focus on communications technology...

high-power solid-state LINEAR POWER AMPLIFIER

this month

- wind loading on antenna structures 16
- vhf fm scanners 28
- ssb transceiver 34
- variable-speed RTTY 50
Team-Up with Dual Cygnets to Punch Through QRM — AND Do It Economically!

Analyze the real expense of your ham station. Add up all your costs and divide by your rated wattage. Find out what you're really paying for every watt you use.

Want quality and functional economy? Here's a suggestion: Install a Swan 1200X Cygnet Linear Amplifier driven by a Swan 300B Cygnet de novo Transceiver. Both have internal power supplies, operate 10 through 80 meters, have SSB and CW modes, and utilize 8950 tubes for RF amplification. A built-in speaker and CW sidetone monitor comes with the 300B while the 1200X has excellent metering plus a bypass switch so you can operate barefoot. Swan provides the quality and functions, now look at the economics.

Add the $519.95 price of the 300B to the $299.95 price of the 1200X. Then divide by 1200 watts P.E.P. input. The result is a most respectable power level for a very low cost of just 68¢ per watt!

Try to beat that figure anywhere else, today.

It's pure common sense — the heart of any station is its quality; its power; and, these days, its economy. Investigate the Cygnets — you won't be disappointed. If you still want a few extras, like a VOX or VFO, Swan has them, too. Visit an authorized Swan dealer soon or, if you wish, you can use the coupon below to order your Cygnets now.

68¢ PER WATT!

1200 watt P.E.P. input,
1200X Cygnet Linear Amplifier

Use this coupon to order direct from the factory.
(California residents please include sales tax.)

DEALERS THROUGHOUT THE WORLD
or order direct from

Swan
ELECTRONICS
A Unit of Swan Corp.
305 Airport Road
Oceanside, CA 92054
Telephone (714) 757-7525

Gentlemen:

Please ship the following Swan products best way.

☐ 300B Cygnet de novo Transceiver (300 watts P.E.P. input) $519.95
☐ 300B with SS-18B Super-selective I.F. filter $589.95
☐ 1200X Cygnet Linear Amplifier (1200 watts P.E.P. input) $299.95
☐ 508 External VFO $189.95
☐ 14-A DC Covertor $49.95
☐ VX-2 Plug-in VOX $44.95

TOTAL AMOUNT OF ORDER IS $

☐ 20% down payment enclosed, ship C.O.D.
☐ Full payment enclosed
☐ 10% down payment enclosed, charge to my Swan Credit

Name: ____________________________
Address: __________________________
City: __________________ State: ______
Amateur Call: ___________ Zip: ________
ALPHA 374 is rated at a solid kilowatt of continuous DC input on SSB, CW, RTTY, SSTV . . . even AM! So are one or two other big linears you might be tempted to compare with the ‘374. But none of the others has even one of these State-Of-The-Art ALPHA 374 conveniences and quality features:

- **INSTANT BANDCHANGE WITHOUT TUNE-UP** - Just turn the bandswitch and transmit.
- **SELF-CONTAINED DESK TOP CABINET** - One beautiful cubic foot, only 55 pounds.
- **EIMAC CERAMIC TUBES** with total dissipation rating of 1200 watts.
- **DIRECT METERING OF PEAK (PEP) DC INPUT AND RF OUTPUT.**
- **AMPLIFIED ALC GENERATOR,** green and red LED drive level indicators.

Every ALPHA 374 is backed by ETO’s full year warranty and traditional service. Contact your dealer today - or if more convenient call ETO direct - for full details and immediate delivery of your ALPHA 374. $1195.
The inside story

Few things have ever been more true than the old saying "you can't judge a book by its cover". So—we've taken the covers off to give you the inside story.

Quality workmanship and components, combined with ease of maintenance and proven reliability are changing our story...to legend.

Model 1230A HF Receiver—$3930.
For more information please write to us.
contents

6 high-power linear power amplifier
W. Steven Chambers

16 wind loading on antenna structures
John J. Nagle, K4KJ

28 vhf fm scanners
Joseph J. Carr, K41PV

34 IC ssb transceiver
Brian D. Comer, G3ZCV

40 harmonic phasor detector
Henry S. Keen, W5TRS

44 shipboard amateur radio installations
Robert P. Haviland, W3MR

50 variable-speed RTTY control
Keith H. Sueker, W3VF

56 battery power
Edward M. Noll, W3FQJ

4 a second look 62 ham notebook
94 advertisers index 64 new products
56 circuits and techniques 94 reader service
83 flea market
In case you haven't noticed, solid-state technology has finally caught up to the vacuum tube. A good example of modern semiconductors at work is illustrated in the high-power linear amplifier featured in this issue. Modern transistors also provide good gain and low noise well into the microwave region, and microwave power devices are now available. If you think the prices are still too high, forget for a moment those 2C39s, 2K25s and other exotic hardware you bought for peanuts on the surplus market. Compared with the decade-old list price of vacuum tubes that would do the same job, modern high-performance semiconductors are a best buy.

While millions of research hours (and dollars) have been spent in the pursuit of higher gain, lower noise and higher power rf and microwave devices, even more has been spent in the field of digital logic. First it was the low-frequency RTL logic family that got all the attention, then DTL, TTL, Schottky TTL, ECL and cmos — each family offering more speed or less power consumption than the last. Now IBM researchers have developed a silicon structure that creates a vacuum-tube triode in silicon. Well, not exactly — but the new device has the same space-charge-limited current flow that occurs between the cathode and the plate in a vacuum tube. The value of this achievement is that it is now possible to build very low-power logic that operates in the 10- to 100-MHz region.

This new logic, which is called SCL (for space-charge-limited), outperforms all other logic, power-wise, at switching rates over 1 MHz. Cmos circuits, while low-power kings at the lower frequencies, require more power than SCL devices at frequencies above 1 MHz. There is also a good possibility that these new SCL devices will be very attractive for low-level linear amplifiers. When operated at starved collector current levels of less than one microampere, SCL devices have shown current gains as high as 100,000. Furthermore, SCL devices theoretically should have all the low-noise performance of vacuum tubes because they have the same built-in noise cancellation that comes with space-charge-limited current flow. SCL semiconductors, of course, will be free of the heater noise that makes building low-noise vacuum tubes such a problem.

In an SCL device the space-charge-limited current flow takes place in the silicon substrate under a conventional lateral transistor which is located on the surface of the chip. The emitter, base and collector, in addition to providing connections to the device, provide the biases which form the operating fields that turn the n-type substrate into an SCL. The positive bias between the surface emitter and collector provides the cathode-plate potential (although only a fraction of a volt as compared to hundreds of volts in a vacuum tube, the principle is the same). The bias on the surface base creates a grid that controls the current between the cathode and plate. When the base is unbiased, a deep depletion region extends down into the silicon chip, virtually cutting off current flow. When the base is forward biased, the depletion region shrinks, allowing current to flow. The surface transistor, while notoriously slow, is never biased completely on, so it does not affect the speed of the SCL.

Jim Fisk, W1DTY
editor-in-chief
Super Mast
Small in a big way.

For the low profile Ham operator.

It had to happen! The enormous success of Tri-Ex's original Sky Needle—by popular demand—has brought about the design of a miniature Sky Needle for the Tri-Band Beam. We call it Super Mast.

It's a special tower for the low profile HAM operator. A roof-topper stretching to 40-feet up. Attaches easily, simply to the side of your garage or house. A super-easy Super Mast.

Shown here in its nested position at 21-feet, this Super Mast is supporting a three element 15 meter antenna & rotor assembly. Rush your order now. Visit or call your local Tri-Ex Tower dealer today. Price of this under-$300-tower, subject to immediate change.

TOWER CORPORATION
7182 Rasmussen Avenue, Visalia, Calif. 93277

Order now and save!
Chances are, when you think of building a high-power, high-frequency linear rf power amplifier, you immediately think of using vacuum tubes. There has long been a need for high powered, solid-state rf amplifiers that offer highly reliable broadband operation, reducing the need for regular preventative maintenance. However, the achievement of such solid-state linear power amplifier (LPA) designs has been inhibited by the limitations of available transistors. Until recently they had low output power levels, required elaborate temperature compensation schemes and required precise power output control during conditions of high load vswr.

Several months ago, however, TRW Semiconductors introduced a new transistor developed for linear high-frequency ssb operation that is tolerant of mismatch, overdrive and wide temperature variations. This device is the TRW PT6665A/PT5788, rated at 100 watts,
either peak envelope power or CW. The PT6665A is in a flange-mounted package while the PT5788 is the stud-mounted version. These devices, in small quantities, 1000-watts output with only three of the basic amplifiers, IMD performance is reduced slightly, particularly at the upper power levels.

![Block diagram for the broadband solid-state 320-watt rf power amplifier that covers the frequency range from 1.5 to 30 MHz.](image)

fig. 1. Block diagram for the broadband solid-state 320-watt rf power amplifier that covers the frequency range from 1.5 to 30 MHz.

cost about $36.00 each. When you consider the simplicity of the design and the lack of expensive high-voltage components (and a high-voltage power supply), this is quite reasonable. However, you do have to provide a rather husky 28-volt dc supply.

This article shows how to build a 320-watt (output) linear power amplifier using four TRW PT6665As in a two push-pull pair configuration. The broadband amplifier operates directly from a 28-volt dc source and covers the frequency range from 1.5 to 30 MHz without tuning. Four of these basic power amplifiers can be combined through summing networks, as will be discussed later, to build a conservative 1000-watt linear. Although it is possible to obtain

The 320-watt linear amplifier shown in block form in fig. 1 has a power gain of about 17 dB. As can be seen from fig. 2, 4.5 watts of drive power is all that is required for full power output at 30 MHz; less than two watts of drive is required for full rated output on 160 meters. This amplifier is capable of withstanding open- and short-circuit load conditions at full power output and the intermodulation distortion (IMD) is better than -32 dB. If power output is held to 250 watts, the IMD performance is better than -35 dB as plotted in fig. 3.* This is better than many vacuum

*IMD referenced to either of two equal tones as is standard amateur practice. IMD must be increased 6 dB for reference to peak power, or increased 3 dB for average power reference.
tubes, particularly the TV sweep tubes that are often used in amateur service at this power level. The affect of quiescent (idling) collector current upon IMD is shown graphically in fig. 4. Gain and efficiency of the amplifier are shown in fig. 5.

circuit

Since class-B or -AB linear amplifiers are linear only with regard to their power-transfer characteristics, the output signal contains harmonics that are a function of the ratio of the cutoff frequency to the operating frequency and to the selectivity of the output matching network. This indicates that the power transistors be operated push-pull. With this arrangement, 40-dB rejection of the even-order harmonics is readily achieved, and the odd-order harmonics can be easily filtered. To achieve the goal of 320 watts output in this amplifier, two pairs of TRW PT6665A transistors are operated in push-pull and their outputs are combined in a zero-degree hybrid transformer (T8) as shown in fig. 6.

The input drive to the amplifier is divided equally between the two push-pull stages by the power splitter, T1, another zero-degree hybrid transformer. These transformers convert the 50-ohm source and load impedances into two 100-ohm parts which are in phase. Any
fig. 6. Schematic diagram of the solid-state 320-watt linear power amplifier. Complete construction details for the transformers are shown in figs. 7 and 8. All resistors are ½-watt unless otherwise noted.

amplitude or phase unbalance causes power to be dumped into resistors R1 and R4. The input impedance of the amplifier is near 50 ohms on 160 through 15 meters, going up slightly, to 75 ohms, on 10 meters:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Impedance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 MHz</td>
<td>50 + j3.5 ohms</td>
</tr>
<tr>
<td>3.5 MHz</td>
<td>49 + j1.0 ohms</td>
</tr>
<tr>
<td>7.0 MHz</td>
<td>48 + j1.3 ohms</td>
</tr>
<tr>
<td>14.0 MHz</td>
<td>49 + j3.2 ohms</td>
</tr>
<tr>
<td>21.0 MHz</td>
<td>55 + j10 ohms</td>
</tr>
<tr>
<td>28.0 MHz</td>
<td>70 + j2.5 ohms</td>
</tr>
<tr>
<td>30.0 MHz</td>
<td>75 + j0 ohms</td>
</tr>
</tbody>
</table>

C1, C5 25-μF, 35-volt electrolytic
C2, C6 1000 pF metal clad (Underwood Electric type J-101)
C13 150-pF metal clad (Underwood Electric type J-101)
C14, C15 5-μF, 25-volt electrolytic
C16, C17 25-μF, 50-volt electrolytic
C19 100-μF, 35-volt electrolytic
C20 5 turns no. 20 enameled on one Fair-Rite CN20 ferrite bead (available from Amidon Associates)
L1, L2 0.56-μH molded inductor
L3, L4 TRW type PT6665A
L5 TRW PT9732 (thermally connected to heatsink)
Q1, Q2 TRW PT3117A (200 mA transistor)
Q3, Q4 TRW 2N5328 (2 amp transistor)
Q5 2.5 ohms (four 10-ohm, ½-watt resistors in parallel)
Q6 2.5 ohms (four 10-ohm, ½-watt resistors in parallel)
Twisted pair no. 18 wire, 5 twists per inch (not critical), wound through two rows of CN-20 ferrite beads, 3 beads per row.

Twisted pair no. 18 wire, 5 twists per inch (not critical), wound through two rows of CN-20 ferrite beads, 12 beads per row.

Terminals 1 and 3: One turn consisting of two pieces brass tubing, 0.190" (5 mm) OD, 2.50" (64 mm) long, each piece of tubing threaded through 3 CN-20 ferrite beads. Terminals 4 and 5: 3 turns no. 18 enamelled wire, wound through centers of brass tubing.

Terminals 2 and 3: One turn consisting of two pieces brass tubing, 0.190" (5 mm) OD, 8.80" (20 mm) long, each piece of tubing threaded through 12 CN-20 ferrite beads. Terminals 4 and 5: 4 turns no. 18 enamelled wire, wound through centers of brass tubing.

fig. 7. Winding details for transformers T1 through T8. All ferrite beads are Fair-Rite type CN-20 (No. 2643002401), length = 0.190" (5 mm), OD = 0.380" (10 mm), ID = 0.190" (5 mm). The completed transformer assembly is shown in fig. 8. The CN-20 beads are available from Amidon Associates, 12033 Otsego Street, North Hollywood, California 91607; 144 beads, $13.00.

fig. 8. Construction of the combiner transformers T4, T5, T6, T7 and T8. Transformer T8 is wound through two rows of ferrite beads in center; T5 is wound through two rows of beads and is mounted above T7 (left); transformer T4 is mounted above T6 (right). Complete winding details are given in fig. 7. Inductors L4 and L5 are to the right next to resistors R5 and R6 (see fig. 11).
fig. 9. Printed-circuit board for the combiner transformers uses single copper-clad board. Two pairs of boards are required for the amplifier. The 0.190" (5 mm) OD brass tubing is soldered in the holes marked with an asterisk.

Transformers T2, T3, T6 and T7 each employ two ferrite-loaded brass tubes which form a center-tapped, U-shaped winding. The high-impedance winding is threaded, in continuous turns, through the brass tubing until the desired turns ratio is achieved. Winding and construction details for these transformers are shown in fig. 7 and 8.

The required turns ratio for the input transformer, T1, is determined by:

\[
\frac{N_1}{N_2} = \sqrt{\frac{Z_{\text{in}}}{Z_{\text{nom}}}}
\]

where \(Z_{\text{in}} = \) summing port impedance (100 ohms)

\[Z_{\text{nom}} = \sqrt{Z_{\text{L,F}}Z_{\text{H,F}}}. \]

The quantities \(Z_{\text{L,F}} \) and \(Z_{\text{H,F}} \) are the complex input impedance of the transistors at the low- and high-frequency extremes, respectively. For the TRW PT6665A/PT5788, these values are:

1.5 MHz: \(Z_{\text{L,F}} = 8.1 - j8 \equiv 11.38 \) ohms
30 MHz: \(Z_{\text{H,F}} = 2.0 + j2 \equiv 2.83 \) ohms

Therefore, \(Z_{\text{nom}} = 5.67 \) ohms and the required turns ratio for the input transformer is:

\[
\frac{N_1}{N_2} = \sqrt{\frac{100}{5.67}} = 4.2
\]

The turns ratio for the collector transformer is determined by the following equation:

\[
\frac{N_1}{N_2} = \frac{Z_L P_o}{2(V_{CC} - V_{sat})^2}
\]

where:
- \(Z_L = \) summing port impedance (100 ohms)
- \(P_o = \) combined output power for the pair of transistors (200 watts)
- \(V_{CC} = \) collector supply voltage (28 volts)
- \(V_{sat} = \) rf saturation voltage (1.5 volts)

For this amplifier,

\[
\frac{N_1'}{N_2'} = \sqrt{\frac{100 \times 200}{2(28 - 1.5)^2}} = 3.8
\]
fig. 10. Full-size printed-circuit layout for the 320-watt power amplifier. Parts placement is shown in figs. 11 and 12.

The output transformer chosen for the amplifier uses the calculated turns ratio. However, for the input transformer a 3:1 ratio was used in place of the calculated 4.2:1 because it improves the match at 28 MHz. The gain-vs-frequency response and
the input impedance match have been further tailored by the addition of C11, C12, L5 and R10 at the amplifier input.

The collector feed transformers (T4 and T5) combine with the output matching transformers to form a modified 180-degree hybrid combiner as described by Pitzalis and others. The ferrite mate-

fig. 11. Component layout for the rf power amplifier. Transformer T6 is underneath T4, T7 is underneath T5.

fig. 12. Completed 320-watt linear power amplifier, showing location of the power transistors, combiner transformers and other components. In this photograph the input is to the left, output is to the right (see fig. 11).
The material used must have an initial permeability of 800 and the permeability must remain above 200 at 30 MHz. Losses in this ferrite are quite low and the ferrite temperature used is typically less than 20°C at full CW output. The Curie temperature is 150°C minimum (165°C typical).

When winding the transformers, care must be taken to avoid scraping insulation from the wire. Any burrs should be removed from inside the brass tubing and a heavy varnished Formvar-type wire should be used. Do not use thermal strip-away wire because it may break down and short out under high-power rf loads.

The bias control circuit used in the amplifier is of the temperature-tracking, fixed-current type (transistors Q5, Q6 and Q7). The temperature sensing transistor, Q5 (TRW PT9732), is mounted on the heatsink as close as possible to the center of the mounting area of the rf power transistors Q1, Q2, Q3 and Q4.

fig. 13. Heatsink and copper slab hole patterns. The heatsink is a Thermalloy 6157 or similar. All holes in the copper are drilled to pass a 4-40 screw; all holes in the aluminum are drilled and tapped for 4-40 screws. The printed-circuit mounting holes should be located after the PC board is drilled.

construction

The printed-circuit board for the 320-watt linear amplifier is shown in fig. 10. Parts placement is shown in fig. 11. This drawing also contains information on the location of the power supply filter.
components L4/R6 and L3/R5. The location of the collector-to-base feedback networks—C14/R11, C15/R12, C16/R13, C17/R14—can be easily determined from the photographs. Capacitors C2 and C6 (not visible in fig. 12) are located on the ground strip. Capacitor C2 is between Q1 and Q2, and C6 is between Q3 and Q4.

Since considerable heat is dissipated by the power transistors, good thermal conductivity between the transistors and the heatsink must be insured. This is accomplished by:

1. Placing a piece of slab copper between the transistor flange and the aluminum heatsink (see fig. 13).
2. Sanding smooth the copper slab and the heatsink surface as well as the bottom of the transistor flange.
3. Using thermal conductive compound between the copper slab and heatsink and between the transistor flanges and the copper.
4. Using cooling air for long transmission periods.

To obtain a very conservative 1000-watts rf output over the frequency range from 1.5 to 30 MHz, four of the 320-watt amplifiers can be combined using straightforward, commercially available summing circuitry as shown in fig. 14. The input power splitter, an ENI model PM12-4, and the output power combiner, an ENI model 400-4, are available from Electronic Navigation Industries. The overall amplifier operates directly from a 28-volt dc power supply with a typical IMD of -36 to -38 dB at full rated output. Although IMD performance falls off at lower power levels, it is better than -30 dB for all cases (see fig. 15).

The drive requirements for the 1000-watt amplifier, plotted graphically in fig. 16, vary from approximately 4.5 watts at 3.5 MHz to 18 watts at 28 MHz. As noted previously, a 1000-watt amplifier can also be built with three of the basic 320-watt power amplifiers, but with some increase of IMD harmonics, to -30 dB or so, at the upper power levels.

solid-state kilowatt

how to calculate wind loading on towers and antenna structures

A discussion of the effect of wind loading on self-supporting towers, guyed towers and other antenna structures

Almost all amateur operators are involved at one time or another in the erection of an antenna tower. The construction of a tower to withstand the elements, most notably wind, is of prime importance to the successful operation of an amateur station. Yet, very few amateurs bother to calculate the wind forces, or wind loading as it is technically known, on their antennas or towers. This may be because there is very little material on this subject available in the amateur literature.

Wind loading is generally considered to be a civil engineering subject and therefore not suitable for an electronic engineering publication, but when properly organized, the subject is relatively straightforward, requiring at most a knowledge of high school physics. Actually, I have seen subjects that are much more complex, both physically and mathematically, successfully treated in ham radio and similar magazines.

The purpose of this article is to organize and present the subject of wind loading on radio towers in such a manner that the average amateur who has the skill and ability to assemble and operate an amateur station can calculate the wind forces trying to overturn his tower. The wind loading on parabolic antennas and
the use of guy wires will also be briefly discussed.

Much of the material in this article has been taken from Electronic Industries Association (EIA) Standard RS-222-B, dated December, 1972. I highly recommend that anyone planning to construct an antenna system obtain a copy of this standard as it is easy reading and contains much interesting and useful information beyond what will be presented here.

Calculating the wind loading on an antenna is a relatively simple procedure: First, determine the projected area of the tower and antenna. Then, by applying a very simple formula the area can be converted into a horizontal force for any wind velocity. For a free-standing (unguyed) tower which is constrained only at the base, this horizontal force develops an overturning moment which the tower and foundation must resist. The situation for a guyed tower which is constrained at both top and bottom is slightly different in that tensions in the guy wires must also be calculated; these will also be considered. These calculations are all very simple and will be discussed using examples.

Projected area

For the tower and beam example, I will use a forty-foot (12.2-meter) tower made of four ten-foot (3-meter) sections with a 20-meter beam on the top; this is typical of installations used by amateurs. A typical 10-foot (3-meter) section is shown in fig. 1; as can be seen, the tower has a triangular cross-section with six sets of cross braces per side. The main structural members are at the corners and are composed of 1%-inch (3.2-cm) OD steel tubing; the cross-bracing consists of 3/8-inch (10-mm) OD rod, each rod 12-inches (30.5-cm) long.

The projected area of each corner leg is therefore 1½ x 120 = 150 square inches (3.2 x 304.8 = 975.4 square cm). Since there are two legs per face

\[
2 \times 150 = 300 \text{ square inches}
\]

\[
2 \times 975.4 = 1950.8 \text{ square cm}
\]

For the cross-braces we have

\[
0.375 \times 12 \times 2 = 9 \text{ square inches}
\]

\[
0.95 \times 30.5 \times 2 = 58 \text{ square cm}
\]

As there are six sets of braces per ten-foot (3-meter) section

\[
6 \times 9 = 54 \text{ square inches}
\]

\[
6 \times 58 = 348 \text{ square cm}
\]

Hence, the total surface area is

\[
300 + 54 = 354 \text{ square inches}
\]

\[
1936 + 348 = 2284 \text{ square cm}
\]

This is equal to (354/144) = 2.46 square feet (0.228 square meters) per ten-foot (3-meter) section, as there are 144 square inches per square foot.

