this month

- two-meter power amplifier 6
- AFSK generator 14
- vhf cavity filter 22
- bandpass filter design 36
- high-gain wire antenna 48
BASSETT

High efficiency mobile and portable antennas for all amateur bands, CAP, MARS, CB, SECURITY, PUBLIC SERVICE, MARINE, AND GOVERNMENT USE.

- 2-6-10-15-20-40-75
- Identical size, cost, and appearance
- FULLY ADJUSTABLE TO FREQUENCY IN FIELD
- Low weight, low drag, high strength fiberglass
- Polished chrome brass standard %24 thread
- High gain collinear on 2 meters

MODEL DGA-2M
$29.50 postpaid in U.S.A.

HIGH ACCURACY CRYSTALS FOR OVER 30 YEARS

Either type for amateur VHF in Regency, Swan, Standard, Drake, Varitronics, Tempo, Yaesu, Galaxy, Trio, Sonar, Clegg, SBE, Genave.
Quotes on request for amateur or commercial crystals for use in all other equipments.
Specify crystal type, frequency, make of equipment and whether transmit or receive when ordering.

BASSETT VACUUM BALUN

The famous sealed helium filled Balun employed with the DGA Series Antenna Systems. solderless center insulator easily handles more than full legal power while reducing unwated coax radiation. Equipped with a special 50-239 type connector and available either 1:1 or 1:2.

MODEL DGA-2000-B $12.95
Postpaid in U.S.A.

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc
P.O. Box 5727 - Fort Lauderdale, Florida - 333
Tel: 305-566-8416 or 305-947-1191
THE ALPHA 77 IS A NO-COMPROMISE POWER AMPLIFIER BUILT FOR CONTINUOUS COMMERCIAL AND MAXIMUM-LEGAL-POWER AMATEUR SERVICE IN ANY MODE, 10 THROUGH 160 METERS

It has to be exceptionally rugged to allow E.T.O. to warrant the entire amplifier for a full year and the transformer for an additional full year! Here’s part for the inside story:

- EIMAC’S FINEST GROUNDED-GRID TRIODE, the ceramic-metal 8877, with a conservative 1500 watts plate dissipation. Operating under manufacturer-recommended conditions, it delivers an outstandingly clean, sharp, legal-limit signal with only 50-75 watts drive.
- 1.5 KVA CONTINUOUS DUTY TRANSFORMER; tape-wound, grain oriented core for maximum efficiency and minimum bulk.
- 25 MFD, 4 KV OIL FILLED polypropylene dielectric filter capacitor.
- RUGGED BANDSWITCH: 20 ampere silver contacts, 6 KV ceramic insulation.
- MASSIVE COILS: Silver-soldered and heavily plated main tank, husky Teflon®-insulated toroids in a full pi-L network.
- 7.5 KV VACUUM VARIABLE tuning capacitor; 10 pf minimum capacitance to maintain optimum circuit efficiency at all frequencies.
- VACUUM T/R RELAYS for extremely fast, silent changeover. Plus electronic T/R switch for full break-in CW.
- FULL-CABINET COOLING by whisper-quiet, computer-grade, ball bearing blower. Heat is ducted out the rear.
- BATTLESHIP CONSTRUCTION using ¼” thick aluminum main end plates.

The ALPHA 77 is loaded with versatility, performance, and ruggedness.

PAYNE RADIO HAS THE ALPHA 77 IN STOCK FOR IMMEDIATE DELIVERY AT $1995

Write or phone Don Payne, K41D, for an illustrated brochure, operating experience, and a king-size trade on your gear.

ALPHA 77 by EHRHORN TECHNOLOGICAL OPERATIONS, INC.

PAYNE RADIO
Phones: Six Days (615) 384-5573 Nights, Sundays (615) 384-5643
Box 525 Springfield, Tenn. 37172
A NEW DIMENSION IN PROGRESSIVE AMATEUR RADIO. Presenting an advanced state-of-the-art, totally American made, single sideband communications triumph. This unique accomplishment produced through the expert design, professional engineering, and talented manufacturing skills of SWAN ELECTRONICS of Oceanside, California.

- Broadband circuits eliminate transmitter tuning.
- No warm-up required—operates directly from 12V DC supply.
- 10, 15, 20, 40 and 80 meters, plus receives WWV on 10 MHz.
- Optional 15 or 200 watts P.E.P. input power.
- Infinite VSWR protection from an open to a short circuit.
- USB/LSB/CW with semi-CW break-in and sidetone monitor.
- VOX with a variable VOX gain control.
- Noise blanker with a variable threshold control.
- A.T.P. and delay controls.
- External VFO connection with switching control.
- 25 kHz crystal calibrator.
- L.F. derived AGC with fast attack, controlled decay, action.
- Excellent receiver sensitivity and selectivity.
- 2.7 kHz audio bandwidth—essentially flat response 300 to 3000 Hz.

- Distortion byproducts down 30 db or better.
- Unwanted sideband suppressed more than 50 db.
- Carrier suppression greater than 60 db.
- Image rejection from 55 db down @ 30 MHz to better than 75 db down @ 3 MHz.

OPTIONAL ACCESSORIES INCLUDE:
- PS-10—115V AC Power Supply for SS-15 $89.00
- PS-210—220V AC Power Supply for SS-15 $99.95
- PS-20—115V AC Power Supply for SS-200 $139.00
- PS-220—220V AC Power Supply for SS-200 $149.95
- SS-168—Super Selective I.F. Filter $79.95
- SS-208—External VFO $159.00
- 610X—Crystal Controlled Oscillator $53.95

PURCHASE YOUR SS-15 or SS-200 ON SWAN’S REVOLVING CHARGE PLAN.

THE BEST PRACTICAL DEVELOPMENTS IN AMATEUR RADIO

305 Airport Road, Oceanside, CA 92054 • Telephone: 714, 757-7525

More Details? CHECK—OFF Page 126
December 1973
volume 6, number 12

staff
James R. Fisk, W1DTY
editor
Patricia A. Hawes, WN1QJN
editorial assistant
Nicholas D. Skeer, K1PSR
vhf editor
J. Jay O’Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, WA6I4K
associate editors
Wayne T. Pierce, K3SUK
cover
T.H. Tenney, Jr. W1NLB
publisher
Hilda M. Wetherbee
assistant publisher
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is
published monthly by
Communications Technology, Inc
Greenville, New Hampshire 03048

Subscription rates, world wide
one year, $7.00, three years, $14.00
Second class postage
paid at Greenville, N.H. 03048
and at additional mailing offices

Foreign subscription agents
United Kingdom
Radio Society of Great Britain
35 Doughty Street, London WC1, England

All European countries
Eskil Persson, SM5CJP, Frotunagrand 1
19400 Upplands Vasby, Sweden

African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1973 by
Communications Technology, Inc
Title registered at U.S. Patent Office
Printed by Wellesley Press, Inc
Framingham, Massachusetts 01701, USA

ham radio is available to the blind
and physically handicapped on magnetic tape
from Science for the Blind
221 Rock Hill Road, Bala Cynwyd
Pennsylvania 19440
Microfilm copies of current
and back issues are available from University Microfilms
Ann Arbor, Michigan 48103

Postmaster: Please send form 3579 to
ham radio magazine, Greenville
New Hampshire 03048

contents

6 solid-state power amplifier
for 144 MHz
John Hatchett

14 crystal-controlled AFSK generator
Howard L. Nurse, W6LLO

18 rf signal generator
Henry D. Olson, W6GZN

22 two-meter cavity filter
Stirling M. Olberg, W1NSN

26 voltage-regulator ICs
James E. Trulove, WB5EMI

32 audio agc amplifier
Courtney Hall, WA5SIZ

36 bandpass filter design
John J. Nagle, K4KJ

42 digital mixer
Gerd H. Schrick, W8BFM

44 narrow-banding Regency
fm transceivers
Paul J. Dobosz, WA8TMP

48 high-gain wire antenna
Alvan L. Mitchell, W6QVI

50 R, X and Z of antennas
Carl C. Drumeller, W5JJ

53 logic test probe
R. H. Fransen, VE6RF

4 a second look 95 flea market
126 advertisers index 126 reader service
104 cumulative index 58 short circuits
56 ham notebook

December 1973
November 27th marks the fiftieth anniversary of one of amateur radio’s most memorable events — the first two-way amateur communications across the Atlantic Ocean. It was a hard-won goal, its path marked with failure and frustration, but when the Atlantic, at last, had been spanned, it was conquered by short-wave amateur radio, on wavelengths that previously were considered to be useless.

The first Transatlantic tests, in December, 1920 were a dismal failure, as were a second series of tests conducted in February, 1921. The 250 or so British stations which were listening for pre-arranged signals from the United States on a wavelength of 200 meters jammed each other so badly with radiations from their own regenerative receivers that they couldn’t hear any signals from across the pond!

A third Transatlantic test was scheduled for December, 1921. In November, Paul Godley, 2XE, designer of the famous Paragon receiver, sailed from New York with two receivers under his arm — one a standard variometer regenerative set with two stages of audio amplification, the other a 10-tube superheterodyne built especially for the tests. With this superhet and a Beverage antenna installed on the bleak Androssan moor on the coast of Scotland, Godley heard the first stateside signals coming through in the wee hours of the morning on December 8th.

A year later, two European stations, F8AB in Nice, and G5WS in London, were heard along the east coast of the United States, but two-way communications were as elusive as ever.

A fourth series of Transatlantic tests were scheduled for late 1923. However, these carefully laid plans were totally upset by the enterprise of one man, Leon Deloy, F8AB. Deloy came to the states during the summer of 1923 where he met with John Reinartz, 1XAM, and Fred Schnell, 1MO. Deloy picked up a lot of valuable advice from his talks with Reinartz and Schnell, and before returning to France he acquired a new Grebe receiver and the details of a “trick” circuit which, he was told, would “go down to about 100 meters.” Up until that time all the Transatlantic tests had been conducted on a wavelength of 200 meters.

Deloy put his new 100-meter station on the air in early autumn, and having satisfied himself that everything was in working order, cabled Schnell that he would transmit on 100 meters between 0200 and 0300 GMT on November 26, 1923. The signals from F8AB were heard by Schnell and Reinartz almost from the first dot he transmitted, but the Americans were not ready to transmit back. Unlike Deloy, who presumably did not think it was necessary to obtain official permission to transmit on such a short wavelength, Schnell had to seek the necessary authority from the Radio Supervisor in Boston.

On November 27th Schnell received special permits from Boston for himself and Reinartz. Late that night (early morning in Europe) they were both on the air. For an hour Deloy called the United States and then sent two messages. At 0330 GMT he signed off and asked for acknowledgement. Long calls followed from 1MO and 1XAM. Then came the eagerly awaited reply — Deloy had heard both stations clearly. Reinartz was asked to stand by as Deloy transmitted to Schnell, “R R QRK UR SGI QSA VERY ONE FOOT FROM PHONES ON GREBE FB OM HEARTY CONGRATULATIONS THIS IS A FINE DAY — PSE OSL. It was, indeed, a fine day.

Jim Fisk, W1DTY editor
Now you can afford the best! Freestanding or guyed, Tri-Ex Towers stress quality. All towers are hot dipped galvanized after fabrication for longer life. Each series is specifically engineered to HAM operator requirements.

W Series
An aerodynamic tower designed to hold 9 square feet in a 50 mph wind. Six models at different heights.

MW Series
Self-supporting when attached at first section — will hold normal Tri-Band beam. Six models.

LM Series
A 'W' brace motorized tower. Holds large antenna loads up to 70 feet high. Super buy.

TM Series
Features tubular construction for really big antenna loads. Up to 100 feet. Free-standing, with motors to raise and lower.

THD Series

Start with Top-of-the-Line Tri-Ex Towers. At basic prices. Write today, for your best buy.
a solid
80 watts
for two meters

Construction details
for high-performance,
solid-state two-meter
power amplifiers

Evaluation results, component layout and
construction information for two 80-watt
vhf power amplifiers are described. These
solid-state amplifiers can be used to boost
two-meter output power levels to 80-
watts. Both units have been designed to
operate from a dc supply voltage of 12.5
volts with 50-ohm source and load impe-
dances. The 12.5-volt power requirements
are easily adapted to fixed or mobile
operation.

One of the amplifiers is a single-stage
design using two 2N6084 transistors com-
bined with simple LC components (fig.
1). It can be tuned to operate from 144
to 175 MHz, and requires a typical input
power level of 20 watts for 80-watts
output at 144 MHz.

The second amplifier uses the same
output stage design, but adds a 2N6083
transistor driver stage (fig. 2) to reduce
input drive requirements. This design is
also tunable from 144 to 175 MHz, and
will provide 80-watts output power at
144 MHz with only 2.5-watts of drive.

Six single- and two-stage amplifiers
have been constructed and evaluated with
similar performance exhibited by the
amplifiers in each group. Typical values
for the more important amplifier charac-
teristics are shown in table 1 and in figs.
3, 4, 5 and 6. The amplifiers have also
been subjected to momentary open- and
short-circuit load conditions without
damage to the transistors.

design philosophy

The amplifiers have been designed
to be efficient, reliable and stable without
sacrificing simplicity. All amplifier stages
are of the common-emitter configuration,
operated class-C. Two 40-watt 2N6084
transistors have been used in the high-
power output stage to provide excellent
heat distribution at full power. Combin-
ing the two 2N6084 devices is accom-
plished with LC signal splitting/combine-
ing techniques. For the single-
stage amplifier the combinations of L1
and L3 and L2 and L4 split the signal,
and inductance L5 recombines the sig-
als. The two-stage amplifier uses L4 and
L5 for signal splitting and L6 for com-
bining. These inductors provide impe-
dance transformation, isolation between devices and minimize unequal load sharing.

