This month

- miniature 40-meter transceiver
- SSTV converter
- autopatch design
- solar power supplies
CRYSTAL CONTROLLED OSCILLATOR
10-channel unit for Swan transceivers designed for fundamental crystals up to 22 MHz. Selector switch and vernier control. Model 510X plugs into 250C, 300B, 700CX or 600T. Model 610X plugs into SS-15A or SS-200A transceivers.

510X or 610X $54.95

TELEPHONE PATCH, HYBRID
Easily and quickly connects between your receiver/transmitter and the telephone lines. Separate transmitter and receiver gain controls. Low loss transformers give exact voice reproduction for high quality telephone patches.

FP-1 ... $54.95

PLUG-IN VOX
Hands-off operation with extremely smooth voice operated relay action. Delay, anti-trip, and gain controls. Semi-break-in CW capability. Plugs directly into 250C, 300B, 600T or 700CX.

VX-2 ... $44.95

EXTERNAL FREQUENCY CONTROL UNIT
Provides for separate transmitting and receiving frequencies. Ultrasmooth dual-ratio planetary tuning with full band coverage from 10 through 80 meters. Model 508 for 300B or 700CX. Model SS-208 for SS-15A or SS-200A transceivers.

508 or SS-208 $189.95

IN-LINE WATTMETER
Four easy to read scales of 0 to 5, 50, 500 and 1500 watts. Forward or reverse reading. Accuracy is better than 10% full scale on frequencies from 2 to 30 MHz. Design impedance is 50 ohms. Directivity is better than 30 dB.

WM-1500 .. $64.95

HIGH QUALITY MICROPHONES
Dependable for penetrating QRM, these microphones provide exceptionally fine voice reproduction. Press-to-talk action. Durable construction.

444 Desk Type with locking bar switch .. $35.95
404 Hand-Held Mike with coiled cord .. $24.95

SUPER-SELECTIVE I.F. FILTER
16-pole quartz crystal. 2.7 kHz bandwidth. 1.28 Shape Factor. Ultimate rejection in excess of 140 dB. None other like it. May be installed in 300B, 700CX, 600RC, SS-15A or SS-200A for an additional $70 when purchasing these units. SS-16B “Do it yourself” Kit $99.95

MOBILE MOUNTING DEVICES
Mobile installations take on a custom look with these kits. All necessary hardware and parts are included. For the 300B or 700CX: Model MTK mounts unit over hump or under dash .. $9.95. Model GMTK dash mount .. $5.20. For the SS-15A or SS-200A: SS-MTK $16.95. SS-GMTK dash mount .. $11.95.
Venus announces

its

Model C1 Slo-Scan/Fast Scan Camera

with

- Micro Focus (postage stamp = Full Size Picture)
- RF Modulator (Use home TV set as viewfinder)
- Video Output (VTR/CCTV compatible)
- Continuously Variable Frame Size
- Auto Light Level Compensation
- Pos/Neg Reversal
- Built-in Bar Gen.

See a demonstration of Venus Slo-Scan Camera & Monitor at

CALIF. (Los Angeles) HENRY RADIO
FLORIDA (Miami) ARGON ELEC.
FLORIDA (Orlando) AMATEUR ELECT. SUPPLY
FLORIDA (Pensacola) GOLDSTEIN'S
IOWA (Council Bluffs) HOBBY INDUSTRIES
KANSAS (Wichita) 2001 ELECTRONICS
MASS. (Medford) A. W. ELECTRONICS
NEW YORK (Lansing) CFP ENTERPRISES

NEW YORK (City & Long Island) HARRISON RADIO
NEW YORK (Metropolitan Area) BARRY RADIO
MICHIGAN (Muskegon) ELECTRONIC DISTRIBUTORS
OHIO (Cleveland) AMATEUR ELECT. SUPPLY
PENN. (Imperial) A & G COMPANY
WISCONSIN (Milwaukee) AMATEUR ELECT. SUPPLY
ENGLAND (Matlock) LOWE ELECTRONICS
ENGLAND (London) RADIO SHACK LTD.

399 Smith Street
Farmingdale, N.Y. 11735
Phone 516-293-4100
TWX 510-224-6492

Venus Scientific Inc.
The company that put high voltage on the moon, now brings you expanding amateur radio technology.
Now you can afford the best! Free-standing or guyed, Tri-Ex Towers stress quality. All towers are hot dipped galvanized after fabrication for longer life. Each series is specifically engineered to HAM operator requirements.

W Series
An aerodynamic tower designed to hold 9 square feet in a 50 mph wind. Six models at different heights.

MW Series
Self-supporting when attached at first section — will hold normal Tri-Band beam. Six models.

LM Series
A 'W' brace motorized tower. Holds large antenna loads up to 70 feet high. Super buy.

TM Series
Features tubular construction for really big antenna loads. Up to 100 feet. Free-standing, with motors to raise and lower.

THD Series

Start with Top-of-the-Line Tri-Ex Towers. At basic prices. Write today, for your best buy.

TOWER CORPORATION
7182 Rasmussen Ave.
Visalia, Calif. 93277
July, 1974
volume 7, number 7

staff
James R. Fisk, W1DTY
editor-in-chief
Joseph Schroeder, W9JUV
derector
Patricia A. Hawes, WN1QJN
assistant editor
J. Jay O'Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, WA6IAK
associate editors
Wayne T. Pierce, K3SUK
cover
T. H. Tenney, Jr. W1NLB
publisher
Hilda M. Wetherbee
assistant publisher
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is published monthly by
Communications Technology, Inc
Greenville, New Hampshire 03048

Subscription rates, world wide
one year, $7.00; three years, $14.00
Second class postage
paid at Greenville, N. H. 03048
and at additional mailing offices

Foreign subscription agents
United Kingdom
Radio Society of Great Britain
35 Doughty Street
London WC1N 2AE, England

All European countries
Eskil Persson, SM5CJP, Frotnunagrand 1
19400 Upplands Vasby, Sweden

African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1974 by
Communications Technology, Inc
Title registered at U.S. Patent Office
Printed by Wellesley Press, Inc
Framingham, Massachusetts 01701, USA

Microfilm copies of current and back issues are available
from University Microfilms
Ann Arbor, Michigan 48103

contents

6 narrow-band solid-state
2304-MHz preamplifiers
Norman J. Foot, WA9HUV

12 R390A product detector
Eugene A. Hubbell, W7DI

16 miniature 7-MHz transceiver
Howard F. Batie, W7BBX

22 camera converter
Gordon P. Howlett, WA9UHV

32 autopatch design
R. B. Shreve, W8GRG

40 5/8-wavelength antennas for two meters
F. D. Sargent, K6KLO

44 vhf radio observatory
R. A. Ham

50 custom enclosures
D. A. Contini, W4YUU

54 solar power supplies
Edward M. Noll, W3FQJ

4 a second look

94 advertisers index

54 circuits and techniques

83 flea market

july 1974
Widespread rumors that restructuring of the amateur service was being studied by the FCC were confirmed on May 10th at a joint meeting between FCC officials and ARRL Directors and officers.* In as much as the specific details of the proposed restructuring are still being studied by the FCC staff, and must be presented to the Commissioners before a formal proposal can be issued, the discussion was only in very general terms.

The goal of the proposed plan is apparently to both broaden and upgrade the amateur service, encouraging potential amateurs to join the ranks while at the same time encouraging individual amateurs to improve their operating and technical skills. This means that there will probably be more classes of amateur licenses in the future, including a no-code version to stimulate newcomers, as well as extensive modifications to the amateur licenses themselves.

The proposed restructuring was only one of several topics discussed at the lengthy, all-day meeting. Also included on the agenda was a discussion of the World Administrative Radio Conference scheduled for 1979, and the formation of a National Amateur Radio Advisory Committee. Since other radio services already have such advisory committees, and have for some time, the idea is new only as it applies to amateur radio. Pending approval by the Commission, the first meeting could take place as early as September.

The proposed Committee, which would give the amateur community a much-needed opportunity to work more closely with the Commission, would be chaired by an FCC official and would consist of 12 to 15 appointed members. The members, selected to represent various segments of amateur radio, would meet periodically to advise or make recommendations to the FCC.

With the specter of a World Administrative Radio Conference looming on the horizon only five years from now, this Advisory Committee could be particularly important. A Spectrum Planning Subcommittee Working Group on the Amateur Services (designated SPS WG/A, for short) has been meeting in Washington since early this year, and they have proposed adding 200 kHz to the 40-meter band, 150 kHz on 20 and 50 kHz on 15. They have also proposed new amateur bands at 10.1 - 10.6 MHz, 18.1 - 18.6 MHz and 24.0 - 24.5 MHz. With communications satellites assuming more and more of the burden of long-distance commercial and government traffic, these enlarged high-frequency amateur allocations are a distinct possibility.

However, at the 1979 conference the United States will have only one vote, as will each of the smaller, emerging nations, so it will take a lot of work to muster the necessary support to make even part of this become reality. Also, any pressure that satellites relieve on our high-frequency allocations will probably be forcefully reasserted on our vhf and uhf bands. French amateurs have already lost the exclusive use of 144-146 MHz (which must now be shared with the military), and other nations are known to be eyeing the vhf amateur bands. To meet these challenges, and be successful, will require a great deal of preparation — preparation that must begin now.

*A complete report on this meeting is available from ham radio and will be sent upon receipt of a self-addressed, stamped envelope.

Jim Fisk, W1DTY editor-in-chief
At ICOM
...the benchmark is quality.

ALL ICOM RADIOS HAVE:
- 5 Helical Resonators
- 0.4UV Sensitivity
- High and Low I.F. Filters
- Extremely Low Spurious TX
- Transmit and Receive Trimmers
- ESP
- 5KHz Freq. Deviation
- "S" Meter

INOUE'S NEW PLL SYNTHESIZED
IC-230

- 67 + Channels (Direct or ±600 KHz)
- 30 KHz Steps (Optional 15 KHz)
- 146-148 MHz PLL Synthesized
- Modular Construction
- Socket For Tones or Dial
- Digital Readout (No Tuning)
- P.L.L. Lock Indicator
- $489.00

ICOM

ICOM WEST
Suite 232 - Bldg. 2
300 120th Ave. N.E.
Bellevue, Wa. 98005
206-464-2470

ICOM EAST
13777 N. Central Expwy.
Suite 501
Dallas, Tx. 75231
214-235-0479

24 Channels
Discriminator Meter
Wide Range – 144-148 MHz + MARS
SWR Bridge
AC Supply Built In
DC Supply
Modular Construction
$429.00

IC-21

IC-22

$289.00

July 1974
narrow-band
solid-state
2304-MHz preamplifiers

Complete construction details for bipolar 2304-MHz preamplifier circuits featuring 6- to 9-dB gain and 2.5- to 4.5-dB noise figures since the publication of several simple solid-state 2304-MHz converters in the amateur radio magazines, interest in the 2300-MHz amateur band has grown by leaps and bounds. Recent solid-state devices include bipolar transistors which work effectively at S-band (1550-4000 MHz). It is now possible for the amateur UHF enthusiast to build a 2304-MHz preamplifier using any one of a number of available devices. The virtues of adding a preamplifier ahead of the mixer are well known and will not be repeated here.

Most 2300-MHz preamplifiers which have been described in recent years feature the well known broadband strip-line circuit. It is also possible to use these transistors in narrow-band circuits which include input and output tuned circuits of the kind normally associated with the lower-frequency bands. One can present a good case for choosing the narrow-band approach where strong signals from nearby TV or FM stations cause receiver desensitization.
The narrow-band 2304-MHz preamplifier described here has excellent frequency selectivity because it uses cavity resonators at both the input and output. It provides 6- to 9-dB of gain and exhibits a noise figure between 2.5 and 4.5 dB, depending on the particular transistor. Four of these 2304-MHz preamplifiers have been built, each using a different type of transistor, including the Fairchild MT-2500 and MT-4500,* and the Hewlett-Packard HP-35821E and HP-35862E. The Nippon Electric V912 also works well in the narrow-band circuit. The performance of these devices is compared in table 1. When compared to a parametric amplifier, these devices give a good accounting of themselves.

preamp design

The electrical design of each amplifier was based on the published scattering parameters of the bipolar transistor used in the circuit.6,7,8 Fixed values of complementary input and output reactances were used to achieve the desired impedance matching. It is not necessary for you to become involved with these details, so long as the circuit presented here is faithfully copied. This is particularly important in view of the fragile nature of these microwave transistors—they are not very forgiving when circuit changes are attempted.

construction

The photograph shows the completed amplifier. It is built in a silver-plated brass box 7/8-inch (22-mm) high, 1-3/4-inch (44-mm) wide and 1-3/4-inch (44-mm) deep. Details of the construction are shown in the mechanical drawing, figs. 3 and 4. The bottom of the box is sanded flat after fabrication so that the cover will make good electrical contact all around. Before the transistor is mounted in the enclosure its emitter lead (or leads) are soldered to a brass plate; then the plate is screwed to the partition so that the base and collector leads project into their respective cavities. These leads in turn are soldered to small Teflon stand-off insulators to prevent the leads from being damaged when working down inside the close quarters of the box with the soldering iron.

The Fairchild MT-2500 used in the preamplifier shown in the photographs is a stripline-type device with three leads (see fig. 1). The T1-line package, also used in an otherwise identical amplifier, has a pair of emitter leads diagonally opposite one another which allow somewhat better mechanical attachment.

Type BNC connectors (UG-290A/U) are used for the rf input and output connectors. The input is tightly coupled to achieve a low noise figure while the output coupling is adjusted for maximum gain.

The center cavity conductors are made

*Although both the MT-2500 and MT-4500 have been discontinued by Fairchild Semiconductor, often these devices can still be obtained. A somewhat similar, although improved, device in a small 100-mil-square package that should work in the same narrow-band 2304-MHz circuit is the currently available Fairchild FTM-4005. Editor
of $\frac{1}{4}$-inch (6-mm) OD brass tubing, 1-1/8-inch (29-mm) long, with 10-32 threads on the inside. Tuning is accomplished by running 1-inch (25-mm) long 10-32 brass screws in and out of the open end of the center conductors with a screwdriver. Each screw is slotted on one end for this purpose. The open ends of the center-conductor tubing are slotted with a fine hacksaw blade and then pinched together slightly like a collet so the tuning screws fit tightly.

The base lead of the MT-2500 (or MT-4500) transistor is coupled to the input cavity by means of a brass strip mounted parallel to the center conductor, one end of which is soldered to the base. This circuit resonates at approximately 2304 MHz. For the HP-35821E, a very small 5-pF dipped-mica capacitor is used instead, soldered between the base lead and the midpoint of the center conductor (see fig. 2). In both designs tuning of the input cavity is rather broad.

The dc return from the transistor base is through a 1/8-watt, 1000-ohm resistor to a 470-pF Allen Bradley FA-5C 471W feedthrough capacitor. The pigtail of the 1/8-watt resistor is wound into an rf choke of two or three turns before it is soldered to the base. This also provides strain relief to the transistor.

table 1. Typical performance, at 2000 MHz, of microwave transistors suitable for use in the narrow-band 2304-MHz preamplifier. Note that recommended collector current for minimum noise figure does not coincide with maximum gain, or vice versa.

<table>
<thead>
<tr>
<th>transistor type</th>
<th>collector current (mA)</th>
<th>noise figure (dB)</th>
<th>gain (dB)</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-2500</td>
<td>2</td>
<td>4.3</td>
<td>6.5</td>
<td>NA</td>
</tr>
<tr>
<td>MT-2500</td>
<td>3</td>
<td>4.7</td>
<td>7.2</td>
<td>NA</td>
</tr>
<tr>
<td>MT-2500</td>
<td>6</td>
<td>5.5</td>
<td>7.7</td>
<td>NA</td>
</tr>
<tr>
<td>MT-4500</td>
<td>3</td>
<td>5.4</td>
<td>—</td>
<td>NA</td>
</tr>
<tr>
<td>MT-4500</td>
<td>5</td>
<td>5.5</td>
<td>7.5</td>
<td>NA</td>
</tr>
<tr>
<td>MT-4500</td>
<td>9</td>
<td>6.0</td>
<td>8.3</td>
<td>NA</td>
</tr>
<tr>
<td>FMT-4215</td>
<td>5</td>
<td>4.2</td>
<td>10.0</td>
<td>$17.50</td>
</tr>
<tr>
<td>FMT-4575</td>
<td>5</td>
<td>2.5</td>
<td>12.0</td>
<td>$44.00</td>
</tr>
<tr>
<td>FMT-4005</td>
<td>3</td>
<td>2.0</td>
<td>12.0</td>
<td>$70.00</td>
</tr>
<tr>
<td>FMT-4005</td>
<td>5</td>
<td>2.2</td>
<td>13.0</td>
<td>$70.00</td>
</tr>
<tr>
<td>H-P 35821E</td>
<td>3</td>
<td>4.2</td>
<td>6.5</td>
<td>$20.00</td>
</tr>
<tr>
<td>H-P 35821E</td>
<td>5</td>
<td>3.3</td>
<td>11.0</td>
<td>$55.00</td>
</tr>
<tr>
<td>NEC V912</td>
<td>3</td>
<td>3.5</td>
<td>9.0</td>
<td>$25.00</td>
</tr>
<tr>
<td>NEC V912</td>
<td>10</td>
<td>4.0</td>
<td>11.0</td>
<td>$25.00</td>
</tr>
<tr>
<td>H-P 35862E</td>
<td>3</td>
<td>2.5</td>
<td>12.0</td>
<td>$70.00</td>
</tr>
<tr>
<td>NEC V912</td>
<td>5</td>
<td>3.3</td>
<td>11.0</td>
<td>$55.00</td>
</tr>
<tr>
<td>NEC V912</td>
<td>10</td>
<td>4.0</td>
<td>11.0</td>
<td>$25.00</td>
</tr>
<tr>
<td>NEC V912</td>
<td>5</td>
<td>4.2</td>
<td>10.0</td>
<td>$17.50</td>
</tr>
<tr>
<td>FMT-4575</td>
<td>5</td>
<td>2.5</td>
<td>12.0</td>
<td>$44.00</td>
</tr>
<tr>
<td>FMT-4005</td>
<td>3</td>
<td>2.0</td>
<td>12.0</td>
<td>$70.00</td>
</tr>
<tr>
<td>FMT-4005</td>
<td>5</td>
<td>2.2</td>
<td>13.0</td>
<td>$70.00</td>
</tr>
<tr>
<td>H-P 35821E</td>
<td>3</td>
<td>4.2</td>
<td>6.5</td>
<td>$20.00</td>
</tr>
<tr>
<td>H-P 35821E</td>
<td>5</td>
<td>3.3</td>
<td>11.0</td>
<td>$55.00</td>
</tr>
<tr>
<td>NEC V912</td>
<td>3</td>
<td>3.5</td>
<td>9.0</td>
<td>$25.00</td>
</tr>
<tr>
<td>NEC V912</td>
<td>10</td>
<td>4.0</td>
<td>11.0</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

fig. 1. Circuit for the narrow-band 2304-MHz preamplifier using a Fairchild MT-2500 transistor. Similar circuit can be used with the Fairchild MT-4500 or FMT-4005. The 470-pF feedthrough capacitors are Allen Bradley type FA-5C 471W. RFC1 is 3 turns, RFC2 is 5 turns, both no. 26 enamelled wire, airwound using a no. 52 drill as a mandrel (0.0635" or 1.6-mm diameter). Coupling strips on base and collector of transistor are 0.010" (0.25-mm) brass shim stock.
brass strip which is parallel to the center conductor. One end of the strip is soldered to the collector and resonates at a frequency lower than 2304 MHz. The dc return is through an rf choke and another Allen Bradley 470-pF feedthrough capacitor. The HP-35821E preamplifier works better with a tiny loop coupled to the center conductor as shown in fig. 2.

The 2304-MHz amplifier is fitted with four 6-32 spade screws mounted on the bottom of the enclosure for attaching a bottom cover. As an alternative the preamplifier can be mounted on the top of a flat surface such as an aluminum chassis with the use of the spade screws.

tuneup

Before connecting the preamplifier to the 12-volt supply, tack-solder a 10k potentiometer across the 1000-ohm resistor, R1. Set the potentiometer resistance to zero (shorted out). Monitor the supply current with a 0-10 mA meter in series with the 12-volt supply. Initially, the meter should register about a half milliampere. Now, slowly increase the potentiometer resistance (current reading
fig. 3. Layout for the enclosure for the 2304-MHz preamplifier. Material is 0.020-inch (0.5-mm) brass or copper, bent along dotted lines. Use a small torch for small solder fillets along all seams. Holes for the spade lugs are not shown (see text).

should increase). If the current exceeds 4 mA before the 10k potentiometer is full-on, back off the current to 4 mA. Disconnect the 12-volt supply and the potentiometer (in that order) and measure the resistance of the potentiometer. Solder a fixed resistor of approximately the same value in shunt with the 1000-ohm resistor.

On the other hand, if the current reading does not reach 4 mA with the potentiometer full on, disconnect the supply and remove the potentiometer. Also remove the 1000-ohm resistor and substitute the 10k potentiometer in its place. Starting with the potentiometer shorted out, reconnect the 12-volt supply and slowly increase potentiometer resistance until the meter indicates 4.0 mA. Disconnect the supply and the potentiometer, and permanently solder in a fixed resistor with a value as close as possible to
the measured value. Now the preamplifier is ready to go.

At this point there is no substitute for a signal source. With the preamplifier connected to the mixer, adjust both tuning screws for maximum received signal. Adjust the spacing between the collector strip from the center conductor (fig. 1) or adjust the collector coupling loop for maximum gain (fig. 2). Check the signal-to-noise ratio with and without the preamplifier—you should be pleasantly surprised.

references

july 1974[11]
improving the R390A product detector

Most improvements in ham gear construction or design are built on a foundation of work done by others. The modification of the military surplus R390A receiver described here owes a lot to articles\(^1\),\(^2\) by Captain Paul H. Lee, W3JHR. Some comments by Harry Hyder, W71V, were also helpful.

Captain Lee’s conversion of the R390A to a product detector was tried, and worked satisfactorily except for two details. One of these was a regenerative effect that occurred at the frequency of the bfo, resulting in a peak in the audio response. The other was the loss of the noise limiter for the ssb and CW modes.

Disconnecting the shielded wiring suggested in that conversion and using short direct leads under the chassis to transfer the audio from the a-m detector to the product detector removed the regenerative effect. Restoration of the noise limiter action was not so easy. When using the noise limiter with the a-m detector a negative bias voltage appears across the combination of R526 and R527 in series and thus, across R120, the limiter control. This voltage results, of course, from signal rectification through the a-m detector, V506B. Captain Lee’s circuit omits the limiter entirely in the ssb/CW position as signals will not pass this stage without some negative bias on the cathodes of V507. A check of the similar noise limiter circuit in the Collins 75A4 receiver shows such a voltage switched into the limiter control circuit from the receiver bias supply.

Trying to operate both a-m and product detectors simultaneously without switching outputs did not work out. The product detector bfo is switched on and off from the front panel, but the a-m detector is not so easily disabled. Examination of the a-m detector circuit showed an i-f filter in the transformer T503 lead to R526 and R527. Part of this filter was a 12-mH rf choke. If one end of this choke could be switched from the a-m detector to the product detector it would provide the desired audio transfer, and by introducing a bias voltage in parallel with the product detector signal, the noise limiter problem would be solved.

Circuit modification

To control a circuit at a distance, I think of relays. In the R390A, 225 volts is switched on and off from the front panel by the bfo on-off switch, and this switched voltage appears at a tie point near the socket for the bfo. Checking a junk-box relay with a 10k-ohm coil, it was found that a 51k resistor in series with the coil would provide reliable operation at sufficiently low current drain to avoid overloading the 225-volt supply.

A negative dc supply for limiter bias in the ssb/CW position was provided easily by rectifying the 25.2 volts ac found on the current-regulator ballast tube adjacent to the bfo socket. The last problem had been solved, and here’s the step-by-step procedure by which the complete conver-
1. Remove power plug P112 from the i-f chassis along with the three rf plugs P114, P213 and P218. Disconnect the selectivity and bfo tuning shafts, loosen the mounting screws and remove the i-f chassis from the receiver.

2. Loosen the set screws on the flexible-bellows shaft coupler to the bfo transformer, remove the front shaft and bearing and remove the shaft coupler. Socket XV505 is now more accessible.

3. Between sockets XV502 and XV506 are three tie points in a triangle. The two nearest socket XV502 will not be disturbed. Unsolder resistor R518, 100 ohms, and the connecting wire from the third tie point and remove the tie point from the chassis. Save it. Connect the wire lead back to R518, providing insulating tubing over the joint, and leaving as much slack as possible. Train the resistor close to socket XV503 and the wire between the two remaining tie points and socket XV502. A clear space about 3/4 x 1 inch (19 x 25 mm) should be left between sockets XV502, XV503, XV506 and the bfo transformer can.