It is important to notice that we did not calculate the surface area of the cylindrical structural members, but instead calculated the projected area. The projected area may be defined as the outline area or as the area of a shadow cast by the member. If the structural member has a flat surface, such as a
wooden 2x4 or steel angle-iron, the projected area and surface area will be the same, but this is not the case for structural members with a cylindrical cross-section.

The reason for using the projected area can be explained as follows: When a cylindrical surface has a uniform pressure applied as shown in fig. 2, the components applied close to the tangential points, such as vectors A and C, exert a relatively small component on the cylinder parallel to their own direction. The radial components that they exert are equal and opposite and, hence, cancel out. The components applied at the center, such as vector B, are fully effective in creating horizontal force on the structural member. It can be shown mathematically that the wind resistance is proportional to the projected area and not the surface area.

In the case of a cylinder the wind force is further reduced because the streamlining effect of the cylinder makes the wind force less than for a flat surface of the same projected area. Paragraph 2.2.4 of reference 1 states that, “the pressure on cylindrical surfaces shall be computed as being 0.66 of that specified for flat surfaces.” This means that when dealing with cylindrical structural members, the wind forces are two-thirds those of flat surfaces, or to say the same thing in a different manner, the projected area of the cylindrical member may be reduced to 0.66 of its actual value.

In the case of open face or lattice towers, one other factor must be considered. That is the effect of wind blowing through the tower and against the back structural elements as this area is also effective in developing a horizontal force. Paragraph 2.2.5 of reference 1 states that,

“For open face (latticed) structures of square cross section, the wind pressure shall be applied to 1.75 times the normal projected area of all members in one face. For open face (latticed) structures of triangular cross section, the wind pressure shall be applied to 1.5 times the normal projected area of all members in one face. For closed face (solid) structures, the wind pressure shall be applied to 1.0 times the normal projected area.”

The only type of solid structures I can think of that would be used by amateurs are irrigation tubing, telephone poles or wooden 2x4s bolted together.

It can be noted when dealing with lattice-type towers with a triangular cross section, and using the cylindrical structural members which are so popular in amateur work, the 1.5 triangular factor, when multiplied by the 0.66 cylindrical factor, gives 0.66 x 1.5 = 1. Therefore, both factors can be neglected when dealing with this type of tower. Although these factors may be neglected, they should not be forgotten!

wind force

So much for area involved. The problem now is to convert that area into a force. EIA Standard RS-222-B states in paragraph 2.3 that the wind pressure P in pounds per square foot is given by

\[P = 0.004 V^2 \] \hspace{1cm} (1)

where \(V \) is the wind velocity in miles per hour and 0.004 is the wind conversion factor (includes a gust factor and a drag coefficient for flat surfaces).* Note that the wind force is proportional to the wind velocity squared.

It may be pointed out that the exponent on the velocity, 2 in this case, is itself a function of the velocity. The

*In metric terms the formula is \(P = 0.0075 V^2 \), where \(P \) is in kilograms per square meter and \(V \) is velocity in kilometers per hour.
factor 2 is a good average value for wind velocities in, say, the 30- to 100-mph (48- to 161-kph) region. For extremely low velocities, say, less than about 10-mph (16 kph), wind force is linear with velocity. As wind velocity approaches the trans-sonic region, the exponent becomes very high. This is why supersonic aircraft require such large engines.

It is interesting to digress for a moment and consider eq. 1 in a different light. By applying Newton’s third law (action and reaction), eq. 1 also gives the wind resistance when an object is driven at a given velocity through still air. For example, a standard size automobile presents a frontal area of about 25 square feet (2.3 square meters) so at 60 mph (96.6 kph) requires

\[P = 0.004 \times 60^2 \times 25 = 360 \text{ pounds of force} \]

\[P = 0.0075 \times 96.6^2 \times 2.3 = 161 \text{ kilograms of force} \]

just to overcome wind resistance. Note that increasing the velocity by \(\sqrt{2} = 1.414 \) (from 50 to 70 mph [80 to 113 kph], for example) will double the wind resistance. Couple this with the fact that the efficiency of a typical automobile engine is much less at 70 (113 kph) than at 50 mph (80 kph) — it’s easy to see why fuel consumption increases astronomically at higher speeds.

wind-loading zones

Returning to our original problem, since we have calculated the projected area, this can be converted to a horizontal force at any given velocity by using eq. 1. The only question remaining is what wind velocity to design for. Fortunately, RS-222-B comes to our aid again. Table 1 and the accompanying map of fig. 3 give the **recommended** horizontal design wind pressures in pounds per square foot and kilograms per square meter for various parts of the United States (windloading zones) and for various heights above ground. RS-222-B also has a table giving the zones by states and counties, which will not be reproduced here because of space limitations. If you cannot pinpoint your location precisely from fig. 3, you may want to consult the table of counties in RS-222-B. You may also assume the more severe wind-loading zone.

The data for both table 1 and fig. 3 were obtained by statistical methods from long-term weather observations based on wind velocities that should not be exceeded, on the average, more than once every 50 years. The work is described in a paper by H.C.S. Thorn.\(^2\) A later paper on this same subject has also been published by Thom.\(^3\) Both Thom papers are highly statistical and the EIA map offers much more usable information for the average individual.

Most amateur towers will fall in the 300-feet-and-under (91.4 meters) category for which table 1 gives wind loading of 30, 40 or 50 pounds per square foot (146.5, 195.3 and 244.1 kg per square

Table 1. Recommended horizontal design wind pressures in pounds per square foot (kilograms per square meter given in parenthesis). Wind-loading zones for the United States are shown in fig. 3.

<table>
<thead>
<tr>
<th>height zone (above ground)</th>
<th>A (lbf/ft(^2))</th>
<th>B (N/m(^2))</th>
<th>C (N/m(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portion of tower 300 feet (9.14 meters) and under</td>
<td>30 (146.5)</td>
<td>40 (195.3)</td>
<td>50 (244.1)</td>
</tr>
<tr>
<td>Portion of tower 301 to 650 feet (91.7 to 198 meters)</td>
<td>35 (170.9)</td>
<td>48 (234.3)</td>
<td>60 (292.9)</td>
</tr>
<tr>
<td>Towers 651 feet (198.5 meters) and higher shall be designed for uniform wind pressure for their entire height</td>
<td>50 (244.1)</td>
<td>65 (317.3)</td>
<td>85 (415.0)</td>
</tr>
</tbody>
</table>

\(^2 \) H.C.S. Thorn. 1974, August 1974
meter) respectively, for wind zones A, B and C. Putting these numbers into eq. 1 gives wind velocities of 86.6, 100 and 112 miles per hour (139.4, 161 and 180 kilometers per hour). Since I live in the metropolitan Washington, D.C., area which is clearly in wind loading zone A, I

\[
(2.44 \text{ square feet}) \times (30 \text{ lb/sq ft}) = 73.2 \text{ pounds, horizontal force}
\]

\[
(0.226 \text{ square meter}) \times (146.5 \text{ kg/m}^2) = 33.2 \text{ kg, horizontal force,}
\]

For later computational reasons we will assume this force is uniformly distributed along the length of the tower. This results in a loading of

\[
\frac{73.2 \text{ lb}}{10 \text{ ft}} = 7.32 \text{ pounds per foot of tower}
\]

\[
\frac{33.2 \text{ kg}}{3 \text{ meters}} = 11.1 \text{ kg per meter of tower}
\]

As previously stated, I intend to use four 10-foot (3-meter) sections to give the tower 40-feet (12.2-meters) height. This gives the situation shown in fig. 4 for a total horizontal force of

\[
F = 40 \times 7.32 = 292.8 \text{ pounds}
\]

\[
F = 12.2 \times 11.1 = 135.4 \text{ kilograms}
\]

Because the tower is constrained at the bottom and free at the top (unguyed), the effect of this force is to cause the

fig. 3. Location of wind-loading zones in the United States (from EIA Standard RS-222-B).

practical example

Returning to the problem, we have already calculated that the projected area of a ten-foot (3-meter) section of tower is 2.46 square feet (0.228 square meter). Applying correction factors of 0.66 for cylindrical structural members and 1.5 for a triangular tower gives

\[
2.46 \times 0.66 \times 1.5 = 2.44 \text{ square feet,}
\]

\[
(0.228 \times 0.66 \times 1.5 = 0.226 \text{ square meter}) \text{ projected area}
\]

Assuming a wind velocity of 86.6 mph (139.4 kph) (or 30 pounds per square foot [146.5 kg per square meter]) — gives

a total horizontal force of

\[
(2.44 \text{ square feet}) \times (30 \text{ lb/sq ft}) = 73.2 \text{ pounds, horizontal force}
\]

\[
(0.226 \text{ square meter}) \times (146.5 \text{ kg/m}^2) = 33.2 \text{ kg, horizontal force,}
\]
tower to rotate about the horizontal axis through its base, i.e. fall down.

In physics, a force that causes an object to rotate is called a moment or a torque and is defined as a force multiplied by a distance or

\[
\text{moment} = \text{force} \times \text{distance} \quad (2)
\]

The units are pound-feet (dyne-cm).

The problem now is, "How do we translate a uniformly distributed horizontal force into a single overturning moment?" Luckily, the answer is quite simple; a uniformly distributed force will generate the same moment as a single force with the same total value acting at a point midway on the structure. Hence a uniformly distributed force of 7.32 pounds/foot (11.1 kg/meter) along the tower will generate the same moment as a single force of 292.8 pounds (135.4 kilograms) acting at the mid-point of the tower. This is shown in fig. 5. This gives an overturning moment of

\[
M = 20 \times 292.8 = 5856 \text{ pound-feet}
\]

\[
M = 6.1 \times 135.4 = 825.9 \text{ kilogram-meters (8.2 x 10^{10} dyne-cm)}
\]

This is the moment developed by the tower alone; now let's put a HyGain Model 203-BA three-element, 20-meter beam on the top of the tower which, according to the manufacturer, has an area of 3.08 square feet (0.286 square meter). A wind loading of 30 pounds per square foot (146.5 kg/m²) (86.6 mph – 139.4 kph) will develop a horizontal force of

\[
(30 \text{ lb/ft}^2) \times (3.08 \text{ ft}^2) = 92.4 \text{ pounds}
\]

\[
(146.5 \text{ kg/m}^2) \times (0.286 \text{ m}^2) = 41.9 \text{ kilograms}
\]

on the antenna which in turn will generate a moment of

\[
M = 92.4 \times 40 = 3696 \text{ pound-feet}
\]

\[
M = 41.9 \times 12.2 = 511.2 \text{ kilogram-meters (5.01 x 10^{10} dyne-cm)}
\]

at the top of the tower. The total overturning moment acting on the tower is then

\[
M = 3696 + 5856 = 9552 \text{ pound-feet}
\]

\[
M = 511.2 + 825.9 = 1337.1 \text{ kilogram-meters (13.1 x 10^{10} dyne-cm)}
\]

This combination is shown in fig. 6. This may be considered as a single force of 9552 pounds acting at a distance of one foot above the ground, a force of 9552/20 = 477.6 pounds acting 20 feet up the tower, as a force of 238.8 pounds acting at the top of the tower, or any other combination of force multiplied by distance whose product is 9552 pound-feet as shown in fig. 6.

In metric terms, this may be considered as a single force of 1337.1 kilograms acting at a distance of one meter above the ground, a force of 1337.1/6.1 = 219.2 kilograms operating 6.1 meters up the tower, as a force of 109.6 kilograms acting at the top of the tower, or any other combination of force multiplied by distance whose product is 1337.1 kilogram-meters.

The antenna and tower combination used in this example is relatively modest compared with some antennas, and yet, the overturning moment is nearly 5 tons on a one-foot arm!

The tower must be strong enough to transmit this moment to the foundation; the foundation, in turn, must be designed...
to have a moment of its own that, when combined with the soil resistance, will resist this overturning moment with an acceptable margin of safety if the tower is to remain standing.

The design of tower structures themselves would take us into the subjects of structural mechanics and strength of materials; foundation design would add soil mechanics. These subjects are all well beyond the scope of this article. We will, however, briefly discuss guying since guy wires can significantly reduce foundation requirements.

guying

Guyed towers have the advantage of requiring much less structural material than self-supporting towers. As an example, a self-supporting 700-foot (213.4-meter) steel tower of conventional design will weigh about 460,000 pounds (208,651 kilograms). A comparable guyed tower will weigh about 200,000 pounds (90,718 kilograms) including the weight of the guys. It should be remembered that a guyed tower must also be self-supporting. For the amateur who must install his tower in a residential neighborhood additional considerations are aesthetics and the whims of his wife. This latter consideration, unhappily, is not amenable to a rigorous engineering analysis.

Assume now that the same 40-foot (12.2-meter) antenna and tower as previously described has a set of guy wires 30-feet (9.1-meters) from the base of the tower, as shown in fig. 7. From the Pythagorean theorem the length of the guy wire is

\[\sqrt{40^2 + 30^2} = 50 \text{ feet (15.2 meters)} \]
The angle with respect to ground is

$$\theta = \tan \frac{40}{30} = 53.1 \text{ degrees}$$

For the sake of simplicity, we will consider only one guy wire. This is actually the case when the wind is blowing toward the tower from the direction in which the guy wire under consideration is anchored.

It is not generally appreciated, but a guy wire converts an overturning moment into increased downward stress on the tower. As previously noted, the total horizontal force in this example is 293 pounds (132.9 kilograms) on the tower plus 92 pounds (42 kilograms) on the antenna. Since the top of the tower is now constrained by the guy wires, the overturning moment is zero. For this reason the structural requirements on the tower and foundation are greatly reduced because these items need only support the weight of the assembly and the additional load imposed by tension in the guy wires.

Because the horizontal force on the tower — 293 pounds (132.9 kilograms) — is uniformly distributed over the length of the tower, we will assume that one-half the constraining force — 146.5 pounds (66.5 kg) — is located at the top of the tower and one-half at the bottom. The horizontal force on the antenna — 92 pounds (41.7 kg) — will be assumed to be located entirely at the top of the tower. This is shown in fig. 8.

This allocation of reactions given may seem arbitrary, but it is difficult to visualize a mechanism by which the 92-pound (41.7-kilogram) horizontal force of the antenna can be transmitted to the base of the tower without generating a moment. Also, if there is any error, the forces in the guy wire will be overestimated and not underestimated. The tension in the guy wire may be resolved into a horizontal and a vertical component. The horizontal component must be 238.5 pounds (108.2 kilograms) since it must exactly equal the horizontal windload (146.5 + 92 pounds or 66.5 + 41.7 kilograms). The tension in the guy wire itself may be calculated by setting up a vector diagram as in fig. 9.
\[F_{gw} = \frac{238.5}{\sin 39.9^\circ} = 397.2 \text{ pounds} \]

\[F_{gw} = \frac{108.7}{\sin 36.9^\circ} = 181 \text{ kilograms} \]

where \(F_{gw} \) is the force on the guy wire and the additional vertical component which must be resisted by the tower is

\[F_v = \frac{238.5}{\tan 36.9^\circ} = 318 \text{ pounds} \]

\[F_v = \frac{108.2}{\tan 36.9^\circ} = 144.2 \text{ kilograms} \]

In other words, an 86.6-mph (139.4 kph) wind will develop a tension of 397.2 pounds (181.2 kilograms) in the guy wire and an additional vertical load of 318 pounds (144.2 kilograms) on the tower. This vertical load is more than the weight of the antenna! It should also be emphasized that these loads are in addition to the vertical loads caused by the initial tension in the guy wires.

The vertical load can be reduced by making the guy wires longer; i.e., moving the bottom end of the guy wire farther out from the base of the tower. As the guy wire approaches the horizontal, the vertical component approaches zero and guy-wire tension approaches the total wind load at the top of the tower—238.5 pounds (108.2 kilograms).

So far we have considered the involvement of just one guy wire. When considering two guy wires you might think that for the same horizontal wind load, the tension in each guy wire would be one-half the tension for one wire. Unfortunately, it does not work out that easily. Let’s consider a tower held by three guy wires at 120° intervals, as shown in fig. 10. This is a typical arrangement. If the wind blows in the direction of arrow A, guy wire number-1 takes the wind load and the situation is as explained for one guy wire. If the wind blows as shown by arrow B, things are slightly different, as shown by the vector diagram in fig. 11. Using the same numbers as in the example above, the horizontal wind load of 238.5 pounds (108.2 kilograms) is shared equally by guy wires 1 and 2, so we allow 119.3 pounds (54.1 kilograms) on each. In this case the third guy wire carries none of the load. The horizontal force in the direction of each guy wire is thus

\[F_H = \frac{119.3}{\cos 60^\circ} = 238.5 \text{ pounds} \]

\[F_H = \frac{54.1}{\cos 60^\circ} = 108.2 \text{ kilograms} \]

As in the preceding example, the tension on each guy wire is 397.2 pounds (181.2 kilograms) and the vertical com-
ponent for each guy wire is 318 pounds (144.2 kilograms) — a total of 715.2 pounds (324.4 kilograms). The total is thus twice the vertical load generated by a wind blowing in the same direction as any one guy wire. It is easy to see that wind loads can add up pretty quickly!

The use of guy wires imposes a penalty in that the tower and foundation must be designed for greater vertical loads. The advantage of guy wires is that the tower and foundation need not be designed to resist an overturning moment. The tower designer’s choice is between vertical loads and overturning moments. Also, it is much more expensive to build to resist the overturning moment than it is to withstand a straight vertical load.

An important factor to be considered in the installation of a guyed tower is the initial tension in the guy wires. If the guy wires are too loose, the tower will sway excessively. If the guys are pulled too tightly, an excessive vertical load may be put on the tower. In fact, in large installations it may be possible to buckle the tower with excessive initial tension. It is therefore necessary to compromise between stiffness and reasonably sized structural members in the tower.

antenna size

In an earlier example we assumed the area of the antenna was known from the manufacturer’s data. If the antenna is homemade, I suggest that you calculate its area the same as you would for the tower. Consider each element separately and apply the cylindrical correction factor. Calculate the area looking down the axis of maximum radiation and also at right angles to this axis. Choose the area that is larger.

Because of the increasing interest in 1250 MHz and above, and the easy availability of parabolic antennas with solid reflectors, it is both interesting and instructive to apply the above principles to a parabolic dish and compare these with a tower. We will assume a dish with a 10-foot (3-meter) diameter and a 100 mph (161 kph) wind. From eq. 1 the wind pressure caused by a 100-mph (161 kph) wind is 40 pounds per square foot (195.3 kilograms per square meter). The projected area is

$$\frac{\pi d^2}{4} = \frac{\pi (10)^2}{4} = 78.5 \text{ square feet}$$

$$\frac{\pi d^2}{4} = \frac{\pi (3)^2}{4} = 7.3 \text{ square meters}$$

and the total horizontal wind pressure is

$$(78.5 \text{ ft}^2) \times (40 \text{ lb/ft}^2) = 3140 \text{ pounds (7.3 m}^2) \times (195.3 \text{ kg/m}^2) = 1426 \text{ kg}$$

If a 10-foot (3-meter) antenna is to look at the horizon to see a rising...
satellite, as shown in fig. 12, the mounting structure must be at least 6-feet (1.8-meters) tall to provide ground clearance. Thus, the minimum overturning moment will be

\[(3140 \text{ lb}) \times (6 \text{ ft}) = 18,840 \text{ pound-feet} \]
\[(1426 \text{ kg}) \times (1.8 \text{ m}) = 2566.8 \text{ kilogram-meters} (25.17 \times 10^{10} \text{ dyne-cm})\]

Note that a 10-foot (3-meter) parabolic dish mounted on a 6-foot (1.8-meter) support has approximately twice the overturning moment of a 3-element, 20-meter beam mounted on a 40-foot (12.2-meter) tower.

Unfortunately, this is not the whole story. The above calculations are for a head-on wind. Experiments have shown that the greatest wind force on a parabolic antenna occurs not for a head-on condition, but when the wind is blowing at an angle to the antenna axis as shown in fig. 13.

For the antennas of one manufacturer, this wind angle is 56° and the maximum force is 10-percent higher than for a zero-degree wind angle. The reason for this is that at some wind angles the rear surface of the dish acts as an air-foil which develops lift in a manner similar to an aircraft wing, thereby increasing the horizontal force on the antenna.

Because this extra force depends on the shape of the antenna, it may not be the same for all parabolic antennas. The antenna parameter that has the greatest effect on this additional lifting force is probably the focal length of the antenna as this determines how deep the dish must be for a given diameter and hence will effect the lift/drag coefficient of the dish. It is not practical to give lift coefficients or angles of maximum wind loading for all cases, but a 10-percent increase in wind loading due to lift at an angle of 56° is probably a good approximation for most parabolic antennas.

The relatively large wind loading of a parabolic dish can be considerably reduced by perforating the dish. If the holes are small compared to the wavelength of operation, the effect on antenna performance will be negligible, but the wind loading will be decreased considerably.

ice loading

The preceding material has not considered the effect of ice. The magnitude of the additional load imposed by ice will depend on your location. Do you live in Miami, Florida, or Bismarck, North Dakota? The effect of ice, of course, is to increase the projected area of the structural members, thereby increasing the wind load. Unfortunately, it frequently occurs in many parts of the country that the strongest winds occur during ice storms, thereby compounding the problem. If you feel you should consider ice loads, I suggest you contact the chief engineer of a local broadcast station and find out what ice thickness his towers are designed to handle. Calculate the projected areas when loaded with the maximum expected thickness of ice. Remem-
fig. 13. Relationship of parabolic antenna and direction of wind exerting maximum force.

ber, too, that ice coats both sides of the structural members so that a 1/2-inch (13 mm) radial thickness of ice will increase the overall dimensions by 1 inch (25 mm).

summary

In the above material I have shown how to calculate the overturning moments caused by wind forces on antenna structures of the type used by most amateurs. These forces can be appreciable, especially when augmented by ice. Parabolic antennas have even higher wind loadings. I have also discussed the use of guy wires, and have shown how these eliminate the overturning moment but increase the vertical loads on the tower.

The procedure for calculating the wind loading on a conventional tower/antenna combination may be summarized as follows:

1. Calculate the projected area of the tower.
2. Apply the appropriate correction factor for cylindrical surfaces and/or triangular or square cross section, as necessary.
3. Determine the maximum expected wind velocity.
4. Calculate the horizontal force on the tower.
5. Determine the effective area and horizontal force on the antenna.
6. If the tower is guyed, calculate the tension in the guy wires due to wind loading and determine the additional vertical loading of the tower.
7. If the tower is free standing, determine the moments on both the tower and antenna separately, and add.

The wind loading on a parabolic dish is calculated in the same manner as on any other structure, but maximum wind loading will occur at an angle to the main antenna beam and the numbers will be surprisingly high. Towers, like people, can carry only a limited load before they start to sway. A good man knows his own limit; a good amateur knows his tower's limit.

references

ham radio

"Right now he's out of this world He just bounced a signal off of the moon!"
scanning receivers
for two-meter fm

A discussion of vhf scanner-monitors, how they work, and how they may be used on vhf fm

two-meter activity was mostly a-m, scattered over a relatively large portion of the band, with no definite channelization outside of a few local net frequencies.