Low-loaded Q impedance matching network designs have been used to maximize bandwidth and to minimize insertion loss. This also results in reducing reflected voltage levels that can occur during high-output vswr conditions. A low-pass, low-loss, LC output filter can be used to provide additional attenuation of the harmonic components.

The two transistor types used in the amplifiers are part of the Motorola vhf land mobile series designed for 12.5-volt fm operation. They are multiple balanced-emitter transistors manufactured using the 1stothermal process technology to minimize temperature variations across the transistor chips. This process provides increased transistor protection over wide thermal and load vswr excursions. The devices are packaged in a 0.380 inch diameter, stripline-opposed-emitter stud package (case 145A-01).

†Trademark of Motorola Inc.
C1,C3, C9,C17 5-80 pF trimmers (ARCO 462)
C2 25 pF metal clad (Underwood Electric type J-101)
C4,C5,C6, C12,C13,C14 100 pF metal clad (Underwood Electric type J-101)
C7,C10,C16 40 pF metal clad (Underwood Electric type J-101)
C8 4-40 pF trimmer (Arco 403)
C15 250 pF metal clad (Underwood Electric type J-101)
C18 30 pF metal clad (Underwood Electric type J-101)
C19 1.0 µF tantalum
C20,C21,C22 680-pF feedthrough (Allen Bradley type FA5C)
C23 0.1 µF, 75 V ceramic disc
C24 5.0 µF, 25V, aluminum electrolytic
L1 1 turn number-16, 0.25" ID (18 nH)
L3 3 turns number-16 wound around R1 (60 nH)
L4,L5 1.1" long number-14 wire, formed around 0.6" diameter cylinder (12 nH)
L6 cut from 0.031" single-sided G10 circuit board (5 nH)
L7 number-12 wire, approximately 1.1" long (10 nH)
L8 3 turns number-14, 0.25" ID (50 nH)
L9 ferrite bead (Ferroxcube 5659065/3B)
RFC1, RFC2, RFC3, RFC4 0.15 µH molded choke with Ferroxcube 5659065/3B ferrite bead on ground lead
RFC5 10 turns number-14 wound around R4

fig. 2. Schematic diagram of the two-stage, 80-watt, 144-MHz power amplifier. Circuit is built on 0.062" single-sided G10 circuit board as shown in the photograph. Performance of this amplifier is shown in figs. 4 and 6.

To achieve the 80-watt power level, it is imperative that low-loss matching network components be used. It is also necessary that these components be characterized for the desired operating frequencies. Suitable low-loss coils can be made with a small length of wire, ribbon conductor or printed circuit board material. Economical capacitors for efficient high-power operation at 2 meters are more difficult to obtain. All fixed capacitors in the amplifiers, 250 pF or less in value, are Underwood mica dielectric units. The effective capacitance of these components at 2-meters will deviate only slightly from the low frequency value for nominal capacitance values up to approximately 60 pF. Larger capacitors of this type are characterized for operation at the selected frequency.
A full description of all necessary components for building the amplifiers along with the schematic diagrams are shown in figs. 1 and 2. Care must also be given to the physical location of the components. The photograph and the scale drawings in figs. 7 and 8 can be used to determine proper component placement. For the sake of simplicity, only those components necessary to establish the basic amplifier layout have been included in the drawings.

The amplifiers are built on 0.062 inch, single-sided, G10 circuit board with the components mounted on the ground plane side. In each case, the ground plane is continuous except for interruptions for the transistor and feedthrough capacitor (C13, C14 and C20, C21, C22) mounting holes. Coils L3, L4 and L5 of the single-stage amplifier isolate the transistor base and collector contacts from the ground plane. Coils L2 and L6 accomplish this function in the two-stage design. In addition, four small pads of 0.31-inch, G10 circuit board are used to provide isolation for the 2N6083 collector, the base of each 2N6084 and capacitor C7.

To prevent physical damage to the transistor stud package, the following precautions should be observed:

A. The maximum torque ratings for the mounting nut must not be exceeded (6.5 inch-pounds for the 2N6083 and 2N6084 devices).

B. The nut should be placed on the stud and tightened to the specified torque before soldering the transistor leads to the circuit. After the nut is properly torqued, a slightly downward pressure can be exerted on the leads to place them in contact with the circuit board connection points. The objective is to prevent an upward force being applied to the leads near the case body.

table 1. Amplifier performance for a dc supply voltage of 12.5 volts.

<table>
<thead>
<tr>
<th>Power output (watts)</th>
<th>single-stage design</th>
<th>two-stage design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power input (watts)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144 MHz</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>148 MHz</td>
<td>20</td>
<td>2.5</td>
</tr>
<tr>
<td>165 MHz</td>
<td>21</td>
<td>3.5</td>
</tr>
<tr>
<td>175 MHz</td>
<td>23</td>
<td>5.5</td>
</tr>
<tr>
<td>Power gain at 144 MHz (dB)</td>
<td>6.0</td>
<td>15.1</td>
</tr>
<tr>
<td>Dc current output stage (amperes)</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Driver stage</td>
<td>—</td>
<td>2.5</td>
</tr>
<tr>
<td>Harmonic attenuation (dB)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Stability</td>
<td>Amplifiers are stable for input drive levels from zero to 30% overdrive and for supply voltages from 8.0 to 15.5 volts dc.</td>
<td></td>
</tr>
<tr>
<td>Ruggedness</td>
<td>With 80 watts power output into 50 ohms, no transistor damage from open- and short-circuit load conditions for all phase angles</td>
<td></td>
</tr>
</tbody>
</table>

fig. 3. Power output vs power input for the single-stage amplifier.

fig. 4. Power output vs power input for the two-stage amplifier.
heat sinks capable of keeping the transistor junction temperatures below their specified maximum temperature of 200°C. This requires extremely good thermal design and construction practice. A smooth heat-sink surface is required to maximize heat-sink to transistor case contact area. A proper amount of thermal-joint compound must be used between heatsink and transistor case interface to improve thermal transfer to the heatsink. Wakefield type 120, Thermaalloy Thermacote, Dow Corning type 340 or other thermal compounds exhibiting similar low thermal resistance properties are recommended. The heatsink must have a thermal resistance low enough to adequately transfer the heat from the transistor case to surrounding air.

Limiting the transistor junction temperatures to a maximum of 180°C during continuous operation into a 50-ohm load requires a heat-sink thermal resistance specification of less than 1.7°C/watt for the output stage devices at 60°C ambient. For an ambient of 30°C, the heat-sink thermal resistance requirement can be relaxed to approximately 2.3°C/watt. Similar operating conditions require the 2N6083 driver transistor heat-sink thermal resistance to be less than approximately 6°C and 8°C/watt for ambient temperatures of 60°C and 30°C, respectively.

Duty cycle operation, such as 1-minute on/3-minutes off, will significantly reduce the heat-sinking requirements. If operation into mismatched loads is anticipated, the heat-sink thermal resistance values must be reduced to account for the radical increase in transistor power dissipation that can occur with these operating conditions.

Several economical aluminum heatsinks are available with thermal resistance values in the order of 3°C/watt. These would be adequate for use with the amplifiers in most applications, since a 50-ohm load is used and continuous operation capability is not required. More expensive heatsinks can provide thermal resistance values less than 1°C/watt. Table 2 provides a brief description for some of the commercially available units.

amplifier adjustment

An amplifier alignment test set-up is shown in fig. 9. Initial amplifier tuning should be started with reduced supply voltage (approximately 8 volts) and reduced drive levels to prevent excessive device dissipation. For 144-MHz operation, a reasonably good starting point would be to set all variable capacitors approximately ½-turn from the fully closed (maximum capacity) position. During alignment, you may carefully touch each transistor case to detect excessive power dissipation in any of the transistors. Each transistor case should feel warm, but not too hot.

If a spectrum analyzer is available, it should be used to monitor the output signal during tuneup to verify proper alignment and to indicate the presence of low-frequency oscillations that can occur if the amplifiers are significantly mal-
adjusted. An oscilloscope connected to the dc voltage line (for example, at the top of the 5-µF filter capacitor, C15 or C24) can also be used to provide useful information on the presence of low-frequency oscillations. The scope probe will usually pick up enough of the two-meter signal energy to provide a signal display on the CRT.

If low-frequency oscillations are not present, the two-meter signal display will be constant in amplitude. If a low-frequency oscillation (typically less than 10 MHz) is present, it will show up as amplitude variations on the two-meter display. The frequency of the amplitude variations correspond to the frequency of the oscillation. High-frequency oscilloscopes (100 MHz) will provide a good display of the two-meter signal. Low-frequency oscilloscopes (20 MHz) are not capable of showing the two-meter signal itself, but they can be useful in determining if a low-frequency amplitude variation (envelope) is present on the two-meter signal. Any oscillation should be eliminated by adjusting the amplifier variable capacitors.

Single-stage amplifier. Start with low drive level (approximately 2 to 5 watts)

<table>
<thead>
<tr>
<th>part number</th>
<th>part number</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE1 Corp. 3110</td>
<td>2.5</td>
<td>aluminum, 1.3" x 4.0" x 1.5" & 3.0"</td>
</tr>
<tr>
<td>WE1 Corp. 3164</td>
<td>2.5</td>
<td>aluminum, 1.0" x 4.12" x 1.5" & 3.0"</td>
</tr>
<tr>
<td>Thermalloy 6169</td>
<td>2.5</td>
<td>aluminum, 1.3" x 4.12" x 3.0"</td>
</tr>
<tr>
<td>Wakefield NC-641</td>
<td>2.5</td>
<td>aluminum, 1.0" x 4.12" x 3.0"</td>
</tr>
<tr>
<td>Wakefield FC-502</td>
<td>0.45</td>
<td>copper, 1.75" x 3.5" x 1.75"</td>
</tr>
<tr>
<td>Wakefield FC-503</td>
<td>0.35</td>
<td>copper, 1.75" x 3.5" x 3.5"</td>
</tr>
</tbody>
</table>

WE1 Corporation, P. O. Box 10577, Santa Ana, California 92705
Thermalloy Inc., 8717 Diplomacy Row, Dallas, Texas 75247
Wakefield Engineering Inc., Wakefield, Massachusetts 01881
Component location for the two-stage amplifier. Some components have been omitted for clarity. Transistor mounting holes are 0.80" center to center. RFC4, RFC5 and R4 are mounted on back of board.

large enough to turn on the transistors (indicated by the flow of dc collector current). Then adjust capacitor C10 for maximum output and C1 and C3 for minimum reflected power to the drive source as indicated by the swr bridge. Increase the supply voltage to 12.5 volts after this initial adjustment, and continue to increase the input drive power to approximately 8 to 12 watts while adjusting C10 first and then C1 and C3 as before.

Increase the drive power to approximately 20 watts, and tune for rated power output in a similar manner. After tuning for rated output power, capacitor C10 can be increased slightly in capacitance. This will minimize the required dc current with only a slight degradation, approximately 0.1 dB or less, in power output.

Two-stage amplifier. Start with low drive (approximately 0.25 to 0.5 watt) large enough to turn on the 2N6083 stage as indicated by the flow of dc collector current. Then adjust C8, C9 and C17 for maximum output power and C1 and C3 for minimum reflected power to the drive source as indicated by the swr bridge. Increase the supply voltage to 12.5 volts after this initial adjustment, and increase the input drive power to approximately 1.0 to 1.5 watts while adjusting C17 first and then C8, C9 and C1, C3 as before.

Now, increase the drive power to approximately 2.5 watts and tune for rated power output. After tuning for rated output power, capacitor C17 can be increased slightly in capacitance. This will minimize the output stage dc current requirement with only a slight degradation, approximately 0.1 dB or less, in power output.

fig. 9. Test setup for aligning the two-meter power amplifiers. Spectrum analyzer and power attenuators should be used if available.

fig. 8. Component location for the two-stage amplifier. Some components have been omitted for clarity. Transistor mounting holes are 0.80" center to center. RFC4, RFC5 and R4 are mounted on back of board.

DC POWER
SUPPLY

DC AMMETER

DC VOLTOMETER

50-OHM
SOURCE

12-december-1973
New Heathkit
2-meter Transceiver
ONLY $179.95*

It's an all solid-state design that you can build and completely align without special instruments. And this compact little beauty gives you 36 channel capability with independent push-button selection of 6 transmit and 6 receive crystals. 10 watts minimum output into an infinite VSWR without failure. And for the ultimate in convenience there's the optional tone burst encoder for front panel selection of four presettable tones. The HW-202 kit includes two crystals for set-up and alignment and simplex operation on 146.94; push-to-talk mike; 12-volt hook-up cable; heavy duty clips for use with temporary battery; antenna coax jack; gimbal bracket, and mobile mounting plate.

*SINAD = Signal + noise + distortion

... and here's 40 watts out for your 10 watts in

The Heathkit HA-202 2-Meter Amplifier works with any 2-meter exciter delivering 5-15 watts while pulling a meager 7 amps from any 12 VDC system. No additional power supplies are required. All solid-state components mount on a single circuit board for easy two-evening assembly. Manual shows exact alignment procedures using a VOM or VTVM. Connecting cable and antenna cable are included.

Kit HA-202-1, AC Power Supply. 7 lbs. $69.95*
Kit HA-202-2, Tone Burst Encoder, 1 lb. $179.95*
Kit HA-202-3, Mobile 2-Meter Antenna, 2 lbs. $29.95*
Kit HA-202-4, Fixed Station 2-Meter Antenna, 4 lbs. $15.95*

... and then there's this perfect 2-meter tune-up tool

The Heathkit VHF/SWR Bridge tests transmitter output in power ranges of 1 to 25 watts and 10 to 250 watts ±10% of full scale. 50 ohm nominal impedance permits placement in transmission line permanently with little or no loss. Built-in SWR bridge for tuning 2-meter antenna for proper match, has less than 10-watt sensitivity.

