communications techniques for OSCAR 7

this month

- active filter design 12
- telefax conversion 16
- fm receivers 34
- wideband amplifier 40
- antenna radiation patterns 50
BASSETT

High efficiency mobile and portable antennas for all amateur bands, CAP, MARS, CB, SECURITY, PUBLIC SERVICE, MARINE, AND GOVERNMENT USE.

- 26-10-15-20-40-75
- Identical size, cost, and appearance
- FULLY ADJUSTABLE TO FREQUENCY IN FIELD
- Low weight, low drag, high strength fiberglass
- Polished chrome brass standard ¾-24 thread
- High gain collinear on 2 meters

MODEL DGA-2M
$29.50 postpaid
in U.S.A.

HIGH ACCURACY CRYSTALS
FOR OVER 30 YEARS

Either type for amateur VHF in Regency, Swan, Standard, Drake, Varitronics, Tempo, Yaesu, Galaxy, Trio, Sonar, Clegg, SBE, Geneve.
Quotes on request for amateur or commercial crystals for use in all other equipments.
Specify crystal type, frequency, make of equipment and whether transmit or receive when ordering.

BASSETT VACUUM BALUN

The famous sealed helium filled Balun... employed with the DGA Series Antenna Systems. Solderless center insulator and easily handles more than full legal power while reducing unwanted coax radiation. Equipped with a special SD-238 type coax connector and available either 1:1 or 4:1.
MODEL DGA-2000-B...$12.95
Postpaid in U.S.A.

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc.
P.O. Box 5727 - Fort Lauderdale, Florida - 33316
Tel: 305-563-1333 or 305-947-9925
HIGH POWER and EFFICIENCY
versus CONVENIENCE...

WHY COMPROMISE?

ALPHA 374 DELIVERS IT ALL!

- MAXIMUM LEGAL POWER INPUT – Up To 3 KW PEP and a full gallon of average D-C, even on SSTV and FSK, with plenty of safety factor.
- ULTRA-CONVENIENT INSTANT BANDCHANGE – Bandpass output filters eliminate normal tune-up. (ALPHA 374’s moderate weight and sleek, desk-top cabinet are mighty convenient too.)
- PEAK EFFICIENCY AND OUTPUT – Auxiliary controls are provided to permit “tweaking up” poorly matched loads when necessary. And of course ETO uses only the finest EIMAC ceramic tubes and other quality components.
- FULL YEAR WARRANTY in the ETO tradition of superb equipment backed by outstanding service.

For the complete story of the ALPHA 374 see your dealer... or, if more convenient, contact ETO direct.

ETO
EHRHORN TECHNOLOGICAL OPERATIONS, INC.
BROOKSVILLE, FLORIDA 33512
(904) 596-3711
New Features

- 12 Channels
- Monolithic crystal filter in IF for superior adjacent-channel selectivity
- Improved microphone

Amateur Net... $229.95

Including Mike, Over-the-Shoulder Carrying Case, 120 VAC and 12 VDC Cords, 10 ni-cad Batteries, and Speaker/Headphone Plug

SPECIFICATIONS

GENERAL: ● Frequency Coverage: 144 through 148 MHz, 12 Channels, 2 supplied: (1) Receive: 146.52 MHz, Transmit: 146.52 MHz; (2) Receive: 146.94 MHz, Transmit: 146.34 MHz ● Power Requirements: 13.0 Volts DC±15% ● Current Drain: Transmit: 450 mA, Receive: 45 mA ● Antenna Impedance: 50 Ohms ● Dimensions: 5 3/4" x 2 1/2" x 7 1/2" (13.6 x 5.8 x 19.1 cm) ● Weight: 3.75 lbs (1.7 kg)

RECEIVER: ● Sensitivity: Typically .5 microvolt for 20 dB quieting ● IF Selectivity: 20 kHz at 6 dB down; *30 kHz channel rejection greater than 75 dB down. ● First IF: 10.7 MHz with 2-pole monolithic crystal filter. ● Second IF: 455 kHz with ceramic filter. ● Intermodulation Response: At least 60 dB down. ● Modulation Acceptance: ±7 kHz. ● Audio Output: At least 1 Watt at less than 10% distortion. ● Audio Output Impedance: 8 Ohms

TRANSMITTER: ● RF Output Power: 1 Watt minimum ● Frequency Deviation: Adjustable to ±10 kHz maximum, factory set to 6.0 kHz. ● Multiplication: 12 Times

ACCESSORIES

- Model AA-10 Power Amplifier: Use with TR-22C or any transceiver up to 1.8 watts output, 10 dB power increase. At least 10 watts output at 13.8 VDC. Automatic transmit/receive switching $49.95
- Accessory Crystals .. each $7.50
- Model MMK-22 Mobile Mount $9.95

At your dealer's

R. L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017

Drake manufactures a complete line of Amateur, Commercial, and Marine Communications Equipment. Write for prices and details.

More Details? CHECK-OFF Page 94
April, 1974
volume 7, number 4

staff
James R. Fisk, W1DTY
editor-in-chief
Joseph Schroeder, W9JUV
top editor
Patricia A. Hawes, WN1QJN
assistant editor
J. Jay O'Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, WA8IAR
associate editors
Wayne T. Pierce, K3SUK
cover
t.h. Tenney, Jr. W1NLB
publisher
Hilda M. Wetherbee
assistant publisher
Ham radio
advertising manager

contents

6 communications techniques for OSCAR 7
J. E. Kasser, G3ZCZ

12 simple active filters
W. H. Hayward, W7ZOl

16 telefax transceiver conversion
Fred J. Steurer, K0QMR

26 the argomate
Howard F. Batie, W7BBX

34 low-cost receivers for two-meter fm
James E. Trulove, WB5EMI

40 broadband amplifier
Henry D. Olson, W6GDX

46 nonresonant antenna-impedance measurements
Robert E. Baird, W7CSO

50 vertical antenna radiation patterns
Robert E. Leo, W7LR

54 CW regenerator
C. R. Lewart
R. S. Lichtenbuck, WB2EAX

4 a second look 60 new products
94 advertisers index 94 reader service
83 flea market 63 short circuits
58 ham notebook
It's spring and hamfest time again. No matter where you look you see an announcement for yet another convention, auction, hamfest or fm talk-in. The Dayton Hamvention in Dayton, Ohio, which is billed as the original hamvention, is one of the biggest of the year. Drawing upon a large amateur population in the Midwest, the Dayton show has provided the model for many successful amateur conventions around the country. Growing by leaps and bounds in recent years, more than 6400 hams were in attendance last year and 8000 are expected this year when the Hamvention opens its doors the last weekend in April.

This year the Dayton Hamvention Committee has gone all out to ensure a lively, interesting weekend for all. Bright and early Friday morning, the 26th of April, amateur radio manufacturers and distributors will start setting up their exhibits. At twelve noon the exhibition doors will be opened to the public. That evening the Old Old Timers and Quarter-Century Wireless Association will hold a dinner meeting in downtown Dayton.

By Saturday morning things will really start booming around Hara Arena. Vendors and traders from miles around will be setting up shop for the famous Dayton Flea Market, and the three-hour DX and vhf forums will be kicked off. A special ladies program, including luncheon, will begin at 11:30 AM, and an ARRL Forum is scheduled for the afternoon, followed by technical sessions on amateur television and troubleshooting. The traditional Saturday-night cocktail hour and banquet begins at 7:00—Senator Barry Goldwater, K7UGA, will be the guest speaker.

Sometime before the Hamvention is opened to the public, a 430-MHz transmitter will be hidden somewhere in the Arena area. Transmitter hunts will start at 1300 on Saturday and Sunday. If you're going to Dayton and want to join the fun, write to Rudy Plak, W8ZOF, for an antenna design.

Sunday morning the flea market and exhibit area will open at 9:00 AM, and the antenna and state-of-the-art forums will get under way. In the afternoon there will be forums on fm and repeaters and space communication. In addition, there will be technical and group meetings for ARPS, MIDCARS, OSSB and MARS. Other special groups attending the Hamvention are the Ohio Sideband Net, Buckeye Belles, Country Cousins, Poverty, Cracker Barrel, Firebird, Post Office, Intercontinental Traffic and Young Ladies Radio League. Prizes will be awarded at the end of each technical session on Saturday and Sunday. If past performance and the 1974 schedule are any indication, it should be another great show.

For amateurs who arrive in trailers and campers, parking will be permitted in designated areas. For those who stay at hotels downtown, free bus service will be provided out to the Arena. An allotment of 500 rooms has been set aside for the Hamvention by the local hotels and motels, so all room requests should be directed to the Accommodations Committee so that rooms can be allotted within the available supply. For more information, and a Hamvention brochure, write to the Dayton Hamvention, Post Office Box 44, Dayton, Ohio 45401.

If you've never been to the Dayton Hamvention, but have considered it, this is the year to go. If you've been before, you already know what I'm talking about. See you there!

Jim Fisk, W1DTY
editor-in-chief
A COMPLETE STATION IN ONE PACKAGE

Everything you need to work the world is contained in the new SWAN 300B Cygnet de novo portable SSB transceiver. In just one 13" wide x 5 1/2" high x 11" deep package you get the transmitter, receiver, power supply, speaker, 5-bands, CW sidetone monitor, and capability for CW semi-break-in with an optional VOX unit. You simply hook-up to any 115V AC source and antenna, then plug in your mike and you're on the air.

Using an 8950 tube designed for RF amplification the Cygnet de novo features 300 watts P.E.P. input. The 8950 allows about 30% more plate dissipation than conventional T-V sweep tubes commonly used in amateur radio equipment. Comparison further shows increased peak current and power handling capability with the 8950 relative to T-V sweep tubes.

An optional SWAN 14-A DC converter conveniently plugs into the back of the 300B for mobile operation with a 12V DC source. You don't have to settle for less. Get it all in SWAN'S Cygnet de novo. $519.95 at authorized SWAN dealers or you may order with the convenient coupon below.

SWAN 300B SPECIFICATIONS INCLUDE: • 10, 15, 20, 40 and 80 meter coverage • CW sidetone monitor • Capability for CW semi-break-in with optional VOX unit • 5.5 MHz crystal lattice filter with 1.7 shape factor • Optional Super-selective filter with 1.28 shape factor • Ultimate rejection exceeds 100 db • Unwanted sideband suppressed 50 db • Third order distortion is down approximately 30 dB • 50 to 75 Ohm "PI" antenna coupler • Receiver sensitivity is 0.5 microvolt at 50 Ohms for 10 dB • Audio response is flat within 3 dB from 300 to 3000 Hertz • Optional DC Converter for mobile operation

Use this coupon to order direct from the factory. (California residents please include 5% sales tax.)

MAIL TO:

Gentlemen:

Please ship the following SWAN products best way.

- 300B Cygnet de novo $519.95 - VX-2 VOX $44.95
- 300B with SS-16B Super-selective filter $589.95
- 14-A DC Converter $49.95 - 1200X Linear Amplifier

(1200 watts P.E.P.) $299.95

Total amount of order is $__________________________

- 20% down payment enclosed, ship C.O.D.
- Full payment enclosed - 10% down payment enclosed

Charge to my Swan Credit Account #__________________

Name:__

Address:__

City:________________ State:________________________

Amateur Call:________________ Zip:______________

More Details? CHECK-OFF Page 94
communications techniques
for OSCAR 7

A discussion of
the new OSCAR 7
amateur radio
communications satellite
and the equipment
for using it

The new OSCAR 7 communications satellite which will be launched into orbit in the near future is the most complex amateur-radio satellite built so far. It is the second in the AMSAT-OSCAR-B series of long-life amateur spacecraft, and is built in an octahedral configuration which provides surface area for enough solar cells for a positive power budget system. This means that, unlike OSCAR 6, it should not be necessary to periodically command the spacecraft into recharge modes.

OSCAR 7 will contain two repeaters and two auxiliary beacons, as well as Morse code and telemetry encoders. The two- to ten-meter repeater has an output power of two watts so signals received on the ground will be somewhat stronger than those received from OSCAR 6. The second repeater, which was built by a West German group, AMSAT-Deutschland, has an input at 432 MHz and an output at 146 MHz. The two beacons will be at 435.1 and 2304 MHz.

Ground control of the spacecraft is provided by command receivers in each repeater, redundant command decoders and a control-logic sub-system experiment. The whole spacecraft system was described in detail at the ARRL Technical Symposium on Space Communications.1 The purpose of this article is to
present some ideas and techniques for using the new satellite for amateur communications.

working through the two-to ten-meter repeater

The ground equipment necessary for working through the OSCAR 7 two- to ten-meter repeater is identical to that required for use with OSCAR 6. Since the downlink signal will be transmitted with approximately twice the power of the OSCAR 6 transmitter, this will allow some (but not much) relaxation in the receiving equipment requirements. A ground-based transmitter with an output on the order of 80 to 100 watts effective radiated power (erp) will again be suitable. The same receiving antennas may be used.

The preferred antennas for both transmitting and receiving are simple non-directional ones such as a 5/8-wavelength vertical or a turnstile. Although the satel-lite’s two-meter antennas are circularly polarized, it is also preferable to have some sort of ten-meter polarization diversity so you will be able to receive both vertically and horizontally polarized signals.

The passband and beacon frequencies for the OSCAR 7 two- to ten-meter repeater are slightly different from those used in OSCAR 6 (see Table 1). These new passband frequencies were chosen for several reasons. First of all, in region 1 (Europe) 145.950 to 146.000 MHz is used by beacon transmitters operating on a 24-hour-a-day basis. These beacons are used for propagation studies, setting up converters and as a general guide to the vhf propagation conditions prevailing at any time. These beacons, although transmitted through OSCAR 6, provided no communications service and unnecessarily drained the power supply.

Also, in region 1 the amateur two-meter band spans only the frequencies from 144 to 146 MHz. Any transmissions above 146 MHz are non-amateur. In England, for example, the police use frequencies at 146 MHz for mobile communications and these signals were re-transmitted through OSCAR 6.

In the United States, frequencies above 146 MHz are used as input frequencies for two-meter repeater installations. Stations communicating through OSCAR 6 and working DX stations on their “own” frequency above 146 MHz were also being copied through their local repeaters. The simplest solution to these problems was to move the input passband to 145.850 to 145.950 MHz.

working through the 432-to 145.9-MHz repeater

Working through the 432- to 145.9-MHz repeater will be very much like working through OSCAR 4, but in reverse. OSCAR 4 received signals on 144 MHz and re-radiated them on 431.9 MHz. The OSCAR 7 repeater receives signals on 432.1 MHz and retransmits them on 145.9 MHz. The OSCAR 7 repeater also features sideband inversion so that, for example, an upper-sideband (USB) input signal will be re-radiated as a lower-sideband signal. At present, many more stations are equipped to copy 144-MHz ssb than are equipped to transmit ssb on 432 MHz, and the convention is to use USB on 144 MHz. AMSAT suggests that USB be adopted as the standard for the uplink to make it possible to easily distinguish between satellite (LSB) and terrestrial (USB) signals on two meters.

The recommended transmitting power is 300 to 400 watts erp. This is best achieved by means of a high-power transmitter and a simple antenna. A ground-

Table 1. OSCAR two- to ten-meter repeater passbands (+3 dB points).

<table>
<thead>
<tr>
<th>satellite</th>
<th>uplink</th>
<th>downlink</th>
<th>beacon</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCAR 6</td>
<td>145.900-146.000 MHz</td>
<td>29.45-29.55 MHz</td>
<td>29.45 MHz</td>
</tr>
<tr>
<td>OSCAR 7</td>
<td>145.850-145.950 MHz</td>
<td>29.40-29.50 MHz</td>
<td>29.50 MHz</td>
</tr>
</tbody>
</table>
plane, 5/8-wavelength whip or turnstile antenna do not require any pointing during the orbital pass, allowing the operator to concentrate on the important business of communicating.

Alternative methods of generating the required rf power are to use converted uhf fm transmitters, frequency transverters or surplus tripler-amplifiers. Since the uhf repeater is a linear device, as is the two- to ten-meter unit, the recommended modes of operation are ssb and CW.

An alternative to ssb for voice transmission is series-grid amplitude modulation, also known as controlled-carrier modulation. With this system the modulation is applied to the screen of the final amplifier tube, the carrier output is set to a low level without any modulation, and the modulation controls the level of the carrier. Thus, the louder you talk, the more power you put out. Modulation can be set to a maximum of 95%. A suitable circuit is described in reference 2 and shown in fig. 1. The S-meter will fluctuate with the modulation. This can be annoying or impressive as the case may be.

The received signal cannot be distinguished from conventional plate-modulated signals by audio means. In fact, many ssb operators will not notice that the incoming signals are a-m. You might, however, get reports of excessive carrier on your signal. I know of one G3 who was using series-grid modulation on 20 meters about four to five years ago and he received many stateside OSL cards for two-way ssb contacts!

copying the RTTY telemetry

From the telemetry point of view, the biggest difference between OSCAR 7 and the previous amateur spacecraft is the fact that OSCAR 7 has the facilities for transmitting telemetry by means of RTTY. The RTTY will be FSK on the 435.1-MHz beacon and AFSK on the 145.98- and 29.50 MHz beacons. The Doppler shift will be about ±10 kHz on the 435.1-MHz beacon, about ±3 kHz at 145.98 MHz, and ±600 Hz at 29.5 MHz.

The effects of Doppler shift on the telemetry signal will be copied by the ground station as a change in the carrier frequency and not as a change in the modulation frequencies.

An extremely simple arrangement will enable good copy of the AFSK signals on 145.98 MHz. A typical set-up is a two-meter a-m receiver with a bandwidth of 5 to 10 kHz. A front-end preamplifier should be used between the antenna and the receiver. To copy a satellite pass it will only be necessary to tune to the low side of the signal for acquisition. The Doppler effect will cause the carrier frequency to have the appearance of a slow drift through the i-f passband of the receiver. The signal should still be within the passband at loss of signal (LOS). The detected RTTY tones do not vary during the pass so the terminal unit receives the correct tones throughout the pass. A terminal unit such as the ST-5 (see reference 3) would be very suitable for this application.

Copying the FSK transmissions on 435.1 MHz will be slightly more difficult. Tests were conducted from club station WA3EWJ in March, 1973, to determine the feasibility of copying satellite FSK RTTY signals with simple ground equipment, and to investigate how Doppler shift would affect the received signals. It was found that copying the teletype signals was quite easy. The terminal unit used was the ST-5.

The Doppler shift on the signal was found to appear as a gradual drift downward in frequency throughout the pass.
The received signal was monitored using the conventional cross-shaped oscilloscope pattern, and the vfo on the receiver was adjusted to keep the display correct. Frequency-selective fading was also observed on the signals. Although the ST-5 provided good copy (even after two tape transfers), it was necessary to stay at the receiver to adjust the vfo every minute or so. It would be much nicer if the receiving system could tune itself, automatically tracking the Doppler shift, freeing the operator for other tasks.

Two designs for automatic frequency control of received RTTY signals have been published in recent years. Reference 4 describes a terminal unit using a phase-locked loop. The use of such a terminal unit allows the signal to drift through the passband while printing out good copy. However, when the signal moves out of the passband, copy is lost.

Reference 5 describes an add-on unit for the ST-5 or ST-6 terminal units which consists of a circuit which monitors the receiver is tuned with respect to the incoming RTTY mark signal.

Reference 5 also describes how to modify the receiver vfo to accept and use the automatic frequency control signal. An alternative approach is to build a new external vfo for use with OSCAR 7. If a new vfo is to be built, a better approach is to build an afc-controlled oscillator for the front end of the 435.1-MHz converter.

copying the s-band beacon

Link calculations for a typical receiving station for the 2304-MHz beacon were given in a previous article. It was shown that with a Doppler shift of about ±55 kHz, a receiver bandwidth of 500 Hz and a four-foot dish with a pointing...
accuracy of \(\pm 7.5^\circ\), reception of this beacon presents a real challenge.

A simple front end converter for 2304 MHz is described in reference 6. It uses the classic trough-line front end based on earlier 1296-MHz units. Antenna construction plans are given in reference 7 in an article describing a pulse communication system. Amateurs who are currently tracking OSCAR 6 in both azimuth and elevation using a narrow-beamwidth antenna should already have the ability to track OSCAR 7 with a four-foot dish. Thus, reception of this beacon is not quite as difficult as it appears at first glance.

using medium-scan television

In most countries, wideband TV is an authorized mode of transmission in the 432-MHz amateur band. Since OSCAR 7 contains a repeater having an input in the 70 cm band it opens up the prospects of live, long-distance, real-time TV communications.

However, since the signals are re-radiated on 145.9 MHz, a waiver or special permit must be issued by the licensing authorities. This permission has already been requested of the FCC. Also, since the repeater has only a 50-kHz passband the transmissions will still be limited in bandwidth. This rules out standard fast-scan (525/625 line) pictures. Slow-scan TV with its eight-second frame rate is suitable (as demonstrated by a number of OSCAR 6 contacts) but could be improved upon, at least with respect to the frame rate.

Reference 8 describes a medium (or faster slow-scan) TV system. The specifications for this system are such that all frequencies used are four times the equivalent normal slow-scan rate as shown in **table 2.** The pictures thus have a frame rate of 2 seconds. These TV pictures are not currently used for on-the-air transmissions because the bandwidth is also four times the normal slow-scan TV bandwidth. The pictures are used for setting up cameras and monitors in the home station and are converted to slow-scan TV by the very simple method of dividing all frequencies by a factor of four (using digital ICs). The pictures are then indistinguishable from conventionally generated sstv.

Since the bandwidth of medium-scan TV (mstv) is less than 15 kHz, and the spacecraft repeater has a 50-kHz passband, there does not appear to be any reason why mstv should not be used as a communications mode through OSCAR 7, providing that the relevant permits are issued by the licensing authorities. With its two-second frame time, mstv is a vast improvement over sstv eight-second frame time.

references

TOMORROW’S RIG
... available TODAY!

The exciting all new INOUVE IC-230!

TAKE A SLICE OUT OF THE FUTURE . . .

... and put 67+ CHANNELS* of 2-meter FM pleasure in the palms of your hands ... with the SUPER COMPACT (2.3" x 6.1" x 9.7") IC-230.

Feature-wise ... the IC-230 is fully synthesized (with the new exclusive "Phase Lock Loop System") ... all modular construction (servicing is a snap-in and out) ... a receiver that is very sensitive and selective as to what it hears (better than 0.4UV / 20db), with unique Inoue helical filters to eliminate intermod ... plus a super E filter mosfet front end, making copy a pleasure.

* And not a crystal to buy with the exclusive "Phase Lock Loop System".
(That's close to $550.00 worth of x'tals!)

— GRAB HOLD OF THE IC-230 AT YOUR LOCAL DEALER TODAY —

Distributed by:

ICOM WEST, INC.
Suite 232 — Bldg. II
300 - 120th Ave. N.E.
Bellevue, Wash. 98005
(206) 454-2470

ICOM EAST
Div ACS, Inc.
Box 331
Richardson, Tex. 75080
(214) 235-0479

More Details? CHECK—OFF Page 94
simple active filters for direct-conversion receivers

How to design simple active audio filters for radio communications

Many of the simpler communications receivers in use today are lacking in selectivity for CW work. To some extent this deficiency can be minimized by using audio filters. The more interesting designs, at least for me, are those where active RC circuits are used to replace the classic LC configurations. While high quality active filters are available commercially,* they are also popular as projects for the amateur experimenter. Such filters are especially useful in conjunction with direct-conversion receivers, an approach in which all adjacent channel selectivity must be obtained at audio frequencies.

Several of the active filter designs available to the experimenter suffer from problems which make them less than optimum for general use. For example, many of the designs are aimed at achieving rather narrow bandwidths, often less than 100 Hz. While these units are quite useful for some specialized applications, I prefer a somewhat wider bandwidth for general CW work. A 0.5-kHz wide response is usually more than adequate if steep skirts are maintained.

Many of the popular active filter designs require tight control of component tolerances, leading to difficulty and excessive expense when being duplicated. The work described in this article is aimed at designs which use ±10% or even 20% tolerance components and feature wider bandwidths while maintaining sufficiently steep skirt response to be useful.