4. In the cleared space drill suitable holes and mount a 7-pin miniature tube socket, which we will call XVA, for the relay.

5. Connect a 11K, 1/2-watt resistor from pin 7 to ground.

6. Remove C535, 12 pF, and discard.

7. Connect a 5-pF mica capacitor from pin 7 on XV505 to pin 6 on XV506. This couples the i-f signal into the product detector.

8. Solder one end of a 510-pF mica capacitor to a ground lug near XV505 and one end of a physically small 0.02μF capacitor to pin terminal 5 of XV505. Join the two remaining capacitor terminals and attach a wire lead. The other
end of this wire lead connects to pin 4 of the new 7 pin socket, XVA. In doing these last operations near socket XV505, be sure to leave room for the bellows shaft coupling so nothing will be shorted out when the coupling is reinstalled.

12. Ground pin 1 on the new socket XVA. Connect a 51k, 1-watt resistor from pin 7 on this socket to the tie point nearest pins 3 and 4 on socket XV505. This tie point already has a lead and one end of R531, 2200 ohms, 1/2 watt, fastened to it. Insulate the leads on the 51k resistor and dress it next to the chassis to facilitate heat transfer.

13. At the front of the chassis, between the bfo tune and the selectivity switch shafts, there is a molded 12-mH rf choke mounted on a spade bolt. One terminal of this rf choke connects to terminal 1 of transformer T503, which also has a capacitor C530, 150 pF, to ground. Disconnect the rf choke from the transformer, and run a wire lead from the rf choke to pin 6 of socket XVA. From pin 5 of XVA, run a lead to terminal 1 of T503.

14. Socket XRT510 is located in the corner of the chassis below the bfo tuning shaft. This is the socket for current regulator tube RT510, and has 25.2 volts ac on pins 2 and 3. Install a 1N4004 diode between pin 2 (cathode end) and pin 6, which also has a wire lead attached at this time. Use an ohmmeter to check that pin six is not connected inside the regulator tube, and is merely used as a tie point here. Connect the other end of the wire lead from pin 6 to the tie point you moved and reinstalled in step 4 above.

15. Connect a 30k, 1/2-watt resistor from this same tie point to terminal 4 on socket XVA, which already has a wire lead from the output of the product detector. Connect a 1000- to 1500-μF, 50-volt electrolytic capacitor from chassis ground (positive terminal) to the tie point just used for the wire lead from the diode. I found a lug under the spade bolt holding the 12-mH rf choke worked out fine for the positive (grounded) terminal.

16. Replace V505, a 6BA6, with a 6BE6. The new socket XVA is for a 7-pin plug-in relay with a 10k-ohm coil. The present Potter and Brumfield number for this unit is PW5LS, I believe, although SMSLS and XSM-1135-2 seem to be the same. About 35 volts of the 225-volt dc supply will appear across this relay coil when the bfo is turned on, switching the
audio input to the noise limiter from the a-m detector to the product detector. The output of the product detector is across the 30k resistor connected between pin 4 of socket XVA and the negative end of the electrolytic capacitor. About 20 volts dc will appear across this resistor. Audio output level should be just about equal for either detector system.

17. To provide a positive cutoff of audio feeding through the noise limiter tube, V507, when the limiter control, R120, is advanced, it is necessary to supply a small positive voltage to the normally grounded end of R120. To do this a small voltage divider must be installed, and it will help if the front panel is partially removed, or at least pulled forward a couple of inches on the tuning and bandswitching shafts. See instructions for panel removal in the Tech Manual. This is to provide access to the back of the function switch, S102, and to R120, the limiter control.

18. Remove the ground lead from the grounded end of R120 and the switch on the back of R120. Replace the lead with a 1.2k, 1/2-watt resistor. From the same terminal on R120 connect one end of a 100k, 1/2-watt resistor. The other end of this resistor must connect, either by its own lead or an extension wire, to the terminal on S102, the function switch, which turns on 225 volts dc when this switch is in agc, mgc or cal positions. This switch terminal is just below the ac line switch, a microswitch type with heavy terminals and two white and orange wires considerably larger in diameter than anything else nearby. A check with a voltmeter should confirm that you have found the right terminal.

check out

To check to see that things are going to work, you can reinstall the bellows coupler to the bfo can and the panel shaft bearing and shaft so the bfo can be tuned. Connect the rf input and output couplers, P114, P213 and P218, and plug in the power plug, P112. By placing a box or other support under the i-f chassis, it will be possible to turn it approximately 180 degrees from its normal operating position. This is best done by turning the receiver on end, the i-f end down. Now it should be possible to reach terminals inside the i-f chassis for voltage checks while the receiver is working.

Operating the receiver in this position is a bit awkward, especially turning the selectivity switch and tuning the bfo, but the selectivity positions may be counted from the stop at either end of rotation. With the receiver operating, rf and audio gains turned well up, but with no antenna, a considerable hiss should be heard. Set the selectivity switch to 1 kHz and adjust the bfo tuning for the lowest pitched hiss. This should be equivalent to setting the bfo to zero on the front panel.

A check of the voltages on the limiter pot should be made with the v om; one end should register about 16 to 20 volts negative, and the other end about two volts positive. With an antenna connected and any normal noise level, it should be possible to observe the limiting action as the limiter control is advanced in a clockwise direction. If everything checks out ok, shut off the power and put the receiver back together.

summary

I believe this modification is very worthwhile. The product detector action is good, the noise limiter is very good on CW, and the changes have a neat appearance. The diagrams show the changes in the schematic, and the step-by-step conversion is not difficult to make. One warning comment: Make sure your limiter pot does not have an open in it. I had one that was bad, and it really caused me a headache for a while.

The R390A makes a very good second receiver for the shack, is invaluable in the shop, and is really well built. If only it weren't so heavy!

references

ham radio

july 1974
miniature 7-MHz transceiver

Project shrink —
a Quality
Recipe for a
Pocket
Portable

Howard F. Batie, W7BBX, 2912 Johnson Road, Falls Church, Virginia

How small can a complete transceiver be made and yet retain enough features to permit consistently reliable operation? Dick Tracy notwithstanding, it seems to come down to the size of the front panel required to mount the controls for the functions desired, and not the space required for the electronic circuitry itself.

To verify this point, "Project Shrink" was undertaken to construct a complete yet consistently useful, transceiver in a small a case as possible using commonly available parts. By useful, it is meant that the receiver should have a sensitivity in the order of a microvolt and the transmitter be in the 2- to 3-watt input class. Additionally, a vfo or vxo is considered mandatory.

By eliminating all frills, careful attention in the PC-board layout phase, and the selection of a multi-element IC, a very credibly performing transceiver can be constructed using only four solid-state devices; however, the characteristics shown in table 1 attest to the fact that this is a very useful portable or emergency transceiver. The functional block diagram is shown in fig. 1.
transmitter

High-beta transistors were used at both Q1 and Q2. The vxo feature was attained by placing a miniature variable capacitor from a transistor radio in series with the crystal, permitting up to about a 4-kHz excursion of the crystal frequency, depending upon the activity of the crystal. A 7-microhenry coil in series with the crystal and variable capacitor was

A simple class-C rf amplifier followed by a fixed pi-net low pass filter designed for 52 ohms completes the transmitter. Transistor Q2 collector current is 170 mA at 12.0 volts dc input. A pushbutton key is included in a convenient (and operable) position on the top of the cabinet. Left-handed operators may want to reverse the entire layout in mirror-image fashion. The key should not be depressed during "receive" since no load for Q2 is present; however, Q2 was purposely keyed for 10 seconds with no load and no damage resulted. It should be noted that since the +Vcc to Q2 is keyed, any external key must be capable of handling the full Q2 collector current.

<table>
<thead>
<tr>
<th>Operating characteristics of the miniature transceiver.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>VLO excursion</td>
</tr>
<tr>
<td>Transmitter output impedance</td>
</tr>
<tr>
<td>Receiver input impedance</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Number of active devices</td>
</tr>
<tr>
<td>Current drain, 52-ohm resistive load:</td>
</tr>
<tr>
<td>Receive</td>
</tr>
<tr>
<td>Transmit</td>
</tr>
<tr>
<td>Transmitter input power</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table 1. Operating characteristics of the miniature transceiver.
receiver

The conventional direct-conversion receiver of fig. 3 uses an RCA CA3028A as the product detector and Q1 as the oscillator. Inclusion of L7 on the L6 core eliminates the need for the rf choke normally found between pins 1 and 5 of U1. The entire audio section is contained in a single RCA CA3018A linear IC. The audio preamplifier uses one of the two Darlington-connected transistors; the audio amplifier uses a separate transistor on the same IC chip. Recovered audio is more than sufficient to drive high-impedance headphones. The 0.5-µF capacitor from the top of the audio gain control serves to attenuate some of the higher audio frequencies. Although this capacitor also reduces the overall audio output available, sufficient margin is left to run the audio gain control about one-third open for most operations.

The remaining transistor on the chip of U2 is connected in a twin-tee configuration and acts as the sidetone oscillator. Power is derived from the keyed +12 volts to Q2. The tone can be adjusted by varying R22. The volume may be more than required; if so, decrease the value of the sidetone oscillator output coupling capacitor C27 until a comfortable level is reached. To ensure that the audio preamp is firmly “off” during transmission, R8 upsets the base bias enough to saturate the transistor, thus preventing any signal other than the sidetone oscillator to be introduced into the audio amplifier.

cabinet layout

An LMB 101 Minibox (12 cubic inches
or 197 cc) was selected as about the smallest available enclosure which provides enough panel space for the necessary controls. Elimination of the vxo feature would have permitted a smaller enclosure, but it was felt that the flexibility provided by the vxo was essential. An internal key, a simple pushbutton switch, was included on the cabinet top. This made upside-down mounting of the PC board necessary. The external key jack may be eliminated if desired.

printed-circuit board

As can be seen from the photographs, more than enough space for the board is available; component density is fairly compact, but not unmanageably so.* The layout of components on the board was determined after considering the location of PC board inputs and outputs which give minimum interconnection lengths to the panel controls. By using an elevated

*Printed-circuit boards for the miniature 7-MHz transceiver are available from MFJ Enterprises, Post Office Box 494A, Mississippi State, Mississippi 39762 for $3.75, post-paid.
heatsink on Q2, it is possible to locate some components under the heatsink near the body of Q2. Toroid coils are mounted vertically to conserve space, and held in place with Q-dope after soldering. The ¼-watt resistors are also vertically mounted throughout. U1 and U2 are wire the PC board and install it. Four small bolts serve as corner mounting posts with washers and nuts providing the appropriate spacing between the board and chassis. Dry transfer labels were applied and then given a light coating of acrylic spray to prevent rubbing off.

mounted in IC sockets which are press-fit into appropriate-sized holes, and held in place by epoxy on the underside and the component leads soldered to the socket pins. Check the value of each of the ¼-watt resistors used with a reliable ohmmeter; the tolerances indicated are often exceeded.

construction

It is helpful to first mount all chassis controls. Size and layout of the PC board paper template can then be verified before actual construction and etching of the board. After the board is etched and drilled, drill the four corner post-mounting holes in the chassis top. Then Alignment requires only a separate 7-MHz receiver and a dc milliammeter or vom capable of reading 250 mA. With the antenna connected and S1 in the receive position, peak C11 for maximum received signal; this completes the receiver alignment.

Connect a 51-ohm, 1-watt resistor to J1 and place a milliammeter in series with the +12-volt supply to J2. Place S1 to transmit and depress the key. Adjust C5 for maximum meter reading and good keying characteristics in the monitor receiver. Approximately 200 mA should be indicated; remember that receiver current drain and oscillator current are included in the metered current.
To adjust the frequency offset required during transmit, monitor the oscillator frequency in the receive position and transmitter output frequency in the transmit position when keyed. Adjust the number of turns on L1 to make the two coincide. Although 7 µH was required in my version to provide the necessary 1-kHz offset, this value may vary. L1 can then be cemented to the rear of the crystal socket with Q-dope.

Reconnect the antenna to J1 and try not to appear surprised when you consistently get 569-599 reports from single-hop contacts. Experience has shown, however, that double-hop QSOs from 2000 to 3000 miles are generally in the 339-559 range with a well-matched dipole up 18 feet (5.5 meters).

references
Conversion of surplus fast-scan (FS) closed-circuit TV cameras to slow-scan television (sstv) standards has attracted many hams to the exciting field of picture transmission on the hf bands. W9NTP¹ and others have pioneered the sampling conversion approach to sstv picture generation. W3EFG² introduced an sstv sampling converter, using discrete components, that produces high-quality pictures via camera conversion.

This article presents an sstv converter using some of the low-cost, high-performance integrated circuits that have become readily available. Also included are several FS camera conversion techniques that may be helpful to interested experimenters.

The project began with the following objectives:

1. High-quality sstv pictures with minimum cost.
2. Use of simple, proven circuits and
readily available ICs were feasible and advantageous.

3. Derivation of all timing signals from the 60-Hz power line.

4. Features such as video reversal and fractional scan.

5. Stability with temperature.

camera modifications

The frame rate of the camera must be reduced from 60 to 15 Hz. In order to overcome the difficulties in obtaining a linear 15-Hz sweep voltage from the camera's 60-Hz vertical deflection amplifier, I included a simple deflection amplifier with the converter. This amplifier is similar to one used by W3EFG. Also, to ensure that the vertical size of the FS picture is identical in both the FS and SS modes, I decided to switch size controls rather than vertical ramp capacitors. This method eliminates ramp capacitor selection for the SS mode.

preliminary steps

1. After studying the FS camera schematic, locate and identify the various circuits in the camera, including polarities and absolute levels of signals; this information will speed the camera/converter interface task.

2. Using an oscilloscope, determine the high and low sides of the vertical deflec-

![Typical camera-to-converter connections diagram](image-url)

fig. 1. Typical camera-to-converter connections. All leads out of the camera (except video output) should be bypassed. Shielded cable will help with RFI reduction.
A typical camera/converter interface is shown in fig. 1. Vertical yoke drive and vertical sync information is supplied to the camera from the converter. A switch may be mounted on the camera case to select between converter-supplied signals or normal camera operation. If the camera will not be used in other non-sstv applications, the switch may be omitted and direct connections made to the camera.

interface circuits

The sync amplifier, Q5 and Q6 (fig. 2), produces positive and negative sync pulses between zero and 10 volts. Many
cameras use a negative power supply voltage. In this case, you may need to incorporate one of the interface circuits in fig. 3, since quite likely the sync pulses in the camera will swing between zero volt and some negative potential. As mentioned earlier, careful study with an oscilloscope before beginning camera modification will show you which combination of sync amplifiers in fig. 2 and interface circuits in fig. 3 are required.

As with the W3EFG converter, the camera (or yoke assembly) is rotated 90 degrees to lie on its left side so that the top of the picture will be at the viewer’s right side on the FS monitor.

Camera power supply

The camera’s primary power is supplied from a connector on the converter. This connector is wired so that the camera cannot be operated without the
converter turned on and the deflection amplifier active. Connections in this manner help prevent serious vidicon target burn resulting from loss of scan.

Stray magnetic fields may occur from a camera-mounted power supply. These fields can cause distortion on the FS picture, which appears as wavy kinks or vertical bars on the sstv picture. Quite possibly mu-metal shielding around the power transformer and/or vidicon, or a piece of thin copper strap formed around one leg of the power transformer core as a shorted turn, will suppress the distortion. If these measures don’t succeed, the power transformer may be remotely mounted in the converter package as mentioned later in the construction section.

picture contrast

Some experimentation with the camera video termination may yield higher contrast on sstv. With my converted FS cameras, I found that terminations higher than the standard 75-ohm value will yield usable pictures at lower light levels. Fig. 2 indicates that the termination may be between 75 and 180 ohms. Once the complete system is operating, the termination should be optimized.

video monitor

I made a simple modification to my old TV set so it could serve as a video monitor. As shown in fig. 4, a 30-µF capacitor is connected to the output of the video filter. A short piece of coax (less than 1-foot [30.5 cm] long) is run to a connector on the chassis. Plug the camera video output into this coax, through an additional length of cable, add a camera termination, and you have a picture. The termination is not required if the converter (with its own termination) is in the circuit.

circuit description

Explanation of the sampling principle of scan conversion has been well covered elsewhere. It is recommended that W9NTP’s excellent articles be studied by those not familiar with the sampling technique.

The converter schematic and block diagram are shown in figs. 2 and 5 respectively. Line frequency (60 Hz) is applied to U1, producing 1.5 ms, 60-Hz pulses. These pulses are divided by 4 in U2 and shaped into 1.5 ms, 15-Hz pulses by U3. Switch S1A selects either 60- or 15-Hz pulses for the vertical deflection and sync amplifiers. Transistors Q1 through Q4 comprise a direct-coupled yoke driver similar to the one used by W3EFG. Switch S1B selects the vertical ramp size for the FS and SS modes. A variable dc bias on the yoke centers the scan on the vidicon target. Transistors Q5 and Q6 interface the sync generators with the FS camera. Transistor Q6 may be omitted if negative sync is required by the FS camera, as mentioned earlier.

The sstv horizontal sync pulse width is determined by U4. A separate monostable multivibrator is used, since it’s desirable for the 15-Hz FS vertical sync pulse (determined by U3) to be considerably shorter than the sstv horizontal sync pulse, thereby eliminating shading on the left side of the sstv picture.

The 15-Hz sstv horizontal sync pulses are used by ICs U5 and U6 to produce...
the sstv vertical sync pulse. These ICs are connected so that switch S2 can select divide-by-30, divide-by-60 and divide-by-120 to produce \(\frac{1}{4}, \frac{1}{2} \), and full sstv frame rates respectively. The sstv vertical sync pulse width is determined by U7.

Sync stripper Q7 removes the 15,750-Hz FS horizontal sync pulses from the composite video. These pulses are used to produce a 15,750-Hz ramp by Q8 and one-half of U8. One-eighth Hz ramps are produced by Q9 and one-half of U8. The amplitudes of these ramps are adjusted by controls R4 and R5 to set the start (R4) and finish (R5) of the FS frame sampling. The summation of these two ramps is compared with the reference voltage on pin 3 of comparator U9, producing a sliding pulse at its output, pin 7.

Video amplifier Q10 and emitter follower Q11 amplify and shift the FS video to a dc level determined by the setting of the video level control, R6. The diode in the base bias circuit of Q10 is used for temperature compensation.

The sliding pulse from U9 is differentiated by the 1k, 180-pF RC combination, producing a voltage spike that switches Q13 and Q12 to sample the FS video. The 0.005-\(\mu \)F capacitor holds the sampled voltage until the next sample.

One-half of U10 provides an impedance transformation between the holding capacitor and succeeding circuits. The other half of U10 provides the video inversion feature. Control R7 sets a reference level such that the average video voltage selected by S3 is the same for either the normal or inversion function.

Video-processor IC U11 amplifies the sstv video and establishes a reference level, controlled by R8, which sets the range of the panel-mounted video-level control. Composite sstv sync is applied to U11 to blank the video during sync insertion. The black clamper, R9, prevents video excursion below 1500 Hz.

Composite sstv sync, applied to transistors Q14 and Q15, clamps the vco voltage to the level set by the sync frequency control R10.

The vco, in an SE-565 phase-locked loop, is used because of its excellent linearity. Potentiometer R11 sets the white frequency. The square-wave vco output is filtered by a simple active low-pass filter, providing a low source impedance, through the output level control, R12, for driving external equipment.

The power supplies use integrated circuits to control series-pass transistors. The negative supply tracks the positive supply, resulting in a single adjustment. Five volts are obtained from a single IC. All supplies are current limited.

construction

Lead length and component placement are not critical in the sstv converter. My breadboard model has long leads and haphazard stage and component placement. The second model, shown in the photographs, was built using the technique I've found convenient for camera and monitor construction.

After board layout and approximate stage placement has been selected, B+ and ground busses are run on the vector board. Components are then mounted between the busses using short, direct connections. The result is a reasonably
neat, one-sided layout that's easy to troubleshoot and later modify. Sockets are not used for the active devices because of the extra space and cost required, although they may be included if desired. Vector board pins are used only at board/wire interfaces. Teflon wire is recommended for board jumpers to prevent insulation burning during soldering.

Board size of the converter is 7½ inches by 3¼ inches (19.1 x 8.25 cm), which also includes a gray-scale generator not described here. The power supplies are located on a separate board near the rear. The cabinet is a 8 x 6 x 3½ inch (20.3 x 15.2 x 8.9 cm) Minibox.

If it's desired to build the camera and converter as a single unit, removal of the camera's power transformer should provide adequate room for the converter. Since layout is not critical, the converter can be packaged on two or three small boards to suit the available space. Camera and converter power transformers may be mounted on a separate chassis and connected to the camera through a multi-conductor cable. Radio-frequency interference difficulties may be reduced by single-unit packaging.

setup procedures

Disconnect the power supplies from the converter and set the ±10-volt adjustment. Check for 5 volts at U16. Reconnect the supplies and use an oscilloscope to trace the waveforms, shown on the schematic, through U1, U2, U3 and the vertical deflection amplifier. With the scope at the vertical yoke connection, set S1 to FS mode and adjust R2 for a maximum, linear ramp signal without positive peak clipping. Switch S1 to SS mode and adjust R1 as above. Set R3 to center rotation.

Turn the converter off and connect the camera to the converter as shown in fig. 1. If any of the special interface circuits are required, they should also be in the circuit. With power applied, a locked raster should appear on the FS monitor. Be sure S1 is in the FS position. With the aid of a test pattern or a circle on a sheet of paper, adjust R2 and R3 for a centered, symmetrical picture. Note the amplitude of the 60-Hz ramp on the vertical yoke with the scope, switch S1 to SS, and adjust R1 to the same amplitude. If difficulty is experienced in locking the

Left-rear of converter. The power transformer is mounted in the center for balance.
raster on the monitor, experimentation with the sync insertion connection may be required.

Using the scope, check the following points for the waveforms shown on the schematic:

1. U4, pin 6: 15-Hz pulses.
2. U7, pin 6: 1/8-, 1/4-, and 1/2-Hz ramps, depending on S2 position.
3. U8, pin 7: 1/8-, 1/4-, and 1/2-Hz ramps, depending on S2 position.
4. U8, pin 1: 15,750-Hz ramps.

The output of the comparator, U9, pin 7, is a sliding pulse that changes width during picture scan. Adjustment of R4, scan start, and R5, scan end, will produce a continuous sliding pulse that changes width smoothly and without hesitation. The differentiated spike will be visible as a thin black line on the FS monitor, moving from right to left. Its position on the screen indicates the part of the FS picture being sampled.

Sstv has a 1:1 aspect ratio (FS is 3 high to 4 wide), so a narrow portion of the left- and right-hand sides of the FS picture will be lost. Controls R4 and R5 have some interaction, so patience is required to center the sampled portion of the FS picture.

The setup of the vco and clamper should be made in a step-by-step procedure initially. The FS camera (with its lens capped) must be connected to the converter. Preadjust the following controls as indicated:

All circuitry (excluding power supply) is mounted on Vector board along one side of the box.
1. R9 to 10 volt end.
2. R6 to maximum resistance.
3. R11 to midrange.

Proceed with final adjustment as follows:
1. Adjust R8 from ground until the vco frequency (as monitored at the sstv output jack) begins to decrease.
2. Set R11 to 2300 Hz.

3. Set R6 to minimum resistance.
4. Adjust R9 for 1500 Hz.

If it is not possible to adjust the vco frequency over the full 1500- to 2300-Hz sstv video range with the video level control, readjust the black level control, R8, and repeat steps 2 through 4. With a 1k resistor connected between the base of Q14 and 5 volts, set the sync frequency control, R10, to 1200 Hz. Set R6 to 1900 Hz, switch S3 to invert, and adjust R7 to 1900 Hz. Set S3 to normal.

The voltages and waveforms were measured in one of my converters; they are for reference only and may vary considerably between units.

With the lens uncapped, adjustment of the video level control and lens opening will produce a sstv picture.

component substitutions

I've built two converters using identical component values and observed identical results. It's possible, however, to change some component values to suit personal preference. The 68k resistor at U11 may be revised to change the sstv contrast, or a control may be mounted on the panel if desired. Likewise, the contrast in the invert mode may be adjusted by changing the 4.7k resistor at U10. Sstv sync pulse width may be changed by adjusting the timing resistors in U4 and U7.