Kit HM-2102, 4 lbs. ... $29.95*

Kit HM-2102, 4 lbs. ... $29.95*

There is available Space Left

Kit HM-2102, 4 lbs. ... $29.95*

See them at your
Heathkit Electronic Center —

HEATHKIT ELECTRONIC CENTERS - ARIZ.: Phoenix; CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City, San Diego (La Mesa), Woodland Hills; COLO.: Denver; CONN.: Hartford (Avon); FLA.: Miami (Hialeah); GA.: Atlanta; ILL.: Chicago, Downers Grove; IND.: Indianapolis; KANSAS: Kansas City (Mission); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley); MICH.: Detroit; MINN.: Minneapolis (Hopkins); MO.: St. Louis; N.J.: Fair Lawn; N.Y.: Buffalo (Amherst), New York City, Jericho; N.C.: Raleigh, NC.; OHIO: Cincinnati (Woodlawn), Cleveland; PA.: Philadelphia, Pittsburgh; R.I.: Providence (Warwick); TEXAS: Dallas, Houston; WASH.: Seattle; WIS.: Milwaukee.

See them at your
Heathkit Electronic Center —

HEATHKIT ELECTRONIC CENTERS - ARIZ.: Phoenix; CALIF.: Anaheim, El Cerrito, Los Angeles, Pomona, Redwood City, San Diego (La Mesa), Woodland Hills; COLO.: Denver; CONN.: Hartford (Avon); FLA.: Miami (Hialeah); GA.: Atlanta; ILL.: Chicago, Downers Grove; IND.: Indianapolis; KANSAS: Kansas City (Mission); MD.: Baltimore, Rockville; MASS.: Boston (Wellesley); MICH.: Detroit; MINN.: Minneapolis (Hopkins); MO.: St. Louis; N.J.: Fair Lawn; N.Y.: Buffalo (Amherst), New York City, Jericho; N.C.: Raleigh, NC.; OHIO: Cincinnati (Woodlawn), Cleveland; PA.: Philadelphia, Pittsburgh; R.I.: Providence (Warwick); TEXAS: Dallas, Houston; WASH.: Seattle; WIS.: Milwaukee.

More Details? CHECK-OFF Page 126
crystal controlled

AFSK generator

Complete construction details for the RY-170 — an AFSK synthesizer for 170-Hz shift

How would you like to generate precise RTTY audio tones without the need for a counter to establish the correct frequencies? Many years ago, when faced with the same problem, I recall an attempt to use a guitar to help adjust an AFSK oscillator! With that technique leaving something to be desired, I often thought how nice it would be to have an oscillator which could generate the correct frequencies without adjustment, while not breaking the bank in the process. Enter the RY-170, described here.

It wasn’t until recently that surplus integrated circuits have made inexpensive frequency synthesis techniques possible. Start with a surplus crystal, divide by the correct ratios to generate 2125 and 2295 Hz, add a simple active bandpass filter, and for less than ten dollars you can have a 170-Hz shift synthesizer in your RTTY system.
The following goals were established prior to starting the RY-170 project:

- Generation of 2125- and 2295-Hz tones from one crystal, low output distortion (THD), minimal keying overshoot, control from a TTL compatible input, use of inexpensive components, and easily duplicated printed circuit board. The resulting design is shown in fig. 1, while the photographs show various views of the completed unit. A summary of the RY-170 specifications is given in table 1.

circuit description

The heart of the AFSK synthesizer is an oscillator using a surplus FT-241 crystal and transistor Q1 in a modified Pierce circuit. A channel 48 (459.259 kHz) crystal will yield output frequencies accurate to approximately 2 Hz, while preserving the relative shift (170 Hz) to within 0.1 Hz. If you desire even greater accuracy (with a slight increase in cost), an FT-241 crystal can be ordered which has been adjusted to the correct fre-
fig. 2. Waveforms of the RY-170 AFSK generator.

A. Collector Q1
horizontal scale, 0.5 microseconds/cm vertical scale, 5.0 volts/cm ground 2 cm from bottom

frequency of 459.000 kHz.* The output waveforms from the oscillator and its buffer are shown in figs. 2A and 2B, respectively.

B. Collector Q2
horizontal scale, 0.5 microseconds/cm vertical scale, 2.0 volts/cm ground 2 cm from bottom

output waveform of the complete divider is a TTL square wave, shown in fig. 2C.

The output bandpass filter, necessary to extract the fundamental frequency

C. Divider output
horizontal scale, 100 microseconds/cm vertical scale, 1.0 volt/cm ground 1 cm from bottom

Transistor Q2 interfaces the output of the oscillator to the divider input. JK flip-flops U1 through U3A and NAND gate U5 are wired as a programmable divider whose divide ratio depends on the logic state of the synthesizer input. When the input is grounded, the divide ratio is 25 (2295 Hz); when the input is high, the ratio is 27 (2125 Hz). The programmable portion of the divider is followed by an additional divide-by-eight circuit consisting of flip-flops U3B and U4. The

D. Filter output
horizontal scale, 100 microseconds/cm vertical scale, 0.5 volts/cm ground at center

*JAN Crystals, 2400 Crystal Drive, Ft. Myers, Florida 33901.
from the divider output, consists of dual-operational amplifier U6 and its associated components. The filter was designed with a Q of 10; raising the Q would result in increased filter sensitivity to component tolerances and increased keying overshoot, while lowering the Q would raise the THD.

adjustments

Resistors R8 and R11 are used to adjust the filter center frequency to pass the two tones. Resistors R8 and R11 should be adjusted, one for each tone, so that the transmitter has equal output power for 2125- and 2295-Hz inputs. The sinusoidal output waveform of the bandpass filter is shown in fig. 2D while the keying characteristics are shown in fig. 2E.

The output amplitude of the synthesizer can be adjusted with resistor R14 to match the transmitter audio requirements. R14 should be adjusted in conjunction with R8 and R11 to ensure that the audio stages of the transmitter are not overloaded.

Because the RY-170 is part of a larger system, I decided to use a common power supply for all accessories. If it is desired to use an internal supply with the AFSK board, a regulated supply meeting the requirements of the circuit can be used (see specifications in table 1).

construction

The RY-170 AFSK synthesizer was constructed in a Ten-Tec JG-5 enclosure. The front panel was painted with Krylon 2021 (Oldsmobile green) which closely matches the color of the Heath SB-series. An LED is used as a pilot light, powered from the +5-volt power supply through a 220-ohm current-limiting resistor. The front and back panels are labelled with press-on letters and sprayed with Datak Datakoat for protection.

The circuit board is single-sided G-10 board and requires four jumpers.* I used Molex connector pins to hold the ICs although the ICs can also be soldered directly to the printed-circuit board. Dipped mica capacitors are required in the oscillator circuit, while high-stability capacitors (Orange Drop or polystyrene) should be used in the active filter.

There is something satisfying in knowing your shift is, and will remain, at 170 Hz. The RY-170 is one answer, and an economical one at that, to stable 170-Hz AFSK shift.

*Drilled circuit boards and component layout information are available from the author for $5.50, postpaid.
This wide range signal generator covers the range from 600 kHz to 12 MHz and features a built-in 1-kHz modulator. Variable tuning capacitors have a maximum to minimum capacitance ratio of 20 to 1 or less.

The oscillator described here is not an LC type, and its output frequency is proportional to 1/C. Thus, the variable capacitor is capable of tuning the oscillator over a 20 to 1 range, from 600 kHz to 12 MHz! Since such a wide range of frequency is covered by a single 180° turn of the capacitor shaft, it is advisable to have a good sized dial for calibration. The largest dial of good quality that I could readily obtain (the biggest one in the junkbox) was a Millen 10035. The use of this dial is the only reason that the signal generator is as large as it is.

Most signal generators used by amateurs and other radio experimenters use the LC tuned oscillator in one form or another. Whether the exact circuit is a Colpitts or Hartley oscillator or some variation of these two basic designs, the output frequency is usually proportional to the inverse of the square root of the capacitance of the main tuning capacitor. That is, at least approximately

\[f = \frac{1}{2\pi \sqrt{LC}} \]

Because of this relationship signal generator tuning is broken into bands, each of which encompasses a high-to-low-frequency ratio of only 3 or 4 to one (check the dial on your own signal generator, and see). The 3 or 4 to one frequency ratio is a direct consequence of the fact that parallel-resonant LC circuits vary in frequency as 1/√C, and most
A standard 365-pF broadcast tuning capacitor is used in the signal generator in conjunction with half of a relatively new Motorola IC, the Motorola MC4024P (or HEP 3805P). This IC is characterized as a dual voltage-controlled multivibrator, or vco. Since only half of the MC4024P is used to produce the rf output, the other half can be used to generate a 1-kHz modulation frequency.

The waveforms produced by both halves of the MC4024P are rectangular, and contain many harmonics. The harmonics of the rf oscillator section are not particularly troublesome, since most signal generators have appreciable harmonic content. However, it is desirable to filter the 1-kHz modulation waveform so that only one set of sidebands will be produced when the rf is modulated by the 1-kHz signal. Actually, since small index frequency modulation is used, there will be some small higher-order sidebands at 2 kHz and higher spacing around the rf carrier, but these will be insignificant if the generator is used within the bounds of narrowband frequency modulation (nbfm).

Nbfm has long since passed from the amateur scene, at least as a modulation method on the high-frequency bands. The main reason for nbfm’s disfavor is that it is useful only for simulating amplitude modulation with 50% or smaller percentages. If higher indexes of fm are used, the higher-order sidebands rapidly increase and the signal no longer resembles a-m.

To see how this works, look at the graphs of fig. 1. Note that the graph representing the first-order sidebands is approximately linear up to a modulation index of 0.5 and that the higher-order sidebands are almost nonexistent at lower indices. Fig. 2 shows the spectrum of a 100% a-m signal, a 50% a-m signal, a 1.0 order fm signal and a 0.5 order fm signal. Note that the 1.0 order fm signal succeeds in generating first-order sidebands comparable with those of the 100% a-m signal, but at the expense of producing 2nd and 3rd order sidebands of appreciable amplitude.
The 0.5 index fm signal gives a good approximation to a 50% a-m signal, with only small amplitude 2nd order sidebands. Since most amplitude modulated signal generators are only used at a-m percentages of about 50% (a standard measurement technique), you can use this 0.5 order fm signal to provide a simulated 50% a-m signal.

In fairness it must be mentioned that detection mode, where the receiver selectivity curve provides a frequency-to-amplitude conversion.

the circuit

The circuit of the signal generator is shown in fig. 3. Note that half of an MC3029P line-driver NAND gate follows each of the two multivibrators in the MC4024P. The line-driver NAND gates provide isolation and the capability to drive 50-ohm lines with either 1-kHz or rf output. It must be remembered that the output of the generator is well over one volt peak-to-peak, even when terminated in 50 ohms, so an external attenuator is usually required.

The modulation frequency is determined by the parallel tuned circuit consisting of the 88-mH toroid, T1, and the 0.33\(\mu\)F capacitor across it. This is because the frequency of the 1-kHz oscillator is adjusted (by voltage control) to maximize the output at the test point. This occurs

fig. 3. Circuit for the wide-range rf signal generator that covers from 600 kHz to 12 MHz. Integrated circuit U1A is the 1-kHz modulation oscillator; U1B is the rf oscillator. U2A and U2B are used as line drivers. Transformer T1 is an 88-mH toroid with a secondary consisting of 30 turns no. 28 enamelled wire wound over it.

nbmf approximates low percentage a-m only in the frequency domain. The signal is still fm since there is no variation in amplitude at the modulation rate. That this is true is immediately obvious because the entire system is made of digital ICs which are in essence limiters; that is, amplitude is constrained to be either 1 or zero.

Since the amplitude does not vary, a diode detector will, strictly speaking, be unresponsive to nbmf. However, most receiver systems having diode detectors will respond to nbmf by the slope-
when the 1-kHz oscillator frequency matches the resonant frequency of the 88-mH-0.33-µF parallel tuned circuit. The voltage observed at TP with a scope should be about 0.2 volts p-p. If the resultant frequency at maximum TP voltage isn’t close enough to 1-kHz to suit you, a somewhat different value of C (nominally 0.33-µF) will have to be used.

A simple but well-regulated power supply is shown in fig. 4. It uses a standard 6.3-Vac filament transformer and a full-wave bridge rectifier. The regulation is accomplished by one of the newer three-terminal IC voltage regulators of Fairchild, National or Motorola. The common terminal of each of these regulators is the case, so a good thermal connection to the chassis (for heat dissipation) is also the electrical ground. The 0.22-µF capacitor at the input of the voltage regulator is important and should not be omitted. This capacitor should be placed between the input and common inside the cast aluminum box and is mounted by screwing it to a Lucite plate, which in turn is mounted on 1/4-inch standoff spacers to the inside bottom of the box. The MC4024P and MC3029P ICs are socket-mounted upside-down on a 2-1/2x2-1/2-inch piece of double-sided copper-clad circuit board. The ICs themselves are not visible, but the socket terminals are conveniently exposed for wiring.

The power supply circuitry is built in the underside of the 11x7x2-inch aluminum chassis. In this way all the parts of the power supply which have large 60-Hz signals on them are well isolated from the MC4024P — which has quite a high modulation sensitivity.

Since the broadcast variable capacitor I used has two 365-pF sections, only one of which is used, it would be possible to add frequency coverage down to 300-kHz by simply adding an spst switch. This was not done in the preliminary model because it was not mechanically convenient. However, such an addition should be considered when building a new version, since the 455- to 500-kHz region is quite useful for i-f alignment.

fig. 4. Regulated power supply for the wide-range signal generator. Three-terminal regulator U1 is a Fairchild 7805, National Semiconductor LM309K or Motorola MLM309K.