*Such as those manufactured by MFJ Enterprises, Post Office Box 494, State College, Mississippi 39762 (see ham radio, November, 1973, page 68).
lowpass filter

Shown in fig. 1 is an abbreviated schematic of a 10-pole peaked lowpass filter I built. Although only two lowpass sections are shown, the filter contains five identical sections. Each of these has a 2-pole lowpass response which is peaked at the cutoff frequency. A similar response is that of the pi-network in a tube transmitter, again a peaked lowpass filter.

The Q of each active filter section is about 1.9 which yields a net 6-dB bandwidth of about 200 Hz. Skirt response, however, is not lacking. With a center frequency of 540 Hz, the attenuation is 75 dB at 1200 Hz. Net gain of the system is 28 dB at resonance. A single-pole highpass section is used at the input to bias the following stages and to provide some additional attenuation at the low frequencies.

The measured responses for one, three and five lowpass sections are plotted in fig. 2. This filter was built with 10% capacitors and resistors. However, the low Q of each pole pair would allow the use of 20% components with a minimal degradation in performance. Indeed, the slight stagger-tuning effect that could result might be quite desirable. The npn-pnp feedback transistor pairs are used as unity gain amplifiers and are not critical as to transistor type. The bias of the input section was chosen to compensate for the 0.6-volt offset introduced by each feedback pair, placing the filter output at half the power supply level.

From a practical point of view, the filter has been found to be an excellent performer. The moderately wide bandwidth makes the unit easy to use, even
fig. 3. Four different types of unity gain, non-inverting amplifiers suitable for use in active filters with receivers with minimal bandspread. However, the steep skirts insure adequate rejection of adjacent channels. When used with even the most simple direct-conversion receiver, performance is suitable for the majority of amateur communications.

other filter designs

The design outlined above should be suitable for those wanting a circuit to duplicate. However, the low cost of modern semiconductors and the ease of construction of audio circuits make active filters a very attractive area for further experimentation. The remainder of this article will present some possible variations for you to try in your own lab. If you have an analytical bent you will find the analysis of the peaked lowpass design to be straightforward by using either classic methods\(^1\) or the real-time approach outlined earlier.\(^2\)

For the simple lowpass filter designs, the amplifier should have a unity, non-inverting gain and should exhibit good impedance-transforming properties. In many cases, a simple emitter follower using a high beta transistor will suffice. Integrated-circuit operational amplifiers such as the popular \(\mu\)A741 are excellent, although a lower noise type such as the LM-301 is sometimes preferred. Shown in fig. 3 are four possible configurations, all suitable for use with a single power supply. The fet input amplifier is useful for low noise applications.

The basic peaked lowpass filter design is summarized in fig. 4. Note that the Q of the circuit is completely defined by the ratio of the two capacitors. When designing a filter, a Q is chosen and convenient capacitors of standard value are then picked. Miniaturization and low cost would suggest choosing relatively low capacitor values. However, noise considerations often point toward the use of somewhat larger values. Once the capacitors are chosen, the frequency of the unit is determined by calculating the proper resistance values. Clearly, a tunable filter with a constant Q would result from the use of a dual potentiometer.

The filter shown will have unity gain at dc and a voltage gain equal to the Q at the "cutoff" frequency. The measured peak frequency will be slightly lower than the "cutoff" frequency defined by the equation of fig. 4. This error is largest at
low-Q values. For example, the measured center frequency of the 10-pole filter of fig. 1 is 10% lower than that calculated. This effect is characteristic of any low-Q resonator.

The fact that both frequency and Q are dependent upon the capacitors can be used to advantage. Shown in fig. 5 is a dual bandwidth filter. With the switch open, the cutoff is 2.3 kHz and Q is 0.87. When the switch is closed, the center frequency drops to about 650 Hz and Q increases to 2.9. A multiplicity of these sections should yield a filter useful for both CW and ssb work.

Obtaining electronic components is often a problem for amateurs, with precision capacitors being especially difficult to find. Occasionally, you will come across a large number of capacitors of identical value. These can be used in filter applications in conjunction with non-inverting amplifiers with a gain greater than unity. This lowpass filter configuration is presented in the schematic and equations of fig. 6. You can see that Q can become infinite for a closed loop gain, A, of only 3. This oscillating condition could be used to advantage in a transceiver application by using an fet or bipolar switch to alter stage gain, providing a simple sidetone function.

limiting amplifier

One drawback of many simple direct-conversion receivers is the lack of agc. This deficiency could be minimized for CW reception by careful application of limiting. For example, shown in fig. 7 is a simple inverting, limiting amplifier with an adjustable limiting threshold. Below the threshold, the amplifier is linear with a voltage gain of 10. However, as soon as the output is high enough for the silicon diodes to conduct, the gain drops below unity. This amplifier should be preceded by several sections of filtering, and followed by a single-section lowpass filter to eliminate the harmonic distortions generated in the limiting process. The resulting clipper-filter system would be a real ear saver when used with any receiver with poor or non-existent agc.

summary

There are many possible circuit configurations for active filtering and an equally wide variety of applications. Here we have considered only a very simple family of circuits. Perhaps this article will stimulate others to try their hand at this intriguing area.

references

Hams have long been an imaginative and ingenious bunch, taking older commercial equipment and converting it for their own use. Lately the Telefax Model 6500 facsimile transceivers have been on the market for 10 - 15 dollars each. Articles have been written on the conversion of these machines, but none have been very satisfactory as many of you may have discovered.

The machines were originally designed to work over landlines in conjunction with another setup located in a central office. This setup provided the sync detection and drum feed control for a pair of machines. The machine is basically an A4 emission device; that is, a varying amplitude of the same frequency. One of the difficulties of A4 is the constant need for riding gain on the volume control to overcome band fading. Another problem exists in the legality of feeding this A4 emission into a 2-meter fm transmitter, which then makes F4 emission. This is not permitted under current regulations.

Included here are a set of electronics and standards to convert the final emission to F5, which is legal on 2-meter fm and which solves all the problems of fading on the low bands. The standards are simple; 2500 Hz for white, 2000 Hz for black, and the gray scale falls in between. The sync is a series of beeps at whatever frequency is coming out of the machine at that time. The first portion of the scan may be black, white, or gray — it makes no difference for the sync. Also included is an automatic drum feed. The receiving circuit detects the beginning of a picture and causes the drum to automatically begin the horizontal travel.

The schematic of fig. 1 shows the unmodified Model 6500 fax machine. The following discussion describes the circuitry for adapting the machine for F5 emission and includes the sync and drum feed control.

interface circuits

Q5 and Q6 make up the multivibrator, which oscillates between 2500 Hz, the white frequency, and 2000 Hz, the black frequency (fig. 2). Q7 is the modulator, which detects how much output is com-
ing from the fax machine for a given picture and changes the oscillator frequency. Q8 is a simple emitter follower isolation. U2 is a flip-flop with a canceling input (fig. 3). On receive the phasing contact triggers this flip-flop, which drives Q3. Q3 in turn, drives PH-1, an LED lamp shining on a photo-resistor. This circuit provides isolation for the triac circuit, SCR 1. (Construction of PH-1 is shown in fig. 4.) Q4 is the triac control, which turns off the gate on the triac (SCR 1) when the phasing contact is triggered by the rotating drum. The triac interrupts power to the gray-colored motor (see fig. 1) to slow the rate of the revolving drum. When the received signal (beeps) coincides with the local phasing contact opening, the flip-flop is canceled and the gray-colored motor runs at normal speed. Both units (transmitting and receiving machines) are in sync. That is, the red line on each machine is in the same angular position.

U1 (fig. 5) is a standard limiter, which removes all a-m from the signal and causes a constant level regardless of the volume setting. The input is set for 500 ohms; and it would be a good idea to install a small transformer, 3.2 to 500 ohms, between the speaker terminals of the receiver and the 500-ohm input to match impedances.

The video detector is just a tuned trap in series with the limiter output and the fax input. Q1 and Q2 are the automatic drum feed and tuning circuit (fig. 6). Three seconds after video is detected, the relay closes and the drum feeds on the receiving end. U3 is a series-type regulator in the plus side of the power supply, fig. 7.

telefax transceiver conversion

Remove the top cover and bottom plate and check the tubes. Check the stylus and replace if necessary with a piece of carbon-steel wire from a wire brush.

Carefully remove the exciter lamp, lens telescope, and projection tube. Remove the lenses from these assemblies and clean them. Replace the lenses in the same order and in the same direction as removed. Remove the phototube, clean, and replace. Plug in the 117-volt line cord, and push the outgoing pushbutton. This turns on the lamp. Focus the light spot on the drum by moving the telescope back and forth. Put a piece of paper with typed letters on the drum, and focus the image on the pinhole of the projection tube by moving the projection tube back and forth. Take good care on this step if you are to transmit sharp pictures. Check that the red line on the drum is at the stylus position when the phasing contact is open and the free slack is taken up in the normally rotating direction. The factory setup may have slipped. Adjust with an Allen wrench. Burnish the phasing contacts and adjust them for 0.020 inch with a feeler gauge.

1. Clip the 51-ohm resistor (fig. 1) from the incoming switch on the front panel and the two other wires from this switch. This frees a set of contacts for future use. See fig. 8.

2. Clip the wire coming from relay LR, the normally closed contact, and going to relay HR, the moving contact.

3. Clip the wire on the rear, outer terminal of the out-going switch and run a wire from this contact to the moving contact of relay HR just made available. See fig. 8.

4. Clip the wires on all three lugs of the BR relay. Fold back and disregard.

5. Clip the two green wires from one side of the coil of the BR relay, fold back and disregard.

6. Connect a wire from the N.C. contact on LR, made available earlier, to the coil terminal just made available on the BR relay.

7. On the line transformer located under the gray-colored motor, cut all three wires from the terminals located on the transformer.

8. With a wire, ground the terminal closest to the chassis. A terminal lug is close by to solder to ground. See Fig. 8.
fig. 1. Schematic of the unmodified Model 6500A Telefax transceiver.
9. Clip the two wires (one from each lug) from the rear, inner spdt switch of the outgoing pushbutton and fold back the wires. See fig. 8.

10. To the center lug of these three, connect a wire to the last lug made available on the line transformer. No connection is made to the center tap on the line transformer. See fig. 8.

11. Extend the red wire (that was clipped from the line transformer) to the rearmost of the three contacts.

12. Extend the white wire (that was clipped from the line transformer) to the frontmost lug of the three. This transfers the line transformer from receive to transmit with the pushbutton.

13. Clip the two gray wires from the other coil terminal of the BR relay. Solder together and tape.

14. Connect a wire from this coil terminal just made available on relay BR to the N.O. contact, bottom stack of the PWR relay. There are several wires connected to this terminal of the PWR relay.

15. Make available a set of contacts on the TR relay as follows: On the moving contact of one of the sets is a pair of wires, one of which goes to the coil of the HR relay, the other to the 100-ohm, 10-watt resistor bolted to the chassis. After identifying this set of contacts, clip the pair off the moving contact of the TR relay, solder them together, and tape.

16. Clip the other wires from this set of contacts, fold back and disregard.

17. Clip the wire on the drum phasing contact and remove.

18. Connect a piece of shielded wire from the phasing contact to the moving contact on relay TR just made available.

19. Connect another shielded wire from the N.O. contact of relay TR to the moving contact of relay BR made available earlier.

20. Clip the blue wire on the coil of the ACK relay going to the neon lamp, fold back and disregard.

21. Connect a wire from this terminal on the coil of the ACK relay to the N.O. contact of the PWR relay. (There are several wires on this terminal.)

22. Clip both wires from the acknowledge pushbutton on the front panel.

23. Remove the switch and replace with a spst, normally open pushbutton or similar momentary-contact switch. Wiring of this switch is described later.

24. Clip three wires on one side of the neon lamp holder. One side of the neon has a wire going to the acknowledge pushbutton. If this is the side you clipped first, identify this wire and discard it.
25. Solder the other two wires to one side of the new switch.

26. Clip three wires from the other side of the neon lampholder, solder together and tape.

27. Connect the neon lamp across the N.O. contacts on relay LR.

28. Connect the second terminal of the new switch to the moving contact of the LR relay. This wire can be picked up on the neon lamp.

29. Clip the wires from the bottom two sets of N.O. contacts and moving contacts of the ACK relay, fold back and disregard.

30. Clip both wires from the coil of the LR relay, fold back and disregard.

31. Connect a wire from the moving contact of relay LR to one terminal of the coil of relay LR.

32. Connect a wire from the other coil terminal of relay LR to moving contact of set "A" just made available on the ACK relay.

33. Connect a wire from the N.O. contact of set "A" on the ACK relay to the new wire installed earlier to the coil of the ACK relay.

34. Connect a wire from the terminal having the gray wire (from the new switch) to the moving contact of contact set "B" on the ACK relay.

35. Connect a wire from the moving contact of the LR relay to the N.O. contact of contact set "B" on the ACK relay.

36. Enlarge the hole in the rear apron to accept an 11-pin receptacle. Wiring of the new socket is as follows.
37. Pin 1 - Chassis ground.

Pin 2 - Shielded lead to N.O. contact of relay BR.

Pin 3 - Connect a wire to the red wire on terminal block for the line transformer.

Pin 4 - Connect a wire to the white wire on terminal block for the line transformer.

Pin 5 - Connect to the N.O. contact, "A" set, of the ACK relay.

Pin 6 - Connect to moving contacts, "A" set, of ACK relay.

Pin 7 - Clip wire to service switch (chassis) and extend to Pin 7.

Pin 8 - Connect a wire to the service switch terminal just made available.

Pins 9 and 10 - Connect one pin to each side of power transformer primary.

Pin 11 - Connect a wire to the N.O. contact of the set made available on the TR relay.

tune-up

Push the OUTGOING button and check all the voltages on the board: +5V, -5V, and +3.9V. Push the STOP button. Apply a source of 2500-Hz voltage to the 500-ohm input to the limiter. Connect a scope or a VU meter to pin 4 of the new plug (see fig. 5). Put a receiving blank on the drum. Push the INCOMING switch. Adjust L1 for a minimum reading on the scope or VU meter. Push the STOP switch. Put a new receiving blank on the drum. Feed 2000 Hz into the 500-ohm input, and push the INCOMING switch. When the neon light lights, push

fig. 5. Limiter and video detector.

Pin 5 - Connect to the N.O. contact, "A" set, of the ACK relay.

Pin 6 - Connect to moving contacts, "A" set, of ACK relay.

Pin 7 - Clip wire to service switch (chassis) and extend to Pin 7.

Pin 8 - Connect a wire to the service switch terminal just made available.

Pins 9 and 10 - Connect one pin to each side of power transformer primary.

Pin 11 - Connect a wire to the N.O. contact of the set made available on the TR relay.

tune-up

Push the OUTGOING button and check all the voltages on the board: +5V, -5V, and +3.9V. Push the STOP button. Apply a source of 2500-Hz voltage to the 500-ohm input to the limiter. Connect a scope or a VU meter to pin 4 of the new plug (see fig. 5). Put a receiving blank on the drum. Push the INCOMING switch. Adjust L1 for a minimum reading on the scope or VU meter. Push the STOP switch. Put a new receiving blank on the drum. Feed 2000 Hz into the 500-ohm input, and push the INCOMING switch. When the neon light lights, push
located near the gray-colored motor on the top side of the chassis. Rotate the drum manually until the phasing contacts are open (next to the drum gear). Note the drum is free wheeling on the shaft for almost a full turn.

Push the OUTGOING button. The drum should not be rotating because the service switch is turned off. While the phasing contacts are still open, rotate the drum to put the light beam on the whitest part of the sending blank. Adjust the SENDING pot P2 on the machine chassis for approximately ½ turn. Adjust the two white frequency adjust pots, R1 and R2 (see fig. 2) for 2500 Hz on the counter. Juggle the two pots (R1 and R2) for a symmetrical trace on the scope. Now rotate the drum to a black letter on the sending blank, keeping the phasing contacts open. Turn P2 on the chassis fully counter clockwise. Adjust R3 (see fig. 2), the black frequency adjust, for a reading of 2000 Hz on the counter. Readjust R1 and R2 again because these adjustments interact somewhat (P2 to ½ turn, drum on the whitest portion of the sending blank, a reading of 2500 Hz on the counter, symmetrical trace on the gray on the drum, a photo for example, will read somewhere between 2500 and 2000 Hz. Good gray scale can be achieved if P2 is adjusted properly. Disconnect all test equipment. Turn the service switch on. Turn the output level control, R4, to a minimum. Turn on the transmitter and adjust the deviation by advancing the output level control. Keep in mind that F5 emission may only be as wide as a normal ssb signal on the low bands and only as wide as a standard a-m signal on 2 meters. That is, on 2-meter fm, keep the deviation at 6 kHz or less.

operation

The sending machine has the material to be sent while the receiving machine has the receiving blank installed, both with the overlap of the paper over the red line.

![fig. 6. Automatic drum feed.](image-url)
and the trailing lip of the paper located so that the stylus drags over the paper. Both machines are started, the OUTGOING button is pushed on the transmitting machine, and the INCOMING button is pushed on the receiving machine. Several seconds later the neon lamp will light. This indicates the tubes are warm and the machine is ready to use. Wait several seconds after the light is lit to be sure the receiving machine is ready and that sync has occurred. You can tell if the receiving machine is in sync when the hesitation in the gray-colored motor has stopped and the motor runs smoothly. The operator at the transmitting end pushes the drum feed button when he assumes the receiver is in sync (several seconds after the neon lamp has lit). After the button is pushed, the neon lamp will go out, signifying that a picture is being transmitted. The receiving machine will automatically detect the picture and cause the drum to feed. When the picture scan is complete, the machine will automatically stop, and the drum will return to its normal position.

If you push the wrong button, be sure to push the STOP button before pushing any other button. That is, if you push OUTGOING and meant to push INCOMING, push the STOP button before pushing the desired button. This is to get the logic straight again.

summary

We find it easy to just hook the setups back-to-back for demonstration purposes and testing, or a landline may be used if a radio link is not desired. If wired back to back use two wires and install a T-R switch. Simultaneous connection of output to input causes the drum to feed prior to sync acquisition. If hum level affects sync acquisition, adjust the receiver volume control to a lower setting or install a Butterworth filter between the receiver and the input to the limiter.

Telefax

THE QUICK BROWN FOX JUMPED OVER A LAZY DOG's BACK. DE KQMR.

An actual transmission. Note the contrast between black and white and note the positive picture which was inverted electronically. The words “sending blank” were transmitted.
The Telefax machine conversion basically consisted of relay rewiring. It is still well suited for its original emission of negative pictures without using any of the new parts on the circuit boards. The basic sending and receiving functions of the machine are left undisturbed. The control system was rewired to cause the drum to feed horizontally with a pushbutton and for sync sending.

The St. Louis Amateur Teleprinter Society (SLATS) is a highly technical oriented group that prides itself in projects such as this. We find it quite handy to send schematics, photos, news clippings, etc., along with furthering our knowledge of linear and nonlinear circuits in specialized radio communications.

The author wishes to thank KØDOK, who sparked the development of the project; WAØIDS, who contributed the machine diagram and immense information on the machine; and the SLATS members, who inspired the article and acted as guinea pigs to prove the article could be understood.

A printed circuit board is available from the author for $6.50 postpaid or a full kit of parts including the circuit board for $62.00 postpaid in the U.S.A.

Model HRT-2

5 Channel, Narrow Band 2.2 watt FM Transceiver

This light weight, "take anywhere" transceiver has the "Regency-type" interior componentry to give you what others are looking for in portable communications. You get a heavyweight 2.2 watt signal... or if you want, flip the HI/LO switch to 1 watt and the receiver gives you 0.7 uv sensitivity and 0.5 watts audio. Both transmitter and receiver employ band-pass circuitry so that power and sensitivity are maintained across the entire band. Get one to go... only $179.00

American Made Quality at Import Price

Regency ELECTRONICS, INC.
7707 Records Street
Indianapolis, Indiana 46226

An FM Model For Every Purpose... Every Purse...
introducing the argomate

Speech processor, ssb and CW filters, and keyer — all are combined in this desk-top companion to the Ten-Tec Argonaut transceiver.

The Ten-Tec Argonaut leaves little to be desired by the QRPP enthusiast. However, in the 5-watt and under area, anything that will improve performance is well worthwhile. This article describes a tailor-made companion for the Argonaut transceiver, but individual modules may be used with transmitter-receiver combinations as desired. Project objectives were:

1. Speech compressor with variable microphone gain and compression.
2. A 2-kHz ssb splatter filter.
3. CW filter, vary narrow passband, no insertion loss.
4. Keyer with self-completing characters, 10-60 wpm.
5. Dc power supply, 12-14 volts.
7. Detachable key for ssb-only or mobile use.
8. Small size and weight.

Howard F. Batie, W7BBX, Falls Church, Virginia 22042
the argomate

A review of the current literature showed that no better audio filters could be found than the MFJ Enterprises low-pass and CW units, which are extremely small, rugged, and require only a few milliamps of current. Recent editions of the ARRL Handbook\(^1\) contain an excellent speech processor circuit, which provides up to about 3 dB processing gain. For its cost and simplicity, the IC keyer by W7ZOI\(^2\) was a natural choice. The finished product is a versatile adjunct to any station, high or low power, fixed or mobile.

A block diagram showing the interface of the two units appears in fig. 1. The SSB and audio filters provide optimum performance while retaining the AGC feature on the filtered AF signal only.

Minor modifications required to the Argonaut to accept the filter circuits are described; other receivers should be modified similarly after carefully checking the receiver schematic. If audio filters are outboarded from the speaker or phone jack less satisfactory audio filtering and AGC characteristics will result. No mods are necessary to the transmitter for the speech processor other than adjusting transmitter drive and mike gain/compres-

Construction of the Argomate. Compressor board is on the left-hand side, keyer board is beside it. CW and lowpass filter boards are mounted under the compressor and keyer boards.

keyer

The W7ZOI keyer (fig. 2) can be easily constructed on a 2 x 3-inch PC board. It uses a \(\mu\)A747, which is a pair of \(\mu\)A741Cs in a 10-pin TO-5 package. Resistor R2 is used to adjust the relative length of the first two dits to provide even spacing. The dot-dash ratio is determined by C3, C4; C4 is used only for the dot, and both C3 and C4 are used in parallel for the dash.

Q4 collector provides for keying a positive voltage to ground (20V or less). The keying transistor will handle up to 50 mA without a heatsink.

compressor

The speech compressor details, operation, and adjustment are well treated in reference 1. Coil L1 can be either a UTC DT-8 or UTC ML-6. The circuit is shown in fig. 3.
fig. 2. Argomate keyer schematic. Original circuit design, by W7Z01, is described in the ARRL Handbook (reference 1).

cw filter

The CWF-2 filter is made by MFJ Enterprises and is available in either kit form or pre-wired and tested. Af selectivities of 180, 110 and 80 Hz are provided. This truly remarkable performer is a must for any CW operator. In the 80 Hz position, rolloff is 60 dB per octave, virtually eliminating any QRM not zero beat. Insertion gain (up to 2.4) is present in all positions. The high input impedance (680k) and low output impedance (less than 2 ohms) eliminate the

fig. 3. Speech processor.
fig. 4. Method of connecting the CW and ssb filters. Better performance results if filters are inserted ahead of the audio amplifier.

necessity for receiver i-f/audio impedance modifications. The unit can be used with a 6-30 volt supply and draws 2-8 mA. The low-Q circuit design eliminates ringing, which is common in most conventional active filters. A 2 x 3-inch PC board is provided by MFJ.

low-pass filter

The LPF-1 low-pass audio filter is similarly constructed on a 2 x 3-inch PC board. This filter is used only in the receiver audio line to reduce ssb splatter above about 2 kHz. The cutoff frequency can be adjusted as desired by changing the values of eight resistors on the PC board. Received audio intelligibility of a male voice is not impaired as long as the cutoff frequency is above about 1.5 kHz.

audio filter insertion

Although both the CWF-2 and LPF-1

fig. 5. Argonaut i-f board modifications. A and B show before and after modifications. Component numbers are those of the Argonaut.
filters can be connected directly to the receiver output jack, far better performance will be realized if the filters are inserted prior to the final audio amplifier in the receiver. Fig 4 shows recommended connections.

argonaut i-f board modification

Fig. 5 shows the modifications to the Argonaut i-f board for insertion of the filters. Mini-coax, such as RG-174/U, should be run to the rear panel connector for the filters. To perform the modifications, the copper foil joining pins 3-4 and 6-7 must be broken as well as the foil connection from C15 to the collector of Q3. C15 and the new 0.1 \(\mu \)F capacitor may be soldered to the top side of the i-f board if necessary. Unsolder the wire connected to pin 6 of the front terminal pin jack for the i-f board and resolder it to pin 7 (ground). The Mini-coax connections are then made to the i-f board.