Newer monitor receivers couple crystal control with the ability to search through many channels for activity by using digital logic techniques for scanning. The scanner receiver sequentially looks at four, six, eight or even ten channels prechosen by the user. Amateur use of monitor receivers has increased due to both the availability of reasonably priced models and the channelization of our own two-meter fm activity.

simple scanner

Dual-receive Citizens Band equipment is neither vhf-fm nor amateur but is sufficiently simple and representative enough to warrant our consideration—if only for instructional purposes!

CB scanners were developed so that a single unit could be used to simultaneously monitor a regular working channel and the national emergency channel. The

for many years vhf fm monitor receivers have enjoyed a modest but reasonably steady popularity with a variety of police officers, firemen and assorted buffs, both amateur and professional. Those early models suffered from most of the same ills which blessed contemporary amateur vhf equipment: instability, difficult tuning and so forth.

The introduction of crystal-controlled, solid-state models increased the popularity of the monitor receiver within the original market but still did not cause a widespread interest among amateur radio operators. In those days, you will recall,

fig. 1. Block diagram of a typical dual receive CB scanner receiver. A J-K flip-flop alternately grounds the 23-channel synthesizer crystal bank, then the Channel-9 crystal, permitting simultaneous monitor capability.
Scan Monitor manufactured by Pace is typical of scanners used by amateurs for two-meter fm. (Photo courtesy Pace).

Scanner logic switches the receiver back and forth between the channel selected by the multi-crystal synthesizer and channel 9. An increase in the AGC voltage, indicating that a station is in the passband, causes the scanner to stop seeking and latch onto the signal. Basic operation of the circuit is shown in fig. 1. A J-K flip-flop selects which local oscillator is in control of the receiver at any instant of time. An inhibit signal causes the circuit to latch when the AGC voltage is above a certain level.

VHF scanners

A typical VHF FM scanner is usually a double-conversion receiver such as that shown in fig. 2. A local oscillator, operating from crystals selected by the scan logic, is connected to a mixer where it beats against the incoming RF signal to produce a high IF in the 10- to 13-MHz range, with 10.7 MHz being most popular. A second mixer heterodynes the output of another crystal oscillator (11.155 MHz in this case) to produce a low IF (usually 455 kHz). This signal is then handled by the receiver IF and detector stages in the usual manner.

The squelch circuit of the monitor receiver does more than just keep the output quiet in the absence of a signal: it provides the stop command signal to the scanner. Without this ability scanning would be little worse than a useless nuisance.

Scanning logic circuits

Fig. 3 shows the partial schematic of a scanning circuit. A unijunction transistor,
fig. 4. Logic diagram of a four-channel decoder using one dual J-K flip-flop IC and one quad two-gate (A). Waveform diagram showing design rationale for the four channel scanner is shown in (B).

Q1, operates as a pulse-generator clock. This circuit supplies sawtooth pulses to the pulse-shaping and control circuit. In that section the pulses are changed so that the counter circuits to follow see the abruptly changing waveforms they like.

The control portion of the circuit interrupts, on command, the flow of pulses to the SN7490 decade counter. The Binary Coded Decimal (BCD) output from the counter is fed to a decoder which selects one of several output lines each time an input pulse is received. Examples can be found where the decoder is a suitable connection of NOR/NAND gates or an octal or decimal decoder IC such as found in decimal counting units.

The simple four-channel scanner in fig. 4A uses two J-K flip-flops (which are usually housed on the same IC chip) and four two-input gates (also usually a single IC). This circuit sequentially selects from among a bank of four crystals.

Waveforms which explain the operation of this circuit are shown in fig. 4B. The NAND gates are wired to the flip-flops in such a way that they produce a grounded output (logic zero) only when both inputs are high (logic 1). Notice the waveforms from FF1 and FF2 underneath clock pulse number 1. At this time only the \bar{Q} of FF1 and the \bar{Q} of FF2 are...
A simple four-channel scanner can be made to scan twice as many channels with only the added complexity of an odd-even selector. In this case the normal scan logic is the same for both channels—which is selected during any given iteration of the logic signal is determined by the odd-even flip-flop.

Most scanner receivers offer more than four channels. In fact, the standard seems to be eight. Since the binary system is based on powers of two it might be imagined that a mere doubling of the circuit of fig. 4 would suffice. In actuality, however, the gating of eight channels is a bit more complex.

A few receivers simultaneously scan two four-channel crystal banks which are designated odd and even. One additional flip-flop sequentially selects from these two alternate banks. An example of the odd-even select system is shown in fig. 5.

crystal switching

Transistor Q1 in fig. 6 is the regular vhf overtone crystal oscillator used to drive the first mixer. Although the circuitry for only one channel is shown here, assume that each channel will have a similar arrangement. The cold end of the crystal, Y1, is grounded through transistor Q2 when Q2 is turned on by command from the logic circuit.

When the logic circuit selects the channel a positive voltage is applied to the base of the appropriate switching transistor. This saturates the transistor, causing a collector-emitter resistance of only a few ohms. Under this condition diode CR1 is forward biased (allowing the crystal to be grounded) and the light-emitting diode, CR2, finds a current path to ground. Depending upon design you will sometimes find lock-in or lock-out switches which will either manually select a channel or prevent it from being energized. Most scanners incorporate a small trimmer capacitor to net the crystal on their respective channels.

crystal selection

As some of us have discovered the hard way, crystals are neither absolutely calibrated (despite case markings) nor do they necessarily remain on frequency once in a circuit. The exact frequency of operation depends upon both the ambient temperature and the circuit parameters. It is, therefore, necessary to state precisely your requirements when ordering from a crystal or scanner manufac-
turer. It isn’t like the old days of 40-meter CW where you bought a crystal ±2 kHz.

Crystals for any given scanner can usually be purchased from the respective dealers or from a crystal manufacturer. Before you order, especially from a crystal manufacturer, you will need certain facts about the required crystal. One piece of data, of course, is the operating frequency. To find this you must know both the channel frequency and the i-f of your unit. You also need to know whether crystal operation is in a fundamental or one of several overtone modes.

Vhf-fm scanners typically (but not universally) operate in the fundamental mode on low band (30-50 MHz), the third overtone on high band (148-174 MHz) and the ninth overtone on uhf. Assuming this to be true in your own receiver, use one of the following formulas for determining crystal frequency:

Low band (including 6 meters):

\[
\text{Crystal frequency} = \text{Channel frequency} + i-f
\]

High band (including 2 meters):

\[
\text{Crystal frequency} = \text{Channel frequency} + i-f
\]

Uhf:

\[
\text{Crystal frequency} = \frac{\text{Channel frequency} + i-f}{3}
\]

\[
\text{Crystal frequency} = \frac{\text{Channel frequency} + i-f}{9}
\]

Note that in some receivers the manufacturer will specify that you are to **subtract** the i-f from the channel frequency.

Prepare a simple chart for the crystal supplier listing the following:

1. Make and model of receiver.
2. Crystal frequency desired.
3. Holder style (consult catalog).
4. Mode of operation (fundamental, third overtone, etc.).
5. Circuit capacitance.
6. Drive level in milliwatts.
7. **Maximum allowable series resistance.**
8. Temperature (if in oven).

This information can usually be found in the service manual for your receiver. If a manual is not available consult Howard Sams’ *Scanner-Monitor Service Data.* This handbook covers most of the more popular types of scanner receivers.

It is worth noting that the cost of crystals can almost double the cost of the scanner if you don’t shop around a little. It is often advisable to buy a unit custom set-up from the factory with all crystals in place. This is generally less expensive and is also more likely to result in satisfactory performance should your local dealer be unable to provide good quality alignment service.

other scanner-receiver circuitry

For the most part the remaining

*Scanners-Monitor Servicing Data, Volume 1, SD-1, 1972, and Volume 2, SD-2, 1973, Howard W. Sams and Co., Inc., $4.95 each from Ham Radio Books, Greenville, New Hampshire 03048. Volume 1 covers the B&K PF-1; Browning XM-888; Johnson Duo-Scan Low Range, High Range, 241-0340-001, and 241-0340-002; Midland 13-915 and 13-925H/L/M; Pace Scan 108H/L/U, 280 and 308; Pearce-Simpson Gladding Hi-Skan; Pennys 981-6065, 981-6066 and 981-6067; Realistic Patrolman Pro-7 (20-5001), Patrolman Pro-8 (20-162) and Patrolman Pro-9 (20-164); Sonar FR-104, FR-105, FR-2516, FR-2517, FR-2525, FR-2526 and FR-2528; and Teaberry Scan "T". Volume 2 covers Electra Beareact III; Midland 13-922 and 13-927; Regency R1HT1-1, R1LT1-1, R1UT1-1, R2HT1-1, R2LT1-1, R2-UT1-1, TME-16U, TMR-1U and TMR-8U; Tennlec Tennetec 1/11/1V; and Unimetrics Digi-Scan 4+4 and Digi-Scan-8.

Also available is *Scanner-Monitor Data, Volume III, SD-3, 1974, $5.95 from Ham Radio Books. This volume includes schematics, parts lists and service adjustments for the following scanner receivers: Electra Jolly Roger; Johnson Hi/Lo Duo-Scan, UHF/VHF Duo-Scan (late production), UHF Mono-Scan and VHF Mono-Scan; Midland 13-914; Pearce-Simpson Cherokee 8/8, Cheyenne 8 (PR-78) and Comanche 16 (PR-160); Regency MT-15S, TME-16H/L, TME-16H/LH/U, TME-16H/LL/U, TME-16H/LM/U, TMR-1H, TMR-1L, TMR-4H, TMR-4L, TMR-8H, TMR-8L, TMR-8H/LH, TMR-8H/LL and TMR-8H/LM.*
circuits found in scanner receivers will closely parallel similar circuitry in other vhf-fm receivers including quite a few two-meter fm transceivers.

The second mixer of one popular scanner receiver is shown in fig. 7. Input signals to the mixer are coupled through a tank circuit and a ceramic crystal bandpass filter. The output of the mixer is tuned to the lower i-f by another, similar crystal filter.

Since most commercial transmitters use narrowband fm (±5-kHz deviation) a 12- to 16-kHz passband is required. This allows the use of many low-cost ceramic filters such as the Murata line from Japan. These same filters in different bandwidths are used in many home and auto fm and fm-stereo broadcast radios.

I-f amplification is almost universally supplied by a one- or two-stage IC amplifier. The detector might be an ordinary diode type or it might be an IC. Some scanners use the standard ratio detector/discriminator circuits which feature i-f amplification, limiting and detector diodes in one IC package. An example is the RCA CA3043. Others use an IC quadrature detector such as the Motorola MC1357.

An unusual squelch circuit is shown in fig. 8. This design uses switching diodes to generate squelch action. This circuit produces little audio distortion because low-level ac (i.e., audio) signals can ride on top of high levels of dc which forward biases the diode. The circuit operates by

causing the transistor to saturate. When that occurs the B+ to the diodes is shunted to ground, causing the diodes to be reverse biased. This cuts off the audio path. When the transistor is inoperative

again the B+ biases the diodes to pass audio signals.

future of scanners

The scanner market will undoubtedly be soon overrun with lower cost import and domestic models. Many of these receivers will require modification, even to the extent of completely changing the front-end tank circuits to a new range, before they can be used on the amateur bands. Others either already have sufficient range or will be available in amateur band models. In either event expect to see more amateur use of these receivers. They allow you to monitor several active frequencies or repeaters at one time. Perhaps the next logical extention of this concept is to make a transmitter in the same box which also scans. The combination could then be set to keep tabs on all local activity.
This article describes the i-f and audio circuitry of a single-sideband transceiver designed by the Applications Department of Plessey Semiconductors using their SL600-series integrated circuits. The transceiver may be used at any frequency from a few kHz to 500 MHz.

The unit described in this article consists of a single printed-circuit board which requires only the addition of a local oscillator, a preselector, a linear amplifier, volume control, microphone and loudspeaker to build a complete transceiver.

receiver

The receiver is a single-conversion superhet with a 9-MHz i-f. To optimize its intermodulation performance the incoming signal is fed directly to a hot-carrier diode ring mixer and then to the crystal filter; there is no rf amplifier. The i-f sensitivity is such that at frequencies of 30 MHz or less no rf amplification is required if a reasonable antenna is used (as it would be with a transceiver). However, if the receiver is used at frequencies above 30 MHz, or with a less than ideal antenna, some rf gain may be necessary to obtain the necessary noise figure. The rf amplifier should have the lowest gain consistent with the frequency and antenna to be used and must have good large-signal handling capability if receiver performance is not to be degraded.

The mixer is an Anzac MD108 hot-carrier diode double-balanced modulator.* This device was chosen for its conveniently small size, high performance and low cost, but similar devices from other manufacturers could also be used. All the ports of this modulator are designed for 50 ohms; two have a frequency range of 5 to 500 MHz while the third covers the frequency range from dc to 500 MHz. The input from the antenna is applied to the dc- to 500-MHz port via a preselector, and the local oscillator—at a level of +7 dBm (500 mV rms) is applied at pin 8 (see fig. 1). The mixer output from the rf port passes through a toroidal transformer to match it to the 500-ohm input impedance of the crystal filter. If other types of filters are used it may be necessary to re-design the impedance-matching transformer.

Once the signal has passed through the

*Anzac MD-108 double-balanced mixers are available in small quantities from Anzac Electronics, 39 Green Street, Waltham, Massachusetts 02154. The price is $7.00 each, plus postage.
crystal filter, a 2.4-kHz bandwidth 9-MHz filter with 90-dB stopband suppression, there is little further risk of cross-modulation or intermodulation. The i-f strip consists of three cascaded Plessey SL612C* i-f amplifiers followed by an SL640C product detector. Without agc applied each SL612C has 34-dB gain and 15 MHz bandwidth. Since a broadband i-f strip consisting of three SL612Cs has more than 100-dB gain and 15 MHz bandwidth, it can very easily become unstable. Therefore, the circuit board layout is very important (see fig. 4). It is relatively easy to build a three-stage, broadband i-f strip on double-sided printed-circuit board if the component side has a plane of grounded copper, but on single-sided board the layout shown in fig. 4 should be rigidly adhered to.

The beat-frequency oscillator for the product detector uses an fet circuit that delivers about 100 mV rms to the SL640C product detector. This oscillator also supplies the carrier for the transmitter balanced modulator. One of two crystals, for upper or lower sideband, is selected by a diode switching arrangement.

The detected audio from the product detector drives an SL630C audio output stage which is capable of providing about 65 mW to headphones or a small loudspeaker. The detected audio also drives an SL621C agc system. Since the SL630C has voltage-controlled gain, the volume control consists of a potentiometer which provides a control voltage to the SL630C. If 65 mW is insufficient output (it is worth listening to it before deciding as it is usually adequate for domestic listening) an external, higher power audio amplifier may be driven either from the SL630C output or directly from the product detector.

The agc is provided by an SL621C audio-derived agc system. Its output is buffered by a transistor Q2 so an S-meter may be connected if desired. Since Q2 reduces the available agc voltage swing,
fig. 3. Circuit for the all-IC 9-MHz ssb generator and receiver. Crystal filter is a KVG XF-9B or SEI QC1246X with matching sideband crystals. A recommended printed-circuit layout is shown in fig. 4 & 5.
agc is applied to all three i-f stages to ensure that the agc can cope with the receiver's 112-dB dynamic range. If resistor R_7 is replaced by a germanium diode there will be a delay to the first-stage agc—this may improve receiver noise figure very slightly on small signals—and is barely worthwhile. Capacitors C_{16}, C_{18} and C_{20} are kept down to 4700 pF to retain the ignition suppression characteristics of the system.

transmitter

The transmitter is also a single-conversion design. It generates a 9-MHz single-sideband signal using the same crystal filter as the receiver. The 9-MHz ssb is converted to the final operating frequency by the MD108 ring mixer; the unwanted frequency product is removed by the preselector. This system requires no signal switching between the antenna side of the preselector and the transmitter/receiver side of the crystal filter on the change-over from receive to transmit. All the transmit/receive switching on the board is achieved by turning on the appropriate power line (transmit or receive) and grounding the unused line. The grounding of the unused line is very important as instability can result if it is not done.

The audio input from the microphone is amplified by an SL622C agc amplifier which will give a constant 100-mV rms output for a 60-dB input range. If a single-ended input is used rather than a balanced input, dynamic range is reduced to about 46 dB. In most systems 60 dB input dynamic range is too large, 40 dB being sufficient, so resistor R_5 has been included in the circuit. If 60 dB dynamic range is required resistor R_5 should be omitted and C_9 reduced to 4700 pF.

The audio output from the SL622C
microphone amplifier goes to the SL640C double-balanced modulator. The carrier input to the balanced modulator is fed by the bfo (which works on both transmit and receive since its power may be derived from either line through diodes CR5 and CR6). The output from the impedance-matching transformer and is mixed with the local oscillator signal to provide the final transmitter frequency (and an image which is removed by the preselector). This is amplified by the linear amplifier and transmitted. The output from the preselector is about 70 mV rms.

SL640C is a double-sideband signal with low carrier feedthrough (usually -40 dB) which is amplified by an SL610C. The gain of this particular device may be controlled either by an alc signal, derived from the transmitter linear amplifier or manually with a dc gain control. The amplified dsb signal is sent through the crystal filter to remove one sideband. Resistors R1 and R2 ensure a correct match to the crystal filter both on transmit and receive.

The ssb output from the filter passes to the doubly-balanced diode mixer via the

construction

The complete system is built on a single-sided printed-circuit board that requires two jumpers—one in the receive supply, the other in the transmit supply. If only a receiver is required, components

*A 30-pF (nominal) capacitor from the input pin to ground will improve the passband ripple and a 20-pF capacitor from the output pin to ground will do the same. In practice, however, it has been found that these components make little difference (1-dB additional passband ripple). The KVG XF9B is the same as the SEI QC1246AX.

38 [hr] august 1974
R1 to R5 inclusive, C1 to C13 inclusive, C10, and the semiconductors U9, U10, U11, CR5 and CR6 must be omitted, a wire jumper connected where CR5 was, and a 500-ohm resistor connected from the filter end of R6 to ground.

The layout of the board is quite critical and changes of printed-circuit design will almost certainly lead to instability unless double-sided board is used. The design shown may be built on double-sided board quite safely.

The components used in the original unit are given in the schematic. Bead tantalum capacitors are used where possible for their small size but since they are sometimes hard to find in high capacitances at high voltages, aluminum electrolytics have been specified in three places. The WeeCon capacitors specified may be replaced with other miniature high-K ceramic capacitors but the values of components should not be changed. The resistors are all 1/8-watt, 10% types.

Transformer T2 is made on a ITT CR-071-8A toroid core (the Amidon T-37-2 is a suitable substitute). Four 2-inch (5-cm) lengths of number-26 wire are twisted together and two turns are wound on the core with the twisted wire. The ends are then opened and three windings are connected in series for the filter winding and the fourth is used as the winding connected to the diode ring. Transformer T1 is wound on a core of the same type and has a 6-turn primary and a single turn secondary.

This ssb transceiver is probably the simplest which may be made using the Plessey SL600 series ICs, but its performance is not compromised in any way. It has a sensitivity of better than 0.5μV for 10-db signal-to-noise ratio, it can handle signals of over 200 mV rms at the diode mixer with minimal intermodulation distortion, and the board uses less than 500 mW on transmit or receive. It has been designed so that anyone with basic technical competence but without previous experience in ssb transceiver design can build a successful ssb transceiver.
Circuit description
of a simple harmonic
phase detector
that requires
input signals
to have a 2:1
frequency relationship

The phase lock loop has found many applications in modern electronics. One of the more important, to radio amateurs, is in the detection of fm signals where a voltage-controlled oscillator or vco is maintained at zero beat with the incoming fm signal. The control voltage generated for this application by a phase detector becomes the audio-frequency output signal. Suitable integrated circuits for this purpose are becoming available, and offer much convenience to the builder.

However, a problem in design and layout may appear wherein the vco signal may leak into a high-gain i-f system, possibly even causing saturation. An answer to this situation is the harmonic phase detector shown in fig. 1. This phase detector requires that the local vco operate at twice the intermediate frequency of the receiver. As a matter of fact, it won't even work if the two input signals are the same frequency! The circuit can be seen to represent a pair of peak-reading diode detectors of opposing polarity, with differential output.

The action of this circuit is illustrated in figs. 2 and 3. In fig. 2, where both signals cross the zero axis simultaneously, the positive and negative peaks of the
difference between the two input signals will be equal. Under these conditions the differential output signal will, of course, be zero. In fig. 3, however, when a phase difference exists between the cross-over points of the two input signals, this equality no longer exists, and a differential output voltage will be produced. The magnitude and polarity of the resultant output will be a function of the degree and direction of the phase difference.

In common with the reciprocating detector this circuit was also devised to receive double-sideband suppressed-carrier signals as I am especially interested in the potential advantages of portable and mobile equipment in which the entire input to the final amplifier might be in the form of audio frequency power, obtained from a transistor amplifier, operating directly from the car battery.

By referring to fig. 3 it can be seen that polarity reversal of the lower frequency, representing the double-sideband signal, will merely interchange the relative positions of the two peaks of either polarity. This change can have no effect upon the polarity or amplitude of the differential output.

A possibly over-simplified explanation would be to say that the 180° phase shift, inherent with the double-sideband signal, when compared with twice its frequency, is equivalent to a phase shift of 360°,
which is no phase shift at all! Suitable hard limiting of the double-sideband signal before its application to the phase detector, followed by suitable integration of the detector's output pulses permitted the necessary phase lock for double-sideband reception, but that's another story.

By grounding one of the two inputs (because the inputs are essentially in series) the detector may be made to function as an indicator of the most common form of second harmonic distortion of an audio-frequency signal, where limiting of either the positive or negative peaks is present. This fact suggests that the harmonic content of the human voice might conceivably be sufficient to lock the tuning of a ssb receiver with the aid of suitable filtering.

This simple circuit appears to have many possible applications which the amateur experimenter might find useful, and this article is prepared with that hope in mind.

reference
Drake gear keeps getting better and better...

NOW, OUR FINEST...

THE NEW

Drake C-Line

NEW FEATURES:
- 1 kHz Dual Concentric Dial Readout
- Receiver and transmitter lock together in transceive operation
- No side controls
- Iridized cadmium-plated chassis
- Compatible with all previous Drake lines

NEW R-4C FEATURES:
- 8-pole crystal filter combined with passband tuning, SSB filter supplied
- Provision for 15 additional accessory 500 kHz ranges
- Transistorized audio
- Optional high-performance noise blanker
- AVC with 3 selectable time constants
- Optional 8 pole filters available for CW, AM, RTTY
- $499.95

R-4C Receiver
The receiver hams have dreamed of...

NEW T-4XC FEATURES:
- Plug-in relay
- More flexible VOC operation; including separate delay controls for phone and CW
- Crystal control from front panel for amateur, Mars, commercial uses
- Provision for AFSK RTTY operation
- $529.95

T-4XC Transmitter
The one worthy of the R-4C

See for yourself—at your dealer’s.

R. L. DRAKE COMPANY
540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288-017
Amateur radio station installations on private yachts of various sizes is increasing at a rapid rate. Operating a ham station on your boat is a nice way to combine your hobbies. However, it is also a hobby combination which has special requirements, both legal and practical. Let's discuss some of these special requirements, based on my personal experience as well as on observations of shipboard installations by other amateurs.

Grounds

The radio ground system on a boat has three functions: rf grounding, lightning protection and corrosion prevention. For rf the rule is very simple—the larger the ground area, the lower the ground resistance and the greater the antenna efficiency. If it is large enough, the ground does not have to be in physical contact with the water—it can serve as one plate of a low-reactance series capacitor, with the water serving as the other plate.