With the component values shown, the video circuits will operate at high gain. It is then possible to obtain useful sstv pictures using less light and/or lower lens openings. In either case, camera setup is simplified.

device selection

Transistors Q10, Q11 and Q13 are high-frequency devices; Q12 is a low-leakage, high-frequency unit. All other transistors except Q16 and Q17 are small-signal devices. You may substitute providing you use silicon types. ICs U8 and U10 are dual op amps, which may be single 741s if desired. Diodes, except those in the power supply, are small-signal devices of the 1N914 variety.

operation

Only two adjustments (assuming the lens is focused) are required to set up the camera/converter for pictures. I use the lens opening, or amount of light, to control the contrast and set the video level control so the video swings from full black to full white with plenty of gray scale in between. Be sure your monitor's brightness and contrast controls have
been set using a gray-scale tape or generator, as the monitor is your reference for camera adjustment.

I use a 100-watt bulb in a gooseneck lamp and a f/16 lens opening for photographs. For lettering, I open the lens to f/11 so the video will swing from full white to full black with no gray scale. Live pictures are taken with normal room lighting and a f/4 or f/5.6 lens setting.

summary

The conversion of a used, closed-circuit FS camera to slow-scan provides an economical approach to sstv picture generation. Furthermore, an old black and white TV may be pressed into service to allow fast, accurate focus and lighting adjustments.

The scan converter described here produces high-quality sstv pictures using inexpensive integrated circuits to reduce complexity and simplify construction. With the addition of only a few components, fractional frame rate and video reversal features are included.

I’ve attempted to use proven circuitry where possible and not try to reinvent the wheel. Several circuits, created by others, have been used since they provided the best performance with the least complexity and cost, which was one of my goals. I would be interested in hearing from readers who build this converter. Those interested in using this basic converter with a FS camera previously modified for use with the W3EFG converter (divide-by-4 and sync/deflection amplifiers not required) are invited to write for interface details. Please include a self-addressed, stamped envelope.

acknowledgements

I would like to thank James Mathews, W9KYS, for assistance with the photographs and K.O. Learner, K9PVW, for stimulating discussions during the course of the work.

references

Ham Radio
a versatile autopatch system for vhf fm repeaters

Complete design information for an autopatch system that includes access control and protective features particularly important in an autopatch working into a Touch-Tone central office. Provision should be made on both phone patch and autopatch to set the audio gain at levels acceptable to the telephone system, and to provide a desirable amount of modulation to the transmitter.

phone-patch requirements

Beyond acceptable audio, the two systems have little in common. Features desirable in a phone patch to be used at an ssb station have been described in another article and include facilities for three-way conversation, enabling the operator to talk to both parties—the person on the telephone as well as the one on the radio—using the station microphone and monitoring with the station speaker or headphones. Vox operation of the transmitter by the party on the telephone is also an advantage. Successful accomplishment of these objectives can involve fairly sophisticated hybrid circuitry and incorporation of a number of amplifiers for level control and circuit isolation.

autopatch features

An autopatch system does not require vox operation or isolation of the transmitter audio input from the receiver output. Monitoring is the responsibility of the control operator, usually at a remote control point. The autopatch circuit is essentially one for two-way communication, with switching between transmit and receive controlled by the party originating the radio contact.
However, the autopatch system does need a control system which will permit the caller to gain access to the telephone line and originate and terminate a call. It should also have reasonable protection against accidental activation, and automatic time-out if the calling party neglects or is unable to terminate the call. It should also be possible for the control operator to interrupt a call if necessary, without turning off the repeater.

Optional control features include protection against toll calls, and a provision working successfully on a busy 146.16/76 repeater.

simple autopatch

The audio circuit for the simple autopatch is shown in fig. 1. This patch was constructed from a Heathkit HD-15 Hybrid Phone Patch, and uses most of the kit components and circuitry. Except for the Touch-Tone decoder and power supply the unit is completely contained in the \(9\frac{1}{2} \times 3\frac{1}{2} \times 2\frac{1}{8}\)-inch (23.5 x 8.9 x 6.4-cm) cabinet supplied with the kit.

The Heathkit HD-15 phone patch includes a hybrid circuit which isolates the receiver audio output from the transmitter. As previously noted, this isolation is unnecessary in an autopatch. However, the hybrid transformer provides excellent quality audio coupling between receiver and telephone line, and from line to transmitter. The null adjustment balancing network is replaced by the Touch-Tone decoder which operates the phone patch control circuits. The control circuits combine solid-state logic with relay switching.

Operation of the patch is as follows. Switch S1 is a manual on/off switch, which in the off position disconnects the...
fig. 2. Simple control logic and timing circuit for the autopatch system shown in fig. 1.

phone patch from the repeater and telephone line, and bypasses the repeater audio signal from receiver to transmitter. This switch is normally left on to permit autopatch operation.

When a call is to be made, relays K1 and K2 are operated by the Touch-Tone-controlled logic. Contact K2A opens the direct audio path between receiver and transmitter and connects the phone patch output to the transmitter input. Relay contact K2B keys the repeater transmitter. Contact K1A establishes a dc path for the telephone circuit, signalling the central office and bringing up the dial tone. Both these relays stay closed until the call is terminated. Everything said on the telephone and radio is transmitted over the repeater.

Relay K3 and the bridge rectifier compose an automatic telephone answering circuit. If the autopatch telephone is called by another party when manual switch S1 is on, rectified ringing current closes K3 momentarily, “answering” the telephone and stopping the ringing. Relay K1 closes, K2 does not. The calling party can monitor the repeater receiver over the telephone line, and transmit Touch-Tone commands to the Touch-Tone decoder to operate the patch or other repeater control functions. The connection should be terminated by the calling party by transmitting the disconnect signal before he hangs up his telephone.

The control logic shown in fig. 2 recognizes a two-digit access code and a single-digit disconnect signal. When the two access digits are received by the decoder it generates a logic zero, or ground, at inputs 1 and 2, operating relays K1 and K2 and activating the phone patch as described earlier. The disconnect signal is decoded as a logic zero at terminal 3, releasing both relays. While the disconnect signal will usually be transmitted by the calling party on completion of the call, it can be used by the control operator if necessary.

Automatic time limiting is provided with the circuit controlled by relay contact K1B. In the standby condition, capacitor C1 is charged to a level determined by the setting of potentiometer R1. When K1 is picked up, the capacitor is discharged through resistor R2. When
its charge falls to the level at which Q1
conducts, an automatic disconnect signal
is generated at terminal 3. The timing
cycle is also started by relay contact K3B,
when relay K3 answers an incoming call.
Of course, no one calling in on the
telephone line to monitor the receiver
would normally forget to transmit the
disconnect signal—but K3B is still a good
precaution, let's say, against someone
calling a wrong number!

Performance of this simple autopatch
is excellent as far as audio quality and
circuit reliability are concerned. Its big
disadvantage is lack of security—it can be
activated by the two access tones in
either AB or BA order, and there is no
protection against long-distance calls. A
lesser disadvantage is the lack of any way
to boost the audio level from the tele-
phone line to the repeater transmitter; it
is sometimes hard for a mobile operator
in heavy traffic to hear a soft-voiced
woman when she answers the telephone.
A more versatile autopatch system which
overcomes these limitations is described
below.

versatile autopatch

Although the autopatch system de-
scribed previously provides excellent,
reliable operation, it lacks some desirable
security and operational refinements that
enhance autopatch operation. The unit
described here is more versatile, better
protected, and incorporates audio ampli-
fiers which permit adjustment of audio
levels to the telephone line and trans-
mitter. Construction is modular, so you
can select the features you want and
program the logic to fit your own require-
ments.

audio circuits

The audio circuits for the versatile
autopatch system are shown in fig. 3.
Component selection is not critical. Relay
K1 is a multi-contact telephone type
relay, and K2 is a 12-volt relay with one
single-throw and two double-throw sets
of contacts. Transformers T1 and T2 are
audio transformers with three windings;
any good-quality transformer with im-
pedance of 400 to 1200 ohms and a 1:1 or
2:1 ratio should work. Surplus 400-cycle
power transformers with 117-volt primaries and 300-volt center-tapped secondaries have been used successfully.

The circuit diagram shows the relays in standby position. Audio from the receiver used by mobile stations goes directly to the transmitter. The telephone line is connected, through a blocking capacitor, to transformer T2. Another winding of T2 is connected to an input of the mixer which drives the Touch-Tone decoder. The third winding is connected to an audio source that monitors all the repeater inputs except the control receiver. This arrangement permits control operators to call the autopatch number on the set of contacts on relay K1, but keying it from the control logic permits more versatile operation, as explained later. Relay K2 is connected by a set of contacts on K1 to the mobile receiver COR which enables the mobile operator to switch the amplifier inputs, controlling what goes out on the telephone line and on the air. Note that this gives the mobile operator the ability to cut off any potentially objectionable remarks that might be made over the telephone by simply pressing his microphone button; he does not have to deactivate the phone patch.

The phone patch may be wired so that the repeater will repeat both sides of a telephone, listen to the repeater inputs, and send instructions to the decoder over the telephone line. It also permits Touch-Tone signals from all receivers, such as those used to open a guarded input, to reach the decoder.

When the patch is activated audio from the mobile receiver is disconnected from the transmitter and connected to a phone patch amplifier and the Touch-Tone decoder. The telephone line is disconnected from T2 and connected to T1; the dc path through the transformer brings up the dial tone. The audio output that monitors all receivers is disconnected from the Touch-Tone decoder so only the mobile and control receivers can transmit instructions while the phone patch is activated.

The transmitter could be keyed by a conversation by interconnecting contacts 3 and 8 on relay K2 as shown in fig. 3. To have only the telephone party's side of the conversation repeated, omit the jumper between contacts 3 and 8, and connect 3 to ground. Details of the amplifier circuits are shown in fig. 4. They have tremendous gain and are capable of two watts output, which is what makes the impedance match of T1 relatively unimportant.

patch control circuits

The autopatch control logic, shown in fig. 5, is designed to operate with the solid-state repeater control logic described in an earlier article. Activation of the phone patch requires two Touch-Tone digits in the proper sequence to set flip-flops U1 and U2. When U2 is set by
the final digit of the code, several things happen. The logic 1 at U2's Q output permits the timer to start counting clock pulses, and opens the gate to the digit screening module. At the same time, the logic zero at the Q output actuates the main patch relay K1 through the NOR gate U8B and the two inverter drivers, U10B and U10C, connected in parallel to handle the heavy relay current.

At the end of four clock pulses, the counter sets flip-flop U9A, keying the transmitter so that the dial tone is heard on the air. The caller then dials the desired number. The first digit of the number is checked by the screening circuit, and if it is acceptable a logic 1 is generated at the hold terminal, latching flip-flop U9A.

If no telephone number is dialed, or if the first digit is unacceptable to the screening circuit, no hold signal is generated and U9A is not latched. When flip-flop U9B toggles at the end of 32 clock pulses (approximately 20 seconds) flip-flop U9A is reset, and U9B latches it in the off position. Transmitter keying is released, and all patch logic is reset to the standby condition. This sequence effectively prevents anyone from activating the patch and leaving a dial tone on the air for more than 20 seconds. The interval can be made shorter by changing the output of U5 which is connected to the clock input of flip-flop U9B.

If an acceptable telephone number is dialed within the time allowed the patch will remain activated until released by the reset digit or a logic 1 from the last stage of the timer. With the circuit shown this signal is generated after 512 clock pulses, or approximately 5 minutes. The 3-minute timer on the repeater is reset each time the caller keys his transmitter by contacts 5 and 6 of relay K2 so it will not time-out the repeater as long as he doesn't let the party on the other end of the telephone talk too long.

The degree and type of protection provided can be varied to suit the user and the requirements of the situation in which the autopatch system is to be used.
Security of access can be increased over that provided by the integral two-digit code by adding an external access module. This module can be used to control the access clock input to flip-flop U1, or provide a logic zero at the external access control terminal (this terminal should be grounded if no external access control is used). The external access module can also be wired to disable the transmitter while the two digits that activate the patch are received and decoded, helping to preserve their secrecy.

Another protective feature that can be varied to suit the user is the screening circuit. The simple circuit shown in fig. 6 will only insure that some number is dialed—in other words, that a dial tone is not left on the air until the repeater times out. As explained earlier, failure to dial at least one digit will deactivate the patch in 20 seconds.

Adding another AND gate and dual flip-flop as shown in fig. 7 provides protection against long-distance calls. As in fig. 6, flip-flop U1A will be set by the first digit dialed after the access code. However, if this digit is a 1 (long distance) flip-flop U1B will also be set, and both U1A and U1B will latch. Flip-flop U2 will not be set, no hold signal will be generated, and the patch will deactivate itself as though no number had been dialed. Any digit except a 1 will set U1A without setting U1B; U2 will be set when U1A is reset by the next clock pulse and will generate the hold signal.

fig. 7. This screening circuit for the autopatch logic control system includes provision for locking out long-distance calls.

modules can be used to screen out the three-digit prefixes for weather reports, time signals and exchanges that are toll calls. The timer can also be connected to key the transmitter long enough for the dial tone to be heard, and then silence the repeater while the telephone number is being dialed. An external circuit can be added to override the five minute time limit and provision can be made to put the repeater in a standby mode at night—silent until the patch is activated by an emergency code. What you do with this circuit is truly limited only by your own imagination. I will welcome correspondence from readers interested in going beyond the capabilities of the circuit described here.

conclusion

Many other control variations are possible. A counter can be incorporated in the screening circuit to count the digits and deactivate the patch if too many or too few are dialed. External switching modules can be used to screen out the three-digit prefixes for weather reports, time signals and exchanges that are toll calls. The timer can also be connected to key the transmitter long enough for the dial tone to be heard, and then silence the repeater while the telephone number is being dialed. An external circuit can be added to override the five minute time limit and provision can be made to put the repeater in a standby mode at night—silent until the patch is activated by an emergency code. What you do with this circuit is truly limited only by your own imagination. I will welcome correspondence from readers interested in going beyond the capabilities of the circuit described here.

references

The Heathkit SB-102 80-10 Meter SSB Transceiver puts you ahead of the pack at the outset. With better than 0.35 μV sensitivity for 10 dB S+N/N; solid-state LMO with 1 kHz calibration; less than 100 Hz drift per hr. after 10 min. warmup; dial reesettable to 200 Hz and bandspread equal to 10 ft. per MHz; switch selection of built-in 2.1 kHz SSB filter or optional 400 Hz filter, plus upper and lower sideband; built-in 100 kHz crystal calibrator; 180 watts PEP SSB input. 170 watts CW; built-in sidetone and VOX; 5-position metering facilities. 24 lbs., 385.00† the world's largest.

The Heathkit SB-220 2 kW Linear adds the long-range muscle. With 2 Eimac 3-500Zs in grounded grid circuit delivering up to 2000 W PEP SSB or a full 1 kW on both CW & RTTY, requiring only 100 W of drive; broad-band tuned pi input; solid-state 120/240 VAC power supply; circuit breaker; zener diode regulating operating bias; ALC; metered grid current, high voltage and relative power; big quiet fan. 70 lbs., 369.95†

FREE '74 Heathkit Catalog world's largest selection of electronic kits

FAR OUT!
Build the Heathkit SB-102 & SB-220 and get the distance

HEATH COMPANY, Dept. 122-7
Benton Harbor, Michigan 49022

Please send FREE Heathkit Catalog.

Enclosed is $ ____________, plus shipping.

Please send model(s).

Name __________________________

Address __________________________

City __________________________ State _______ Zip __________

Prices & specifications subject to change without notice. AM-296

*Mail order prices; F.O.B. factory.
The simplest way to match a 5/8-wavelength end-fed radiator to a 50-ohm feed system is to lengthen it by 1/8 wavelength with loading to make the antenna electrically 3/4-wavelength long. The antenna will then present the same 50-ohm load as the familiar 1/4-wave whip. Radiation from the small loading coil will be almost nil, and the low angle radiation of a 5/8-wavelength radiator will be realized. Two-meter antennas of this type are available from several antenna manufacturers, but at rather dear prices. Described here is a 5/8-wavelength two-meter antenna which can be assembled for less than five dollars. The necessary materials are available from any hardware store, and standard hand tools are all that is needed for its construction. An electric drill is the only power tool required.

The 5/8-wavelength radiator is a replacement-type adjustable automobile antenna. The one I used was purchased from Allied Radio Shack for $1.39 (catalog number 12-1309). Many auto supply stores also carry these antennas, and any of them that will extend to 48 inches (1.22 meters) should be satisfactory.
With the radiator portion of the antenna taken care of, all that is needed is a loading coil with a good mechanical base. Many approaches were considered, but none were going to be easy to construct. I finally tried the design shown in fig. 4, which went together successfully on the first try. All parts are labeled in the drawing. The 1/2-inch (12.7-mm) PVC plastic pipe caps cost about a quarter. Half-inch (12.7-mm) PVC pipe is usually available in ten-foot (3-meter) lengths for about fifty cents. Only two inches (5.1 cm) of pipe is needed, but the remainder may prove handy for some other project. Some number-16 copper bus wire for the coil, some epoxy, about two inches (3 cm) of 5/16 inch (7.9 mm) diameter brass rod, and a uhf coax connector (UG-266/U) or a piece of 3/8-24 (standard U.S. mobile mount) threaded brass stock round out the bill of materials. Although other coax connectors may be used the UG-266/U is best. A special PVC cement is available which is better than epoxy for gluing the plastic parts together.

![fig. 2. PVC pipe cap with the UG-266/U coax connector installed.](image)

coil assembly

To start the assembly, glue a two-inch (5.1-cm) piece of PVC pipe into one of the caps. The cap and pipe are then filled with about 3/4 inch (19 mm) of epoxy. This filling provides support for the 5/16-inch (7.9-mm) diameter rod used to mount the whip. With this assembly set aside for the epoxy to cure, a 9/16-inch (14.3-mm) diameter hole is drilled into the center of the other cap for the connector. A tapered hand reamer is satisfactory for making this hole if a large enough drill is not available. Screw the connector a short way into this hole, being careful to maintain alignment. Now heat the connector with a large iron or solder gun. When it is too hot to touch, grasp it with a pair of pliers and screw it into the cap. The heat will soften the PVC enough to allow this to be done and, after cooling, the connector will be molded into the PVC as shown in fig. 2.

After the epoxy has set, drill a 5/16-
inch (7.9-mm) diameter hole in the center of the other cap. File this hole out slightly to allow easy insertion of the brass rod, bevel the top of the hole with a countersink or drill. Trim the PVC pipe to a length which will allow the caps to just come together when the halves are assembled. Wind four turns of number-16 wire on a form which will allow the finished coil to just fill the inside of the PVC pipe (about 9/16-inch (14.3-mm) diameter), and bend the ends of the coil to protrude radially from its center line.

Drill a small hole about 1/2-inch (12.7-mm) deep into one end of the 5/16-inch (7.9-mm) diameter brass rod and solder one end of the coil into it as shown in fig. 3. Solder the other end to the center terminal of the coax connector. Slip the top cap and PVC pipe assembly over the coil and rod to check the fit of the entire unit.

alternate mounting

In many mobile installations it is desirable to have the antenna screw into a standard mobile mount. In this case, the bottom cap should be drilled out with a size Q (about 21/64 inch or 8.4 mm) drill. A 3/8-24 threaded stud can then be heated and inserted in the same way that the connector was. A hole in the inside end of the stud should be drilled and tapped to provide a place for a solder lug for soldering the coil. Finally, a 3/8-24 nut should be run up the stud and tightened to provide a place for the base should be close to the car body, so do not use a large base spring.

Before the assembly is sealed, its operation should be checked. For mobile installations, mount the antenna on an appropriate mobile mount. For a good match the base should be close to the car body, so do not use a large base spring.
fig. 5. The 5/8-wave two-meter antenna installed on the roof of the author's station wagon. The set screws for mounting the whip have been replaced by thumb screws to permit quick removal for entering the garage.

For mast installations, the connector is mounted to an angle bracket through a hole, and four or more 20-inch (51-cm) radials must be added. In either case, adjust the whip to 48 inches (1.22 meters) and check the vswr. If it is not close to 1:1, adjust the whip length for minimum reflected power. If the whip needs to be lengthened the loading coil inductance needs to be increased; a shorter whip length means the coil requires less inductance. A whip adjusted to slightly shorter than 48 inches (1.22 meters) is acceptable, but whips of longer lengths should be avoided since undesirable high angle lobes will increase, and the low angle lobe will be weakened.

After any needed coil adjustments are made, coat the lower 3/4 inch (19 mm) of the brass rod with epoxy. The bottom cap may now be glued in place and a bead of epoxy placed in the beveled edge around the top cap as shown in the cross-section drawing, fig. 4. The final assembly is now a rugged, air-tight unit equal in performance to expensive commercial gain antennas. It is well-suited to a variety of mountings such as the one used on the K6KLO station wagon in fig. 5.

reference

a vhf
radio observatory

An interesting report on the relationship between the sun and the earth’s weather, using data obtained at vhf

For many years prior to 1968 I had frequently heard solar radio noise whilst using vhf communications receivers for atmospheric studies. I realised these bursts of metre-wave radio noise were telling me that a solar event had taken place, and that a stream of complex particles may be heading toward earth. If the timing were right, these solar particles would enter earth’s atmosphere and cause an aurora or disturb the natural state of the ionosphere, which would cause the normal propagation of a variety of radio signals to be upset.

With this in mind, I decided to build a radio telescope to give me prior knowledge of solar activity and to include this information in my propagation reports to the radio organizations.

the radio telescope

The aerial consists of four Yagis, each having four elements, mounted on a 10 x 6-foot (3 x 1.8-meters) wood frame, which is covered with a ½-inch (13-mm) wire mesh for the reflector. The whole reflector framework is hinged on its bottom rail so that its altitude can be adjusted periodically to keep the sun within its vertical beamwidth. The aerial faces south, and the earth drift principle is used for the azimuth adjustment.

The working frequency selected for the radio telescope is 135.95 MHz,
because at my location this frequency is free from terrestrial interference and the radio noise associated with sunspots can be very strong at this frequency.

The solar radio waves are fed to a crystal-controlled transistor converter mounted behind the aerial reflector. The intermediate frequency of 26 MHz, produced at the converter, is fed on underground coaxial cables to an i-f amplifier and detector. The dc voltage at the detector is amplified by a type 709 integrated circuit to drive a pen recorder.

The completed instrument was put into operation on June 1, 1968, and was soon producing results. Daily observations, which are controlled by a time switch, start when the sun enters the antenna beam at 1130 gmt and terminate at 1330 gmt; during this period, five feet (1.5 meters) of paper chart are produced from the recorder.

solar activity

As time passed, two features of solar activity emerged from the daily recordings. First was the burst of radio noise (fig. 1) and second was the noise storm (fig. 2). The individual solar burst may last only a few minutes, whilst the noise storm may continue for several days. The radio noise from a solar event is received 8.3 minutes after it has taken place, but the streams of nuclear waste, which are ejected by the sun at the same time, may take up to 40 hours before reaching the earth's orbital path.

The author is an amateur radio astronomer and a Fellow of the Royal Astronomical Society. For many years he has operated a radio observatory from his home in Sussex, England. Data from author Ham's observations have been supplied to the Radio Society of Great Britain, the International Amateur Radio Union (Region 1), and the British Astronomical Association. His equipment operates on 135.95 MHz, which favors the "active" sun noise. Although no technical data on the author's receiver are supplied with his article, it would appear that any good vhf converter could be used to duplicate the author's set for those who wish to expand their knowledge in this area. **Editor.**

The first "prize" observation came on November 1, 1968, when an Aurora Borealis was evident at the climax of a noise storm, which my telescope had been recording for several days. The great Auroras of March 8, 1970; August 5, 1972; and April 1, 1973, followed prolonged periods of solar activity, which had been recorded by my instrument. Throughout the five-year life of my radio telescope, many atmospheric disturbances have been associated with solar activity. From the time I built this instrument, my friends in the radio world have been interested in its results and frequently have asked me for information to complement their studies.

objectives

The daily routine at my observatory consists of checking several vhf radio frequencies looking for the effects of Aurora, sporadic E, or tropospheric disturbances and then attempting to associate these effects with the results from the solar observations. In addition to the radio work, I record rainfall, humidity, temperature, wind speed and atmospheric pressure data for correlation with tropospheric openings. When possible I also log the "freak" weather disturbances that are large enough to justify the attention of the national news media.

solar activity and the earth's weather

Through keeping records of solar and atmospheric events I noticed that during or soon after I had recorded a noise storm...
the news media were likely to report (somewhere on earth) a freak, or violent weather event, often with tragic loss of life and/or extensive damage to property. The following examples illustrate the typical weather news reports coinciding with recorded solar storms that set me thinking about a possible connection between these two natural events.

These are just a few of the reports I have gathered from newspaper items and radio news broadcasts; there may well be many more, or more detailed information in subsequent reports.

Scientific literature tells us that a connection between the active sun and the earth's weather has been known for many years, but the precise link has not yet been identified. Briefly, certain changes in climate, and in plant life, have already been associated with the eleven-year sunspot cycle. For approximately 400 years astronomers have systematically recorded the number of visible sunspots; and throughout these years, scientists have related many natural events to the existence of a large sunspot.

