, less reeds $10-$20.00
BLOWER MOTORS for T44 series bases & repeaters. Original cost $80.00+. Get a spare NOW only $5.00
PTT HANDSETS . . . mint condx, turquoise only $7.00
H23BAM AC SUPPLIES, model NPN6012A, mint condx $35.00
12VDC SUPPLY, ideal for use with T33BAT mobiles with minor mod. With print model NPN6034 $18.00
PERMAKAY FILTERS . . . good supply of wide band for Tracs $3.00
TR RELAYS . . . from 80D series radios. 12 VDC prox 60W rating at 150 MHz $4.00
P8270 REMOTE . . . Desk top 2 wire control unit $45.00
Same as above but for parts only $19.00

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.

STORE HOURS: Mon.-Thurs. 9:30-6:00, Fri. 9:30-8:00, Sat. 9:30-3:00. Closed Sun. & Holidays.
INQUIRIES WITHOUT ZIP CODE OR CALL . . . NO ANSWER

WANTED: Good used FM & test equipment. No quantity too large or small. Finders fees too.

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

More Details? CHECK-OFF Page 94

november 1974
CRYSTAL FILTERS
and DISCRIMINATORS
1 27/64" x 1 3/64" x 3/4"

10.7 MHz FILTERS
10.7 MHz DISCRIMINATORS

XF107-A 14kHz NBFM $40.60
XF107-B 16kHz NBFM $40.60
XF107-C 32kHz WBFM $40.60
XF107-D 38kHz WBFM $40.60
XF107-E 42kHz WBFM $40.60

Crystal Socket (for XM107-S04) type DG1 $1.50

CR-M-107-3 14kHz $40.60
CR-M-107-5 32kHz $40.60
CR-M-107-01 30kHz NBFM $22.10
CR-M-107-02 50kHz WBFM $22.10
XM107-S04 14kHz NBFM $18.95
XM107-02 14kHz NBFM $7.95

UHF VARACTOR MULTIPLIERS

Model MMV432 MMV1296 MMV432H MMV1296H
Frequency Range 420-459 1260-1377 420-459 1260-1377
Input MHz 140-153 420-459 140-153 420-459
Output Power at Max. i/p. 20 W. 20 W. 70 W. 35 W.
Output Power at Typical 12 W. 10 W. 35 W. 20 W.
PRICE $75.20 $85.95 High Power units to special order.

UHF VARACTOR MULTIPLIERS

Model MMV432 MMV1296 MMV432H MMV1296H
Frequency Range 420-459 1260-1377 420-459 1260-1377
Input MHz 140-153 420-459 140-153 420-459
Output Power at Max. i/p. 20 W. 20 W. 70 W. 35 W.
Output Power at Typical 12 W. 10 W. 35 W. 20 W.
PRICE $75.20 $85.95 High Power units to special order.

SPECTRUM INTERNATIONAL
BOX 1084 CONCORD MASSACHUSETTS 01742
U. S. A.

PCB KITS

RTTY SPEED CONVERTER/Drilled PCB 5 & 11 VDC $42.00
RTTY AFSK Gen. All Shifts & CW I.C. 9 VDC @ 2ma $7.25
100 kHz XTAL CALIBRATOR Less XTal 9 VDC @ 2ma $5.25
POWER SUPPLY — 28 VDC @ 650 ma output $9.85
PREAMP MICROPHONE 26 dB Gain 9 VDC @ 1ma $3.85
LIMITER PREAMP For High Z Mike 9 VDC @ 1ma $5.30
PRODUCT DETECTOR For Your Receiver 9 VDC @ 3ma $3.95
“S” METER KIT Less 1ma Meter 6.3VAC $3.25
SWR METER. Stripline. Less 200ua Meter. $3.25
WWV CONVERTER 3.5-4.0 MHz Output 9 VDC @ 5ma $7.75
Receives 6-6.5MHz Crystal
6 METER CONVERTER FET End 9 VDC @ 5ma $6.50
7-11 MHz Output. Less 43 MHz Xtal
CW KEYING MONITOR, RF Keyed, Less Spkr. 9 VDC @ 9ma $5.50
POWER SUPPLY - 9 VDC @ 50ma Output 115VAC $5.35
6 METER CASCODE PREAMP 80 VDC @ 4.5ma $5.45
Wired & Tested Less 2 ea 6CW4 Nuvistors
DRILLS, #54, 56, 58 or 60 (each) $0.50
Finest Quality for PCB’s, Made in USA Three For $1.25
EXCEPT AS NOTED ABOVE, ALL KITS ARE NEW.
100% SOLID STATE. AND COME COMPLETE WITH AN
UNDRILED G-10 PCB (PRINTED CIRCUIT BOARD) AND
ALL PCB MOUNTED COMPONENTS. KITS ARE LESS
POWER SUPPLIES, CHASSIS, AND ENCLOSURE HARD-
WARE. SEND SELF-ADDRESSED, STAMPED ENVELOPE
FOR COMPLETE DATA SHEET AND SCHEMATIC.

Satisfaction Guaranteed. Return in 30 Days
For Refund. All Kits Postpaid. Include 50c
Handling Charge. Washington Residents Add 5.3% Sales Tax.

Martex Corporation
519 S. AUSTIN, SEATTLE, WASH. 98108

R-X NOISE BRIDGE

• Learn the truth about your antenna.
• Find its resonant frequency.
• Find R and X off-resonance.
• Independent R & X dials greatly simplify
 tuning beams, arrays.
• Compact, lightweight, battery operated.
• Simple to use. Self contained.
• Broadband 1–100 MHZ.
• Free brochure on request.
• Order direct. $39.95 PPD U.S. & Canada
 (add sales tax in Calif.)

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

R X NOISE BRIDGE

• Find the truth about your antenna.
• Find its resonant frequency.
• Find R and X off-resonance.
• Independent R & X dials greatly simplify
 tuning beams, arrays.
• Compact, lightweight, battery operated.
• Simple to use. Self contained.
• Broadband 1–100 MHz.
• Free brochure on request.
• Order direct. $39.95 PPD U.S. & Canada
 (add sales tax in Calif.)

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

More Details? CHECK-OFF Page 94
Come Face to Face with the facts...

IC-21A . . . 24 channel capability, with 7 channels supplied. It's MOSFET front end provides better than 0.4uv sensitivity at 20 db quieting. 5 HELICAL FILTERS virtually eliminate intermodulation. Built in AC and DC power supplies. Modular construction, of course. Many other features make the IC-21 a great two meter transceiver. The IC-21A is capable of using our new digital VFO.

...and choose ICOM

IC-22 . . . 22 channel capacity, with 5 supplied. Solid state T-R switching, and an extra large speaker. All the great quality features that label it as one of the truly fine ICOM transceivers. 10/1 watt power saving option. Trimmer caps on all 22 channels for both transmit and receive, plus a built in discriminator jack to let you get on and stay on frequency.

The IC-3PA is a regulated DC power supply for all the INOUUE mobile transceivers. Use it with your IC-230 for base operation. It's completely regulated and gives you an indication of it's operating condition: normal, excessive current, or if the protection circuit is working. These are shown through the use of eye catching indicator lamps. There is also a built in speaker in the cabinet.

Distributed by

More Details? CHECK-OFF Page 94
Model PD 301 is a 300 MHz prescaler designed to extend the range of your counter 10 times. This prescaler has a built-in preamp with a sensitivity of better than 50 mv at 150 MHz, 100 mv at 260 MHz, and 175 mv at 300 MHz. The 95H90 scaler is rated at typical 320 MHz. To ensure enough drive for all counters, a post amp. was built-in.

The prescaler has a self contained regulated power supply. The PD 301 is supplied without power supply if desired (input 50 Ohms) (output Hi Z). The PD 301 has been tested on the following counters: Heath Kit 1B101, Heath Scientific 105, Monsanto 105A, Miida, Regency, Beckman, Hewlett Packard 524B, and many home built. In short to this date we do not know of any counter that the PD 301 has failed to work well with. All prescalers are shipped in a 4” x 4” x 1½” cabinet all wired and tested.

PD 301 Kit With Power Supply $43.50
PD 301 With Power Supply $55.50
PD 301 Without Power Supply $50.50

Include $1.50 to cover postage and insurance.
Shipped Same Day Order Received

K-ENTERPRISES
1401 N. Tucker Shawnee, Okla. 74801

RIGHT ON FREQUENCY!

DIGITAL DIAL MODEL 22
Interchangeable input module to match your present or next rig.

AVAILABLE FOR VFO'S IN:
Swan • Kenwood • Collins
Heathkit • Hallicrafter
Galaxy • Drake – others.

MODEL 22K (KIT) $135.95
MODEL 22W (WIRED) $169.95

ORDER DIRECT OR WRITE FOR BROCHURE AND NAME OF NEAREST DEALER.

PHONE: (814) 432-3647
BOX 185-A • FRANKLIN, PA. 16323

For
FREQ.
STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us.

CRYSTAL SPECIALS
2-METER FM for most Transceivers ea. $3.75
144-148 MHz – $0.025

Frequency Standards
100 KHz (HC 13/U) 4.50
1000 KHz (HC 6/U) 4.50
Almost all CB Sets, Tr. or Rec.
(CB Synthesizer Crystal on request) 2.50
Any Amateur Band in FT-243 1.50
(80-meter. $3.00 - 160-meter not avail.) 4 for $5.00

For first class mail, add 20¢ per crystal. For Airmail, add 25¢. Send check or money order. No dealers, please.

Division of Bob Whan
& Son Electronics, Inc.
2400 Crystal Drive
Ft. Myers, Florida
33901

All Phones
(813) 936-2397

Send 10¢ for new catalog with 12 oscillator circuits and lists of frequencies in stock.
COOL 30-30 V - 2.5 AMP SHIELDED TRANSFORMER - NEW - AMERICAN MADE YES 3 pound with 11/4 deep core, terminal and bell mount. 2 1/4" w. x 3 3/4" h. x 3 1/4" deep, with 6.3 V - 1A winding. $4.85 ppd.

NEW - IMPORTED
MINI-METERS -
500-50 μA, 1" square, 1/2" deep. Center zero plastic body fits 1/2" dia. or 3/4" x 1/4" opening. We believe this can be rear lighted. Ideal for tuning null. $1.25 ppd.

NEW - UNUSED
ORGAN MFR. OVERRUN
AUDIO AMPLIFIER - Med. Power 4 1/4" x 6"
P.C. PLUG-IN ASSEMBLY
Uses 4 amp-70V Complimentary pair output transistors with 2nd set as drivers. 2 full wave power supply sections — need only 26 and 5V AC and signal. Complete board/untested $4.80 ppd.

63 Components Tested $5.75 ppd.

INTEGRATED CIRCUITS
7400 33¢ ea. 741 Op Amp 55¢ ea.
7473 60¢ ea. 747 Dual Op Amp $1.25 ea.
7475 90¢ ea. 723 Regulator $1.00 ea.

UNPOTTED TOROIDS - All toroids are center tapped, 884MHY
Price is a low 5 for $2.75 ppd

METER PROTECTOR
Protect that expensive meter. Our proven, tested, guaranteed meter protector will protect your meter movement against 100% overload when installed according to instructions. Price: 75¢ each or 4 for $2.50 ppd.

PRINTED CIRCUIT BOARD MATERIAL - ALL G10 — Direct from the factory mfg. by Westinghouse. All board is 1/16" with 2 oz. copper. 3" x 3" - 45¢
3" x 6" - 85¢
6" x 9" - $1.75
12" x 12" - $6.00

All ppd. U.S.A.

VERTICAL MOUNT PC BOARD POTENTIOMETERS
American made (CRL) high quality pots. Available in the following sizes: 25,000 ohms, 50,000 ohms, 100,000 ohms.
Price is $1.00 ppd.

3 inch 4 ohm VC Square frame with 4 mounting holes. $1.20 each ppd.

PL-55 TYPE PHONE JACKS
High quality American made jacks. 1/2" inch mounting with hex nut. Extends 1 1/4 behind the panel.
Price: 50¢ each or 3 for $1.25 ppd.

ILLUMINATED ROCKER SWITCH
American made UL approved.
Ratings: 125 Volt AC 3 Amp
125 Volt DC .5 Amp
DPDT with a 6 volt illuminating bulb. Your choice of color. Red or White.
Price is 80¢ each or buy 3 for $2.25 ppd. USA

9 PIN SOCKET - SNAP-IN MINIATURE for P.C. Board Mtg. 6 for $1.00 ppd.

ALUMINUM BATTERY BOX
American made, high quality. Holds two type 'C' cells. All terminals insulated.
55¢ each ppd.