The four 2 x 3-inch PC boards were mounted in two stacks of two boards each in the horizontal position, with the CWF-2 and LPF-1 on the bottom. An 11-pin connector provides cable connections to the Argonaut, including power for the Argomate, as shown in fig. 6. A three-wire connector is provided for the cable to the Ten-Tec KR-1 paddle assembly. The mike PTT and keyer output
lines are connected together, as well as to the key jack on the Argonaut rear panel. Check the individual keying/PTT circuit before using this arrangement with other units.

The four PC boards are interconnected to multiple-pin terminal strips rather than with direct point-to-point wiring, which makes a neater installation and allows one or more PC boards to be removed if necessary. The terminal lugs serve as handy test points for every PC board input and output. Fig. 7 illustrates the chassis connections. A jumper in the +12-volt leads on TS3 (pins 11 to 12) permits measuring the current drawn by each PC board when a milliammeter is connected between the two pins. Fig. 8 shows switch and interconnection wiring.

The chassis cabinet and additional aluminum sides provide adequate shielding for all wiring and components inside the chassis. However, in areas where ac hum or rf pickup are severe, additional RG-174/U will reduce these effects inside the cabinet. Coax or other shielded connectors must be used between the Argonaut and the Argomate.

An additional 11-pin jumper plug must be used when operating the Argonaut without the Argomate. This plug rewire the i-f/audio connections to the original condition. The Argonaut +12 V supply line is jumpered in the plug and the Argomate rear apron plug. This feature prevents unauthorized operation if no plug is inserted into the Argonaut but may be eliminated if desired.

To install the 11-pin jack, J1, on the rear panel of the Argonaut, it will be necessary to relocate the adhesive serial number and the existing rf output jack.

![Diagram of Argonaut connections.](image-url)

Space is limited, but with judicious placement, sufficient clearance for the relocated rf output jack and J1 is available. A resistor and a capacitor are soldered to the Argonaut microphone jack; relocate these with the mike lead to pin 5 of J1.

operation

For ssb, the mike connector is brought out to the Argomate front panel for...
convenience and easier accessibility. The Argonaut mike connector is not used when operating the Argomate; however, the speech compressor may be bypassed on the Argomate front panel by S1. The Argonaut mike jack is reconnected to pin 5 of J1 only. The Argonaut mike PTT line remains connected to the keying line and is additionally connected to pin 4 of J1. For ssb operation without the Argomate, the Argonaut mike connector is activated by the jumper wire in plug P1.

On CW, full QSK operation is retained with or without the Argomate. The Argonaut key jack and ssb PTT controls remain activated when the Argomate is connected.

The Argonaut and Argomate phone jacks are connected in series; therefore, phones or an external speaker may be connected directly to either jack, which disables the Argonaut internal speaker. With no phones or speaker connected externally to either the Argonaut or Argomate, the Argonaut internal speaker remains connected.

Use of the Argomate will not require modifications to an external linear amplifier as long as the linear can accept the increased duty cycle when operating the ssb speech compressor. The Argomate mike gain and Argonaut ssb drive controls can be easily adjusted for the most effective speech compression and intelligibility.

fig. 8. Details of component interconnections.

For use with a separate transmitter and receiver, the Argomate can easily be adapted with cables to each by addition of a separate multi-connector plug. Since the speech processor, keyer, and audio filters can be controlled independently, only those functions desired need be included in the Argomate. However, the design shown here has the advantage of requiring only a single +12-volt power supply for all functions, while providing the most essential improvements on both transmission and reception for the most discriminating ssb and CW operator.
mobile operation

The Argomate can tolerate supply voltages to about +18 volts; however, if the Argonaut/Argomate combination is used for mobile work, care must be taken to ensure that the alternator or regulator output of the car’s electrical system is not higher than the recommended Argonaut supply voltage, +14 V. To provide proper voltage regulation when a voltage dropper is needed, the voltage drop must be independent of the difference between the current drawn on transmit and receive. This implies that the voltage dropper must have near-zero ohms internal impedance. This is easily accomplished by using a series of silicon diodes from the car battery (or cigar lighter) to the Argonaut +12 V supply input, as shown in fig. 9. To determine the number of diodes required, measure the battery voltage with the engine running, and figure on 0.6 volt drop across each diode (0.3 if germanium diodes are used). Each diode should be rated for at least three times the maximum current drawn by the complete installation in the transmit mode.

references

432 MHz UP-LINK
TX: 144 to 432 MHz
Varactor Tripler
MMv432 $75.20
ANT: 17.3 dB Multibeam
70/MBM46 $47.50

435 MHz TELEMETRY
RX: 435 MHz to 10 Meter
Converter
MMc432 $64.45

145 MHz DOWN-LINK
RX: 2 to 10 Meter
Converter
MMC144 $53.70

IMPRESS YOUR RECEPTION WITH KVG CRYSTAL FILTERS
XF9A SSB 2.5 kHz BW 8 POLE $31.95
XF9B SSB 2.4 kHz BW 8 POLE $45.45
XF9M CW 500 Hz BW 4 POLE $34.25

MATCHING OSCILLATOR CRYSTALS
XF901 8998.5 kHz USB $3.80
XF902 9001.5 kHz LSB $3.80
XF903 8999.0 kHz CW $3.80
F-05 CRYSTAL SOCKET $0.50

export inquiries welcome.
If you are an avid fm repeater user, you have probably had occasion to wish you could monitor the frequency at your leisure, without having to blow your bankroll on an expensive vhf monitor receiver. This article proposes an alternative: converting an fm broadcast band receiver to the vhf high-band. If you have a little-used a-m/fm portable or even an old clock radio lying around the house, chances are that it can be converted to two meters. I have performed such surgery on several fm radios with surprising success. An additional benefit is being able to monitor police and public service broadcasts as well. The basic modification is quite simple and straightforward and should be easy to complete on most fm radios.

The superheterodyne circuit used in fm broadcast radios primarily uses two tuned elements to make the receiver tune a particular band. Those elements are the LC tank circuits in the rf amplifier/preselector and in the local oscillator. This means that all you must do to change the received frequency is to vary the range of the resonant frequency of the preselector and the local oscillator tanks. This can be done easily if, the radio uses transistors that will operate well at the higher frequency, and the radio has sufficient sensitivity at the higher frequency to enable you to hear the vhf transmissions. It is also very important to have readable schematics, as this helps considerably in making the proper modifications.

A good rule-of-thumb guide for selecting a receiver to modify is to find a recent receiver model (implying better high fre-
frequency transistors) with excellent sensitivity. A good way to judge sensitivity is to retract the antenna all the way — or disconnect it altogether — then try to tune in an FM station normally. If you still receive most stations at full quieting, then the receiver should perform well with the weaker signals present in the public service and amateur bands. However, don’t expect the superior sensitivity and selectivity of a $150 crystal controlled, dual-conversion receiver.

the modifications

Most of the FM radios currently in use, use some variation of the RF amplifier and converter circuits shown in figs. 1A and 1B, respectively. These two circuits normally precede the A-M section of the receiver. Band switching disables the FM section and changes the role of the first two transistors in the A-M section from i-f amplifiers to an A-M band RF amplifier and converter, respectively. The modifications, then, will be directed at the FM portions of the radio only, leaving the A-M section substantially unchanged.

The primary modification is to the inductances in the RF amplifier output tank and in the oscillator tank of the converter (which serves the dual purpose of local oscillator and mixer). The RF amplifier is originally designed to tune 88 to 108 MHz, tracking with the local oscillator tuning. This must be changed to cover the range of 140 to 160 MHz, providing a central frequency of about 150 MHz. You can achieve this by decreasing either the capacitance or the inductance of the RF tank. However, reducing capacitance will also have the undesirable effect of reducing the tuning range since the main tuning capacitor is not changed. Thus the inductance must be lowered. This will expand the tuning range somewhat, but will not seriously limit receiver performance.

A quick calculation from the resonant LC formula shows that to increase the resonant frequency by a factor of 1.5 you must decrease the inductance by a factor of roughly 0.5. Of course, this could be done by removing the coil presently installed and replacing it with one of half the inductance. To make matters simple, all you have to do is duplicate the coil and place it in parallel with the present one.

Take a look in the radio you have: the coils should be about three or four turns,
either air wound or on a plastic coil form about 3/16-inch (4.8 mm) in diameter. You may need to do a little visual circuit tracing to find the exact coils involved. The precise dimensions of the new coil are not too critical, as the inductance can be changed quite a bit by compressing or expanding the turns of wire. Three or so turns of number-20 bare wire was found to work well on various radios.

The same technique is used to raise the local oscillator frequency. It doesn't go up by quite the same factor, so you might want to use a half turn or so less for this coil.

The next thing to decide is where to place the coil. Shown in fig. 2 is the tuning capacitor module commonly found in these a-m/fm radios. It has four sections, two of each rf and oscillator tuning for the a-m and fm sections. The four trimmer capacitors in the top of the case each adjust one section of the main ganged capacitor. As seen in fig. 1, one side of each capacitor is connected to ground. As both fm trimmers have connections appearing on the top of the case, this is probably the easiest place to mount the two new inductors. Placing them across the trimmers to ground amounts to paralleling them with the original inductors. The pictorial in fig. 3 shows the placement of the new inductors. Note that they are placed so that the axes are 90° apart. This minimizes coupling between the two stages.

One word of caution: some receivers are designed so that the unused lead of the trimmer capacitor is not at dc ground. If you have such a receiver, install a 0.001 μF ceramic disk dc blocking capacitor in series with the new coil to prevent damage to the radio. Better yet, choose a capacitor with leads longer than 2½ inches (64 mm) and form the coil from one of the two leads.

alignment

Rough alignment is really fairly simple, and it will probably be quite sufficient if you only wish to tune one small band of frequencies, such as 146 to 148 MHz. First you need a fairly strong signal at the frequency you are trying to tune. A dummy-loaded transceiver should suffice for setting up the two-meter band, as most dummy loads have a little rf leakage. If this method is not convenient, you may be able to use transmissions on radiotelephone at about 150 MHz, or even your local repeater.

With the signal source turned on, adjust the main tuning dial to a convenient location near the middle of its tuning range. Then, with a small screwdriver, carefully turn the local oscillator trimmer until the signal source is well tuned in. If you can’t find the signal, try adjusting the inductors by compressing or expanding the windings. Then repeat the above procedure again. You may need to rewind the coil if you still have difficulty.

If you have a variable signal generator or a grid-dip oscillator, use it to find where you are tuned. Remember that you
haven't adjusted the preselector yet, so you should be receiving two frequencies: the desired one and its image. The local oscillator will be between these two frequencies.

Assuming, then, this alignment has been accomplished, the preselector must be set up. This is easy. Leaving the signal source on and the radio tuned in to it, adjust the preselector trimmer for maximum signal. Since the tuning of this tank circuit is coupled through the converter transistor to the local oscillator tank, there will be some interaction, so go back and retouch the oscillator trimmer. Repeat this procedure a few times. If you have difficulty with the preselector, use the hints given in the previous oscillator alignment. A grease pencil may be used to make reference marks on the receiver tuning indicator for the new band.

This takes care of the initial alignment. You should now be able to tune in stations well on the band of frequencies around the one where the alignment was performed. But proceed with caution; the following “fine tuning” adjustments are much more difficult to make and may well require some specialized equipment. If you are satisfied with the sensitivity, selectivity and tuning range of your converted radio, you are finished with alignment. For the more adventurous souls, or the perfectionist, read on!

input tuned circuit

The antenna input is normally a balun transformer with a tuned secondary as shown in fig. 1. The Q of this tank circuit is low, broadbanding its response, and it primarily provides protection from frequencies considerably removed from the fm band. This circuit can best be retuned by removing the capacitor and substituting one of half its value.

tracking

If you wish to tune the entire public service band, proper preselector tracking needs to be taken into account. Tracking refers to the fact that for proper tuning the preselector must be tuned exactly 10.7 MHz away from the local oscillator frequency. When originally manufactured, your fm radio was adjusted to do just that.

Normally, the receiver is designed to have three points of perfect tracking, shown as zero tuning error in fig. 4.

Tracking varies over the tuning range because of the interaction of the two steps.

Since several of the component values have been changed (as well as the operating frequency), you can presume that the preselector no longer tracks the received frequency. The solution is to adjust the value of the preselector inductance, then readjust the preselector trimmer capacitor until the receiver more or less tracks in the range of interest.

Pick two points on the dial to adjust the tracking, one at the high end and one at the low end. If you have access to a signal generator, any alignment points will do. If not, set the tracking at two discrete frequencies to which you wish to listen. Alternately adjust the preselector inductance (by compressing or expanding the coil turns) and the preselector trim-
mer capacitor at both high and low ends of the dial until the preselector stage tunes properly at both points.

i-f selectivity

As the commercial fm broadcaster uses 75-kHz deviation, broadcast receivers use an i-f bandwidth of about 150 to 200 kHz. Likewise, the detector is broadband. There are two methods of achieving this broadband response in the i-f stages: stagger tuning and resistive loading of the tuned circuit.

![Points of perfect tracking](image)

fig. 4. Points of perfect tracking, showing the three points of zero tuning error, where the tuned frequency (determined by the sum of the 10.7-MHz i-f plus the oscillator frequency) equals the preselector center frequency.

In stagger tuning, stages are purposely misaligned to yield an overall wide passband. This technique naturally decreases the total gain of the i-f system. Here the selectivity can be improved by tuning the i-f stages to the same frequency while receiving a fairly weak station or other fm-modulated signal source. Take care that the increased gain produced by your retuning does not cause oscillation, even if it means detuning one or more stages.

With resistive loading, a resistor is normally placed in parallel with the inductor, although sometimes the effective resistance may be in the coil itself in the form of small wire size and a large number of turns, or in the loading effect of the transistor. The only modification that is practical here is to clip out the discrete loading resistor. This should be done only if the resistor is not part of the transistor bias circuit.

Frequently a combination of stagger tuning and resistive loading is used. It is likely that retuning the stages will be sufficient.

automatic frequency control

For some reason most fm radios are equipped withafc. This was great in the days of thermionic emission devices (tubes) where the source of instability was extremes of temperature as the filaments heated up. In transistor equipment, the afc circuit is more of an advertising point, and frequently introduces hysteresis, making tuning more difficult. While this is no real disadvantage for 200-kHz wide fm broadcasts, it is definitely harmful when trying to tune intermittent transmissions only 10- to 30-kHz wide. In the first radio that I modified, a poorly designed afc system actually pulled the local oscillator off frequency after each transmission began! The afc will also pull the receiver off a desired transmission onto a strong undesired one if it is within its range.

To disable this circuit, simply cut out the afc coupling capacitor, C_{afc}, shown in fig. 1B. This capacitor couples the capacitance of the afc transistor, which varies with the magnitude of feedback, from the fm detector circuit. Clipping it out will only affect the tuning of the local oscillator tank and will not affect any dc components in the afc or detector circuit. The local oscillator should normally have sufficient stability to preclude serious drifting.

conclusion

It is hoped that this article has provided a simple way of monitoring two-meter transmissions. Converting a radio for a friend is a great way to give him a taste of two-meter operating. Performance should be adequate for casual monitoring, though selectivity and sensitivity will not be as ideal as in an expensive transceiver.
OUR DIGIPET 60 IS A GENERAL-PURPOSE FREQUENCY COUNTER WITH A RATING OF 1 kHz TO 60 MHz.

(PLUS 130 MHz TO 160 MHz)

Perfectly designed for the radio amateur who wants quality, accuracy and economy.

If you operate around the 50 MHz band, we can offer you the Digipet 60—it measures a range of 1 kHz to 60 MHz—and it costs less than $300.

However, if you operate up around 140 MHz, you'll want the Digipet 160 converter. It costs an additional $50 and, mated-up with the Digipet 60, measures the critical range from 130 MHz to 160 MHz.

Its AC or DC operable with complete overload protection, plus being stable (aging rate: 1 part in 10^6/week), small (7" deep x 2½" high), sensitive (50 mV/m's), flexible (five numerical-tube digits) and accurate (resolves to 1 kHz or 1 Hz, depending on gate time selected).

Write immediately for more information.

T.R.I. CORPORATION
505 West Olive Avenue • Sunnyvale, CA, 94086 • (408) 733-9080
Distributed amplifier principles are put to use in a small package that provides 18 dB gain from 1 to 36 MHz.

Distributed amplifier

Wide-range broadband amplifier

Distributed amplifier principles are put to use in a small package that provides 18 dB gain from 1 to 36 MHz.

Broadband rf amplifiers are becoming quite common nowadays with the availability of ferrites and transistors with high gain-bandwidth products. The current fad is to spend all your design time on the ferrite transformers so that the 50-ohm output impedance can be transformed to some higher impedance that may serve as a reasonable collector or drain load for the transistor or fet you use. Such transformer design is beyond the ken of most hams, even if they could get the required ferrite cores. The general principles of broadband transformer design are described in two rather good articles.

Beyond these basic articles are a host of little practical tricks and facts, many of which are not available in text at all. One transformer manufacturer has gone to such lengths as to put a sheet of lead inside the epoxy case of his latest rf transformer when it was on loan to a large systems company so that the potential customer couldn't x-ray it to see how it was constructed (before quantity ordering).

Distributed amplifier

The broadband amplifier described here does not use any special ferrite transformers, and uses plastic economy-type transistors. The construction techniques are easily within the ham-experimenter's ability, and the finished amplifier has rather good performance for its cost.

An old, neglected technique of broadband amplifier construction was selected.
because it requires no special parts. The distributed amplifier is the name by which this amplifier goes, and it dates back to 1937. The distributed amplifier was originally designed to be used with vacuum tubes, so that the input capacitance of each grid could be lumped with the shunt C of an artificial transmission line on the input side of the amplifier. In a like manner, the output capacitance of each anode was lumped with the shunt C be used in the distributed amplifier. The base-emitter junction is used in series to ground with the shunt C of the artificial transmission line. In this way it is the current through the shunt C of the transmission line that drives the base of the transistor — which is just what the bipolar transistor requires. Reference 4, which is now over ten years old, describes a practical amplifier of this type as well as the basic design equations.

fig. 1. Basic distributed amplifier.

of an output transmission line. The basic distributed amplifier (with tubes) is shown in fig. 1. The gain contribution of each tube, in phase with the amplified wave as it passes down the artificial transmission line, adds to the contributions of the other tubes. Therefore, the whole distributed amplifier acts as if the transconductances of the tubes were all in parallel; i.e., the stage gains add.

bipolar transistor amplifier

You can easily see how the principles for a vacuum-tube distributed amplifier could be almost directly applied to one using fets. This has been done, in fact, in a technical article that will soon be published by Siliconix, one fet manufacturer.3 It is a bit less obvious, however, to see how the principle of the distributed amplifier can be applied using bipolar transistors. Fig. 2 shows the method by which bipolar transistors can

The broadband amplifier shown in fig. 3 was built using the method described in reference 4. Since ±15 volts is a rather common type of power supply nowadays (because of the wide use of operational amplifiers), the amplifier was designed to operate on this source of power. The transistor type chosen for the amplifier was the Motorola MPS-U05, a silicon npn type in a small plastic power package.

![Layout of the distributed amplifier showing the two delay lines. Input is to left, output to the right.](image-url)
This transistor is truly a marvel of power handling and gain-bandwidth product, considering its cost is in the one-dollar vicinity. Fig. 4 shows how the gain bandwidth product and beta vary with current of the MPS-U05.

fig. 2. Distributed amplifier using bipolar transistors.

construction

When constructing the distributed amplifier, note that the four transistors must have their collector tabs installed in a heat sink. In this design the heat sinks are 1/2-inch (127 mm) diameter aluminum washers set into holes in the piece of copper laminate on which the circuit is built. The tabs of the transistors actually are mica insulated (electrically) from the aluminum washers, and the washers conduct the heat from the transistors to the aluminum outer plate of the box chassis. Nylon 4-40 screws were used for the transistor, mica washer, aluminum washer and aluminum plate clamping. Silicone grease was used in all these thermal interfaces to increase heat conduction.

The inductors that make up the various L values in the artificial transmission lines were wound on two 1/8-inch (3.2 mm) diameter lucite rods (one for the input 50-ohm line and one for the output 50-ohm line). The dimensions of these multicoil structures are not at all critical. In fact, the first version of this amplifier was built using ten standard-value rf chokes and a handful of standoff terminals. The single rod, hand-wound coil structures were used simply to conserve space and save costs.

The 100-pF capacitors in the two transmission lines should be silver-mica types. The DM5 version of silver mica is smaller and easier to use here, but larger types should work. The emitter-bypass and output-coupling capacitors should be low-inductance ceramic types. The Redcap 0.1-μF capacitors by Erie are just fine. It would be better to use 0.01-μF ceramic disc capacitors (and have the low frequency end suffer a bit) than to use 0.1-μF capacitors of foil construction (mylars, etc.) if the low-inductance 0.1-μF types cannot be readily obtained. Do not parallel capacitors for emitter bypassing. Such practice seems like a good idea, but usually results in a vhf parallel-tuned circuit, which causes the amplifier to take off.
There are three 1000-pF standoff or feedthrough-type capacitors in the amplifier. These are used in noncritical points in the circuit for getting into the box chassis or where a tie point is needed. The 1000-pF standoff type is located at the junction of the two 300-ohm emitter resistors of the first two stages. A 1000-pF feedthrough type is located at the junction of the two 300-ohm emitter resistors of the last two stages and serves as the -15 volt connection to the outside of the box chassis. Between these two capacitors is a piece of hookup wire with a ferrite bead on it to damp out a possible vhf parasitic resonant circuit. These ferrite beads are in common amateur use now and are available from Amidon Associates.*

testing

With the input and output terminated in 50-ohm test equipment, the amplifier should be tested. The amplifier should draw about 120 to 150 mA with ±15 volts applied to it. The gain is about 18 dB, flat to within 3 dB from 1 to 36 MHz. The noise figure was measured only at 30 MHz with an A.I.L. automatic noise figure meter; it was 8 dB. The amplifier was capable of putting out +20 dBm, or 100 milliwatts before a compression of 1 dB was encountered. In fact, by increasing the 300-ohm emitter resistors to 1 watt and using ±30 volt supplies and higher-voltage MPS-U06 transistors, it was possible to get 1 watt output before 1 dB compression set in.

*Amidon Associates, 12033 Otsego Street, North Hollywood, California 91607.
applications

Assuming a careful job of construction and testing as described above, you now have a broadband hf amplifier. What can be done with it? The first thing that may come to mind is its use as a preamp for hf receivers from 160 through 10 meters. The broadband amplifier finds its principal use as an auxiliary to test equipment — as a preamp for a frequency counter, for instance, so that the counter can be used to measure the frequency of signals too small in level to operate the counter input stages.

![fig. 4. Dc current gain and gain-bandwidth product of the Motorola MPS-U05 transistor used in the wide band amplifier.](image)

However, putting an 18-dB preamp ahead of most hf receivers will usually cause more problems than it will solve. The extra 18 dB will reduce the dynamic range of the total receiving system by nearly 18 dB, unless the receiver has an incredibly bad noise figure. (I have occasionally run into hf receivers with noise figures as high as 15 dB.) The preamp will appear to "add distortion," whereas we know from measurements that it won't go into nonlinear operation until a signal of over zero dBm is present at its input. The apparent distortion in the preamp is caused by the gain of the preamp increasing signal levels further down the amplification chain in the receiver.