<table>
<thead>
<tr>
<th>date of solar storm</th>
<th>date of news report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970 - Nov. 11 to 22</td>
<td>20th. East Pakistan flood disaster.</td>
</tr>
<tr>
<td>1970 - Dec. 17 to 23</td>
<td>30th & 31st. Flooding in Poland and Mozambique. Nine inches (22.9 cm) of rain in one day was reported from Australia. Heavy rain and snow in parts of U.K. The Thames river was at risk of flooding because of severe gales in the North Sea.</td>
</tr>
<tr>
<td>1971 - Jan. 28 to 31</td>
<td>16th/17th. Worst weather in 72 years experienced by Mount Everest climbers. 13th. BBC news report that monsoons in E. Pakistan had started a month early.</td>
</tr>
<tr>
<td>1971 - April 9 to 18</td>
<td>18th. Freak rain storm in Seoul, Korea. 20th. Hong Kong hit by worst typhoon for many years.</td>
</tr>
<tr>
<td>1971 - Aug. 18 to 27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>date of solar storm</th>
<th>date of news report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972 - Feb. 12 to 23</td>
<td>14th. 100-mph (161-kmh) gales in southern France.</td>
</tr>
<tr>
<td>1972 - March 3 to 12</td>
<td>13th. Flooding in Peru. 22nd. Worst floods in American history; whole towns evacuated near New York; some parts declared disaster areas.</td>
</tr>
<tr>
<td>1972 - June 15 to 22</td>
<td>11th. Freak tornado reported in Holland. 12th. Serious flooding in Australia. 28th. Severe gales in Icelandic waters.</td>
</tr>
<tr>
<td>1972 - Aug. 1 to 9</td>
<td>2nd. Flooding in London.</td>
</tr>
<tr>
<td>1972 - Aug. 11 to 14</td>
<td></td>
</tr>
<tr>
<td>1973 - April 1 to 11</td>
<td>2nd. Hurricane-force winds in Holland. 10th. Some parts of USA had snow for first time. 14th. Storms in E. Pakistan; many dead.</td>
</tr>
</tbody>
</table>
solar radio waves

The association of radio waves with an active sunspot has been recognized only for about 40 years; prior to this, solar observations relied on what the eye could see. Could it be that a simple amateur radio telescope has identified the particular sunspot activity responsible for stirring up the existing weather systems on earth? After all, we know that solar particles, which are heralded by radio noise, can upset the ionosphere; so why, by some indirect means, can't they upset the troposphere?

This sun/weather relationship phenomena caught the imagination of several friends, and it was suggested that my observations be placed on record. In August, 1971, an article containing some of these observations was published in the RSGB journal, Radio Communication. Since this article was published people have kindly sent me a variety of press cuttings about freak weather conditions for me to correlate with my solar recordings.

Amongst my friends, little more was talked about this matter until Jim Fisk raised the subject of geomagnetic effects on weather in his editorial of a recent issue of ham radio.1 Like a shot from a gun an old friend, Brian Oddy, read this editorial and promptly contacted me to see if I had seen my copy of ham radio. Brian quickly pointed out that a solar storm could upset the geomagnetic field and in turn upset the weather.

Perhaps the editorial in ham radio has joined together two independant observations which, as Brian suggests, have provided another vital link in the chain of events between the sun and the earth's weather.

reference

bibliography

ham radio

Author's radio telescope aerials. At left is a BBC cameraman behind a 90-MHz aerial. A BBC interviewer and author (extreme right) stand in front of the 136-MHz aerial.
Explore the world of RTTY... with sophisticated equipment from HAL.

The RVD-1002. The silent, reliable RTTY video display unit from HAL.
The revolutionary HAL RVD-1002 RTTY video display unit "prints" an RTTY signal from any TU at the four standard data rates (60, 66, 75 and 100 WPM), using a TV receiver with slight modification. Or it will directly feed a TV monitor. Power consumption is low, thanks to the RVD-1002's solid-state construction. So turn on to silent, trouble-free RTTY — with the RVD-1002. Price: $575 ppd, USA. Air shipment $10.

The silent RTTY keyboard — that's the HAL RKB-1.
The RKB-1 RTTY keyboard is loaded with features to make sending RTTY easy and fun. You get automatic letter/number shift at all four speeds, typewriter keyboard layout, and no clatter! The loop keying transistor is isolated from other keyboard circuits — wire it into any convenient point in your loop. Plus TTL logic, glass epoxy PC board, commercial grade keyswitches and more.
Price: $250 Assembled, ppd USA. Air shipment $5.

RTTY — and CW on one keyboard!
The HAL DKB-2010.
All solid-state. Transmit at data rates of 60, 66, 75 or 100 WPM at the flick of a switch. Complete alphanumeric keys, 15 punctuation marks, 3 carriage control keys, 2 shift keys, break key, 2 character function keys, a "DE-call sign" key, even a "Quick brown fox..." test key.
The DKB-2010 is equally versatile in the CW mode, with complete alphanumeric and punctuation keys, speeds from 8-60 WPM, and a "DE-call sign" key. The DKB-2010 includes a three-character buffer operational in either the RTTY or CW mode. Optional 64 or 128 key buffer also available.
Price: $425 Assembled, $325 Kit, ppd USA. 64 key buffer $100, 128 key buffer $150. Air shipment $10.

Commercial quality on an amateur's budget — the HAL ST-6 TU
Every amateur who knows his RTTY respects the ST-6 terminal as being the best. Autostart operation, an antispacing feature and switch selection of 850 and 170 Hz shifts are standard. Circuitry is state-of-the-art, including DIP IC's on plug-in PC cards. Filters and discriminators are designed for standard RTTY tones.
A 425 Hz shift discriminator is an option which allows superior reception when copying commercial press transmissions. Another option is the AK-1 audio frequency shift keyer for input to an SSB transmitter. The ST-6 and its options are available in assembled or kit form. Cabinet not included in kit.
Price: ST-6 $310 Assembled, $147.50 Kit, ppd USA. 425 Hz Discriminator $40 Assembled, $29 Kit, ppd USA. AK-1 AFSK $40 Assembled, $29 Kit, ppd USA. Air shipment: Assembled ST-6 $10, ST-6 Kit $4, 425 Hz Kit $1. AK-1 Kit $1.

HAL Communications Corp. Box 365, Urbana, Illinois 61801 Telephone: (217) 359-7373

Enclosed is $ for: [] RVD-1002 [] RKB-1 [] DKB-2010 [] ST-6
Please specify [] Assembled [] Kit [] Options

Please send me more information on the following HAL products:
[] RVD-1002 [] RKB-1 [] DKB-2010 [] ST-6
[] Complete HAL catalog

Name ____________________________ Address ____________________________ Call Sign ____________________________
City/State/Zip ____________________________ Illinois residents add 5% sales tax.
How to win the fist fight... with CW equipment from HAL.

The economical HAL 1550 keyer.
The easy-to-use 1550 keyer is your answer if you're looking for an electronic keyer that lets you send accurate CW effortlessly. Send from 8 to 60 WPM with conventional, iambic, and dot memory operation. Operates with dual or single lever keys. The optional 1550/ID automatically sends "DE" followed by your station call. For fast, accurate CW, order the HAL 1550/ID or 1550 today.
Price: 1550/ID, $95; 1550, $75; ppd USA. Air shipment, add $3.

ID-1A repeater identifier.
Commercial quality, low price.
The HAL ID-1A brings the radio amateur a commercial-quality repeater identifier that complies with FCC ID requirements. It has a unique read-only-memory that you can easily reprogram yourself. Capacity of the ROM is 39 dots, dashes and spaces. TTL IC's assure immunity from noise and temperature. ID intervals available: 3, 6, 12 or 24 min. Specify call.
Price: $115, ppd USA. Air shipment, $3.

Send perfect CW every time with the MKB-1.
A complete Morse keyboard. Code speed variable from 10-60 WPM with variable dot-to-space ratio (weight). All solid-state, featuring computer-grade components. Complete alphanumeric and punctuation keys, plus an optional "DE-call sign" key factory programmed for you. Includes built-in speaker/oscillator monitor.

CW—and RTTY on one keyboard!
The HAL DKB-2010.
All solid-state. Type out CW at 8-60 WPM. Adjustable dot-to-space ratio (weight). Complete alphanumeric keys, plus 11 punctuation marks. Five standard two-character keys, 2 shift keys, break-for-tuning key, 2 three-character function keys, and a "DE-call sign" key. We'll program your call right into the DKB-2010. Plus complete RTTY capabilities. Built-in three-character buffer. Optional 64 or 128 key buffer also available.
Price: $425 Assembled, $325 Kit, ppd USA. 64 key buffer $100, 128 key buffer $150. Air shipment, $10.

More Details? CHECK—OFF Page 94
How many times has one of your elegantly conceived projects turned into a "kluge" because the only housing you could find for it was an uninspiring standard Minibox? The satisfaction gained from building your own ham gear is determined by both performance and appearance, and it is the latter that suffers most severely from the limitations of the home workshop. As if Miniboxes weren't ugly enough, everything from office file-card boxes to a Sucrets can have also been used to house small electronic gadgets. Presented here, however, is a technique for fabricating your own attractive housing for that next project—one that requires only simple hand tools and is quite inexpensive.

materials

The key to this technique is rectangular cross-section extruded aluminum tubing. A shopping visit to an industrial aluminum supply house is your first step. You are looking for a stock of scrap pieces of 2 x 2-, 2 x 3-, 2 x 4- and 2 x 6-inch (approximately 5 x 5- through 5 x 15-cm) tubing. A wall thickness of 1/8
inch (3 mm) is best. Assorted lengths from 6 inches (15 cm) up are usually available from the scrap bin for a nominal price. At worst you should expect to pay $1.50 to $2.50 per foot (30 cm) if they have to cut it from stock. If they are very stuffy and will only talk in terms of 12-foot (3.6 meter) lengths you are at the wrong place. Besides the tubing, you will need some 0.032-inch (0.8-mm) to 0.062-inch (1.6-mm) sheet aluminum for the chassis and panels. Get a soft alloy like 6061-T4 so it won’t crack when you bend it.

For finishing the metal, you will need a can of spray enamel. Sears and Roebuck make epoxy enamel (catalog number 30F66258), made for painting appliances, works very nicely. Finally, you will need some 6-32 x 1/4-inch (6.35-mm) and 4-40 x 1/4-inch (6.35-mm) flat-head machine screws, and some 6-32 self-clinching nuts.

fabrication

If you can arrange access to a sheet metal shear you can cut up a supply of panels and chassis stock for the sizes of tubing you have on hand. In the absence of a shear, cut the parts a little oversize with a hacksaw or saber saw and trim them to size with a file. Delay cutting the

*Available from Small Parts, Inc., 6901 N.E. Third Avenue, Miami, Florida 33138. Part number ON632.56, 10 for $1.15 or 25 for $2.50. $1.00 handling charge on orders under $5.00; postage is included. Catalog available.
tubing until the chassis and panels are assembled. Measure the panel height minus 1/8 inch (3.2 mm) from each end of the chassis material and bend these ends up 90 degrees. Clamp the front panel to one vertical end of the chassis so that the bottom edge of the panel is flush with the underside of the chassis, and drill the mounting holes for controls and terminals through both pieces at the same time. Repeat this process for the rear panel. Temporarily assemble the panels to the chassis using one or two of the controls to hold each end. Check to see that the assembled chassis slides smoothly into the tubing. Measure the length of the assembled chassis, and then cut the tubing 1/2 inch (1.3 cm) longer. Dress any rough edges with a file.

Select a point on the chassis where the clinch nut will not interfere with the chassis assembly from the tubing and swage a clinch nut into the drilled hole in the chassis from the top. Countersink the matching hole in the tubing to accept a flat-head screw. Run a 6-32 x 1/4-inch (6.4-mm) flat-head screw through the bottom of the case into the clinch nut to lock the chassis into the tubing.

This completes the fabrication of the case. To mount circuit components to the chassis, use 4-40 x 1/4-inch (6.4-mm) flat-head screws inserted from the chassis underside, countersinking each hole to provide a smooth bottom.
finishing

Prepare the tubing for painting by giving it a light sanding. This removes surface scratches and provides a slightly roughened surface to improve paint adhesion. Next, wash the metal with hot water and detergent. To provide a completely grease-free surface do not touch the metal with your fingers. After rinsing with hot water, spray the case with two light coats of enamel, waiting about a half hour between coats. Carefully sanding the outside of the panels in a single direction will provide an attractive brushed-metal finish; alternatively, they too may be painted as the case was. The photographs show the popular WB4VVF Accu-Keyer packaged in this manner.

variations

As an alternative to the configuration described above, the tubing may be cut at an angle to give a “shadow” overhang at the top. The enclosure may be oriented with the short side of the tubing vertical, as in fig. 1, or with the short side horizontal when a tall narrow enclosure is preferred. Instead of enamel, you may wish to try a color anodizing if the facilities are available. Whichever way you go, you’ll be pleased at the result.

reference

solar energy

Solar power awaits a rebirth of man's wisdom. This form of energy cannot maim, endanger or exhaust the earth's treasures. The sun's energy is limitless and it will be around in quantity long after the earth has died. Nuclear and other forms of energy are plagued with one or more factors such as supply and demand limitations, unresolved technical problems, hazard, and long-term waste-disposal concerns. The use of solar energy presents no hazard to earth. There is no self-destruct potential. Is there any form of energy more free of pollution? Is there any form of energy or power more attractive and worth an all-out effort? Is not the sun the source of all energy on earth?

amateurs and solar power

How would you like to operate a solar-powered ham station? You can start at the QRPP level and work up—right up to the 1-kilowatt input limit. Today the initial installation is costly at high-power levels, but a solar power supply for low-powered equipment is reasonable and certainly will become more so as more and more amateurs go in this direction. Solar power activities are under way at W3FQJ and you will be kept informed.

some basics

First, let's put aside the notion that solar cells are only effective in bright sunlight and that only in the Southwest, with its endless clear days and bright sun, are solar-powered devices feasible. Actually, solar cells work quite efficiently even in considerable overcast. The secret is to match the installation with local average climatic conditions. The number of cells required for a specific application depends directly on the average weather conditions at the site. This simply tells us that in the East and Northeast, with their more generous portion of cloudy days, more solar cells are needed per given power demand than would be required in the sunny Southwest.

However, for each part of the country average solar energy levels have been measured for many years. Using this data you can select the proper number of cells required and add a few additional ones for good measure to accommodate a long sequence of cloudy winter days.

To make efficient use of solar light, the cell bed, fig. 1, must be tilted in a southerly direction. The average tilt angle corresponds with the latitude of the site (number of degrees that you are north of the equator). If your solar bed is mounted where it is readily accessible, you can make minor adjustments in this
angle in spring and fall to compensate for the somewhat different path taken by the sun across the heavens between dawn and dusk. (More exactly, in an astronomical sense, compensation is made for the changing tilt angle of the rotating earth, the sun being in a fixed position.)

A solar cell system or, more precisely, a solar energy or light energy converter, can be designed to deliver a certain amount of power in daylight. However, any solar energy system, to be worthy, should also be capable of taking care of nighttime needs. In terms of electrical power energy this can be handled by chargeable batteries. Thus a 24-hour, all-year system requires a light energy converter and a battery pack. Such a system can be combined into a completely self-sustaining and unattended installation.

An alternative manual system would be one that would permit daytime operation from the solar converter; nighttime operation would be by battery. However, the battery's capacity would have to be such that it could handle the nighttime operating hours and power demand. This battery would be charged to desired capacity sometime during the day using the light energy converter.

The two big factors in planning a successful solar power system involve the power requirements and how these demands can be met by a solar converter. The criteria for the latter were mentioned previously. Next consider how the average power demand can be estimated. A voltage requirement must be met. This is accommodated by the number of individual solar cells that are connected in series for the solar converter. Load current must be averaged on the basis of day-night operations and then over a long-term solar-year basis.

A practical approach is to determine the ampere-hours required per day. This figure can be averaged for the solar year. Current demand evaluation should also be established for nighttime operation as an aid in choosing a battery source with the required ampere-hour capability. Peak power is also a consideration in determining the peak current demand at any time to make certain the solar converter and battery pack are capable of delivering this current level. After the power requirement evaluations are made, the solar energy converter is designed to deliver at least this amount of voltage, current and power based on the solar conditions at the mounting site.

A small safety factor may be advisable although initial cost can be kept down by not exaggerating possible power requirements. It is no great problem to add additional solar beds later if an increase in power demand is anticipated.

A functional diagram of a complete, unattended system is shown in fig. 2. Only a few basic components are needed in addition to the light energy converter and batteries. A charging diode is needed to present a conducting path between the converter and the batteries to be charged. This diode acts as a one-way path, preventing the batteries from discharging into the converter when they have been fully charged. This completes the power source when using lead-acid storage.
batteries. An additional voltage regulator like batteries, to obtain a desired converter voltage. Likewise, the current capability is increased by connecting the cells in parallel. This series-parallel grouping of cells into an array permits the construction of a bed of solar cells that will supply the voltage and current needs like batteries, to obtain a desired converter voltage. Likewise, the current capability is increased by connecting the cells in parallel. This series-parallel grouping of cells into an array permits the construction of a bed of solar cells that will supply the voltage and current needs.

<table>
<thead>
<tr>
<th>array model number</th>
<th>approximate dimensions (inches)</th>
<th>current output</th>
<th>amp-hours generated under various per day solar conditions²</th>
<th>approximate weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V 300 mA</td>
<td>37 x 3 x 3</td>
<td>300 mA</td>
<td>1.1 1.3 1.6</td>
<td>3.8</td>
</tr>
<tr>
<td>12V 600 mA</td>
<td>37 x 6 x 3</td>
<td>600 mA</td>
<td>2.2 2.6 3.1</td>
<td>9.3</td>
</tr>
<tr>
<td>12V 900 mA</td>
<td>37 x 9 x 3</td>
<td>900 mA</td>
<td>3.3 3.9 4.7</td>
<td>14.0</td>
</tr>
<tr>
<td>12V 1.2 A</td>
<td>37 x 12 x 3</td>
<td>1.2 A</td>
<td>4.4 5.2 6.3</td>
<td>18.6</td>
</tr>
<tr>
<td>12V 1.5 A</td>
<td>37 x 15 x 3</td>
<td>1.5 A</td>
<td>5.5 6.5 7.9</td>
<td>23.3</td>
</tr>
<tr>
<td>12V 1.8 A</td>
<td>37 x 18 x 3</td>
<td>1.8 A</td>
<td>6.6 7.8 9.4</td>
<td>28.0</td>
</tr>
<tr>
<td>12V 2.1 A</td>
<td>37 x 21 x 3</td>
<td>2.1 A</td>
<td>7.7 9.0 11.0</td>
<td>32.6</td>
</tr>
<tr>
<td>12V 2.4 A</td>
<td>37 x 24 x 3</td>
<td>2.4 A</td>
<td>8.9 10.4 12.6</td>
<td>37.3</td>
</tr>
<tr>
<td>12V 2.7 A</td>
<td>37 x 27 x 3</td>
<td>2.7 A</td>
<td>10.0 11.7 14.1</td>
<td>41.9</td>
</tr>
<tr>
<td>12V 3.0 A</td>
<td>37 x 30 x 3</td>
<td>3.0 A</td>
<td>11.1 13.0 15.7</td>
<td>46.6</td>
</tr>
<tr>
<td>12V 3.6 A</td>
<td>37 x 37 x 3</td>
<td>3.6 A</td>
<td>13.3 15.6 18.9</td>
<td>55.9</td>
</tr>
<tr>
<td>12V 4.2 A</td>
<td>37 x 43 x 3</td>
<td>4.2 A</td>
<td>15.5 18.2 22.0</td>
<td>65.2</td>
</tr>
<tr>
<td>12V 4.8 A</td>
<td>37 x 49 x 3</td>
<td>4.8 A</td>
<td>17.7 20.8 25.2</td>
<td>74.5</td>
</tr>
<tr>
<td>12V 5.4 A</td>
<td>37 x 55 x 3</td>
<td>5.4 A</td>
<td>20.0 23.4 28.3</td>
<td>83.8</td>
</tr>
<tr>
<td>12V 6.0 A</td>
<td>37 x 61 x 3</td>
<td>6.0 A</td>
<td>22.2 26.0 31.5</td>
<td>93.1</td>
</tr>
<tr>
<td>12V 6.6 A</td>
<td>37 x 67 x 3</td>
<td>6.6 A</td>
<td>24.4 28.6 34.7</td>
<td>102.4</td>
</tr>
<tr>
<td>12V 7.2 A</td>
<td>37 x 73 x 3</td>
<td>7.2 A</td>
<td>26.6 31.2 37.8</td>
<td>111.7</td>
</tr>
</tbody>
</table>

1. Minimum current output under Standard Test Conditions (STC) Intensity = 100 mw/cm²; Temperature = 0°C to +60°C.
2. Usable energy generated for use in a solar power supply system with lead-acid storage batteries under typical conditions and based on annual mean solar radiation data for various locations in the contiguous United States.

Silicon solar cells are light-sensitive semiconductor devices. P- and N-type impurities are added to a basic silicon crystal. For example, the basic wafer can be a P-type semiconductor. An N-type layer can then be diffused a certain depth into the wafer, fig. 3. A P-N junction is formed between the two layers. When light is directed onto the junction, electron and hole carriers are formed by the impacting light photons. The hole carriers move to the N-type region; electron carriers, to the P-type region. This motion of charges across the junction constitutes an electric current. The path is completed through the external circuit.

A single solar cell has only a small voltage drop and a limited current capability. Cells are connected in series, just of the light-energy converter. All of these must then be assembled in a durable frame and support structure, fig. 1, including output terminals.

The assembly must be made as imperious as possible to weather and other environmental extremes. A bracket arrangement is needed for obtaining the proper tilt of the array at the mounting site. The solar cells themselves are not exposed to the elements because they are protected by an efficient transparent coating that provides proper diffusing and channeling of the arriving light energy. Even with considerable icing the conversion efficiency remains high.

The directional diode is usually a silicon type, selected with proper voltage rating and adequate current-carrying...
capability. Keep the diode voltage drop as low as possible.

The chart of table 1 shows the standard 12-volt light energy converter array made by Spectrolab.* The first unit, about three-feet (92-cm) long and three-inches (75-mm) wide, supplies 12-volts at 300 milliamperes. This is the minimum current under standard test conditions. This standard test condition corresponds to the solar intensity at noon on a clear day when the temperature is 77°F (25°C). In designing the system it is necessary to derate current values on the basis of higher operating temperatures. This is done in the design of the particular array module to be used at a given site. The three-column, ampere-hours specifications are interesting since they represent the useful ampere-hours that can be supplied by a solar power supply system using lead-acid storage batteries. These typical conditions are based on annual mean solar radiation data for various locations in the continental United States.

batteries

Battery quality is an important consideration. Low-cost lead-acid cells can be charged by solar converters of adequate size. However, for all-day, all-year, uninterrupted service, batteries should be selected more carefully if initial cost and efficient operating conditions are to be achieved. Inexpensive types have a high cell-discharge rate and perhaps a two-to-four year potential life. However, high-quality lead-acid storage batteries are made by various manufacturers. Some of these have a self-discharge rate as low as 10 to 15 percent per year, and have a lasting capability of 10 to 15 years in a properly designed solar power supply. Nickel-cadmium batteries do very well.

The storage capacity of the battery should be based on peak daily use, considering also the number of days such a system may need to operate at reduced solar intensity. In an optimum system it is customary to incorporate approximately seven days of reserve battery capacity so as to preclude system failure under several days of very low light levels.

Some quality lead-acid batteries have a charging efficiency of 95%. This means that 95% of the power delivered to the battery ends up as charge. Thus, considerably less power must be delivered from the solar energy converter for a given level of battery charge.

amateur requirements

Radio amateur applications in general would not be nearly so stringent. There is no need for all-day, all-night and all-year uninterrupted capability. Perhaps the only exception would be for the operation of a solar-powered fm repeater. Consider how many hours per day you operate your station. What is the longest span of continuous operation, on the

* Spectrolab, 12500 Gladstone Avenue, Sylmar, California 91342.
average? Do you operate every day? When you are on the air what is the ratio of your transmit time (when power is drawn) compared to your receive and listening time? All of the above factors mean that the power requirements of any solar energy converter for the usual amateur radio application can be much more modest than the restrictions of commercial use.

Is the average amateur on the air more than 2 to 3 hours per day? Even though a station may be on the air each day, the total hours may actually be less than 12 per week. No doubt the actual transmit time is less than half of the total amount. It would be interesting to go through your log and determine just how many operating hours you have per month. When your total operating hours are this modest, solar power could be quite feasible, even for a 200-watt PEP sideband transceiver.