ALUMINUM HEAT SINK
Very nice American made heat sink. 1/16 inch thick and approx. dimensions are 1 1/4" x 1/4" high with an 1/8 inch hole in the center. Price is a low 35¢ each or 3 for $1.00 ppd.

RED NYLON CABLE TIES
BALL-BEAD TYPE - 1/4" LONG
Price is $70 for $1.00 ppd.

HIGHEST QUALITY, AMERICAN MADE
POWER CORD
75¢ Each or 3 For $2.00 ppd.

Transformer — 115 Volt Primary — 12 Volt 1.2 Amp Secondary
Price $2.45 ppd.

JUST ARRIVED — Transformer, 115 VAC primary. 18 volt, 10 amp. ccs or 7 amp intermittent duty secondary $6.00 ea. ppd.

General Purpose Germanium Diodes
Similar to 1N34a etc. 16 for $1.00 ppd. All Cathode banded. 100 for $5.00 ppd. Full leads. 1000 for $40.00 ppd.

Transformer — American Made — Fully shielded. 115 V Primary Sec. — 24-0-24 @ 1 amp with tap at 6.3 volt for pilot light.
Price — A low $2.90 each ppd.

Power Transformer, 115 Volt AC Primary. Secondary #1: 30-0-32 Volt @ 1 Amp. Secondary #2: 6.3 Volts. Low Current For Pilot Lights. Size 2 1/2" x 2 1/2 x 1 "
Price: $2.50 Each ppd.

6.3 Volt 1 Amp Transformer. Fully Shielded.
$1.60 Each ppd.

SEND STAMP FOR BARGAIN LIST
Pa. residents add 6% State sales tax
ALL ITEMS PPD. USA
Canadian orders for less than $5.00 add $1.00 to cover additional postage costs.

m. weinschenker
K 3DPJ BOX 353 - IRWIN, PA. 15642

More Details? CHECK--OFF Page 94
NOW! BUY DIRECT

WHAT DOES THIS MEAN?

It means that GENAVE'S outstanding line of Amateur radios is now available to you at new, inflation-beating prices. A glance at the new prices confirms that the dealer's discount has been entirely eliminated, to your benefit. The same fine radios that you've seen in his shop may now be ordered on a Factory-Direct basis. You pocket the savings. Warranty policies remain the same: if your new GTX fails within three months of purchase, send it back. We'll fix it or replace it, fast.

Order TODAY—Orders will be processed as they are received!

<table>
<thead>
<tr>
<th>Standard crystal frequencies in stock @ $3.75 each:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4 Meter</td>
</tr>
<tr>
<td>TX</td>
</tr>
<tr>
<td>222.30</td>
</tr>
<tr>
<td>222.34</td>
</tr>
<tr>
<td>222.38</td>
</tr>
<tr>
<td>223.14</td>
</tr>
<tr>
<td>223.26</td>
</tr>
<tr>
<td>223.30</td>
</tr>
<tr>
<td>223.34</td>
</tr>
<tr>
<td>223.50</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Contact factory for prices on other crystal frequencies.

Made In U.S.A.

®

USE THIS HANDY ORDER FORM TO HELP YOURSELF TO GIANT SAVINGS!

General Aviation Electronics, Inc., 4141 Kingman Drive, Indianapolis, Indiana 46226—Area 317-546-1111

72 November 1974

More Details? CHECK—OFF Page 94
for GIANT SAVINGS!

Look at These UNBEATABLE PRICES!

GTX-600 6-Meter FM
100 channels, 35 watts
WAS $309.95
NOW $219.95
(Incl. 52.525 MHz)

GTX-200 2-Meter FM
100 channels, 30 watts
WAS $299.95
NOW $199.95
(Incl. 146.94 MHz)

GTX-100 1½-Meter FM
100 channels, 12 watts
WAS $309.95
NOW $219.95
(Incl. 223.5 MHz)

GTX-10 2-Meter FM
10 channels, 10 watts
WAS $299.95
NOW $169.95
(Incl. 146.94 MHz)

CLIP OUT AND ORDER NOW!

Genave
4141 Kingman Dr., Indianapolis, IN 46226

HEY, GENAVE! Thanks for the nice prices! Please send me:

☐ GTX-600 @ $219.95 $
☐ GTX-200 @ $199.95 $
☐ GTX-100 @ $219.95 $
☐ GTX-2 @ $169.95 $
☐ GTX-10 @ $169.95 $
☐ Lambda/30 2-M Base Antenna @ $59.95 $
☐ Lambda/6 2-M Trunk Antenna @ $29.95 $
☐ TE-1 Tone Encoder Pad @ $59.95 $
☐ PSI-9 Port. Power Package (less batteries) @ $29.95 $
☐ PS-1 AC Power Supply @ $49.95 $

and the following standard crystals @ $3.75 each:

Ind. residents add 4% sales tax:
Cal. residents add 6% sales tax:

Sub-Total $
TOTAL: $

All orders shipped post-paid within continental U.S.
For C.O.D., Include 20% Down.

NAME
ADDRESS
CITY
STATE & ZIP

Payment by:
☐ Certified Check/Money Order
☐ Personal Check
☐ C.O.D.

☐ 20% Down Payment Enclosed. Charge Balance To:
☐ BankAmericard #
☐ Master Charge #

Expired Interbank #

Prices and specifications subject to change without notice.

More Details? CHECK-OFF Page 94

November 1974
Introducing the Galaxy R-1530. A receiver of remarkable performance, the first in its class to combine true professional features and moderate cost. It adds a new dimension of performance to general coverage, monitoring, shortwave listening, commercial and military communications.

Frequency range: 0.1 to 30 MHz continuous (.01 to .1 with reduced sensitivity) • Sensitivity: 0.25 microvolts for 10 db signal plus noise to noise ratio SSB • Intermodulation Distortion: 3rd order suppressed more than 70 db • Front-End Overload: .1 volt for 10% distortion (On Signal)

For prices and information, contact your local Hy-Gain distributor or write Hy-Gain.
Space age communication equipment demands a crystal that meets all standards of technical advancement. Crystals that were acceptable some years ago do not meet present day specifications. As a general rule, your crystal must be selected from the best quartz... (no throw off cuts). Tight tolerances demand selected angles of cut. The x-ray is important in making this selection. The crystal should be preaged with stress cycling. It should be checked for frequency change vs temperature change. It must be checked for optimum spurious response. It should be calibrated to frequency with the correct oscillator. International Crystals are manufactured to meet today's high accuracy requirements. That's why we guarantee all International crystals against defective materials and workmanship for an unlimited time when used in equipment for which they were specifically made.

WRITE FOR CATALOG

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 NORTH LEE
OKLAHOMA CITY, OKLA. 73102

november 1974

More Details? CHECK—OFF Page 94
NEW! Location at ERICKSON...

SRC-146A SPECIAL WITH
- Charger
- "Stubby" antenna
- Leather case
- Ni-Cads
- 94/94, 34/94 and one channel of your choice

$369 List
- 50 Package Discount
$319 Prepaid - Cashier’s Check or M.O

SYNTHESIZED! Inoue’s New

IC-230
- 162+ channels, simplex or offset (600 kHz)
- All modular construction
- Super hot MOSFET/helical .4µV receiver

AVAILABLE NOW!... only $489.00

TEMPO POWER AMPS
- up to 135 W OUT
- with 1 to 25 w drive from mobile, base or HT...

 Solid State Microstrip Circuit

<table>
<thead>
<tr>
<th>MODEL</th>
<th>POWER (in watts)</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7D09</td>
<td>10W-120W</td>
<td>$229.00</td>
</tr>
<tr>
<td>7D09</td>
<td>1W-120W</td>
<td>$199.00</td>
</tr>
<tr>
<td>8S02</td>
<td>1W-120W</td>
<td>$199.00</td>
</tr>
<tr>
<td>8S02A</td>
<td>1W-120W</td>
<td>$195.00</td>
</tr>
<tr>
<td>8S02A</td>
<td>1W-120W</td>
<td>$110.00</td>
</tr>
<tr>
<td>8S02A</td>
<td>1W-120W</td>
<td>$110.00</td>
</tr>
<tr>
<td>8S02A</td>
<td>1W-120W</td>
<td>$105.00</td>
</tr>
<tr>
<td>8S02A</td>
<td>1W-120W</td>
<td>$3.00</td>
</tr>
<tr>
<td>8S02A</td>
<td>1W-120W</td>
<td>$3.00</td>
</tr>
</tbody>
</table>

ERICKSON COMMUNICATIONS
4135 Main Street (New Location)
Skokie, IL 60076 (312) 677-2161
Hours: 9-4:30 M-S; 6-30-9 M, Th, F

LOW PRICES ON POPULAR COMPONENTS
IF FILTERS
- Monolithic crystal filters at 10.7 and 16.9 MHz
- Ceramic filters at 455 kHz

SEMICONDUCITORS
- VHF power transistors by CTC-Varian
- J and MOS FETS
- Linear ICs — AM/FM IF, Audio PA
- Bipolar — RF and AF popular types

INDUCTORS
- Molded chokes
- Coil forms — with adjustable cores

CAPACITORS
- Popular variable types

QUALITY COMPONENTS
- No seconds or surplus
- Name brands — fully guaranteed
- Spec sheets on request

GREAT PRICES
- Price breaks at low quantities
- Prices below large mail-order houses

WRITE FOR CATALOG 173
AMTECH, INC.
P. O. BOX 624, MARION, IOWA 52302
(319) 377-7927 or (319) 377-2638

YOU ASKED FOR IT!

ECM-5B FM Modulation Meter
- Only $99.95

ECM Corporation
412 North Weemsbach Ave.
Evansville, Indiana 47711
812-476-2121

VHF/UHF CONVERTERS
- Ten meters through 432 MHz. A post card will bring our full 1974 Catalog.

JANEL laboratories
BOX 112 SUCCASUNNA, NJ 07876
Telephone 201 584 6521

ALL-BAND ANTENNA CONNECTOR

BUDWIG MFG. CO., P. O. Box 97H, Ramona, Calif. 92065

More Details? CHECK-OFF Page 94
APOLLO PRODUCTS by "Village Twig"

2500X-2 Trans-Antenna Systems Matcher
KW plus 52 ohm and random wire. $149.50

<table>
<thead>
<tr>
<th>MODEL WIDTH-HEIGHT-DEPTH</th>
<th>RESALE NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 5-1/8 x 2-1/2 x 3</td>
<td>4.25</td>
</tr>
<tr>
<td>AA* 4 x 3-7/16 x 3-1/4</td>
<td>5.50</td>
</tr>
<tr>
<td>B 6-11/16 x 3-3/4 x 3-1/2</td>
<td>5.55</td>
</tr>
<tr>
<td>BB* 9 x 2-1/2 x 3-1/2</td>
<td>5.90</td>
</tr>
<tr>
<td>C 7-1/4 x 3-3/4 x 5</td>
<td>7.80</td>
</tr>
<tr>
<td>D 8 x 2-1/2 x 8"</td>
<td>9.85</td>
</tr>
<tr>
<td>E 6-1/2 x 3-15/32 x 7-1/16</td>
<td>9.25</td>
</tr>
<tr>
<td>F 7-7/8 x 4-1/2 x 10</td>
<td>11.15</td>
</tr>
<tr>
<td>G 10-1/16 x 3-5/16 x 9</td>
<td>11.15</td>
</tr>
<tr>
<td>HA 5-1/2 x 5-1/6 x 4</td>
<td>7.85</td>
</tr>
<tr>
<td>D1 Mntg. bracket set for D</td>
<td>4.00</td>
</tr>
<tr>
<td>J 5 x 3-1/4 x 5-1/4</td>
<td>8.35</td>
</tr>
<tr>
<td>K 4-1/4 x 7-1/16 x 11</td>
<td>15.00</td>
</tr>
<tr>
<td>L 11-1/4 x 6-1/4 x 12-1/4</td>
<td>22.95</td>
</tr>
<tr>
<td>M 11-1/4 x 6-1/4 x 16-1/4</td>
<td>24.40</td>
</tr>
<tr>
<td>NA 12-1/4 x 5-3/4 x 12-1/16</td>
<td>23.80</td>
</tr>
</tbody>
</table>

900X-2 Wattmeter
Measures RF in 2 ranges 25 and 500 watts. 52 Ohm input. $33.95

2100X-2
SWR Bridge
Large Meter - Sloping Panel Cabinet - Rubber Feet - Keep in Antenna Line up to 1 Kilowatt $33.95

700X-4 KW Wattmeter
Dummy Load Wattmeter for 52 Ohm input. Measures RF in 4 ranges to 1000 watts. Front panel frequency counter jack attenuated per range for frequency counter take-off, Portable $139.95

* .050 aluminum cover & chassis w/grained panel ** Mobil mounting available.