![fig. 5. Construction details of the delay-line inductors.](image)

In building up systems of available circuit blocks, the 50-ohm input and output, 18-dB gain block is quite handy. It can be used to deliver the +7 dBm local oscillator input required to drive the L port of a double-balanced hot-carrier diode mixer, for instance; or it can be used to amplify the signal going into the R port or out of the I port of such a mixer.

There are many other uses to which the broadband amplifier is uniquely suited, which involve swept frequency reception and transmission. These techniques are not in general legal for hams to use on the air, but can be useful in test and measurements on the bench.

references

Introducing the **Atlas-180**

SOLID STATE SINGLE SIDEBAND TRANSCEIVER.
180 WATTS P.E.P. INPUT ... 20, 40, 80 and 160 METER

Illustrated with optional plug-in Mobile Mount.

THE IDEAL MOBILE RIG.
Only 3½ in. high, 9½ in. wide, 9½ in. deep ... Operates directly from 12-14 volts DC ... All Solid State Modular Construction, No transmitter tuning, Built-in speaker. All the necessary features, power, and performance for only $479

AC CONSOLE
Illustrated with Atlas-180 plugged in. A handsome desk top station with front facing speaker and space for adding VOX and other accessories.

Model AR-117 for 117 volts, 50-60 cycles $119
 • Deluxe plug-in **Mobile Mount:** $40
 • Mobile Antenna Matching Transformer $24
 • Standard Mobile Kit: $10

Other accessories to be announced.

AMERICAN MADE AND GUARANTEED BY

![Atlas Radio Inc. Logo]

5580B El Camino Real
Phone (714) 729-3985
Mail Address: P.O. Box A, Carlsbad, California 92008

*Sold only by Atlas dealers. See him soon for complete details, or drop us a card and we'll be glad to mail you a brochure and dealer list.
73 Herb Johnson W6QKI*
In an earlier article\(^1\) I indicated that a big problem in antenna design is how to measure the impedance of a nonresonant vertical antenna without the use of an expensive rf bridge. Here are some methods using inexpensive components.

There are two parts to the problem: resistance and reactance. Solving for reactance is by far the easiest. All that's necessary is a variable capacitor or variable inductor and a grid-dip meter. Simply tune the grid-dip meter to the desired frequency (check with a calibrated receiver), link it to the antenna with a turn or two, put in the necessary resonating variable device, and adjust it for dip in the meter.

capacitance method

Using the 40-foot (12.2 meter) vertical irrigation pipe described in my previous article, connect a variable capacitor in series with a turn of wire around the grid-dip meter coil to ground (fig. 1). Set dipper to 7.25 MHz and adjust the capacitor for maximum dip. Measure the capacitor with an accurate capacitor checker\(^2\,^3\) and solve for \(X_C = 1/2 \pi \text{fC}\).

inductance method

Using the same antenna for 20 or 75 meters calls for a variable inductor. Assorted roller inductors are available on the surplus market, or you can wind a coil approximately the right size on a slug-tuned form and vary the slug. Or you can wind a coil with taps and tune the dipper until you find a tap that resonates on the low side of the desired frequency. Then start clipping turns, a fraction of a turn at a time, until the dip is at exactly the right frequency. Having achieved a dip at the proper frequency, the inductance and/or inductive reactance can be determined.

Inductance-measuring devices are a little less common than capacitor bridges. One method is to connect the inductor across a known capacitor and grid dip the circuit. At the dip frequency

\[
X_C = X_L = 1/2 \pi \text{fC}
\]

At the antenna design frequency

\[
X_L = X_L \text{ above } \times \frac{\text{ant freq}}{\text{dip freq}}
\]

We now have the reactance, \(X_L\) or \(X_C\), whichever is required. We will now leave this resonating element in the circuit and measure the resultant \(R\).

antenna resistance

Measuring the resistance of the antenna to a fair approximation without a bridge presents somewhat of a problem. One method within the means of most hams is as follows: We need a voltage-indicating device (not necessarily calibrated), a small exciter, and handful of carbon resistors in the expected neighborhood of the antenna resistance, and last but not least either a thermomilliammeter or some kind of an rf voltmeter. Theoretically, if we maintain constant voltage output from the exciter and add a resistance equal to the antenna resistance in series with the circuit, the current will be one-half, or the voltage across the antenna portion will be one-half.

If you have a thermo-milliammeter, the procedure is simple. (Many thermo-milliammeters were available on surplus a few years ago.) Assuming you have a voltmeter that will read something on rf,
or a scope, feed the antenna system and note the position of the meter needle or amplitude of the scope display. Note the thermo-milliammeter reading. Now insert resistance in series (always keeping the voltage constant) until the current decreases to one-half. The inserted R now equals antenna R.

In the absence of a thermo-milliammeter, use an rf voltmeter across the antenna. Again, keeping exciter voltage constant, add resistance until the rf voltage across the antenna is one-half. ($R_{\text{ant}} = R_{\text{added}}$.) We used the field-strength section of an swr meter for our rf voltmeter. We unscrewed the telescoping antenna and connected a 20k resistor in its place then connected the assembly across the antenna to ground. We adjusted for full-scale reading with no added resistance and used a vtvm across the exciter. Holding V_{exciter} constant, we added resistance until the meter across the antenna-to-ground circuit read half-scale. In the case of the 40-meter antenna, we came out with a 100-ohm resistor in series with a 33-ohm resistor. The previous bridge measurement was 142 ohms. And that's about as close as you are going to get. (Actual measurement of the two resistors was 131 ohms.) A dc milliammeter, resistor, capacitor, and rf diode will work in either or both positions of the above (see fig. 2).

The accuracy of this kind of measurement hinges on the accuracy of the instrument used for making the "half" measurement and the added series resistors. Ours measured 131 ohms on dc. Carbon resistors might be slightly higher on 7 MHz. Accuracy of the exciter voltmeter is not important, as it merely has to be kept constant. Fig. 3 shows the setup.

This measurement method will give you a ballpark estimate near enough so that applying the results to the impedance-matching data in reference 1 will give unity swr with a bit of tweaking.

references
heathkit digital color tv...

technology a ham can appreciate

Digital technology comes to television in the Heathkit GR-2000 Color TV. With features like on-screen digital readout for channel number and the optional clock. Programmable digital counter to select channels — up to 16 UHF and VHF channels in any sequence with no "dead" channels in between. Silent, all-electronic varactor tuning that replaces mechanical switching and corroding contacts. The unique fixed filter IF amplifier that never needs instrument alignment. The latest 25" (diagonal) Negative Matrix picture tube.

The 100% solid-state chassis boasts more ICs than any other set around — 33 in all with clock and remote options. With DC controlled contrast, IC color oscillator and automatic phase control. IC color amplifier. IC automatic gain control. And improved picture interface for remarkable definition and crispness.

Modular design, plug-in transistors and prefabricated wiring harnesses make the Heathkit GR-2000 an extremely easy kit to build. That's Digital Color TV — it may be the most rewarding kit-building experience of your life.

Customize your Heathkit Digital Color TV with the optional on-screen digital clock (it can be set for 4- or 6-digit readout), full wireless remote control package, and any of four beautiful factory assembled and finished cabinets. Heathkit GR-2000 chassis and tube mail order price, $649.95 (weight, 147 lbs.). Remote control, $79.95 mail order (4 lbs.). Clock accessory, $29.95 mail order (1 lb.). Cabinets start at $139.95.
Top left is the Heathkit ID-1390 Digital Thermometer. A solid-state device that monitors indoor and outdoor temperatures. Switches set thermometer for alternate display of indoor/outdoor temperature at 4-second intervals, for constant display, and for readout in either degrees Fahrenheit or degrees Centigrade. Includes 85' cable and 2 sensors. $59.95*. Mailing weight, 5 lbs.

Top right is the Heathkit GC-1005 Electronic Alarm Clock. A six-digit timepiece that displays hours, minutes and seconds on highly visible cold-cathode readout tubes. Gentle "beeper" alarm can be set for 24-hour cycle, features snooze switch for seven more minutes of sleep. Displays time in 12-hour, or 24-hour format. $54.95*. Mailing weight, 4 lbs.

Below is the Heathkit ID-1290 Weather Station. It has Uni/Mag® barometer for 2½ times greater pointer deflection; 8 wind-direction compass points that light-up in combination to give you 16-point resolution; wind speed indicator with 2 switch selectable ranges, 0-30 and 0-90 mph; dual-sensor thermometer with switch selection of indoor and outdoor temperatures. Includes weather cup and wind vane assembly, simulated walnut housing. $89.95*. Weight, 9 lbs., 50' cable, 5.95*, 2 lbs.; 100', 9.95*, 4 lbs.; 150', 14.95*, 6 lbs.
The effect of height on vertical antenna radiation patterns

Various antenna articles have shown that it is possible to use almost any height vertical, from very short ones to ones which are relatively tall. For our purposes this range of heights includes electrical lengths (h/λ) from an h/λ of about 0.1 to 0.3. These ratios correspond to antenna heights from about 30 to 80 feet (9.1 to 24.4 meters) at 3.8 MHz. In this article I will compare the vertical radiation pattern of verticals in this height range. For purposes of this discussion I will assume that the horizontal radiation pattern is omni-directional and of no further interest.

Some antenna articles have indicated that the low-angle vertical radiation pattern for tall vertical antennas is much better than for short ones. This is a situation that I'll examine in this article, and will show that on the basis of comparison usually used, the low-angle vertical radiation patterns for both short and tall vertical antennas are essentially identical. For antennas taller than 0.3λ there is some improvement at certain radiation angles but also degradation in field strength at other radiation angles. Data on this will also be provided.

The vertical radiation angles of interest will be in the range from just above the horizontal (zero degree) through angles of up to 30 degrees. These are the radiation angles of interest for DX work on the 80-meter band. Although the far distant pattern will have a drop in signal strength near zero degree because of ground losses, primarily beyond the antenna radial system, the vertical radiation pattern of signals launched near the antenna and radial system is the topic of discussion in this article.

To compare the vertical radiation patterns of verticals of various heights, it is necessary to calculate the signal strength for each antenna at a fixed distance from each antenna at several radiation angles between zero and 30 degrees. It is also necessary at the same time to take into account various other factors, some of which are the same for each antenna, and some which vary with antenna height.

Equation 11-95 from page 314 of John Kraus's book, *Antennas* includes all of the factors necessary to carry out the task just outlined, and his equation applies to the situations being considered here. The equation, with slight changes in notation for clarity, is
\[E(a, r) = \frac{60}{r} \sqrt{\frac{W}{R_{\text{loop}} + R_{\text{ground}}}} \]

\[\cos (\beta h \sin a) = \cos \beta h \cos \alpha \] volts/meter

This equation gives the vertical radiation pattern for a vertical of height \(h \), at an elevation (radiation) angle \(\alpha \), at a distance \(r \) meters, for a power \(W \) watts, for resistances \(R_{\text{loop}} \) and \(R_{\text{ground}} \) ohms. This situation and some of these terms are illustrated in fig. 1. Not shown is the antenna current distribution, a current element, or other items used to derive the equation for \(E \), the field strength in volts per meter.

Now consider the various terms in the equation. The number 60 is a constant, so will be the same for all of the calculations. Since I want to calculate the field strength, \(E \), at some arbitrarily fixed distance, I’ll let \(r = 1 \) mile, which is \((5280/3.28) = 1610\) meters, so this term is also fixed at this value. Antenna books often use a distance of 1 mile and a power output of 1000 watts as a basis for comparison of antennas.

The term \(W \) is the power in watts going into the antenna radiation resistance and into the ground resistance. I’ll use \(W = 600 \) watts to be representative of the amateur situation with a power input of 1000 watts. \(W \) is the transmitter power output less any losses in your antenna tuner, in the feedline between tuner and antenna matching network, or in the antenna matching network. For this article, I will neglect network losses and ground losses. Their influence on field strength and the radiation pattern will be considered in a later article.

There are two resistance terms involved, \(R_{\text{loop}} \) and \(R_{\text{ground}} \). \(R_{\text{loop}} \) can be obtained from my previous article^2 by means of the equation

\[R_{\text{loop}} = R_{\text{base}} \times \sin^2 \beta h \]

The resistances \(R_{\text{base}} \) and \(R_{\text{loop}} \) are small values for short antennas, are both equal to 36.56 ohms for \(h/\lambda = 0.25 \), and are larger values for \(h/\lambda = 0.3 \) or greater. \(R_{\text{ground}} \) is the earth ground loss resistance. The ground losses are more important for short antennas where \(R_{\text{loop}} \) is small.

For example, if \(R_{\text{loop}} = R_{\text{ground}} \), then half of the power, \(W \), will go to the antenna to be radiated as a useful signal, and half will be used to heat up the ground which, of course, is not our objective and field strength will be affected accordingly. The last term in the equation is

\[\cos (\beta h \sin a) = \cos \beta h \cos \alpha \]

This term depends on \(\beta h = (2\pi/\lambda)h \), and \(\alpha \), the vertical radiation angle. For a given frequency, \(\lambda \) is constant, so \(\beta h \) depends directly on the antenna height, \(h \).

This term is plotted in some antenna articles and is then used as the basis to claim that tall verticals are much better than short verticals, since this portion of the equation does, by itself, favor tall verticals as far as low-angle radiation is concerned. It is, however, not realistic nor correct to consider only this term and to neglect the other terms discussed earlier. Now consider why using only the last term is incorrect.

In more simplified but correct terms the Kraus equation is

\[E \propto \sqrt{\frac{W}{R}} f(h, \alpha) \]

The \(\propto \) right after the \(E \) says that \(E \) is
proportional to both $\sqrt{W/R}$ and to $f(h, a)$. Here $R = R_{\text{loop}}$

$$\frac{W}{R} = \sqrt{\frac{I^2 R}{R}} = I \text{ or } E \propto I f(h, a)$$

This form for E, being proportional to the current, I, and $f(h,a)$, is often given in antenna books. If only $f(h,a)$ is plotted, it assumes a constant current, I. But since power, W, is constant, and the resistance, R, is smaller for short antennas, a constant current is not consistent with the equation $W = I^2 R$ for our situation. Perhaps a better way of saying this is that to use $E \propto f(h,a)$ only assumes a constant current, rather than a constant power. For the amateur situation, a constant power is a much more realistic assumption.

For a constant power, $\sqrt{W/R}$ goes up as h/λ becomes smaller since R becomes smaller for short antennas. At the same time $f(h,a)$ becomes smaller, and the two terms tend to offset each other, which is why E does not change much when constant power is assumed.

A simple non-mathematical argument about why E is essentially the same in both cases would be worthwhile. For a short antenna, E at a distance is due to the contribution of a few current elements, each with high current, while the signal from a tall antenna is produced by many current elements, each with lower current.

$E(a, r)$ was calculated in a few minutes time on an HP-35 pocket electronic calculator for h/λ of 0.1, 0.2 and 0.3, and for $a = 0^\circ$, 10°, 20° and 30°. The results are given in fig. 2. This graph shows that for constant power the height of radiator makes very little difference in the vertical radiation pattern. This is the essence of the entire article.

The results here are in agreement with those in most antenna books and articles, such as in Kraus, Antennas, page 317, figure 11-36, or in Harmon, Proceedings of the IRE, January, 1936, pages 42-44. Both of these show the sky-wave signal

<table>
<thead>
<tr>
<th>height</th>
<th>vertical radiation angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>360°</td>
<td>0°</td>
</tr>
<tr>
<td>270°</td>
<td>0°</td>
</tr>
<tr>
<td>230°</td>
<td>0.64</td>
</tr>
<tr>
<td>190°</td>
<td>0.528</td>
</tr>
<tr>
<td>180°</td>
<td>0.50</td>
</tr>
<tr>
<td>90°</td>
<td>0.25</td>
</tr>
<tr>
<td>very small</td>
<td>0°</td>
</tr>
</tbody>
</table>

Table 1. Field strength for various height vertical antennas in millivolts per meter at one mile, power output = 1000 watts (multiply these values by 0.78 for 600-watts power output).

For a constant power, $f(h,a)$ becomes smaller, and the two terms tend to offset each other, which is why E does not change much when constant power is assumed.

Important assumptions used here were that $W = 600$ watts was a constant, and the $R_{\text{ground}} = 0$ ohms. In a later article I'll develop R_{ground} for various radial systems, and will also show the effect of network losses reducing input power to the antenna. The reduced power and non-zero values of R_{ground} will reduce the field strength of a short vertical as compared to a tall one.

What is important is that field strength is not better for a tall vertical due to the $f(h,a)$ term alone, but that the entire Kraus equation and correct assumptions

![fig. 2. Vertical radiation pattern vs the height of a vertical antenna. Height in this graph is given as a ratio of the operating wavelength, h/λ.](image)
and data must be used to make a valid comparison.

This still doesn’t answer the basic question of what height antenna to use or which height is better. Since the pattern versus height doesn’t really matter, the important factors turn out to be earth and network losses and bandwidth. Once we know about earth losses it will be possible to answer the original set of questions and select an antenna height.

However, from a radiation standpoint, I have shown that a 0.1λ vertical (or less) is essentially the same as one 0.3λ or λ/4 wavelength tall. Furthermore, a λ/2 vertical is inferior to a λ/4 at radiation angles above 30°. It is 0.8-dB better at 10° and 0.4-dB better at 20°.

A 5/8λ vertical is inferior to a λ/4 at radiation angles above 20°. It is 0.7-dB better at 10°.

A 1λ vertical has very little radiation below 30°, but is 1.2-dB better than a λ/4 at 30°. Thus, you would have to put up a 250-foot (76.2-meter) vertical at 3.8 MHz to get about 1-dB gain for medium distances, and with poor DX performance.

There are cases where tall verticals are useful. For example, Ballantine showed back in 1924 that a vertical antenna approximately 5/8λ tall provided the maximum ground-wave signal, which is important for broadcast stations (most broadcast stations use a vertical somewhat less than 5/8λ tall to reduce nighttime sky-wave interference problems).

references
CW regenerator for interference-free communications

Here's a slick CW regenerator circuit that uses a phase-locked loop to provide a virtually QRM-free, single-frequency output.

The circuit described here should be of interest to all CW enthusiasts. It is a new approach to the old dilemma — how do you listen comfortably to a CW station deeply imbedded in noise, hash and interference? The way this is achieved is to detect one particular CW transmission and key an independent oscillator with the received signal. The input and output frequencies may be different. The result is similar to a very narrow CW filter. The main difference between the regenerator circuit and a passive CW filter is the flexibility of the active circuit and the virtually single-frequency output. Such a clean, interference-free output cannot be achieved with a passive filter.

The circuit presents an improvement over a passive filter in a certain signal-to-
noise range. Because the active circuit requires a minimum threshold signal voltage to operate, it will fail for extremely poor signal-to-noise ratios. Relative to other means its performance is best for intermediate to good signals. The circuit was tested by the authors with both Allied-Radio Shack SX-190 and Heathkit SB100 receivers. Both receivers provided sufficiently stable and strong CW signals at the earphone or speaker jacks to operate the CW regenerator.

The CW regenerator circuit consists of a signal amplifier, a narrowband frequency detector and trigger, an oscillator, a gate and an output amplifier (fig. 1). The details of the circuit are shown in fig. 2. The incoming signal is amplified by the transistor Q1 and its output coupled to the phase-locked loop U1. This integrated circuit has two states. In the absence of a triggering signal, its output (pin 8) presents a high impedance to ground. In the presence of a triggering frequency, f₀, the output presents a low impedance to ground.

\[f_0 = \frac{1.1}{(R_4 + R_5)C_3} \]

The bandwidth of this circuit is determined by capacitor C4 and is approximately 10% of the center frequency with selected values. Integrated circuit U2, another phase-locked loop IC, is used as an independent oscillator; its frequency is determined by R9 and C8. The oscillator output is gated by the output of U1. The gate itself is a p-channel mosfet, Q2. Potentiometer R15 adjusts the dc voltage at the output of the gate to the same value as the dc voltage at the input. This minimizes transients. The output amplifier, U3, is a 1/4-watt audio amplifier IC used to drive earphones or speaker. Resistors R6 and R20 and capacitors C6 and C13 are used to decouple the individual stages of the circuit.

circuit development

The circuit has evolved through a number of stages. Our original idea was to use U1 only and to either trigger its internal oscillator or let it operate a low power buzzer. The results were only partially satisfactory. The dc transients caused considerable breakup of the output signal. The next step was to add a relay and later an fet gate to combat the dc transient problem. This resulted in some improvement but we found that the internal oscillator would cause transients while locking on the input signal. The use of a separate oscillator helped this situation. As the next step, input and output amplifiers were added to provide simpler interfaces.

construction

Most of the components, with the exception of the power supply, are contained on a 2½x5-inch Vector board. Although we could have used a printed-circuit board, it was found that point-to-
fig. 2. Schematic diagram of the CW regenerator. Integrated circuit U1 is a Signetics NE567 phase-locked loop, U2 is a Signetics NE566 function generator and U3 is a Motorola C6003 audio power amplifier.

point wiring on the Vector board afforded the easiest type of construction. All the transistors and ICs are socket mounted, with U1 and Q2 sharing a 16-pin DIP socket. The trim pot shown in the photograph is R15. This control, although not requiring frequent adjustment, might be better placed on the rear panel of the cabinet. Parts placement on the circuit board is not critical.

The homebuilt cabinet is a simple 5x5½x3-inch aluminum cabinet of U-type construction. Many types of commercially-available cabinets are suitable. The Vector board is mounted vertically toward the front with the power supply components at the rear. The control at the left on the front panel is the tune control, R5, while R16, the gain control, is at the right. The toggle switch at the bottom center is the power on-off switch. The bypass switch is located at upper center.

Adjustment

Adjustment of the CW regenerator is exceedingly simple as there is only one control to adjust, the gate balance control, R15. With no signal input and a high-impedance voltmeter connected between the gate and source of the mosfet, Q2, adjust R15 for zero voltage. This is the only non-operating adjustment required.

In operation, center the desired CW signal in the passband of the receiver with the function switch in the bypass position and the receiver audio gain control in the center position. Place the main switch in the regenerate position and adjust the tune control, R5, to lock in the signal. This should be an absolutely pure regenerated signal with the quality of a code oscillator. There will be no QRM or noise. With two or three signals in a pileup, the tune control will allow you to completely peel off the unwanted QRM. The gain control should be adjusted to provide a comfortable signal level.

Reference

1. Signetics 567—Tone Decoder Phase-Locked Loop data sheet and applications note, Signetics Corporation, Sunnyvale, California.
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR
RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the Ox oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
RF AMP
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
RF POWER AMP
A single tuned output amplifier designed to follow the Ox oscillator. Outputs up to 200 mw, depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND
AMP
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur $3.75

5. OX OSCILLATOR
Crystal controlled transistor type. Lo Kit 3,000 to 19.999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Ideal for SWL, Experimentor or Amateur $3.95

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3096E.

CRYSTAL TYPES:
(GP) for “General Purpose” applications.
(CS) for “Commercial Standard”
(HA) for “High Accuracy” close temperature tolerance requirements.

write for CATALOG

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLAHOMA 73102

More Details? CHECK-OFF Page 94
printed circuit standards

Recently there has been a lot of interesting home-built equipment described in the amateur radio magazines. Frequently a firm offers ready-made printed-circuit boards to aid those readers who wish to duplicate one of these designs. Also, a lot of ready-made and kit-form equipment is now being offered in printed-circuit form, which the buyer can enclose as he chooses. Although these printed circuits come in all different sizes and shapes, the designer probably originally planned to mount the board on spacers inside a Minibox of convenient size. After you have built a few projects of this type you find yourself with a small pyramid of various sizes of Miniboxes, each with a power cord and other dangling wires. The organization and esthetics of the hamshack would be much improved, not to mention the ease of constructing new projects, if a few standards could be adopted for printed-circuit construction.