The safest rule to follow for a lightning ground is to have lots of ground area in direct contact with the water, and a good direct-contact rf ground would also be a good ground for lightning. The lead wire should be large—at least number-10, and preferably larger. The radio and
lightning grounds can be kept separate, either by using a lightning arrestor or by having a heavy knife switch which grounds the antenna when it is not in use. One commonly used method is to make up a lead with a heavy clip on one end and a length of bare wire or a zinc electrode on the other, fastening the clip to the antenna and dropping the electrode end over the side during storms or when the boat is not in use.

There are two factors that must be considered in anti-corrosion protection. These are corrosion due to dissimilar metals, and corrosion from stray current flow. On most boats the regular anti-corrosion measures—zinc electrodes, plus cathodic protection on metal hulls—will also take care of any stray currents resulting from the radio installation. However, a good precaution is to replace the original power switches in the radio with a type which opens both sides of the supply, completely isolating the radio from the power source when it is turned off. It is also a very good idea to inspect all underwater metal on your boat a few weeks after making any new installation or change, to detect any problem before major damage occurs.

One very successful water contact ground is made from two copper tubes, typically 3/4- to 1-inch (1.9- to 2.5-cm) in diameter and 10-feet (3-meters) long, one mounted on each side of the keel. A variation of this uses a copper sheet, 3- to 4-inches (7.6- to 10-cm) wide by 10-feet (3-meters) long, tacked to the side of the keel or to the bottom of the boat. Both are good. On sailboats, the ground connection is often made to the bolts holding the lead keel. This seems to be satisfactory, but the ground lead should be connected to a number of the keel bolts to provide the lowest contact resistance.

On fiberglass boats a good non-contact or capacitance ground can be made by attaching 10 square feet (about one square meter) or more of light copper screen or perforated mesh to the hull below the waterline, using resin as the adhesive. This should also be satisfactory with wood boats, but I have never seen it so used. Some fiberglass sailboats carry the lead ballast inside the hull, as a casting set into the keel, and this can be used as a capacitance ground. All of these non-contact rf grounds should be supplemented by a lightning ground: I have seen an internal keel sailboat which was struck by lightning in which the charge escaped to the water by punching a number of small holes through the fiberglass at the upper edge of the keel casting.

The ground system of the sailboat on which I operate W3MR/M is a combination type. All shroud chainplates are connected by number-8 aluminum wire, a total of about 50 feet (15 meters). This makes a fairly good capacitance ground. In addition, two standard zinc teardrops on the outside of the hull are connected to this bus, further reducing the ground resistance, and giving lightning and corrosion protection. These zinc teardrops require replacement on occasion, showing that there is some current flow.

antennas

On many boats the mounting of an amateur antenna is complicated by the fact that the best antenna mounting place has been preempted by a marine radio installation. If a marine radio installation is already aboard, or one is contemplated, it should be remembered that the amateur station must be completely independent of and must not interfere with the marine installation. Compromises of the amateur antenna system, several trial installations, use of bandpass filters and the like, may be necessary.

Any of the mobile-whip or loaded-whip antennas can be used on a boat if one factor is considered. This is the extra lead length to ground, usually on the order of feet on a boat instead of inches as on an automobile. As a result, fixed-tuned loading coils will usually resonate outside the band. One solution is to use the loading coil for the next higher frequency band. Since the antenna is
actually being fed above ground, it has higher than normal impedance plus reactance. Even with adjustable loading coils, a matchbox is a good idea.

Some good mounting places for amateur-band whip antennas are: at the upper edge of the pilot house on the side away from the marine antenna; at the rail, usually on the stern quarter; at the masthead; or strapped to the mast, if it is wood. Try to keep a minimum of several feet of separation between the antenna and rigging, and as far apart as possible from other antennas.

Boats with masts can use wire antennas. On a power boat an antenna from the bow to a midships mast to the stern flagpole is good; feed can be at any convenient point, using a matchbox. On sailboats a standard installation is to insert large compression insulators at the top and bottom of the backstay, feeding it from the bottom end. Two-masted boats can have an antenna hung between the masts. My installation does this, using three separate lengths of wire cut for 10, 15 and 20 meters and operated as monopoles. The feedline coax shield is connected to the shrouds, which are grounded as noted above. In comparison tests with several other trial antennas this arrangement consistently gave the best results.

It is not really necessary to insulate rigging or wire to use it as an antenna. The objective is to get rf current flowing in a conductor that acts like an antenna. For example, on a typical medium-size sailboat the mast will be a 32- to 40-foot (about 10- to 12-meter) length of aluminum, a good approximation of a half-wave on 20 and a quarter-wave on 40. There are several ways to induce rf current flow. Some common ones are: feed the bottom end directly, if it is insulated (used on my boat on 40 and 80); use one of the shrouds as a gamma match; run a piece of insulated wire several feet (one meter) up the mast, again as a gamma match; or form the running-light leads (when present) into a coil, using this as part of a matching network. The key to success in the use of one of these methods is a good antenna tuner (see later)—and patience in making trials.

Beam antennas are rarely seen on small boats—they are too complicated and bulky, and not worth the trouble. If you want to try using a beam there are several short-element designs on the market, and a number have been described in various handbooks. Loading coils can be used to bring a TV antenna into resonance on 6 or 10 meters, although the bandwidth will be narrow. Another possibility is an array of three or four whip antennas, say on the wheelhouse or even on the quarters.

Still another possibility is a shore antenna. For temporary use a trap vertical lashed to a dock piling is good, though it may have to be retuned as the tide changes. It is often possible to use a long-wire antenna, end fed from an antenna tuner, and run as far as possible in the general direction of preferred signals. At the ship’s home port a permanent rotary beam installation may be possible.

matching

If antennas other than trap verticals are used, it is a good bet that the antenna tuner will have to handle some unusual feed impedances. This eliminates use of some of the standard designs, which are intended for a limited range of loads and relatively low reactance.

After a number of trials I settled on a homebrew antenna tuner that is a modification of an ARRL Handbook design of some years ago. One or another of its switch settings will permit matching any impedance over the range from 3 to 30 MHz; the last position grounds the antenna. The tuner described in the May, 1974, issue of *ham radio* would be a good one for this application. Because of the many possibilities, adjustment of the tuner can be tedious. It seems to be a good idea to try a pi configuration first. If this does not give a satisfactory match, try the low-impedance positions for loop-fed antennas, and high-impedance
settings for other types. Several configurations and settings of your tuner may give a match; use the one which is least critical to a change in frequency.

In addition to matching, an antenna tuner also helps keep the chassis of the transmitter at rf ground. Sometimes it will still be necessary to add filtering to the mike and key leads, and to set up special grounds for the transmitter chassis.

operating convenience

Because of space limitations, it is very difficult to get an operating position on a boat which is really convenient. The best I have seen was on a fair sized sailboat, where the place called "navigators area" on the ship's plans had been rebuilt into a radio area. Since this boat was used only in inland waters, the loss of navigational convenience could be accepted.

A suggestion—make a temporary installation, and use it long enough to find the type of operating you prefer—tied up or underway, phone or CW, net or casual, and so on. Then work out a convenient position for this type of operation. If you like net or favorite frequency operation, don’t forget the possibilities of crystal control and a remote operating position.

legal matters

There seems to be considerable confusion about the proper identification when operating aboard a boat. The following are the tests I use:

If underway, operation is obviously mobile.

If at anchor or tied up, and the ship can get underway without interrupting a contact, operation is still mobile.

If some shore-side facilities are being used, and operation would have to be interrupted to get underway, operation is portable rather than mobile (typically when shore power or a shore-side antenna are used).

If the ship’s location is in waters bearing the chart notation, “Use International Rules of the Road,” the designator is still mobile followed by the ITU Region, rather than a location and/or call area. The Americas are in Region 2. Note that operation in coastal waters of another country requires permission of that country.

For the record, here is what the FCC says about your operation from shipboard:

97.101 Mobile stations aboard ships or aircraft.

In addition to complying with all other applicable rules, an amateur mobile station operated on board a ship or aircraft must comply with all of the following special conditions: (a) The installation and operation of the amateur mobile station shall be approved by the master of the ship or captain of the aircraft; (b) The amateur mobile station shall be separate from and independent of all other radio equipment, if any, installed on board the same ship or aircraft; (c) The electrical installation of the amateur mobile station shall be in accord with the rules applicable to ships or aircraft as promulgated by the appropriate government agency; (d) The operation of the amateur mobile station shall not interfere with the efficient operation of any other radio equipment installed on board the same ship or aircraft; and (e) The amateur mobile station and its associated equipment, either in itself or in its method of operation, shall not constitute a hazard to the safety of life or property.

Hamming from your boat can not only be a lot of fun, it can also enhance your boating safety by providing a much-needed communications link in time of trouble. Like any amateur installation in less than ideal circumstances, the typical shipboard ham station will be limited in both operating convenience and efficiency—but that won’t keep any enthusiastic boater/ham off the air. Just listen for W3MR/M on all bands.

reference

NOVICE RADIO GUIDE
by Jim Ashe, W1EZT

A complete handbook for the beginning amateur. Covers basic communications theory. How to build transmitters and simple receiving equipment. How to set up antennas. Putting your station together, plus valuable appendices. How to learn the code and more. Any beginner will go further faster and have more fun with this exciting new book.

Order HR-NR

144 pages $3.50

HOW TO USE INTEGRATED-CIRCUIT LOGIC ELEMENTS
Second Edition by Jack W. Streater

This book was written for those who have not previously used or designed digital logic circuits. It is meant to help them prepare for the broad inroads digital integrated circuits are making. Experimenters will find this book interesting and understandable and will appreciate the fascinating logic circuits which are presented.

Order 21081

Only $4.50

Brand New — Volumes III & IV
SCANNER-MONITOR SERVICING DATA
Volumes I, II, III & IV

These important books each contain servicing data for several dozen of the most popular UHF and VHF receivers now in use. Last minute information includes schematics, voltages, alignment, part lists, crystal data, pictorials and troubleshooting information.

Volume I contains models from B & K, Browning, Johnson, Midland, Pace, Pearce-Simpson, Penney's, Realistic, Sonar and Teaberry. Order 06557
Volume II has models by Regency, Electra, Midland, Tennelec and Unimetrics. Order 06558
 a Volume III describes models from Electra, Johnson, Midland, Pearce-Simpson and Regency. Order 06560
 a Volume IV offers equipment by Regency, J. C. Penney, LaFayette, Midland and Unimetrics. Order 06635
 * NEW THIS ISSUE!

Any one volume - $4.95
All four volumes $16.95

order today from

HAM RADIO, Greenville, NH 03048

More Details? CHECK-OFF Page 94
VHF HANDBOOK
FOR RADIO AMATEURS
by Herbert S. Brier, W9EGQ
and William I. Orr, W6SAI

This big new book covers the field of VHF communications for both the newcomer and the old-timer. Covers such subjects as VHF FM, Satellites, elimination of VHF TVI problems, VHF antennas including special antennas for satellite work, plus a number of interesting construction projects. Be sure to order your copy now.

Order RP.VH Just $5.95

THE ARRL ANTENNA BOOK 13th EDITION
Here is the latest edition of this popular standby. Extensively revised, this book covers both the theory and practical application of all types of antennas for all amateur bands. Whether your station is for DXing, ragchewing, or FM this is a must book.

Order AR-AM Only $3.00

TEST EQUIPMENT FOR THE RADIO AMATEUR
by H. L. Gibson, G8CGA

This beautiful new, hardbound volume sets a whole new standard on this subject for amateurs. Included are chapters on how to build test equipment, chapters on how to use test equipment, plus chapters on the theory of test equipment. You are sure not to be disappointed by this important book.

Order RS-TE Only $5.95

LINEAR IC PRINCIPLES, EXPERIMENTS & PROJECTS
by Edward M. Noll, W3FQJ

A real blockbuster from popular Ham Radio author Ed Noll, this book devotes nearly 400 pages to linear IC’s. Here is a very practical volume aimed at the experimenter with literally hundreds of applications and much valuable background information. Of particular interest are a number of circuits useful in amateur designs including a whole chapter devoted to two way radio. We know this will be a real bestseller so be sure to order your copy today.

Order 21019 Just $8.95

Add 25¢ per book shipping and handling.
Free shipping 3 or more books.
electronic speed control for RTTY machines

Single-knob RTTY speed control permits instant speed change from 0.032-inch (0.8-mm) aluminum sheet (fig. 1) and, after removing the governor mechanism, fastened it to the motor shaft. The motor shaft had a hole which accepted a small machine-screw tap, allowing me to bolt the pulse wheel directly to the end of the shaft. A General Electric H13A1 optical coupler completed the motor-speed sensor. The coupler, which consists of a light-emitting diode (emitter) and phototransistor (detector) with a gap between them, mounted in a plastic housing, is designed for pulse-wheel operation. The emitter is excited continuously and the pulse wheel teeth interrupt the beam to the detector, as shown in fig. 1. I used a 33-tooth wheel with slots made by sawing 1/4-inch.

In a rash moment I decided to invest in a governor-motor Kleinschmidt TT271 KSR page printer to use for high speed operation. The prospect of 60 to 100 wpm operation for $40 was just too good to pass up. Much to my pleasant surprise, the governor worked perfectly and the machine generated no rf interference in my receiver. With 100 wpm gears and various governor adjustments it would run from 67 wpm to over 100 wpm and copy was fine at each standard speed. Then I decided to design and build a solid-state motor drive to replace the governor, permitting me to control speed from a console knob.

speed sensor

The first problem was to sense motor speed. For this I made a pulse wheel about 1-3/4 inch (4.5 cm) in diameter.

K.H. Sueker, W3VF, 110 Garlow Drive, Pittsburgh, Pennsylvania 15235
(6.4-mm) radial cuts with a coping saw. Fortunately, the wheel slots need not be made with precision.

circuit

The circuit is shown schematically in fig. 2. Pulses from the tachometer, squared up by transistor Q1, trigger a monostable multivibrator consisting of Q2 and Q3. The monostable multivibrator converts the tachometer output signal to a series of constant-amplitude, constant-width pulses with repetition rate proportional to motor speed. The average voltage resulting from this pulse train is also proportional to motor speed and so can serve as a highly accurate dc tachometer.

Operational amplifier U1 forms a three-pole Butterworth active filter which develops the required dc voltage from the pulse train. This filter configuration was chosen to give good ripple suppression with minimum time delay. Positive dc output current from U1, proportional to motor speed, is compared to a negative reference current derived from the speed switch and adjusting pots. Op-amp U2 switches sharply from on (positive output) to off (negative output) when the tach-derived current exceeds the reference current. It serves as a highly sensitive speed detector and drives another optical coupler, this time an H15A1. This coupler is similar to the H13A1 but without the mechanical gap so sensitivity is much higher. The coupler switches transistor Q4 in the gate circuit of the triac which, at long last, turns the motor on and off. This second optical coupler isolates the control circuit from the 120-volt line.

Operation of the triac circuit is directly analogous to that of the governor. The motor voltage is either on or off, not continuously phase modulated. This permits considerable simplification in the gating circuitry and provides all the sensitivity needed for this type of application. The cycling rate is somewhat slower than that of the governor, however, probably due to the minimum on time limitations of a triac on a 60-Hz line. After working with the control circuitry for a while, you cannot help but admire the simple, rugged and sensitive mechanical governor with which these machines were originally equipped.

The resistors and pots in the speed reference network permit the circuit to be adjusted to each of the standard speeds of 60, 67, 75 and 100 wpm; these correspond to baud rates of 45.45, 50.00, 56.88 and 74.20. Baud rates determine the precise speed ratios required, so a frequency counter can be used to set the speeds. In the Kleinschmidt machine, the motor shaft revolves at 3600 rpm for operation at the wpm speeds marked on the gears. Speeds may also be set by trial and error copy and that is how I did the job.

Operation over the range from 60 to 100 wpm is possible with the 100 wpm gears installed. However, the speed stability at 60 wpm leaves something to be desired. I ended up using the 67 wpm gearing and running the motor up to 5400 rpm for 100 wpm copy. This seems...
to pose no particular problem for the motor since it will run much faster at full voltage, even under full load. I doubt that the additional bearing or brush wear is significant in amateur service. The 67 wpm gearing results in nearly normal shaft speed (roughly 3240 rpm) at 60 trigger pulses at the base of Q2. With the 15k feedback resistor in place, the mono-stable pulses at the collector of Q3 must not overlap at the maximum pulse-wheel speed. This may be checked with a scope or by observing the dc voltage at the collector of Q2.

![fig. 2. Schematic diagram of the RTTY speed-control circuit. Watch for built-in hash-suppression capacitors in the printer motor circuit, as they can destroy the triac motor driver.](image)

wpm, and motor momentum serves to smooth out speed fluctuations caused by the rapidly clutched load.

adjustment

Some comments on adjustments are in order since no two pulse wheels or photo couplers will be identical. The 330-ohm LED dropping resistor and the 2.7k resistor in the base of Q1 may be changed, if necessary, to produce clean, steady The voltage should be proportional to pulse-wheel speed over the desired speed range, reaching about 3 volts at maximum speed. Decreasing the 0.022-μF timing capacitor or decreasing the 9.1k timing resistor will narrow the pulses and reduce the average voltage. The best combination is the one which permits the maximum voltage while maintaining linearity to 100 wpm.

The range on the speed pots is deliber-
ately restricted to make adjustment easier. The values shown, together with the 1.1k resistor to ground, allow exact speed ratios to be set. Exact speed settings, however, may require changing the 1.5k upper divider resistor or the 15k op-amp input resistor to compensate for higher current triacs or better heat sinking would permit the use of this speed control circuit with larger motors. Remember that the triac must supply 5 to 10 times normal current at turn-on while the motor is at zero speed. Also, a larger triac may require additional gate drive and a boost in the gate power supply.

Circuit components

None of the components used in this circuit are critical, though the timing resistor and capacitor should be types that are stable. Metal-film resistors and polycarbonate or polystyrene capacitors are suitable. If the GE photocoupler is not readily available, you can build your own using separate LEDs and phototransistors. Nearly any type of npn transistor is suitable for Q1 through Q4 (I used 2N3414s). The same is true for the diodes. Signal-type silicon diodes should be used in the transistor circuits, and lead-mount power diodes of at least zener diode tolerances, resistor tolerances or gearing different from that described.

One precaution should be observed regarding the triac: Do not connect a capacitor, even a small one, directly across the triac or load. The surge current at turn-on can instantly destroy the triac. A resistor of at least 22 ohms should be inserted in series with any capacitor which may already be present or which you may wish to add for noise suppression. My unit caused some receiver hash while on the bench, but quieted down completely when installed in the machine and connected to the built-in rf filter. The MAC10-4 triac, mounted to the chassis with the insulating hardware supplied, should handle loads to at least 3 amperes.
50-volt PIV in the power supplies. The op-amps may be individual 741 units or the 747 dual 741/741; pin numbers are shown for the TO5 type 741. Surplus units are available at attractive prices from various suppliers. The 6- and 12-volt power transformers are available from RTTY Journal and ham radio for about $15.00.

In summary, my variable-speed Kleinschmidt machine has now been on the air for several months. Those patient hams who have coped with my typing have reported no speed problems, and the copy has been excellent on my end. Commercial stations have been copied at all four speeds with perfect results as far as speed is concerned. Reworking surplus machines and building controls of this sort may be viewed by some as an unrewarding chore, but the pleasure of achieving instant speed change by twisting a little knob made it all worthwhile for me. Now for that FRXD20 in the corner...

reference

Explore the world of RTTY... with sophisticated equipment from HAL.

The RVD-1002. The silent, reliable RTTY video display unit from HAL.
The revolutionary HAL RVD-1002 RTTY video display unit "prints" an RTTY signal from any TU at the four standard data rates (60, 66, 75 and 100 WPM), using a TV receiver with slight modification. Or it will directly feed a TV monitor. Power consumption is low, thanks to the RVD-1002's solid-state construction. So turn on to silent, trouble-free RTTY — with the RVD-1002.
Price: $575 ppd, USA. Air shipment $10.

The silent RTTY keyboard — that's the HAL RKB-1.
The RKB-1 RTTY keyboard is loaded with features to make sending RTTY easy and fun. You get automatic letter/number shift at all four speeds, typewriter keyboard layout, and no clatter! The loop keying transistor is isolated from other keyboard circuits — wire it into any convenient point in your loop. Plus TTL logic, glass epoxy PC board, commercial grade keyswitches and more.
Price: $250 Assembled, ppd USA. Air shipment $5.

RTTY — and CW on one keyboard! The HAL DKB-2010.
All solid-state. Transmit at data rates of 60, 66, 75 or 100 WPM at the flick of a switch. Complete alphanumeric and punctuation keys, 3 carriage control keys, 2 shift keys, break key, 2 character function keys, a "DE-call sign" key, even a "Quick brown fox..." test key.
The DKB-2010 is equally versatile in the CW mode, with complete alphanumeric and punctuation keys, speeds from 8–60 WPM, and a "DE-call sign" key. The DKB-2010 includes a three-character buffer operational in either the RTTY or CW mode. Optional 64 or 128 key buffer also available.
Price: $425 Assembled, $325 Kit, ppd USA. 64 key buffer $100, 128 key buffer $150. Air shipment $10.

Commercial quality on an amateur's budget — the HAL ST-6 TU
Every amateur who knows his RTTY respects the ST-6 terminal as being the best. Autostart operation, an antispace feature and switch selection of 850 and 170 Hz shifts are standard. Circuitry is state-of-the-art, including DIP IC's on plug-in PC cards. Filters and discriminators are designed for standard RTTY tones. A 425 Hz shift discriminator is an option which allows superior reception when copying commercial press transmissions. Another option is the AK-1 audio frequency shift keyer for input to an SSB transmitter. The ST-6 and its options are available in assembled or kit form: Cabinet not included in kit.
Price: ST-6 $310 Assembled, $147.50 Kit, ppd USA. 425 Hz Discriminator $40 Assembled, $29 Kit, ppd USA. AK-1 AFSK $40 Assembled, $29 Kit, ppd USA. Air shipment: Assembled ST-6 with any or all options $10, ST-6 Kit $4, 425 Hz Kit $1, AK-1 Kit $1.

Enclosed is $_____ for: [] RVD-1002 [] RKB-1 [] DKB-2010 [] ST-6
Please specify [] Assembled [] Kit [] Options
Please send me more information on the following HAL products
[] RVD-1002 [] RKB-1 [] DKB-2010 [] ST-6
[] Complete HAL catalog

Name __________________________ Address __________________________ Call Sign __________________________
City/State/Zip __________________________ Illinois residents add 5% sales tax.

More Details? CHECK-OFF Page 94
Amateur radio is entering a new era of battery operations. Battery-powered, hand-held and portable fm transceivers are just one example. Battery-powered QRP operation is also popular. Look for a new emphasis on battery operation during field-day activities. In fact, the very changeover from vacuum tube to all solid-state electronic gear has awakened new interest in battery applications.

The energy crisis is the catalyst for further expansion. The battery-powered bus has made a successful debut; the battery-powered family run-about waits behind the oil curtain. However, the real expansion is likely to be within the framework of solar power. Batteries will carry us through the night.

The all solar-powered ham station is no wild fantasy. The primary-cell battery is a one-shot affair. A typical example is the common zinc-carbon battery. After its chemical energy has been converted to electrical energy it is discarded. The secondary-cell battery is rechargeable. Its energy can be drained off and then resupplied by recharging the battery from a source of electrical power such as a solar-energy converter or a standard battery charger. The most well-known secondary battery is the lead-acid battery used in your automobile.