The wideband signal generator Is built into a Bud CU-47 enclosure. Dial mechanism Is a Millen 10035.
two-stage cavity filter

for two meters

Complete construction details for a highly selective resonant filter for 144 MHz

Because of the popularity of the fm mode of communications, the amateur vhf bands are becoming much more active. With this activity comes the attendant equipment problems, which include interference to and from our landmobile service neighbors who, in some cases, use the same geographical location as the amateur station. Overloading the neighboring receiver, or being overloaded, are the most prominent problems. Spurious radiation is another nuisance.

Overloading manifests its presence by the sudden decrease in sensitivity of a receiver which has a signal forced into its input. The overloading signal does not have to be near the operating frequency of the overloaded receiver, but it will be strong enough to get into the frontend and cause the agc to cut down the overall gain of the receiver. Often, when this effect occurs, the operators will not be aware of it because the overload signal bears no intelligence. The reverse of this effect causes problems with the neighbor-

looking for the cure

To improve neighborhood relations with a technician who maintains equipment in the same building and uses the same antenna platform as I do, an investigation was completed which revealed the desensitization of several receivers. One receiver operated in the amateur two-meter fm band and another in the Land Mobile Service on an adjacent frequency allocation. The transmitters for each of these two services were at the 50-watt level.

A probe with a crystal detector was mounted on the tower, halfway between each antenna; meter indicators were located near each of the transmitter/receiver units so that observations of on time could be accurately known and used when comparison adjustments were being initiated. It was interesting to note that other services, 10 MHz away in frequency and located geographically on the other side of the hill, were detected and in several instances desensitized the commercial receiver. A plot of the input circuits for the rf amplifier and mixer for the amateur receiver was made. The input circuits and interstage coupling circuits are double tuned and critically coupled by the manufacturer, indicating that previous thought had been given to the matter of high-Q preselection.

A similar test was made on the commercial station receiver. The plot for the amateur receiver preselection circuits, fig. 1, is presented on a scale which clearly shows how the adjacent frequency transmitter could easily control its sensitivity through overloading. To eliminate this
problem it was obvious that further selectivity was required for the receiver frontend.

To accomplish this, a major circuit revision would be required. Further investigation of several of the commercial sets revealed that the same problem had been relieved satisfactorily by adding a coaxial filter to the antenna feedlines. These units were simple coaxial tanks, designed with a low coupling coefficient to maintain a high Q, and, therefore, improve selectivity.

![Diagram](image)

fig. 1. Typical selectivity curves of amateur two-meter receivers and adjacent Land Mobile equipment. Two meter selectivity is improved considerably by the addition of the two-stage cavity filter described here.

coaxial filter

A dual coaxial filter was designed for 145 MHz. The filter was built from plumbing house supplies because these parts are very readily available. Construction details are shown in fig. 2. A list of materials is included for 145 MHz which will assist the constructor in locating the required copper fittings (table 1).

Assembly of the multiple-cavity filter is simple. First, inspect two 1-1/2×3/4-inch reducing couplings to see that there are no dents on either perimeter. Next, carefully file smooth the lip found in the interior of the 3/4-inch entry. When filing try not to touch the smooth area of the 3/4-inch pipe wall on this fitting, just break down the step so that a piece of 3/4-inch pipe will slide through each fitting.

Lay out the holes to be drilled in the B section of 1-1/2-inch copper water pipe. The lengths of the pipe and hole locations can be determined from the chart accompanying fig. 3. Both holes should be concentric; one should be large enough to accommodate the round shoulder on the mounting flange of a SO-239 coaxial receptacle. At a point 180° away from the connector hole, a second entry is required which is large enough to allow a piece of 3/8-inch copper water pipe to slip in to a tight fit.

At the base of each reducing coupler drill two holes with a number-28 drill. Slide the B section of 1-1/2-inch copper pipe into the reducing coupler. Align the reducing coupler so that the number-28 holes are parallel with the two large holes in B section. Sweat solder the two parts; use just enough heat to cause the copper to slightly change color. Use soldering paste. When the joint has been soldered, wash away the paste residue with hot water or a cleaning solvent. Try to make the joints as nearly watertight as possible.

The next step requires the addition of part H, a 1-1/16-inch disc which is soldered to the end of part J, a section of 3/4-inch copper water pipe, 17-inches long. Two sections should be prepared. The disc can be a large steel washer or can be cut from sheet copper. It is half of a capacitor used to foreshorten the cavity. It is also part of the tuning system.

Prepare a SO-239 coaxial receptacle by soldering a 3-inch length of number-14 wire to the center conductor terminal. Bend the wire at a right angle directly...
where it exits the solder point on the connector, insert the end of the wire into the large hole provided for the connector on the B section of copper pipe, and feed the wire down so that it enters the drilled number-28 hole into the reducing coupling. Solder the SO-239 fitting into place. Likewise, solder the wire to the exterior base of the reducing coupling and trim off any excess wire and solder. Align the wire so it is parallel with the pipe wall. This completes the input coupling jack assembly.

output coupling

The next step provides the output coupling link. Prepare an 8-inch section of RG-8/U as follows: strip off the vinyl jacket and the shield braid. Measure 2-1/2-inches in from each end of the center dielectric and cut away the covering to expose the center conductor wire. Bend the wire 3/8 of an inch from the remaining covering, slide the end of the wire into the B section of the cavity through the 3/8-inch hole, and fish it down to the remaining number-28 hole in the reducing coupling. Prepare the second cavity in the same way, leaving out the last step. Slide a 3/8-inch copper pipe, 3-1/8-inches long, over the coaxial-cable center dielectric and into the hole on the B section of the first cavity wall; carefully solder it in place. Bend the remaining end of the center conductor in the same manner as the opposite end, insert it into the 3/8-inch hole in the second cavity and into the number-28 hole located in the second reducing coupling. The end of the 3/8-inch pipe will now be fitted to the wall of the second cavity and soldered in place. The input/output and inter-cavity coupling are now complete.

The cavity assembly at this point is quite fragile and must be handled as such. Two 1-1/2-inch pipe stands must now be added to each cavity. One stand should be located at the top of each cavity, the other just above the 3/8-inch pipe containing the coaxial coupling element. Fasten the stands to a section of aluminum panel which will serve as a mounting for the filter. Level each pipe stand so that no strain is given to the inter-cavity coupling. If pipe stands are not available, a pipe clamp can be used.

Now, take two 17-inch lengths of pipe with the washer or disc soldered in place and insert the open ends into the 3/4-inch opening of the reducing coupling. Slide each section down to point where the disc is 1/2-inch below the top of the B section.

Be sure to clean these two parts so
that they are very bright. Use fine steel-wool. Be sure the reducing section is also clean; these pieces will be soldered later and must make a very good connection. Place a tube cap on the open end of each cavity. Both contact points should be clean and bright since these parts also will be soldered. Push the cap down as far as it will go.

tune up

You are now ready to tune up the cavity. It is best to use the transmitter coupled through a vswr bridge to a 50-ohm load for tuneup as shown in the block diagram.

Since the vswr bridge will serve as a resonance indicator, it should be set to the forward position. Set the sensitivity control to minimum. When power is first applied to the filters a small indication will be observed. The end of each of the 3/4-inch pipes should be carefully moved in very small steps which will cause the vswr meter to indicate an increase in output. Adjust each pipe until there is no further increase in output level. The sensitivity of the bridge can be adjusted as required. The reflected vswr should be no worse than before the filter was inserted if you follow all the dimensions shown in fig. 2.

If you reverse the input and output connections, there should be no difference from the previous measurements. For this reason, it makes no difference which SO239 jack is used for the input or the output.

To determine the amount of signal loss through the filter simply connect the coax directly to the vswr bridge and note the level. Compare output power without the filter to the level of the output with the filter installed. If you want to determine the ratio of on frequency resonance to off frequency loss, simply switch the transmitter to the 144-MHz end of the band for the low-end ratio and to 149-MHz for the high end loss. Loss at the high and low ends of the band should be near 40 dB.

When the tuneup adjustments are complete, carefully solder the 3/4-inch pipe to the reducer entry. Solder the top cap in place. The filter is now complete and it can now be installed in the feedline of your transceiver. A set of dimensions for filters for other vhf bands is shown in fig. 3.

The improvement at my station has been worth all of the effort and at not too great a cost. I no longer have the desensitizing effect and my commercial neighbor now has a similar filter tuned up on his Land Mobile channel.

fig. 3. Construction of the two-stage two-meter cavity filter. Dimensions for other vhf bands are shown in the attached chart.

<table>
<thead>
<tr>
<th>Frequency MHz</th>
<th>50</th>
<th>144</th>
<th>220</th>
<th>440</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>A 41.00"</td>
<td>17.0"</td>
<td>7.0"</td>
<td>5.0"</td>
<td></td>
</tr>
<tr>
<td>B 38.00"</td>
<td>12.6"</td>
<td>5.0"</td>
<td>3.0"</td>
<td></td>
</tr>
<tr>
<td>C 31.60"</td>
<td>12.9"</td>
<td>5.0"</td>
<td>3.8"</td>
<td></td>
</tr>
<tr>
<td>D 3.00"</td>
<td>3.0"</td>
<td>3.0"</td>
<td>3.0")</td>
<td></td>
</tr>
<tr>
<td>E 4.50"</td>
<td>1.5"</td>
<td>3.0")</td>
<td>3.0")</td>
<td></td>
</tr>
<tr>
<td>F 1.40"</td>
<td>0.375")</td>
<td>1.0")</td>
<td>0.75")</td>
<td></td>
</tr>
<tr>
<td>G 6.00"</td>
<td>2.1")</td>
<td>1.4")</td>
<td>0.75")</td>
<td></td>
</tr>
<tr>
<td>H 3.00"</td>
<td>1.06")</td>
<td>2.75")</td>
<td>2.75")</td>
<td></td>
</tr>
<tr>
<td>J 0.75")</td>
<td>0.75")</td>
<td>0.75")</td>
<td>1.0")</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Design and construction of regulated power supplies is simplified by the use of three-terminal voltage-regulator ICs.

The new Fairchild 7800-series three-terminal voltage-regulator ICs present some vastly new features not previously available to the amateur. For one thing, they provide a lot of regulation for very little money. However, the use of these regulators takes a new orientation, especially for those readers who have designed and/or built conventional regulated power supplies. In this article, I will cover some of the new aspects of using these IC regulators and will show several recommended circuits for different types of power supplies.

Many new integrated circuits no longer require the addition of several "generalized" circuit elements, such as transistors and diodes, to perform a specific function. Rather, these functional blocks are already combined, within the IC, to perform one very specific function.
The 7800 regulators are good examples of this new breed of IC. Each device in the series is preset to regulate a fixed output voltage. For example, the 7805 is a positive five-volt regulator. A complete list of the 7800 series and the respective preset voltages are shown in table 1.

The main advantage of a fixed-voltage regulator is the ease with which it can be used. Since the basic operation of the 7800 IC requires no external components, all you need is a power transformer, a bridge rectifier and a filter capacitor, and you have an instant power supply. You don’t have to worry about choosing transistors, biasing them, and protecting the regulator against short circuits.

features

The 7800 voltage-regulator series features a preset voltage tolerance of ±5%, more than adequate for the vast majority of electronics experimenting. The tolerance means that the actual output voltage of an individual 7805 sample, for example, may be anywhere between 4.75 and 5.25 volts. However, the actual voltage regulation, once you have chosen a particular device, is 0.01% per volt, or 0.05% for the five-volt 7805. I doubt that most experimenters need better regulation than that!

Another valuable feature of the 7800 IC regulators is their built-in protective circuitry. The circuit guards against the three most common causes of power supply failures: excess output current, output short circuit and excess heat. The first two causes are listed separately because of the subtlety of a current overload — you may have your project hooked up properly, but are simply demanding a little too much current. The 7800 regulators compensate for these failure modes by internally limiting the output current that can be drawn from the device. In the case of a complete short circuit, only 750 mA, typically, can be drawn from the 7805.

The thermal shutdown protects the regulator from overheating. Additional safe-area compensation of the output transistor prevents the circuit from trying to dissipate too much power. Power capability is 15 watts. This means that you can draw 1 amp of current at 5 volts if the average unregulated input voltage is 20 volts or less, and if adequate heat sinking is provided.

The 7800 series ICs come in two case styles: a TO-220 plastic power transistor case, and a metal TO-3 case. The TO-3, having a lower case-to-ambient thermal resistance, is easier to heat sink, but it is more difficult to mount. Electrical connections are shown in fig. 1.

unregulated supply

The unregulated power supply is a

table 1. Low-cost three-terminal fixed-voltage IC regulators manufactured by Fairchild, Motorola, National Semiconductor and Silicon General.