Interestingly enough, there already exists a de facto standard in this area: a card width of 4.5 inches (11.4 cm). There are probably a dozen manufacturers offering card cages which fit into a 5.25x19-inch (13.3x48.3-cm) rack panel space and accept cards up to 4.5-inches (11.4-cm) wide. A number of these card cages are adjustable for smaller widths but in any case this width is by far the most popular. For breadboarding purposes companies like Vector and Vero offer a wide variety of boards with various hole and etch patterns, with or without edge-connector lands, and all in the 4.5-inch (11.4-cm) width. Hence the first request is that printed-circuit designers try to confine themselves to a 4.5-inch width and that manufacturers of boards center narrower patterns on a 4.5-inch space. If the user wants to mount a smaller pattern in the smallest possible space he can always trim off the excess width.

Most amateur equipment designs require rf shielding so open-card-cage-style construction is not suitable. For a single project the Minibox enclosure is entirely satisfactory for most of us. With a 4.5-inch (11.4-cm) pattern the designer might want to use a 5.5-inch (14-cm) board width, which allows a half-inch (13 mm) on each side of the pattern for the screws and spacers used to hold the board to the cover of the box. For larger installations, both of the manufacturers previously mentioned offer a nice system of cases which mount in something similar to a card cage. An example of this kind of construction is illustrated in WA6JYJ’s RTTY speed-converter article in the December, 1971, issue of ham radio.

These cases come in several different standard heights, one of which is designed for 4.5-inch (11.4-cm) cards. Of course, if you want to take advantage of this system of mounting multiple units you must standardize on one height. This packaging system is by no means as inexpensive as the Minibox, and it isn’t as easily available from the corner radio store, but the cost is still small compared to the cost of what goes into the boxes and the items are readily available from
the factory by mail order. If cost is really an obstacle you can home-make something that looks just as nice and has the same standard dimensions but costs a lot less.

Having suggested that a standard 4.5-inch (11.4-cm) width will help us to build equipment more easily and uniformly, how about the other printed-circuit board dimension? There is really no need to standardize in this direction, for nothing says that cards mounted in an open cage or in cases have to all be the same length. Again, looking at the manufacturers' catalogs we see that several different lengths are offered, but nothing much over nine inches (22.9 cm). Hence, if you can hold the length of a board to less than this, and choose cases or card cages big enough to hold a board at least this long, you can accommodate projects of all different sizes.

A card cage might look funny with different-length cards sticking out of it, but you can cover them up with an attractive, hinged, front door. Then the only problem is how to extract a short card from between two longer ones; that is easily solved with a couple of holes in the front edge and a U-shaped piece of coathanger wire with the tips bent to form hooks to engage holes in the cards.

Finally, what about external connections to the cards or cases? The most popular scheme for cards in an open cage is the familiar card-edge connector that mates with lands etched on the board. These are available in an enormous variety of sizes and features but it is surprising how often you see connectors with 22 contact positions on 0.156-inch (4-mm) spacing. These are available with 22 contacts on one side or double-sided with 44.

There are many options open for the external connections to cards mounted in boxes or cases. You could just run cords out the back of the case, or have a terminal strip on the back. This doesn’t ease the old tangle of wires, but at least it doesn’t show from the front. A more attractive possibility is to have a connector on the back of the case which mates with a connector attached to the frame holding the cases. Then an encased unit can be removed for inspection with no dangling wires; and it can be operated in the removed position by means of an extension cord running from the plug on the case to the socket in the frame. Or, the socket can be left unattached to the frame so that the case can be pulled out for servicing without the use of an extender. Again, there are many suitable kinds of connectors that are inexpensive, such as the ordinary octal plug. My own preference is for the 22-position card edge connector. This allows encased cards to be easily intermixed in the same frame with open cards. A card in a case has the usual edge-connector lands which project through a slot in the back of the case to engage the connector. This makes it unnecessary to run a lot of wires from some other kind of connector to the card inside the case.

There are lots of ready-made experimental cards designed for this kind of construction that can be used either in cases or in open guides. Unfortunately, these are pretty high priced as compared to plain Vectorboard but they might occasionally be worth their price in the time they save. It’s certainly a convenience to be able to pull out a piece of equipment and plug another in its place for testing with no wires or cables to bother with.

In summary, here are three recommendations for uniform packaging:

1. Design printed circuit boards for a standard width of 4.5 inches (11.4 cm).

2. Keep the other dimension of the board to about 9 inches (22.9 cm) or less; if a project is too large for this size, use more than one board.

3. If a printed-circuit edge connector is appropriate, use the kind having 22 contact positions on 0.156-inch (4-mm) spacing.

Jim Haynes, W6JVE
The new Atlas-180 ssb transceiver recently introduced by Atlas Radio offers a number of unusual features in an amateur high-frequency ssb transceiver. Most obvious, of course, is its extremely small size: 9 1/2 inches (24.1 cm) wide, 3 1/2 inches (8.9 cm) high, and 9 1/4 inches (23.5 cm) deep. Weight is a mere 7 pounds (3.2 kg). Packed into this small package is a complete all solid-state 180-watt PEP ssb and CW transceiver for the 20-, 40-, 80- and 160-meter bands (crystal oscillator accessory available for MARS). The Atlas-180 is ideal for mobile or portable operation since it operates directly from a 12- to 14-Vdc source, negative ground, drawing 200 to 400 mA in the receive mode, 16 amps peak on transmit. An optional ac supply is available for home station use.

The Atlas-180 uses modular construction, including plug-in circuit boards, for ease of service and maintenance. Connectors on the rear of the transceiver are designed to plug into the mobile mount-

ing bracket, or into the AR-117 desk-top ac power supply, making transfer or removal a simple operation.

The receiver in the new Atlas-180 features sensitivity of less than 0.5 microvolt (typically 0.25 µV) for 10-dB signal-plus-noise to noise ratio while providing excellent immunity to overload and cross modulation. The input signals are converted directly to a 5520-kHz i-f without any preamplification. Selectivity is provided by a 5520-kHz crystal lattice filter with a 6-dB bandwidth of 2.7 kHz and a shape factor of 1.7. Ultimate filter rejection is 110 dB. Receiver image rejection is greater than 60 dB. Included in the receiver is an internal speaker, S-meter and 100-kHz crystal calibrator.

Receiver and transmitter frequency control is provided by a highly stable vfo circuit. The tuning dial is calibrated in 5-kHz increments and is easily interpolated to 1 kHz. Tuning rate is 15 kHz per revolution.

The transmitter has several interesting features including a broadband design which eliminates transmitter tuning and single conversion from the i-f to the output frequency. Included in the circuit is ALC and infinite vswr protection. Input power is 180-watts PEP on ssb; output is 80 watts PEP minimum (100 watts PEP typical). Unwanted sideband suppression is better than 60 dB at 1000 Hz, and carrier suppression is more than 50 dB below peak power. Intermodulation distortion is approximately 30 dB down and image outputs are more than 40 dB below rated peak output. Harmonic output is more than 35 dB below rated peak power.

Accessories available for the Atlas-180 include the AR-117 table-top 117-volt ac power supply and mobile mounting bracket (deluxe plug-in and non-plug-in models available). Automatic VOX (CW semi-break-in), phone patch and other accessories will be announced in the near future. For more information, write to Atlas Radio Inc., Post Office Box A, Carlsbad, California 92008, or use check-off on page 94.
antenna tower protection system

A new system introduced by the Towtec Corporation automatically guards against tower and antenna damage from high winds. Called Towrgard, the system continuously monitors your local wind velocity. When the wind velocity reaches or exceeds the changeable, preset 35 mph limit (even on gusts) the system will automatically lower your motorized tower. Towtec also manufactures electric hoists for manual crank-up towers.

The Towrgard system includes a computer/controller, a wind sensor and a bottom limit switch for automatic motor turn-off when the tower is nested. For more information on this automatic system, write to the Towtec Corporation, 118 Rosedale Road, Yonkers, New York 10710, or use check-off on page 94.

cambion catalog

The new Cambion XQ Components Catalog illustrating various Cambion (CTC) components now available through retail outlets is now being offered at no charge. Many popular items are illustrated, such as terminals, jacks, plugs, handles, battery holders, IC sockets, IC breadboards, coils and rf chokes.

Cambridge Thermionic Corporation, better known as CTC, has been a manufacturer and supplier to industry of precision electronic components for over thirty years and has just recently made its Cambion products available to the amateur and experimenter. Industrial, commercial, military and aerospace engineers use more than 20,000 different components in the Cambion line. Through this catalog the amateur and experimenter now have available the same quality and reliability.

For further information on the new Cambion XQ Components Catalog, write to Cambion, Department XQ, 145 Concord Avenue, Cambridge, Massachusetts 02138, or use check-off on page 94.

More Details? CHECK—OFF Page 94
NEW RINGO RANGER

for Amateur FM

Get extended range with this exciting new antenna. A one eighth wave phasing stub and three half waves in phase combine to concentrate your signal at the horizon where it can do you the most good.

- 6.3 dB Gain over ¼ wave whip
- 4.5 dB Gain over ½ wave dipole

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARX-2</td>
<td>146-148 MHz</td>
<td>$22.50</td>
</tr>
<tr>
<td>ARX-450</td>
<td>435-450 MHz</td>
<td>$22.50</td>
</tr>
<tr>
<td>ARX-220</td>
<td>220-225 MHz</td>
<td>$22.50</td>
</tr>
</tbody>
</table>

Extend your present AR-2 Ringo with this RANGER KIT. Simple installation.

ARX-2K $8.95

IN STOCK AT YOUR LOCAL DISTRIBUTOR

Hamtronics, Inc. has announced several new products for the vhf buff. Of primary interest is a new improved version of the well-known cascode 6- and 2-meter preamps described in articles in March, 1972, and January, 1973, issues of *ham radio*. The new units are 3/4-inch wide x 2-inches long x 1-inch high (19x51x25-mm) so they will fit into almost any receiver or transceiver. New fets used in the preamp provide more gain and better noise figure while retaining the inherent stability of the cascode circuit which has made the Hamtronics preamp so popular. Amateurs like this unit because they can tune it easily without worry about neutralization.

With several thousand preamps now in the field, hams are reporting that even newer transceivers are improved by adding a low-noise preamp ahead of the front end. Units are still $6.00 in kit form or $10.00 wired and tested, postpaid in the USA. Club prices are still available. Models are also available now for any frequency from 20 to 240 MHz, including 10-meter Oscar reception.

Other new products to be announced soon include a lower-cost, more-compact scanner device for up to four channels; a receiver kit for a-m reception on aircraft frequencies or 6 or 2 meters for net use; and 450-MHz receivers, preamps, and transmitters for fm. Also, kits are now available for the popular 5-watt audio amplifier, using an integrated circuit, as written up in an article appearing in September, 1972, *ham radio*.

For more information, send a self-addressed, stamped envelope to Hamtronics, Inc., 182 Belmont Road, Rochester, New York 14612, attention Jerry Vogt, WA2GCF, or use check-off on page 94.
digital voltmeter

Now a low-priced, laboratory-quality digital voltmeter is available from MITS, Inc. The model DVM 1600 measures alternating and direct current in five ranges from 0.1 mA to 1 amp. Ac and dc voltage is measured in four ranges from one volt to 1000 volts. Measurement of resistance is in six ranges from 100 ohms to 10 megohms.

The resolution in low ranges for voltage is 10 mV; for current, 10 mA; and for resistance, 1 ohm. Dc voltage accuracy is ±.5%. All other measurements are accurate to ±1%. Input impedance for dc voltage measurements is 10 megohms; for ac voltage, 1 megohm.

The DVM 1600 also features auto polarity which automatically displays polarity and magnitude without probe reversal. Other features include a regulated power supply and 100% overrange capability on all ranges. Power requirements are 115/230 Vac, 50/60 Hz, 20 watts.

The MITS DVM 1600 digital volt-ohmmeter is available in an easy to assemble kit form ($89.95) or factory assembled ($129.95). Warranty on the assembled model is one year on parts and labor. Kit warranty is ninety days on parts. For more information, write to MITS, Inc., 6328 Linn Avenue, NE, Albuquerque, New Mexico 87108, or use check-off on page 94.

short circuit

transistor curve tracer

There are several errors in the schematic for the transistor curve tracer published in the July, 1973 issue, page 53. There should be a 0.02-μF capacitor connected from the collector of Q1 to the collector of Q2; the value of C4 should be 0.2 μF, not 0.02. Also, CR9 should be a 1N457. When building this unit be sure that the circuit ground (the common ground for Q1, Q2, Q3, Q5 and Q7) is separate from the chassis grounds used on the oscilloscope jacks (J1 and J2).

CUSH CRAFT MONOBEAM

The caption may be slightly exaggerated, but we all know that the only way to get real performance is with a full size single band beam.

Cush Craft Monobeams combine superior electrical and mechanical features with the best quality materials and workmanship. They give reliable day to day amateur communications and that extra DX punch when needed for contest work or emergency communications.

<table>
<thead>
<tr>
<th>Model</th>
<th>Elements</th>
<th>Band</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A14-3</td>
<td>3</td>
<td>20 mts</td>
<td>$119.00</td>
</tr>
<tr>
<td>A14-2</td>
<td>2</td>
<td>20 mts</td>
<td>$84.00</td>
</tr>
<tr>
<td>A21-4</td>
<td>4</td>
<td>15 mts</td>
<td>$90.00</td>
</tr>
<tr>
<td>A21-3</td>
<td>3</td>
<td>15 mts</td>
<td>$65.00</td>
</tr>
<tr>
<td>A28-4</td>
<td>4</td>
<td>10 mts</td>
<td>$57.00</td>
</tr>
<tr>
<td>A28-3</td>
<td>3</td>
<td>10 mts</td>
<td>$46.00</td>
</tr>
</tbody>
</table>

SEE YOUR LOCAL DEALER
OR WRITE FOR FREE CATALOG
The all new Tdoc manual for electronics experimenters and hobbyists

More than two years in the making, Tdoc has gathered the most practical and usable data from industry, the U.S. Patent Office, NASA, NTIS (National Technical Information Service) and others. Jam-packed with all the data needed by the hobby experimenter at the bench, from theory refresher to applications, device characteristics, tables and graphs -- hundreds upon hundreds of illustrations.

A High-Density Modular Document

No wasted space or words. Separate sections are removable in loose-leaf fashion -- books within a book -- mounted in a rugged binder, big enough to hold other Tdoc publications -- or your own notes.

Just by way of example, the section on hand soldering was boiled-down from the practices of the American Welding Society -- Committee on Soldering and Braiding; NASA, USN, Solder manufacturers, the Bell Telephone System and others. The section contains everything you need to know about solder, fluxes, soldering tools and techniques.

There are over 100,000 words covering theory and application of semiconductor device diodes, transistors, the SCR/TRIAC, digital and linear integrated circuits, operational amplifiers, vacuum tubes, tuners, counters and decoders, and much, much more.

Sections also treat the vacuum tube and CRT, capacitors and electrostatic devices, relays and switches, electromechanical devices and mechanical movements, energy sources, cables and wire.

Update Without Annual Replacement

No need to buy a whole new book every year to keep abreast of information in the field; the "book within a book" style permits you to update only as needed.

There has never been another manual like it. That's why we undertook to put it together! Once you have had a chance to put the manual to use, you'll start enjoying electronics as a hobby, with fewer unfinished projects that could have been completed had there not been an information gap.

Electronics Bench Manual

Introductory Price: $17.95 *Postpaid In U.S.A.

* Send check or money order marked "EBM" with your name and address to:

TECHNICAL DOCUMENTATION
BOX 340
CENTREVILLE, VA 22020

703-830-2535

Virginia residents please add 4% sales tax.
DATA ENGINEERING IS ON THE MOVE
NEW PRODUCTS
NEW LOCATION

AUDIO AUTOMATIC GAIN CONTROL AMPLIFIER
Is your tone decoder having problems due to input signal variations? If so, eliminate these and other problems caused by weak, strong or varying input signals. The AAGC-1 will take signal levels between 50 mV to 5 Volts and feed a clean rock stable signal to any decoder for perfect operation. Give your decoder a chance to decode properly with our AAGC-1 amplifier.

Shipping Weight 3 oz. $12.95 kit
$17.95 wired

DELUXE RECEIVER PREAMPS
Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signals with a Data Preamp.

<table>
<thead>
<tr>
<th>BAND</th>
<th>STAGES</th>
<th>GAIN</th>
<th>NOISE FIGURE</th>
<th>KIT PRICE</th>
<th>WIRED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 meter</td>
<td>Single</td>
<td>20 dB</td>
<td>2 dB</td>
<td>$9.50</td>
<td>$12.50</td>
</tr>
<tr>
<td>6 meter</td>
<td>Single</td>
<td>20 dB</td>
<td>2 dB</td>
<td>$9.50</td>
<td>$12.50</td>
</tr>
<tr>
<td>2 meter</td>
<td>Single</td>
<td>20 dB</td>
<td>2.5 dB</td>
<td>$9.50</td>
<td>$12.50</td>
</tr>
<tr>
<td>2 meter</td>
<td>Double</td>
<td>40 dB</td>
<td>2.5 dB</td>
<td>$18.50</td>
<td>$24.50</td>
</tr>
<tr>
<td>220 MHz</td>
<td>Single</td>
<td>17 dB</td>
<td>2.5 dB</td>
<td>$9.50</td>
<td>$12.50</td>
</tr>
<tr>
<td>220 MHz</td>
<td>Double</td>
<td>35 dB</td>
<td>2.5 dB</td>
<td>$18.50</td>
<td>$24.50</td>
</tr>
<tr>
<td>*440 MHz</td>
<td>Single</td>
<td>14 dB</td>
<td>3 dB</td>
<td>$9.50</td>
<td>$12.50</td>
</tr>
<tr>
<td>*440 MHz</td>
<td>Double</td>
<td>28 dB</td>
<td>3 dB</td>
<td>$18.50</td>
<td>$24.50</td>
</tr>
</tbody>
</table>

*Available in June

CRICKET 1
A popularly-priced IC keyer with more features for your dollar. Cricket I is small in size and designed for the beginner as well as the most advanced operator. It provides fatigue-free sending and its clean, crisp CW allows for easy copying at all speeds. Turned on its side, the Cricket can be used as a straight key for manual keying. Right or left hand operation. AC/DC.

Shipping Weight 3 lbs. $49.95

SPACE-MATIC 21B
The SWITCHABLE Keyer — eight keyers in one! Selectable dot/dash memories, and character/word spacing. The perfectly-timed code sent by the SM-21B is as easy to copy as "Tape Code", and it gives the sender a distinguished "professional fist". When you buy the Space-Matic, you buy a "keyer for keeps". No need to trade next year for another keyer with additional features. They are all here today — in the SPACE-MATIC 21B!

Shipping Weight 4 lbs. $119.50

More Details? CHECK-OFF Page 94
We've put RTTY in its place. On television. And watching TV was never more exciting. The HAL RVD-1002 takes the output of any TU and converts the signal to one that's compatible with any TV receiver (with slight modification). Or the signal can be fed directly to a video monitor.

The RVD-1002 is compatible with signals from any TU at 60, 66, 75 or 100 WPM. The RVD-1002 means an end to the headaches of electromechanical printers — and the beginning of silent, reliable, low-power-consuming, trouble-free RTTY reception.

Whether you're into amateur RTTY, or thinking about it, or just interested in "seeing" what all those RTTY signals you hear are saying, the RVD-1002 is the perfect answer. HAL also offers the RVD-2110 (a complete, all-channel TV set, plus RTTY read-out). And if you're looking for one of the best TU's around, HAL has the answer — in the ST-6. The ST-6 is practically immune from interference, is all-solid state, has features like autostart and antispace, shift selection and much more. For transmitting, there's the HAL RKB-1 TTY keyboard, with features like auto letter/number shift at all four RTTY speeds. And all HAL products are built with care, based on sound, proven engineering and use only the finest state-of-the-art components available.

If you're looking for better television programming, get into the exciting world of video-displayed RTTY from HAL. Whether you want to ham it up or catch the latest news, or just explore the very wide world of RTTY entertainment, HAL has it. And it's a really big show!

The HAL DKB-2010 Dual Mode keyboard is one of the most sophisticated products ever offered to the radio amateur. It's an all solid state keyboard that allows you to send either RTTY or CW—with more ease, more versatility than anything you've ever seen before.

In the RTTY mode, you can transmit at standard data rates of 60, 66, 75 or 100 WPM, as well as an optional 132 WPM, 100 baud. In addition to the complete alphanumeric keys, you get 17 punctuation marks, 3 carriage control keys, 2 shift keys, a break key, 2 three-character function keys, a "DE-call letters" key and a "Quick brown fox . . ." test key.

In the CW mode, you can send at speeds anywhere between 8 WPM and 60 WPM. You can also adjust dot-to-space weight ratios to your liking. For CW, you have all alphanumeric keys, plus 11 punctuation marks, 5 standard double-character keys, 2 shift keys, a break-for-tuning key, error key, "DE-call letters" key, plus 2 three-character function keys. Output interfacing is compatible with cathode keying or grid-block keying. A side tone oscillator and built-in speaker allow you to monitor your signal—with adjustable volume and pitch controls.

The DKB-2010 also has a three-character memory buffer which operates in either the RTTY or CW mode, allowing you to burst type ahead without losing characters. A 64-character memory buffer is also available as an option. Key function logic in either mode is governed by LSI/MOS circuitry. All key switches are computer grade.

The DKB-2010 is available assembled or in kit form. Should you choose the kit, you'll find construction easy—the unit consists of three assemblies: power supply board, logic PC board, keyswitch PC board, and pre-assembled wiring harness.

Any way you look at it—as an easy-to-build kit, a complete assembly, as a CW keyboard, or an RTTY keyboard, the HAL DKB-2010 is a real breakthrough for every amateur. It adds a whole new dimension to the exciting world of amateur radio. Once you've used the DKB-2010, you'll wonder how you ever got along without it!

Prices: $425 Assembled; $325 Kit

HAL Communications Corp.
Box 365, Urbana, III. 61801
Telephone: (217) 359-7373

More Details? CHECK-OFF Page 94
SCANVISION

ready to operate
SSTV monitor
with built-in cassette
tape recorder

SSTV SCANVISION is
conservative—reliable—
has picture-proved
circuitry—
is all solid state
except for

Now—a high quality slow-scan monitor so complete that
the non-engineer radio amateur can connect it to his
receiver and start enjoying SSTV in minutes! The
pleasure and excitement potential of SSTV can best be
realized when a tape recorder is part of the system.
So—exclusive—a cassette tape recorder is built-in—
wired—matched for correct levels and impedances—
ready to go. Now, tape incoming pics for future viewing.
Or pre-tape self and family, station scenes, call
letters for later transmission (of course, "live" pics
from the camera can be transmitted directly).

WRITE FOR BROCHURE
THE MOST COMPLETE 2 METER REPEATER AVAILABLE...