When your battery-powered ham gear is removed from your car, the two most common secondary batteries are the nickel-cadmium and dry gelatin-electrolyte, lead-acid types.

battery ratings

Be it a primary or secondary type, the two most common battery ratings are voltage and ampere-hours (or milliampere-hours). Voltage is no problem because there are a wide variety of types available according to voltage. There are many 12-volt types, matching the most common voltage requirement of solid-state radio gear. Other voltages can be obtained with the proper series-parallel groupings of standard-voltage batteries. The parallel connection, of course, increases current capability and available ampere-hours.

The ampere-hour or milliampere-hour ratings of batteries are usually based on 10 or 20 hours of continuous operation. For example, a popular 12-volt nickel-cadmium battery has a 1.2 ampere-hour rating. This is based on a 10-hour discharge time and a cut-off voltage of 11 volts. What continuous current demand could be made on the battery over this time period?
10-hour period? Since the ampere-hour rating of the battery and operating time are known,

\[I = \frac{\text{Ampere-hour rating}}{\text{Time}} = \frac{1.2}{10} \]

\[= 120 \text{ milliamperes} \]

The ampere-hour rating is less when there is a greater current demand and is likely to be more for a lesser current demand. Graphs and charts are available for various commercial batteries and from these you can determine primary battery life or when a secondary battery needs to be recharged. A typical graph is shown in fig. 1.

The upper curve shows the 120- and 240-milliampere discharge curves. Notice, on the 120-mA curve, that at the end of 10 hours the battery's voltage has declined to 11 volts. If the current demand is doubled to 240 mA, the 11-volt level is reached after something less than 5 hours, indicating that the ampere-hour capacity of the battery is somewhat less than its 1.2 rating for a 10-hour period. The bottom set of curves shows the discharge time in minutes when a high current demand is made on the battery. Note that, for a current demand of 1.2 amperes, the 11-volt level is reached after a time interval of 55 minutes.

An example of a battery chart is given in table 1 for the popular D-size zinc-carbon (LeClanche) dry battery. Battery life is related to how many hours per day it is switched into operation. Take a current drain of 100 mA as an example. Note that, for 2-hours operation per day, the battery potential will drop to 1.2 volts after 29 hours. When the battery is operated continuously with a current drain of 100 mA its anticipated life to cutoff potential of 1.2 volts is only 9.6 hours.

<table>
<thead>
<tr>
<th>Starting drain schedule</th>
<th>0.8V</th>
<th>0.9V</th>
<th>1.0V</th>
<th>1.1V</th>
<th>1.2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hours/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>525</td>
<td>500</td>
<td>475</td>
<td>450</td>
<td>430</td>
</tr>
<tr>
<td>20</td>
<td>295</td>
<td>270</td>
<td>260</td>
<td>240</td>
<td>210</td>
</tr>
<tr>
<td>30</td>
<td>210</td>
<td>185</td>
<td>175</td>
<td>155</td>
<td>135</td>
</tr>
<tr>
<td>50</td>
<td>125</td>
<td>113</td>
<td>103</td>
<td>89</td>
<td>77</td>
</tr>
<tr>
<td>100</td>
<td>57</td>
<td>50</td>
<td>45</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>150</td>
<td>33</td>
<td>29</td>
<td>25</td>
<td>18.5</td>
<td>14</td>
</tr>
<tr>
<td>200</td>
<td>18</td>
<td>15.5</td>
<td>11.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>7</td>
<td>4.5</td>
</tr>
<tr>
<td>300</td>
<td>11</td>
<td>8.5</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

4 hours/day					
10	660	620	580	530	470
20	330	310	290	260	230
30	220	200	185	155	125
50	123	108	96	81	64
100	50	41	36	30	22
200	18	13.5	12	9	5.2
300	8	6	3.5	3	2

8 hours/day					
10	700	660	620	560	460
20	340	310	270	230	180
30	210	180	150	130	100
50	105	82	70	60	50
100	39	28	23	18	13.5

24 hours/day					
10	1050	745	600	500	370
20	360	260	210	165	125
30	200	145	115	88	65
50	92	67	52	40	29
100	32	24	18.5	13.5	9.6
200	11.5	8.5	6.4	4.5	3.2
300	6	4.5	3.5	3	2
The 1.5-volt LeClanche dry cells have been more or less standardized as to physical size and capacity. The data of table 2 are typical. Ratings are based on an operating temperature of 70°F, two current drain of 100 mA for two hours per day is assumed, the service life will be 45 hours. This can be verified from the specific chart for a D-cell given in table 1. These basic cells are used to construct

operating hours per day and a cut-off voltage of 1 volt for the first ten cells listed and 0.8 volt for the remaining cells except numbers 176 and 335, which are based on a cut-off of 1 volt.

Use a D-size cell as an example. If a

many of the higher voltage and higher current LeClanche dry-cell batteries. The F-type cell, for example, is popular in the construction of several popular communications batteries. To determine the service life when cells are connected

Table 2. Operating-hour capacities of standard LeClanche dry cells (courtesy Eveready).

<table>
<thead>
<tr>
<th>Cell</th>
<th>Starting Drain (mA)</th>
<th>Service Capacity (hours)</th>
<th>Cell</th>
<th>Starting Drain (mA)</th>
<th>Service Capacity (hours)</th>
<th>Cell</th>
<th>Starting Drain (mA)</th>
<th>Service Capacity (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.5</td>
<td>275</td>
<td></td>
<td>0.4</td>
<td>210</td>
<td></td>
<td>2</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>52</td>
<td>105</td>
<td>2</td>
<td>30</td>
<td>143</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>24</td>
<td></td>
<td>4</td>
<td>8</td>
<td></td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>290</td>
<td></td>
<td>0.5</td>
<td>435</td>
<td></td>
<td>2</td>
<td>510</td>
</tr>
<tr>
<td>AAA</td>
<td>10</td>
<td>45</td>
<td>108</td>
<td>2.5</td>
<td>103</td>
<td>145</td>
<td>10</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>17</td>
<td></td>
<td>5</td>
<td>51</td>
<td></td>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>350</td>
<td></td>
<td>0.6</td>
<td>710</td>
<td></td>
<td>2</td>
<td>560</td>
</tr>
<tr>
<td>AA</td>
<td>15</td>
<td>40</td>
<td>109</td>
<td>3</td>
<td>155</td>
<td>146</td>
<td>10</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>15</td>
<td></td>
<td>6</td>
<td>75</td>
<td></td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>420</td>
<td></td>
<td>0.7</td>
<td>210</td>
<td></td>
<td>2</td>
<td>610</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>62</td>
<td>112</td>
<td>3.5</td>
<td>35</td>
<td>148</td>
<td>10</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>25</td>
<td></td>
<td>7</td>
<td>12</td>
<td></td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>430</td>
<td></td>
<td>0.7</td>
<td>300</td>
<td></td>
<td>3</td>
<td>550</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>100</td>
<td>114</td>
<td>3.5</td>
<td>57</td>
<td>162</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>40</td>
<td></td>
<td>7</td>
<td>25</td>
<td></td>
<td>30</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>500</td>
<td></td>
<td>0.8</td>
<td>475</td>
<td></td>
<td>3</td>
<td>600</td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>105</td>
<td>116</td>
<td>4</td>
<td>98</td>
<td>163</td>
<td>15</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>45</td>
<td></td>
<td>8</td>
<td>49</td>
<td></td>
<td>30</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>400</td>
<td></td>
<td>1</td>
<td>500</td>
<td></td>
<td>3</td>
<td>770</td>
</tr>
<tr>
<td>E</td>
<td>75</td>
<td>70</td>
<td>125</td>
<td>5</td>
<td>105</td>
<td>165</td>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>30</td>
<td></td>
<td>10</td>
<td>45</td>
<td></td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>520</td>
<td></td>
<td>1</td>
<td>475</td>
<td></td>
<td>5</td>
<td>780</td>
</tr>
<tr>
<td>F</td>
<td>75</td>
<td>105</td>
<td>127</td>
<td>5</td>
<td>150</td>
<td>172</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>45</td>
<td></td>
<td>10</td>
<td>72</td>
<td></td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1000</td>
<td></td>
<td>1.3</td>
<td>275</td>
<td></td>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td>G</td>
<td>75</td>
<td>150</td>
<td>132</td>
<td>6.5</td>
<td>40</td>
<td>175</td>
<td>25</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>65</td>
<td></td>
<td>13</td>
<td>16</td>
<td></td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>700</td>
<td></td>
<td>1.3</td>
<td>450</td>
<td></td>
<td>10</td>
<td>910</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>150</td>
<td>133</td>
<td>6.5</td>
<td>80</td>
<td>176</td>
<td>50</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>70</td>
<td></td>
<td>13</td>
<td>35</td>
<td></td>
<td>100</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>200</td>
<td></td>
<td>1.3</td>
<td>450</td>
<td></td>
<td>3</td>
<td>370</td>
</tr>
<tr>
<td>104</td>
<td>2</td>
<td>28</td>
<td>135</td>
<td>6.5</td>
<td>108</td>
<td>208-1</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td></td>
<td>13</td>
<td>52</td>
<td></td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>550</td>
<td></td>
<td>5</td>
<td>1000</td>
<td></td>
<td>10</td>
<td>1900</td>
</tr>
<tr>
<td>213-1</td>
<td>15</td>
<td>110</td>
<td>240-5</td>
<td>25</td>
<td>430</td>
<td>260-6</td>
<td>50</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>50</td>
<td></td>
<td>50</td>
<td>180</td>
<td></td>
<td>100</td>
<td>210</td>
</tr>
<tr>
<td>240-2</td>
<td>25</td>
<td>270</td>
<td>250-5</td>
<td>25</td>
<td>750</td>
<td>335</td>
<td>50</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>110</td>
<td></td>
<td>50</td>
<td>375</td>
<td></td>
<td>100</td>
<td>37</td>
</tr>
</tbody>
</table>
in parallel you need only divide the
current drain by the number of parallel
cells. Of course, the number of cells
connected in series determines the final
voltage and equals the number of cells
times the voltage per cell.

A chart such as that shown in fig. 2
gives more detail on the capacity of an
individual cell type. In this example,
service life in hours is plotted against
current demand for various values of
cut-off voltage.

What would be the service life in hours
to a cut-off of 1.2 volts with a 50 mA
current drain? From the 1.2-volt curve in
fig. 2 this can be determined as 120
hours. Figures are based on four hours of
operation per day (this could be typical
for many of the more active radio
amateurs).

What would happen to the service life
if two of these cells were connected in
parallel, placing a current demand of only
25 mA on each cell? The 25 mA line in
fig. 2 intersects the 1.2-volt curve at
approximately 270 hours. Note that this
more than doubles the service life
expected from a single cell.

Temperature has a decided influence
on battery discharge. In the D-type
carbon-zinc cell example of fig. 3 the
decline to 1 volt occurs in about 1 hour
at 70°F while the drop to 1-volt occurs at

32°F in only one-half hour. Figures
assume a current demand of 667 mA.

basic battery types

In experimenting with solid-state cir-
cuits and in QRPP operations of 1 watt
and under, I usually use the common
lantern battery. The 12-volt Eveready
732 and Burgess Radar-Lite TW2 consist
of eight F-type dry cells in series. The
data of fig. 2 are appropriate.

A current drain of 100 mA corre-
sponds to an available power of 1.2 watts.
If the lantern battery were subject to four
hours of continuous operation per day
the individual cell voltage would fall to
1.2 volts after 50 hours of operation.

This seems to be a short time. How-
ever, a number of additional factors must
be considered. Do you operate four hours
per day? How many hours per day would
the 1.2-watt demand be made on the
battery? This is important when you
consider that your receive time is always
longer than your transmit time. You do a
substantial amount of listening around
the band and then, depending upon
whom you are in contact with, the
transmit and receive times can be esti-
mates at 50%. Furthermore, in CW opera-
tion you are placing an intermittent
demand on the battery rather than asking
for a continuous 1 watt of power. It may
well be that during a 4-hour operating
period your key may be down for one
Thus, your actual battery life may be 4 to perhaps as high as 6 times greater than is suggested by the 50-hour life figure. This represents 200 to 300 hours of operating time and, in terms of the usual ham QRPP activity, you are talking about months of operation.

Two lantern batteries in parallel more than double the operating time. Or you can step up to the Eveready Hot-Shot 1463. This battery uses 16 G-type cells, table 2, connected in two parallel strings of eight. Since there are two sets in parallel, you must either halve the current values given under starting drain or double the service capacity hours, to obtain an approximate service capacity figure of the G-type battery data of table 2. This actual figure will be somewhat greater than the chart indicates because, as pointed out, the service capacity more than doubles when current drain is halved.

A rechargeable battery designed specifically for electrical and electronic applications is the alkaline-manganese dioxide type shown in fig. 4. Although rechargeable, their electrochemical systems can be hermetically sealed. Such batteries are maintenance free and they operate in any mounting position. Electrodes are made of zinc and manganese dioxide while the electrolyte is potassium hydroxide.

These cells come in two forms, meeting the physical dimensions of the D- and G-type dry cells. The characteristics of the Eveready D and G cells are given in table 3. Note the voltage values and the high ampere-hour capacities of these cells.

Higher voltage and/or higher discharge current capacities are obtained by using these fundamental cells in series and parallel groupings. This 564 battery, shown in fig. 4, uses nine G cells in series and has a 5 ampere-hour capacity that can deliver 1.25 amperes for a period of four hours without recharge. We are now talking about more than 10 watts of available power and, in fact, 10 watts continuous for a period of four hours. As mentioned previously, four hours of continuous key-down operation usually corresponds to more than 12 hours of continuous operating time.

Of course, you can anticipate many days of operation without a recharge. Considering that the battery can be recharged 25 or more times, there is adequate energy available to last a year or more for even the most active 5- to 10-watt QRP operator.
The rechargeable nickel-cadmium battery is a popular secondary battery for use in electronics and electrical systems. Again, it is a shielded battery and there are no corrosive fumes or the need for adding electrolyte. An especially attractive advantage of the nickel-cadmium battery is its nearly constant discharge potential. The discharge-charge cycle may be repeated as many as 300 to 500 times.

<table>
<thead>
<tr>
<th>Cell size</th>
<th>Nominal voltage</th>
<th>Average operating voltage</th>
<th>Rated ampere-hour capacity</th>
<th>Maximum recommended discharge current</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1.5</td>
<td>1.0 - 1.2</td>
<td>2.5</td>
<td>0.625 ampere</td>
</tr>
<tr>
<td>G</td>
<td>1.5</td>
<td>1.0 - 1.2</td>
<td>5.0</td>
<td>1.25 ampere</td>
</tr>
</tbody>
</table>

This means that a nickel-cadmium battery selected for most amateur applications will have an exceedingly long life if it is not abused.

Eveready nickel-cadmium 1.25-volt cells are available in button (20-300 milliamperes-hours), cylindrical (150-4000 mA-hours), and rectangular (6-23 ampere-hours) types. Individual cells are welded together to obtain higher operating voltages. The cell voltage-discharge time characteristics of a typical cell are given in fig. 5. Note that the voltage on discharge holds rather constant over the discharge time until near the break in the curve. It is not advisable to let the cell voltage drop below 1.1 volt before recharge is initiated. In so doing the cell voltage is held up and the life of the battery is extended. The lowest graph shows the capacity-discharge current characteristic of the cell. For example, it shows that with a 1.2-ampere discharge current and a cutoff of 1.1 volt, the battery has an ampere-hour capacity of about 1.12 ampere-hours.

The Eveready N86 battery consists of ten of these cells connected in series to obtain 12.5 volts. On the basis of a 10-hour discharge at a rate of 120 mA, the capacity of the battery is 1.2 ampere-hours. Its discharge characteristic is shown in fig. 1. Note that the battery voltage drops to 11 volts near the 10-hour calibration line when the current demand is 120 mA.

There are many nickel-cadmium battery types. The Eveready 1007, fig. 6, is a four ampere-hour, six-volt battery that is completely encased. On a 10-hour basis it would have a rated current of 400 mA. It includes a socket for plugging in a companion charger. The Burgess CD33 is a 6-volt lantern-battery size with a 2 ampere-hour capacity and includes a built-in charger.

The nickel-cadmium battery can be trickle-charged and kept up to full charge just as you would maintain an ordinary lead-acid storage battery. Usually the trickle-charge current is about one-quarter of the rated discharge current.

Next month’s column covers battery chargers and the increasingly popular gelatin electrolyte lead-acid secondary battery. I will also discuss how a solar power converter can be used to trickle-charge or fully charge the various types of rechargeable batteries.

ham radio
temporary fix for
noisy volume controls

Gain control pots eventually become intermittent at the point of maximum use and thus can make a fine piece of equipment almost unusable. This happened to the audio gain control in my Collins 51J3, and having torn the receiver apart once before to work on the PTO I had no desire to go through all that work again just to change a noisy potentiometer.

Since a worn pot manifests itself by sudden jumps in level, distortion and bursts of noise, I reasoned that a “fix” that had a stabilizing effect at the tube grid might suppress the problem sufficiently to make the receiver usable again. Many audio circuits resemble the Collins circuit shown in fig. 1, so my first attempt was to put a fixed resistor from the wiper (tube grid) to ground. This did exactly what I wanted, and after a little experimentation to find optimum value (5k still provided enough audio to drive me from the room, yet reduced the effect of the noisy spot to the point where I have to listen carefully to find it) my faithful 51J3 was back in business.

Being essentially lazy, and seeing that this was a “temporary” repair anyway, I didn’t even pull the receiver out of the cabinet to add the resistor. Instead, I simply wrapped a piece of wire around the grid pin of the audio tube, ran the wire up alongside the tube and out through the top of the shield, and soldered the 5k resistor to it. The other end of the resistor is grounded by a handy nearby wing nut. It may not look very nice, but it sure works well— and someday, when I really have to tear into the receiver, I do plan to replace that noisy pot!

Joe Schroeder, W9JUV

counted frequencies

In some configurations, a frequency counter may not properly show the received (or transmitted) frequency. I refer to those cases where a clarifier or variable bfo may be used. For example, in the Collins 75S-3 receiver the variable bfo changes the beat-note on CW. However, the 32S-3 exciter in transceive continues to use its own crystal bfo. Thus, a receiver frequency counter may not correctly show the transmitted frequency nor the frequency to which the receiver is tuned.

Similar peculiarities can occur in the use of the clarifier, a term used in Yaesu and some other designs. The nature of these devices should be studied before a counter frequency is relied upon to show the frequency that you are interested in.

Bill Conklin, K6KA

fig. 1. Connecting 5000-ohm resistor between grid of the audio amplifier and ground substantially reduced noise generated by worn 500k volume control.
Introducing the Atlas-180
SOLID STATE SINGLE SIDEBAND TRANSCEIVER.
180 WATTS P.E.P. INPUT 20, 40, 80 and 160 METER

THE IDEAL MOBILE RIG.
Only 3½ in. high, 9½ in. wide, 9½ in. deep ... Operates directly from 12-14 volts DC ... All Solid State Modular Construction, No transmitter tuning, Built-in speaker. All the necessary features, power, and performance for only $479

AC CONSOLE
Illustrated with Atlas-180 plugged in. A handsome desk top station with front facing speaker and space for adding VOX and other accessories.

Model AR-117 for 117 volts, 50-60 cycles $119
• Deluxe plug-in Mobile Mount: $40
 • Standard Mobile Kit: $10
 • Mobile Antenna Matching Transformer $24

Other accessories to be announced.

AMERICAN MADE AND GUARANTEED BY

ATLAS RADIO INC.
5580 B El Camino Real Phone (714) 729-8985
Mail Address: P.O. Box A, Carlsbad, California 92008

Sold only by Atlas dealers. See him soon for complete details, or drop us a card and we'll be glad to mail you a brochure and dealer list.

73 Herb Johnson W6QKI
General Aviation Electronics (Genave) has introduced a new VHF FM system called Mobiline. This system, which consists of Mobiline I and II two-way FM mobile units and a variety of fixed base stations, offers considerable system flexibility. Mobiline I, for example, is designed for use in lightly populated areas with low signal density communications environments. These units accommodate two communications channels in the frequency range from 143.9 to 173.4 MHz, and are equipped with separate volume and squelch controls and transmit indicator light. A plug-in microphone and mobile mounting bracket with anti-theft device are included at no extra charge.

The Mobiline II provides the same basic capability as the Mobiline I, but has additional circuitry to permit use in heavily populated, high signal density communications environments. Refinements in the receiver section provide higher selectivity, improved spurious response and superior adjacent channel rejection. The Mobiline II like Mobiline I, features nominal 25-watts output power and 0.5 µV sensitivity for 20 dB quieting.

Either of these two radios is easily adaptable to fixed based station use. The Genave base-station packages include a stainless-steel 3-dB gain antenna with 50-feet of RG-8/U coaxial cable and connectors. Also included is the standard hand microphone (optional desk-type microphones are available starting at $34.95). Another important option is the MobilPack portability accessory. This allows the Mobiline owner to operate portable in the field or in vehicles without electrical systems. The MobilPack will provide a minimum of 24 hours of service on full charge and costs $124.95. Also available for the Genave Mobiline system is a sub-audible tone squelch system called MobilGuard.

The Mobiline I is priced at $319.95, the Mobiline II is $399.95 (including one channel). For more information write to General Aviation Electronics, 4141 Kingman Drive, Indianapolis, Indiana 46226, or use check-off on page 94.
print. Readers are taken through the basics of indicating and electronic instruments, and on to the techniques of frequency, power and noise measurement using up-to-the-minute components and methods. Included are chapters on meters, electronic instruments, dip oscillators, frequency and rf power measurements, noise measurement, antenna and transmission-line measurements, signal sources and attenuators, oscilloscopes, swept-frequency measurements, and components, vacuum tubes and transistors.

The section on electronic instruments includes circuit details on vacuum-tube voltmeters, fet voltmeters, transistor multimeters, diode probes and input attenuators. The chapter on dip oscillators includes valuable information on using the instrument as well as construction details for several solid-state units. The frequency measurement chapter covers frequency standards, crystal calibrators, digital counters, absorption wavemeters, harmonic indicators and a simple audio-frequency meter.

The chapter on rf power measurements includes data on dummy loads, thermal converters, rf ammeters, rf voltmeters, thermistor/bolometer bridges and directional wattmeters. Noise sources, noise generators, noise factor comparators and routine noise-figure checks are discussed in the chapter on noise, and vswr meters, vhf/uhf reflectometers, field strength meters and noise bridges are covered in the chapter on antenna measurements. Also described in the book are a rf signal generator, an audio signal generator, a two-tone test oscillator, oscilloscopes, modulation monitors, if sweep generators, an RCL bridge, a capacitance meter, a logic tester, a fet mutual conductance tester and many others. The reference data section includes much useful electronic and mechanical data as well as instructions for temperature and air-flow measurements.

Hardbound, 132 pages. $5.95 from Ham Radio Books, Greenville, New Hampshire 03048.
Tucker Electronics Company has announced the first two instruments of what is expected to be a comprehensive new series. The model 300A is a 0.1- to 1-MHz basic function generator offering 10-volt p-p output into 50 ohms and less than 2% sinewave distortion. The instrument provides sinusoidal, square and triangular wave switched outputs and a corresponding sync output. Dc offset of ±2.5 volts is standard in the small, portable unit.