<table>
<thead>
<tr>
<th>Fairchild number</th>
<th>National number*</th>
<th>Motorola number</th>
<th>regulated voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805</td>
<td>LM340T-5</td>
<td>MC7805</td>
<td>5 volts</td>
</tr>
<tr>
<td>7806</td>
<td>LM340T-6</td>
<td>MC7806</td>
<td>6 volts</td>
</tr>
<tr>
<td>7808</td>
<td>LM340T-8</td>
<td>MC7808</td>
<td>8 volts</td>
</tr>
<tr>
<td>7812</td>
<td>LM340T-12</td>
<td>MC7812</td>
<td>12 volts</td>
</tr>
<tr>
<td>7815</td>
<td>LM340T-15</td>
<td>MC7815</td>
<td>15 volts</td>
</tr>
<tr>
<td>7818</td>
<td>LM340T-18</td>
<td>MC7818</td>
<td>18 volts</td>
</tr>
<tr>
<td>7824</td>
<td>LM340T-24</td>
<td>MC7824</td>
<td>24 volts</td>
</tr>
</tbody>
</table>

*The letter T designates the TO-220 package; for the metal TO-3 package, substitute the letter K. Motorola devices are in a metal TO-220 package.
basic element for the properly operating regulated supply. An example of an unregulated power supply is shown in fig. 2A. The line voltage is stepped down by transformer T1, rectified by the diode bridge and filtered by the output capacitor. With no load, the output voltage is equal to the peak transformer output voltage (1.4 times the rms voltage), less twice the diode forward voltage drop. As current is drawn, however, the voltage decreases momentarily between the charging peaks of the bridge. This creates the ripple shown in fig. 2B.

The average output voltage is between \(V_{\text{peak}} \) and \(V_{\text{min}} \). The greater the load, the more capacitor C1 discharges between charging pulses, and the lower \(V_{\text{min}} \) becomes, thus accentuating the ripple. For the same load current, the ripple decreases with an increase in the size of C1, up to the point where the bridge can no longer recharge C1 fast enough. One way to eliminate the output ripple is by regulating the output voltage. However, you must never drain so much current as to allow \(V_{\text{min}} \) to dip below the desired regulated output voltage.

Thus, the first step in building a regulated power supply is to properly design the unregulated supply. For all the regulated circuits discussed here we will assume a properly designed unregulated supply which can provide 1 ampere of current without allowing \(V_{\text{min}} \) to drop below the sum of the desired output voltage and the regulator maximum voltage drop.

designing the unregulated supply

Although the discussion which follows pertains to the 5-volt 7805, a similar design approach is used with other members of this voltage regulator family. The 7800 series of ICs requires a minimum of 2 volts input-output differential for proper regulation. This means that \(V_{\text{in}} \), in fig. 3, must be at least 2 volts higher than \(V_{\text{out}} \). Since the preset voltage of the output is \(\pm 5\% \), the worst case is 1.05 times the rated voltage, or

\[
V_{\text{out (max)}} = 1.05 \times V_{\text{out}}
\]

The average output voltage is between \(V_{\text{peak}} \) and \(V_{\text{min}} \). The greater the load, the more capacitor C1 discharges between charging pulses, and the lower \(V_{\text{min}} \) becomes, thus accentuating the ripple. For the same load current, the ripple decreases with an increase in the size of C1, up to the point where the bridge can no longer recharge C1 fast enough. One way to eliminate the output ripple is by regulating the output voltage. However, you must never drain so much current as to allow \(V_{\text{min}} \) to dip below the desired regulated output voltage.

Thus, the first step in building a regulated power supply is to properly design the unregulated supply. For all the regulated circuits discussed here we will assume a properly designed unregulated supply which can provide 1 ampere of current without allowing \(V_{\text{min}} \) to drop below the sum of the desired output voltage and the regulator maximum voltage drop.

The average output voltage is between \(V_{\text{peak}} \) and \(V_{\text{min}} \). The greater the load, the more capacitor C1 discharges between charging pulses, and the lower \(V_{\text{min}} \) becomes, thus accentuating the ripple. For the same load current, the ripple decreases with an increase in the size of C1, up to the point where the bridge can no longer recharge C1 fast enough. One way to eliminate the output ripple is by regulating the output voltage. However, you must never drain so much current as to allow \(V_{\text{min}} \) to dip below the desired regulated output voltage.

Thus, the first step in building a regulated power supply is to properly design the unregulated supply. For all the regulated circuits discussed here we will assume a properly designed unregulated supply which can provide 1 ampere of current without allowing \(V_{\text{min}} \) to drop below the sum of the desired output voltage and the regulator maximum voltage drop.

designing the unregulated supply

Although the discussion which follows pertains to the 5-volt 7805, a similar design approach is used with other members of this voltage regulator family. The 7800 series of ICs requires a minimum of 2 volts input-output differential for proper regulation. This means that \(V_{\text{in}} \), in fig. 3, must be at least 2 volts higher than \(V_{\text{out}} \). Since the preset voltage of the output is \(\pm 5\% \), the worst case is 1.05 times the rated voltage, or

\[
V_{\text{out (max)}} = 1.05 \times V_{\text{out}}
\]

Since there must be at least a 2-volt differential across the 7800

\[
V_{\text{in (min)}} = V_{\text{out (max)}} + 2
\]

With a 10% ripple, at full current, the peak value of \(V_{\text{in}} \) should be 1.1 \(V_{\text{in (min)}} \). Since the transformer current must pass through two of the bridge diodes

<table>
<thead>
<tr>
<th>Desired operating voltage</th>
<th>5 volts dc</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% tolerance (1.05 (V_{\text{out}}))</td>
<td>5.25 volts dc</td>
</tr>
<tr>
<td>Differential (+ 2 volts)</td>
<td>7.25 volts dc</td>
</tr>
<tr>
<td>Ripple allowance (1.1 (V_{\text{in (min)}}))</td>
<td>7.98 volts dc</td>
</tr>
<tr>
<td>Diode drop (+ 1 volt)</td>
<td>8.98 volts dc</td>
</tr>
<tr>
<td>Transformer output ((V_{\text{peak}}/1.4))</td>
<td>9.88 volts dc</td>
</tr>
<tr>
<td>(V_{\text{rms}})</td>
<td>7.06 volts rms</td>
</tr>
</tbody>
</table>

\[
V_{\text{out (max)}} = 1.05 \times V_{\text{out}}
\]

Since there must be at least a 2-volt differential across the 7800

\[
V_{\text{in (min)}} = V_{\text{out (max)}} + 2
\]

With a 10% ripple, at full current, the peak value of \(V_{\text{in}} \) should be 1.1 \(V_{\text{in (min)}} \). Since the transformer current must pass through two of the bridge diodes
during any charge pulse, two diode drops (approximately 0.5 volts) must be added, \(1.1 V_{\text{in}} (\text{min}) + 1.0\) volt. This is the peak output voltage required from the transformer. If you allow for a 10% variation in the line voltage (105.3 to 128.7 volts for a nominal 117-volt line), you require an extra 10% for the transformer output voltage. These considerations are summarized for a 5-volt supply in table 2. In the worst case, the transformer must be able to produce at least 7 volts rms to operate properly.

The only thing that remains is to choose capacitor C1. The capacitor must have sufficient capacitance to prevent its voltage dropping below 7.25 volts when 1 amp is being drawn. A few quick calculations will show that a capacitance of 12,000 \(\mu\)F will meet this condition. Of course, if the actual transformer voltage chosen is greater than the 7.06-volt minimum, a smaller capacitor will do fine, since more ripple can be tolerated.

regulator circuits

The basic hook-up for the 7800 voltage-regulator ICs is refreshingly straightforward, as shown in fig. 3. The only embellishment is the optional transient suppression capacitor, \(C_T\), at the regulator output. This capacitor, typically 10 to 50 \(\mu\)F, will improve transient and

fig. 4. High current voltage regulator circuit using external power transistors. Circuit in (B) includes short-circuit protection for the power transistor (see text).

high-frequency response, but at the cost of increasing output impedance at frequencies below 1 kHz. Additionally, if a battery is used for the unregulated supply, an input bypass capacitor of at least 0.22 \(\mu\)F should be attached across the input to the 7800 (pin 1 to ground).

To increase the current capacity of the 7800s ICs, you may wish to add a pnp series pass transistor as shown in fig. 4A. In this application, the pass transistor handles most of the supply current. The 2N4398 transistor shown has a maximum collector current of 30 amperes. The 7800 regulator IC holds the output voltage constant by varying the bias on the
As the load current increases, the output voltage drops slightly, causing the 7800 to draw more current. This increases the base current of transistor Q1, which brings the output voltage back up by supplying more current to the load. Thus, the output current is supplied by both the 7800 IC and the pass transistor.

If you are concerned about a short circuit burning out the power transistor, you can insert a protection circuit consisting of transistor Q2 and resistor RSC, as shown in fig. 4B. The 7800 IC protects itself, but has no feedback feature to protect external elements. The series resistor, RSC, may be set for the particular value of current you wish to limit. It should be a small value resistance capable of handling the power through it. Transistor Q2 may be any moderate gain npn transistor which can handle the short-circuit current of the 7800.

The use of this series pass transistor allows you to quickly build a fixed regulated voltage supply for almost any application you may have. In fact, if the protection circuit of fig. 4B is used, RSC may be made variable, so as to provide exactly the extent of current limiting needed to protect the load circuit.

Some applications, such as battery charging, require a constant load current, rather than a constant voltage. Fig. 5 shows the connections to a 7800 for current regulation. The 7800 tries to maintain a constant voltage across R1. In the case of the 7805, the voltage is 5 volts. Obviously, the 7800 will regulate the amount of current through R1 necessary to maintain this voltage. As this supplied current also passes through the load resistance, its current is likewise regulated. In the case of the 7805, five volts across a load of 100 ohms would produce a load current of 50 mA — the charging current for a 500 mA-hr nicad battery. Within the limits of the unregulated input voltage, the 50 mA will be supplied equally well to a simple battery, or a whole stack of them, and the charging current will not change as the cell voltage goes up during the charge cycle.

summary

In conclusion, you should find the 7800 IC voltage regulators to be an invaluable addition to your electronics repertoire. It will free you from the frequent and routine task of building regulated power supplies. Also, you will find yourself using regulated supplies more often because of the simplicity and low cost ($2.20 in single quantities) of the 7800 voltage-regulator ICs.

ham radio

"Remember your application for renewal of your ham license that I was supposed to have mailed four months ago?"
The most powerful signals under the sun!

hy-gain

550A

The Total Communication System

The Hy-Gain 550A is the complete amateur system. Designed from the ground up to work together for total performance. Each element is matched to the system, for simple, plug-in expansion of your capabilities.

GT-550A Transceiver The matchless heart of the 550A System. No other transceiver can give you this performance for the price. Operating fixed station or mobile, the GT-550A is guaranteed to have top frequency stability after warm-up. A graph showing stability during final check-out is included with each unit. 25 KHz calibrator and VOX, optional.

- **Frequency Coverage** – 3.5-4.0, 7.0-7.5, 14.0-14.5, 21.0-21.5, 28.0-29.0 MHz crystals supplied. Other 10 meter coverage optional. Power Output – 300 watts PEP (nominal) on SSB, 180 watts on CW and RTTY, into 50 ohm resistive load.
- **Harmonic and Spurious Radiation** – Carrier suppression in excess of 45 db down, unwanted side bands minus 55 db oscillator feed through and mixer spurious products down 50 db. Second harmonic minus 40 db and third order distortion in excess of minus 45 db.
- **Noise Level** – In excess of 40 db below single tone carrier.
- **Audio Frequency Response** – Minus 6 db approximately 300/2400 Hz determined by side band filter.
- **RF Compression Characteristics** – Up to 10 db RF compression without distortion.
- **Receiver Sensitivity** – Better than .5 uv for 10 db S+N/n ratio.
- **Receiver Selectivity** – 2.1 KHz with 1.8 shape factor for SSB or 300 Hz sharp selectivity with optional CW filter.
- **Receiver Spurious Response** – Image rejection better than 40 db down. Internal spurious below 1 uv equivalent input.
- **Frequency Calibration** – Interpolation to 1 KHz in 5 KHz increments.
- **Frequency Stability** – Within 10 Hz during any 30 minute warm-up period, less than 100 Hz in any 15 minute warm-up period, not more than 100 Hz with a plus or minus 10% line voltage variation.
- **Calibration Accuracy** – Interpolation to 1 KHz after calibration.
- **Back Lash** – Not more than 50 Hz.
- **Output Impedance** – Variable 50 ohms nominal capable of matching up to 2-1 SWR (30-100 Ohms).
- **Automatic Volume Control** – Fast attack, slow release on all receiver modes.

Order No. 855 Ham Net $95.00

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceve-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

G-1000 12V D.C. Mobile power supply with cables. Order No. 802 Ham Net $129.95

HY-GAIN ELECTRONICS CORPORATION

Dept. BM, 8601 Northeast Highway Six, Lincoln, NE 68507

402/434-9151 Telex 48-6424

More Details? CHECK-OFF Page 126
low-voltage
audio agc amplifier

Description of
a wide range
audio agc system
that operates
from a 1.5-volt
flashlight battery

The circuit described here operates from a single penlight flashlight battery with a current drain of 0.5 mA, nominal. It should be ideal as a self-contained unit which can be connected in a microphone cable. The agc control element is a transistor used in the inverted connection to obtain better performance. Those readers who are unfamiliar with audio agc theory and applications are referred to a previous article.1

circuit

Fig. 1 shows a schematic of the agc amplifier. Transistors Q2, Q3 and Q4 form a 70-dB voltage amplifier; Q5 is the detector, and Q6 is an emitter follower required to drive the control transistor, Q1.

Resistor R1 and transistor Q1 form a voltage divider which attenuates the signal, as needed, to hold the amplifier output constant. When the input signal is 50 µV or less, the detector has zero output, and Q1 is turned off. As the signal increases, the detector feeds dc to the base of Q1 causing its collector-emitter resistance to decrease; this decreases the signal input to Q2.

With a power supply voltage of only 1.5 volt, the detector must be able to operate from a relatively small peak-to-peak ac voltage, or clipping will occur. The detector shown requires only 0.62 volt peak-to-peak input.

Notice that the control transistor, Q1,
is shown in the inverted connection as is used with chopper transistors; the transistor is turned on by current flow through the base-collector junction. Current gain is very low in this configuration, being on the order of 1.0, but collector-emitter resistance vs base current is about the same as with the normal connection.