DYNAMIC COMMUNICATIONS, INC.
948 Ave. "E" P.O. Box 10116
Riviera Beach, Fla. 33404
(305) 844-1323

- PCB KITS -

RTTY SPEED CONVERTER/Drilled PCB 5 & 11 VDC $42.00
DRILLED PCB ONLY $ 6.50
RTTY AFSK Gen. All Shifts & CW I.C. 9 VDC @ 2ma $7.25
100 kHz XTAL CALIBRATOR Less Xtal 9 VDC @ 2ma $5.25
POWER SUPPLY 28 VDC @ 650 ma output $9.85
PREAMP MICROPHONE 26 dB Gain 9 VDC @ 1ma $3.85
LIMITER PREAMP For High Z Mike 9 VDC @ 1ma $5.30
PRODUCT DETECTOR For Your Receiver 9 VDC @ 1ma $3.95
"S" METER KIT Less 1ma Meter $3.25
SWR METER, Stripline, Less 200ma Meter $3.25
WAV CONVERTER 3.5-4.0 MHz Output 9 VDC @ 5ma $5.75
Requires 6-6.5 MHz Crystal
6 METER CONVERTER FET Front End 9 VDC @ 5ma $6.50
7-11 MHz Output, Less 43 MHz XTAL
CW KEYING MONITOR, RF Keyed, Less Spkr. 9 VDC @ 9ma $5.20
POWER SUPPLY - 9 VDC @ 50ma Output 115VAC $5.35
50 MHz CASCODE PREAMP 10 VDC @ 4.5ma $5.45
Wired & Tested Less 2 ea 6CW4 Nuvistors DRILLS, #54, 56, 58 or 60 (each) $5.00
Finest Quality for PCB's, Made in USA Three For $12.25
EXCEPT AS NOTED ABOVE, ALL KITS ARE NEW, 100% SOLID STATE AND COME COMPLETE WITH AN UNDRILLED 6-10 PCB (PRINTED CIRCUIT BOARD) AND ALL PCB MOUNTED COMPONENTS. KITS ARE LESS POWER SUPPLIES, CHASSIS, AND ENCLOSURE HARDWARE. SEND SELF-ADDRESSED, STAMPED ENVELOPE FOR COMPLETE DATA SHEET AND SCHEMATIC.

Satisfaction guaranteed. Return in 30 days for refund. All kits postpaid. Include 25c handling charge. Washington Residents add 5.3% sales tax.

Martex Corporation
519 S. Austin, Seattle, Wash. 98108

R-X NOISE BRIDGE

- Learn the truth about your antenna.
- Find its resonant frequency.
- Find R and X off-resonance.
- Independent R & X dials greatly simplify tuning beams, arrays.
- Compact, lightweight, battery operated.
- Simple to use. Self contained.
- Broadband 1-100 MHz.
- Free brochure on request.
- Order direct. $39.95 PPD U.S. & Canada (add sales tax in Calif.)

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

- Write for data sheet
- Timer - ID'er POWER SUPPLY ALL INCLUDED
- Phone Patch Compatible

- INCLUDES EVERYTHING NEEDED BUT THE ANTENNA AND DUPLEXER
- DESIGNED TO COMPLY WITH NEW FCC REQUIREMENTS

70 april 1974

More Details? CHECK-OFF Page 94
ALL BAND, SOLID STATE COMMUNICATIONS RECEIVER

- Provision for all mode reception and filters: SSB, CW**, AM**, RTTY, and FM**
- Complete transceive capability with 101 series
- Reliable, plug-in circuit boards
- Better than 1kHz readout on all bands
- Selectable fast or slow AGC
- Built-in noise blanker
- Fixed channel crystal control provision
- PLU MORE EXCITING FEATURES. ANOTHER FIRST FROM YAESU!

(*optional plug-in crystals) (**optional filters available)

Available soon from your dealer

Price and specifications subject to change without notice

VISIT YOUR DEALER FOR MORE INFORMATION ON THESE AND THE COMPLETE YAESU LINE

Full six month dealer warranty with factory service available for continued after warranty service backup

ADVANCED AMATEUR TECHNOLOGY from YAESU

YOUR ASSURANCE OF PERFORMANCE AND QUALITY

NEW! Amateur Net NEW! Amateur Net
FR-101S $499 YO-100 $199

YAESU MUSEN USA INC.
7625 E. Rosecrans Ave., Unit #29, Paramount, CA. 90723
(213) 633-4007

More Details? CHECK-OFF Page 94

april 1974 71
MODEL 60 SPEECH PROCESSOR - ORQ the average sound pressure level of the speech path as much as 8 db using a logarithmic principle. Operates with FM, AM and SSB transmitters and receivers. Low High impedance output, 1.5W into 4 Ohm batteries provide a self-contained unit. Model 60W (Processor Assembly) $25.00
Model 60P (Processor Kit) $22.00

MODEL 20 DIGITAL DIAL - Available for use on Collins and Drake gear. Optional four digit readout and crystal time base. QSY your fixed or mobile transmitter/receiver or transceiver with 100 Hz accuracy and no last digit error. Simple one wire connection direct to rig and you're ready to go. Specify your type of rig.
Model 20-5 (5-5 MHz VFO range). $169.50
Model 20C (Collins). $169.50
Model 20D (Drake). $169.50
Options: 4 Digit Readout...$29.95
(Crystal Time Base)...$39.95

MODEL 10A PADDLE - Designed with reliability in mind. No mechanical switches or bearings to fail. Paddle contact spacing adjustable.
Model 10A Assmbled...$9.95

MODEL 10A ELECTRONIC KEYER - Has NEW features at no extra cost. Linear Speed Control and Operation Switch Plus integral neon pilots and crude relay output provides a compact, portable, versatile unit.
Model 10AWE Keyer & Subtone Assembly...$33.95
Model 10A Keyer Assembly...$26.50
Model 10AK Keyer Kit...$21.95
200-2K (Keyboard Board Kit)...$12.95
200-3K (Subtone Board Kit)...$4.95

DEALERS:
VE AMATEUR RADIO SALES, Downers Grove, Il. 60515
EST ELECTRONICS, Lakeland CA 92538
GARY RADIO INC, San Diego CA 92115
AN-TEK INDUSTRIES, Emeril LA 70043
SIGNAL SYSTEMS, Boulder CO 80304
KASS ELECTRONICS, Distribs, Dyke MI. PA 16421
HAMTRONICS, Twin City PA 19047

STAR-TRONICS
INDUSTRIAL AND GOVERNMENT ELECTRONIC SURPLUS
PARTS & PIECES FOR SCHOOLS, SHOPS, HAMS & HOBBISTS
SEND FOR OUR LATEST ALL DIFFERENT MONTHLY PICTURE CATALOG. NOW!
Box 17127, Portland, Ore. 97217

WORLD QSL BUREAU
THE ONLY QSL BUREAU to handle all of your QSLs to anywhere; next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of $6 each.
5200 Panama Ave., Richmond, CA USA 94804

USED TEST EQUIPMENT
All checked and operating unless otherwise noted. FOB Monroe. Money back less shipping if not satisfactory.
Boonton 190A Q-mtr 20-260 MHz Q5-1200...375
Boonton 202B Sig Gen AM-FM 54-216 MHz $325
Boonton 202C - Later version of above .585
Boonton 260A Q-mtr 0.05-50 MHz Q10-625...375
HP100D-Freq, stand. w/ scope, Acc. Ippm...85
HP185A Scope w/186B amp sampling 1GHz...335
HP330C Dist. anal 20-200 MHz....$295
HP524D-Freq. Counter. Basic unit 10Hz-10MHz...185
HP540B Trans. osc. for 524 to 12.4GHz...185
HP608D (TS510A/U) sig. gen. 10-420MHz...450
Nemis Clark 1671 FM rcr 175kHz-26.9MHz...25
Polarad MSG34-Sig. Gen 4.211GHz calib. attn. AM-FM-Pulse mod. .495
Polarad R. uwave rcrv 4-84GHz with plug-in AM, FM, CW, Pulse - less plug-in...225
Polarad TSA Spec. Anal. 0.144GHz with plug-in - less plug-in...125
HP803A Imp. Bridge 50-500MHz 2-2000 ohm...195
Solitron 200A SCR tester-checks anode, gate volts current, leakage and holding...165
Stoddart NM10A (URM-6) RF intns mtr 10-250 kHz, complete with acc. $630
Stoddart NM20A (PRM-1) RF intns mtr 15-250MHz, complete with acc. $455
Stoddart NMS2A-RFI mtr., 375-1GHz, w/ acc. $985
Tek RM 15-15GHz GP sweep...265
Tek TR-1 Time mark generator...295
Tek 190A Const. Ampl. Sig. Gen. .35-50MHz $175
Tek 531 DC-15GHz scope-takes letter plug-in...175
Tek 565 dual plug-in...1600 MHz...625
SG24/TRM3 Sweep Gen. 15-400 MHz, CW, AM, FM Xtal markers, scope-Dev. to 20%...245
TS-403A Gen. (HP610-1) 1.8-4GHz...185
URM 7 RFImp mtr (sim. NF-105) 20-400MHz...750
(Send SASE for complete list)

GRAY Electronics
P. O. Box 941, Monroe, MI 48161
Specializing in used test equipment

THE LATEST...
FROM
• FCC
• ARAI
• INDUSTRY
• PROPAGATION
• CONTESTS
• DX

BARGAINS!
KLEINSCHMIDT TELETYPE EQUIPMENT
(1) TI-100 PAGE PRINTER, AS 15 60 OR 100 WPM...$59.95
(2) TI-117 PAGE PR OR (B) TI-177 REPEATER & TD, AS IS...$59.95
(3) ABOVE CHECKED OUT & REPAIRED, EA...$129.95
(4) TABLE...$39.95 (C) TABLE...$29.95 (D) COPYHOLDER...$39.95
(5) PAPERWINDER...$39.95 (A) TT-107 REPEATER DLY...$49.95
TH-5 CONVERTER TRANS/REC 100 CYCLES ADJUST TO 170 SHIFT...$59.95
Andy Electronics Co., Inc.
6319 Long Drive / Houston, Texas 77017
(713) 641-0576
ALL PRICES FOB HOUSTON, TEXAS

ISSUE*
A four page, instant newsletter in the mail when it happens: 24 issues per year (or more when things get busy)

*24 issues per year

A year $12.00 US, Canada & Mexico - $15.00 Worldwide

hr REPORT
GREENVILLE, NH 03048

More Details? CHECK-OFF Page 94
SBE SPECIAL BUY
EXTRAVAGANZA!!

AS THE RESULT OF A SPECIAL PURCHASE THE FM PEOPLE ARE ABLE TO OFFER THE FAMOUS SBE FM TRANSCEIVERS AT FANTASTIC SAVINGS... THIS OFFER IS LIMITED SO DON'T DELAY...

ORDER NOW FOR IMMEDIATE DELIVERY

SB144
- 2 mtr all solid state
- 12 channels
- 10 W output with 16/76, 34/94, 94/94

List $259.95

ONLY $178.00

SB450
- UHF all solid state
- 12 channels
- 5 W output with 449.5/444.5 & 446.0 smlp

List $399.95

$299.95

MOTOROLA GOODIES

<table>
<thead>
<tr>
<th>Series</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Receiver strips for Hi or Lo band</td>
<td>$30.00</td>
</tr>
<tr>
<td>G</td>
<td>Transmit strips, Hi or Lo band</td>
<td>10.00</td>
</tr>
<tr>
<td>Channel</td>
<td>Large assortment, price each</td>
<td>6.00</td>
</tr>
</tbody>
</table>

TERMS OF SALE: Sales to licensed Radio Amateurs for use on Amateur freqs only. All prices FOB Oak Park, IL. Check with order, COD or you can charge to your BankAmericard or Master Charge.

STORE HOURS: Mon.-Thurs. 9:30-6:00, Fri. 9:30-8:00, Sat. 9:30-3:00. Closed Sun. & Holidays

WANTED: Good used FM & test equipment. No quantity too large or small. Finders fees too.

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, ILL. 60304
(312) 848-6778

More Details? CHECK-OFF Page 94
Measurs RF

in 2 ranges 25 and 250 watts. Allows operator to select any one of 3 antennas or dummy load. Two antennas can be switched in simultaneously. New Sloping Front Console Cab. $12.95

450X-S Antenna Switch

3-Position Slide Switch
Low Loss - Walnut-grain Finish Chassis - Gold Cover $9.95

700X-2 KW Wattmeter

Dummy Load Wattmeter for 52 O's Input. Measures RF in 4 ranges to 1000 watts. Measures modulation percentage on calibrated scale. Portable. $124.50

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions</th>
<th>Resale</th>
</tr>
</thead>
<tbody>
<tr>
<td>"E"</td>
<td>6 1/2 x 3 1/2 x 7 1/16</td>
<td>8.25</td>
</tr>
<tr>
<td>"HA"</td>
<td>6 1/2 x 5 1/4 x 4 (Blank Panel)</td>
<td>8.95</td>
</tr>
<tr>
<td>"K"</td>
<td>4 3/4 x 7 1/2 x 11 W/Handle</td>
<td>13.50</td>
</tr>
<tr>
<td>"L"</td>
<td>11 3/4 x 6 3/4 x 12 1/2</td>
<td>20.50</td>
</tr>
</tbody>
</table>

**L" package enclosure "Shadow Box" machined with: 2-50323, 1 - Pilot Light, 3 - Rocker Switches, and 2 - Knobs

APOLLO PRODUCTS

BOX 245 - VAUGHNSVILLE, OHIO 45893 - Phone (419) 646-3495 - Evening Phone (419) 646-3495

FREE CATALOG

CRAMMED WITH GOVT SUPRUS ELECTRONIC GEAR WRITE TODAY!

TG-34A CODE KEYER

self-contained, automatic, reproduces code practice signals from paper tape. 5 to 12 WPM Built-in speaker. Brand new with tech manual, takeup reel and AC line cord. $24.50

Code practice tapes for above P. U. R.

BC-1206-C RECEIVER

BC-603 FM RECEIVER

Converted for 35-50 MHz. 10 preset pushbutton channels or manual tuning. Complete with 10 tubes, checked out, like new $34.50

AC Power Supply, New $14.95

DM-34 12V Power Supply, New $4.45

DM-36 24V Power Supply, Exc. Used $2.25

Technical Manual $2.50

Set of 10 tubes for BC-603 Receiver $5.95

BC-604 FM TRANSMITTER

20 to 27.9 Mc. Output approx. 30 watts. 10 crystal controlled channels. Complete with tubes. NEW $8.50

G&G RADIO ELECTRONICS COMPANY

LOW PRICES ON POPULAR COMPONENTS

IF FILTERS

- Monolithic crystal filters at 10.7 and 16.9 MHz
- Ceramic filters at 455 kHz

SEMICONDUCTORS

- VHF power transistors by CTC-Variian
- J and MOS FETS
- Linear ICs - AM/FM IF, Audio PA
- Bipolar — RF and AF popular types

INDUCTORS

- Molded chokes
- Coil forms — with adjustable cores

CAPACITORS

- Popular variable types

QUALITY COMPONENTS

- No seconds or surplus
- Name brands — fully guaranteed
- Spec sheets on request

GREAT PRICES

- Price breaks at low quantities
- Prices below large mail-order houses

WRITE FOR CATALOG 173 AMTECH

P. O. BOX 624, MARION, IOWA 52302
(319) 377-7927 or (319) 377-2638

More Details? CHECK-OFF Page 94
an extraordinary combination of digitally synthesized receivers...

each with built-in capacity to satisfy a broad spectrum of singular applications.

ITT Mackay Marine 3020A and 3021A Radio Receivers feature solid state construction, dual conversion and super-heterodyne design providing continuous frequency coverage from 15kHz to 29.9999MHz. Frequency selection is accomplished by step tuning, while the 3021A Receiver uses sweep tuning. These receivers meet strict requirements of British MPT, German FTZ, Norwegian NTA, Dutch and Spanish PTT and Canadian DOC, and can be used wherever maximum reliability and ease of maintenance are required.

Write or call Ed Engebretson, General Sales Manager (K41QD), today for complete information on these two quality, high performance receivers.

ITT Mackay Marine, 2912 Wake Forest Road, Raleigh, North Carolina 27611. Telephone: (919) 828-4441.
I, SPACE REQUIRED
NO ADDITIONAL REQUIREMENTS
IMPROVES INTELLIGIBILITY
6 db INCREASE IN AVERAGE
EXCELLENT FOR PHONE PATCH
POWER
ALL
GECI.

This is RF Envelope Clipping — the feature being used in new
transmitter designs for amateur and military use.
Models Now Available
Collins 325-3, KWM-2... $79.50 ea.
Drake TR-3, TR-4 ... $98.50 ea.
Postpaid — Calif. Residents add sales tax
Watch for other models later!

DX Engineering
2455 Chico Avenue South El Monte, Calif. 91733

tri-tek, inc.
P.O. BOX 1426 DEPT H PHOENIX, ARIZONA 85003
VOLTAGE REGULATORS
MFC-4034 ... VARIABLE UP TO 20V, 200mA ... $1.00
MC78LS, 7812, 7815, FIXED VOLTAGE, 1A ... $2.08
MCP7815, 7815, FIXED-VOLTAGE, 1A ... $2.99
DTL INTEGRATED CIRCUITS
930 ... DUAL 4 INPUT NAND GATE5 .30
965 ... CERAMIC 2 INPUT NAND GATE5 .80
967 ... TRIPLED 4 INPUT NAND GATE5 .20
TTL ... BRAND NEW ... HOUSE NUMBERED ...
SN7400, 7402, 7404, 7430 ... $.25
TRANSISTORS
2N2907A, HIGH SPEED PNP, HOUSE NUMBERED 5/51
MJ 1093, JPN DARLINGTON, 70V, 800MA ... $2.05
JAN2222A, HIGH SPEED NPN SWITCH5 .30
MFP 120 ... DUAL gate MOS FET5 .35
MFE 2000 ... H/UMF IN CHANNEL JFET5 .25
MFE 2001 ... V/UMF IN CHANNEL JFET5 .80
CAPACITORS
GLASS SEAL TANTALUMS,6.8uF to 5mF ...
.1uF, $1.50; .01uF, .50; .001uF, .25; 8 $5.1
ELECTROLYTICS, COMPUTER GRADE, BRAND NEW ...
720uF/15V, .5$; 56,000uF/15V, 5.25
RUBBER WIRE WITH FULL SPECIFICATIONS AND ARTICLE ...
95.75 EA ... 2 FOR $1.50
MAX3334 CLOCK CHIP WITH SPECIFICATIONS ...
8.50
7-SEGMENT LED DISPLAY54.00
RED WIDE ANGLE LED5 .25
RED NARROW ANGLE HI-LUM LED5 .25
GREEN HI-LUM CLEAR LENS LED5 .25
SUBMINI CERAMIC TRIMMER, 3.5-13pF, PCB MOUNT ...
ALL ORDERS POSTPAID, MINIMUM 5 U.S., 15 FOREIGN
LATEST LISTS, 10¢ STAMP ... PLEASE ADD INSURANCE

MINIATURE SUB-AUDIBLE TONE ENCODER $14.95
Wired —
COMPATIBLE WITH ALL SUB-AUDIBLE TONE SYSTEMS SUCH AS PRIVATE LINE, CHANNEL GUARD, QUIET CHANNEL, ETC.
GLASS EPOXY PCB, SILICON TRANSISTORS, AND TANTALUM ELECTROLYTICS USED THROUGHOUT
ANY MINIATURE DUAL CORE CONTACTLESS Reed may be used (Motorola TLC16824A, TLC16794-B — Bramco RF-20)
POWERED BY 12VDC OR 3mA
USE ON ANY TONE FREQUENCY 67Hz TO 250Hz
MINIMUM IN SIZE 2.5 x .75 x .5" HIGH
OUTPUT 3V RMS SINEWAVE, LOW DISTORTION
Postpaid — Calif. Residents add sales tax

COMMUNICATIONS SPECIALISTS
P. O. Box 153, Brea, CA 92621

WE PAY HIGHEST PRICES FOR ELECTRON TUBES AND SEMICONDUCTORS

H & L ASSOCIATES
ELIZABETHPORT INDUSTRIAL PARK
ELIZABETH, NEW JERSEY 07206
(201) 351-4200

WHY FIGHT QRM & QRM?
The NEW DE-101 family of Signal Discriminators is designed to fight CW QRM and QRM for yomself without rig modifications. Each discriminator unit consists of two 3-pole operational amp. filters stagger-tuned for a flat 100 Hz bandpass at
1000 Hz. A buffer amp. is included for use with a 13 W Per amp. for an 8 ohm spkr. All adjustments, factory tuned, plug in installation, one year warranty, and 15 day return privilege.

DE-101 For headphones only ... 115 VAC ... $29.95 + $2 ship.
DE-101A For Spkr & headphones, 115 VAC ... $39.95 + $2 ship.
DE-101B For Spkr & phone, 12 VDC ... $29.95 + $1 ship.
DE-101C For headphones only, 12 VDC ... $19.95 + $1 ship.
CB-1 Wired & tested DE-101C circuit bt. ... $14.95 ppd.
CB-2 3-Watt Audio PWR Amp, for 8 ohm spkr. 12 VDC Kit ... $8.95 ppd.
Wired & tested $10.95 ppd.

Alabamians add 5% tax

dynamic electronics inc.
Box 1131 Decatur, AL 35601

DRESS UP YOUR STATION
your own engraved woodgrain-ed station identification plate complete with logging pens (as pictured) only $9.00, without pens (flexi-base) $5.00, complete satisfaction — prompt delivery Guaranteed.

J & L Plastic
Engraving
BOX 23
JACKSON, MI 49204
Wilson Electronics Presents The Finest 2 Meter Hand Held With the Hottest Rx Front End on The Market.

2 METER FM TRANSCEIVER MODEL 1402SM

- **FREQUENCY**: 140 - 150 MHZ (2 MHZ SPREAD)
- **NUMBER OF CHANNELS**: 6 (Supplied with 146.94 Simplex 146.34/94 - 146.16/76)
- **R.F. Output**: 2 Watts minimum
- **Sensitivity**: Better than 0.3 MV/20 DB Q.S.
- **Audio Output**: 500 mv
- **Meter Output**: Monitors battery voltage on Tx, S meter on Rx
- **Weight**: 1 lb. 4 ounces without batteries
- **Current drain**: 15 MA Rx
- **Size**: 8 7/8" x 1 7/8" x 2 7/8"
- **Includes**: Adjustable Whip Ant

$239.00

MODEL # ACCESSORIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>NAME</th>
<th>NET PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1410A</td>
<td>12 Watt Power Amplifier Also Includes Steel Case For 1402SM - Charges 1402 SM When Plugged into Cigarette Lighter</td>
<td>99.00</td>
</tr>
<tr>
<td>1410A</td>
<td>LCL LEATHER CASE</td>
<td>12.00</td>
</tr>
<tr>
<td>1410A</td>
<td>14BC BATTERY CHARGER</td>
<td>29.95</td>
</tr>
<tr>
<td>1410A</td>
<td>SM1 SPEAKER MIKE</td>
<td>24.00</td>
</tr>
</tbody>
</table>

WRITE FOR COMPLETE SPEC SHEETS. SEE YOUR NEAREST DEALER FOR THE FINEST AMATEUR HANDIE TALKIE ON THE MARKET. DEALER INQUIRIES INVITED COMMERCIAL VERSION AVAILABLE

Wilson Electronics

P.O. Box 794 Henderson, Nevada 89015

Telephone (702) 451-5791 451-6650

April 1974
NEW!
GLOBALMAN tm
ELECTRONIC KEYER
EK-108D
with built in monitor
$64.95 ppd.
Jam-Proof IC Circuitry • 5-50 wpm
self completing • Output heavy-duty
TR switch 250v. 2 amps • Power: 2
flashlight batteries or external 6VDC
1 year unconditional guarantee — 10 day return privilege
Write for spec & photos. Dealers Wanted
W6PHA — GLOBAL IMPORT CO.
714-533-4400 Telex 678496 Box 246, El Toro, Calif. 92630

NEW FOR 74
ECM 5A FM Modulation Meter
Only $55.00
- crystal control
- crystal detent
- crystal detent
- crystals 15 kHz deviation
- crystals 2 crystals
- crystals 15 kHz deviation
- crystals 15 kHz devotion
- crystals 15 kHz design
3-CHIP CALCULATOR

This calculator set provides all of the electronics for an 8-digit, floating-point calculator with left-hand entry. Keyboard, display, clock generator, and display driver is all that is needed. Use adder module which adds, subtract, multiply and divide. Overflow and negative signal are provided. Instructions to build a calculator included.

CHIPS AND DATA...$8.95 DATA ONLY (Refundable)...1.00

CT8005 CALCULATOR

This calculator chip has a full four-function memory, which is controlled by four keys. (adds entry into memory), (subtracts entry from memory). (clear memory, without clearing rest of registers). (read memory or use as entry). 12-digit display and calculator. Fixed decimal at 0, 1, 2, 3, 4, 5, 6, 7, or 8. Leading zero suppression. 7-segment multiplexed output. True credit sign display. Single 28-pin chip.