APOLLO "SHADOW BOX ENCLOSURES" are fabricated of heavy, cold rolled steel. The front panels are of 20-guage brushed chrome steel; some models are line screened and have a red Rocker DPDT switch installed with gold plated contacts and terminals. Covers are baked on Wrinkle enamel.

All cabinets are completely assembled and supplied with four rubber feet riveted in. Individually packed in a heavy-duty corrugated paper carton.

Chassis C thru M are CRS, nickle plated over copper for excellent RF conductivity.

PRODUCTION CABINETS TO YOUR SPECIFICATIONS ON SPECIAL QUOTATION; 250 PIECE MINIMUM. WRITE FOR QUOTATION.

APOLLO PRODUCTS
BOX 245 - VAUGHNSVILLE, OHIO 45893 - Phone (419) 646-3495 - Evening Phone (419) 646-3495

a NEW antenna principle

THE Little GIANT BEAM ANTENNA

only 27 inches high by 22 inches wide

A COMPLETELY NEW ANTENNA

Here is an ultra compact beam antenna which can be tuned to any frequency between 7.0 and 14.5 MHz. Weighing only 18 lbs, this antenna may not outperform a full sized beam but it sure will give you your share of DX and state-side contacts. Will handle 1 KW over a 100 kHz bandwidth.

- Fully weather proof
- Hi-Q, attenuates harmonics
- Mounts easily on TV mast
- Comes assembled & tested
- Figure 8 pattern

KITS 10-40 $74.50

LITTLE GIANT MODEL 100X1000-40

$149.50

Add $3 trans.

Other models available for 10, 15 & 20 meters

Little Giant Antenna Labs, Box 245, Vaughnsville, Ohio 45893
Subsidiary "Apollo Products" Village-Twig Co.
419-646-3495
THE SMART HAMS ARE CATCHING ON KLM PRODUCTS DO GIVE YOU THE EDGE

THE BIG STICK 9.7 dbd gain
5EL 20 mtr. mono bander
KLM 13.9-14.4-5

10 WATTS IN
140 WATTS OUT
2 mtr Amplifier
PA 10-140B

W8KPY EME Array for 2 mtrs 23.8 dbd gain
8 KLM 16EL 2 MTR ANTENNAS (KLM144-148-16)

WRITE FOR COMPLETE CATALOG
OR
CHECK WITH KLM's GROWING LIST OF DISTINGUISHED DEALERS

GEORGIA
STEREO CITY INC.
Augusta, GA 30804

LOUISIANA
PRESTON ELECTRONICS
Houma, LA 70360

MICHIGAN
RAY LINDY
Kalamazoo, MI 49001

NEW JERSEY
MULTITONE ELECTRONICS INC.
Springfield, NJ 07081

NEW YORK
BRATY COMMUNICATIONS
Tonawanda, NY 14150

INDENT CORPORATION
New York City, NY 10022

J. H. ELECTRONICS
Babylon, NY 11704

D. B. GRIFFIN and ASSOC. LTD.
Hamburg, NY 14075

PENNSYLVANIA
HAMTRONICS
Trevose, PA 19047

OHIO
COMMUNICATIONS WORLD
Cleveland, OH 44109

CHALLENGER ELECTRONICS
Middleton, OH 45042

QUEEN CITY ELECTRONICS
Cincinnati, OH 45221

KELLY SCHEIMBERG
Dayton, OH 45424

OKLAHOMA
CALS RADIO
Tipton, OK 73570

LARRY M. DILLARD, WB5CWB
Oklahoma City, OK

OREGON
JUNIPER PHOTO ELECTRONICS
Redmond, OR 97756

TEXAS
KENNEDY ASSOCIATES
San Antonio, TX 78222

TRIMBLE ELECTRONICS
Pampa, TX 79065

J. P. ASHCRAFT
Dallas, TX 75206

FOREIGN COUNTRIES
WEST INDIES SALES CO.
San Juan, PR 00907

ELECTRONICA FERNANDEZ
Lito Rey, PR 00918

ING. HANS SCHULTZ LTDA.
San Jose, Costa Rica

OMNICON
Switzerland

GEMINI ELECTRONICS LTD.
Auckland, New Zealand

SEE SEPT. 1974, PAGE 106 FOR OTHER KLM DEALERS

KLM ELECTRONICS 408-683-4240
1600 DECKER AVENUE SAN MARTIN, CA 95046

THE SMART HAMS ARE CATCHING ON KLM PRODUCTS DO GIVE YOU THE EDGE

THE BIG STICK 9.7 dbd gain
5EL 20 mtr. mono bander
KLM 13.9-14.4-5

10 WATTS IN
140 WATTS OUT
2 mtr Amplifier
PA 10-140B

W8KPY EME Array for 2 mtrs 23.8 dbd gain
8 KLM 16EL 2 MTR ANTENNAS (KLM144-148-16)

WRITE FOR COMPLETE CATALOG
OR
CHECK WITH KLM's GROWING LIST OF DISTINGUISHED DEALERS

GEORGIA
STEREO CITY INC.
Augusta, GA 30804

LOUISIANA
PRESTON ELECTRONICS
Houma, LA 70360

MICHIGAN
RAY LINDY
Kalamazoo, MI 49001

NEW JERSEY
MULTITONE ELECTRONICS INC.
Springfield, NJ 07081

NEW YORK
BRATY COMMUNICATIONS
Tonawanda, NY 14150

INDENT CORPORATION
New York City, NY 10022

J. H. ELECTRONICS
Babylon, NY 11704

D. B. GRIFFIN and ASSOC. LTD.
Hamburg, NY 14075

PENNSYLVANIA
HAMTRONICS
Trevose, PA 19047

OHIO
COMMUNICATIONS WORLD
Cleveland, OH 44109

CHALLENGER ELECTRONICS
Middleton, OH 45042

QUEEN CITY ELECTRONICS
Cincinnati, OH 45221

KELLY SCHEIMBERG
Dayton, OH 45424

OKLAHOMA
CALS RADIO
Tipton, OK 73570

LARRY M. DILLARD, WB5CWB
Oklahoma City, OK

OREGON
JUNIPER PHOTO ELECTRONICS
Redmond, OR 97756

TEXAS
KENNEDY ASSOCIATES
San Antonio, TX 78222

TRIMBLE ELECTRONICS
Pampa, TX 79065

J. P. ASHCRAFT
Dallas, TX 75206

FOREIGN COUNTRIES
WEST INDIES SALES CO.
San Juan, PR 00907

ELECTRONICA FERNANDEZ
Lito Rey, PR 00918

ING. HANS SCHULTZ LTDA.
San Jose, Costa Rica

OMNICON
Switzerland

GEMINI ELECTRONICS LTD.
Auckland, New Zealand

SEE SEPT. 1974, PAGE 106 FOR OTHER KLM DEALERS

KLM ELECTRONICS 408-683-4240
1600 DECKER AVENUE SAN MARTIN, CA 95046
NEW

HT-144B

TWO METER FM PORTABLE

CRYSTAL SOCKETS INCLUDED!
IMPROVED TRANSMIT AUDIO!
UP TO 6 KC DEVIATION!
.35 uV SENSITIVITY OR BETTER!
.25 SQUELCH SENSITIVITY!
IMPROVED INSTRUCTION MANUAL!
F.C.C. TYPE APPROVAL PENDING!

KIT ONLY $129.95 COMPLETE less batteries

AND for a limited time only we will furnish
ONE SET OF CRYSTALS FREE!
Your choice of 94-94; 52-52; or 34-94.

IT'S AN EVEN BETTER BUY NOW!!!!!!!!!

ACCESSORIES: “Rubber Duckie” Antenna (BNC Connectors) $12.95
Nicad Battery Charger $ 4.95
Sealed 12v Nicad Battery Pack $29.95

Please include $1.00 for Shipping and Handling - N.Y.S. residents add sales tax

VHF ENGINEERING
— DIV. OF BROWNIAN ELECT. CORP. —
320 WATER ST. POB 1921 BINGHAMTON, N.Y. 13902 607-723-9574

More Details? CHECK-OFF Page 94

november 1974
Now select from the SGC Avenger One, The SG 711, or the brand new globe-spanning SGC InterContinental One.

Whether you are piloting a tanker, cruising to Tahiti, bringing back a load of fish, or towing a barge to Alaska, one of these reliable Pierre Goral-Don Stoner designed single sideband radio telephones will meet your communications needs.

Top: The Avenger One. Designed for foreign markets, the Avenger One can be installed and channelized by the purchaser. Specifications: all solid state, 12 channels between 2 and 9 MHz, 30 watts PEP, range about 600 miles.

Middle: The SG 711. The workhorse and leader in the SSB communications field, the SG 711 is designed for the middle range market. Specifications: all solid state, 11 channels between 1.6 and 9.0 MHz, 150 watts PEP, range about 1000 miles.

Bottom: The InterContinental One sets new standards for clarity of transmission and reception. A digital readout is an exclusive option. The InterContinental One is backed by a 5 year warranty. Specifications: all solid state, 36 channels between 1.6 and 18 MHz, 150 watts PEP, world-spanning range when atmospheric circuits are open.

The SGC SSB family is backed by authorized SGC Service Centers throughout the world. Even if you are on your way to Sydney, we've been there ahead of you. Authorized Service Centers in Honolulu, Papeete, Suva and Noumea, to name a few, are waiting to serve you.

World's finest SSB family.

Pierre Goral and Don Stoner have over 25 years combined experience in supplying communications requirements throughout the world. They and their factory representatives travel extensively, exploring new markets and meeting the present needs in existing markets.

Find out why SGC is the leading supplier of single sideband equipment. Ask for a demonstration today. Join the growing family of satisfied SGC customers.

SGC Inc.
13737 S.E. 26th Street
Bellevue, Wash. 98005, U.S.A.
(206) 746-6310/CABLE: SGCINC
Outstanding performance makes the difference in Hy-Gain's popular 3 element TH3Mk3 tri-band beam. Superior construction makes it the best. The Hy-Gain TH3Mk3 superior construction includes a cast aluminum, tilt head, universal boom-to-mast bracket that accommodates masts from 1¼'' to 2½''. Allows easy tilting for installation, maintenance and tuning, and provides mast feedthru for beam stacking.

Taper swaged slotted tubing on all elements. Taper swaged for larger diameter tubing at the element root where it counts, and less wind loading at the element tip. Slotted for easy adjustment and readjustment. Full circumference compression clamps at all joints are mechanically and electrically superior to self-tapping metal screws.

Extra heavy gauge machine-formed, element-to-boom brackets with plastic sleeves used only for insulation. Bracket design allows full support.

“Hy-Q” traps for each band are tuned at the factory. You can tune the antenna, using charts supplied in the manual, for optimum performance on your preferred mode, phone or CW.

Hy-Gain's exclusive Beta Match for optimum matching, balanced input on all 3 bands and DC ground to eliminate precipitation static.

For best results, use with Hy-Gain BN-86 balun is recommended.

- Up to 8 db gain.
- 20-25 db front-to-back.
- VSWR less than 1.5:1 at resonance.
- 1 KW AM, 2 KW PEP power capability.
- Turning radius...15.7'.
- Net weight...36 lbs.
- Boom length...14'.
- Longest element...27'.
- Surface area...5.1 sq. ft.
- Nominal 50 ohm input.

Other great Hy-Gain Tri-Band beams...

- TH6DXX 6-element Super Thunderbird Order No. 389
- TH3JR 3-element Thunderbird Jr. Order No. 221
- TH2Mk3 Inexpensive 2-element Order No. 390

For prices and information, contact your local Hy-Gain distributor or write Hy-Gain.

Hy-Gain Electronics Corporation, 8601 Northeast Highway Six, Lincoln, NE 68507; 402/464-9151; Telex 48-6424.
Branch Office and Warehouse: 6100 Sepulveda Blvd., #322, Van Nuys, CA 91401; 213/785-4532; Telex 65-1399.
Distributed in Canada by Lectron Radio Sales, Ltd., 211 Hunter Street West, Peterborough, Ontario.

More Details? CHECK-OFF Page 94

november 1974

81
5.95
8 WATT STEREO AUDIO AMP

The factory "snipped" most of the cables to this compact 8-watt stereo unit with aluminum enclosure plate. It's easy to use because we have all the controls marked ready to use. With power supply 115v ac, 3 controls, LEFT and RIGHT VOLUME controls for two speakers for balancing and center TONE control. With knobs 7 x 3/4 x 1/2. Hookup spec sheets.

$15.95
8-TRACK TAPE TRANSPORT

Name you unit found in the most expensive home tape players. It's a complete 8-track player/ tape transport system. BUILT-IN PREAMP just plug into any stereo amplifier and you're in business. Excellent for replacement units, or you can design your own high-quality stereo tape system. Features PROGRAM INDUCTOR, automatic or manual program change, plays your own tapes at home. WOW-FREE precision-fabricated motor, which operates on 115V ac. Requires only external 12Vdc supply, for the electronics. Write for diagrams.