The second instrument is called the model 310A and adds variable pulse to the basic functions of the model 300A. The 310A’s TTL compatible pulse can be varied from 1-μs to 10-millisecond pulse width and has rise and fall times better than 25 nanoseconds. All the standard 300A features are included.

In addition to an exceptionally low sale price, each instrument can be rented with an excellent purchase option. The Tucker 300A is priced at $195.00 (rental rate $19.50/month) while the Tucker 310A is priced at $295.00 (rental rate $29.50/month).

Tucker Electronics Company is best known as the world’s largest distributor of reconditioned test instruments with an inventory exceeding 15,000 instruments. Tucker currently sells no less than 18 lines of new instruments including Weston Instruments, T.R.I. Corporation, Philips and several other well known lines.

For more information, write to Tucker Electronics Company, Post Office Box 1050, Garland, Texas 75040, or use check-off on page 94.
Come to Vermont
1974 INTERNATIONAL FIELD DAY
AUG. 11, OLD LANTERN, CHARLOTTE, VT.
Many activities, contests, camping and more
Details from
Bob Hall, W1DQO, Gen. Greene Rd.
Shelburne, VT 05482

tri-tek, INC.
P. O. Box 14206, Dept. H
Phoenix, AZ 85063

8220 MEMORY 8 bit (4x2) content addressable memory, TTL and DTL compatible. For use in data-to-memory comparison, pattern recognition, cache memory, auto correlation, virtual memory, learning memory, New, house numbered. With Data. IN 16 pin DIP. $6.00 ea., 10 for $45.00

803BC VCO WAVEFORM GENERATOR. New, factory parts, full specs. $5.75, 2 for $10.50, 10 for $50.00

MM5311 CLOCK CHIP. Full specs. $9.50
All orders postpaid. Minimum $5 U.S., $15 foreign. Latest lists, 10c stamp. Please ADD INSURANCE.

radio communication
Great Britain's most popular amateur magazine. The official publication of the RSGB. Learn what English amateurs are building, learn what they are doing.
$12.50 per year (12 issues)
Includes RSGB Membership

HAM RADIO
GREENVILLE, NH 03048

SAROC
going home to the Sahara
Special Air Fare from selected cities.
JANUARY 2-5, 1975
Box 945, Boulder City NV 89005

WE WANT TO BUY
... your used FM General Electric, R.C.A. and Motorola 2-way radios, base stations and remote units.
CALL US TODAY!

MOTOROLA
D43GGV-3100, 150-170 MHz,
6/12 volt, 30 watts, front mount with "privateline", fully narrow band
For use on 2 meters.
$88

GENERAL ELECTRIC
MT42, 450-470 MHz,
12 volt, 15 watts, transistor power supply. In 17" case, multi-freq. deck, wide band, less ovens, w/accessories.
$88
Kenwood’s new go everywhere does everything transceiver.

The TS-520 is the transceiver you have always wanted, but could not buy until now. It is a no compromise 5 band unit for both SSB and CW that performs equally well whether it is at home, in your car, airplane, boat or trailer.

The TS-520 features both a built-in AC power supply and a 12 volt DC power supply plus a built in VOX with adjustable gain, delay and antivox for complete flexibility.

See Electronics Center for your new Kenwood TS-520. You’ll be glad you did.

Electronics Center carries complete lines of Ham equipment, accessories and antennas. Write or call Walt, W5ZYA, or Al, W5PXH for your HAM needs.
CUTTERS TOOLS NEEDLE NOSE
New Blemished 4½" To 6" Made By Famous U.S. Manufacturer. Send $15.00 For 10 Assorted Needle Nose, Cutters or a Mix.
Perfect For P.C. Work Box 626 St. George, S.C. 29477

GREENE'S ELECTRONICS

BATTERY BOX
High quality American made. Aluminum battery box. All terminals insulated. Made to hold 2 "C" cells.
50c each ppd.

UNUSED PRINTED CIRCUIT BOARD ASSEMBLY. Manufacturer overrun. His loss your gain.
Consists of: 5-¼ Watt resistors, 3-Silicon Diodes, 2-Transistors, 2-1000 Mfd @ 16 Volt Caps, 1- DPDT 12 Volt Guardian Relay, 1-SPDT High Current Relay.
Price: $3.25 ea. ppd.

YOUR BEST BET FOR FM!
- PREAMP KITS $6. WIRED $10
- FREQUENCIES FROM 20 TO 230 MHZ
- LED SCANNER KITS $10
- RECEIVER KITS $59.95
- FULL STOCK CUSHCRAFT FM ANT.
- COMPONENTS FOR VHF PROJECTS
- SEND SASE FOR LITERATURE

HAMTRONICS, INC.
182 BELMONT RD. ROCHESTER, N. Y. 14612

COIL WINDING
SPECIALS & STOCK ITEMS
HI Q - LO DC RESISTANCE UNITS
FERRITES - POWDERED IRON - AIR CORE
RF CHOKES - TOROIDS - VARIABLES
HIGH STABILITY POT CORE INDUCTORS
USING MAGNETIC MATERIALS FROM FERROXCUBE, MICROMETALS, FAIR-RITE, CAMBION, QUALITY COMPONENTS, ETC.
Quick Quotes
Send Specs or Sample
CADDELL COIL CORP.
POUNTLNEY, VERMONT 05764

RADIO & ELECTRONICS CONSTRUCTOR
- Audio Construction Projects
- Receiver Construction Projects
- Transmitter Construction Projects
- Test Equipment Projects
- Radio Control Projects
... and much more
ONE YEAR SUBSCRIPTION — $7.00
12 MONTHLY ISSUES
Write
RADIO CONSTRUCTOR
Greenville, N. H. 03048

BATTERY BOX
High quality American made. Aluminum battery box. All terminals insulated. Made to hold 2 "C" cells.
50c each ppd.

UNUSED PRINTED CIRCUIT BOARD ASSEMBLY. Manufacturer overrun. His loss your gain.
Consists of: 5-¼ Watt resistors, 3-Silicon Diodes, 2-Transistors, 2-1000 Mfd @ 16 Volt Caps, 1- DPDT 12 Volt Guardian Relay, 1-SPDT High Current Relay.
Price: $3.25 ea. ppd.

YOUR BEST BET FOR FM!
- PREAMP KITS $6. WIRED $10
- FREQUENCIES FROM 20 TO 230 MHZ
- LED SCANNER KITS $10
- RECEIVER KITS $59.95
- FULL STOCK CUSHCRAFT FM ANT.
- COMPONENTS FOR VHF PROJECTS
- SEND SASE FOR LITERATURE

HAMTRONICS, INC.
182 BELMONT RD. ROCHESTER, N. Y. 14612

COIL WINDING
SPECIALS & STOCK ITEMS
HI Q - LO DC RESISTANCE UNITS
FERRITES - POWDERED IRON - AIR CORE
RF CHOKES - TOROIDS - VARIABLES
HIGH STABILITY POT CORE INDUCTORS
USING MAGNETIC MATERIALS FROM FERROXCUBE, MICROMETALS, FAIR-RITE, CAMBION, QUALITY COMPONENTS, ETC.
Quick Quotes
Send Specs or Sample
CADDELL COIL CORP.
POUNTLNEY, VERMONT 05764

RADIO & ELECTRONICS CONSTRUCTOR
- Audio Construction Projects
- Receiver Construction Projects
- Transmitter Construction Projects
- Test Equipment Projects
- Radio Control Projects
... and much more
ONE YEAR SUBSCRIPTION — $7.00
12 MONTHLY ISSUES
Write
RADIO CONSTRUCTOR
Greenville, N. H. 03048

BATTERY BOX
High quality American made. Aluminum battery box. All terminals insulated. Made to hold 2 "C" cells.
50c each ppd.

UNUSED PRINTED CIRCUIT BOARD ASSEMBLY. Manufacturer overrun. His loss your gain.
Consists of: 5-¼ Watt resistors, 3-Silicon Diodes, 2-Transistors, 2-1000 Mfd @ 16 Volt Caps, 1- DPDT 12 Volt Guardian Relay, 1-SPDT High Current Relay.
Price: $3.25 ea. ppd.

YOUR BEST BET FOR FM!
- PREAMP KITS $6. WIRED $10
- FREQUENCIES FROM 20 TO 230 MHZ
- LED SCANNER KITS $10
- RECEIVER KITS $59.95
- FULL STOCK CUSHCRAFT FM ANT.
- COMPONENTS FOR VHF PROJECTS
- SEND SASE FOR LITERATURE

HAMTRONICS, INC.
182 BELMONT RD. ROCHESTER, N. Y. 14612

COIL WINDING
SPECIALS & STOCK ITEMS
HI Q - LO DC RESISTANCE UNITS
FERRITES - POWDERED IRON - AIR CORE
RF CHOKES - TOROIDS - VARIABLES
HIGH STABILITY POT CORE INDUCTORS
USING MAGNETIC MATERIALS FROM FERROXCUBE, MICROMETALS, FAIR-RITE, CAMBION, QUALITY COMPONENTS, ETC.
Quick Quotes
Send Specs or Sample
CADDELL COIL CORP.
POUNTLNEY, VERMONT 05764

RADIO & ELECTRONICS CONSTRUCTOR
- Audio Construction Projects
- Receiver Construction Projects
- Transmitter Construction Projects
- Test Equipment Projects
- Radio Control Projects
... and much more
ONE YEAR SUBSCRIPTION — $7.00
12 MONTHLY ISSUES
Write
RADIO CONSTRUCTOR
Greenville, N. H. 03048

BATTERY BOX
High quality American made. Aluminum battery box. All terminals insulated. Made to hold 2 "C" cells.
50c each ppd.

UNUSED PRINTED CIRCUIT BOARD ASSEMBLY. Manufacturer overrun. His loss your gain.
Consists of: 5-¼ Watt resistors, 3-Silicon Diodes, 2-Transistors, 2-1000 Mfd @ 16 Volt Caps, 1- DPDT 12 Volt Guardian Relay, 1-SPDT High Current Relay.
Price: $3.25 ea. ppd.

YOUR BEST BET FOR FM!
- PREAMP KITS $6. WIRED $10
- FREQUENCIES FROM 20 TO 230 MHZ
- LED SCANNER KITS $10
- RECEIVER KITS $59.95
- FULL STOCK CUSHCRAFT FM ANT.
- COMPONENTS FOR VHF PROJECTS
- SEND SASE FOR LITERATURE

HAMTRONICS, INC.
182 BELMONT RD. ROCHESTER, N. Y. 14612

COIL WINDING
SPECIALS & STOCK ITEMS
HI Q - LO DC RESISTANCE UNITS
FERRITES - POWDERED IRON - AIR CORE
RF CHOKES - TOROIDS - VARIABLES
HIGH STABILITY POT CORE INDUCTORS
USING MAGNETIC MATERIALS FROM FERROXCUBE, MICROMETALS, FAIR-RITE, CAMBION, QUALITY COMPONENTS, ETC.
Quick Quotes
Send Specs or Sample
CADDELL COIL CORP.
POUNTLNEY, VERMONT 05764

RADIO & ELECTRONICS CONSTRUCTOR
- Audio Construction Projects
- Receiver Construction Projects
- Transmitter Construction Projects
- Test Equipment Projects
- Radio Control Projects
... and much more
ONE YEAR SUBSCRIPTION — $7.00
12 MONTHLY ISSUES
Write
RADIO CONSTRUCTOR
Greenville, N. H. 03048

BATTERY BOX
High quality American made. Aluminum battery box. All terminals insulated. Made to hold 2 "C" cells.
50c each ppd.

UNUSED PRINTED CIRCUIT BOARD ASSEMBLY. Manufacturer overrun. His loss your gain.
Consists of: 5-¼ Watt resistors, 3-Silicon Diodes, 2-Transistors, 2-1000 Mfd @ 16 Volt Caps, 1- DPDT 12 Volt Guardian Relay, 1-SPDT High Current Relay.
Price: $3.25 ea. ppd.
RADIO EXPO '74

SEPTEMBER 14 and 15
LAKE COUNTY FAIRGROUNDS
INTERSECTION ROUTES 45 and 120
GRAYSLAKE, ILLINOIS
HALF-WAY BETWEEN CHICAGO AND MILWAUKEE

MANY DOOR PRIZES —
FULLY ENCLOSED FLEA MARKET —
DISPLAYS BY
MAJOR MANUFACTURERS —
FREE CAMP AREA —
ACRES OF FREE PARKING —
TECHNICAL MOVIES AND SEMINARS
FULL FOOD SERVICES

Convention Headquarters:
HOLIDAY INN
RTS. 60 & 45
MUNDELEIN, ILL.

Call your local Holiday Inn
for advance reservations

EXPO TICKETS
BOX 1014
ARLINGTON HTS, ILL.
60006

Gentlemen: Enclosed is
$________________(check or money
order) in payment for
__________ tickets @ $1.50

Name

Address

City __________ State _____

Zip______________________

THE ULTIMATE RIG!!
GOLD PLATED CRYSTALS!!
AMERICAN MADE!!
ROCK BOTTOM DEAL!!
WE'LL BEAT ANY PRICE!!

SOUND TOO GOOD TO BE TRUE?? . . . You see all kinds of claims these days to either have the radio that is best for every one or to offer you the lowest price on earth.

LET'S FACE THE FACTS . . . You are unique and so are your operating conditions. When you call "The FM People" we won't just try and sell you a radio. We will do our best to help you fill your exact FM requirements with the best radio possible in the price range you want.

WHAT IS THE BEST DEAL?? . . . In the long run the lowest price doesn't necessarily mean getting the best deal. Smart buyers look for selection assistance, realistic delivery information, and post sale help along with competitive pricing. This is what you get from "The FM People".

Shop around if you like, but whether you're looking for Motorola or other used equipment; or transceivers by Clegg, ICOM, Genave, Regency and SBE; or accessories to improve your present station . . . give us a call and find out for yourself just why we're called "The FM People".

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.

STORE HOURS: Mon.-Thurs. 9:30-6:00, Fri. 9:30-8:00, Sat. 9:30-3:00. Closed Sun. & Holidays.

WANTED: Good used FM & test equipment. No quantity too large or small. Finders fees too.
3-D MAGNETIC CALL SIGNS
3 inch letters
Your choice of colors — Black, Red, Blue or Green
Adherence to metallic surfaces test up to 180 MPH
$4.00 each — 2 for $7.00 (same call)

ALSO
RUBBER STAMPS
Made to order — 3 lines - $4.00
Preinked stamp pad $1.35
(Please print or type all copy)

WB8OTV SPECIALTY PRODUCTS
P. O. Box 187 • Grasslake, Michigan 49240

The DELA-BRIDGE I
Analyzes antenna characteristics, simplifies adjustment.

The DELA-BRIDGE I, when tied into your grid dip meter or low power exciter, quickly and easily analyzes: (1) Existing antenna & feed line characteristics, (2) Tuning & loading coils, (3) Filter & interstage coupling networks. Direct readout then lets you adjust for optimum performance.

DELA-BRIDGE I Specifications:

- FREQUENCY RANGE: 50 KHz to 250 Mhz
- RESISTANCE RANGE: 0 to 500 Ohms, balanced or unbalanced, log scale
- SIGNAL REQUIREMENTS: 1 MW to 2 Watts maximum from any grid dipper or signal generator
- POWER REQUIREMENTS: Internal 9V battery
- ACCURACY: ±3% at 50 Ohms
- TO READ & INTERPRET: Complete null and reactance determination — not frequency sensitive — internal integrated circuit amplifier allows use with low signal inputs

DELA-BRIDGE I guaranteed for 1 year by Delavan Electronics, Inc.

Delavan Electronics' new Amateur Products Group might be a new name to you, but we're no stranger to amateur radio operations and equipment. Delavan is well funded and deeply involved in aerospace and industrial controls. Delavan stands behind its products 100% and guarantees the DELA-BRIDGE I unconditionally for 1 year.

Order your DELA-BRIDGE I today!

WBE MINIATURE BROADBAND RF AMPLIFIERS
Flat 20 dB gain over entire bandwidth; 5 dB NF; 1 V max output; Specify 50 or 75 ohms; Rugged cast alum case; ±20 VDC @ 25 mA bias; Models A82 & A82A 1-500 MHz, high precision, flat ±.2 dB; Model A82H 4-450 MHz, economy version, flat ±.5 dB; Size: A82 2 1/4” x 1 3/8” x 7/8”, A82A & A82H 2 1/4” x 1 3/8” x 7/8”; Price: A82 $105.00, A82A $97.00, A82H $45.00.

These preamplifiers are ideal for use with frequency counters & meters, signal & harmonic generators, detectors, single & multiple HF & VHF receivers, sweep gear, and wide bandwidth applications.

Other WBE, INC. products covering 1-500 MHz include: signal splitters & combiners, impedance (return loss) bridges, 8 combiners, impedance (return loss) bridges, wide bandwidth 8 combiners, signal generators, 8 combiners, impedance (return loss) bridges, and power directional couplers, hybrid splitters & combiners, impedance (return loss) bridges, 50/75 ohm transformers, comparators, & filters.

(see QST Review, May 1973, pg. 41)

Call or Write for Complete Catalog & Data (602) 254-1570

WIDE BAND ENGINEERING COMPANY, INC.
P. O. Box 21652H, Phoenix, AZ 85036
NORELCO VIDEO TAPE RECORDER-PLAYBACKS

- Weighs only 26 pounds
- Long life ferrite heads
- Extremely quiet
- Uses inexpensive ½" tape
- Horiz response 2½ MHz
- Operates from 110 volt AC
- Some modified with light to indicate unit in use
- Standard audio-visual signals
- 1 hour on 2400 foot tape

Brand new, as is $399.00

Also, Shibaden FP-707 Vidicon Camera with CRT Viewfinder and 5:1 zoom lens.

12 volt DC model $329.00
12 volt AC model $399.00

7" reel 2400' ½" Video tape in box. New American Made $15.00 each. Minimum Order 5. Limited Quantity.

Hundreds of additional video items, write for video catalog.

M-TECH The Quality 2 Meter FM Amplifier

- Rated for continuous service
- VSWR protected for any load (0-00 ohms)
- Reverse current protection
- Micro-strip inductors for stability

<table>
<thead>
<tr>
<th>Model</th>
<th>P15A1</th>
<th>P50A10</th>
<th>P100A10</th>
<th>P100A20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watts In</td>
<td>1-3</td>
<td>2-18</td>
<td>2-12</td>
<td>18-25</td>
</tr>
<tr>
<td>Watts Out</td>
<td>12-20</td>
<td>14-60</td>
<td>40-110</td>
<td>90-120</td>
</tr>
<tr>
<td>Price</td>
<td>$55</td>
<td>$98</td>
<td>$198</td>
<td>$145</td>
</tr>
</tbody>
</table>

M-TECH Amplifiers are in stock at Communications Unlimited.

COMMUNICATIONS UNLIMITED

9519 Main Street P.O. Box 463
Whitmore Lake, Michigan 48189

Store hours, noon to 6PM, Monday thru Saturday. (313-449-4367)
1. MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw, depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND AMP
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur .. $3.75

5. OX OSCILLATOR
Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ± .02% when operated in International OX circuit or its equivalent. (Specify frequency) $3.95

for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

write for CATALOG

INTERNATIONAL
CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLA. CITY, OKLA. 73102

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3098E.

CRYSTAL TYPES:
- (GP) for “General Purpose” applications
- (CS) for “Commercial Standard”
- (HA) for “High Accuracy” close temperature tolerance requirements.
Now is the time for all good hams to come to the aid of their code.

With the HAL MKB-1, you can send perfect CW as easily as using a typewriter. The all solid-state MKB-1 is a complete Morse key-board codetypewriter, with code speed variable from 10 - 60 WPM. Dot-to-space (weight) ratio is also variable.

The MKB-1 is full of features, like a variable volume/tone oscillator with internal speaker. Plus its own power supply. Computer-grade key switches. And it drives cathode or grid-block keyed transmitters.

An available option is the HAL KB-ID automatic identifier. Touch a button and “DE,” followed by your call is automatically transmitted. And you can add two-letter characters of your own, e.g., “73 OM.”

Assembled, the MKB-1 costs $250; with the KB-ID option, add $40. (We'll program your call into the KB-ID for you.) The MKB-1 kit is $170; with the KB-ID kit, add $29. Come to the aid of your code today — and enjoy CW like never before.
PRINTED CIRCUIT BOARDS
for any amateur project in any amateur periodical.
Published with artwork
Get your homebrew projects off to a professional start
Write for Complete Details and Prices
D. L. “Mac” McClaren, W8URX
Printed Circuit Service for the Amateur
19721 Maplewood Ave. Cleveland, Ohio 44135
216-267-3263

COD-PHONE
AUTOMATIC RECORDER 24 HOUR COD TELEPHONE ORDER SERVICE
Order may not be shipped without full information. Before calling jot down and be ready to clearly dictate:
1. Name & Full Street Address (NO P.O. Boxes) Include ZIP
2. Your telephone number, including area code.
3. Your Order - Type, Price, Quantity.
U.S. Destinations only for COD. Requested return calls collect only. See TERMS for added COD charges.

Specifications
- Solid State Circuitry MOS-FET
- 80-40-20-15-10 Meters NO TUNING
- Ultra Low Noise-High Useful Gain
- Gain: 20 db min. Typical 25 db
- Noise Figure: Less than 7.5 db
- High Quality Communications Design
- Broadband with adequate MARs Overlap
- Minutes to install on Receivers
- Battery or External Power Operation
- No Strong Signal Overloading
- Allows reduced RF Gain on receiver for improved cross-modulation
- Attractive Black textured and gray
 Cabinet 3X4X5
- Low Current drain (Approx. 15ma @ 8V)
- LED Indicator light

HI THERE !!!
MEET THE AMAZING NEW
SABA-5
PREAMPLIFIER

WB4TPI (Jerry) Says: "# @?!, does that thing work!"
WA8ELS (Hugh) Says: "Couldn't have made weak station contacts without it."
W4VE (Frank) Says: "Will enhance any station's capabilities."
WA8FC (Mac) Says: "Well worth while."

Note: Above evaluations on Collins 75A4.
S-Line: Drake R4 B, H4-C Signal One.
FPM: 300

Published with artwork from amateur periodical.

COMMUNICATIONS INTEGRATED CIRCUITS

IC Type	Description	Case	Price, Ea.
NA555 | Versatile Timer | 8-DIP| 0.99
NA555-2 | Dual Timer | 16-DIP| 1.55
NA370 | AGC/Squelch/VOX | 10-T0S| 1.20
NA371 | Versatile RF/IF | 10-T0S| 1.29
NA3018 | 4-Trans. Array | 12-T0S| 0.89
NA3026 | Dual Diff. Array | 12-T0S| 0.99
NA3086 | 5-Trans. Array | 14-DIP| 0.45
NA3039 | Diode Array | 10-T0S| 0.75
NA3036 | Dual Darlington | 10-T0S| 0.75
NA1595 | Analog Multiplier | 14-DIP| 1.90
NA8038 | VCO/Sine/Sq./Tri. | 14-DIP| 4.50
NA1596 | Bal./Mixr./Mod. | 10-T0S| 1.20

“HOBBYIST-EXPERIMENTER” EQUIV. TRANSISTORS

Type	Description	Case	Price, Ea.
HNP50 | NPN RF 250MHz | T018| 0.49
HNP52 | NPN RF 200MHz | T018| 0.5
HNP55 | NPN RF 200MHz | T092| 0.53
HNP715| NPN GP RF/AUDIO | T092| 0.59
HNP716| NPN MED. CURR. SW. | T092| 0.59
HNP724| NPN GP AUDIO | T092| 0.49
HNP736| NPN GP AUDIO | T092| 0.59

SPECIAL! MICROTRANSMITTERS!