CHIP AND DATA...$14.95 DATA ONLY (Refundable)...1.00

5001 CALCULATOR

40-Pin chip calculator will add, subtract, multiply, and divide. 12-digit display and calculator. Chain calculations. True credit sign output. Automatic over-flow indication. Fixed decimal point at 1, 2, 3, or 4. Leading zero suppression. Complete data supplied with chip.

CHIP AND DATA...$9.95 DATA ONLY (Refundable)...1.00
The 23rd Annual
Dayton HAMVENTION®
Expands to 3 Days
April 26-27-28, 1974

No Increase in Registration Price

More Technical Sessions • Exhibits • Flea Market • Awards
UHF Hidden Transmitter Hunt • Ladies Programs
Special Group Meetings

Saturday Banquet Speaker—Sen. Barry M. Goldwater, K7UGA

Write Dayton HAMVENTION
P.O. Box 44, Dayton, Ohio 45401

See You at the World's Largest Ham Gathering

NOVICE RADIO GUIDE
by Jim Ashe, W1EZT

A complete handbook for the beginning amateur. Covers basic communications theory. How to build transmitters and simple receiving equipment. How to set up antennas. Putting your station together, plus valuable appendices. How to learn the code and more. Any beginner will go further faster and have more fun with this exciting new book.

144 pages $3.50

Send for your copy today

ham radio
greenville, new hampshire 03048
NEW PRICES!!!

INCREASED PARTS AND LABOR COSTS HAVE FORCED US TO RAISE PRICES ON SOME PRODUCTS.

PA1501H—PA2501H—PA4010H

PA144/15—PA144/25—PA220/15

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PW IN</th>
<th>PW OUT</th>
<th>KIT PRICE</th>
<th>WIRED & TESTED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA-1202-H</td>
<td>1-3</td>
<td>12</td>
<td>$39.95</td>
<td>$49.95</td>
</tr>
<tr>
<td>PA-1501-H</td>
<td>1-4</td>
<td>15</td>
<td>$49.95</td>
<td>$64.95</td>
</tr>
<tr>
<td>PA-2501-H</td>
<td>1-4</td>
<td>25</td>
<td>$59.95</td>
<td>$74.95</td>
</tr>
<tr>
<td>PA-4010-H</td>
<td>5-12</td>
<td>40</td>
<td>$59.95</td>
<td>$74.95</td>
</tr>
<tr>
<td>PA-110/30</td>
<td>3-12</td>
<td>110</td>
<td>N.A.</td>
<td>$149.95</td>
</tr>
<tr>
<td>PA-144/15</td>
<td>1-4</td>
<td>15</td>
<td>$39.95</td>
<td>$49.95</td>
</tr>
<tr>
<td>PA-144/25</td>
<td>1-4</td>
<td>25</td>
<td>$49.95</td>
<td>$69.95</td>
</tr>
<tr>
<td>PA-220/15</td>
<td>1-4</td>
<td>15</td>
<td>$39.95</td>
<td>$69.95</td>
</tr>
</tbody>
</table>

NOTE: Less Case and Switching.

PA1501H—PA2501H—PA4010H

PA144/15—PA144/25—PA220/15

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PW IN</th>
<th>PW OUT</th>
<th>KIT PRICE</th>
<th>WIRED & TESTED PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA-144/15</td>
<td>1-4</td>
<td>25</td>
<td>$49.95</td>
<td>$64.95</td>
</tr>
<tr>
<td>PA-144/25</td>
<td>1-4</td>
<td>25</td>
<td>$49.95</td>
<td>$69.95</td>
</tr>
<tr>
<td>PA-220/15</td>
<td>1-4</td>
<td>25</td>
<td>$39.95</td>
<td>$69.95</td>
</tr>
</tbody>
</table>

NOTE: Less Case and Switching.

GOING TO DAYTON?—SIGN UP AT OUR BOOTH FOR A FREE HT-144 WALKIE TALKIE.

VHF ENGINEERING
DIV. OF BROWNIAN ELECT. CORP.
320 WATER ST. POB 1921 BINGHAMTON, N.Y. 13902 607-723-9574
KRONOS WITH "TIME BASE"

8-digits

$47.

NEW FOR '74

WITH TIME BASE $64.95

H-MAN LED readouts are all LED, but the new Kronos 8799 and 8799-8843 SLA, like the MAN-1, are of the reflective faceplate type, with the "time base" of the MAN-1 circuitry inside. This 7-segment device drives green.

1. Man-1, Man-2, and Man-4, all for $19.75.
2. Each Man-4, 19.75.
3. Man-10, 7077, 2.75.
4. Man-10, 7077, 2.75.
5. Man-10, 7077, 2.75.
6. Sla-1, 2.75.
7. Sla-1, 2.75.
8. Sla-1, 2.75.
9. Sla-1, 2.75.
10. Sla-11, 4.95.

ADD $12.

- New Two clocks in one!
- For 12VDC, 110VAC!
- Thermometer.
- One price for all LED, no matter what size.
- Made in the USA today.
- 12 or 24 hour clock.

CRYSTAL TIME BASE FOR KRONOS

$19.95

Includes precision crystal, enclosure, etc. in brand new, sealed package with instructions.

- Not for H-MAN

7-SEGMENT LED READOUTS

(ALL "LED" TYPES)

MAN-1 $3.75
MAN-2 $3.75
MAN-3 $4.00
MAN-4 $4.00
SLA-1 $2.50
SLA-11 $2.50

REFLECTIVE BAR TYPES

7077 $2.50
7077 $2.50
Sla-1 $2.50
Sla-1 $2.50
Sla-1 $2.50
Sla-1 $2.50
Sla-1 $2.50

- By Kronos, listed in open, unopened and MAN-1 or MAN-2 types.

WHY BUY MULTIDIGIT REJECTS?

DIGI-METER READOUT

FOR PANEL INDICATION

$14.95

Buy 3 clocks 10% off.

FIRST TIME!

$2.98

For 12 VAC

KAP RELAYS

$9.99

Only

REDUCTION Char. Maker

3 for $2.98

Phone Orders: Wakefield, Mass. (417) 245-2829

In New England Call FREE-82 REDUCTION Char. Maker

Date

4 4 4 4

Water Street C.O.D. NO MAY CREDIT

15 CATALOGS on Fiber Optics, "OMS", Semi's, Parts

POLY PAKS

P.O. Box 944, LYNCHFIELD, M.A. 01840
SIGNAL ONE OWNERS, expert and prompt service by ex-Signal/One engineer. Also will purchase your functioning or not functioning unit and spare parts. Write or call for details. Larry Pace, K2IXP/7, 1071 W. Roller Coaster, Tucson, AZ. 85704 (602-888-5234).

GEORGIA QSO PARTY, 2000 GMT, May 11 to 0200 GMT, May 13. No time or power restrictions. Contacts may be made once on phone and once on c.w. per band with each station. Mobiles in a new county count as new station. Exchange: QSO number, report, and state, province or country for others. (Georgia-to-Georgia contacts permitted.) Frequencies: c.w. — 10, 35, 70, 140, 280, 5060, 5200, 7260, 14290, 21360, 28600. Novices — 3718, 7215, 21110, 28110. Try 160 meters at 0300 GMT. Try 10 meters on the hour and 10 meters on the half hour during daylight hours. Your show: date and time of contact in GMT, stations worked, exchanges sent and received, band used, type emission, and multipliers claimed. Check list will be appreciated. Details from CARC, c/o John T. Laney, III, K4BPI, Post Office Box 421, Columbus, Georgia 31908. Include a large self-addressed, stamped envelope.

QSL's, Sample catalog 20c. N & S Print, P. O. Box 11184, Phoenix, Ariz. 85061.

LED's, sample pack of 10, includes green and yellow. $25 post paid U.S.A. Estes Electronics, 50 Scott St., Hamburg, N. Y. 14075.

THE TRI-STATE ARS will hold their annual hamfest on May 11, 1974, at the 4-H Fairgrounds, U.S. 41, three miles north of town. Overnight camping, auction, flea market, door prizes, and ladies' bingo. For information or advanced registration contact: Steve, W9SMB, 5805 Berry Lane, Evansville, Indiana 47721.

MOTOROLA PORTABLES — Expert repairs, reasonable prices, fast turn-around time. More details and flat rate catalog FREE. Ideal Services, 6663 Industrial Loop, Greendale, Wis. 53129.

WANTED: HEATHKIT SB-110A or HK-30, WA1DEE, James Moore, 16 Curve St., Springfield, Mass. 01104.

MANUALS for most ham gear made 45/55, some earlier. Send SASE for specific quote. Hobby Industry, W2JJK, Box H-864, Council Bluffs, Iowa 51501.

RATES Commercial Ads 35¢ per word; non-commercial ads 10¢ per word payable in advance. No cash discounts or agency commissions allowed.

COPY No special layout or arrangements available. Material should be type-written or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue. Deadline is 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

RTTY, 28-ASR, and 28 REPERF, built-in ST-6, AFSK keyer and scope, ready to go with any SSB rig, pick-up only, contact VE3CTP, 2 Adriandale Gate, Agincourt, Ont., Canada, MIT 3E7.

WIN A FREE one week trip to Bermuda in the 1974 BARC Contest April 20 & 21, May 4 & 5. Four prizes awarded, two to USA and two to UK. Full details from VP9GR, G3RZI or WAZAMU.

RESISTORS: Carbon composition brand new. All standard values stocked. 1/2 W 10%, 40/50 kohm; 1/2 W 10% 30/1 $0.00 — 10 resistors per value, please. Minimum order $5.00. 15W RMS 1C Audio Amplifier — Panasonic, Frequency response 40Hz-100kHz, 1/2% distortion, Flange $6.95 Postpaid. Pace Electronic Products, Box 161-H, Ontario Center, New York 14520.

TENNESSEE QSO PARTY between 2200 GMT May 18th and 2200 GMT May 19. No time or power restrictions. All bands may be used. Amateurs outside Tennessee will attempt to contact as many amateurs in Tennessee as possible. Tennessee amateurs will attempt to contact as many amateurs as possible in Tennessee and the world. Those portions of the bands licensed to Generals may be used. Details from W8 IgLT.

QSL's CATALOG SAMPLES 35¢, Ritzy Print Shop, 5810 Detroit Avenue, Cleveland, Ohio 44102.

9639$’s, 6360’s Guaranteed good, $2.50 each. Jack WETNKR, 15718 Mayall, Sepulveda, Calif. 91340.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines in assembled or kit forms, plus many other suppression accessories. Free illustrated literature. Estes Engineering; 543-H West 184th, Gardena, California 90248.

FOR SALE — PACKAGE DEAL — TR6 Transceiver along with noise blanker, A/C power supply, MS 4 matching speaker cabinet with AM crystal filter and upper side band filter. Machine under two years old and never used in mobile. Thomas S. Jacobsen, 3371 Decatur Ave., Bronx, N. Y. 10467.
When you want an authoritative, up to date directory of licensed radio amateurs
It's the
CALLBOOK

Over 210,000 QTH's in the U.S. edition
U.S. CALLBOOK for 1974
$8.95

See your favorite dealer or Send today to
(Mail orders add 50c per CALLBOOK for postage and handling)

CALLBOOK INC
Dept. E, 925 Sherwood Drive
Lake Bluff, Ill. 60044

WRITE FOR FREE BROCHURE
RTY, 35-ASR, overhauled and very clean. Make offer. Pickup only. Contact VE3CTP, 2 Adirondack Gate, Agincourt, Ont., Canada, MIT 3E7.

USED MYLAR TAPES—1600 foot. Ten for $5.50 postpaid. Freeremon, 4041 Central, Kansas City, Mo. 64111.

DIGITAL FREQUENCY DISPLAY for your receiver and transmitter. Detailed plans, $3.00. Communications Electronics, Specialties, 814 Orwell Ave., Orlando, Florida 32809.

TEST EQUIPMENT, electronic servicing books, ham gear. Send for list. Clime, WATMR, Box 216, Logan, Utah 84321.

STANDARD 146-A (1-2) $238.70, (3-11) $212.30. Nicad $1.50. Stubby antenna $5.50. Standard 826MA (1-2) $324.50. (3-11) $306.90. Standard 851T 25 watt mobile $420.20. Standard RFP-1 repeater $600.00. Standard HM-175A antenna $16.00. Base station antenna HM-191 8.25 db (list $119.50) net $119.95. Send check and we’ll pay postage or we will ship COD.

NATIONAL COMMUNICATIONS CONVENTIONS P.O. Box 17222, Nashville, Tenn. 37221 (24 hr.) 615/834-8999.

WALTHAM AMATEUR RADIO ASSOCIATION Annual Auction April 6, 1:00 PM, Kennedy Memorial Junior High School, Lexington, Waltham, MA. Talk-in .52 and 04/64.

QRP TRANSMATCH for the HW7 and other rigs. Write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

FOR SALE—Johnson kilowatt matchbox and controller, $125.00 postpaid. Need a pair of 8212 tubes. Sal Francione, W2IDC, 78 Brookdale Ave., Milford, Conn. 06460.

HAFMEST, APRIL 28TH, Lee County 4-H fairground, 1 mile east of Rt. 30 — Rt. 52 junction, Amboy, Ill. Rain or shine. Camping. Swap & shop. 146.94 talk-in. Tickets $1.50 advance, $2.00 gate from W9EGF, Box 93, Nachusa. Ill. 61054.

FIGHT TVI with the RSO Low Pass Filter. For brochures write: Telecommunications Manufacturing Company, Box 126, Agincourt, Ontario, Canada. MIS 384.

R239/A $425.00 local. Sy Kramer, 120-8 Erskine Pl., Bronx, N.Y. 10475.

HOMEBREWERS: Stamp brings list of high quality components. CPO Surplus, Box 189, Braintree, Mass. 02184.

FREE crystals with the purchase of any 2 meter FM radio. Write for our deal on the rig of your choice. Factory-authorized dealers for Regency. Drake, Kenwood, Tempo, Genave, Swan, Clegg, Tenn-Tec, Standard, Midland, Hallcrafters, Galaxy, Sony, Hy-Gain, CushCraft, Mosley, and Hustler. For the best deal around on HF or VHF gear, see us first or see us last but see us before you buy. Write or call us today for our low quote and become one of the many happy and satisfied customers of Hoosier Electronics, R. R. 25, Box 403, Terre Haute, Indiana 47802. (812)-894-2397.

AMATEUR EQUIPMENT AUCTION will be held at 1:00 p.m., May 5, 1974, 1205 West Perkins Avenue, Laborers’ Union Hall, Sandusky, Ohio. Refreshments, cash prizes, door prizes. Call in on 9044-2525.

RECIPROCATING DETECTOR, write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

More Details? CHECK—OFF Page 94
STANDARD
SRC-146A
ERICKSON
SPECIAL
WITH
- Charger
- "Stubby" antenna
- Leather case
- Ni-Cads
- 94/94, 34/94 and one channel of your choice
$369 List
-50 Package Discount
$319 Prepaid - Cashier's Check or M.O.

SYNTHESIZED!
Inoue's New

IC-230
- 162+ channels, simplex or offset (600 kHz) for repeaters
- All modular construction
- Super hot MOSFET/helical coil .4µV receiver
- AVAILABLE NOW! ... only $489.00

TEMPO
POWER AMPS
up to 135 W OUT
with 1 to 25 w drive from mobile, base or HT...

<table>
<thead>
<tr>
<th>MODEL</th>
<th>POWER (watts)</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10002</td>
<td>100W</td>
<td>$279.00</td>
</tr>
<tr>
<td>10032</td>
<td>100W</td>
<td>$279.00</td>
</tr>
<tr>
<td>8002</td>
<td>80W</td>
<td>$159.00</td>
</tr>
<tr>
<td>8003</td>
<td>80W</td>
<td>$159.00</td>
</tr>
<tr>
<td>5002</td>
<td>50W</td>
<td>$109.00</td>
</tr>
<tr>
<td>5003</td>
<td>50W</td>
<td>$109.00</td>
</tr>
<tr>
<td>302</td>
<td>30W</td>
<td>$93.00</td>
</tr>
</tbody>
</table>

Solid State Micro-Strip Circuit
Ready-to-go, Cables supplied
All U. S. made

In stock. Shipped same day UPS ppd. for Cashier's Check or M.O.

ERICKSON COMMUNICATIONS
3501 W. Jarvis
Skokie, IL 60076 (312) 677-2161

GROTH-Type
COUNTS & DISPLAYS
YOUR TURNS
- 99.99 Turns
- One Hole Panel Mount
- Handy Logging Area
- Spinner Handle Available

Case: 2x4"; shaft 1½"x3"
Model TC2: Skirt 2¼"; Knob 1¼"
Model TC3: Skirt 3"; Knob 2½"

R. H. BAUMAN SALES
P.O. Box 122, Itasca, Ill. 60143

DUAL BAND ANTENNAS
These ready to mount antennas consist of full 1/2 wavelength elements of No. 12 coppercised
wire and can be used as either dipoles or in-
verted vees. No traps, coils, gimmicks, etc. are
used to shorten the elements. 2KW rating. Single
coax feedline required. Individually
mounted dipoles with common center insulator:
$20/40, 821.95; 40/20, 816.25; 20/15, 814.10.
Other combinations available. Send for free
catalog listing dual band, monoband, and fold-
ed dipole antennas. Baus available. Postpaid
conventional U. S. A.

HOUSE OF DIPOLES
P. O. BOX 8484
ORLANDO, FLORIDA 32806

FM Schematic Digest
A COLLECTION OF
MOTOROLA SCHEMATICS
Alignment, Crystal, and Technical Notes
covering 1947-1960
136 pages 11½” x 17” ppr $6.50
S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173

EAST COAST SERVICE CENTER
We also service all other popular makes.
Complete professionally staffed labora-
ty fully equipped for all aspects of
maintenance and service. Graduate En-
geer on duty. Custom Design services
available.

PROFESSIONAL ELECTRONICS CO., INC.
1710 JOAN AVE. EUDOWOOD BRANCH
BALTIMORE, MD. 21204
301-661-2123
NIVERAL AFSK, Audio, and VLF Synthesizer delivers phase-continuous output from 1 to 99,999 Hz with accuracy, calibration, and resolution of 1 Hz. Kit of all parts, $135. Write for information on Petz Logic Systems, Box 51, Oak Harbor, Wash. 98277.

SLS — BROWNIE W3CJI — 3035B Lehigh, Allen- town, Pa. 18103. Samples with cut catalog 35c.

AMFEST! Indiana's friendliest and largest spring fest. Wabash County ARC's 6th Annual Ham- s, May 19. 11 AM-4 PM. Free fairgounds, rain or shine. Admission still only $1.00 for advanced tickets 1.50 at gate). Large flea market, technical ses, bingo for XYL's, free overnight camping, entry of parking. Bonus for car pools (4 or more fults per car). For more information or advanced tickets write: Jerry Clevenger. WAA2HU. Route 4, abash. Indiana 46992.

ELL FDFM-2 with 34/94, 94/94, mike, battery pack, andle. antenna and booklet. 5-channel. 2-W output 175.00 FOB. Clegg 27-A (mike and booklet) excel lent $325.00 FOB. Drake 1-A CW/SSB receiver (booklet). $125.00 FOB. B. M. Morgan. Box 237, Peterborough, N. H. 03458.

UPRULUS TEST EQUIPMENT. VHF and microwave car. write for bulletins. David Edsall. 2843 St. Paul, Baltimore, Md. 21218.

METER OR POLICE RECEIVER: 14 trans. portable elmet-type. 1.5 x .7 x 6 in. 45-60 MHz FM squelch. lug-in xtal. 10.7 and 455 IF w/ceramic BP filter. S. 10ma w/ceramic and details. Case /speaker while supply lasts. $15.00 postpaid. 25 for schematic and details. Spincos. Box 46231. Cincinnati, Ohio 45246.

W-7 WITH BUILT-IN CMOS IAMBC KEYER, excellent. $75.00. Command set receiver, 3-6 MHz, 'WW and AM. excellent. $15.00. F.O.B. Austin, exas. Gene Hinkle. 1109 Rutland #270. 512- 36-6461.

EEL PARTS? We carry parts for R-390-390A0- 391-392-1051-51S1 . Nems Clark-Racal-Pack sets -. RC-25-3.4-47-62-70-71-73-74-77. If you need a part, mention what you have. If its U.S. government equipment or have it or can get it. Also we want to buy or trade. We arrange sense. Write Spanish Bay Reef Resort. Box 46231. Cincinnati, Ohio 45246.

IF unavailable in your area order direct with 30 Money-Day-Make Guarantee

O123 Drop Dispenser (2 grams) $3.00 postpaid

SAVE . . Order two for only $5.00

Send check or money order — No C.O.D.'s

Seconds To Bond... Years To Undo!

Literally thousands of uses: Repair printed circuit boards, cabinets, install knobs, controls, all types of hardware . . . metal, ceramic, porcelain, glass, etc. One Drop should be in every workshop. It's ideal for repairing jewelry, appliances, sporting goods, tools and countless other items.

If unavailable in your area order direct with 30 Money-Day-Make Guarantee

O123 Drop Dispenser (2 grams) $3.00 postpaid

SAVE . . Order two for only $5.00

Send check or money order — No C.O.D.'s

Name

Address

City

State

Zip

Note: This One Drop formula is not recommended for use on porous materials unless it is properly filled. Request Instant-Weld 240 for use on porous materials. No. 240 sets in about 3 minutes on most materials.
L. I. Electronic Supermarkt
(Off the wall self service)

New P.C. Boards — GI0, 1 oz. - 1 side copper-
fiber glass
6" x 6", $1.00 ea. - 6 x 12, $1.50 ea. - 12 x 12, $2.85 ea.

New P.C. Boards — GI0, 1 oz. - 2 side copper-
fiber glass
6" x 6", $1.10 ea. - 6 x 12, $2.00 ea. - 12 x 12, $3.75 ea.

New P.C. Boards — GI0, Fiber glass punch:
F Pattern 4.5 x 6.5, .062 holes, 5 per 1" $1.30
P Pattern 4.5 x 6.5, .042 holes, 10 per 1" $1.35
G Pattern 4.5 x 6.5, .025 holes, 20 per 1" $1.30
Pkg. 10 Bircher P.C. Board, metal 2" slides $1.00
Package of 50 flea clips for above punched
Boards, .062 holes, 30 °⁄₄ or ½ W resistors, packaged 5 per value your choice of values $1.00
25-1W resistors, packaged 5 per value, your choice of values $1.00
15-2W resistors, packaged 5 per value, your choice of values $1.00
5 ½ or ½ W, 1% resistors, packaged 5 per value, your choice of values $1.00
5 ceramic disk caps, .001-01, packaged 5 per value, your choice of values $1.00
5 mica dip caps, 1 pf-150 pf, packaged 5 per value, your choice of values $1.00
5 mica disc caps, 180 pf-820 pf, packaged 5 per value, your choice of values $1.00
5 mica disc caps, 910 pf-1500 pf, packaged 5 per value, your choice of values $1.00

Wire Kit #22 solid PVC, 6 spoils, 6 colors, 50' ea. $3.50
Wire Kit #22 stranded PVC, 6 spoils, 6 colors, 50' ea. $3.50
Wire Kit #24 Solid PVC, 6 spoils, 6 colors, 50' ea. $3.50
Wire Kit #24 stranded PVC, 6 spoils, 6 colors, 50' ea. $3.50

Central Lab DPDT push momentary, SPEC $1.00
Connectors, PL259, $4.50; PL258, $7.00; 175U or 176U, $20 ea.; UG 88 cu. $50; UG 200 a/u (N to BNC adapter), $75; RCA to UHF, $90.
Encapsulated chokes 1uh to 5 Mh, choice 3/$1.00
Varo type mini bridge rectifiers, approx. ½ sq. size: 2 amp. - 50 v., $1.25; 4 amp. - 50 v., $1.25; 6 amp. - 50 v. $1.25; 2 amp. - 100 v., $1.25; 4 amp. - 100 v., $1.25; 6 amp. - 100 v. $1.25; 200 v., $1.50; 4 amp. - 200 v., $1.50; 6 amp. - 200 v. $1.50; 2 amp. - 400 v., $1.50; 4 amp. - 400 v., $1.50; 6 amp. - 400 v. $1.50
To-5 case, 1 amp. - 200 v., $0.70 ea.; 1 amp. - 400 v., $1.00 ea.
SCR 200 v., 4 amp. - 100 v. $0.80 ea.