$19.95
6 DIGIT KRONOS KLOCK

Electronic clock using MIN-35. Uses D cells. Money-back GUARANTEE on all items.

$29.95
8-TRACK TAPE TRANSPORT

and hook-ups both.

$9.99
JUMBO 0.6" MITY DIGIT DCM

Never before offered! Digital counting module kit using the big "M" kits. MAN-6 and 6-ALL LED readout. Same electrical specs as the MAN-1. Measures 1 x 1/2 x 1/2". Outperforms all reflective bar types. MORE BRILLIANT! Made for indoor and wide-angle viewing. Fills into standard 14-pin DIP socket. Kit includes MAN-6, right angle IC socket, edge connector, pc board, assorted resistors and capacitors, SN7475, SN7447, SN7449, Metallox sockets and board.

SCRS! TRIACS! QUADRUS! SAME PRICE! SALE!

10-Ampere Metallok Tab Plastic Units

PRV Sale

50 $.79
100 $.76
250 $.73
500 $.70
1000 $.68

Crystal Oscillator

$4.95
ULTRA BRITE XCHG. LED'S

One of Poly Paks available prices. Kit offers at full. ORDER INCREASED! Price includes 7 RED, 1 GREEN, 1 BLUE. Write for complete info.

82 November 1974 More Details? CHECK-OFF Page 94
SUNDAYS Commercial Ads 35¢ per word; non-commercial ads 10¢ per word payable in advance. No cash discounts or agency commissions allowed.

COPY No special layout or arrangements available. Material should be typed or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio can not check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue. Deadline is 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

SURPLUS TEST EQUIPMENT, VHF and microwave gear; write for bulletins. David Edsall, 2843 St. Paul, Baltimore, Md. 21216.

TELETYPEWRITER PARTS, gears, manuals, supplies, tapes, toroids, SASE list. Typeretons, Box 8873, Ft. Lauderdale, Fl. 33310. Buy parts, late machines.

QSL's, Sample catalog 20¢, N & S Print, P. O. Box 11184, Phoenix, Ariz. 85061.

STOLEN Motorola Motran VHF Transceiver, Model #4U3MSN-1100A, 12 volt, Serial #DG135W, Frisco ID. #H-616, Frequency 161.150. Contact H. E. Johnson, 7059 Marquette Avenue, St. Louis, Mo. 63139.

MANUALS for most ham gear made 1940/65, some earlier. Send SASE for specific quote. Hobby Industry, W2JJK, Box H-884, Council Bluffs, Iowa 51501.

FOR SALE: KWM-2 Plus; NCL2000; Model 19; BGP Converter; Johnson KW matchbox with SWR: R388; magazines, etc. S.A.S.E. Glenn Miller, W5DLD, 911 Enfield, Bryan, Texas 77801.

WANTED: GENERAL CLASS (or higher) hams to join 4,500 member Morse Telegraph Club. Hundreds of hams already belong. Send modest $3 annual dues (includes subscription to great slick paper newspaper "dots and Dashes") to GST A. J. Long, 520 West Schwartz Street, Salem, Ill. 62881 for membership card and assignment to nearest chapter.

DRAKE 2-B RECEIVER with matching Q multiplier. Excel. condx. $150.00. WA2JSV/7, 650 N.W. Overlook, Gresham, Ore. 97030. (503) 665-1060.

EXCLUSIVELY HAM TELETYPE 21st year, RTTY Journal, articles, news, DX, VHF, classified ads. Sample 30¢. $3.00 per year. Box 837, Royal Oak, Michigan 48068.

EQUIPMENT FOR SALE: DX-60 with HG-10 VFO, $50; KX-20 with AC-supply, $50; SX-111, $50; ARC-5 receiver, 80M, with AC-supply, $15; ARC-5 xmr, 40M, $10; Redline keyer, similar to TO-5, $20; SR-160 with AC & mobile supplies, $150. Larry Osokowski, 87 Park Ave., Humburg, N. Y. 14075.

PC's, Send large S.A.S.E. for list. Semtronics, Rt. #3, Box 1, Belleville, Ohio 43906.

HALLICRAFTERS HT-46 SSB/CW trans., $149. Radiophane mod. 44 band scanner (CRT also mod. mon.). $50. with orig. owner. P.O. Box K4M1, 2401 E. 4th St., Greenville, N. C. 27834.

NEW PARTS BARGAINS: Calrad KW SWR-relative power dualmeter unit 24VDC. $49.50 plus tax. (edit this months ad: CDE Ham-2 109.00; 749.95; Belden 8-wire祝贺 cable #8484 12ft/ft; many new Sprague capacitors, write needs; door-knobs: Sprague 500PF/20KV 1.95; CDE 001/KV 1.95; Etie padder caps 3-12PF & 8-50PF, 49¢ both; coax: RG62/U 8€/ft; RG71/U 8€/ft; RG13/B 15€/ft; Ender, Consolidated RG8 foam 8214 18€/ft. Amphenol PL259 59¢; Motorola semiconductor data series books 7.50; Rider, Tab, Radio Publications, ARRL AMECO, Callbooks; many old tubes - see this months ad; CDE Ham-2 109.00; CD44 +83.00; KWMR-2 plus 6.95; free flyers. All items new, guaranteed, priced FOB Houston. Madison Electronics, 1508 McKinney, Houston, Texas 77002. 713/244-2668. Nite: 713/497-5683.

NEED PARTS! We carry parts for R-388-390-390A-391-392-1051-5151 - Nems Clark-Racal-Pack sets - PRC-25/41-47-62-71-73-74-77. If you need a part no matter what you have. If its government that have it or can get it. Also we want to trade all aircraft communications. All ground radio communications. All plug-in modules control heads. No matter what you have, they are in stock. Good condition. FOB Houston, low price. We will buy or trade. We have R-390-390A-390A-1051-5151 Nems Clark - Racal - and new ham gear for trade. D & R Electronics, R. D. 31, Box 368, Milton, Pa. 17847, Phone 1-717-742-4604 after 6:00 P.M.

DRAKE TR-6, the Cadillac of 6 meters, with NB, AM filter, AC, MS4, mint, $615. Russell, 19680 Mountview Dr., Maple Heights, Ohio 44137.

SIGNAL ONE OWNERS, expert and prompt service by ex-Signal/Engineer. Also will purchase your unwanted radios. Call 513/783-2100. Write or call for details. Larry Pace, K21XP/7, 5717 Genematas, Tucson, Ariz. 85713.

FOR SALE: Yaesu FLDX 400 tran., 6 months old. Going transceive, $200.00, you ship. James Stafford, 2125 Chandler Ave., Fort Myers, Fla. 33901.

WANTED - USED FM 2-way radio communications equipment and test equipment. Mot, GE and RCA etc. No daggies please. CAL-COM Systems, Inc., 701-51A Kings Row, San Jose, Calif. 95112, Tel. 408/998-4444.

BRODIO LIST SERVICE - Exact reproduction, including signature. Engraved in solid brass. Send GOOD Xerox copy with $5.00 to Metal Art Graphics, 1136 Potomac Ave., Washington, D. C. 20016. Md. residents please include state sales tax.

YAESU TRANSMITTER OWNERS - Present and Prospective. Join the International Fox-Tango Club. Send business-size SASE or two SASE for specific quote. Bryan, Texas 77801.

WANTED FOR SALE: Yaesu FLDX 400 tran., 6 months old. Going transceive, $200.00, you ship. James Stafford, 2125 Chandler Ave., Fort Myers, Fla. 33901.

SWAP-N-SELL ADS FREE in TRADIO. Box 4391, Wichita Falls, Texas 76308.

MILLIONS ARC Annual Flea Market and Auction. November 22, 1974. Send card for map and details. MARC, Box 8711, Canton, OH 44711.

TELL YOUR FRIENDS about Ham Radio Magazine.
FREE IC
With Every $10 Order*

- REDUCE YOUR PROJECT COSTS
- MONEY-BACK GUARANTEE
- 24-HOUR SHIPMENT
- ALL TESTED AND GUARANTEED

• TRANSISTORS:
 NPN
 2N2363 TYPE RF Amp & OSC to 1GHz (pl. 2N918) $6.10
 2N3565 TYPE Gen. Purpose High Gain (TO 106) $6.10
 2N3691 TYPE GP Amp to 25mA and 50MHz $6.10
 2N3886 TYPE RF Pwr Amp 1W @ 100-600 MHz $1.50
 2N3901 TYPE GP Amp & Sw to 100mW and 30MHz $6.10
 2N3904 TYPE GP Amp & Sw to 100mA (TO 92) $5.10
 2N3919 TYPE RF Pwr Amp 3.5W @ 3.3MHz $3.00
 Assort. NPN GP TYPES, 2N3565, 2N3691, etc. (15) $2.00

• PNP
 2N3638 TYPE Gen. Purpose Amp & Sw $4.10
 2N4249 TYPE Low Noise Audio Amp 1µA to 50mA $4.10

• FET's:
 N CHANNEL (LOW NOISE):
 2N4116 TYPE RF Amplifier to 500 MHz (TO 72) $2.10
 2N5488 TYPE RF Amp to 450 MHz (plastic) 2N4416) $3.10
 2N5163 TYPE GP Amp & Sw (TO 106) $3.10
 2N4091 TYPE RF Amp & Switch (TO 106) $3.10
 1TE4868 TYPE Ultra Low Noise Audio Amp $2.00
 Assort. RF & GP FET's, 2N1562, 2N5486, etc. (8) $2.00

• P-CHANNEL
 2N4368 TYPE Gen. Purpose Amp & Sw (TO 106) $3.10
 M104 TYPE MOS FET (Diode protected) 0.3pF $3.00

• LINEAR IC's:
 555X Timer 1µs to 1hr, Dif. pinout from 555 (DIP) $9.00
 709 Popular OP AMP (DIP/TO 5) $3.95
 723 Voltage Regulator 3.30V @ 1250mA (DIP/TO 5) $0.75
 739 Dual Low Noise Audio Preamp/OP AMP (DIP) $1.00
 741 Freq. Compensated OP AMP (DIP/TO 5/Mini DIP) $0.45
 2556 Dual 555 Timer 1µsec to 1hr (DIP) $1.55
 LM305 Positive Voltage Regulator (TO 5) $1.25
 MCI458 Dual 741 OP AMP (Mini DIP) $0.95
 Assorted Linear 741/702/723, etc. (4) $2.00

• DIODES:
 1N914 TYPE Gen. Purpose 100V/10mA 10/$1.00
 1N3600 TYPE Hi Speed SW 75V/200mA 6/$1.00
 1N4608 TYPE GP & SW 80V/400mA 2/$1.00
 1N3833 TYPE RECTIFIER Stud Mount 400V/12A 2/$1.00
 1N4740 ZENER 4.3 Volt 400mW 3/$1.00
 1N5736 ZENER 6.2 Volt 400mW 4/$1.00
 1N5755 ZENER 7.5 Volt 400mW 4/$1.00
 1N5757 ZENER 9.1 Volt 400mW 4/$1.00
 1N5786 ZENER 10 Volt 400mW 4/$1.00
 1N965 ZENER 15 Volt 400mW 4/$1.00
 1N968 ZENER 20 Volt 400mW 4/$1.00
 D5 VARACTOR 5-50W Output @ 30-250 MHz, 7.27 pF $5.00
 F7 VARACTOR 1-3W Output @ 100-500 MHz, 5.30 pF $1.00

*MAIL NOW! With every order of $10 or more, postmarked prior to 12/31/74, FREE 739 or 749 Low Noise Dual OP AMP included — $1 VALUE.

ORDER TODAY — All items subject to prior sale and prices subject to change without notice. DATA SHEETS included with all items.

WRITE FOR FREE CATALOG offering hundreds of semiconductors not listed here. Send 10c stamp.

TERMS: All orders prepaid. We pay postage. $1.00 handling charge on orders under $10. Calif. residents add 6% sales tax.
WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.

FREE: 12 Extra crystals of your choice with the purchase of a new Regency HR-2B at $229. Send cashier's check or money order for same-day shipment. For equally good deals on Collins, Drake, Atlas, Kenwood, Standard, Clegg, Swan, Icom, Genave, Hallicrafters, Tempo, Ten-Tec, Venus, Hy-Gain, CushCraft, Mosley, and Hustler, write to Hoosier Electronics, your ham headquarters in the heart of the Midwest. Become one or our many happy and satisfied customers. Write or call today for our low quote and try our individual, personal service. Hoosier Electronics, R.R. 25, Box 403, Terre Haute, Indiana 47802. (812) 894-2397.