Some sample figures will help to clarify power demand. Assume a solid-state transmitter that would draw 8 amperes from a 12-volt source. If the transmitter were on continuously drawing maximum power, a 60-ampere/hour storage battery would operate the unit for 5-6 hours on one charge. However, the actual transmit time is perhaps less than 50% of total operating time. Hence the battery would not discharge completely in six hours (complete discharge is to be avoided). Furthermore, using sideband transmission, the heavy demand is only made on those occasional modulation peaks. It is apparent that a good number of operating hours are feasible with a single charge of a good quality 12-volt battery.

If the battery has a 120-ampere-hour capability, a single charge might be adequate for a good number of operating hours per week. A trickle charge from a solar converter could readily maintain battery charge. In fact, you would probably not even require continuous connection to the solar converter. Charge time during two or three clear days of the week would be adequate in most cases.

Admittedly, at present production the cost of such a solar converter would be substantially higher than a conventional mains-powered battery charger. However, with proper care the life of such a converter would be 15 years or more for the present state of the art. It offers a practical means for conserving precious electrical energy and would be especially useful for those locations where no electrical power is available for a battery charger. Here is an answer for those amateurs in countries plagued by electrical black-outs and brown-outs.

Some sample figures will help to clarify power demand. Assume a solid-state transmitter that would draw 8 amperes from a 12-volt source. If the transmitter were on continuously drawing maximum power, a 60-ampere/hour storage battery would operate the unit for 5-6 hours on one charge. However, the actual transmit time is perhaps less than 50% of total operating time. Hence the battery would not discharge completely in six hours (complete discharge is to be avoided). Furthermore, using sideband transmission, the heavy demand is only made on those occasional modulation peaks. It is apparent that a good number of operating hours are feasible with a single charge of a good quality 12-volt battery.

If the battery has a 120-ampere-hour capability, a single charge might be adequate for a good number of operating hours per week. A trickle charge from a solar converter could readily maintain battery charge. In fact, you would probably not even require continuous connection to the solar converter. Charge time during two or three clear days of the week would be adequate in most cases.

Admittedly, at present production the cost of such a solar converter would be substantially higher than a conventional mains-powered battery charger. However, with proper care the life of such a converter would be 15 years or more for the present state of the art. It offers a practical means for conserving precious electrical energy and would be especially useful for those locations where no electrical power is available for a battery charger. Here is an answer for those amateurs in countries plagued by electrical black-outs and brown-outs.

low-power transmitters

At the QRP and QRPP levels it costs very little to get involved with solar energy conversion and gain a knowledge of the technique. Off-the-shelf photocells and associated components can get you started at the 100-milliwatt level. Daylight operating power is no problem at all. The addition of a nickel-cadmium battery (very low-powered in terms of ampere/hour charge and therefore inexpensive) will give you nighttime operation as well.

Going up to 1 or 2 watts involves very little additional cost. An upgrade to 5 to 10 watts requires a few bucks but adds fun, satisfaction and versatility, even to powering a low-powered sideband transceiver.
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR
 RF MIXER
 A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
 RF AMP
 A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
 RF POWER AMP
 A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND AMP
 General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL. Experimenter or Amateur $3.75

5. OX OSCILLATOR
 Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz. Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
 Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ±.02% when operated in International OX circuit or its equivalent. (Specify frequency) $3.95

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3098E.

CRYSTAL TYPES:
(GP) for "General Purpose" applications
(CS) for "Commercial Standard" applications
(HA) for "High Accuracy" close temperature tolerance requirements.

write for CATALOG

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLAHOMA CITY, OKLA. 73102

More Details? CHECK-OFF Page 94
A previous article in *Ham Radio* described a phase-locked loop RTTY tuning unit which requires a stable, well regulated source of +12 volts. Author W4FQM suggested using a commercially available power supply and described it as, "quite a buy for only $38.00." Well, hold on to your money fellows, and read on.

Fig. 1 shows the schematic of the precision supply. A full-wave bridge rectifier feeds the regulator. The value of C1 provides sufficient filtering with the regulator rejecting any remaining ripple. Resistors R1 and R2 determine the output voltage based on the following manufacture data sheet equations:

\[
R1 \approx (2V_{out} - 7) \text{ kilohms}
\]
\[
R2 = 6.8k
\]

Resistor \(R_{sc} \) and transistor Q1 provide short-circuit protection for the regulator. When the output short-circuit current (\(I_{sc} \)) creates a voltage drop across \(R_{sc} \) large enough to turn Q1 on, the regulator output is limited by the saturated collector-emitter across pins 4 and 5. The value of \(R_{sc} \) is determined by the equation \(R_{sc} \approx (0.6/I_{sc}) \text{ ohms} \) and \(C_2 \leq (250/R_{sc}) \mu F \), where \(I_{sc} \) is expressed in amperes and \(C_2 \) is 250 \(\mu F \) maximum.

The power supply described here uses an IC voltage regulator, Motorola MC1469G, and two precision 1% resistors as special parts. Everything else should be available in the average RTTY enthusiast's junk box. Except for these specific parts, other values and part types are not critical.
The design I tested uses the values shown in the schematic. With the three 10-ohm resistors in parallel, the value of I_{sc} measured was 200 mA. For a nominal load current of 50 mA the output voltage was 12.235 volts. Changing this load current ±10 mA caused the output to vary ±1 millivolt. This corresponds to a load regulation of ±0.008%. The power supply showed a 0.01% change in output voltage with a 7% change in the input ac voltage. Both of these characteristics more than satisfy the ±0.1% regulation requirement of the PLL.

The output voltage was designed for a nominal 12.0 volts and measured at 12.23 volts. This is explained by the approximately equals sign in the equation for resistor R_1. The absolute value of the output is not critical so long as the output is stable.

construction

Layout and construction of the circuit is not critical except that the manufacturer recommends the .001-μF capacitor on pin 4 of the MC1469G IC must have short lead lengths for regulator stability. Vector boards and point to point wiring is a lot easier than trying to design a one-time printed-circuit board. Sockets were used for the IC and Q1 but are not necessary. Just make sure when soldering the leads that a heatsink is used and all soldering is done quickly to avoid overheating.

The alternate configuration shown in fig. 2 can be used in place of the 1% metal-film resistors for R_1 and R_2. Resistors R_3 and R_4 are carbon composition resistors and R_5 is a multiturn trimpot or a fixed composition resistor. Specific values of R_4 and R_5 are not important so long as they can be varied over the range of desired output voltage. The use of carbon composition resistors will degrade the long term stability of the supply but should not significantly affect TU performance.

Transistor Q1 is any general purpose npn silicon transistor. Rectifier diodes should be greater than 50 volts PIV. A clip-on TO-5 heatsink is used as a precaution because the regulator dissipates approximately 300 milliwatts.

Elliott Lawrence, WA6TIA

reference

Collins S-line power supply mod

I found that I had to readjust the idling current potentiometer in my Collins 516F-2 S-line power supply quite frequently due to changes in the 117-volt ac power line. Connecting two 36-volt 400-mW, 5% zener diodes (1N974Bs) in series from the junction of R_8 and R_9 to ground as shown in fig. 3 takes care of the problem nicely.

Ralph Cabanillas, Jr., W6IL/CT1HO
communications receiver

Yaesu Musen has just introduced a new solid-state communications receiver, the FR-101S, with provision for all-mode reception on twenty-one 500-kHz amateur and shortwave bands from 160 through 2 meters. This new receiver is designed to be used in transceive, if desired, with the new FL-101 transmitter which is to be introduced in the near future. New solid-state technology, with features such as a doubly-balanced mixer, offer excellent rejection of cross-modulation and intermodulation interference. The FR-101S, which copies a-m, fm, ssb, CW and RTTY, has less than 100 Hz drift in any 30-minute period after warmup. Sensitivity is 0.5 μV for 10-dB signal-to-noise ratio on ssb and CW, 1.0 μV for 10-dB signal-to-noise ratio on a-m and 12 dB SINAD on fm, comes complete with 2.4-kHz, 4.0-kHz and 0.6-kHz crystal filters (1.5-kHz, 12-kHz and 45-kHz filters are available as optional accessories). Image rejection is 60-dB minimum and audio output is two watts into 4 ohms.

The FR-101S, which tunes the 160-, 80-, 40-, 20-, 15- and parts of the 10-meter band in standard trim, can be used on six and two meters and other shortwave bands with optional accessories. Priced at $499, this new receiver is available from Yaesu Musen USA Inc., 7625 East Rosecrans Avenue, Unit 29, Paramount, California 09723. For more information use check-off on page 94.

new products

scanner-monitor servicing data

A new edition of Howard Sams' popular Scanner Monitor Servicing Data is now available. This new volume, third in a series, covers many of the popular Regency units including the MT-15S, TME-16 H/L, TME-16 H/LH/U, TME-16H/LL/U, TME-16H/LM/U, TMR-1H, TMR-1L, TMR-4H, TMR-4L, TMR-8H, TMR-8L, TMR-8H/LH, TMR-8H/LL and TMR-8H/LM. Included are schematics, parts lists and complete service adjustments. Other scanners covered in this new volume are the Electra Jolly Roger; Johnson Hi/Lo Duo Scan, UHF/VHF Duo-Scan, UHF Mono-Scan and VHF Mono-Scan; Midland 13-914; Pearce-Simpson Cherokee 8+8, Cheyenne 8 (PR-78) and Comanche 16 (PR-160). Available for $5.95 postpaid from Ham Radio Books, Greenville, New Hampshire 03048; order book number SD-3. Earlier volumes SD-1 and SD-2 ($4.95 each), which provide the same sort of complete servicing data on other scanner units, are also available.

More Details? CHECK-OFF Page 94
Venus Scientific has introduced their new SS2 Slo-Scan Monitor. This Monitor is the second generation of Slow Scan with many features not previously available on the market. These features include Accu-Sync,™ a diagnostic and tuning aid which converts the SS2 Monitor to an oscilloscope by the flip of a switch, LED sweep indicators for ease of servicing, camera adapter provision which enables you to take Polaroid photographs right off the air with the P-1 Camera Adapter and simplified independent controls.

The SS2 Monitor's picture size is 4-7/16-inch (11.3-cm) diagonal, 3-1/4 x 3-1/8 inch (8.3 x 7.9 cm) with 128 lines. It has a 15-Hz line rate and a 8-1/2-second frame rate. Video input modulation is fm, 1200 to 2300 Hz. Complete details may be obtained from Venus Scientific, Inc., 399 Smith Street, Farmingdale, New York 11735, or use check-off on page 94.

rf clipper

Holdings of England has introduced a unique new rf clipper for use with the Yaesu FT-101, Mark 2, that is used on both transmit and receive. The extra sideband filter provides a noticeable

You HEAR the Difference...

when it's a Larsen Külrod Mobile Antenna

Larsen Külrod Antennas are "solid" on all scores. They have a low, low silhouette for best appearance and minimum wind drag. Hi-impact epoxy base construction assures rugged long life. The Larsen mount gives you metal to metal contact, has only 3 simple parts and goes on fast and easily.

And performance! Larsen Antennas for the 144-148 MHz range deliver a full 3 db gain over a 1/4 wave whip. V.S.W.R. is less than 1.3 to 1. The exclusive Larsen Külrod assures you no loss of RF through heat. Handles full 150 watts.

It adds up to superior performance . . . and a difference you can HEAR! Available as antenna only or complete with mounting hardware coax and plug. Write today for fact sheet and prices.

Sold with a full money back guarantee. You hear better or it costs you nothing!

Need a BETTER 450 MHz Antenna?
Get the Larsen 5 db gain Phased Collinear. Same rugged construction and reliability as the 2 meter Larsen Antennas including exclusive Külrod. Write for full fact sheet.

Phone 206-573 2722

Larsen Antennas
11611 N.E. 50th Ave. P.O. Box 1686 Vancouver, WA 98683

More Details? CHECK-OFF Page 94
Still the Performance Leader

Collins KWM-2A

Unmatched for versatility, dependability and mobility the Collins KWM-2A maintains a reputation of outstanding mobile and fixed station performance.

Collins Filter type SSB Generation insures the cleanest signal on the air you will hear anywhere.

Famous Collins PTO gives you the stability and accuracy that lets you meet anyone on schedule wherever you want to be.

An added feature of the KWM-2A is an additional 14 crystal positions which enable you to cover additional frequencies outside the amateur bands. Now you can have a transceiver covering MARS Frequencies, press RTTY, etc.

Let Electronic Center quote on your Collins needs. We carry the full line of Collins amateur equipment and would like to serve you.

bi-directional code switches

Alco Electronics' new SMC Series bi-directional pushbutton code switches maximize reliable performance in a small package. These modules occupy a panel area only 0.945-inch high by 0.3-inch wide, yet the position indicator numerals are an easy-to-read 0.2-inch high. The compact size is ideal for compact portable and mobile applications. Push-
buttons marked + and - allow the operator to advance or reverse numerical sequencing.

Available standard codes include conventional BCD (8-4-2-1), BCD with complement, and decimal (1-of-10) formats, all 10-position types. The numerals of the visual readout are 0 through 9, corresponding to the electrical output codes. Electrical contact surfaces are gold plated for long, trouble-free life.

Possible applications for SMC switches include control of frequency synthesized tuners, channel selectors, and preset counters and timers. For special applications, such as 2-meter fm tuners, dummy switches (nonfunctioning, but identical in appearance) are available, with fixed numeral (e.g., "1" or "4"). Switches with limit stops, restricting the range of operation, are also available. For further information use check-off on page 94, or write to ALCO Electronic Products, Inc., 1551 Osgood Street, North Andover, Massachusetts 01848.

world radio and tv handbook

When a specialized handbook like this has gone into its 28th edition, there’s very little that’s “new and exciting” that can be said. The World Radio & TV Handbook (popularly called the WRH) is the only complete and comprehensive directory on radio broadcasting throughout the entire world—from Afars to Zambia. Updated during the latter part of 1973 for use during 1974, the WRH tells it all: stations, callsigns, frequencies, schedules, languages, power, etc. If you want the shortwave schedule for a certain country, the WRH is the place to find it. If you tune in a new station and wonder which one it might be, the List of All Shortwave Broadcasting Stations will give the information. No casual—and certainly no serious—shortwave listener is ever without a copy of the latest edition of the WRH. 408 pages, softbound, $7.50 from Ham Radio Books, Greenville, New Hampshire 03048.
Factory New Semtech Bridge Rectifiers

- ALL 10 AMPS
 - 50 Volt PIV: $1.75 ea.
 - 100 Volt PIV: $2.00 ea.
 - 200 Volt PIV: $2.25 ea.
 - 400 Volt PIV: $2.50 ea.
 - All Postpaid USA

NEW NEW NEW NEW NEW

- ALL 5 AMPS
 - 50 Volt PIV: $1.25 ea.
 - 100 Volt PIV: $1.50 ea.
 - 200 Volt PIV: $1.75 ea.
 - 400 Volt PIV: $2.00 ea.
 - All Postpaid USA

Use Standard 7447 Decoder Driver. Seven Segment Readouts. All tested and guaranteed. Fit standard 14 pin DIP socket. Full .335 inch high. Color, RED. Less Decimal $2.00 ppd. With Decimal $2.25 ppd. With Colon $2.50 ppd. Same unit only contains numeral 1 and plus and minus sign. $2.25 ppd.

NEW NEW NEW NEW NEW

JUST ARRIVED — Transformer, 115 VAC primary, 18 volt, 5 amp ccs or 7 amp intermittent duty secondary $6.00 ea. ppd.

General Purpose Germanium Diodes

- Similar to 1N34a etc. 16 for $1.00 ppd.
- All Cathode banded. 100 for $5.00 ppd.
- Full leads. 1000 for $40.00 ppd.

Transformer — American Made — Fully shielded. 115 V Primary, Sec. — 24-0-24 @ 1 amp with tap at 6.3 volt for pilot light. Price — A low $2.90 each ppd.

- 400 Volt PIV at 25 Amp. Bridge Rectifier. $4.00 ea. or 3 for $10.00 ppd.
- 741 C OP AMP 8 pin mini-dip $0.55 ea. ppd. $1.00 ea. ppd.
- 723 VOLTAGE REGULATOR 14 pin dip

NEW NEW NEW

Guardian Relay 12 Volt DC Coil
4PDT 5 Amp Contacts
Guardian Type 1315PJC-120
Removed From New Equipment $2.00 ea. ppd.

NEW NEW NEW

3/16 inch Dia. LED Lites
Red $0.25 ea. ppd.
Green $0.40 ea. ppd.
Yellow $0.40 ea. ppd.
Super Bi-LED — Lites red with polarity one way and green when you reverse the polarity. Neat for many things. Price is a Low $0.75 ea. ppd.

SEND STAMP FOR BARGAIN LIST
Pa. residents add 6% State sales tax. ALL ITEMS PPD. USA

* m. weinschenker
 K3DPJ BOX 353 · IRWIN, PA. 15642

impedance bridge

The Amateur Products Group of Delavan Electronics, Inc., has announced the development of Dela-Bridge I, which is designed to analyze antenna characteristics and simplify adjustments. This new instrument, when excited by a grid dip meter or low-power transmitter, quickly analyzes existing antenna and feedline characteristics, tuning and loading coils, and filter and interstage coupling networks. A direct readout allows easy adjustment for optimum performance.

Frequency range of the Dela-Bridge I is 50 kHz to 250 MHz with a resistance range of zero to 500 ohms, balanced or unbalanced, logarithmic scale. Excitation requirements are one mW to two watts maximum. An internal nine-volt battery provides power to the instrument, which has an accuracy of ±3% at 50 ohms. The readout, which is not frequency sensitive, provides complete null and reactance determination and the internal integrated circuit amplifier allows use with low-signal inputs.

Guaranteed by Delavan Electronics for one year, the Dela-Bridge I is available for $39.95 plus $2.50 for air mail and handling costs. A ready-to-assemble kit is available for $29.95. For more information write to Delavan Electronics, Inc., 14441 North 73rd Street, Scottsdale, Arizona 85260, or use check-off on page 94.
GLADE VALLEY SCHOOL RADIO SESSION
15th year - July 27 - Aug. 9, 1974

Courses Taught:
- General Theory and Code
- Advanced Theory and Code
- Amateur Extra Theory and Code
- Golf privileges at New River Country Club: also fishing

TRULY A VACATION WITH A PURPOSE!!!

People attended from the following states:

We've changed our name (from Camp Albert Butler to Glade Valley School Radio Session) and our location. We have just moved four miles from our previous site. We are now on the campus of a beautiful small boarding school. Excellent accommodations, same good food and the same excellent instructors.

C. L. Peters, K4DNJ, Director
P. O. Box 770, Elkin, North Carolina 28621
Please send me the Booklet and Application Blank for the Glade Valley School Radio Session.

Name ______________________ Call ______________________
Address __
City/State/Zip __

More Details? CHECK-OFF Page 94

July 1974
The caption may be slightly exaggerated, but we all know that the only way to get real performance is with a full size single band beam.

Cush Craft Monobeams combine superior electrical and mechanical features with the best quality materials and workmanship. They give reliable day to day amateur communications and that extra DX punch when needed for contest work or emergency communications.

A14-3 3 element 20 meters $120.00
A14-2 2 element 20 meters 92.00
A21-4 4 element 15 meters 100.00
A21-3 3 element 15 meters 71.00
A28-4 4 element 10 meters 62.00
A28-3 3 element 10 meters 50.00

WEIGHTS CONSIDERED

LED READOUTS OPCOA SLA-1 Similar to MAN-1.33" high. 20 mA per segment. With decimal point. Every one checked — all segments operating Red — $1.95 each, 3/$4.50
Big Readouts, .7" high. Red. $4.95 each, 4/$16.00
LED — molded plastic dome shape with leads. .312 inches in diameter.
Red — $2.25 each, 5/$12.00
Green — $1.50 each, 6/$2.00

LM 309 Voltage Regulator IC. 5 volts at 1 Amp max. current
$2.00 each

PRINTED CIRCUIT BOARD 2 oz. copper on glass epoxy base, approx. 5" x 6". Your choice copper on one or both sides.
$3.25

IN 914 DIODES $1.00 each, $1.00 dozen

SILICON RECTIFIER International Rect. R-210-F epoxy, 1000 PIV, 2 amps. $2.40 each, 10/$25.00

P.C. Board Edge Sockets: Amphenol, 3/16" contact spacing. 6 contacts or 10 contacts, with solder terminals. 35¢
15-contacts or 22 contacts, used, exc: 55¢

TTL ICs
7400 $.35 7474 $.55
7402 $.35 7475 $.90
7404 $.35 7476 $.65
7408 $.35 7490 $ 1.00
7441 $ 1.75 74121 $ 1.90
7447 $ 1.65 74192 $ 1.90
7448 $ 1.65 741 op amp $.55
7473 $.55

MINIMUM MAIL ORDER $3.00
Please add shipping charges
• Mastercharge

JEFF-TRONICS
1916 Clark Avenue Cleveland, Ohio 44109
Telephone: 216-621-1004

CushCraft
CORPORATION
621 HAYWARD STREET
MANCHESTER, N.H. 03103

Radio Amateurs
Reference Library
of Maps and Atlas

WORLD PREFIX MAP — Full color, 40" x 28", shows prefixes on each country — DX zones, time zones, cities, cross referenced tables $1.25

RADIO AMATEURS GREAT CIRCLE CHART OF THE WORLD — From the center of the United States! Full color, 30" x 25", listing Great Circle bearings in degrees for six major U.S. cities; Boston, Washington, D.C., Miami, Seattle, San Francisco & Los Angeles $1.25

RADIO AMATEURS MAP OF NORTH AMERICA! Full color, 30" x 25" — includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus useful information on each of the 50 United States and other Countries $1.25

WORLD ATLAS — Only atlas compiled for radio amateurs. Packed with worldwide information — includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica — a complete set of maps of the world. 20 pages, size 8½" x 12" $2.50

Complete reference library of maps — set of 4 as listed above $3.75

See your favorite dealer or order direct.

Mail orders please include 50¢ per order for postage and handling.
Free home and car security project book

When you buy two HEP R1215's

These are 30V-4A Sensitive Gate SCR's... which can be used in building any of four different home and car security projects:

- Security Alarm System
- Master Alarm Control System
- Car Intrusion Alarm
- Long Range Optical Detector

This HEP 409 Project Book has 11 security projects, and it's yours when you buy two HEP R1215 devices at the regular price of $1.25 each from your local HEP dealer. (Offer expires August 30, 1974)

P. O. Box 2953 / Phoenix, Arizona 85036

(a regular $1.25 value)
NEW AND DIFFERENT!!

"EBM"

The all new T_doc manual for electronics experimenters and hobbyists --

More than two years in the making, T_doc has gathered the most practical and usable data from industry, the U.S. Patent Office, DOD, NASA, NTIS (National Technical Information Service) and others. Jam-packed with all the data needed by the hobby experimenter at the bench. From theory refresher to applications diagrams, device characteristics, tables and formal charts and graphs -- hundreds upon hundreds of illustrations.

A High-Density Modular Document

No wasted space or words. Separate sections are removable in loose-leaf fashion -- books within a book -- mounted in a rugged binder, big enough to hold other T_doc publications -- or your own notes.

Just by way of example, the section on hand soldering was boiled-down from the practices of the American Welding Society -- Committee on Soldering and Brazing: NASA, USA, solder manufacturers, the Bell Telephone System and others. The section contains everything you need to know about solder, fluxes, soldering tools and techniques.

There are over 100,000 words covering theory and application of semiconductor devices -- diodes, transistors, the SCR/TRIAC, digital and linear integrated circuits, operational amplifiers, voltage regulators, counters and decoders, and much, much more.

Sections also treat the vacuum tube and CRT, capacitors and electrostatic devices, relays and switches, electromechanical devices and mechanical movements, energy sources, cable and wire,

Update Without Annual Replacement

No need to buy a whole new book every year to keep abreast of information in the field; the "book within a book" style permits you to update only as needed.

There has never been another manual like it. That's why we undertook to put it together! Once you have had a chance to use the manual, you'll start enjoying electronics as a hobby, with fewer unfinished projects that could have been completed had there not been an information gap!

Electronics Bench Manual

Introductory Price: $1795 Postpaid In U.S.A.

Send check or money order marked "EBM" with your name and address to:

TECHNICAL DOCUMENTATION
BOX 340
CENTREVILLE, VA 22020

703-830-2535

Virginia residents please add 4% sales tax.

R-X NOISE BRIDGE

- Learn the truth about your antenna.
- Find its resonant frequency.
- Find R and X off-resonance.
- Independent R & X dials greatly simplify tuning beams, arrays.
- Compact, lightweight, battery operated.
- Simple to use. Self contained.
- Broadband 1-100 MHz.
- Free brochure on request.
- Order direct. $39.95 PPD U.S. & Canada (add sales tax in Calif.)