NA2000 | 100MW @ 10 Meters | 9.95
NA2001 | 20MW @ 10 Meters | 14.95

in stock mount package

Both types usable at reduced output at 6 Meters and above. Requires external crystal and 2 tuned circuits. With Data/applications.

TERMS:
Prepaid U.S. orders over $10.00, we pay shipping.
Prepaid U.S. orders under $10.00, add $1.00 chg.
Prepaid Foreign orders over $10.00, add postage.
Prepaid Foreign orders under $10.00, add $1.00 plus postage.
COD U.S. orders over $10.00, add $1.50 chg.
COD U.S. orders under $10.00, add $2.50 chg.
No Foreign COD orders.
California residents add 6% sales tax.
Confused? Please read again before ordering.

NASEM, Box A1, Cupertino, Ca. 95014
Simply The Best...

ICOM

3-8 Kamikuratsukuri-cho, Higashi Sumiyoshi-ku, Osaka, Japan.

Proudly Distributed Warranted and Serviced

ICOM WEST INC.
Suite 232—Bldg.II
300·120th Avenue N.E.
Bellevue, Washington, 98005
(206) 454-2470

By

ICOM EAST Div ACS Inc.
Suite 501
13777 N. Central Expwy.
Dallas, Texas, 75231
(214) 235-0479
Crystal Filters and Discriminators

1 27/64" x 1 3/64" x 3/4"

9.0 MHz Filters

<table>
<thead>
<tr>
<th>Part Code</th>
<th>Frequency (MHz)</th>
<th>Type</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF9-A</td>
<td>2.5</td>
<td>SSB TX</td>
<td>31.95</td>
</tr>
<tr>
<td>XF9-B</td>
<td>2.4</td>
<td>SSB RX</td>
<td>45.45</td>
</tr>
<tr>
<td>XF9-C</td>
<td>3.75</td>
<td>AM</td>
<td>48.95</td>
</tr>
<tr>
<td>XF9-D</td>
<td>5.0</td>
<td>AM</td>
<td>48.95</td>
</tr>
<tr>
<td>XF9-E</td>
<td>12.0</td>
<td>NBFM</td>
<td>48.95</td>
</tr>
<tr>
<td>XF9-M</td>
<td>0.5</td>
<td>CW</td>
<td>34.25</td>
</tr>
</tbody>
</table>

6 Meter Converters

Front End 9 VDC

<table>
<thead>
<tr>
<th>Part Code</th>
<th>Frequency (MHz)</th>
<th>Description</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 METER CONVERTER</td>
<td>1 1/4" - 2.5 kHz</td>
<td>MMc</td>
<td>155.95</td>
</tr>
</tbody>
</table>

100 kHz XTAL CALIBRATOR

Less 43 MHz XTAL

<table>
<thead>
<tr>
<th>Part Code</th>
<th>Frequency (MHz)</th>
<th>Description</th>
<th>Price ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF900</td>
<td>9000.0</td>
<td>Carrier</td>
<td>3.80</td>
</tr>
<tr>
<td>XF901</td>
<td>8999.5</td>
<td>USB</td>
<td>3.80</td>
</tr>
<tr>
<td>XF902</td>
<td>5001.5</td>
<td>LSB</td>
<td>3.80</td>
</tr>
</tbody>
</table>

Power Supply - 28 VDC

Complete kits, or PCB's only

Spectrum International

Box 1084, Concord, Massachusetts 01742

NEW FOR 74

ECM 5A FM Modulation Meter

- Operates 30-500 MHz
- Light controlled for fast and easy operation
- Peak reading
- Accurate within 1 kHz at 15 kHz

Price

- $85.00

Phone: 812-476-2121

Available by direct mail only. ORDER INFO: Send check or money order for $85.00 plus $3.50 for handling. Indiana residents add 4% sales tax. Crystals for 144.94 MHz $3.95 ea. All other freqs. $7.10.

C F P Enterprises

866 Ridge Road, Lansing, N. Y. 14882

Central Upstate New York's Mail-Order Headquarters

Jim Beckett, WA2KJT

has joined us as a sales and service representative.

We now offer limited service on equipment that we sell.

Office & Salesrooms Hours by Appointment Only

24-Hour Phone: 607-533-4297

Send SASE for Monthly Listing of Used Equipment and Bargain Goodies

Trade-ins accepted on both new and used equipment. Cash deals get prepaid shipping in the Continental U.S.A. plus a 15% discount on items on our regular listing.!!!
Wilson Electronics DIRECT

SPECIAL SUMMER SALE !!!

WILSON 1402SM HAND HELD
2.3 WATT FM TRANSCEIVER

* Rubber Flex Antenna
* Complete Set NiCad Batteries
* Leather Case
* Three Sets of Crystals

16/76, 34/94, 94/94, Other Available at $8.00 Pr.

ALL FOR JUST $199.95

- 6 Channel Operation, Individual Trimmers On All TX and TR Xtls. All Xtls Plug In.
- S Meter Battery Indicator.
- 10.7 IF and 455 KC IF Ceramic Filter.
- .3 Microvolt Sensitivity For 20dB QT.
- 2.3 Watts Minimum Output.
- Microswitch Mike Button.
- Size 8-7/8 x 1-7/8 x 2-7/8 Inches.
- Weight 1 lb. 4 counces, Less Battery.
- Current Drain Rx 14MA TX 380 MA.

ACCESSORIES:
SM1 Speaker Mike $24.00
BC1 Battery Charger $29.95
1410A Amplifier Mobile Mount $99.00

To: Wilson Electronics
P.O. Box 794
Henderson, Nevada 89015
(702) 451-5791

Ship me 1402 SM Special Summer Package
Plus ☐ SM1 ☐ 1410A ☐ BC1

Enclosed is $ ☐ Check ☐ Money Order
☐ Master Charge ☐ Bank Americard
____________________________ M/C Interbank # ____________________________
Card Expiration Date
Extra Xtls

Name ____________________________
Address ____________________________
City and State ______________________________________ Zip ______

All orders will be shipped Air Mail within 24 hours after receipt of order (excluding weekends). Enclose additional $3.00 for prepaid Air Mail shipping. Nevada residents add sales tax.
Sale ends October 31, 1974
Beginning with this announcement, every Midland 2-meter mobile transceiver sold will have R.S.V.P. Not an extra feature or secret ingredient, but a real benefit for every repeater user. What's R.S.V.P.? Ask your Midland dealer today.

For Free Midland Amateur Catalog, write Dept. H. P.O. Box 19032, Kansas City, Mo. 64141
A SPECIAL SUMMER OFFER FROM ROBOT:

FREE PERSONALIZED SSTV TAPE RECORDING

with the purchase of the Robot 70A Slow Scan Monitor.

This personalized tape with your call, handle, QSL art, etc., and the Robot Monitor are all you need to operate two way SSTV. Simply play the tape on your audio tape recorder plugged into the mic jack of your transmitter and you are transmitting an SSTV video signal. With this special summer offer you can operate two way SSTV for just $295, the price of the monitor alone.

And there's plenty of SSTV action! Thousands of amateur operators are now operating SSTV in the U.S. alone with all 50 states represented, and more than 80 countries have been logged on two way SSTV. And with our special offer, you can join the fastest growing amateur radio activity for just $295.

But this is a limited offer* so act today. With your Robot Model 70A Slow Scan Monitor order, let our girl Suzie know what you want on your SSTV tape (cassette or reel), and send a photo or art work if you want these included. Your order, with your FREE personalized SSTV tape will be on its way to you within a few days.

ORDER FACTORY DIRECT TODAY

ROBOT RESEARCH. INC.
7591 Convoy Court
San Diego, California 92111
Phone 714-279-9430

*Offer good until August 31, 1974, and limited to USA and Canada.

ROBOT SSTV'ers; please send us your QSL card to brighten our office and convention displays.
FOR THE PROMOTION OF International Radio Scouting, an attempt is being made to locate boy, girl, and adult scouts that hold amateur radio licenses. Could scouting amateur supply me with their name, address, amateur call, class of license, scouting position, etc. Don Wibel K9ECE/W19BSA, 5115 Delaware Ave., Fort Wayne, Indiana 46805.

THE 9TH ANNUAL MELBOURNE HAMFEST is September 20. Air conditioned, $1.50, tables $2/day. P.O. Box 1104, Melbourne, FL 32901.

STOLEN on or about May 22, 1974: Swan 400 transceiver with #406VFO, 117X AC Power Supply and DI04 microphone. Eico #720 CW Transmitter, Eico #722 V.F.O., Heathkit HR-20 Receiver, Globe Scout CW Transmitter, Hallicrafters SX93 Receiver, Mobile Console Wattmeter, Homebrew Transmatch, CD Ham M Station Console. If you have any information please contact W2HBGO or K1RBC, 5151 Delaware Ave., Fort Wayne, Indiana 46805.

RTTY EQUIPMENT FOR SALE including machines, parts, gears. Send us a list of your teletype needs. Atlantic Surplus Sales, 1902 Mermaid Ave., Brooklyn, N. Y. 11224.

THE NORTH TEXAS REPEATER ASSOCIATION invites all amateurs to attend the Texas VHF-FM Society Convention Friday, Saturday, and Sunday, August 2, 3 and 4 at the Dallas West Ramada Inn in Irving Texas. Activities will include displays, technical sessions, prizes and the featured speaker, A. Prose Walker, W4BW, of the MCC. Tickets $3 for pre-registration, $4 at the door. Drawing for those that pre-register. Checks may be made to the Texas VHF-FM Society. For information write Texas VHF-FM Society, P. O. Box 3823, Irving, Texas 75061.

FIGHT TVI with the RSO Low Pass Filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. MIS 384.

THE CENTRAL MISSOURI AMATEUR RADIO CLUB, Sedalia, Missouri, and The Warrensburg Amateur Radio Club, Warrensburg, Missouri, will sponsor a club station at the Missouri State Fairgrounds, Sedalia, Missouri, August 16th through August 25th. This event has been awarded the special call WMO6SF.

HOME BREWERS: Stamp brings list of high quality home brewed products. CPO Surplus, Box 189, Braintree, Mass. 02184.

HYDROPONICS for XYL while QRL. Build-yourself garden components, books, nutrients, 5 page catalog, $2.00, and refundable $1.00. Incorporate 8-17-71. BURWELL GEOPONICS, Box 125-D, Rancho Sancho, CA 92067.

WANTED: HAM RADIO January, March, April and July 1975, September 1974, December 1974. Must be picked up in Las Cruces, N. M., no shipping. Details for SASE from W6SCBC or Box RTTY, Ham Radio, Greenville, NH 03048.

WARREN HAMFEST, largest family style hamfest in East. Sunday, August 18th, at famous Yankee Lake Park. Giant fleamarket, swimming, picnicking. All Free. QSL W8VTD, Box 809, Warren, Ohio 44482.

OUR DIGIPET 60 IS A GENERAL-PURPOSE FREQUENCY COUNTER WITH A RATING OF 1 kHz TO 60 MHz.

(PLUS 130 MHz TO 160 MHz)

Perfectly designed for the radio amateur who wants quality, accuracy and economy.

If you operate around the 50 MHz band, we can offer you the Digipet 60—it measures a range of 1 kHz to 60 MHz—and it costs less than $300.

However, if you operate up around 140 MHz, you'll want the Digipet 160 converter. It costs an additional $50 and, mated-up with the Digipet 60, measures the critical range from 130 MHz to 160 MHz. Its AC or DC operable with complete overload protection, plus being stable (aging rate: 1 part in 10^6/week), small (7" deep x 2½" high), sensitive (50 mV/m's), flexible (five numerical-tube digits) and accurate (resolves to 1 kHz or 1 Hz, depending on gate time selected).

Write immediately for more information.

T.R.I. CORPORATION
505 West Olive Avenue • Sunnyvale, CA. 94086 • (408) 733-9080
NEED PARTS? We carry parts for R-398-390-390A-391-392-1051-5151, Nems Clark-Racal-Pack sets-RP25-254-1-4, R-717-742-772. If you a part no matter what you have. If its U.S. government we have it or can get it. Also we want to buy or trade all aircraft communications. All ground radio modules control heads. No matter what cond. they are in, bent or busted ok. We will buy or trade. We have R-390-398-390A-391-1051-5151, Nems Clark, Racal- and new, ham gear for trade. D & R Electronics, R. D. #1, Box 56, Milton, Pa. 17847. Phone 717-742-4604 after 6:00 P.M.

BUY—SELL—TRADE. Write for monthly mailer. Give name, address, call letters. Complete stock of major brands new and reconditioned equipment. Call us for best deals. We buy Collins, Drake, Swan, etc. SSB & FM. Associated Radio, 8012 Conser, Overland Park, KS. 66204. 913-381-5901.

WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.

WANTED: Excellent 2 meter amp. mod. transceiver. Benson, 7554 Trask Ave., Playa del Rey, Calif. 90091. (213) 823-1800. Local only.

WANTED - USED FM 2-way radio communications equipment and test equipment. Mot, GE and RAC etc. No doggies please, CAL-COM Systems, Inc., 701-51A Kings Row, San Jose, Calif. 95112, Tel. 408/998-4444.

FAX PAPER: For Desk-Fax, new (not surplus), pre-cut (not rolls), $15 per thousand sheets, postpaid worldwide. Bill Johnston, 1808 Pomona Drive, Las Cruces, New Mexico 88001.

VHF-UHF PRE-AMPS. 432 MHz receive and transmit converters. Send for illustrated information. Carmichael Communications, P. O. Box 256, Carmichael, CA. 95608.

RTTY'ERS ADD PERF TAPE to your rig. Friden 2115 tape punch, 2314 Electrodata reader, and selecta data reader. $150.00. Will work on 5, 7, and 8 channel tape. Ted Dum, 11852 Davenport Road, Los Alamitos, Calif. 90720. (213) 381-1852.

WANT OLD RADIO SHOW TRANSCRIPTION discs. Any size or speed. Send details to, Larry Kiner, W7FI2, 7554 132nd Ave N.E., Kirkland, Wa. 98033.

TELETYPewriter PARTS, gears, manuals, supplies, tape, tornos. SASE list. Teletronics, Box 8973, Ft. Lauderdale, Fl. 33310. Buy parts, late machines.

PROFESSIONAL FIRE and intrusion alarm equipment and components at budget prices. From simple to most modern. SASE brings list or tell us what you need. Self-Contained Ionization detector fire alarm, SMOKEGUARD II, only $65 postpaid for cash with order. ELECTRONIC EYE, 9044 Eldora Drive, Cincinnati, Ohio 45236.

WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.

Full 12 Channel, 15 Watts with HI/LO power switch

Here is everything you need, at a price you like, for excellent 2 meter FM performance. The 12 transmit channels have individual trimmer capacitors for optimum workability in point-to-point repeater applications. Operate on 15 watts (minimum) or switch to 1 watt. 0.35 uv sensitivity and 3 watts of audio output make for pleasant, reliable listening. And the compact package is matched by its price. $229.00

American Made Quality at Import Price

An FM Model For Every Purpose . . .

Every Purse
Only STANDARD sells more STANDARDS than ERICKSON!

and here's ANOTHER ERICKSON SPECIAL
SRC-826 MA

A better BEST BUY than ever

OUR DEAL:

826 MA list $398.00
+ 16 extra xtals 80.00

Package list price $478.00
You pay only $359.00

YOU’VE SAVED $119.00

YOU GET Standard’s 826MA, the best 12-channel 10-watt solid state rig on the market, factory set up on four channels plus crystal coupons for eight more channels (16 of Standard’s lifetime Astropoint crystals!) of your choice; with helical-resonator front end receiver, built in provision for tone-coded squelch, rear panel test point/monitor/control sockets — all in one compact, reliable package — at a GIANT $119 ERICKSON saving !

Shipping prepaid for cashier’s check or M.O.

SRC-146A with:

- Deluxe basecharger
- “Stubby” antenna
- Leather case
- Ni-cads
- 94/94, 34/94 and one other channel of your choice

List Price $359.00
Our Price $319.00

YOU SAVE $50.00 !!

Another BEST BUY from Erickson

Make ERICKSON your headquarters for all your FM needs . . .

SEND QSL FOR COMPLETE SPECIFICATIONS

ERICKSON COMMUNICATIONS
3501 W. Jarvis, Skokie, IL 60076 (312) 677-2161

86 August 1974
QSL'S SAMPLES 20c, John Hull Printing, Rte. 6, box 41, Duluth, Minn. 55804.

FREE Crystals with the purchase of any 2 meter FM radio. Write for our deal on the job of your choice. Factory-authorized dealers for Collins, Drake, Regency, Standard, Icom, Alpha, Kenwood, Tempo, Genave, Standard, Ten-Tec, Midland, Telecrafters, Venus, Hy-Gain, CushCraft, Mosley, and Hustler. For the best deal around on VHF or HF gear, see us first or see us last, but see us before you buy. Write or call us today for our low quote and become one of the many happy and satisfied customers of Hoosier Electronics, R. R. 25, Box 403, Terre Haute, Indiana 47802. (812) 894-2397.

RADIO LICENSE — Exact reproduction, including signature, engraved in solid brass. Send GOOD Xerox copy with $5.00 to Metal Art Graphics, 1136 Potomac Ave., Hagerstown, Md., 21740. Md. residents please enclose state sales tax.

COMMAND SETS WANTED: Interested in unconverted units, especially T-17/ARC-5; R-24/ARC-5 or BC-946 BCB rcvr. Need racks, mounts, control boxes, connectors. Also manuals. Mike Everett, WA4DLF, 2921 Wycliff, Raleigh, NC 27607.

QSLs CATALOG SAMPLES 35c. Ritz Print Shop, 5810 Detroit Avenue, Cleveland, Ohio 44102.

NEW PARTS BARGAINS: Belden 100-ft. GR8 foam coax with PL295 ends 17.95; Brandes headphones (J) 5.50; Motorola HEP170 epoxide diode 2.5/Å/1000; PIV 2.90/10; #15 copper antenna wire; many new Sprague capacitors — write needs; CDE .001MFD/10KV dix2 1.95; RG62/U 6r/ft; RG7/U 6r/ft; RG13B/15c/ft; RG9/U 30c/ft (25 ft. max single length); Belden 8214 RG8 foam 18c/ft; Amphenol PL295 59c; Motorola semiconductor data series books 7.50; Rider, TAB, ARL, AMECO, Callbooks; many old tubes — write needs; new panel meters — write (4.95/25r). Hammundl ARC50PF variable cap 1.95; Raytheon 811A 7.95. 15.00/PR; Sorensen ACR2000VA AC regulator 150.00; GE receiving tubes 50%-off list; KYS5 code keyer (plastic wheels) 5.95; Free parts flyer; all items new, guaranteed. Prices FOB Houston. Madison Electronics, 1508 McKinney, Houston, Texas 77002. 713/224-2688.

RECIROCATING DETECTOR, write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

QST FOR SALE. Send SASE for list. S. G. Simonson, 991 Park Lane North, Franklin Square, N. Y. 11010.

FT.101 MARK-2/B OWNERS. Why compromise with other more expensive RF clippers? G3JLL's RF clipper is designed only for FT.101. Talk power kwatt class without linear (5-10 with linear!) PLUS extra R. X. gain, selectivity. Fits in minutes, no circuit board modification. Introductory price $99 via air. Details: Holdings, 39/41 Mincing Lane, Blackburn, BB2 2AF England.

WANTED. COLLINS 51S-1. J. Callan, 65 Beechcroft Street, Brighton, Mass. 02135.

TRAVEL-PAK QSL KIT Converts photos, post cards to QSLs! Send call and 25c for personal sample. Samco, Box 203H, Wyanetskill, N. Y. 12198.

USED MYLAR TAPES — 1800 foot. Ten for $8.50 postpaid. Fremenman, 4041 Central, Kansas City, Mo. 64111.

Over 210,000 QTH's in the DX edition

DX CALLBOOK for 1974

$8.95

Over 285,000 QTH's in the U.S. edition

U.S. CALLBOOK for 1974

$9.95

See your favorite dealer or Send today to

(Mail orders add 50c per CALLBOOK for postage and handling)

WRITE FOR FREE BROCHURE

RADIO AMATEUR

callbook INC.

Dept. E. 925 Sherwood Drive
Lake Bluff, Ill. 60044

august 1974
1. **YOU GET THE BEST PRICE....** but what happens later when you want an improved model? At Tucker you can trade-up - just like a used car.

CORVUS 310 HAND-HELD PORTABLE 6 function (+, -, x, ÷, %, square root) with automatic constant, 8 digit readout, floating decimal and negative sign and many features:
- With disposable batteries $59.95
- Disposable batteries & AC 64.95
- Rechargeable batteries & recharger 69.95

2. **Guarantees....** 30 day money-back guarantee...One year repair or replace guarantee and THEN TUCKER will repair any unit after the warranty expires for only $9.95 (excluding any shipping and excessive damage)

CORVUS 305 DESK-TOP CALCULATOR WITH CLOCK & CALENDAR
- full 7 function (+, -, x, ÷, %, square root and reciprocal) with 10 digit readout, selectable 2-4 or floating decimal, automatic, constant and many features. But when the 305 isn't being used as a calculator it's a digital clock and calendar that keeps perfect time as long as it's plugged in.
- Model 305 ... $99.95
- Model 300 w/o clock 84.95

ADD $2.75 TO EACH ORDER FOR SHIPPING.

Send check, money order, Bank Americard No., Mastercharge No. or American Express No. to: (Residents of Texas, Illinois, New Jersey & California include 5% sales tax)

TUCKER ELECTRONICS - COMPANY
P.O. Box No. 1050C
Garland, Texas 75040

FOR RUSH ORDERS CALL TOLL-FREE 800-527-4642 (In Texas call 214-348-8800)

More Details? CHECK-OFF Page 94
INDIANA'S FASTEST GROWING fall hamfest. Grant County ARC's annual hamfest, Sept. 29, 1974, 4-H Fairgrounds. Admission still $1.00 for advance tickets, $1.50 at gate. Large flea market, technical sessions, bingo for XYLs. Large inside pavilion, plenty of parking. For more information or advance tickets, write W4EBN, P. O. Box 815, Marion Ind. 46952.

URGENTLY NEED FOR SCHOOL SCIENCE PROJECT: Hammarlund HR-10 or SP600VF; any ARC-5 receiver, especially BCB or 6-9; Rustrak tape and recording. Call person-to-person collect Bob Ammons, 406-543-5359 or write 411 Keith, Missoula, Montana 59801. Any reasonable price.

THE IOWA 75 METER NET will hold its annual picnic on Sunday, August 25, at Riverview Park in Marshalltown, Iowa, and all amateurs and net members are urged to attend. You may check in any time. A pot luck dinner will be served at 12:00 noon. Everyone is asked to bring a covered dish. Pop and drink will be provided free. Prizes will be awarded.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free literature. Estes Engineering, 543-H West 184th, Gardena, California 90248.

WANTED: Complete Collins S-line. Ken, WA5JVB, P. O. Box 355, Nederland, Texas 77627. Phone (713) 722-4196.

HAVE 1000 14 PIN IC WIRE WRAP SOCKETS. 10 for 4.00 pp. or trade for electronic components. Harold Nowland W2ZKH, 15721 Fordline, Southgate, Mich. 48195.

SURPLUS TEST EQUIPMENT, VHF and microwave gear; write for bulletins. David Edsall, 2843 St. Paul, Baltimore, Md. 21218.