INSTRUCTION MANUALS — Thousands available for test equipment, military electronics. Send $1.00 (refundable first order) for listing. A service of Tucker Electronics, Box 1050, Garland, Texas 75040.

RECIPROCATING DETECTOR, write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

TRAVEL-PAK QSL KIT Converts photos, post cards to QSLs! Send call and $25 for personal sample. Samco, Box 203H, Wynantskill, N. Y. 12198.

INDIANA — The Fort Wayne Hamfest is January 19, 1975 at Shiloh Hall (1/2 mile west of Ind. 3 on Carroll Rd.). Flea market, food. Tickets are $1.50 at the door. XV's and children under 12 years free. Tables available at $1.00 for 4 ft. Talk to (213) 279-1275. See Oct. 73

BEAUTIFUL CLEAN GEAR: Central Electronics 100V HQ 170A, D104 mike & stand, Vibroplex bug, Hallicrafters SR-42 2 meter transceiver. All for $450.00. Make offer. Joseph Stroin, K1REC, 21 Ellen St., Norwalk, Conn. 06851.

CANADIANS — We carry a broad line of electronic parts, including most solid-state devices. LED's, IC's. Send for free flyer to: Ken, VE1AQJ, Dartek Electronics, Dept. H, Box 2450, Dartmouth, Nova Scotia B2W 4A5.

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. M5S 3B4.

QRP TRANSMATCH for HW7 Ten-Tec and others. Send SASE for details to Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

More Details? CHECK-OFF Page 94
NEW HOT SUGGESTED GIFT ITEM
DIGITAL CLOCK KIT
$34.95
Full 6 digit LED display
Complete with anodized alum. case. All parts and P.C. board. With complete assembly drawings. Ship wt. 1½ lbs.
SLA-1 7 SEG READOUT $11.75 EA. 6/$9.50
12 ASS'TD LED'S MOSTLY JUMBO $2.00
15 1N4007 1000V PIV 1 AMP $2.00
Orders over $10.00 p.p.d. Others add 50¢ handling & mailing.

HAL-TRONIX
P. O. BOX 1101
SOUTHGATE, MICH. 48195
(313) 285-1702

LOGIC NEWSLETTER
SAMPLE COPY $1.00
LOGIC NEWSLETTER
POB 252
WALDWICK, N.J. 07463

SUPER CRYSTAL
THE NEW DELUXE DIGITAL SYNTHESIZER!! FROM Rp

MFA-22 DUAL VERSION
Also Available MFA-2 SINGLE VERSION
- Transmit and Receive Operation: All units have both Simplex and Repeater Modes
- Accurate Frequency Control: .0005% accuracy
- Stable Low Drift Outputs: 20 Hz per degree C typical
- Full 2 Meter Band Coverage: 144.00 to 147.99 MHz. in 10KC steps
- Fast Acting Circuit: 0.15 second typical setting time
- Low Impedance (50 ohm) Outputs: Allow long cable runs for mobiles
- Low Spurious Output Level: similar to crystal output

SEND FOR FREE DETAILS
Prices MFA-22 $325.00
MFA-2 $260.00
810 DENNISON DR.
BOX 1201H
CHAMPAIGN, IL 61820

More Details? CHECK-OFF Page 94
HOME BREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Braintree, Mass. 02184.

Ham-Motor FOR SALE. Complete, used 4 months. $90. K. Teague, WBF5FMJ, Box 65, Alma, AR 72921.

QSL’S - BROWNI W3CCJ — 3035B Leigh, Allen-town, Pa. 18103. Samples with cut catalog 35¢.

FOR SALE: Hallcrafters FPM-300, 1 yr. old. $300. Kravat, 103C Wellington, West Palm Beach, Fl. 33401. (689-0394).

NOW PAYING $2000.00 and up for ARC-94/618T. $1200.00 and up for ARC-51BX. $1500.00 and up for 490T-1 antenna couplers. We also need these control boxes... C-6287/ARC-51BX. C-4676/ARC-51DX. C-7146. We also need R-105A transceivers, RT-662/GRC-106 transceivers. We buy all late aircraft and ground radio equipment. Also pack radios. We are buyers not talkers. Bring your equipment in, you are paid on the spot. Ship it in, you are paid within 24 hours. We pay all shipping charges. If you want the best price for your equipment, call us. Call collect if you have, and want to sell or trade. We also sell. What do you need? DX. R. Electronic's, P.O. Box 56, Milton, Pa. 17847. Phone: 717-742-4604 - 9:00 a.m.-9:00 p.m.

TELETEYPE EQUIPMENT FOR SALE for beginners and experienced operators. Interested, call us. Call collect if you have, and want to sell or trade. We also sell. What do you need? DX. R. Electronics, R.D. 1, Box 56. Milton, Pa. 17847. Phone: 717-742-4604 - 9:00 a.m.-9:00 p.m.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Estes Engineering, 543-H West 184th, Gardena, California 90248.

FOR SALE. Lafayette HA460 Six meter transceiver, complete, mint condition. Write W4FOM, 23012 Virginia Ave., North Olmsted, Ohio 44070.

PERSONAL ATTENTION plus the best cash deal anywhere. We receive at Queen City Electronics in the heart of the midwest. Queen City carries all major brands including Drake, Tempo, Korda, Whistler, Venco, Standards, Brook-lyn, Geneve ... Write or phone us for your equipment needs. Queen City Electronics, Inc., 7404 Hamilton Avenue, Cincinnati, Ohio 45231. (513) 267-1577.

BAD NEWS - SELL TRADE. Write for monthly mailer, give name, address, call letters. Complete stock of major brands new and reconditioned equipment. Call us for best deals. We buy Collins, Drake, Swan, etc. SSB & FM. Associated Radio, 933 Center, Overland Park, Kansas 66204. 913-381-5901.

YOUR AD belongs here too. Commercial ads 35¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.

It's Still Summer At CFP

We are happy to extend SPECIAL COMMUNICATIONS
Special Summer Sale in November

ALL 12 CHANNELS CRYSTALLED, FREE
in every Standard 826MA sold this month
(A $104 Saving)

Write for our special cash price!

CFP ENTERPRISES
866 RIDGE ROAD, LANSING, N. Y. 14882
24 HOUR PHONE 607-533-4297

Send SASE for monthly listing of used equipment and bargain goodies.

QUALITY • THE SIZE • THE FEATURES • CHECK CTSS — MINI ENCODER

• COMMUNICATION PRODUCTS & ENGINEERING
P. O. Box 261 • Milford, Michigan 48042

RECEIVER-TRANSMITTER

R-392/URR RECEIVER: High performance, rugged, 32 bands; 500 kHz thru 32 MHz continuous. Mechanical counter type. Digital readout to 300 Hz. Separate Megacycles and Kilocycles tuning. Triple conversion lower eight bands, double conversion all others. Built in crystal calibrator, squelch, RF gain, audio gain, antenna tuning. BFO, variable selectivity 8, 4, 2 kHz. Requires 22-30 VDC 3 Amps. Size: 11½ x 14½ x 12". Wt.: 52 lbs.; Shpg. Wt.: 65 lbs.

USED, REPAIRABLE $125.00 USED, CHECKED $195.00

T-195/GRC-19 TRANSMITTER: 1.5-20 MHz. 10 Watts with 100kHz. Manual or automatic tuning. CW, voice, or FSK operation. Power output: 50 Ohm antenna: 1.5-12 MHz 100 watts. 12-16 MHz 90 watts. 16-20 MHz 50 watts. Input voltage required: 22-30 VDC 45 Amps maximum, standby 9 amps. Size: 11½ x 14½ x 22". Wt.: 122 lbs.; Shpg. Wt.: 150 lbs. Price: Used - Complete Repairable: $89.50

MT-851 MOUNTING BASE for R-392 & T-195. Shpg. Wt.: 60 lbs. $10.00

All Prices FOB, Lima, Oh. Send for Free Catalog. Dept. HR

FAIR RADIO SALES
1016 E. EUREKA • Box 1105 • LIMA, OHIO • 45802

More Details? CHECK-OFF Page 94

november 1974
The all new T doc manual for electronics experimenters and hobbyists ---

More than two years in the making, T doc has gathered the most practical and usable data from industry, the U. S. Patent Office, DOD, NASA, NTIS (National Technical Information Service) and others, jam-packed with all the data needed by the hobby experimenter at the bench. From theory refresher to applications diagrams, device characteristics, tables and formulas, charts and graphs -- hundreds upon hundreds of illustrations.

A High-Density Modular Document
No wasted space or words. Separate sections are removable in loose-leaf fashion -- books within a book -- mounted in a rugged binder, big enough to hold other T doc publications -- or your own notes.

Just by way of example, the section on hand soldering was boiled-down from the practices of the American Welding Society -- Committee on Soldering and Brazing, NASA, USA, solder manufacturers, the Bell Telephone System and others. The section contains everything you need to know about solder, fluxes, soldering tools and techniques.

There are over 100,000 words covering theory and application of semiconductor devices -- diodes, transistors, the SCR/TRIAC, digital and linear integrated circuits, operational amplifiers, voltage regulators, counters and decoders, and much, much more. Sections also treat the vacuum tube and CRT, capacitors and electrostatic devices, relays and switches, electromechanical devices and mechanical movements, energy sources, cables and wire, etc.

Update Without Annual Replacement
No need to buy a whole new book every year to keep abreast of information in the field; the "book within a book" style permits you to update only as needed.

There has never been another manual like it. That's why we undertook to put it together! Once you have had a chance to put the manual to use, you'll start enjoying electronics as a hobby, with fewer unfinished projects that could have been completed had there not been an information gap!

Electronics Bench Manual
Introductory Price: $17.95 Postpaid In U.S.A.

Send check or money order marked "EBM" with your name and address to:

TECHNICAL DOCUMENTATION
BOX 340
CENTREVILLE, VA 22020

703-830-2535

Virginia residents please add 4% sales tax.
THE ULTRA-BAL 2000

NOW - An extremely rugged, weather-proof BALUN!
• Full 2 KW, 3-30 Mhz, Inter-latching
• Special Teflon insulation, May be used with tuned lines and antennas.
• With dipole insulator and hang-up hook.

ONLY $9.95 per unit (state ratio)

K.E. Electronics
Box 1279, Tustin Calif. 92680

RTTY VIDEO DISPLAY UNIT

LELAND ASSOCIATES
18704 GLASTONBURY RD.
DETROIT, Ml.
48219

YOUR BEST BET FOR FM!

• PREAMP KITS $6, WIRED $10 —
 FREQ. FROM 20 TO 230 MHZ
• LED SCANNER KITS $10
• FM RCVR KITS FOR 6 & 2M AND
 COMMERCIAL FREQ. $49.95
• COMPONENTS FOR VHF
 PROJECTS — SEND SASE FOR LITERATURE

HAMTRONICS, INC.
182 BELMONT RD. ROCHESTER, N. Y. 14612

VOLU-PAK

VOLTAGE REGULATORS TO-3

1 AMP NEGATIVE ea. 10 pak
LM 520 5V $3.95 $37.50
LM 320 2V $1.25 $12.50
LM 320 3.3V $1.25 $12.50
LM 320 5V $1.25 $12.50
LM 320 7.5V $1.50 $15.00
LM 320 15V $1.50 $15.00

1 AMP POSITIVE ea. 10 pak
LM 520 5V $4.50 $45.00
LM 320 12V $5.00 $50.00
LM 320 15V $5.00 $50.00
LM 320 30V $7.50 $75.00
LM 320 18V $9.50 $95.00
LM 320 24V $11.00 $110.00
LM 320 28V $11.00 $110.00
LM 320 36V $12.00 $120.00

CALCULATOR CHIP A1030

North American Rockwell A1030 4 function &
percent on-chip clock. 8 digit floating or fixed
DP. Full memory and constant 42 pin staggered
lead DIP (unbent). ea. $4.95 w/data

74S206 SCHOTTKY BIPOLAR
74S206 Schottky Bipolar 256 x 1 Random Access Memory.
each. $3.49

10 AMP FULL WAVE BRIDGE Rectifier

10 AMP Full Wave Bridge Rectifier 100 PRW
Motorola MDA 762-2. ea. $2.55

10 pk $20.00

10 AMP POSITIVE ea. 10 pak
LM 520 30V $12.50 $125.00

OPTO ISOLATOR

Monotriode MCT 26 6 pin Dip

2N3055 NPN TRANSISTOR

2N3055 Transistor (pnp) FD-115W, VCE-60V; HFE-
50, FT-30K, Case TO-3. ea. $1.15

10 for $9.95

DIP RC NETWORKS

14 and 16 pin IC packages containing precision resistors
and capacitors. NO SCHEMATICS AVAILABLE.
Sample indicates most contain 10 to 15R and 1 or 2C.
Assortment of 8, $11.00

All Merchandise is new unused surplus and is sold on a
money back guarantee.