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

COIL WINDING

SPECIALS & STOCK ITEMS

Hi Q - LO DC RESISTANCE UNITS
FERRITES - POWDERED IRON - AIR CORE
RF CHOKES - TOROIDS - VARIABLES
HIGH STABILITY POT CORE INDUCTORS

USING MAGNETIC MATERIALS FROM
FERROXCUBE, MICROMETALS, FAIR-RITE,
CAMBION, QUALITY COMPONENTS, ETC.

Quick Quotes
Send Specs or Sample
CADDELL COIL CORP.

802-287-4055
POULTNEY, VERMONT 05764

YOUR BEST BET FOR FM!

- PREAMP KITS $6, WIRED $10
- FREQUENCIES FROM 20 TO 230 MHZ
- LED SCANNER KITS $10
- RECEIVER KITS $59.95
- FULL STOCK CUSHCRAFT FM ANT.
- COMPONENTS FOR VHF PROJECTS
- SEND SASE FOR LITERATURE

HAMTRONICS, INC.

182 BELMONT RD. ROCHESTER, N.Y. 14612

More Details? CHECK-OFF Page 94
Only STANDARD sells more STANDARDS than ERICKSON!

and here's ANOTHER ERICKSON SPECIAL SRC-826 MA

A better BEST BUY than ever

OUR DEAL:

<table>
<thead>
<tr>
<th>826 MA list</th>
<th>$398.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 16 extra xtals</td>
<td>80.00</td>
</tr>
</tbody>
</table>

Package list price $478.00
You pay only $359.00

YOU'VE SAVED $119.00

YOU GET Standard's 826MA, the best 12-channel 10-watt solid state rig on the market, factory set up on four channels plus crystal coupons for eight more channels (16 of Standard's lifetime Astropoint crystals!) of your choice; with helical-resonator front end receiver, built in provision for tone-coded squelch, rear panel test point/monitor/control sockets — all in one compact, reliable package — at a GIANT $119 ERICKSON saving!!

Shipping prepaid for cashier's check or M.O.

SRC-146A with:

- Deluxe basecharger
- "Stubby" antenna
- Leather case
- Ni-cads
- 94/94, 34/94 and one other channel of your choice

List Price $359.00
Our Price $319.00

YOU SAVE $50.00!!

Another BEST BUY from Erickson

Make ERICKSON your headquarters for all your FM needs . . .

SEND QSL FOR COMPLETE SPECIFICATIONS

ERICKSON COMMUNICATIONS
4653 N. Ravenswood Ave., Chicago, III. 60640 (312) 334-3200

More Details? CHECK-OFF Page 94
WE WILL PUT YOU AT ANY HEIGHT YOU NEED REGARDLESS OF WHAT THAT HEIGHT MIGHT BE.

There's a Heights tower to fit every need and every budget. Crank ups, foldovers, TV stand-alones — we've got 'em all....and they're all aluminum. You can make sure your antenna is mounted at the maximum legal limit the right way, the Heights way. And remember, Heights towers are all aluminum, Heliarc welded for light weight. They're extremely rugged, and very easy to erect.

Write for 12 page brochure giving dozens of combinations of height, weight and wind load. We think you'll be setting your operating conditions to new heights.

HEIGHTS MFG. COMPANY
Almont Heights Industrial Park "AT"
Almont, Michigan 48003

RECEIVERS, OK GRTD, WITH BOOKS:
AN/SRR-13: Navy's RCA-made 2-32 MHz. Double superhet, last IF only 200 kHz for exc. selectivity. AM/CW/FSK/ FAX/RATT. Very clean condition 395.00
R704A/URR: 15-32 MHz by dials, PTO stability 395.00
R390/URR: omits the mech. filters but no discernable difference in selectivity 395.00
R912 is similar to R390 but mobile-use design in size shape. Works on 28 VDC 3 A (not included) 395.00
CV-591A: SSB converter; select either sideband. Xits new in it for 455 kHz but can be changed & also can be used without xits. It is T.M.C.'s MRS-4 137.50
AN/ALR-5: 38-1000 MHz continuous (4 bands) AM/FM, includes new original-factory-pack plug in CV-253 converter; factory check sheets show sensit, ranging from 1.1 to 7 uV. IF attenuator in 6 dB steps, and diode-current meter, make it exc. for spectrum studies also. Modified to work on 60 Hz lines. 375.00
Plug-In Converter. Only for above, but used, checked-working condition 38-1000 MHz in, 30 MHz out. Needs 250V dc & 6.3 VAC, & if you want automatic motor tuning, also 28 VDC 1/2 amp. With book. 150.00
30 MHz Panadapter: DEI's TDU(-). 150.00
RBA: 15-600 kHz TRF has very high stage gains in ant. & 3 RF stages. Book says too selective to be good for voice, but receives AM & CW. Like brand new, complete set w/pan sply, etc. 285# fo 60 Vc 150.00
WWB 60 kHz solid-state rcr/compator, Dymec (Hewlett-Packard) DY-5842. Phase locked. 195.00
WWB 60 kHz Timing Rcvr for the 1-second-interval tone bursts & their kHz modul. Solid-state 125.00
Motorola 3 MHz osc. 5 parts in 10 to the 11th 199.50

We have an exc. test-equip. inventory at very low prices but each category (for example, osciloscopes) is a separate catalog photo-copied from masters which change almost daily so ask for your needs. We also distribute the very exc. LEADER line of new, warranted solid-state test equip. We also buy, to tell us what you have, its condition, and what you are asking for it.

R. E. GOODHEART CO. INC.
Box 1220-HR, Beverly Hills, Calif. 90213
Phone: Area Code 213, Office 272-5707

NEW FOR 74

ECM 5A FM Modulation Meter
Only $65.00 less batteries and crystal
- Operates 30-500 MHz
- Crystal controlled for fast and easy operation
- Peak reading
- Accurate within 1 kHz at 15 kHz

0-15 kHz deviation
Phone or write "Skin" WHAK
for complete information Dial
812 476 2121
Available by direct mail only. ORDER INFO: Send check or money order for $85.00 plus $1.50 for handling. Indiana residents add 4% sales tax. Crystals for 146.94 MHz $3.95 ea. All other freq. $7.10

ECM
ECM Corporation
412 W. Wrenbach Ave.
Evansville, Indiana 47711

DIGITAL-THEORY DESIGN CONSTRUCTION
LOGIC NEWSLETTER ©
SAMPLE COPY $1.00
LOGIC NEWSLETTER
POB 2527
WALDWICK, N.J. 07463

72 JULY 1974
More Details? CHECK—OFF Page 94
2 METER FM PORTABLE

4 CHANNELS 2 WATTS DUAL CONVERSION

HT-144 ONLY $99.95 KIT

BASE □ MOBILE

RX144C $69.95
TX-144 $29.95

VHF ENGINEERING

DIV. OF BROWNIAN ELECT. CORP.
320 WATER ST. POB 1921 BINGHAMTON, N.Y. 13902 607-723-9574
MODEL 60 SPEECH PROCESSOR — ORO
the average-to-peak ratio of the speech waveform as much as 8 db using a logarithmic principle. Operates with FM SSB and AM transmitters and transceivers. Low-High Impedance Mic input. Two 9Vdc batteries provide a self-contained unit.

- Model 60Y (Processor Kit) $29.95
- Model 60K (Processor Kit) $23.95
- 200-15 (Processor Board Kit) $14.95

DEALERS:
VE AMATEUR RADIO SALES, Downers Grove, Ontario, Canada
ST ELECTRONICS, Lawndale, CA 90263
gary radio, inc., San Diego, CA 92111
kass electronics distributors, Drexel Hall, PA 19027-M. WEINSCHEMER K3DPJ
irwin, PA 15642

WANTED

TRI-Tek, Inc.
P. O. Box 14206, Dept. H
Phoenix, AZ 85063

8220 MEMORY 8 bit (4x2) content addressable memory. TTL and DTL compatible. For use in data-to-memory comparison, pattern recognition, cache memory, auto correlation, virtual memory, learning memory. New, house numbered. With Data, IN 16 pin DIP. $6.00 ea., 10 for $45.00

8038C VCO WAVEFORM GENERATOR. New, factory parts, full specs. $5.75, 2 for $10.50, 10 for $50.00

MM5314 CLOCK CHIP. Full specs. $9.50

All orders postpaid. Minimum $5 U.S., $15 foreign. Latest lists, 10c stamp. Please ADD INSURANCE.

YOU DON'T KNOW WHAT'S GOING ON IN AMATEUR RADIO

if you aren't reading HR REPORT, amateur radio's first twice a month, airmail newsletter with all the latest news weeks before you will ever see it in any monthly magazine.

from the Editors of HAM RADIO

$12.00 per year
We would like to thank all of the readers of HAM RADIO Magazine for making our April “SBE . . . Special Buy Extravaganza” a sell out success. In order to show our appreciation we are literally going to “Play it again” on the SBE SB450. So if you missed out in April, here’s your second chance.

DON’T DELAY . . . ONCE AGAIN . . . QUANTITIES ARE LIMITED.

SB450
- UHF all solid state
- 12 channels
- 5 W output
 with 449.5/444.5 & 446.0 smplx.
List $399.95

$29995

MOTOROLA GOODIES

MOTOROLA PTs
The famous PT series is now available for low band use. These units are all solid state . . . carrier squelch . . . mid range for conversion to 6 or 10 meters. Units are in good physical condition, less nicad and mic.

PT200 (Z21NAV), 1.4 watts. WAS $100.00 NOW $ 80.00
PT300 (P31DCN), 5 watts. WAS $150.00 NOW $110.00

SLEEVE CHARGERS for PT200 & 300 $ 30.00

PLANTRONICS HEADSET
Model MS50-105, an extremely lite weight unit that clips onto the rim of your glasses. Small mic boom & ear piece makes “no hands” operation a snap. Ideal for mobile or contest use $ 20.00

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.
STORE HOURS: Mon.-Thurs. 9:30-6:00, Fri. 9:30-8:00, Sat. 9:30-3:00. Closed Sun. & Holidays
INQUIRIES WITHOUT ZIP CODE OR CALL . . . NO ANSWER
WANTED: Good used FM & test equipment. No quantity too large or small. Finders fees too.

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

More Details? CHECK-OFF Page 94
The ultimate in SIDEBAND TRANSCEIVER performance

GENERAL: • All amateur bands 10 thru 80 meters in seven 600 kHz ranges (5 supplied) • Solid State VFO, 1 kHz dial divisions • Modes SSB Upper and Lower, CW and AM • Built-In Sidetone and automatic T/R switching on CW • 30 tubes and semiconductors • Size: 5½"H, 10 ¾"W, 14 ¾"D (13.9 x 27.3 x 36.5 cm). Wt.: 16 lbs. (35.2 Kg).

TRANSMIT: • VOX or PTT on SSB or AM • Input Power: SSB, 300 watts P.E.P.; AM, 260 watts P.E.P. controlled carrier compatible with SSB linear; CW, 260 watts • Adjustable pi-network.

RECEIVE: • Sensitivity Better than ½ uV for 10 db S/N • I.F. Selectivity 2.1 kHz @ 6 dB, 3.6 kHz @ 60 dB. • AGC full on receive modes, variable with RF gain control, fast attack and slow release with noise pulse suppression • Diode Detector for AM reception.

$599.95
34-PNB Plug-in Noise Blanker...$100.00
RV-4C Remote VFO for TR-4C...$110.00

R. L. DRAKE COMPANY

NEW MX1A $47.50 MINI-MIXER $47.50
THIS IS A PLUG IN UNIT TO REPLACE THE FIRST MIXER IN COLLINS 755-1-2-3. DESIGNED TO ELIMINATE ALL BUT THE STRONGEST. (NEXT DOOR) CROSS MODULATION IN THE S LINE. IT USES THE LATEST IN FET DESIGN. IF NOT SATISFIED MONEY REFUNDED
Designed Built Backed
ANTENNA MART
Box 7, Rippey, Iowa 50235

FM Schematic Digest
A COLLECTION OF MOTOROLA SCHEMATICS
Alignment, Crystal, and Technical Notes covering 1947-1960
136 pages 11⅛" x 17" ppd $6.50
S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173

BROADBAND AMPLIFIERS, for amateur, MATV, CATV and commercial use
We offer a quality line of low noise, low IMD amplifiers covering the region from 2 MHz to 1.5 GHz. For communication use, simple filters at the input will yield coverage of the bands of your choice. Where remote location is necessary to offset line losses, coax powered versions are available with adapters or power supplies.

RADIATION DEVICES CO., P. O. Box 8450, Baltimore, Md. 21234
Please write for information on our other products including RF Multimeters, VSWR Bridges, Detectors, L-C, Crystal and Tunable Active Peak-N-Notch Filters.
7-SEGMENT READOUT PIN DIP
- 3 digits with right-hand decimal
- Plugs into DIP sockets
- Similar to LTRINON DL337
- Magnification digit approximately .7".
- Cathode for each digit
- Segments are parallel for multiple displays
- $5 = 10 MA per segment
- BRAND NEW $11.00

RCA NUMITRON
EACH $ 5.00
SPECIAL: 5 FOR $20.00

DR2010
POTTER & BRUMFIELD
TYPE KMP RELAY 4 PST 3A
CONTACTS
24 VDC (650 coil) $1.50
120 VAC (10.5 MA coil) 1.75

Power Supply SPECIAL!
723 DIP variable regulator chip for IC use. ICs 750 MA 10A with external pass trans-
istor—With diagrams for many applications.

EACH: 10 FOR $8.95

CT5050 CALCULATOR
This calculator chip has a full four-
function memory, which is controlled by four pads, and adds entry into memory, (... subtracts entry from memory), (... clear memory, without clearing rest of registers), (... read memory or use as entry). 12-Digit display and calcu-
lator.
Fixed decimal at 0, 1, 2, 3, 4, or 5.
Leading zero suppression
7-Segment multiplexed output
True credit card sign display
500 to 26-chip
CHIP AND DATA............. ONLY $14.95
DATA ONLY (Refundable)...... 1.00

5001 CALCULATOR
40-pin calculator chip will add, sub-
tract, multiply, and divide. 12-Digit display and calculator calculations.
True credit card sign output.
Automatic over- and flow indication.
Fixed decimal point at 1, 2, 3, 4, or 5.
Leading zero suppression.
Complete data supplied with chip.
CHIP AND DATA............. ONLY $.95
DATA ONLY (Refundable)...... 1.00

5002 LOW POWER CHIP AND DATA..12.95

All ICs are now fully tested, and leads are plated with gold or solder.
Orders for 55 or more will be shipped proportionately. Add $5 for handling and postage for smaller orders; residents of California add sales tax. IC orders are shipped within 8 working days—ships within 10 days of receipt of order. $10.00 minimum on C.O.D.s (phone in).

MORE ORDERS:
F. O. Box 71
481 Myrtle Ave.
Carmichael, CA 95608
Cable Address: BALRILLA $341-316

FREE BACK ISSUE ON ALL ORDERS
SEND FOR FREE FLYER LISTING 100’S OF MONEY-SAVING BARGAINS!

BABYLON ELECTRONICS

CTµL SPECIAL:
Complementry Transistor Logic
This logic family is unique in that both NPN and PNP transis-
tors are combined in the same package. Unlike TTL and DTL, the
outputs are current sources (in the high state) as well as sinking cur-
rent in the low state. These are branch new units, some of which are mis-
marked with DTL parts.

CTRL 9956 dual 2-In-
put AND and
Buffer CTRL 9953 2-2-3 Input
AND/OR gate
CTRL 9952 dual 2-In-
put NOR gate
Data supplied: all parts are dual-in-line.
MIX OR MATCH $5 FOR $1.00

CD-2 Counter Kit
This kit provides a highly sophisticated digital display, precision module (for clocks, counters, or other numerical display needs). The unit is 0.6 wide and 3 3/8" long. A single 5-volt power source powers both the ICs and the display tube. It can attain typical count rates of up to 10 MHz and also has a lamp test, causing all 7 sections to light. Kit includes 2-5D0s (with plated thru holes), fiber-glass printed circuit board, a 7490, a 7454, a 4547, a DMC 1590 RCA Numitron display tube, complete instructions, and all ICs plus for the ICs. NOTE: boards can be supplied in a single panel of up to five ICs (with all interconnected); therefore, when ordering, please specify whether you want them in single panels or in one multi-
digit display. Not specifying will result in shipping delay.
COMPLETE KIT, ONLY $11.95
FULLY-ASSEMBLED... $4.00
UNIT $3.50

Special 811: Hex Inverter
TTL DIP Inverter: pin interchangeable with 54 7400. Parts are brand new and are brand new in the box. Check price before shipping.

Data for EACH:............ $.30
Sheet 10 FOR................ $2.50
100 FORMS.................. $22.00

MAN 3
Right-hand decimal point.
Flap-pack type case. Long
period of life. $1.25

each. Ideal 10 OR MORE 1.00
for pocket calculators!

MAN 4
Seven-segment, 0-9 plus let-
ters. Right-hand decimal point. Snaps in 4-pin DIP socket or Nolex. IC voltage re-
quirements. Ideal for desk or pocket calcula-
tors!

EACH:............. 5/75
TECH OR MORE 2.50 EACH.

RECIPIENTS
VARIOUS DIP INTEGRATED CIRCUITS
V5467 2A 400V $.90
V5467 2A 600V $ 1.10

CS1810 Rect. 50% 1A 1.00

More Details? CHECK—OFF Page 94

July 1974
WILSON ELECTRONICS Presents
The Finest 2 Meter Hand Held
With the Hottest Rx Front End
on The Market.

2 METER
FM TRANSCEIVER
MODEL 1402SM

FREQUENCY .. 140-150 MHz
(2 MHz SPREAD)
NUMBER OF CHANNELS 6
SUPPLIED WITH 146.94 SIMPLEX
146.34/94 - 146.16/76
R.F. OUTPUT .. 2 Watts minimum
SENSITIVITY better than 0.3
MV/20 DB Q.S.
AUDIO OUTPUT 500 mv
METER .. Monitors battery voltage
on Tx, S meter on Rx
WEIGHT ... 1 lb. 4 ounces
without batteries
CURRENT DRAIN 15 MA Rx
410 MA Tx
SIZE 8¾” x 1¾” x 2¾”
Includes Adjustable Whip Antenna

$199.00
Amateur Net Price

MODEL 1410A
12 Watt Power Amplifier
Forms integral handheld package with 1402 SM Transceiver
Includes Steel Case
For 1402SM - Charges 1402 SM When Plugged into Cigarette Lighter

$99.00
LCL LEATHER CASE 12.00
14BC BATTERY CHARGER 29.95
SM1 SPEAKER MIKE 24.00

WRITE FOR COMPLETE SPEC SHEETS.
SEE YOUR NEAREST DEALER FOR THE FINEST AMATEUR HAND HELD ON THE MARKET
DEALER INQUIRIES INVITED
COMMERCIAL VERSION AVAILABLE

Wilson Electronics
P. O. Box 794 Henderson, Nevada 89015
Telephone (702) 451-5791 451-6650

NOVICE RADIO GUIDE
by Jim Ashe, W1EZT
A complete handbook for the beginning amateur. Covers basic communications theory. How to build transmitters and simple receiving equipment. How to set up antennas. Putting your station together, plus valuable appendices. Any beginner will go further faster with this exciting new book.

$3.95 ppd.

TEST EQUIPMENT FOR THE RADIO AMATEUR
by H. L. Gibson, GBGC A
The finest and most complete book on this subject ever prepared for the amateur. Tells how to build and how to use test equipment. You'll have a much better station if you read this very useful new book.

Hardbound Only $5.95 ppd.

SCANNER MONITOR SERVICING DATA - Vol. III
The third volume of this very popular series contains comprehensive servicing data for 25 popular VHF scanner receivers including most TME & TMR Models by Regency, plus models from Electra, Johnson, Midland and Pearce-Simpson.

Just $4.95 ppd.

HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS
Second Edition
by Jack Streater
This book was written for those who have not previously used or designed digital logic circuits. It is meant to help them prepare for the broad inroads digital integrated circuits are making. Experimenters will find this book interesting and understandable and will appreciate the fascinating logic circuits which are presented.

$4.50 ppd.

Order Today from

ham radio
Greenville, NH 03048

78 July 1974

More Details? CHECK-OFF Page 94
2 Meter Amplifiers

<table>
<thead>
<tr>
<th>Model</th>
<th>Drive</th>
<th>Output</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFL-301</td>
<td>3W</td>
<td>40W</td>
<td>$99.95</td>
</tr>
<tr>
<td>RFL-401</td>
<td>3W</td>
<td>60W</td>
<td>149.95</td>
</tr>
<tr>
<td>RFL-701</td>
<td>10W</td>
<td>75W</td>
<td>99.95</td>
</tr>
</tbody>
</table>

All cases 2½” H x 4” W x 4” D, anodized.

<table>
<thead>
<tr>
<th>Model</th>
<th>Drive</th>
<th>Output</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFL-501</td>
<td>3W</td>
<td>110W</td>
<td>$199.95</td>
</tr>
<tr>
<td>RFL-801</td>
<td>10W</td>
<td>100W</td>
<td>149.95</td>
</tr>
<tr>
<td>RFL-901</td>
<td>10W</td>
<td>150W</td>
<td>199.95</td>
</tr>
</tbody>
</table>

All cases 2½” H x 4” W x 8” D, anodized.

All models will operate with reduced output from as little as one watt drive.

Amplifiers are supplied pre-tuned for band portion in which they are to be used.

For SSB and CW use, delayed dropout is available — add "SSB" to model number and $5.00 to price.

Comparable models for 6 and 10 meters are also available.

More Details? CHECK—OFF Page 94
COMMUNICATIONS INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>IC Type</th>
<th>Description</th>
<th>Case</th>
<th>Price, Ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA555</td>
<td>Versatile Timer</td>
<td>8-DIP</td>
<td>0.99</td>
</tr>
<tr>
<td>NA555-2</td>
<td>Dual Timer</td>
<td>16-DIP</td>
<td>1.55</td>
</tr>
<tr>
<td>NA370</td>
<td>AGC/Squelch/VOX</td>
<td>10-TO5</td>
<td>1.20</td>
</tr>
<tr>
<td>NA371</td>
<td>Versatile RF/IF</td>
<td>10-TO5</td>
<td>1.29</td>
</tr>
<tr>
<td>NA3018</td>
<td>4-Trans. Array</td>
<td>12-TO5</td>
<td>0.89</td>
</tr>
<tr>
<td>NA3026</td>
<td>Dual Diff. Array</td>
<td>12-TO5</td>
<td>0.99</td>
</tr>
<tr>
<td>NA3086</td>
<td>5-Trans. Array</td>
<td>14-DIP</td>
<td>0.45</td>
</tr>
<tr>
<td>NA3039</td>
<td>Diode Array</td>
<td>10-TO5</td>
<td>0.75</td>
</tr>
<tr>
<td>NA3036</td>
<td>Dual Darlington</td>
<td>10-TO5</td>
<td>0.75</td>
</tr>
<tr>
<td>NA1595</td>
<td>Analog Multiplier</td>
<td>14-DIP</td>
<td>1.90</td>
</tr>
<tr>
<td>NA8038</td>
<td>VCO/Sine/Sq./Tri.</td>
<td>14-DIP</td>
<td>4.50</td>
</tr>
<tr>
<td>NA1596</td>
<td>Baf. Mixer/Mod.</td>
<td>10-TO5</td>
<td>1.20</td>
</tr>
</tbody>
</table>

“HOBBYIST-EXPERIMENTER” EQUIV. TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Case</th>
<th>Price, Ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNP50</td>
<td>NPN RF 250MHz</td>
<td>T018</td>
<td>0.49</td>
</tr>
<tr>
<td>HNP52</td>
<td>PNP RF 200MHz</td>
<td>T018</td>
<td>0.59</td>
</tr>
<tr>
<td>HNP55</td>
<td>NPN RF 200MHz</td>
<td>T092</td>
<td>0.59</td>
</tr>
<tr>
<td>HNP715</td>
<td>PNP GP RF/AUDIO</td>
<td>T092</td>
<td>0.59</td>
</tr>
<tr>
<td>HNP716</td>
<td>PNP MED. CUTOFF SW.</td>
<td>T092</td>
<td>0.59</td>
</tr>
<tr>
<td>HNP724</td>
<td>NPN GP AUDIO</td>
<td>T092</td>
<td>0.49</td>
</tr>
<tr>
<td>HNP736</td>
<td>NPN GP AUDIO</td>
<td>T092</td>
<td>0.59</td>
</tr>
</tbody>
</table>

SPECIAL! MICROTRANSMITTERS!

- NA2000: 100Mw AM on 10 Meters for $9.95
- NA2001: 250Mw AM on 10 Meters for $14.95 in stud mount package

Both types usable at reduced output at 6 MHz and above. Requires external crystal and 2 tuned circuits. With Data/applications.