The inverted connection is preferred because it produces a very low offset voltage; offset voltage is the dc voltage appearing between the collector and emitter when the base is biased on with no collector power supply. Fig. 2 shows how offset voltage is measured. Offset voltage in the normal connection can be 50 mV or more, but it is about 1 mV or less in the inverted connection.

Why is low offset voltage important? When the input signal to the agc amplifier suddenly increases from a very low value to a large value, the detector turns the control transistor on rapidly. If the control element produces a significant dc voltage across its terminals, a transient voltage spike is coupled to the amplifier input. This spike bears no relation to the signal amplitude and can drive the amplifier into hard saturation.

Suppose a 30-mV dc level suddenly appeared across the control transistor. The 70-dB gain of the amplifier would try to amplify the transient to a level of about 100 volts peak. Naturally, the amplifier cannot do this, so it saturates, upsetting the quiescent bias conditions. Recovery time from this strong transient may be one second or more. Under such conditions it is virtually impossible to achieve fast attack times.
Several transistor types were tried in the control transistor socket, but the 2N2222 was the only one that performed well. A transistor designed specifically for chopper applications should work best of all.

It is important not to omit the 1-megohm resistor, R2, because it prevents the buildup of dc voltage on the emitter of Q1 due to the capacitive voltage divider formed by C1 and C2.

Two outputs are shown in fig. 1; one is the full output of the amplifier, and the other attenuates the output to a level of about 1 mV rms, maximum. The attenuated output should be used when feeding the microphone input of other equipment so it will not be overdriven.

The value of the 10-megohm resistor, \(R_{fb} \), depends on the current gain of the amplifier transistors, and its value may need to be adjusted. The value should be set so that the dc voltage on the collector of Q4 is about 0.8 volt.

operating characteristics

Fig. 3 shows the input vs output voltage curve of the agc amplifier. Although the maximum input voltage shown is 100 mV, inputs up to 1.0 volt rms may be applied without significant distortion of the output. The 3-dB bandwidth of the amplifier is approximately 100 Hz to 8 kHz; attack time is less than 50 milliseconds, and release time is about 2 seconds.

conclusion

The results achieved with this circuit show that good performance can be obtained from a 1.5-volt agc amplifier, and that suitable transistors used in the inverted connection for the control element offer improved agc characteristics.

reference

"The last time we went out to eat was because of power failure!"
The TRITON is a One-of-a-Kind HF transceiver, totally solid state including the final amplifier. The new generation that does more things better than ever before.

One, you can change bands instantly. Just turn the band switch—and go!

Two, there is less internal heat to prematurely age components and no high voltage to break down insulation or cause accidental shock.

Three, it has ample reserve power to run at full rating even for RTTY or SSTV without limit. Great for contests or emergency service.

Four, it is light and compact with a detachable AC power supply to work directly from 12 VDC—For mobile operation without tedious installation.

Five, the TRITON is a delight to operate. SSB is clean, crisp and articulate. Amplified ALC puts all available speech power into the antenna without splatter. CW is wave-shaped to cut through QRM and pile-ups. Instant break-in (not "semi" which really isn't break-in) lets you monitor the frequency while transmitting.

And six, a lot more goodies such as excellent dial illumination, plug-in circuit boards, offset tuning, built-in SWR bridge, speaker, crystal calibrator, snap-up anti-parallelax front feet, light indicators for offset and ALC, direct frequency readout, WWV, entire 10 meter band coverage—and a lot more.

The TRITON brings together all that is new and exciting in Solid State for your greater enjoyment of Amateur Radio.

We'll be happy to send you full information.

TRITON I 100 watts input................$519.00
TRITON II 200 watts input........... 606.00
Model 251 Supply for TRITON I...... 69.00
Model 252 Supply for TRITON II.... 89.08
Very few amateurs attempt to design bandpass or band-stop filters, possibly because of the complex mathematical formulas involved. Most amateurs seem to be unaware of the analogy between low-pass and bandpass filters which can considerably reduce the amount of labor involved in the design of bandpass filters. This analogy has long been known in professional circles but apparently hasn't been described in the amateur literature.

The principal purpose of this article is to describe the lowpass/bandpass (LPBP) analogy. A secondary purpose is to provide some tips on filter design that I have found useful in both amateur and professional applications; specifically, how to design filters using only a reactance slide rule or resonance calculator such as the Shure Brothers or Allied Radio reactance slide rule.

It has been my experience that the biggest difficulty most amateurs find in filter design is simply one of making arithmetical mistakes in computing the parameters—slide-rule errors, plain and simple. When you get the parameters right, the filters usually work! Therefore, anything that will mechanize the calculations or serve to check the calculations is a big help in building filters that work the first time.

The LPBP analogy has the further advantage of giving the filter designer a much better physical insight into the
practical constraints imposed on bandpass filters than does a set of cold mathematical equations.

image parameter filters

The type of filters to be discussed are known as "image parameter" filters. Historically, this type of filter was the first to be developed and is entirely suitable for many amateur and professional applications. For completeness I will begin with a brief discussion of image parameter filter design.

A low-pass filter consists of a series of the value of shunt capacitance adds up to the full value of shunt capacitance.

A similar statement can be made for the series inductance of the tee-section. The equations to determine the full value of both the series inductance and shunt capacitance in terms of the cutoff frequency and impedance levels are also given in fig. 1. These values are known as the prototype values; one-half of either the inductance or capacitance value must be used in the actual prototype section, depending on whether a pi- or tee-section

sections as shown in the upper portion of fig. 1. As long as all sections are designed for the same impedance level, as many sections as are necessary may be connected in series to give the desired frequency response characteristics.

For convenience, filters are designed on a section basis, the basic section being known as a "prototype" section. After the prototype section has been specified, many different variations are possible, depending on the particular application. The sections are broken out of the composite filter in either of two ways: a mid-shunt (or pi-section) and a mid-series (or tee-section). Notice in fig. 1 that the value of shunt capacitor in the pi-section is one-half that of the composite filter; when two pi-sections are connected together the value of shunt capacitance is used. So as not to complicate the discussion, in the material that follows I will stick with the pi-section.

First, take the equations for the prototype L and C as given in fig. 1 and put these into the resonant frequency formula to obtain

\[f = \frac{1}{2\pi \sqrt{LC}} = \frac{1}{2\pi \sqrt{R \cdot \frac{1}{\pi f_c}} \cdot \frac{1}{\pi R f_c}} = \frac{f_c}{2} \quad (1) \]

You can see that the prototype L and C values should resonate at one-half the specified cut-off frequency. This provides the designer with a means of using a reactance slide rule to compute (or check) the prototype parameters.

At this point a numerical example is
useful: Design an audio filter with a 3-kHz cutoff frequency working into a 2000-ohm load resistance. One-half of 3000 is 1500 Hz. Set the reactance rule to 1500 Hz and opposite 2000 ohms read approximately 0.22 henry and 0.054 μF. The prototype section appears as in fig. 2.

It is important to realize that the actual resonant frequency of the chosen inductance and capacitance is critical if the filter is to operate as desired. Although some liberties can be taken with the impedance values, the resonant frequencies should be as exact as possible. Therefore, care should be taken to insure that values of inductance and capacitance will resonate at the design frequency, even if the resulting impedance value is not exact. For this reason I suggest that the prototype values of L and C be calculated with a conventional slide rule or calculator, using the formulas, and checked with the reactance slide rule.

At this point a second check point is convenient. I previously pointed out that it is only necessary to add inductance in parallel with each shunt capacitor so that the combination is resonant at \(f_0 \). This is shown in fig. 3 along with the appropriate response curves.

If there is any confusion at this point, a numerical example should help clear things up. Let's design a bandpass filter centered at 455 kHz with a 15-kHz bandwidth such as would be suitable for an FM receiver. The load impedance will be assumed to be 5000 ohms.

First, calculate the inductance and capacitance values for a lowpass filter having a cutoff frequency of 15 kHz:
The basic lowpass filter is shown in fig. 4.

A quick check of these values with a resonance slide rule shows that the prototype values, \(C = 0.00425 \mu F \) and \(L = 0.106 \text{ H} \), resonate at 7500 Hz which is one-half 15 kHz, while the values of inductance and capacitance actually used, \(C = 0.00212 \mu F \) and \(L = 0.106 \text{ H} \), resonate at 10.6 kHz which is 70.7 percent of 15 kHz. Therefore, we are on a firm foundation and can proceed with confidence.

The first step in transforming a lowpass section into a bandpass section is to connect an inductance in parallel with the shunt capacitor to resonate at 455 kHz, the bandpass center frequency. This is easily done by using a resonance calculator to obtain a shunt inductance of 58 pH. The second step is to connect a capacitor in series with the series inductance. For this example the capacitance should be 0.00319 \(\mu F \). So far, so good; the lowpass filter is shown in fig. 5.

The next step is to transform the lowpass filter into a bandpass filter. Now comes the joker which is easily seen from the LPBP analogy. To make this transformation it is necessary to resonate the 3190-pF shunt capacitor to 50.5 MHz. Now, 3190 pF is a lot of capacitance at 50.5 MHz; it is impractical to resonate

The difference between using the LPBP analog and calculating the individual component values may be compared by considering the bandpass circuit equations shown in fig. 6. The interested reader may verify the component values obtained using the LPBP analog by actually solving the equations given in fig. 6. The ease of using the LPBP analog will be obvious.

practical filters

The lowpass/bandpass analog also has the advantage that it can give the filter designer a much better feel for the physical realities involved. As an example of this I will attempt to design an exceptionally narrow bandpass filter in terms of center frequency, a 1-MHz wide filter with a center frequency of 50.5 MHz at 50 ohms.

Using the concepts described above, first calculate a lowpass filter with a 1-MHz cutoff frequency at 50 ohms. For a pi-section the inductance will have a reactance of 50 ohms at 500 kHz, or 15.9 \(\mu H \). The capacitance actually used must resonate with this inductance at 70.7 percent of 1 MHz or 707 kHz. This is 0.00319 \(\mu F \). So far, so good; the lowpass filter is shown in fig. 7.

The next step is to transform the lowpass filter into a bandpass filter. Now comes the joker which is easily seen from the LPBP analogy. To make this transformation it is necessary to resonate the 3190-pF shunt capacitor to 50.5 MHz. Now, 3190 pF is a lot of capacitance at 50.5 MHz; it is impractical to resonate
this much capacitance with any reasonable inductance. Resonating the series inductance to 50.5 MHz presents no serious problem and requires about 6 pF.

Thus, you can see from the LPBP analogy why a filter of this type is not practical in this application; the band-

width is too narrow in terms of the center frequency. Before giving up, however, let’s try a tactic frequently used by filter designers when one or more of the components turns out to be an impractical value—change the impedance level.

If the impedance level is increased to 5000 ohms, a factor of one hundred, the shunt capacitors decrease in value to 31.9 pF and the shunt inductances become 0.31 μH, both of which are at least in the ballpark of being practical. The value of series inductance increases, however, to 1590 μH, requiring only about 0.06 pF to resonate at 50.5 MHz. This is an impractically small value.

Therefore, it appears that a filter centered at 50.5 MHz with only a 1-MHz bandwidth is impractical at any impedance level, and other types of filters, such as coupled tuned circuits, must be used to obtain the desired selectivity. These filters, however, are beyond the scope of this article.

The preceding example shows how the LPBP analogy gives the filter designer a much better feel for the practical problems involved than does a purely mechanical application of the design formulas. The 455-kHz bandpass filter with a 15-kHz bandwidth had a lower ratio of center frequency to bandwidth, and also operated at a considerably lower frequency so that component parameters were much more realistic.

fig. 7. First step in the development of a 1-MHz wide bandpass filter centered at 50.5 MHz.

summary

After reading the above material you may ask, “Does the LPBP analogy work in the opposite direction; i.e., is there a bandpass to lowpass analogy?” The answer is, “Yes, provided all tuned circuits are tuned to the same center frequency.”

It should also be noted that the LPBP analogy described here gives only one particular class of bandpass filter. There are many other types of bandpass filters, the most notable of which is probably a series of tuned circuits coupled by means of capacitance or inductance. The design of coupled tuned circuits is a subject in itself.

Although I have used an image parameter designed lowpass filter as the starting point in this article, the analogy applies equally well to lowpass filters designed on a Butterworth or Tchebyscheff basis.

reference

ham radio

“Since you’re a married man, the first thing you’ll need to set up an amateur station is a very understanding wife.”
Hi

I'm AL WØJJK

What's in a name? These below are leading manufacturers. Likewise, mine is known to thousands of hams around the country and, I believe, WØJJK has a reputation for fair and dependable service. Please let me quote your needs!

Best of DX—73, AL WØJJK
Introduction to the digital mixer

How to use the D-type flip-flop IC as a frequency mixer

Basically, a mixer can be thought of as a switch operating at one frequency which will or will not pass a signal at another frequency. A signal interrupted in this manner generates a combination of various new frequencies with the difference- or intermediate-frequency as the desirable output. Normally, this desired frequency is filtered out for further processing.

In practice the requirements for a mixer are a nonlinear switching device and a large injection signal. These two requirements complement one another to a certain extent since a very nonlinear device requires less oscillator injection, while more injection is required with less mixer nonlinearity.

When working with digital circuitry you are dealing with two voltage levels; therefore, all signals must be square waves or close to it. This means that if you use a smooth sinusoidal signal, it must be converted to a square wave with a circuit such as a Schmidt trigger. If the sinewave is large enough, a simple diode clipper will do the job.

The digital equivalent of a simple frequency mixer is a gate with two inputs such as the 7400 IC. The output contains all the frequencies because the gate does not have a memory and follows momentary changes of either frequency; the desired output frequency must be filtered out.