Five dollar minimum order. Free first class postage on all
orders. California Residents please add sales tax.

Send stamp for free catalog. Write to:

VALU-PAK
box AF
Carmichael, Ca.
95608

DEALER INQUIRY INVITED

B-104 ANTENNA BUMPER MOUNT
NON-MARRING, adjustable to most bumper
angles w/no damage to car, holds antenna secure
w/no spring required. E-Z installation, tested to
100 mph $9.00

TM-3 TRUCK & CAMPER ANTENNA MOUNT
E-Z installation under hood, on top of camper,
available in black or chrome finish.

Chrome $9.00
Black $7.50

LITE-BOARD

A 5 in. x 6 in. unbreakable writing surface that
plugs into 12 volt cigarette lighter socket pro-
viding indirect illumination at night. Ideal for
mini-logs and notes $6.00

LARGER SIZES MADE TO ORDER

All CHM products are guaranteed 100% for work-
manship and materials. If it works, tell others!
If it doesn’t, send it back and we’ll fix or
replace.

Send check or M.O. to:

CHM products
p.o. box 6193
san bernardino, california 92412

Calif. res. add 6% sales tax

More Details? CHECK-OFF Page 94
ANNOUNCING

THE NEW MODEL HCV-70FSVFK SLOW SCAN TO FAST SCAN VIEWFINDER MODIFICATION KIT FOR ROBOT® 70 & 70A SLOW SCAN TELEVISION MONITORS

NOW HERE AT LAST - From the Designer of the TEEC HCV-1B SSTV Camera and the HCV-2A SSTV Monitor and other Slow Scan TV Equipment (WB4HCV) comes another quality SSTV product...

This kit, when properly installed in the ROBOT® Model 70 & 70A SSTV Monitor, will allow Fast Scan (Sampling rate of Model 80 & 80A or the HCV-1B Camera) viewing on the same CRT display you now watch slow scan on, by a simple flip of a front panel switch. Viewing the scene in real time allows for quick, easy set-up of scene. Allows for razor sharp focus. Displays movement and a sharper, more uniform picture. Displays movement and a brighter than the normal p-7 slow scan picture. Allows slow scan to be transmitted while viewing the picture on fast scan.

Easy to assemble kit of parts and full step by step instructions. Nothing else to buy. Save $195 by ordering your HCV-70FSVFK Fast Scan Viewfinder Kit today, instead of a separate monitor to take up more space. You will not only save $195 but you will have the advantage of having both monitoring features in a single cabinet. Picture quality similar to model 60 & 61 viewfinders.

Note: Should be attempted by experienced kit builders only. Can be supplied factory installed for $30.00 additional plus shipping. Turn around time about 3 days after receipt of monitor at factory. Write for details.

ALLOW 2-3 WEEK DELIVERY ON ORDERS WITH PERSONAL CHECKS. 3-4 DAYS ON CERTIFIED CHECKS, MONEY ORDERS, ETC.

PRICE COMPLETE POSTPAID IN U.S.A. SORRY NO C.O.D. ORDERS $69.95

LATE BULLETIN — The Famous HCV-1B Camera and the HCV-2A Monitor is now scheduled to again be available by December 15, 1974. The HCV-3KB SSTV Keyboard by late January 1975. HCV-2B to have built-in fast scan viewfinder and HCV-1C to have automatic ALC (automatic light control); grey scale generator and more. Write James Thomas, WB4HCV, for full information at:

Sumner Electronics & Eng. Co. Inc.
P.O. BOX 572
HENDERSONVILLE, TENNESSEE 37075
TELEPHONE: 615 824 3235

Craig radio
IC-230 Iscom
$489.00
P. O. Box 615
Portsmouth, N.H. 03801
Phone (207) 439-0474
(603) 436-9052

CASH
AN/MRC-95, SPACE ELECTRONICS CO., 76 Brookside Drive, Upper Saddle River, N.J. 07458
(201) 327-7460

LEARN RADIO CODE
THE EASY WAY!

- No Books To Read
- No Visual Gimmicks To Distract You
- Just Listen And Learn

Based on modern psychological techniques — This course will take you beyond 13 w.p.m. in LESS THAN HALF THE TIME! Available on magnetic tape $9.95 — Cassette, $10.95

EPSILON [®] RECORDS
508 East Washington St., Arcola, Illinois 61910

tri-tek, inc.
P. O. Box 14206, Dept. H
Phoenix, AZ 85063

8038C VCO WAVEFORM GENERATOR new factory parts, full specs. 14 pin DIP $5.75, 2/$10.50
LM566CH VCO FUNCTION GENERATOR new, TO-5, specs. $4.00
MC1455 (555) PRECISION TIMER, new, mini-DIP $1.65
MM5314 CLOCK CHIP. New, full specs. $0.95
8220 MEMORY. 8 bit (4x2) content addressable memory. TTL and DTL compatible. For use in data-to-memory comparison, pattern recognition, cache memory, auto correlation, virtual memory, learning memory. New, house numbered. 16 pin DIP, specs. $6.00; 10/$45.00

VOLTAGE REGULATORS
MFC 6034. Variable to +20V, 200 MA. $1.00
MC7805, 7806, 7812, 7815, 7824, positive voltage. 1A $2.50
MC7912, 7915, Negative voltage. 1A $2.50
723G variable 2 to 72V, 300 ma. $1.00

DTL SALE. 930, 946, 962. $20.00, 10/$200.00

All orders postpaid. Minimum $5 U.S., $15 foreign. Latest lists, 10¢ stamp. Please ADD INSURANCE.

90 November 1974 More Details? CHECK—OFF Page 94
Improve performance with

Get the best from your beam!

BN-86 Broad Band Ferrite Balun Couples any 52 ohm unbalanced transmission line to any 3 to 30 MHz 52 ohm balanced antenna system. Improves energy transfer to antenna and eliminates stray RF from feedline and tower. Stops coax shield currents that upset front-to-back ratios and disrupt patterns. Helps stop TVI from line radiation. Has negligible insertion feed-through loss. The frequency independent BN-86 comes complete with all hardware required for beam or doublet installation. Gives you optimum performance over all Ham bands! **Order No. 242**

- **VSWR** 1:1 when terminated with balanced 52 ohm load
- **Rated at 1 kw CW**
- **Impedance ratio 1:1 at 52 ohms**
- **SO-239 input connector**

Lightweight Center Insulator for Multi-Band Doublets

Model CI Strong, lightweight, water and weather-proof insulator molded from high impact cycolac. All hardware iridited to MIL specs. Accepts $\frac{1}{4}''$ or $\frac{3}{8}''$ coax. **Order No. 155**

Rugged End Insulators for Multi-Band Doublets

Model EI Hefty, 7-inch insulators molded from high impact cycolac. Leakage path increased to 12 inches by heavily serrated body. Available in pairs only. **Order No. 156**

For prices and information, contact your local Hy-Gain distributor or write:

Hy-Gain Electronics Corporation; 8601 Northeast Highway Six; Lincoln, NE 68507; 402/464-9151; Telex 48-6424.
Branch Office and Warehouse: 8100 Sepulveda Blvd., #322, Van Nuys, CA 91401; 213/785-4532; Telex 65-1359.
Distributed in Canada by Lectron Radio Sales, Ltd.; 211 Hunter Street West, Peterborough, Ontario.

More Details? CHECK-OFF Page 94
MOTOROLA

T51G or T51GGV, 40-50 MHz., 6 or 12 volt, 50 watts, vibrator power supply, fully narrow band, less accessories $58

T53GGD, 150-170 MHz., 6/12 volt, 50 watts, dynamotor power supply, receive wide band, less accessories $36

D43GGV-3100, 150-170 MHz., 6/12 volt, 30 watts, vibrator power supply, front mount with "private line" (less reeds), fully narrow band, with accessories $88

FMTRU41V, 150-170 MHz., 6/12 volt, 10 watts, vibrator power supply, front mount, transmit narrow band, receive wide band, with accessories $48

R.C.A.

CMFT50, 25-54 MHz., 12 volt, 50 watts, transistorized power supply, partially transistorized receiver, fully narrow band with accessories $128

CMCT30, 150-170 MHz., 12 volt, 30 watts, transistorized power supply, fully narrow band, complete with accessories $98

GREGORY ELECTRONICS CORP.
239 Rt. 46, Saddle Brook, N. J. 07662
Phone: (201) 489-9000

YOU WOULDN'T START A LOG IN MARCH

RIGHT NOW

is the time to order your

75 callbook

Don't wait until 1975 is half over. Get your new Callbooks now and have a full year of the most up-to-date QSL information available anywhere.

The new 1975 U. S. Callbook will have over 300,000 W & K listings. It will have calls, license classes, names and addresses plus the many valuable back-up charts and references you have come to expect from the Callbook.

Specialize in DX? Then you're looking for the new, larger than ever 1975 Foreign Callbook with over 225,000 calls, names and addresses of amateurs outside of the USA.

United States Callbook
All W & K Listings
$12.95

Foreign Radio
Amateur Callbook
DX Listings
$11.95

Order from your favorite electronics dealer or direct from the publisher. All direct orders add 75¢ shipping and handling per Callbook.

WRITE FOR FREE BROCHURE
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

GREGORY ELECTRONICS CORP.
239 Rt. 46, Saddle Brook, N. J. 07662
Phone: (201) 489-9000

92 November 1974

More Details? CHECK-OFF Page 94
Like everything else in these mixed-up times, the price of Ham Radio, whether by subscription or newsstand, is going to be raised.

You can SAVE by subscribing or extending your existing subscription at today’s low rates, but you must do it before the end of the year when our new rates take effect.

Remember, you can save even more with our low priced three year subscriptions where you get three years for the price of two.

More Details? CHECK-OFF Page 94
Advertisers

check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off". Place your check mark in the space between name and number. Ex: Ham Radio 234

INDEX

<table>
<thead>
<tr>
<th>Advertsers index</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV Research</td>
</tr>
<tr>
<td>Advu Electronics</td>
</tr>
<tr>
<td>AmTech</td>
</tr>
<tr>
<td>Apolo Products</td>
</tr>
<tr>
<td>Barry</td>
</tr>
<tr>
<td>Budwig Manufacturing Co.</td>
</tr>
<tr>
<td>CHM Products</td>
</tr>
<tr>
<td>CFP</td>
</tr>
<tr>
<td>Caddell Coil Corp.</td>
</tr>
<tr>
<td>Colorado Electronics</td>
</tr>
<tr>
<td>Communication Products & Engineering</td>
</tr>
<tr>
<td>Craig Radio</td>
</tr>
<tr>
<td>Curtis Elec Devices</td>
</tr>
<tr>
<td>Cush Craft</td>
</tr>
<tr>
<td>Data Signal, Inc.</td>
</tr>
<tr>
<td>Dentron Radio Co.</td>
</tr>
<tr>
<td>Dycomm</td>
</tr>
<tr>
<td>Dynamic Electronics, Inc.</td>
</tr>
<tr>
<td>ECM Corporation</td>
</tr>
<tr>
<td>Eimac, Div. of Varian Assoc.</td>
</tr>
<tr>
<td>Electronic Distributors</td>
</tr>
<tr>
<td>Epison Records</td>
</tr>
<tr>
<td>Erickson Communications</td>
</tr>
<tr>
<td>Fair Radio Sales</td>
</tr>
<tr>
<td>G & G Radio Supply Co.</td>
</tr>
<tr>
<td>General Aviation</td>
</tr>
<tr>
<td>Gray Electronics</td>
</tr>
<tr>
<td>Gregory Electronics</td>
</tr>
<tr>
<td>Hal Communications Corp.</td>
</tr>
<tr>
<td>Hal-Tronix</td>
</tr>
<tr>
<td>Hamtronics, Inc.</td>
</tr>
<tr>
<td>Ham Radio</td>
</tr>
<tr>
<td>Heath Company</td>
</tr>
<tr>
<td>Heights Manufacturing Co.</td>
</tr>
<tr>
<td>Henry Radio Stores</td>
</tr>
<tr>
<td>House of Dipoles</td>
</tr>
<tr>
<td>Hy-Gain Electronics Corp.</td>
</tr>
<tr>
<td>Icom</td>
</tr>
<tr>
<td>International Crystal Mfg. Co. Inc.</td>
</tr>
<tr>
<td>Jan Crystals</td>
</tr>
<tr>
<td>Janel Labs</td>
</tr>
<tr>
<td>K.E. Electronics</td>
</tr>
<tr>
<td>K-Enterprises</td>
</tr>
<tr>
<td>KLM Electronics</td>
</tr>
<tr>
<td>Larsen Electronics</td>
</tr>
<tr>
<td>Lelac Associates</td>
</tr>
<tr>
<td>Logic Newsletter</td>
</tr>
<tr>
<td>Madison Electronic Supply</td>
</tr>
<tr>
<td>Martex</td>
</tr>
<tr>
<td>Matrix Electronics</td>
</tr>
<tr>
<td>Palomar Engineers</td>
</tr>
<tr>
<td>Poly Paks</td>
</tr>
<tr>
<td>Porta-Pak</td>
</tr>
<tr>
<td>RMS Corporation</td>
</tr>
<tr>
<td>RP Electronics</td>
</tr>
<tr>
<td>Radio Amateur Callbook, Inc.</td>
</tr>
<tr>
<td>Raytheon Company</td>
</tr>
<tr>
<td>Raytest Electronics, Inc.</td>
</tr>
<tr>
<td>Robot Research, Inc.</td>
</tr>
<tr>
<td>SGC, Inc.</td>
</tr>
<tr>
<td>Saro</td>
</tr>
<tr>
<td>Savoy Electronics</td>
</tr>
<tr>
<td>Signal/One</td>
</tr>
<tr>
<td>Space-Security Electronics</td>
</tr>
<tr>
<td>Spectronics FM Emotronics</td>
</tr>
<tr>
<td>Spectrum International</td>
</tr>
<tr>
<td>Sumner Electronics</td>
</tr>
<tr>
<td>Swan Electronics</td>
</tr>
<tr>
<td>Technical Documentation</td>
</tr>
<tr>
<td>Tri-Tek, Inc.</td>
</tr>
<tr>
<td>Tristao</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
<tr>
<td>VHF Engineering, Div. of Browman Elec. Corp.</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly

Limit 15 inquiries per request.