TERMS:
- Prepaid U.S. orders over $10.00, we pay shipping.
- Prepaid U.S. orders under $10.00, add $1.00 chg.
- Prepaid Foreign orders over $10.00, add postage.
- Prepaid Foreign orders under $10.00, add $1.00 plus postage.
- COD U.S. orders over $10.00, add $1.50 chg.
- COD U.S. orders under $10.00, add $2.50 chg.
- No Foreign COD orders.
- California residents add 6% sales tax.
- Confused? Please read again before ordering.

LOW PRICES

ON POPULAR COMPONENTS

- **IF FILTERS**
 - Monolithic crystal filters at 10.7 and 16.9 MHz
 - Ceramic filters at 455 kHz

- **SEMIICONDUCTORS**
 - VHF power transistors by CTC-Varian
 - J and MOS FETS
 - Linear ICs — AM/FM IF, Audio PA
 - Bipolar — RF and AF popular types

- **INDUCTORS**
 - Molded chokes
 - Coil forms — with adjustable cores

- **CAPACITORS**
 - Popular variable types

- **QUALITY COMPONENTS**
 - No seconds or surplus
 - Name brands — fully guaranteed
 - Spec sheets on request

GREAT PRICES

- Price breaks at low quantities
- Prices below large mail-order houses

WRITE FOR CATALOG 173

AMTECH, INC.

P. O. BOX 624, MARION, IOWA 52302

(319) 377-7927 or (319) 377-2638

LOW PRICES

ON POPULAR COMPONENTS

- **IF FILTERS**
 - Monolithic crystal filters at 10.7 and 16.9 MHz
 - Ceramic filters at 455 kHz

- **SEMIICONDUCTORS**
 - VHF power transistors by CTC-Varian
 - J and MOS FETS
 - Linear ICs — AM/FM IF, Audio PA
 - Bipolar — RF and AF popular types

- **INDUCTORS**
 - Molded chokes
 - Coil forms — with adjustable cores

- **CAPACITORS**
 - Popular variable types

- **QUALITY COMPONENTS**
 - No seconds or surplus
 - Name brands — fully guaranteed
 - Spec sheets on request

GREAT PRICES

- Price breaks at low quantities
- Prices below large mail-order houses

WRITE FOR CATALOG 173

AMTECH, INC.

P. O. BOX 624, MARION, IOWA 52302

(319) 377-7927 or (319) 377-2638
NORELCO VIDEO TAPE RECORDER-PLAYBACKS

- Weighs only 26 pounds
- Long life ferrite heads
- Extremely quiet
- Uses inexpensive 1/2" tape
- Horiz response 21/2 MHz
- Operates from 110 volt AC
- Some modified with light to indicate unit in use
- Standard audio-visual signals
- 1 hour on 2400 foot tape

Brand new, as is $399.00

Also, Shibaden FP-707 Vidicon Camera, with CRT Viewfinder and lenses, 12 volt D.C. required and external sync... New cost $750.00, now $325.00

AC Power supply and sync generator for the above... New: $65.00

7' Reel 2400' 1/2" Video Tape in Box. New American Made $15.00 each. Minimum Order 5. Limited Quantity.

Hundreds of additional video items, write for video catalog.

M-TECH

The Quality 2 Meter FM Amplifier

- Rated for continuous service
- VSWR Protected for any load (0-00 ohms)
- Reverse Current Protection
- Micro-Strip Inductors For Stability

P15A1
1-3 Watts In
12-20 Watts Out
$55

P50A10
2-18 Watts In
14-60 Watts Out
$98

P100A10
2-12 Watts In
40-110 Watts Out
$198

P100A20
18-25 Watts In
90-120 Watts Out
$145

M-TECH amplifiers are in stock at Communications Unlimited.

COMMUNICATIONS UNLIMITED

9519 Main Street P.O. Box 463
Whitmore Lake, Michigan 48189

Store hours, noon to 6PM, Monday thru Saturday. (313) 449-4367
WRIST WATCH LIQUID CRYSTAL DISPLAY
*3-1/2 digit, 7 segment * Only 1-1/16 x 11/16 x 1/4" Only

$19.95

"THE PRO" - HI-Q DYNAMIC PENCIL MIKE * Only $6.95

Sold elsewhere over $19. All metal construction, with stand, left, and standard mike plug. For General Electric, NO IMPORT. Rigorously polished with and tested. Operates on 1 volt, 9000 microamps. No batteries. 250 ft. cable. May be held a 3 1/4" dia., with taper. Heavy-duty glass & metal, "back to back" for our time stereo. Amp. wt. 1 lb.

POLY PAKS SMASHES 1C PRICES

(AALL "LED" TYPES)

REFLECTIVE BAR TYPES

SILICON TUBES

HIGH VOLT TAMP

POLY PAKS BLUE RIBBON Policy

20-Years of Business INTEGRITY

20-Years of Money-Back GUARANTEES
FLEA MARKET

RATES Commercial Ads 35¢ per word; non-commercial ads 10¢ per word payable in advance. No cash discounts or agency commissions allowed.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of the right to reject unsuitable copy. Ham Radio can not check out each advertiser and thus cannot be held responsible for

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSLs. Second to none. Same day service. Samples 25¢. Ray, K7HR, Box 321, Clearfield, Utah 84015.

MAPLE RIDGE CENTURY '74 HAMFEST, 9 a.m.. July 13 to 3 p.m., July 14 at the Exhibition Grounds, Maple Ridge, B.C. Registration $2.00, children under 12 yrs. free when accompanied by parents. D.R., Altadena, CA. 91001.

WANTED: Any info. concerning manuals or TO'S on VHF or UHF equipment or Bird wattmeter with slugs for 10 to 30 watts. Sam Clark, 206-23, 114 Ave., Maple Ridge, B.C. Registration $2.00, children under 12 yrs. free when accompanied by parents. D.R., Altadena, CA. 91001.

URALGNETLY NEED FOR SCHOOL SCIENCE PROJECT: Hammarlund HR-10 or SP600VLE, any Arc-5 receiver, especially BCB or 6-8; Rustrak tape and recorder. Call person-to-person collect Bob Ammons, 406-543-5359 or write 411 Keith, Missoula, Montana 59801. Any reasonable price.

REGENCY HR6 - New condition, in original box, 3T and 1R crystal, $150.00 or will trade for 2-4 FM equipment or Bird wattmeter with slugs for 10 to 80 meters and 2 meters. C. P. Gibson, WB4YAM.

VHF-UHF EQUIPMENT. 432 MHz transmit and receive converters. Pre-amps for all bands, 28-450 MHz. Write for illustrated information. Carmichael Communications, P. O. Box 256, Carmichael, CA. 95608.

TEKTRONICS 945, military 545, DC-24MHz scope delayed sweep, dual trace plug in, good cond. $450 & ship. M. Roos, 850 Russell G-8, Santa Rosa, CA. 95401.

PRINTED CIRCUIT DRILL BITS. Trumbull, 833 Baltra Drive, El Cerrito, California 94530.

YAESU FT-100 solid state transceiver, $300. SB-310, filters, ham bands $195. DX-60, $45; T-60, $25. 28KSR, $150. 19ASR $100, ST3/4 $50. Shipping extra. P. O. Box 2247, Bremerton, WA. 98310.

EXCLUSIVELY HAM TELTYPE 21st year, RTTY Journal. articles, news, DX, VHF. classified ads. Sample 30¢. $3.00 per year. Box 837, Royal Oak, Michigan 48068.

PC's, Sell large S.A.S.E. for list. Semtronics, Rt. #3, Box 1, Belleair, Florida 33770.

WORLD QSL — See ad on page 86.

TELL YOUR FRIENDS about Ham Radio Magazine.
Model PD 301 is a 300 MHz prescaler designed to extend the range of your counter 10 times. This prescaler has a built-in preamp with a sensitivity of better than 50 mv at 150 MHz, 100 mv at 260 MHz, and 175 mv at 300 MHz. The 95H90 scaler is rated at typical 320 MHz. To ensure enough drive for all counters, a post amp. was built-in.

The prescaler has a self contained regulated power supply. The PD 301 is supplied without power supply if desired (input 50 Ohms) (output Hi Z). The PD 301 has been tested on the following counters: Heath Kit 18101 - Heath Scientific 105 - Monsanto 105A - Miida - Regency - Beckman - Hewlett - Packard 524B - and many home built. In short to this date we do not know of any counter that the PD 301 has failed to work well with. All prescalers are shipped in a 4” x 4” x 11/2” cabinet all wired and tested.

300 MHZ PRESCALER MODEL PD-301

PD 301 Kit With Power Supply $43.50
PD 301 With Power Supply $55.50
PD 301 Without Power Supply $50.50
Include $1.50 to cover postage and insurance. Shipped Same Day Order Received

K-ENTERPRISES
1401 N. Tucker Shawnee, Okla. 74801

used test equipment
All checked and operating unless otherwise noted. FOB Monroe. Money back (less shipping) if not satisfied.
Boonton 190A Q-mter 20-260 MHz Q5.1200 ...375
Boonton 202B Sig Gen AM-FM 54-216 MHz ...325
Boonton 250A R.X Meter .5-250 MHz ...585
HP100D-Freq. stand. w/scope-Acc. 1ppm ...85
HP185A Scope w/1868 amp sampling 1GHz ...335
HP202A Function Gen. 0-1200MHz ...95
HP2095A Audio Gen. 0.02-20kHz-metered ...195
HP530C Dist anal 20 Hz-20kH 1/2 ...225
HP524D-Freq Counter. Basic unit 10Hz-10MHz ...185
HP540B Trans. osc for 524 to 12.4GHz ...185
HP508B (TS510A/0) sig. gen. 10-420 MHz ...450
HP610B Sig Gen. 4.5-12GHz calib attn ...365
HP803A Imp Bridge 50-500MHz 2-200 ohm ...195
Polarad MSG34-Sig. Gen 4.2-11GHz calib attn.
AM-FM-Pulse mod. ...495
Polarad R uwave rcvr. 4.84GHz with plug-in AM, FM, CW. Pulse — less plug-in ...225
Polarad TSA Spec. Anal. 0.1-14GHz with plug-in — less plug-in ...125
Solitron 200A SCR tester-checks anode, gate volts current, leakage and holding ...165
Stoddart NM10A (URM-6) RF intens mtr 10-
250 kHz, complete with acc. ...630
Stoddart NM20A (PRM-I) RF intens mtr 15-
25MHz, complete with acc. ...655
Stoddart NM52A-RFI mtr. 375-1GHz, w/acc. ...985
Tek RM 15-DC-15MHz GP scope ...265
Tek 181 Time mark generator ...95
Tek 190A Const. Ampil. Sig. Gen. 35-50MHz ...125
Tek 565 dual beam 10 MHz scope, less plug-ins ...625
SG2/TRM3 Sweep Gen. 15-400 MHz, CW, AM, FM Xtal markers, scope to 20% ...245
TS-402A-Sig. Gen. (HP616) 1.84GHz ...385
URM 7 Hi-Fi mtr (sim. NF-105) 20-400MHz ...750
(Send SASE for complete list)

radio communication
Great Britain's most popular amateur magazine. The official publication of the RSGB. Learn what English amateurs are building, learn what they are doing. $12.50 per year (12 issues)
Includes RSGB Membership

HAM RADIO
GREENVILLE, NH 03048

3-D MAGNETIC CALL SIGNS
3 inch letters
Your choice of colors — Black, Red, Blue or Green
Adherence to metallic surfaces test up to 180 MPH $4.00 each — 2 for $7.00 (same call)

ALSO
RUBBER STAMPS
Made to order — 3 lines - $4.00
Preinked stamp pad $1.35
(Please print or type all copy)

GRAY
Electronics
P. O. Box 941, Monroe, MI 48161
Specializing in used test equipment

WB80TV SPECIALTY PRODUCTS
P. O. Box 187 • Grasslake, Michigan 49240
WANT OLD RADIO SHOW TRANSCRIPTION discs.
TELETYPEWRITER PARTS. gears. manuals. supplies.
WANTED QSL'S - BROWNIE discount. Letter
Any size or speed. Send details to, Larry Kiner.
PRECISION HAND TOOLS, special ham-experimenter
KLM AND MADISON ELECTRONICS PRESENT the
5-6 MHz VFO SYNTHESIZER tunes in 100 Hz steps
NEED PARTS? We carry parts for
TV-FM ANTENNA, New Rollable (perfect color band-
DO-IT-YOURSELF XPEDITION — Stay at ZF1SB —
5-6 MHz VFO SYNTHESIZER tunes in 100 Hz steps
THE TRITON by TEN-TEC
TOTAL SOLID STATE HF TRANSCEIVER
RTTY VIDEO DISPLAY UNIT
FREE Catalog for the World's finest Government surplus
Antenna Catal 1974
FAIR RADIO SALES 1016 E. EUREKA - Box 1105 - LIMA, OHIO - 45802
Mail Coupon for Your FREE Copy, Dept. HR
CALL BOOK

When you want an authoritative, up to date directory of licensed radio amateurs
It's the CALL BOOK
Over 210,000 QTH's in the DX edition
DX CALLBOOK for 1974
$8.95

When you want an authoritative, up to date directory of licensed radio amateurs
It's the CALL BOOK
Over 285,000 QTH's in the U.S. edition
U.S. CALLBOOK for 1974
$9.95

See your favorite dealer or Send today to
(Mail orders add 50¢ per CALLBOOK for postage and handling)

WRITE FOR FREE BROCHURE

RADIO AMATEUR CALLBOOK INC.
Dept. E. 925 Sherwood Drive
Lake Bluff, Ill. 60044

Cash for any Collins military or commercial equipment or parts, especially 618 T Transceivers. 490 T antennae couplers. AN/ARC-102. AN/ARC-94.

CALL AN/MRC-95. SPACE ELECTRONICS CO.,
76 Brookside Drive, Upper Saddle River, N.J. 07458
(201) 327-7840

ALL-BAND ANTENNA CONNECTOR

HY-MAT 1 mated connector has four for securing antenna elements, heavy copper leads, coax PL-259 connector for feedline, and top-point for antenna support. Drip-cap protects connector. Routed. At your dealer's, or $3.95 postpaid. Companion insulators, 2 for 99¢, ppd. Instructions included.

BUDWIG MFG. CO.,
P.O. Box 9IN, Ramona, Calif. 92065

6T-HR2
6 FREQUENCY CRYSTAL DECK. REGENCY HR-2 OR HR-2A. IMPROVED CIRCUIT BOARD, LAYOUT AND FOIL.
KIT. $9.95 WIRED $13.95

HF144U MOS FET PREAMP
OUR FAMOUS 2-METER PRE-AMP GIVES 17dB OF AMPLIFICATION WITH ONLY 3dB OF NOISE INSERTION.
KIT. $11.95 WIRED $17.95

WORLD QSL BUREAU
THE ONLY QSL BUREAU to handle all of your QSLs to anywhere: next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 6¢ each.
5200 Panama Ave., Richmond, CA USA 94804

— PCB KITS —

RTTY SPEED CONVERTER/Drilled PCB 5 & 11 VDC $42.00
DRILLED PCB ONLY $ 6.50
RTTY AFSK Gen. All Shifts & CW I.C. 9 VDC @ 2ma $ 7.25
100 kHz XTAL CALIBRATOR Less Xtal 9 VDC @ 2ma $ 5.25
POWER SUPPLY ~ 25 VDC @ 650 ma output $9.95
PREAMP MICROPHONE NE 26 dB Gain. 9 VDC @ 1ma $ 7.95
LIMITER PREAMP For High Z Mike 9 VDC @ 1ma $ 5.30
PRODUCT DETECTOR For Your Receiver 9 VDC @ 1ma $3.95
"5" METER KIT Less 1ma $ 5.25
3.6VAC
SWR METER, Stripline, Less 200ua $ 3.25
WWV CONVERTER 3.5-4.0 MHz Output 9 VDC @ 5ma $ 5.75
Requires 6-6.5MHz Crystal
6 METER CONVERTER FET Front End 9 VDC @ 5ma $6.50
7-11 MHz Output, Less 43 MHz Xtal
CW KEYING MONITOR, RF Keyed, Less Spkr. 9 VDC @ 9ma $ 5.20
POWER SUPPLY - 9 VDC @ 50ma Output 115VAC $5.35
6 METER CASCADE PREAMP 80 VDC @ 4.5ma $3.45
Wired & Tested Less 2 ea CCW Nuistors
DRILLS, #54, 56, 58 or 60 (each) $ 5.50
Finest Quality for PCB's, Made in USA Three For $ 1.25
EXCEPT AS NOTED ABOVE, ALL KITS ARE NEW, 100% SOLID STATE, AND COME COMPLETE WITH AN UNDRILLED 0-10 PCB (PRINTED CIRCUIT BOARD) AND ALL PCB MOUNTED COMPONENTS. KITS ARE LESS POWER SUPPLIES, CHASSIS, AND ENCLOSURE HARDWARE. SEND SELF-ADDRESSED, STAMPED ENVELOPE FOR COMPLETE DATA SHEET AND SCHEMATIC.

SATISFACTION GUARANTEED. RETURN IN 30 DAYS FOR REFUND. ALL KITS POSTPAID. INCLUDE 50¢ HANDLING CHARGE. WASHINGTON RESIDENTS ADD 5.3% SALES TAX.

Martex Corporation
519 S. AUSTIN, SEATTLE, WASH. 98108

More Details? CHECK—OFF Page 94
FREE Crystals with the purchase of any 2 meter FM radio. Write for our deal on the rig of your choice. Factory-authorized dealers for Regency, Drake, Icom, Kenwood, Genave, Swan, Clegg, Ten-Tec, Standard, Midland, Telex, Hallicrafters, Venus, Hy-Gain, Galaxy, CushCRAFT, Holmesy, and Hustler. For the best deal around on VHF or HF gear, see us first or see us last, but see us before you buy. Write or call us today for our low quote and become one of the many happy and satisfied customers of Hoosier Electronics. R.R. 25, Box 403, Terre Haute, Indiana 47802.

WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N.Y. 10013.

CALCULATOR OWNERS: Use your calculator to compute square roots, cube roots, sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), logarithms, exponentials, and more! Quickly, accurately, easily! Send today for the Improved and Expanded Edition of the First and Best Calculator Manual — now in use throughout the world . . . only $2.00 Postpaid! Be sure to try this manual before buying a more expensive calculator . . . Absolutely Unconditional Money-Back Guarantee — and fast service! Mallman Optics and Electronics, Dept.-M, 836 South 113, West Allis, Wisc. 53214.

MIX PLEASURE WITH PLEASURE at the Hamburg International Hamfest near Niagara Falls on September 21. For information contact Lin Bennewell, WB2HCL, 210 Buffalo, Hamburg, N.Y. 14075.

RADIO CLUB OF MALAYSIA needs help with second hand copies of ARRL Radio Amateur Handbook (1967, 71, 72, 73) and Radio Amateur Callbooks (both U.S. and DX editions). Any other radio books or magazines will be appreciated. Contact: K. Harvant Singh, 83, Ayling Road, off Stephens Road, Kampang Boyan, Taiping, Perak, Malaysia.

EMBROIDERED EMBLEMS AND PATCHES. Custom made from your design. 10 to 1000's. Write Brownell, 1109 Turner St., Auburn, Maine 04210.

RADIO LICENSE — Exact reproduction, including signature, engraved in solid brass. Send GOOD Xerox copy with $5.00 to Metal Art Graphics, 1136 Polotam Ave., Hagerstown, Md., 21740. Md. residents please enclose state sales tax.

MONTREAL HAMFEST 74, August 4, MacDonald College Farm, Ste. Anne de Bellevue. Prizes, giant fleamarket, technical sessions, family fun. $2.50/adult. Info contact: VE2RM, Box 201, Pointe Claire-Dorval, Quebec, H9R 4N9.

QSLs CATALOG SAMPLES 35¢, Ritz Print Shop, 5810 Detroit Avenue, Cleveland, Ohio 44102.

RECIROCATING DETECTOR, write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

TRAVEL-PAK QSL KIT Converts photos, post cards to QSLs! Send call and 25¢ for personal sample. Samco, Box 203H, Wynantskill, N.Y. 12198.

FT.101 MARK 2/8 OWNERS. 5-10 times effective power, greater receiver gain and selectivity, no circuit board modifications, 53LLL’s RF Clipper $99 air prepaid. Details, Holdings, Mincing Lane, Blackburn BB2 2AF, England.

FRAME & DISPLAY your QSL’s with 20 pocket plastic Holder. Two for $1.00, seven for $3.00 from your Dealer or direct prepaid. Free sample to Dealers upon request. TEPABCO, Box 198H, Galatin, Tennessee 37077.

FREE Crystals with the purchase of any 2 meter FM radio. Write for our deal on the rig of your choice. Factory-authorized dealers for Regency, Drake, Icom, Kenwood, Genave, Swan, Clegg, Ten-Tec, Standard, Midland, Telex, Hallicrafters, Venus, Hy-Gain, Galaxy, CushCRAFT, Holmesy, and Hustler. For the best deal around on VHF or HF gear, see us first or see us last, but see us before you buy. Write or call us today for our low quote and become one of the many happy and satisfied customers of Hoosier Electronics. R.R. 25, Box 403, Terre Haute, Indiana 47802.

WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N.Y. 10013.

CALCULATOR OWNERS: Use your calculator to compute square roots, cube roots, sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), logarithms, exponentials, and more! Quickly, accurately, easily! Send today for the Improved and Expanded Edition of the First and Best Calculator Manual — now in use throughout the world . . . only $2.00 Postpaid! Be sure to try this manual before buying a more expensive calculator . . . Absolutely Unconditional Money-Back Guarantee — and fast service! Mallman Optics and Electronics, Dept.-M, 836 South 113, West Allis, Wisc. 53214.

MIX PLEASURE WITH PLEASURE at the Hamburg International Hamfest near Niagara Falls on September 21. For information contact Lin Bennewell, WB2HCL, 210 Buffalo, Hamburg, N.Y. 14075.

RADIO CLUB OF MALAYSIA needs help with second hand copies of ARRL Radio Amateur Handbook (1967, 71, 72, 73) and Radio Amateur Callbooks (both U.S. and DX editions). Any other radio books or magazines will be appreciated. Contact: K. Harvant Singh, 83, Ayling Road, off Stephens Road, Kampang Boyan, Taiping, Perak, Malaysia.

EMBROIDERED EMBLEMS AND PATCHES. Custom made from your design. 10 to 1000's. Write Brownell, 1109 Turner St., Auburn, Maine 04210.

RADIO LICENSE — Exact reproduction, including signature, engraved in solid brass. Send GOOD Xerox copy with $5.00 to Metal Art Graphics, 1136 Polotam Ave., Hagerstown, Md., 21740. Md. residents please enclose state sales tax.

MONTREAL HAMFEST 74, August 4, MacDonald College Farm, Ste. Anne de Bellevue. Prizes, giant fleamarket, technical sessions, family fun. $2.50/adult. Info contact: VE2RM, Box 201, Pointe Claire-Dorval, Quebec, H9R 4N9.

QSLs CATALOG SAMPLES 35¢, Ritz Print Shop, 5810 Detroit Avenue, Cleveland, Ohio 44102.

RECIROCATING DETECTOR, write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

TRAVEL-PAK QSL KIT Converts photos, post cards to QSLs! Send call and 25¢ for personal sample. Samco, Box 203H, Wynantskill, N.Y. 12198.

FT.101 MARK 2/8 OWNERS. 5-10 times effective power, greater receiver gain and selectivity, no circuit board modifications, 53LLL’s RF Clipper $99 air prepaid. Details, Holdings, Mincing Lane, Blackburn BB2 2AF, England.

FRAME & DISPLAY your QSL’s with 20 pocket plastic Holder. Two for $1.00, seven for $3.00 from your Dealer or direct prepaid. Free sample to Dealers upon request. TEPABCO, Box 198H, Galatin, Tennessee 37077.

HERE IS A FIST FULL of 2 METER POWER

Model HRT-2
5 Channel, Narrow Band
2.2 watt FM Transceiver

This light weight, "take anywhere" transceiver has the "Regency-type" interior componentry to give you what others are looking for in portable communications. You get a heavyweight 2.2 watt signal . . . or if you want, flip the HI/LO switch to 1 watt and the receiver gives you 0.7 uv sensitivity and 0.5 watts audio. Both transmitter and receiver employ band-pass circuitry so that power and sensitivity are maintained across the entire band. Get one to go . . . only $179.00.

American Made
Quality at Import Price

Regency ELECTRONICS, INC.
7707 Records Street
Indianapolis, Indiana 46226

An FM Model For Every Purpose . . . Every Purse

July 1974
BCD ADDER-SUBTRACTOR EXPERIMENT. Complete instructions tell how to build, add, subtract, multiply, and divide for only $2.00. S. W. Enterprises-I, Box 41283, Los Angeles, Cal. 90041.