If you use an edge-triggered D-type (delay) flip-flop such as the 7474 as a mixer, the leading edge of the square-wave oscillator pulse transfers the input signal to the output, and the output remains at this new level until the next oscillator pulse samples the input signal as shown in fig. 1. When the oscillator pulse is out of step with the input signal it turns off the output. Thus, the output is a square wave at the intermediate frequency which needs no filtering, except possibly to remove the odd-order harmonics.

There are several D-type flip-flops which can be used for this application. The common TTL 7474 can be used up to about 25 MHz. The high-frequency version of this IC, the 74H74, is usable up
to 43 MHz. The Schottky TTL version, the 74S74, can be operated to 100 MHz. For even higher frequency use, Motorola has introduced the new MECL MC12000 digital mixer, which is a D-type flip-flop which can be used up to 250 MHz. The MC12000 has built-in logic converters so it cannot be less than half; if the input frequency is higher, it cannot be higher than twice the oscillator frequency.

A typical digital mixer circuit using TTL ICs is shown in fig. 2. In this circuit a 7400 TTL gate is operated as a crystal oscillator. The other two gates of the 7400 are used as input buffers to the mixer, a 7474 D-type flip-flop. In this circuit the rf input signal must be lower than the crystal frequency, and the i-f signal must be less than half the crystal oscillator frequency.

fig. 1. Waveforms in the digital mixer. Information from the input signal (data pulse) is transferred to the output by the positive going edge of the oscillator pulse (clock pulse). When the oscillator input is at either the high or low level, the signal input has no effect.

fig. 2. Basic digital mixer circuit. In this circuit the frequency of the input signal must be lower than the crystal oscillator frequency, and the i-f output must be less than half the crystal frequency. For example, with an 8-MHz crystal and a 6.75-MHz rf signal, the i-f is 1.25 MHz.
narrowband modifications
for the
Regency HR-2
series of vhf-fm
transceivers

How to install the Regency narrowband kit in the popular HR-2 series of two-meter fm transceivers

The extremely popular HR-2 series of two-meter fm equipment introduced by Regency in 1970 has become an amateur favorite. At the time of introduction the desirability for an extremely selective narrowband receiver was not evident. This prompted Regency to build the HR-2 as a wideband unit.

As an increasing number of repeaters go into operation the wideband fm transceiver is plagued by annoying adjacent-channel interference. In many metropolitan areas all the repeaters are operating narrowband, in and out (deviation of ±5 kHz). With the large number of repeaters and growing popularity of two-meter fm, narrowbanding to conserve operating space is imperative.

The entire Regency family of HR-2 transceivers (HR-2, 2A, 2S and 2MS) can be easily modified for narrowband operation. Narrowbanding the transmitter is accomplished simply by setting the deviation control for a peak deviation of ±5 kHz. Narrowbanding the receiver requires some new parts and a few simple adjustments.

Before installing this modification in my receiver, I was plagued with adjacent-

fig. 1. Bottom view of the HR-2 series receiver i-f circuit board, showing modifications required before installing the Regency MA-46 modification kit. One circuit trace must be cut in two places. The black dots indicate new holes for the new, narrow-band ceramic filter supplied with the kit of parts. A drilling template is shown in fig. 2.
channel interference on 146.76 MHz from the local repeater on 146.79 MHz. It was impossible to copy anything on 146.76 when the local repeater was transmitting. This repeater has an effective radiated power of more than 60 watts and is located less than a mile away from my station. With the circuit modification MA-46 Narrow Band Filter (70-dB) Modification, the i-f board is identical to the one Regency uses in their FCC type-accepted marine and fm business-band equipment.

If you are the owner of a HR-2A, 2S or 2MS the instruction sheet provides all the information you need to install the modification kit. The basic kit of parts necessary to modify the HR-2 series transceivers is available from Regency. The kit consists of a new higher quality ceramic filter with an extremely steep selectivity curve that virtually eliminates adjacent-channel interference, two shielded coils to replace unshielded ones originally supplied with the rig, three capacitors to adapt the i-f circuit to the new ceramic filter, and two resistors to change the sensitivity of the noise-operated squelch to match the new filter. With the addition of the kit, the kit because Regency uses the same i-f board in most of their units; all the holes and spaces for the additional parts and the holes for the new narrowband filter are already there.

HR-2 modifications

If you are one of the many people who own the original HR-2 fm trans-
ceiver, don't despair. With a little change in the circuit board it is possible to add the modification kit to the earlier models. When the job is finished the i-f board will be electrically identical to the HR-2A.

Circuitwise, the HR-2 and HR-2A are nearly the same in the modification area, but a different circuit board and different parts numbers complicate the instructions supplied with the Regency MA-46 modification kit. The instructions furnished with the kit should be followed, except as noted here. The parts layout on the reverse side of the instruction sheet should not be used. Instead, use the information in fig. 3.

changes to MA-46 instruction sheet

1a. Remove the old ceramic filter, CF-1

b. Perform the modifications shown in fig. 1 to the i-f circuit board (301-528-B) and drill the holes for the new ceramic filter using the dimensions given in fig. 2, using the existing hole indicated to locate the new holes. Earlier models may have two resistors (R133 and R134) soldered to the foil side of the circuit board as shown in fig. 4. If R133 and R134 (both 6.8k) are present, remove them as they are no longer required.

c. Mount the new ceramic filter.

2. Replace the following capacitors with the values indicated.
a. Replace C108 with a 390-pF capacitor.
b. Replace C109 with a 270-pF capacitor.

3. Add C110, a 250-pF capacitor. In early models this capacitor may already be installed, but to assure the correct value, replace any existing C110 with the capacitor furnished in the MA-46 kit.

4. Replace the following resistors with the values indicated
a. Replace R111 with 5.6k resistor.
b. Replace R112 with 2.2k resistor.
c. Replace R137 with a 100 ohm, \(\frac{3}{4}\)-watt resistor (not furnished). R137 may be missing on early models. If it is missing it must be added. R137 is located just forward of L103 and installed vertically, as shown to the right (electrically, R137 is connected between C120 and the emitter of Q-102).

d. In early versions of the HR-2, R136 was omitted. In later models it was located on the foil side of the circuit board as shown in fig. 4. R136 is a 22k, \(\frac{3}{4}\)-watt resistor. If R136 is missing it should be added to the foil side of the circuit board as shown in fig. 4. Electrically, R136 is in parallel with L101.

5. Follow the instructions furnished with the MA-46 kit from step 5 thru to the end of the instruction sheet

With the addition of the MA-46 modifications described here the performance of the Regency HR-2 family of fm transceivers is as good as the latest fm equipment. Furthermore, it can be obtained without the expense of a new rig. The MA-46 modification kit is available from Regency for $22.50, not a bad price when you consider it's almost like getting a brand new receiver, free of that adjacent-channel interference that used to be so annoying.
If you like 2 METER . . .

YOU'LL LOVE OUR

ALL NEW

HR-2B

NARROW BAND FM TRANSCEIVER

15 OR 1 WATT POWER OUT/SWITCH SELECTABLE /
FULL 12 CHANNEL TRANSMIT AND RECEIVE CAPABILITY

You'll like the crystal clear transmit and receive performance of this compact, 2 meter unit and so will those listening. The 12 transmit channels are provided with individual trimmer capacitors for the optimum in point-to-point and repeater applications. A HI/LO power switch provides 1 watt output or full rated output. The receiver has an audio output of 3 watts at excellent sensitivity. Solid state, American made quality at a low price.

$229.00 AMATEUR NET
includes plug-in ceramic mike, mounting bracket and transmit and receive crystals for 146.94 MHz.

THE FM LEADER IN 2 METER AND 6 METER . . . AND NOW 220 MHZ

More Details? CHECK-OFF Page 126
simple high-gain wire antenna for high-frequencies

Design and layout of a four-element, double-extended Zepp that provides up to 7-dB gain on 15 meters.

There’s an old saying that you can’t get something for nothing, especially when you’re working with antennas, but you can make one wire antenna, the length of a 75-meter dipole, work like a bomb on 75 and deliver 7-dB broadside gain on 15! This is only one-half dB less than a three-element beam on this band. I call the antenna the FEDEZ – Four-Element Double-Extended Zepp.

Many amateurs have used the extended double Zepp which gives 3-dB gain at its design frequency. However, with the addition of phasing stubs and two more elements you can obtain up to 4-dB more gain. All it takes is a little arithmetic which, in my case, was supplied by W6DMY. The basic design was taken from the 1943 edition of the ARRL Antenna Handbook. The dimensions for any frequency are given in electrical degrees in fig. 1 (remember that $180^\circ = 1/2$ wavelength).

Since most of my on-the-air activities are confined to nets on 75 and 40 meters, with hamming just for fun on 15, the four-element double-extended Zepp I use has a 21.3-MHz center frequency (see fig. 2).

Although the two 7.68-foot phasing stubs can hang straight down from the antenna as shown in fig. 2, I use lumped constants for the two outer stubs as shown in fig. 3. Part of the 450-ohm open-wire feedline is used as the center phasing stub. Each of the lumped-constant stubs I use consist of an 11-turn coil, 2-inches in diameter, 2-3/4 inches long, wound with number-12 wire. Each end of the phasing coil is supported by the strain insulator as shown in fig. 3.

With this antenna I have yet to receive less than an S9 report on the SARO Bourbon net that meets every night on 75 meters, especially from San Diego and Medford, Oregon. On 15 meters I have received numerous S9 reports from the East coast as well as from Japan. W0QWH in Stanley, Kansas, who has given me signal checks on 47 different antennas over the past year, gave me his
best report, although it wasn’t S9—he apparently has a very stingy S-meter!

The dimensions of my urban lot require that I use this antenna in the inverted-vee configuration. This detracts from the gain somewhat because the wide spacing between the centers of the elements determines gain, and the drooping legs reduce this distance slightly. However, since I feed the antenna with 450-ohm open-wire ladder line to the Ultimate Transmatch, I think I’ve at last found the ultimate antenna to go with my ultimate transmatch. I don’t think you can beat it for city-sized lots.

Reference

fig. 1. Basic design of the four-element, double-extended Zepp antenna. All dimensions are given in electrical degrees (180° = 1/2 wavelength).

fig. 2. Four-element, double-extended Zepp antenna designed for 15 meters. Center design frequency is 21,300 kHz.

fig. 3. The two outer phasing lines can be hung down from the antenna as shown in fig. 2, or phasing inductances may be used as shown here. L1 and L2 are each 11 turns no. 12, 2" diameter, 2-3/4" long. Antenna may be used in the inverted-vee configuration if space is limited.
A discussion of antenna feedpoint impedance, and the effects of the resistance and reactance components in practical antennas

The feedpoint impedance, the radiator resistance and dissipative resistance, and the reactance of a common dipole antenna are matters that need clear understanding if you are to inquire deeply into the functioning of that indispensable component of a radio station: the antenna. The purpose of this article is to define and to describe the Z, R and X of antennas, not in a highly technical manner but simply and with only enough detail to distinguish one from another and to show the role each plays.

First, let's consider a center-fed dipole antenna, one a half-wave long (electrically) at the operating frequency, and one out in the clear far enough to have a very minimum modification of its normal characteristics by the influence of its environment. Textbooks tell us that such an antenna will have a feedpoint impedance (Zf) of 73 ohms, and that this impedance will be purely resistive (no reactance). In the real world, such an antenna seldom is found!

Let's deal first with the ideal dipole, then with the real. In the ideal dipole, Zf, the feedpoint impedance, will equal R, the composite of the radiation resistance and each of all of the dissipative resistances. These dissipative resistances include the ohmic resistance of the antenna, insulation losses, dielectric losses and absorption losses. These are easy to visualize. You know that the antenna wire has
resistance, even though it's made of highly-conductive copper. You know that no insulator is perfect; so even the best has some loss. You know that somewhere within the near-field of the antenna there must be an insulating object that introduces dielectric losses, however small. And you know that somewhere within the near-field there must be some material that will absorb radio waves.

radiation resistance

Radiation resistance, though, is a different matter! In the first place, it's not a true resistance. It acts like a resistance in some ways, but not in every manner. For instance, a real resistance, when radio-frequency current flows through it, converts the electrical energy into heat, another form of energy. Radiation resistance doesn't do this.

What, then, does it do? Nothing! It's just a term which describes an attribute of an antenna, an attribute which bears a superficial resemblance to a real resistor.

The need for such a term comes about from the fact that all of the rf power that flows into an antenna doesn't get converted into heat. Some (and, we hope, a greater part) of the rf power is radiated out into space. It's convenient to speak of an antenna's characteristics as if all of the rf energy fed into it were dissipated just like that portion which produces heat. To make this fiction plausible, we assign an imaginary resistor to the antenna and call it "the radiation resistance."

When we put a known amount of rf power into the antenna, defining it as \(W = I^2 R \), and having a known amount of current, we have a large enough value of resistance to make the formula valid. We've taken care of not only the amount of power that was dissipated in the various real resistances and equivalent resistances but also the amount of power radiated into space; the latter being equal to what a real resistance of a value the same as the radiation resistance would have dissipated in the form of heat.

Let's run that through again. Taking a purely imaginary situation, let's conjure up an antenna that has only real resistance, a real resistance of one ohm, and feed one ampere of rf current into it. According to the formula, only one watt of power is going into that antenna, and all of it is being converted into heat with none of it being radiated.

Now, conjure up another antenna with one ohm of real resistance and 49 ohms of radiation resistance. With the same one-ampere of rf current going into it, the formula tells us that 50 watts of rf power is going into the antenna — one watt is squandered as heat and 49 watts are radiated. Quite an improvement!