November 1974

Please use before December 31, 1974
BUY OUR ANTENNA...TAKE IT OUT OF BOX...ASSEMBLE IT EASILY

IT WORKS!

No Professional Help Required!
If I (an ad man) can put one together in minutes, anyone can!
And then...

IT WORKS BEAUTIFULLY!

FM 2 METER ANTENNAS
FROM THE WORLD'S LEADING MANUFACTURER
OF VHF/UHF COMMUNICATIONS ANTENNAS

NEW FM GAIN RINGO RANGER — Get extended range with this exciting new antenna. A one eighth wave phasing stub and three half waves in phase combine to concentrate your signal at the horizon where it can do you the most good. Your present AR-2 can be extended with a simply installed RANGER KIT.

- ARX-2 100 watts 146-148 MHz
- ARX-220 100 watts 220-225 MHz
- ARX-450 100 watts 435-450 MHz

ARX-2K RANGER KIT

NEW FM MOBILE — Fiberglass 5/8 wave professional mobile antenna for roof or trunk mount. Superior strength, power handling and performance.

- AM-147T 146-175 MHz mobile

NEW 4 POLE — A four dipole gain array with mounting booms and coax harness 52 ohm feed, 360° or 180° pattern.

- AFM-4D 1000 watts 146-148 MHz
- AFM-24D 1000 watts 220-225 MHz
- AFM-44D 1000 watts 435-450 MHz

IN STOCK WITH YOUR LOCAL DISTRIBUTOR

CUSHCRAFT
CORPORATION
621 HAYWARD ST., MANCHESTER, N.H. 03103

More Details? CHECK-OFF Page 94

november 1974
Bird
We are official distributors for all Bird products
Bird Model 43 Wattmeters $100.00
2 to 30 MHz Slugs $35.00 Most VHF Slugs $32.00

C.D. Ham II Rotator
New Improved $149.95
write or call for introductory offer
8 conductor cable for HAM II or TR-44 Rotators 15¢/ft.

From Drake
Drake T-4XCD $880.00
TR-22C Transceiver $229.95
Drake TR-72, 2-meter FM transceiver, 23 channels, 1 or 10 watts output, 13.8 volts $320.00
Drake TR-4C Transceiver $599.95
Drake AC-4 Power Supply $120.00
Drake 2NT Transmitter New cond. $125.00
Drake Operational Station Console Model C-4 $395.00

IC-230 by Inoue
Completely synthesized with phase locked loop, Single Knob Control, Smart compact styling.
$489.00

Latest Inoue Power Supply: IC3PA $89.00

VENUS
SS-2, SLOW SCAN MONITOR - $349.00
SS-2K, SLOW SCAN MONITOR KIT $269.00
C1, FAST SCAN/SLOW SCAN CAMERA & CONVERTER - $469.00

BARRY has Antennas
CushCraft A-147-4 $13.50
CushCraft A-147-11 $21.95
Hustler 4 BTN Vertical Antenna $56.95
HyGain 18V 10-80 m. vertical $33.00
HyGain BN86 Deluxe Balun $15.95
HyGain 18 AVT/WE 10-80 meters vertical $57.00
Newtrons CGT-144 5.2 dB gain. Trunk lid mount $39.95
Gold Line Single Pole, 5 position coaxial switch, wall bracket or panel mount, 1 KW AM $17.95

CONSTANT VOLTAGE TRANSFORMER. Input 115 VAC @ 60 Hz output, 24 Volts @ 15 amps regulated (plus or minus 1%) requires 6 mfd. 600 VAC capacitor add $4.95 $60 value $14.95 ea. Mallory UHF Inducturer, covers 50-250Mc $9.95 ea.

From VHF Engineering
HT Kit 2 watts out, 4 channel 2 meter transceiver kit $99.95
RX 144C 2 meter receiver kit .3µv sens, 2 watt audio $69.95
TX 144 or 220 Transmitter kit $29.95

From Barry
Deluxe Headsets, excellent for ham radio or audio visual labs: 600 ohms, vinyl cushioned: $9.99
With volume control $11.99
Collins 152-J1 Phone Patch, good, removed from equip. with detailed schematic $24.95
DYCOMM Block Booster "D" Kit, 10-15 watts in 45-55 watts out continuous Sale $59.95
DYCOMM Brick Booster "F" Kit, 1-3.5 watts in 12-30 watts out $59.95

The Bassett DGA-2M high gain 2-meter collinear featuring fiberglass construction and polished chrome brass 1/2-24 thread mounting, 6 db gain $29.95

HF Gear from Barry
Famous Triton-II by Ten-Tec. Fully solid-state, 200 watt transceiver. 5 bands - full break in on CW $699.00
Ten-Tec 262 AC Power Supply with VOX $129.00
R399/URR. 50 kc to 31.99 Mc, digital readout similar to R-390. 24 volts dc at 3 amps. $24.95
Checked Operational $39.95
Lab aligned, Lab tested OK $195.00
R399/URR 15 to 1500 kc. Manual or motor tuned with digital readout. Very good ... $495.00
Servo Corp. R-5200 Receiver 50 to 250 Mc continuous CW, FM, AM, adjustable selectivity, 115 volt AC $150.00
Hunter Bandit Linear Amplifier, w/3-400Z's $495.00
HQ-170 - Hammarlund 170 6-16 meters with clock: $175.00
Millen, Solid State Dipper 1.7-3000 MHz Model 90652 $125.00
Kenwood R-599a. With accessories $195.00
Nye (Johnson) 52 ohm low pass filter $19.50
Nye Heavy Duty transmitting Key $9.95
Nye Kilowatt Matchbox with relay $239.50
Nye 275 Watts Matchbox with relay $139.50

Clegg FM-27B, 146-148 Mc coverage without buying a crystal. Fully synthesized w/ out $479.95
Shipping prepaid on all FM-27B's $89.95

ELECTRONICS
Tempo's VHF transceivers offer commercial performance at amateur prices. Compare these transceivers with any other available. Compare their performance, their quality of construction, their ease of maintenance, and then compare prices. Your choice will have to be Tempo.

TEMPO/CL 146
The CL-146 offers operation on the 146 MHz amateur band. The price includes a microphone power cord, mounting bracket and one pair of crystals. A full line of accessories is also available.
- 12 channel capability
- 13 watts or a power savings 3 watts
- All solid state, 12 VDC
- 144 to 148 MHz (any two MHz without retuning)
- Supplied with one pair of crystals
- RF output meter, S-meter, receiver detector meter
- Provisions for external oscillator
- Monitor feature
- Audio output at front panel
- Internal speaker
- The Price: $299.00

TEMPO/CL 220
As new as tomorrow! The superb CL-220 embodies the same general specifications as the CL-146, but operates in the frequency range of 220-225 MHz (any two MHz without retuning). At $299.00 it is undoubtedly the best value available today.

So much for so little! 2 watt VHF/FM hand held. 6 Channel capability, solid state, 12 VDC, 144-148 MHz (any two MHz), includes 1 pair of crystals, built-in charging terminals for ni-cad cells, S-meter, battery level meter, telescoping whip antenna, internal speaker & microphone. $199.00

TEMPO

VHF/UHF Power Amplifiers
Solid state power amplifiers for use in most land mobile applications. Increase the range, clarity, reliability and speed of two-way communications.

<table>
<thead>
<tr>
<th>Drive Power</th>
<th>Output</th>
<th>Model No.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>130W</td>
<td>130A02</td>
<td>$199</td>
</tr>
<tr>
<td>10W</td>
<td>130W</td>
<td>130A10</td>
<td>$179</td>
</tr>
<tr>
<td>30W</td>
<td>130W</td>
<td>130A30</td>
<td>$199</td>
</tr>
<tr>
<td>2W</td>
<td>80W</td>
<td>80A02</td>
<td>$169</td>
</tr>
<tr>
<td>10W</td>
<td>80W</td>
<td>80A10</td>
<td>$149</td>
</tr>
<tr>
<td>30W</td>
<td>80W</td>
<td>80A30</td>
<td>$159</td>
</tr>
<tr>
<td>2W</td>
<td>70W</td>
<td>70D02</td>
<td>$270</td>
</tr>
<tr>
<td>10W</td>
<td>70W</td>
<td>70D10</td>
<td>$250</td>
</tr>
<tr>
<td>30W</td>
<td>70W</td>
<td>70D30</td>
<td>$210</td>
</tr>
<tr>
<td>2W</td>
<td>40W</td>
<td>40D02</td>
<td>$180</td>
</tr>
<tr>
<td>10W</td>
<td>40W</td>
<td>40D10</td>
<td>$145</td>
</tr>
<tr>
<td>2W</td>
<td>10W</td>
<td>10D02</td>
<td>$125</td>
</tr>
</tbody>
</table>

FCC Type accepted models also available. Please write.

Henry Radio
11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127

Prices subject to change without notice.
1974 was an eventful year. Appleton and Barrett measured the Heaviside layer. George Gershwin wrote *Rhapsody in Blue*. The Olympic games were held in Paris.

And on the far side of the world, the Director of Radio for the Dutch East Indies announced the opening of commercial wireless service from Java to Holland. The new super power station, PKX, was on the air with 1.6 megawatts on 15,600 meters. With a power input of slightly over 3.2 megawatts to the 236,080 kg (260 ton) oscillating arc and an antenna strung between mountains, the mammoth Malabar facility provided communication over a 12,000 km (7,500 mile) path nineteen hours out of the twenty four.

Today, fifty years later, the huge generators, oscillating arc and mountain-size antennas have returned to the jungle. Now, EIMAC super power tetrodes dominate the communication world, a single EIMAC X-2159 replacing the 260 ton arc transmitter of yesterday. Dependability, reliability and cost-effectiveness are dominant as EIMAC leads the field in super power communication. EIMAC has the answer today for your communication needs tomorrow.

For further information contact EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070, Or any of the more than 30 Varian/EIMAC Electron Device Group Sales Offices throughout the world.
MORE THAN THREE YEARS AGO, HEATH ENGINEERS ACCEPTED THE CHALLENGE TO DEVELOP A COMPLETELY NEW APPROACH TO AMATEUR RADIO DESIGN.

THE RESULTS SOON WILL BE HEARD WORLD-WIDE.
SB-104... the most advanced design in amateur radio

All the modern circuitry, built-in features, high performance, and honest operating convenience you have wanted for years... here today.

Completely solid-state... from front end to RF output, with over 275 advanced solid-state devices, including 31 ICs, 75 transistors and 171 diodes. The result is a design that runs cooler, quieter, better, longer. The four finals are totally protected.

Totally broadbanded. The new 104 means instant QSY. You can go from CW on the low end of 80 to USB on the high end of 10 in seconds... with perfect tune. Gone are the bothersome Preselector, Load and Tune controls. Just choose the band, dial in the operating frequency, select your mode... and go!

True digital readout. The new SB-104 provides 6 digits of large, bright, easily read frequency information... with resolution down to 100 Hz on all bands. And unlike other so-called digital readout systems that interpret just the VFO frequency, the SB-104 incorporates true digital frequency measurement circuitry that takes into account all three frequencies: VFO, HFO and BFO. What you see is where you are... always.