NOVICES: 75 WATT MONOBAND transceivers 80-40 or 15 meters only $59.50. 75 watt transibands 80-40 and 15 only $89.50. Unconditionally guaranteed. Fully expandable into additional coverage when you get general class license. Get on the air immediately. Send for free literature. Hermes International, Box 989, Floral City, Florida.

QSL's, Sample catalog 20¢, N & S Print, P. O. Box 11184, Phoenix, Ariz. 85061.

1000 PIV AT 2.5 AMP. HEP-170 diodes. 10 for $2.50, 50 and up 22¢ each, 100 and up 20¢ each. Postpaid. U.S.A. 1N4007 1000 PIV at 1 amp, 18¢ S.A.S.E. for list. K. E. Electronics Mfg., Box 1279, Tustin, California 92680.

QUALITY CABLE TIES (6" nylon), half price, $2.75/100 postpaid. Joe Dillingar, 106 Sheridan Ct., Leavenworth, KS 66048.

rotate YOUR HOUSE with a . . .

CUSH CRAFT MONOBEAM

The caption may be slightly exaggerated, but we all know that the only way to get real performance is with a full size single band beam.

Cush Craft Monoboams combine superior electrical and mechanical features with the best quality materials and workmanship. They give reliable day to day amateur communications and that extra DX punch when needed for contest work or emergency communications.

A14-3 3 element 20 meters $120.00
A14-2 2 element 20 meters 92.00
A21-4 4 element 15 meters 100.00
A21-3 3 element 15 meters 71.00
A28-4 4 element 10 meters 62.00
A28-3 3 element 10 meters 50.00

SEE YOUR LOCAL DEALER
OR WRITE FOR FREE CATALOG

Cush Craft CORPORATION
621 HAYWARD STREET MANNCHESTER, N. H. 03103

august 1974
2 METER FM PORTABLE

4 CHANNELS 2 WATTS DUAL CONVERSION

HT-144 Kit ONLY $99.95

BASE × MOBILE

RX144C $69.95 Kit

TX-144 $29.95 Kit

VHF ENGINEERING

- DIV. OF BROWNIAN ELECT. CORP. -

320 WATER ST. POB 1921 BINGHAMTON, N.Y. 13902 607-723-9574
PERSONAL ATTENTION plus the best cash deal anywhere is what you receive at Queen City Electronics in the heart of the Midwest. Queen City carries all major brands including: Drake, Tempo, Kenwood, Yaesu, Swan, Regency, Clegg, Standard, Icom, Genave ... Write or phone us for your equipment needs. Queen City Electronics, Inc., 7404 Hamilton Avenue, Cincinnati, Ohio 45231, (513) 931-1577.

MANUALS for most ham gear made 45/65, some earlier. Send SASE for specific quote. Hobby Industry, WOJJKJ, Box H-864, Council Bluffs, Iowa 51501.

MUST SELL: Heath SB-301 w/400Hz filter, SB-400 w/xtal pack. All excellent condition — $200.00 each or $375.00 both. Will ship. W22DGN, 159 Fisher Road, Rochester, N. Y. 14624.

TEKTRONICS 945, military 545, DC-24MHz scope delayed sweep, dual trace plug in. good cond. $450 & ship. M. Roos, 850 Russell G-8, Santa Rosa, CA 95401.

WANTED: GENERAL CLASS (or higher) hams to join 4500 member Morse Telegraph Club. Hundreds of hams and equipment on hand. Send modest $3 annual dues (includes subscription to great slick paper newspaper "Dots and Dashes") to GST A. J. Long, 520 West Schwartz Street, Salem, OR 97301 for membership card and assignment to nearest chapter.

EXCLUSIVELY HAM TELETEYPE 21st year, RTTY Journal, articles, news, DX, VHF, classified ads. Sample 30¢. $3.00 per year. Box 837, Royal Oak, Michigan 48068.

PC's. Send large S.A.S.E. for list. Semtronics, 44 Loretta Road, Waltham, Mass. 02154.

DANVILLE HAMFEST at Douglas Park in Danville, Illinois Sept. 1. Bowman Avenue Exit I-74 and follow the signs. Prizes. Camping and motel accommodations nearby. Large flea market and commercial displays. Tickets are $2 or three for $5. Advance tickets from WA9PDS, Dave, Dolan Road, Catlin, Illinois 61817, WA5PU check or M.O. and SASE. Talk in 22.82 and 54-simplex.

QLS. SECOND TO NONE. Same day service. Samples airmailed 50c. Ray, K7HRL, Box 331, Clearfield, Utah 84015.

MOTOROLA Metrum II Demonstrator (25W) $439.95. 10% Off Grand Opening Special. Standard, Genav, Hy Gain, and Antenna Specialists. For all your Amateur Needs Call — BRUCE ELECTRONICS, INC., P. O. Box 724, Mt. Sterling, Kentucky 40353, 606-498-5221.

MOTOROLA PORTABLES — Expert repairs, reasonable prices, fast turn-around time. More details and flat rate catalog FREE. Ideal Services, 6663 Industrial Loop, Greendale, WI 53129.

QRP TRANSMATCH, for HW7, TenTec and others. Send stamp for details, to Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

YOUR AD belongs here too. Commercial ads 35¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.

For standing ads not changed each month. Commercial per word. YOUR AD belongs here too. Commercial ads 35C

Send stamp for flat rate catalog FREE. Valley West, Box 2119-C, Sunnyvale, Calif. 94087.

MOTOROLA Newsletter. Digital, linear construction projects, design theory and procedures. Sample copy $1.00. Valley West, Box 2119-C, Sunnyvale, Calif. 94087.

More Details? CHECK-OFF Page 94
MODEL 60 SPEECH PROCESSOR - QRO
The average-to-peak ratio of the speech waveform as much as 8 dB using a logarithmic compressor. Includes FM, SWB and AM transmitters and receivers. Low/High impedance Mic input. Two Vdc batteries provide a self-contained unit.
Model 60W (Process Assembled) $29.95
Model 60C (Process) $22.95
200-15 (Process Board Kit) $14.95

MODEL 20 DIGITAL DIAL - Available for Collins and Drake gear. Optional four digit readout and crystal time base. BSY your fixed or mobile transceiver receiver or transceiver with 100 Hz accuracy and no last digit jitter. Simple two wire communications dial and you're ready to go. Specify your type of rig.
Model 20T (4 X 5 M F VFO range) $169.95
Model 20C (Collins) $169.95
Model 20D (Drake) $79.95
Options: (4 Digit Readout) $29.95
(Crystal Time Base) $29.95

MODEL 11A PADDLE - Designed with reliability in mind. No mechanical switches or bearings to fail. Paddle contact spacing adjusted easily.
Model 11A (Assembled) $11.95

MODEL 10A ELECTRONIC KEYER - Has NEW features at no extra cost. Linear Speed Control and Operate/Tune Switch. Plus an internal penlight and read relay output provide a compact portable unit.
Model 10A (Kev Kit) $19.95
Model 10AKA (Kev Kit) $29.95
Model 200-2K (Kev Board Kit) $14.95
Model 200-3K (Sidewinder Board Kit) $5.95

DEALERS:
VE AMATEUR RADIO SALES, Downiewor. Orlando, Canada
SST ELECTRONICS, L. Sillow, CA 90702 & GARY RADIO INC.
San Diego, Ca, 92011 • KASS ELECTRONICS DISTRIBUTIONS.
Drexel Hall, PA 19020 M. WEINBERNER KDPU.
Irwin, PA 15642 • HAMTRONICS, Tresoro, PA 19047

Radio Amateurs
Reference Library of Maps and Atlas

WORLD PREFIX MAP - Full color, 40" x 28", shows prefixes on each country, DX zones, time zones, cities, cross referenced tables $1.25

WORLD AMATEURS GREAT CIRCLE CHART OF THE WORLD - from the center of the United States! Full color, 30" x 25", listing all Amateurs in degrees for six major U.S. cities, Boston, Washington, D.C., Miami, New York, San Francisco & Los Angeles $1.25

AMATEURS MAP OF NORTH AMERICA! Full color, 30" x 25", includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes, and time zones, FCC frequency chart, plus useful information on each of the 50 United States and other countries $1.25

WORLD ATLAS - Only atlas compiled for radio amateurs. Packed with world-wide information - includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica - a complete set of maps of the world, 20 pages, size 8 1/2" x 12" $2.50

Complete reference library of maps - set of 4 listed above $3.75

See your favorite dealer or order direct.
Mail orders please include 50c per order for postage and handling.

COMPLETE ANTENNA SYSTEMS
A complete ready-to-use antenna system designed for your favorite frequency. Includes No. 12 copper-clad wire element dipole, 100 ft. of coax with connector, and 100 ft. of 1/2 inch diameter dacron halyard at each end of dipole. No "dilution" or trimming required. You furnish the supports, plug the feedline into your ymtr and you're ready to go. Power rating - 2KW, VSWR 1:1 or less.

25/80M Monoband 130 Ft. $74.75
40M Monoband 65 Ft. 69.75
80/40M Dualband 130 Ft. 99.95
80/60/20M Triband 130 Ft. 199.95

Descriptive literature available. State desired frequency. Postpaid contiguous USA.

HOUSE OF DIPOLES
Box 8548
Orlando, Fla. 32806

LEARN RADIO CODE
THE EASY WAY!

- No Books To Read
- No Gimmicks To Distract You
- Just Listen And Learn

Based on modern psychological techniques - This course will take you beyond 13 w.p.m. in LESS THAN HALF THE TIME!
Available on magnetic tape, $9.95 - Cassette, $10.95

Epsilon Records
508 East Washington St., Arcola, Illinois 61910

More Details? CHECK-OFF Page 94
RCA NUMITRON
EACH $3.00
SPECIAL: 5 FTW $20.00
DR2010

Power Supply SPECIAL!
723 pF variable capacitor 1-400, 0 - 4.0 output @ 150 MA, with glass-enclosed power transistor—With diagrams for many applications.
EACH $1.00 10 FOR $9.95

CT5005 CALCULATOR
This calculator chip has a full four-function memory, which is controllable by four keys: clear memory, 0 - 9 (except for memory), + (subtracts entries from memory). C (clear wire), error (if wire error, or exit as entry). 12-digit display and calculator.
Fixed decimal at 0, 1, 2, 3, or 4.
Leading zero suppression.
7-Segment multiplex output.
True credit plus display.
Simple 28-pin chip.
CPU and DATA ——— ONLY $4.95
DATA ONLY (Available) ——— 1.00
5001 CALCULATOR
40-Pin calculator chip will add, subtract, multiply, and divide. 12-digit display and calculator. 32k words of memory. 4k words of program memory.
True credit balance plus output.
Automatic over-flow indication.
Fixed decimal point at 0, 1, 2, 3, or 4.
Leading zero suppression.
Complete data supplied with chip.
CPU and DATA——ONLY $9.95
DATA ONLY (Available)—— 1.00
5002 LOW POWER CHIP AND DATA— 12.95

LICENSABLE

BABYLON ELECTRONICS

SEND FOR FLYER LISTING 100's OF MONEY-SAVING BARGAINS!

7400 Series DIP

RECTIFIERS
 VQ447 2A 400V $7.90
 VQ547 2A 600V 1.10

More Details? CHECK-OFF Page 94
august 1974
Adver'sers check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio ☑ 234

INDEX

ATV* ... 006
Amtech .. 017
Atlas ... 198
Babylon 014
Barry* .. 003
Beaman .. 017
Budwig .. 233
CFP ... 022
Caddell .. 244
Communications 248
United ... 248
Comtec ... 151
Cush Craft 035
Delavan ... 235
Drake .. 039
Ecm ... 190
Ehrhorn ... 042
Eimac ... 043
Electronics Center 236
Epsilon ... 046
Erickson .. 047
Expo '74 .. 147
General Aviation 168
Gray ... 055
Greene's ... 253
Gregory* .. 057
Hal .. 057
Hal-Tronix 254
Ham Radio 150
Hamtronics 246
Henry ... 062
House Dipoles 036
Icom .. 065
International 099
Crystal ... 099
International Field Day* 067
Jan .. 067
Janel .. 068
*Please contact this advertiser directly

Limit 15 inquiries per request.

August 1974

Please use before September 30, 1974

Tear off and mail to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME ..

CALL ...

STREET ..

CITY ...

STATE .. ZIP

ATV Research 68
Amtech .. 75
Atlas Electronics 63
Babylon Electronics 93
Barry .. 096
Bauman .. 68
Budwig Manufacturing Co. 80
CFP Enterprises 78
Caddell Coil Corp. 69
Communications Unlimited 72
Comtec .. 69
Cush Craft 39
Delavan Electronics, Inc. 72
Drake, Co. R. L. 43
ECM Corporation 78
Ehrhorn Technological Operations, Inc. 01
Eimac, Div. of Varian Assoc. Cover IV
Electronics Center, Inc. 68
Epsilon Records 92
Erickson Communications 67
Expo '74 .. 70
Gray Electronics 91
Greene's Electronics 69
Gregory Electronics 67
Hal Communications Corp. 55
Hal Tronix 90
Ham Radio 48, 49
Hamtronics, Inc. 69
Henry Radio Stores Cover III
House of Dipoles 92
Icom ... 77
International Crystal Mfg. Co. Inc. 74
International Field Day 67
Jan Crystals 80
Janel Labs 86
K. E. Electronics 69
Leland Associates 69
Logic Newsletter 72
Mfj Enterprises 68
Marten Corporation 80
Matric ... 92
McClaren 76
Midland Electronics Company 80
Nasem ... 76
Nurmi Electronic Supply 65
Palomar Engineers 91
Poly Paks 82
Professional Electronics 75
Rms Corporation 80
Radio Amateur Callbook 87
Raytheon Company 92
Regency Electronics, Inc. 85
Robot Research 81
Saroc .. 67
Space-Military Electronics 92
Specialty Products 72
Spectronics FM 71
Spectrum International 78
Swan Electronics Cover I
Symtek, Inc. 76
T. R. I. Corporation 84
Technical Documentation 66
Tekpro Design Systems 92
Tri-ex Tower Corp. 92
Tri-Tek, Inc. 67
Tucker Electronics 88
VHF Engineering, Div. of Brownian Elec. Corp. 90
Webster Radio 75
Weinschenker, M. 69
Wide Band Engineering Co. Inc. 72
Wilson Electronics 79
Wolf ... 76
World Qsl Bureau 92
Yaesu Musen USA 95

94 th August 1974
Incomparable
FT-101B
Proven Performance
SOLID-STATE 160-10 METER TRANSCEIVER

ASK THE AMATEUR WHO OWNS ONE
AND LEARN WHY ACTIVE AMATEURS
WORLD-WIDE CHOOSE YAESU

"THE TOTAL PERFORMANCE LINE"

VISIT YOUR DEALER FOR DETAILS AND OUR NEW CATALOGUE

All Yaesu products warranted by the selling dealer
Complete after warranty factory service available

YAESU MUSEN USA INC.
7625 E. Rosecrans Ave., Unit #29, Paramount, CA. 90723
(213) 633-4007

More Details? CHECK-OFF Page 94
Collins clock: $96

B & W WATERS Model 334-A ONE KW WATTMETER LARGE METER WITH 10, 100, 300 & 1,000 WATT SCALES $149.95 PREPAID

2-METER AMPLIFIER

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FIN GOOD</th>
<th>FIN QUACK</th>
<th>KIT PRICE</th>
<th>WIRE & TESTED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1925M</td>
<td>1.3</td>
<td>2.0</td>
<td>$39.95</td>
<td>$45.95</td>
</tr>
<tr>
<td>PS1926M</td>
<td>1.5</td>
<td>2.5</td>
<td>$44.00</td>
<td>$50.00</td>
</tr>
<tr>
<td>PS1927M</td>
<td>1.7</td>
<td>3.5</td>
<td>$89.95</td>
<td>$99.95</td>
</tr>
<tr>
<td>PS1928M</td>
<td>1.9</td>
<td>3.9</td>
<td>$119.95</td>
<td>$139.95</td>
</tr>
</tbody>
</table>

Regulated Power Supplies

- PS-12 ADJ 11-15 VDC 12 amp... Wired.... $79.95
- PS-24 ADJ 11-15 VDC 24 amp... Wired.... $89.95
- HT-144 Handheld Kit 2 meters, 2 watts, complete less batteries and crystals... $99.95

B & W WATERS Model 334-A ONE KW WATTMETER LARGE METER WITH 10, 100, 300 & 1,000 WATT SCALES $149.95 PREPAID

HF Gear from Barry

- Hustler 4BTV Vertical Antenna... $56.95
- Famous Triton-11 by Ten-Tec. Fully solid-state, 200 watt transceiver. 5 bands - full break in on CW... $49.95
- Ten-Tec 252 AC Power Supply with VOX... $119.00
- Drake TR-4C Transceiver... new... $599.95
- Drake AC-4 Power Supply... $120.00

HF Gear from Barry

- Collins 30L-1 Linear Amplifier... good... $375.00
- Collins 75A-4 with AM, SSB & CW filters plus Collins speaker and Book... $395.00
- Heath SB-301 with SB-620 Scansyler and SB-600 Speaker... $395.00
- Servo Corp. R-5200 Receiver 50 to 250 Mc continuous CW, FM, AM, adjustable selectivity, 115 volt AC... $195.00
- Kenwood TS-511S with Kenwood PS-511S, Mint... Both for $395.00
- Hunter Bandit Linear Amplifier, Ex. Cnd... $495.00
- HQ-170 - Hammarlund 160-1600 Mc transceiver... $44.95
- HQ-180 - Hammarlund General Coverage with SWR Monitor... $225.00
- HQ-215 - Hammarlund Solid State Amateur Receiver... $225.00

LATE ARRIVALS:

- Drake T-4XC... Just arrived... $580.00
- Drake SPR-4... Just arrived... $579.00
- Drake AA-10 Amplifier for TR-22... $49.95
- Drake AC-10 Pwr. Sup. for TR-22, AA-10 or TR72... $44.95

CASH PAID... FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLE, Test Equipment, ETC. Write or call Now! Barry W2NLI. We Buy! We ship all over the World. Thousands of Unadvertised specials, F.O.B. point of shipment. Add sufficient funds for shipping. Excess refunded.

FM from Barry

- Drake SC-6, 6 meter Rec. converter with Drake CCI console... $120.00
- Drake TC-66 meter trans. converter... $278.00
- Mallory UHF Inductors, covers 50-250Mc... $9.95 ea
- DR 100 watts pep. 10 meter operation... New... $120.00

CASH PAID... FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLE, Test Equipment, ETC. Write or call Now! Barry W2NLI. We Buy! We ship all over the World. Thousands of Unadvertised specials, F.O.B. point of shipment. Add sufficient funds for shipping. Excess refunded.

Venus

- SS-2, SLOW SCAN MONITOR Hood, C$ Test Tape $9.50 - $349.00
- C1, FAST SCAN/SLOW SCAN CAMERA & CONVERTER - $469.00

CASH PAID... FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLE, Test Equipment, ETC. Write or call Now! Barry W2NLI. We Buy! We ship all over the World. Thousands of Unadvertised specials, F.O.B. point of shipment. Add sufficient funds for shipping. Excess refunded.

- Collins 75A-4 with AM. SSB
- DR 800 watt trans. converter
- Collins 30L-1 Linear Amplifier
- Collins 75A-4 with AM, SSB & CW filters plus Collins speaker and Book
- Heath SB-301 with SB-620 Scansyler and SB-600 Speaker
- Servo Corp. R-5200 Receiver 50 to 250 Mc continuous CW, FM, AM, adjustable selectivity, 115 volt AC
- Kenwood TS-511S with Kenwood PS-511S, Mint
- Hunter Bandit Linear Amplifier, Ex. Cnd
- HQ-170 - Hammarlund 160-1600 Mc transceiver
- HQ-180 - Hammarlund General Coverage with SWR Monitor
- HQ-215 - Hammarlund Solid State Amateur Receiver
- Drake T-4XC... Just arrived
- Drake SPR-4... Just arrived
- Drake AA-10 Amplifier for TR-22
- Drake AC-10 Pwr. Sup. for TR-22, AA-10 or TR72
- SB-200 Heath Linear Amplifier Exc. 10-80 meters
- Heath SB-620 Scansyler
- Collins MP-1 Mobile 12 VDC Power Supply
- Collins 312-B5 VFO Wattmeter

CASH PAID... FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLE, Test Equipment, ETC. Write or call Now! Barry W2NLI. We Buy! We ship all over the World. Thousands of Unadvertised specials, F.O.B. point of shipment. Add sufficient funds for shipping. Excess refunded.
We're overwhelmed!
...but not surprised by your acceptance of the new TS-520

WE KNEW THIS NO-COMPROMISE, DO EVERYTHING, GO EVERYWHERE TRANSCEIVER WOULD BE POPULAR. NOW WE ARE DELIVERING THEM IN RECORD NUMBERS. PLEASE BE PATIENT...WE HAVE ONE FOR YOU.

Here are 30 special reasons you will want to own a TS-520. After you have operated one, you will doubtless give us 30 more why you're glad you own one.

1. Built-in AC power supply
2. Built-in 12 volt DC power supply
3. Built-in VOX with adjustable gain, delay and anti VOX
4. 1 KHz dial readout
5. Ultra stable FET linear VFO
6. Built-in noise blanker
7. Built-in RIT circuit and RIT indicator light
8. 8 pole crystal filter
9. Built-in 25 KHz crystal oscillator
10. Provisions for optional CW filter
11. Break-in CW with sidetone
12. Completely solid state except final section. Compact, low current, reliable with heater switch for mobile receive-only operation
13. Built-in cooling fan
14. Accessory external VFO & accessory external speaker
15. Built-in speaker
17. Amplified ALC
18. TUNE position increases tube life
19. Maximum TVI protection
20. Built-in fixed channel operation (4 channels) with indicator light
21. Provisions for use with a VHF transverter
22. Full metering
23. Selectable SSB
24. Selectable AGC operation for different modes
25. VFO indicator light
26. Built-in selectable ALC action for speech processing
27. Carrying handle
28. Rugged 6146 type final tubes
29. Internal cross-channel operation.
30. Push button WWV reception

Proven Kenwood quality and reliability
The price...$629.00
subject to change without notice.

Accessories: External VFO-(VFO-520), External speaker - (SP-520), CW Filter - (CW-520)

Available from Kenwood dealers throughout the U.S.

Henry Radio
11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/722-9200
Butler, Missouri 64730 816/679-3127
In 1924 shortwave relay service was inaugurated by KDMA, Pittsburgh, on 80 and 91 meters using this 500 watt transmitter.

Today, the EIMAC X-2159 super power tetrode.

EIMAC brought broadcasting from where it was to where it is.

50 years of progress in communications. 1924 saw the inception of widespread scheduled broadcasting in the United States and Europe. The first shortwave relay broadcast station was a success. The arc and spark transmitters of the early "twenties" were being eclipsed by the fragile, gassy vacuum tube.

Today, fifty years later, international and domestic broadcasting benefit from EIMAC's pioneer developmental work in vacuum tube technology. EIMAC leadership in high power and microwave devices of all types make possible applications considered impossible a few years ago.

EIMAC's family of high gain tetrodes, including the super power X-2159, are predominant for broadcast service, powering today's transmitters and ready to power tomorrow's super power transmitters.

EIMAC develops, others copy or fade away, as the last 50 years have proven.

Look to EIMAC for dependability and cost-effectiveness in vacuum tubes. EIMAC has the answer today for tomorrow's communication requirements.

For further information, contact EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070. Or any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.