SEND SELF ADDRESSED ENVELOPE FOR FREIGHTS FEE INCLUDES MANY HUNDREDS OF ITEMS NOT LISTED ABOVE.

KRP ELECTRONIC SUPERMART, INC.
219 WEST SUNRISE HIGHWAY
FREEPORT, L. I., N. Y. 11520
516-623-3346-9

THE 21st ANNUAL
Birmingham FEST
AMATEUR RADIO CONVENTION
Two Big Days
MAY 4th and 5th

- FABULOUS PRIZE LIST
- GIANT SWAP CIRCLE — INSIDE AND OUT
- MEETINGS — MARS, NETS & FORUMS

WE ISSUE THIS SPECIAL INVITATION TO THE READERS OF HAM RADIO TO JOIN US AND JUDGE FOR THEMSELVES, WE WILL BE LOOKING FOR YOU AT THE SOUTHS LARGEST AND FRIENDLIEST HAM CONVENTION.

FOR INFORMATION CONTACT
BIRMINGHAM AMATEUR RADIO CLUB
P. O. BOX 603
BIRMINGHAM, ALABAMA 35201

WANTED: tubes, transistors, equipment, what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.

WORLD QSL — See ad page 72.

COLLINS 325-1 TRANSMITTER with 515F2 power supply. Good condition. $495. WIDHZ, Box 185, Amherst, N. H. 03031.

432 MHz TRANSMIT CONVERTER. We also have a new 432 MHz FET receive converter. Send for information. Carman Electronics, P. O. Box 256, Carmichael, CA. 95608.

TOP BAND KITS Yaesu FT 401/570. $23.00 air mail. Details, Mrs. B. Leeming, 21, Beresford Road, Blackburn, BB1 8BG, England.

PARTS BARGAINS: Motorola HEP170 epoxy diode 2.5A/1000PIV 29c. E15 copper antenna wire 1.95/C; 60c copper clad boards 3/2.00; 3/16" cable clamp 18c; 6" eye-jaw turnbuckle 2.75; Premax copper clad ground rod 1/2 x 8' 3.25, 5/8 x 8' 4.75; Belden 814 RG8 coax foil 18c/ft; CDE .001/100KV foil 1.50/ft; bakelite cap 1.95; Amidon toroid cores; RG63/U 15c/ft; RG22B/U 15c/ft; RG62/U 6c/ft; R617/U 6c/ft; Motorola transistor data series books 7.50; many old transistors, write needs. Monarch Tube, 1031 W. Lafayette St., Norristown, Pa. 19401. 713/497.5683. Write: W2MNP, 713/224.2668.

DISCOUNT PRICES PLUS FULL WARRANTY, call or write for fast quote and delivery. All items new, guaranteed. 2M: Midland 13500 15W/12CH 219.95; SB450TRC 2M-3/4M 149.00; Standard 826MA 299.95; New CDE HAM-2 rotor 109.00; new CD44 rotor 79.95; Belden 8-wire rotor cable #8448 10c/ft; Discount Hygain, Mosley: Hygain TH6DX 100.00; TH5MK3 136.00; TH408A 136.00; 4028A 152.00; DB10/15A 104.00; Mosley Classic 33, Classic 36, MCQ3B Quad, MP33; Belden, Consolidated RG8 coax foil 18c/ft; Amphenol PL259 59c; ARX2 Ringo: Cuscraft A147-22 49.00; Dowkey 110VAC antenna relay 60 series 39.95; Johnson KW matchbox 219.95; Triex Tower, call or write for quote: WS1. MW50, MW65, MW35, THD354. Write: Swan, Drake, Tentec, Kenwood. Electra Bearcat 2-band scanner 129.95; 1972 Radio Masters 3.50; Coboaks; free flyer. Prices fob Houston. Madison Electronics, 1508 McKinney, Houston, Texas 77002. 713/224-2668. Nite: 713/497-5683.

Your AD belongs here too. Commercial ads 35c per word. Non-commercial ads 10c per word. Commercial advertisers write for special discounts for standing ads not changed each month.

More Details? CHECK-OFF Page 94
LEARN RADIO CODE

THE EASY WAY!

- No Books, To Read
- No Visual Gimmicks To Distract You
- Just Listen And Learn

Based on modern psychological techniques - This course will take you beyond 13 w.p.m. in LESS THAN HALF THE TIME!

Available on magnetic tape $9.95 - Cassette, $10.95

GLADE VALLEY SCHOOL RADIO SESSION

15th year - July 27 - Aug. 9, 1974

Courses Taught: General Theory and Code
Advanced Theory and Code
Amateur Extra Theory and Code

Golf privileges at New River Country Club also fishing

NEW - 440 MHZ PREAMPS

$54.95
POSTPAID

432PA-1

Two stage preamps use KMC Bipolar and Mosfet Transistors. 20db gain, 20 MHz bandwidth. These are high quality preamps suitable for the most demanding applications. AC models have die cast case, others have metal enclosure.

432PA-1 3.5db NF 12VDC $29.95
432PA-1 3.5db NF 117VAC $34.95
432PC-1 1.5 to 2.0db NF 12VDC $69.95
432PC-1 1.5 to 2.0db NF 117VAC $94.95

JANEL LABORATORIES

P. O. BOX 112
SUCCASUNNA, N. J. 07876
201-584-6521

RADIO COMMUNICATION

Many thousands of you have become familiar with the various Radio Society of Great Britain books and handbooks, but very few of you are familiar with their excellent magazine, Radio Communication. We can now offer this fine magazine to you along with the other advantages of membership in the RSGB (such as use of their outgoing QSL Bureau) for $12.95 a year.

C F P ENTERPRISES
866 RIDGE ROAD, LANSING, N. Y. 14882
Central Upstate New York’s Mail-Order Headquarters

JIM BECKETT, WA2KTJ has joined us as a sales and service representative. We can now offer limited service on equipment that we sell.

Office & Salesroom Hours by Appointment Only
24-Hour Phone: 607-533-4297
Send SASE for Monthly Listing of Used Equipment and Bargain Goodies

Trade-ins accepted on both new and used equipment. Cash deals get prepaid shipping in the Continental U.S.A. plus a 15% discount on used items on our regular list!!!!!
3-D MAGNETIC CALL SIGNS
3 inch letters
Your choice of colors — Black, Red, Blue or Green
Adherence to metallic surfaces test up to 180 MPH
$4.00 each — 2 for $7.00 (same call)

ALSO
RUBBER STAMPS
Made to order — 3 lines - $4.00
Preinked stamp pad $1.35

WB80TV SPECIALTY PRODUCTS
P. O. Box 187 • Grasslake, Michigan 49240

Columbia Pays Top $$$!
We need these today — now!

- SP-600JX Hammerlund Rcvrs
- 618T Collins Transceivers

P.S. We’re also hungry for: Bendix, Collins, Tektronix, H-P, etc. lab equipment; late good gear. We pay freight! Airmail cond. & $$$ — wanted today — now! We’re desperate!

COLUMBIA ELECTRONIC SALES, INC.
Box 9266-C, No. Hollywood, CA. 91609
Phone: (213) 764-9030

46 Element Multibeam
For 432 MHz Band
The ultimate UHF antenna for long distance communication. #70/MBM 46

Gain: 17.3 dB over Dipole
Length: 104"; Width: 18"
Weight: 6 Lbs.
Hor. Beamwidth (~3 dB: 24°)

Broadband — works over entire 420-450 MHz. Band.

70/MBM 46 $52.50 FOB
NOW IN STOCK
VHF Communications Magazine
1974 Subscription Rate $5.75
Distributor

AK-1 BOARD ONLY $ 3.25
AK-1 KIT OF ELECTRONIC PARTS $ 20.00
ST-5 BOARDS ONLY $ 5.25
ST-5 KIT OF ELECTRONIC PARTS $ 4.50
ST-5A BOARDS ONLY $ 5.25
ST-5A KIT OF ELECTRONIC PARTS $ 4.50
ST-5A KIT OF ELECTRONIC PARTS $ 54.00
ST-5A BOARDS ONLY (These are the 8 others)
y by W6FOC) $ 18.00
ST-6 KIT OF ELECTRONIC PARTS $128.50
MOD. KIT FOR UPDATING THE ST-5 TO ST-5A
ST5A $ 9.00
PEMCO 250 EIGHT DIGIT COUNTER WITH
BUILT-IN PRE-SCALER AND POWER SUPPLY
SEMI KIT $165.00
PEMCO MODEL 50A FREQUENCY COUNTER
SEMI-KIT $125.00
These are fully assembled and tested boards
only, you add your own cabinet, etc. Write
for details.

You must supply the cabinet, A.C. cord, meter, switches, etc. on all kits except where noted otherwise. All prices are postage paid (we pay shipping).
We will do most any printed circuit board for individuals or prototypes. If required, we will also do the layout of the boards. All our boards are G-10 glass-epoxy solder platted and come drillied only. At present time we can do only single sided. All component parts used in our kits are new manufacturers stock. We Do Not Use Any Used or Surplus Parts. All inquiries are answered promptly.

PEMCO ELECTRONICS MANUFACTURING
422 18th St., N.E., Salem, Ore. 97301, (503) 585-1262

More Details? CHECK-OFF Page 94
SUPER CRYSTAL
THE NEW DELUXE DIGITAL SYNTHESIZER!! FROM Rp

MFA-22 DUAL VERSION
Also Available MFA-2 SINGLE VERSION

Transmit and Receive Operation: All units have both Simplex and Repeater Modes

Accurate Frequency Control: .0005% accuracy

Stable Low Drift Outputs: 20 Hz per degree C typical

Full 2 Meter Band Coverage: 144.00 to 147.99 MHz in 10KC steps

Fast Acting Circuit: 0.15 second typical settling time

Low Impedance (50 ohm) Outputs: Allow long cable runs for mobiles

Low Spurious Output Level: similar to crystal

SEND FOR FREE DETAILS Rp Electronics
Prices MFA-2 $210.00 BOX 1201H
MFA-22 $275.00 CHAMPAIGN, ILL.
Shipping $3.00 extra 61820

JOIN AMSAT!
The Radio Amateur Satellite Corporation (AMSAT) is a non-profit, tax-exempt organization founded in the greater Washington, D.C. area five years ago. It is a membership organization open to all radio amateurs and interested non-amateurs. AMSAT's satellite programs are supported entirely from donations, membership dues, and grants.

Join AMSAT. Learn more about how you can participate with the exciting AMSAT-OSCAR 6 communications satellite, and with OSCAR 7 which promises to be even better! Receive the quarterly AMSAT Newsletter with the latest information on this new ham radio frontier. For membership information, write the Membership Committee, AMSAT, P.O. Box 27, Washington, D.C. 20044.

8MC. XTALS-8333-9000.
Silk Screened Panel.
18 Watts Output.

SIX METER TRANSMITTER
for MOBILE TUBE COMPLIMENT
• FIXED STATION 6U8 Oscillator Multiplier
• EMERGENCY 12AX7 Speech Amplifier
• AVIATION 2E26 Final Amplifier

EXCELETRONICS RESEARCH LABS
MANUFACTURERS OF ELECTRONIC DEVICES
224-15 Linden Blvd. Cambria Heights, N.Y. 11411

For FREQ. STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us.

CRYSTAL SPECIALS
2-METER FM for most Transceivers ea. $3.75
144-148 MHz — .0025 Tol.

Frequency Standards
100 KHz (HC 13/U) 4.50
1000 KHz (HC 6/U) 4.50

Almost all CB Sets, Tr. or Rec.
(CB Synthesizer Crystal on request)

Any Amateur Band in FT-243 1.50
(80-meter, $3.00-160-meter not avail.) 4 for $5.00

For 1st class mail, add 20c per crystal. For Airmail, add 25c. Send check or money order.
No dealers, please.

Send 10c for new catalog with 12 oscillator circuits and lists of frequencies in stock.

RMC. XTALS-8333-9000.
Price 49.95
Silk Screened Panel.
Net to Amateurs Complete with Tubes
Power Supply $9.95
HANDBOOKS

We have all three

The Radio Amateur's Handbook
ARRL Staff
The standard reference for the radio amateur. Latest 1974 edition covers everything from the basics to such new areas as FM and slow-scan TV. The largest selling technical book ever published.
702 pages, softbound Only $4.50 ppd

by William I. Orr, W6SAI
Latest updated edition of this famous handbook which is the standard for engineers, technicians and advanced amateurs. Explains in detail how to design and build all types of radio equipment, RTTY circuits, latest semiconductor and computer circuitry. 896 pages; hardbound.

SPECIAL HANDBOOK PACKAGE
All 3 for just $29.75
Save nearly $5.00

RSGB:
Radio Communication Handbook
Amateur Radio's most complete technical reference. This book covers virtually every phase of radio theory and practice in very complete and useful detail. Whether you use HF or VHF, SSB or RTTY you need this handbook.
832 pages, hardbound Just $14.95 ppd

TELEPRINTER HANDBOOK
The largest and most complete handbook on RTTY ever published.
Thirteen detailed chapters include page printers, auxiliary equipment, demodulators, power supplies, filters, test equipment and much, much more.
Contributors include a number of the world's leading RTTY amateurs. Truly a must book for any RTTY amateur.
360 pages, hardbound $14.95 ppd

HAM NOTEBOOK
by the Editors of HAM RADIO Magazine
The very best from the popular Ham Notebook Section in HAM RADIO Magazine. Hundreds of short ideas, simple circuits and useful hints on virtually every subject. Ten chapters including such subjects as Antennas, FM and Repeaters, and Test Equipment. No amateur's technical library is complete without this vital book.
Just $3.95 postpaid

BankAmericard and Mastercharge orders accepted

Ham Radio

greenville, new hampshire 03048

More Details? CHECK-OFF Page 94
Advertisers check-off

...for literature, in a hurry —
we'll rush your name to the companies
whose names you "check-off"

Place your check mark in the space between
name and number. Ex: Ham Radio 234

INDEX

Advertisers

Amtrak 220
Amvor 206
Andy 207
Antenna Design 211
Apollo 210
Atlas 198
Babylon 214
Barry 216
Bauman 217
Birmingham fest 221
CFF 222
Caimbion 229
Columbia 212
Communications Specialists 230
Comte 151
Curry 234
Cush Craft 235
DX Eng. 222
Data 237
Dayton 223
Drake 209
Dycomm 204
Dynamic Elect. 204
ECM 190
Ehphour 202
Emac 203
Epsion 206
Ericsson 207
Excite 190
G & G 201
Glade Valley School 202
Global 203
Gregory 204
Gregory 205
Gregory 206
Gray 207
Gregory 208
H & R 209
H & H 210
HAL Report 211
HAL 212
Ham Radio 213
Hamtronics 214
Heath 215
Henry 216
House of Dipoles 217
ICM 218
International Crystal 219
International Elect. 220
ITT, Mackay Marine 221

Limit 15 inquiries per request.

April 1974

Please use before May 31, 1974

Tear off and mail to
HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03048

NAME

CALL

STREET

CITY

STATE ZIP
the real performer! specifically for repeater

...or any TWO-METER FIXED STATION OPERATION

With 6 db—

Gain compared to ½ wave dipole
FCC accepted for repeater application
Based on EIA Standard RS-329

electrical

6 db gain over ¼ wave dipole
Omnidirectional radiation pattern
Maximum radiation—at horizon
50 ohm feed impedance
Field adjustable—140-150 MHz
SWR at resonance—1.2:1 measured at antenna
Bandwidth—6 MHz for 2:1 or better SWR
Power—one kilowatt FM
Feed—Shunt with D.C. grounding
Radiator—5/8 wave lower section, ¼ wave phasing, 5/8 wave upper section

mechanical

Vertical element—117”
long, 1-1/8” telescopic
to 3/8” OD high
strength aluminum
Radials—four, 21” x 3/16”
OD aluminum rod
Connector—SO-239
Wind load—26 pounds
at 100 mph.
Wind survival—100 mph.
Completely self-supporting
Mounting—fits vertical
pipe up to 1-3/4” OD

The gain you gain—you gain
transmitting and receiving—
get both with Hustler!

Available from
all distributors
who recognize the best!

THE HUSTLER MASTER GAINER
MODEL G6-144-A
Shipping Wt.: 6.8 lbs. Price: $49.95

Export: Roburn Agencies, Inc.,
New York, N.Y.
C.D. Ham II Rotator
New Improved
$149.95
write or call for introductory offer

TMC RF Master Oscillator. 2-64 Mcs on harmonics, relay rack mount excellent, $150.00 new, $95.00.

DUMMY LOAD, WATTMETER.
One KW

Completely synthesized with phase locked loop.

Single Knob Control, Courter ML-100 Mobile Linear Amp 100 Input 200 watts pep. 10 meter operation: New $120.00

Smart compact styling

Constant Voltage Transformer. Input 115 Vac 60 Hz output. 24 Volts Ac 15 Amps regulated (plus or minus 1%) requires 6 mfd capacitor (not furnished) $19.50 ea. 2 for $35.00

Fleet FM from Barry
IC-22 22 channel, 2 meter transceiver. Very hot receive, 10 watts out $289.00
Tempo TPL 100-2, 2-meter amplifier. 10 watts in. 150 watts out $220.00
Drake TR-72, 2-meter FM transceiver, 23 channels, 1 or 10 watts output, 13.8 volts $320.00
GE Model YGS-3 FM signal gen. 1-150 Mc, excellent no manual $200.00
SBE-450 TRC Transverter, 2 meters in, 450 Mcs out $179.95

HF Gear from Barry
Hallicrafters FPM-300 Safari. 5 bands 10-80 meters... Brand New Sale $495.00
Hustler 4TV Vertical Antenna $49.95

Famous Triton-II by Ten-Tec. Fully solid-state, 200 watt transceiver. 5 bands, full break in on CW $120.00
Ten-Tec 252 AC Power Supply $89.00
Ten-Tec Model 315 Receiver $229.00
CW Filter $14.95
Drake TR-4C Transceiver new, $599.95
AC-4 Power Supply $99.95
Collins 32S-3 Transmitter Excl. Cond. $650.00
Collins 75S-3B Receiver Excl. Cond. $580.00
Collins 30L-1 Linear Amplifier good, $375.00
Collins 31B-5 Station Control Write

B & W WATERS Model 334-A
DUMMY LOAD, WATTMETER, ONE KW $139.95 PREPAID

Collins 75A-4 with Collins speaker and Book $606.00
Heath SB-301 with SB-620 Scanalyser and SB-600 Speaker $200.00
Motorola R-220 RCVR 20-220 Mcs. All Modes $450.00
IC Model 200 x 43" by 1 1/2" deep. Brand New $12.50
Drake TC-6 Transmitting converter $278.00
G. I. Tape Transport Motor, 115 Vac, 60 Hz $2.95

IC-230 by Inoue
Completely synthesized with phase locked loop, Single Knob Control, Smart compact styling $489.00

FM from Barry

Venus SS-2 Slow Scan Monitor $349.00
VENUS C1 Fast Scan/Slow Scan Camera & Converter
Micro focus 1/4 inch to infinity Bar Generator, Reversal $469.00

CASH PAID . . . FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLES, Test Equipment, ETC. Write or call Now! Barry, W2LNI. We Buy! We ship all over the World. Thousands of unadvertised specials. F.O.B. point of shipment.

Send for Green Sheet Supplement 23. Send 50c postage & handling (refund 1st order).

More Details? CHECK-OFF Page 94
Now, when your dollar buys less and less... value received for your money becomes more and more important. In only three years Tempo has established a solid reputation for first rate performance at a reasonable price.

THE TEMPO ONE SSB TRANSCEIVER

Look at the specifications... look at the price tag... ask any of the thousands of Tempo ONE owners about its reliability... and the reason for its unparalleled popularity will be obvious. The Tempo ONE is now the proven ONE.

FREQUENCY RANGE: All amateur bands 80 through 10 meters, in five 500 kHz ranges: 3.5-4 MHz, 7-7.5 MHz, 14-14.5 MHz, 21-21.5 MHz, 28.5-29 MHz. (Crystals optionally available for ranges 28-28.5, 29-29.5, 29.5-30 MHz.)

SOLID STATE VFO: Very stable Colpitts circuit with transistor provides linear tuning over the range 5-5.5 MHz. A passband filter at output is tuned to pass the 5-5.5 MHz range.

RECEIVER OFFSET TUNING (CLARIFIER): Provides ±5 kHz variation of receiver tuning when switched ON.

DIAL CALIBRATION: Vertical scale marked with one kilohertz divisions. Main tuning dial calibrated 0-500 with 50 kHz points.

FREQUENCY STABILITY: Less than 100 cycles after warm-up, and less than 100 cycles for plus or minus 10 percent voltage change.

MODES OF OPERATION: SSB upper and lower sideband, CW and AM.

INPUT POWER: 300 watts PEP, 240 watts CW

ANTENNA IMPEDANCE: 50-75 ohms

CARRIER SUPPRESSION: -40 dB or better

SIDEBAND SUPPRESSION: -50 dB at 1000 CPS

THIRD ORDER INTERMODULATION PRODUCTS: -30 dB (PEP)

AF BANDWIDTH: 300-2700 cps

RECEIVER SENSITIVITY: 1.5µv input S/N 10 dB

AGC: Fast attack slow decay for SSB and CW.

SELECTIVITY: 2.3 kHz. (-6 dB), 4 kHz. (-60 dB)

IMAGE REJECTION: More than 50 dB

AUDIO OUTPUT: 1 watt at 10% distortion

AUDIO OUTPUT IMPEDANCE: 8 ohms and 600 ohms

POWER SUPPLY: Separate AC or DC required. See AC "ONE" and DC-G-1.

TUBES AND SEMICONDUCTORS: 16 tubes, 15 diodes, 7 transistors

TEMPO "ONE" TRANSCEIVER $359.00

AC/ONE POWER SUPPLY 117/230 volt 50/60 cycle $99.00

DC/1-A, POWER SUPPLY 12 volts DC $120.00

VF-ONE EXTERNAL VFO $109.00

THE TEMPO 2001 LINEAR AMPLIFIER

Small but powerful, reliable but inexpensive, this amplifier is another top value from Henry Radio. Using two 8874 grounded grid triodes from Eimac, the Tempo 2001 offers a full 2 KW PEP input for SSB operation in an unbelievably compact package (total volume is 8 cu. ft.). The 2001 has a built-in solid state power supply, a built-in antenna relay, and built-in quality to match much more expensive amplifiers. This equipment is totally compatible with the Tempo One as well as most other amateur transceivers. Completely wired and ready for operation, the 2001 includes an internal blower, a relative RF power indicator, and full amateur band coverage from 80-10 meters. $595.00

YAESU... a name proven through worldwide use. ... now available at Henry Radio. Come in, phone or write for complete specifications. We ship almost everywhere.

FT-101B Transceiver 649.00

FTdx-401 Transceiver 599.00

FL-2100 Linear Amp with tubes 339.00

VC-355D Digital Counter 289.00

PV-101 External VFO 99.00

SP-101P Speakerpatch 59.00

SP-101 Speaker 19.00

FP-401 External VFO 99.00

SP-401P Speakerpatch 59.00

SP-401 Speaker 19.00

YD-844 Dynamic microphone 29.00

XF-3C/30C C.W. filter 40.00

FA-9 Fan 19.00

MB-1 Mobile bracket 9.00

Prices subject to change without notice.
EIMAC
The DX Champion.

In contest after contest, contact after contact, you'll hear the EIMAC-equipped stations come out on top. Join the elite operators who choose EIMAC for power, dependability and quality. You'll be in good company.

For technical information on EIMAC products, contact the EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070. Or any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.