Total operating convenience. The front panel is clean, well-labeled and easy to use. The large spinner knob on the VFO delivers about 30 kHz per revolution. To the right of the VFO knob are controls for Drive Level, Bandswitch and the switched (Off-fast-slow) AGC to suit various operating conditions. Pushbuttons select mode (USB/LSB/CW), a Tune button for loading linear amplifiers, a Hi-Lo power switch, and Power on-off switch. On the left of the VFO knob are controls for audio and RF gain, jacks for a PTT mike and phones, and pushbuttons to monitor input DC voltage, ALC action and relative power on the front panel meter. The built-in VOX can be switched in and out with another pushbutton... and we've put the VOX gain and delay controls on the front panel, too. And, if you've installed the optional Noise Blanker, a front panel pushbutton switches it on or off.

Performance-plus! The SB-104 is more than convenient to use... it's a pleasure. The transmitter delivers a solid 100 watts output in the high power position; for QRPers the output can be switched to one watt instantly with the front panel pushbutton.

The broadband receiver performance is spectacular... carefully designed to minimize cross-modulation and intermodulation; active devices are kept to a minimum ahead of the highly selective crystal filter. Adjacent signal overload is negligible, yet sensitivity is better than 1 μV. And there is a 15 MHz WWV receive position on the band switch.

Easy assembly and alignment. We believe the new SB-104 is the most sophisticated amateur radio transceiver on the market. It has over 2800 parts, consequently it won't go together in just an evening or two, (we have averaged about 50 hours in pre-production assembly). But it does go together easily, easier than any we've ever offered. All but a handful of the components mount on one of the 15 glass epoxy boards, and two wiring harnesses eliminate most of the point-to-point wiring. Eleven of the boards plug-in for easier assembly, and 7 of them can be extended out of the chassis.

And still more features! The SB-104 will operate directly from a 12V automobile electrical system. For fixed station use, just hook-up the new HP-1144 supply. Complete back panel inputs and outputs... see feature photo on right page. And, we've even designed-in a place on the readout panel where you can light up your call sign when you build the SB-104... we give you all the letters and numbers you need to do it.

This is the transceiver you'll be hearing worldwide... Years ahead of every other... at any price. The SB-104... it belongs at your operating position.

Kit SB-104, 31 lbs. 669.95
Kit SBA-104-1, Noise Blanker, 1 lb., mailable 24.95
Kit SBA-104-2, Mobile mount with hinged rear, telescoping front support, 11' cable, power relay, and circuit breaker, 6 lbs., mailable. $34.95
Kit SBA-104-3, 400 Hz CW crystal filter, 1 lb., mailable 34.95

Available December

THE NEW HEATHKIT SOLID-STATE TRANSCEIVER
SPECIFICATIONS

SB-104 SPECIFICATIONS — TRANSCiever SECTION — GENERAL OPERATION: Frequency Coverage: 3.5 MHz through 29.7 MHz amateur bands, 15 MHz WWV receive only. Frequency Stability: Less than 100 Hz/hr drift after 30-min, warm-up; less than 1/100 Hz Bulk Stability: 0.01% 15.6 MHz. Modes of Operation: Selectable upper or lower sidetone (suppressed carrier) and CW. Readout Accuracy: Within ±0.002 Hz ±1 count. Audio Frequency Response: 350 to 2450 Hz ±257 Hz (6 dB bandwidth). Dial Backlash: 50 Hz max. Phone Patch Impedance: 4 ohm output to speaker; high impedance output to transmitter. Power Requirements: 13.8 VDC. Power Consumption: 300 watts at 100 W output; approximately 30 watts at 30 watts. RF Output: 100 watts PEP. CW: 21 watts PEP. SWR: Less than 100 cycles max. Power Handling Capability: 13.6V at 500 mA from the SB-104. RF Output: 0.34 to 0.4V RMS over 5 to 5.5 MHz into a 50 ohm load.

The SB-104 output board and final transistors are warranted for one full year.

HP-1144 SPECIFICATIONS — Output Voltage: 13.8 VDC regulated (Adjustable from approximately 11 to 16 VDC). Maximum Output Current: 20 amperes. Intermittent. 8 amperes continuous. Transistor Integrated Circuit and Diode Complement: 2N3643 transistor; 2N3055 transistor; 4041 pass transistor (2). MF6030 regulator IC; IN4002 silicon diode; MJE4129 2 silicon diodes. Power Supplies: A 120 VAC @ 60 Hz or 110 VAC @ 60 Hz; A 115 VAC @ 60 Hz or 110 VAC @ 620 to 260 VAC @ 3A; 50/60 Hz maximum Dimensions: 5 3/4 X 9 1/4 X 10 1/4". Regulation: less than 2% over a 25°C temperature range. Ripple: Less than 1% at 20 amperes. Fuses: 7-amp, 3-amp, slow-blow primary. 20-amp. 3-amp, output. Net Weight: 22.2 lbs.

SB-644 SPECIFICATIONS — Frequency Coverage: 5.0 — 5.5 MHz allowing 80, 40, 20, 15, 10 meter operation in the SB-104. Frequency Stability: Less than 100 Hz drift per hour after thirty minute warmup. Modes of Operation: Remote VFO; Main VFO; Receive Remote/Transmit Main; Receive Main/Transmit Remote; Crystal frequencies (2) crystals not supplied. Dial Backlash: 60 Hz max. Power Requirements: 13.6 V at 500 mA from the SB-104. RF Output: 0.36 to 0.4V RMS over 5 to 5.5 MHz into a 50 ohm load.

Page 2

HEATH SCHLUMBERGER
HEATH COMPANY BENTON HARBOR, MICHIGAN 49022
SB-604 Station Speaker
Designed and styled to match the new SB-104 Transceiver, the cabinet is large enough to house the HP-1144 AC Power Supply. The 5" x 7", 3.2 ohm speaker is response-tailored for SSB. Connector cable & plug are included.
Kit SB-604, Speaker & cabinet, 8 lbs., mailable..................29.95

HP-1144
Fixed-Station AC Power Supply
This new 120 V/240 VAC operated supply provides the 13.8 VDC required by the new SB-104 Transceiver. The full-wave bridge circuit has triple Darlington regulation with an integrated circuit which samples, compares, and automatically adjusts transistor bias to maintain a fixed output level. Output is remotely sampled at the load end of the power cable, thereby compensating for voltage drop across fuse and cable, to provide almost no change in voltage from no load to full load conditions. A cable and socket provide output power and a series connection to the SB-104 remote on-off switch. The generous heat sink fits on the back of the supply, and the entire unit may be mounted within the SB-604 speaker cabinet.
Kit HP-1144, fixed-station supply, 28 lbs., mailable........89.95

SB-634 Station Console
Five station accessories in one!
24-hour digital clock: six half-inch gas discharge digits indicate hours, minutes and seconds. The clock runs continuously, as long as the console is plugged in.
Ten-minute ID timer: Three gas discharge digits indicate minutes and seconds up to 9:59. At ten minutes the timer recycles and provides either a visual alarm or both visual and audible alarms. Pushbutton zero reset.

RF wattmeter: The big meter delivers measuring capability of either 200 watts or 2000 watts full scale. 160 through 10 meters.
SWR bridge: Push a button to measure SWR. Separate front panel SWR sensitivity control.
Phone patch: The hybrid patch can be used either manually or with VOX control without switching connections. Voice capability on the meter and separate front panel controls to adjust transmitter and receiver gain independently. Line isolation can be adjusted with a rear panel control.
Kit SB-634, 14 lbs.179.95

SB-644 Remote VFO
Designed exclusively for the new SB-104. The new SB-644 provides serious DXers with really useful split transmit/receive capability. With the “104/644” combination, you aren’t frequency limited in any way—the transceiver can be at one end of the band, the remote VFO at the other end.
Multi-mode capability. The “644” allows transceive operation on either itself or the “104”... transmit on the “104” and receive on the “644”... receive on the “104” and transmit on the “644”. And you can use either of the two crystal positions in the “644” for fixed-frequency control.
Easy pushbutton operation. Front panel pushbuttons on the “644” control all transceive, transmit and receive modes on both the “104” and the remote VFO. No switching on the “104” is necessary. Status lamps behind the window indicate frequency-control mode.
Digital readout in the SB-104. Although the SB-644 includes a linear dial on its front panel to get you into the right frequency area, actual frequency readout takes place in the “104”. The display automatically changes to the correct frequency as you go from transmit to receive.
Kit-built VFO. The “644” uses the same kit VFO as the new SB-104. And thanks to the true digital frequency readout in the “104”, concern about dial VFO linearity problems is a thing of the past. If you work serious DX with your new SB-104, you’ll want the new “644”.
Kit SB-644, 10 lbs.119.95
SB-614 Station Monitor

How clean is your signal? With the SB-614, you'll know. It monitors transmitted SSB, CW, and AM signals up to 1 kW from 80 – 6 meters. The highly visible 1½ x 2" CRT, with push-pull drive for a keystone-free, sharp, clean trace, indicates a wide variety of common operating problems: non-linearity, insufficient or excessive drive, poor carrier or sideband suppression, regeneration, parasitics and CW key clicks. The manual includes 40 CRT display illustrations and explanations.

Complete controls. All standard scope control functions are available in the "614"...Vertical Gain & Position, Horizontal Gain & Position, Focus, Mode (SSB, Trapezoid & Cross for RTTY Mark/Space adjustments). The improved recurrent, automatic sync-type sweep generator is adjustable in three ranges from 10 Hz to 10 kHz. Front panel control gives 11 steps of attenuation. For limited test applications, the "614" can be used as a normal scope, and provides 10 Hz to 50 kHz bandwidth, good sync and high input sensitivity. A rear panel 10:1 vertical attenuator provides extra convenience. Additional features include all solid-state design; rear panel Astigmatism control; standard horizontal and vertical inputs for use as a scope; exciter and linear inputs/outputs. Circuit board/wiring harness design makes assembly fast and easy. What kind of signal do you have? Order your new SB-614 today and know.

Kit SB-614, 17 lbs. 139.95

SB-230 Conduction-Cooled

1 KW Linear

Strong and silent. The new "230" uses a husky Eimac 8873 triode in proven, stable, grounded grid circuitry to deliver up to 1200 watts PEP SSB, 1000 watts CW input from less than 100 watts drive. And the "230" is also rated at 400 watts input for slow-scan TV and RTTY. A massive heat sink eliminates the need for a fan. Complete operating convenience. On the front panel of the new SB-series low profile cabinet you'll find all controls at your fingertips for easy operating. Bandswitching is done with a single knob...Load and Tune controls are clearly marked. Full metering facilities. A full complement of built-in safety features. The cabinet features microswitch interlocks on both the top and bottom to shut down the primary power when the cabinet shells are removed. Front panel status lights indicate Hi Temp, Exciter and Delay. The heat sink for the 8873 is temperature monitored; if the temperature rises too high, a thermal circuit breaker opens, the linear shuts down and the Hi Temp light goes on. The Exciter light indicates that the linear is running straight through, without amplification. To allow the tube sufficient time to warm up, a delay circuit is built-in. When warm-up is completed, the Delay light goes out. The On-Off switch also includes a built-in circuit breaker for the primary side of the power transformer. And the cathode of the tube is fused for additional protection. Easy assembly. The new SB-230 goes together in 15 to 20 hours. No alignment is necessary. The new SB-230, styled to match the SB-104 transceiver, delivers all the features and performance you've come to expect from Heath. We think you will agree it's the greatest value in modern linears.

Kit SB-230, 40 lbs.319.95

GET FULL DETAILS
Send for the new FREE 1975 Heathkit Catalog.
CHECK THESE ADVANCE DESIGN FEATURES:

Completely solid-state design...including the finals. Over 275 solid-state devices, including 31 integrated circuits. The SB-104 output board and final transistors are warranted for one full year.

Completely broadbanded. Neither the transmitter nor receiver sections require tuning from 3 to 30 MHz...instant QSY from 80 to 10 meters is a reality.

True digital readout. Six ½" gas-discharge displays deliver resolution down to 100 Hz with across-the-room visibility.

Complete back-panel connections: Phone patch in & out; auxiliary audio input; speaker; key; ALC; VFO in & out; driver out; IF out; accessory plug; power plug; two spare jacks; separate transmit & receive antenna jacks.

Circuit board construction. Most components mount on 15 circuit boards for easy assembly. The seven major boards can be extended out of the chassis for adjustment or troubleshooting while rig is operating.

New noise blanker plugs into SB-104 & solves the ignition noise problem. Provides up to 50 dB of effective blanking. Rep rate 10 to 2000 pulses/sec.; pulse widths 1 to 250 µsec.