RESISTORS: Carbon composition brand new. All standard values stocked. 1/2 W 10% 40/$1.00; 1/4 W 10% 30/$1.00 — 10 resistors per value, please. Minimum order $5.00. 18W RMS 1C Audio Amplifier — Panasonic. Frequency response 20Hz-100 kHz. ½ % distortion. Price $6.95 Postpaid. Pace Electronic Products, Box 161-H, Ontario Center, New York 14520.

FREE BARGAIN CATALOG. Transistors, relays, IC's, pots, LED's, readouts, resistors, capacitors, thermocouples, transducers, circuit boards, unique components. Chaney's, Dept. B, Box 15431, Lakewood, Colo. 80215.

COLLECT WORLD STAMPS commemorating tele-communications topics. 25¢ brings mint selections on approval plus booklet "Collect Topicals and Have Fun". Alkanstamos, Box 3494, Scottsdale, Ariz. 85257.

WE WANT TO BUY

Your used FM General Electric, R.C.A. and Motorola 2-way radios, base stations and remote units.

CALL US TODAY!

MOTOROLA D43GGV-3100, 150-170 MHz, 6/12 volt, 30 watts, front mount with "private line", fully narrow band

For use on 2 meters. $88

GENERAL ELECTRIC
MT42, 450-470 MHz, 12 volt, 15 watts, transistor power supply. In "17" case, multi-freq. deck, wide band, less ovens, w/accessories. $88

Your AD belongs here too. Commercial ads 35c per word. Non-commercial ads 10c per word. Commercial advertisers write for just sourice of special discounts for standing ads not changed each month.
EAST COAST SERVICE CENTER
We also service all other popular makes.
Complete professionally staffed laboratory fully equipped for all aspects of maintenance and service. Graduate Engineer on duty. Custom Design services available.

VHF & SOLID STATE SPECIALISTS
PROFESSIONAL ELECTRONICS CO., INC.
1710 JOAN AVE.
EUDOWOOD BRANCH
BALTIMORE, MD. 21204
301-661-2123

SERVICE WITH PROFESSIONALISM
STANDARD, KENWOOD, HALLICRAFTERS, TEMPO

THE ULTRA-BAL 2000
NOW-An extremely rugged, weather proof BALUN!
• Full 2 KW, 3.500 MHZ., 1/4 or 1/4 wave.
• Special Teflon insulation. May be used with tuned lines and tuners.
• With dipole insulator and hang-up hook.

ONLY $9.95 P/PD. (STATE TAX)
At your dealer or order direct

K.E. Electronics
Box 1276, Tustin, Calif. 92680

DUAL BAND ANTENNAS
These ready to mount antennas consist of full 1/2 wavelength elements of No. 12 copperweld wire and can be used as either dipoles or inverted vees. No traps, coils, gimmicks, etc., are used to shorten the elements, 2KW rating. Single coax feedline required. Individually mounted dipoles with common center insulator; 80/40, $21.95; 40/20, $16.25; 20/15, $14.10. Other combinations available. Send for free catalog listing dual band, monoband, and folded dipole antennas, Baluns available. Postpaid centerarmal U. S. A.

HOUSE OF DIPOLES
P. O. BOX 8484
ORLANDO, FLORIDA 32806
3 REASONS WHY YOU SHOULD BUY YOUR CALCULATOR FROM 'THE BIG T'

1. YOU GET THE BEST PRICE but what happens later when you want an improved model? At Tucker you can trade-up - just like a used car.

CORVUS 310 HAND-HELD PORTABLE 6 function (±, ×, ÷, %, square root) with automatic constant, 8 digit readout, floating decimal and negative sign and many features.

With disposable batteries $59.95
Disposable batteries & AC 64.95
Rechargeable batteries & recharger 69.95

2. Guarantees 30 day money-back guarantee...One year repair or replace guarantee and THEN TUCKER will repair any unit after the warranty expires for only $9.95 (excluding any shipping and excessive damage)

CORVUS 305 DESK-TOP CALCULATOR WITH CLOCK & CALENDAR

full 7 function (±, ×, ÷, %, square root and reciprocal) with 10 digit readout, selectable 2-4 or floating decimal, automatic, constant and many features. But when the 305 isn't being used as a calculator it's a digital clock and calendar that keeps perfect time as long as it's plugged in.

Model 305 99.95
Model 300 w/o clock 84.95

3. Convenience You can order by mail and use your Bank cards or American Express with up to 12 months to pay. You can talk to a salesman toll free anytime - just call 800-527-4642.

CORVUS 322 HAND-HELD PORTABLE WITH MEMORY

- 5 function (±, ×, ÷, %, square root) with memory
- Floating decimal, floating negative sign, 8 digit display
- Automatic constant of all functions
- Rechargeable battery pack including recharger

$79.95

ADD $2.75 TO EACH ORDER FOR SHIPPING.

Send check, money order, Bank Americard No., Mastercharge No. or American Express No. to: (Residents of Texas, Illinois, New Jersey & California include 5% sales tax)

TUCKER ELECTRONICS - COMPANY
P.O. Box No. 1050C
Garland, Texas 75040

FOR RUSH ORDERS CALL TOLL-FREE 800-527-4642 (In Texas call 214-348-8800)

More Details? CHECK-OFF Page 94
SAVE $$ ON YOUR REGENCY HRT-2 & BATTERY PACKAGE!!

Normally you will see the HRT-2 battery listed at $50.00. Take a look at our price below and save yourself some $$. . . and get a 13 month battery warranty on top of it.

HRT-2 $179.00
Alexander Nicad 38.00
Total Price $217.00
(FOB Oak Park)

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

THE EXCLUSIVE DISTRIBUTOR OF ALEXANDER BATTERIES FOR AMATEUR USE.

MODEL 315 RECEIVER

A new generation that embodies the latest techniques in solid state art. Unique features make operating more pleasant and effective.

Covers 80 thru 10. WWV. Sensitivity less than ½ uv. Tuned MOSFET rf amplifier and mixer. Permeability tuned front end and VFO. Direct frequency readout. Drift less than 100 Hz. 9 MHz crystal lattice if amplifier. 2.5 kHz bandwidth; 1.7 shape factor. Automatic sideband selection, reversible. AGC. Less than 2% audio distortion. Built-in speaker. “S”-meter. AF and RF gain controls. Pulsed crystal calibrator. 115 VAC operation. Plug-in circuit boards.

Receiver Model 315 229.00
150 Hz CW filter (Model 235) 14.95

See and hear it at your dealer or write for additional information.

More Details? CHECK-OFF Page 94
The HAL ID-1A repeater identifier was designed and engineered for commercial service, in compliance with FCC identification requirements. But its price is so attractive that radio amateurs interested in FM and HF, too.

The heart of any repeater identifier is its Read-Only-Memory. And inside the HAL ID-1A is a unique ROM — one you can easily reprogram yourself, should you need to change the call sign. The ID-1A’s ROM capacity holds 39 dots, dashes and spaces — enough for “DE” plus the call sign. But there’s a lot more inside the ID-1A than that. TTL IC’s are used for high noise and temperature immunity. Accurate timing is assured from the 60 Hz VAC line source, or an internal oscillator — when the unit is operating on 12 VDC. And there’s a wide selection of ID time intervals available to you (the factory-assembled set is programmed for 3, 6, 12 or 24-minute ID intervals). Code speed is adjustable. The keyed audio oscillator includes volume and tone controls, with a low-impedance output for driving the transmitter microphone line and a 2” monitor speaker. And there’s a rugged transistor switch to actuate the transmitter keying relay or other controller.

The HAL ID-1A is available factory assembled for $115 or as an assembled board/kit, including all parts external to the board except the cabinet for $75. Look into it. Better yet, order yours today.

\[VHF\] POWER AMPLIFIERS

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Model</th>
<th>Input Range (w)</th>
<th>Nominal Pp (w)</th>
<th>Nominal Amps</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>PA102B</td>
<td>1 — 4</td>
<td>12</td>
<td>1.8</td>
<td>$ 44.95</td>
</tr>
<tr>
<td>100</td>
<td>PA10-7B</td>
<td>5 — 15</td>
<td>50</td>
<td>5.0</td>
<td>79.95</td>
</tr>
<tr>
<td>100</td>
<td>PA200B</td>
<td>5 — 15</td>
<td>70</td>
<td>7.0</td>
<td>129.95</td>
</tr>
<tr>
<td>6.85</td>
<td>PA1010B</td>
<td>5 — 15</td>
<td>40</td>
<td>4.0</td>
<td>149.95</td>
</tr>
<tr>
<td>3.55</td>
<td>PA1040B</td>
<td>5 — 15</td>
<td>140</td>
<td>14.0</td>
<td>189.95</td>
</tr>
<tr>
<td>7.0</td>
<td>PA10-10B</td>
<td>15 — 40</td>
<td>140</td>
<td>14.0</td>
<td>189.95</td>
</tr>
<tr>
<td>7.0</td>
<td>PA10-14B</td>
<td>15 — 40</td>
<td>140</td>
<td>14.0</td>
<td>189.95</td>
</tr>
<tr>
<td>7.0</td>
<td>PA10-20B</td>
<td>1 — 4</td>
<td>20.0</td>
<td>2.0</td>
<td>219.95</td>
</tr>
</tbody>
</table>

HF — VHF — UHF — ANTENNAS

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Model</th>
<th>Nominal Pp (w)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8</td>
<td>7EL</td>
<td>289.95</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>AN/ARC-91</td>
<td>49.69</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>AN/ARC-91</td>
<td>53.95</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>AN/ARC-91</td>
<td>53.95</td>
<td></td>
</tr>
</tbody>
</table>

KLM ELECTRONICS
1600 DECKER AVE.
SAN MARTIN, CALIFORNIA 95046
(408) 683-4240

THE COMMUNICATIONS EQUIPMENT INNOVATORS

LEARN RADIO CODE

THE EASY WAY!

- No Books To Read
- No Visual Gimmicks To Distract You
- Just Listen And Learn

Based on modern psychological techniques — This course will take you beyond 13 w.p.m. in LESS THAN HALF THE TIME!

For the Spare Time—we teach you...no special equipment required!

E S P I L S O N [S] RECORDS
508 East Washington St., Arcola, Illinois 61910

The ID-1A isn't much to look at.

Until you look into it.

[HAL] Communications Corp.
Box 365, Urbana, Ill. 61801
Telephone: (217) 359-7373

Enclosed is $________ (Assembled)

Charge Master Charge #________

Charge BankAmericard #________

M/C Interbank #________

Card Exp. Date _______

Please send me the HAL catalog.

Name ____________________________

Address __________________________

City/State/Zip ______________________

All prices include U.S.A. shipping.
Add S3 for air shipment.
Illinois res. add 5% sales tax.

july 1974 93
Place your check mark in the space between name and number. Ex: Ham Radio □ 234

<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alco □ 002</td>
</tr>
<tr>
<td>Alternating □ 006</td>
</tr>
<tr>
<td>Antenna Mart □ 009</td>
</tr>
<tr>
<td>Atlas □ 198</td>
</tr>
<tr>
<td>Babylon □ 014</td>
</tr>
<tr>
<td>Barry □ 016</td>
</tr>
<tr>
<td>Budwig □ 233</td>
</tr>
<tr>
<td>Caddell Coil □ 247</td>
</tr>
<tr>
<td>Columbia □ 212</td>
</tr>
<tr>
<td>Communications Untld □ 248</td>
</tr>
<tr>
<td>Curtis □ 034</td>
</tr>
<tr>
<td>Cush Craft □ 035</td>
</tr>
<tr>
<td>Delavan □ 235</td>
</tr>
<tr>
<td>Drake □ 039</td>
</tr>
<tr>
<td>Dyncomm □ 040</td>
</tr>
<tr>
<td>ECM □ 190</td>
</tr>
<tr>
<td>Emac □ 043</td>
</tr>
<tr>
<td>Electronics Center □ 236</td>
</tr>
<tr>
<td>Electronic Dist. □ 044</td>
</tr>
<tr>
<td>Epsilon □ 046</td>
</tr>
<tr>
<td>Erickson □ 047</td>
</tr>
<tr>
<td>Fair □ 048</td>
</tr>
<tr>
<td>Gam □ 237</td>
</tr>
<tr>
<td>Gilfer □ 207</td>
</tr>
<tr>
<td>Glade □ 213</td>
</tr>
<tr>
<td>Gray □ 055</td>
</tr>
<tr>
<td>HR Report □ 150</td>
</tr>
<tr>
<td>Hal □ 057</td>
</tr>
<tr>
<td>Ham Radio □ 150</td>
</tr>
<tr>
<td>Hamtronics □ 230</td>
</tr>
<tr>
<td>Heath □ 060</td>
</tr>
<tr>
<td>Heights □ 061</td>
</tr>
<tr>
<td>Henry □ 062</td>
</tr>
<tr>
<td>Holdings Untld □ 252</td>
</tr>
<tr>
<td>House of Dipoles □ 036</td>
</tr>
<tr>
<td>Icon □ 065</td>
</tr>
<tr>
<td>International Crystal □ 066</td>
</tr>
<tr>
<td>International Elect. Untld □ 141</td>
</tr>
<tr>
<td>Jan □ 067</td>
</tr>
<tr>
<td>Janel □ 068</td>
</tr>
<tr>
<td>Jeff-Tronics □ 069</td>
</tr>
<tr>
<td>K □ 072</td>
</tr>
<tr>
<td>K-Enterprises □ 071</td>
</tr>
<tr>
<td>KLM □ 072</td>
</tr>
<tr>
<td>Larson □ 078</td>
</tr>
<tr>
<td>Leland □ 193</td>
</tr>
<tr>
<td>Logic □ 133</td>
</tr>
<tr>
<td>MFJ □ 082</td>
</tr>
<tr>
<td>Martex □ 197</td>
</tr>
<tr>
<td>Matric □ 084</td>
</tr>
<tr>
<td>Motorola □ 160</td>
</tr>
<tr>
<td>Nasem □ 249</td>
</tr>
<tr>
<td>Nurmi □ 090</td>
</tr>
<tr>
<td>Pagel □ 092</td>
</tr>
<tr>
<td>Palmar □ 093</td>
</tr>
<tr>
<td>Poly Pak □ 096</td>
</tr>
<tr>
<td>Professional □ 140</td>
</tr>
<tr>
<td>Radiation □ 109</td>
</tr>
<tr>
<td>Regency □ 110</td>
</tr>
<tr>
<td>Slips □ 232</td>
</tr>
<tr>
<td>Specialties □ 216</td>
</tr>
<tr>
<td>Spectronics FM □ 191</td>
</tr>
<tr>
<td>Spectrum □ 108</td>
</tr>
<tr>
<td>Swan □ 111</td>
</tr>
<tr>
<td>Technical Doc. □ 226</td>
</tr>
<tr>
<td>Tekpro □ 250</td>
</tr>
<tr>
<td>Ten-Tec □ 114</td>
</tr>
<tr>
<td>Topeka FM □ 115</td>
</tr>
<tr>
<td>Tri-Ex □ 116</td>
</tr>
<tr>
<td>Tri-Tek □ 117</td>
</tr>
<tr>
<td>Tucker □ 113</td>
</tr>
<tr>
<td>VHF Eng. □ 121</td>
</tr>
<tr>
<td>Venus □ 192</td>
</tr>
<tr>
<td>Vibratrol □ 251</td>
</tr>
<tr>
<td>Weisschenker □ 122</td>
</tr>
<tr>
<td>Wilson □ 123</td>
</tr>
<tr>
<td>Wolf □ 124</td>
</tr>
<tr>
<td>World QSL □ 125</td>
</tr>
<tr>
<td>Yaesu □ 127</td>
</tr>
</tbody>
</table>

Limit 15 inquiries per request.

July 1974

Please use before August 31, 1974

Tear off and mail to
HAM RADIO MAGAZINE — “check off”
Greenville, N. H. 03048
Incomparable

FT-101B

Proven Performance

SOLID-STATE 160-10 METER TRANSCEIVER

ASK THE AMATEUR WHO OWNS ONE
AND LEARN WHY ACTIVE AMATEURS
WORLD-WIDE CHOOSE YAESU

"THE TOTAL PERFORMANCE LINE"

VISIT YOUR DEALER FOR DETAILS AND OUR NEW CATALOGUE
All Yaesu products warranted by the selling dealer
Complete after warranty factory service available

YAESU MUSEN USA INC.
7625 E. Rosecrans Ave., Unit #29, Paramount, CA. 90723
(213) 633-4007
2-METER AMPLIFIERS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FM IN</th>
<th>FM OUT</th>
<th>KEY PRICE</th>
<th>WIDE & TESTED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA-1200</td>
<td>1</td>
<td>1</td>
<td>$79.95</td>
<td>$119.95</td>
</tr>
<tr>
<td>PA-1500</td>
<td>1</td>
<td>1</td>
<td>$119.95</td>
<td>$159.95</td>
</tr>
<tr>
<td>PA-2500</td>
<td>1</td>
<td>1</td>
<td>$189.95</td>
<td>$229.95</td>
</tr>
<tr>
<td>PA-1202</td>
<td>1</td>
<td>1</td>
<td>$119.95</td>
<td>$159.95</td>
</tr>
<tr>
<td>PA-1502</td>
<td>1</td>
<td>1</td>
<td>$189.95</td>
<td>$229.95</td>
</tr>
<tr>
<td>PA-2502</td>
<td>1</td>
<td>1</td>
<td>$259.95</td>
<td>$299.95</td>
</tr>
<tr>
<td>PA-1203</td>
<td>1</td>
<td>1</td>
<td>$119.95</td>
<td>$159.95</td>
</tr>
<tr>
<td>PA-1503</td>
<td>1</td>
<td>1</td>
<td>$189.95</td>
<td>$229.95</td>
</tr>
<tr>
<td>PA-2503</td>
<td>1</td>
<td>1</td>
<td>$259.95</td>
<td>$299.95</td>
</tr>
</tbody>
</table>

Regulated Power Supplies
PS-12 ADJ 11-15 VDC 12 amp. Wired $79.95
Kit $59.95
PS-24 ADJ 11-15 VDC 24 amp. Wired $89.95
Kit $69.95

HT-144 Handheld Kit: Complete less batteries $99.55

C.D. Ham II Rotator
New Improved
$149.95

write or call for introductory offer

HF Gear from Barry

Hallicrafters FPM 300 Safari. 5 bands 10-80 meters. Brand New Net $625.00
Hustler 4BTV Vertical Antenna $56.95
Famous Triton II by Ten-Tec. Fully solid state, 200 watt transceiver. 3 bands - full break in on CW $606.00
Ten-Tec 252 AC Power Supply $69.95
Drake TR-4C Transceiver new, $599.95
Drake AC-4 Power Supply $120.00

TMC RF Master Oscillator. 2-64 Mcs on harmonics, relay rack mount excellent, $150.00
new, $195.00

Clegg FM-278, 146-148 Mc coverage without buying a crystal. Fully synthesized 25 w. out $479.95
Clegg PS-011 AC power supply for FM-278 $79.95

Tube Headquarters. Diversified Stock. Heavy Inventory of Eimac tubes, chimneys, sockets, etc. 572B $19.50
Collins 30L-1 Linear Amplifier good, $375.00
Collins 75A-4 with AM, SSB & CW filters plus Collins speaker and Book $395.00
Heath SB-301 with SB-620 Scanner and SB-600 Speaker $395.00

Hunter Bandit Linear Amplifier Excellent Cond: $495.00
HQ-170 - Hammarlund 170 16-60 meter with/clock $195.00
HQ-180 - Hammarlund General Coverage with/clock $225.00
HQ-215 - Hammarlund Solid State Amateur Receiver Very Good: $245.00

LATE ARRIVALS:
SBE 34 with AC DC Supply Write
SB-200 Heath Linear Amplifier Exc. 10-80 meters: $225.00
Heath HW-32A 20 meter transceiver: Write
Heath SB-620 Scanner: $125.00
Heath HO-10 Monitor Scope: Write
Collins MP-1 Mobile 12 VDC Power Supply: Good Cond $89.00
Collins 312-B5 VFO Wattmeter: Exc. Cond. $395.00

FM from Barry

IC-230 by Inoue

Completely synthesized with phase locked loop. Single Knob Control, Smart compact styling.

$489.00

IC-22 22 channel, 2 meter transceiver. Very hot receiver, 10 watts output $289.00
Drake AA-10 Amplifier for TR-22 $49.95
Drake AC-10 Pwr. Sup. for TR-22, 10, or TR72 $44.00

GE Model YGS-3 FM signal gen. 1-150 Mc, excellent, no manual $200.00

NFC POWER SUPPLIES
115 VAC input - 12 VDC 4 amps out $24.95
Same as above but regulated $34.95
Model 108R - 115 VAC/13.6 VDC 12 amps max. REGULATED $69.95

Collins 152-J1 Phone Patch, good, removed from equip. with detailed schematic $24.95
Deluxe Headsets, excellent for ham radio or audio visual labs: 600 ohms, vinyl cushioned: $99.99
With volume control $129.99
Cable for Ham II and TR44 8 conductor: $24.95

B & W WATERS Model 334-A
ONE KW Wattmeter
LARGE METER WITH 10, 100, 300 & 1,000 WATT SCALES $139.95 PREPAID

General Industries Tape Transport Motor, 115 VAC, 60 Hz $29.95
Hy-Gain Tape Dipole Antenna, 3.5-30.0 Mc $59.95
Heath 58-301 with SB-620 cassette and SB-600 split $395.00

Collins 312.85 VFO Wattmeter: Exc. Cond. $395.00 50C postage & handling (refund 1st order).

CASH PAID . . . FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLES, Test Equipment, ETC. Write or call Now! Barry W2NLI. We Buy! We ship all over the World. Thousands of Unadvertised specials. F.O.B. point of shipment.

More Details? CHECK-OFF Page 94
When you buy a Henry Linear Amplifier, you buy quality, performance, reliability... all the features that have made Henry amplifiers world famous. But most of all you buy the integrity of the Henry name.

Other brands have disappeared from the amateur scene... names that were familiar to all amateurs. Now those companies are gone and their equipment is orphaned. But one name has grown steadily throughout the years. Today Henry amplifiers stand preeminent throughout the entire amateur world... symbols of the finest equipment you can buy.

Join the great family of happy Henry amplifier owners. Treat yourself to the best.

2K-4...

THE "WORKHORSE"

The 2K-4 linear amplifier offers engineering, construction and features second to none, and at a price that makes it the best amplifier value ever offered to the amateur. Constructed with a ruggedness guaranteed to provide a long life of reliable service, its heavy duty components allow it to loaf along even at full legal power. If you want to put that strong clear signal on the air that you've probably heard from other 2K users, now is the time. Move up to the 2K-4. Floor console or desk model... $895.00

2K-ULTRA

Small, rugged and reliable. Loafs along at full legal power without even the sound of a blower. Uses the best components available, including a pair of Elmac 8873 tubes. $895.00

TEMPO/2001

Small, reliable and inexpensive. Two Elmac 8874 grounded grid triodes, full kilowatt of output for SSB, built-in solid state power supply, antenna relay, internal blower, relative RF power indicator and full amateur band coverage from 80-10 meters. $595.00

3K-A

Superior quality linear amplifier for commercial and military use. Two Elmac 3-500Z grounded grid triodes, three kilowatts PEP input on SSB with efficiencies in the range of 60%. PEP output in excess of 2000 watts. Provides a power supply capable of furnishing 2000 watts of continuous duty input for RTTY or CW with 1200 watts output. $1150.00

Henry offers a line of superb commercial high frequency amplifiers including the 4K-Ultra and 1K-4A Channelized Amplifier. Also solid-state Vhf and Uhf amplifiers up to 120 Watts.

Please call or write for full technical specifications. Henry Amplifiers are also available at select dealers throughout the U.S. Export inquiries invited.
You can work DX without EIMAC, but it's not easy.

Ed Willis, 6TS, did it in 1925. He exchanged 20 meter signals across the continent—in daylight—with John Reinartz, 1XAM. Both Ed and John used 204 tubes for this record-breaking QSO.

The 6TS transmitter that made wireless history in 1925. This transcontinental QSO marked the beginning of the short-wave era.

EIMAC 8877 provides superior performance as a linear amplifier up to 250 MHz.

Two other radio amateurs, enthused by this super-DX, tried to get the old 204 working on 20 and 10 meters. They had a lot of trouble and decided they could build a better tube themselves. They did, and Bill and Jack (W6UF and W6CHE) founded EIMAC in the early 30s. Today, EIMAC is the world's leader in the development and manufacture of power tubes.

And W6TS is still working DX today (DXCC with 334 countries)—with an EIMAC-equipped station. It's a lot easier now than it was then, isn't it, Ed?

For technical information, contact EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070. Or any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.