This brings us to a cardinal rule: Make the ratio of radiation resistance to dissipative resistance as high as you can. This is not too difficult to do with a half-wave or even a quarter-wave antenna, but when you attempt it with a really small antenna, say a tenth-wave, you run into a real problem. That's why the engineers who design 80-meter mobile antennas work up such a sweat over their drawing boards.

So much for radiation resistance. Just remember that it's an imaginary resistance that accounts for the power being radiated by the antenna.

antenna reactance

Now for the reactance. Remember, we started out with an ideal antenna, one that was resonant and therefore resistive. It might be resonant on, say, 7,257,376 Hz, but when you breathe on your transmitter and it drifts to 7,257,377 Hz, the antenna departs ever so little from resonance. As it departs from resonance, it loses that purely resistive status. If the frequency goes higher, a bit of inductive reactance is introduced; if it goes lower, the introduced reactance is capacitive.

Just how much the antenna departs from resistive to resistive-plus-reactive status, or, rather, the rate at which it departs for a given change of frequency, depends upon several factors. For the simple dipole we're considering, the chief of these factors is the antenna's diameter to length ratio. The larger the diameter of the radiator for a given length, the less
reactance introduced for a given change of frequency. The almost-obsolete cage antenna merits much consideration, for it gives a very favorable ratio of diameter to length.

When reactance is present the feed-point impedance, Z_f, no longer equals R. It is given by

$$Z_f = V \sqrt{R^2 + X^2}$$

with the R still the grand total of all the resistances (radiation, ohmic, etc.) and X either inductive ($+X_L$) or capacitive ($-X_C$), as the case may be. In either case when X is squared it's a positive value, so forget the sign.

There's one thing you mustn't forget, though. That's the matter of reactance not being able to absorb power. Ponder this, for it's quite important! Think of what it involves. The feedpoint impedance may go high and you feel that the dissipative resistance of your antenna is low. You rejoice, believing you're radiating more power, a valid assumption only if it were the radiation resistance that was going up. You can't make a purely-reactive termination accept power. One that's partly-reactive and partly-resistive, yes. One that's purely reactive, no.

Don't jump to the conclusion that reactance in an antenna is an evil thing. In certain antenna designs it plays a vital role, but this is not an article on antenna design. If you want to look into that subject, get a reliable textbook, preferably one written by Kraus, LaPorte, or some other recognized authority on the subject. There's a wide difference between the simple dipole we're discussing and a complex antenna. For this article we'll stick to the dipole!

If your dipole is reactive to a degree, as are the vast majority of such antennas, don't worry about it. If it does give you concern, remember that the reactance can be cancelled out by the introduction of an equal and opposite reactance. For example, if the antenna exhibits 10 ohms capacitive reactance, this can be negated by introducing 10 ohms of inductive reactance. This conjugate reactance can be placed at the feedpoint of the antenna or at any point between that feedpoint and the active device in your transmitter. Its position doesn't matter so long as it reflects that conjugate reactance into the antenna. Keep in mind that the resistive component of the antenna's impedance, which will not be affected by these manipulations to cancel reactance, is going to accept the rf power.

resistance transformation

The resistive component can be transformed by many and various means to any convenient numerical value that you might elect to stipulate. Again, this can be done at the feedpoint of the antenna or at any place between that feedpoint and the active device in your transmitter.

In each instance, there is some slight advantage in having the transformation take place at the antenna's feedpoint. With some transmitters, ones poorly designed or manufactured to meet a price and not to provide quality, it is imperative that the transformation take place between the antenna's feedpoint and the transmitter's antenna terminal. This, though, is strictly a transmitter deficiency.

summary

To sum up, the feedpoint impedance of an antenna is a complex quantity, constituted by both resistive and reactive components. The resistance component may be made up of many constituents. Of these, one, the radiation resistance, is not a true resistance but an imaginary one invented to account for the rf energy radiated by the antenna. The several other constituents of antenna resistance are all dissipative in nature and should be held to a minimum in design. Radiation resistance should be high as compared to the total of the other resistances. Some element of reactance is present in most antennas, but this is not a significant deficiency and may even be used to advantage in some designs.
This improved logic test probe checks binary levels as well as pulse coincidence. Since I have always been interested in test equipment, the TTL logic probe with a built-in memory described in a recent issue of *Ham Radio* proved very interesting. I made some changes to the basic circuit so that it can take the place, in many instances, of an item we would all like to own but can’t afford, a dual-trace oscilloscope. The design uses three ICs, some additional switches and more hardware.

Since I wasn’t able to obtain some of the parts used in the original logic probe, like good, bright LEDs, some circuit changes were made as needed. The completed unit may look a little clumsy in its mechanical design because I used what was available, but the probe does the job it’s supposed to do, and that’s what counts. If you have access to better materials you can dress it up any way you like.

the circuit

The logic probe circuit, fig. 1, has two inputs, *main* and *auxiliary*. In the off position of the *off-aux* switch the unit operates as in the original design. However, in this circuit you can switch the memory off with the *off-mem* switch so you don’t have to keep pushing the button when using the probe as a binary level indicator.

In the *aux* position of the *off-aux* switch two inputs are needed at the same time. The level of the pulse into the *aux* jack is selected by the *aux + or −* switch (see fig. 2). To check the coincidence of pulses, just connect a patch cord from the *aux* jack to the second point on the logic circuit you are checking, and the probe will indicate it.

The parallel RC circuit in series with the *aux* input is to protect the probe against a direct short to common in case the *aux* input is connected and the *off-aux* switch is in the *off* position. The
fig. 1. Circuit for the improved logic test probe. All signal diodes are 1N914, all resistors are 1/2 watt.

470-pF capacitor prevents too much pulse slow down. The 1N914 diodes serve to bring up the high trigger threshold voltage to prevent noise triggering.

I was unable to obtain a decent, bright LED, so I used a long-life number-47 bulb with a switching transistor. At the voltage used, the bulb should last forever, and it's still bright enough to be seen, even in bright sunlight.

The common of the TTL circuit is connected to a pin jack for those cases where the circuit under test cannot handle the probe current requirements. With the 1847 bulb the probe needs a total of about 160 mA; changing to a LED would cut probe current to 60 mA.

observation

In use, the metal case of the logic probe is left floating. Supply current with the lamp off is 26 mA; with the lamp on, current drain is 160 mA. Main trigger threshold voltages are +1.5 volts (high) and +1.3 volts (low). Auxiliary trigger threshold voltages are 1.5 volts (high) and 0.7 volt (low). The aux input can be used by itself if the main input is switched to minus (−) and connected to common. This may be useful at times since the low level of the aux input is half as low as the low level on the main input.

If a separate power supply is used for the logic probe only the common of the probe must be connected to the negative line of the TTL circuit under test. It should also be kept in mind that when
fig. 2. Construction of the improved logic test probe. Unit is housed in a small aluminum box; power supply is external.

checking TTL pulse trains with the memory switched off, and the indicator does not dim, it is probably because the duty cycle of the pulse is not 50%. Switching the polarity with the plus/minus switch may show more dimming than usual as with a 50% duty cycle. Experience will quickly show what to expect.

If a separate power supply is needed, a transformer, some diodes, a filter capacitor and one of the new 5-volt IC regulators will do the trick.

reference
TTL clock oscillator

In the circuit shown, two IC one-shot multivibrators are cross-coupled to make an oscillator suitable for driving other TTL ICs for various logic applications. The outputs are somewhat more TTL compatible than those obtained using transistor or unijunction circuitry.

In addition, this circuit is well suited to applications where the clock must be started and stopped at suitable intervals. In fact, it is necessary to have at least one positive-going transition on the enable input to start the clock after power is applied. The circuit by itself will not free run simply by applying a logic one level to the enable input. Note that both one-shots must time out after the enable goes low before the clock comes to rest.

The output of the first one-shot produces a pulse immediately after the enable input goes high, while the second one-shot waits until the end of the first cycle before it produces a pulse. The duty cycle of the output waveform can be adjusted as required by making both timing resistors variable. These also set the frequency of the oscillator.

With the IC one-shots, both the normal and inverted outputs of the clock are available at the "Q" and "not Q" terminals. If RC\textsubscript{t2} is made a very short duration pulse and RC\textsubscript{t1} is made adjustable over a wide range, a variable frequency pulse train of thin widths is produced. Making the two time constants equal produces a square wave output.

Cal Sondgeroth, W9ZTK

yaesu sideband switching

For owners of the Yaesu Ft-101 who miss the convenience of switching sidebands without retuning, here's a simple modification which can be made without affecting any other function of this fine equipment.

fig. 1. Simple clock-oscillator circuit using two TTL 74121 monostable multivibrator ICs.
By taking advantage of the clarifier circuitry and adding a potentiometer between two of the circuit-board receptacles, MJ6-11 and MJ5-2, an adjustment can be made which puts the vfo frequency in the right spot when switching to upper sideband, tune or CW. A small piece of perfboard, a 2500-ohm PC-mounting pot (39 cents from Radio Shack) and a 2000-ohm, ½-watt resistor wired in series are the only things needed. To align the circuit after it is installed, tune in a 3800-kHz lower-sideband signal and zero-beat the calibrator signal to it. Now, switch to upper sideband and adjust the 2500-ohm pot for zero beat. That completes the alignment. The setting at the center of the vfo range holds within a few Hz throughout the tuning range of the vfo, and is the same for USB, tune or CW. It is a pleasure when switching sidebands or going from CW to ssb not to have to recalibrate the dial.

Ernie Schultz, W2MUU

nuvistor heatsinks

Transistor-type heatsinks make excellent heat-dissipating radiators for nuvistor-type vacuum tubes. If possible, choose a high emissivity black anodized heatsink and use thermal compound between the metal tube and the heatsink to maximize heat transfer.

Richard Mollentine, WA0KKC

exploding diodes

If you have done much experimenting with the very popular glass encapsulated diodes you will know that they tend to explode rather violently when subjected to a severe overload. Since most amateurs and experimenters don’t wear safety glasses, this could be a dangerous situation. When these glass diodes explode they blow very small fragments of broken glass over a considerable area with enough force to cause serious eye injury. To prevent this from happening when experimenting and building projects, take a small piece of Scotch tape and wrap it tightly around each glass diode before installation. If you accidentally short something the tape will contain the force of the explosion and prevent the glass from blowing all over the room, possibly saving someone’s eye.

Pete Walton, VE3FEZ

Heathkit HW-16 problems

While repairing a Heathkit HW-16 Novice transceiver, I found the answer to several problems which may have bothered others. Keying characteristics were harsh, with pronounced clicks. A capacitor up to half a microfarad across the key, in parallel with C92, helped greatly. A .01-µF ceramic capacitor across R14 also helped to keep down QRM in the novice band. The sidetone oscillator, a neon bulb, lit, but refused to oscillate. A larger resistor in place of R64 took care of this. I changed the original value of 1.5 megohms to 3 megohms. Varying this resistor also changes the tone. The meter read half-way up scale with no current through it. Investigation showed the metal band around the plastic meter case was magnetized. A careful application of a magnetized screwdriver reversed this condition, and after several trials, the pointer rested near zero, where it should.

Eugene A. Hubbell, W7DI
short circuits

HW16 modification

In the March, 1973, issue of *ham radio*, a 0.001-µF blocking capacitor should be placed in series with the shielded lead connected from the grid of V7 to the grid of V2A. A number of readers have complained of insufficient power on 15 meters, but WB6MZN, the author, indicates that his plate power meter reads 160 mA on 40 meters and 180 mA on 15. He points out, however, that in the original configuration the HW16 tends to oscillate and power decreases on 15 meters. He cured this by carefully tuning all the tank circuits especially for 15-meter operation, including L8 and C21, the neutralizing capacitor.

ac power supply for fm equipment

In the ac power supply on page 28 of the June, 1973, issue, the regulator transistor may oscillate under certain load conditions. This oscillation can be suppressed by installing a 0.47-µF bypass capacitor from the output to ground. When paralleling power transistors for greater current capacity, be sure to include 0.1-ohm, 2-watt balancing resistors in series with the emitters of each power transistor.

1296-MHz quad yagi

In the May, 1973, issue, the driven element for the 1296-MHz quad Yagi should be made from 1/32-inch-thick flat brass. The reflector and directors are made from flat aluminum stock, 0.050-inch thick, not rod as stated in the article.

phase I receiver

There were several circuit errors in the Phase I Receiver published in the August, 1973, issue of *ham radio*. In fig. 3 R35 should have a value of 100k ohms and C33 is not used on the PC board at all. The jumper just below U6 in fig. 4 should be connected to the circuit pad at the lower right hand corner of U6 (goes to pin 2 not to the pad on pin 15). Rf choke L1 is approximately 6 µH and may be wound on an Amidon T37-2 core.

The author reports that the mosfet, Q4, suffers from parasitics and is touchy to agc. The whole stage may be replaced with an emitter follower (2N3707) with a 680-ohm emitter resistor and a 470k base-bias resistor. The 100k agc control, R37, may be replaced with a 100k fixed resistor. True rf gain control can be obtained by replacing CR1 with a 1000-ohm pot. Reduced gain results in better cross-mod performance. The author has inserted two 1N914 diodes in the agc line running to Q1 to improve strong-signal performance. With only Q1 controlled, agc range is about 40 dB and much smoother. This range depends upon the setting of the new 1k rf gain control.

The dc offset to U3 (MC1741CG) may need to be adjusted if the quiescent voltage at pin 6 is not near 5 volts.

micropower receiver

In the schematic for the micropower communications receiver in the June, 1973, issue of *ham radio*, a 220k base bias resistor should be connected from the base of the 2N1307 transistor to the +6 volt supply line.

motorola test set

In the Motorola test set article in the November, 1973, issue of *ham radio*, it should be noted that in late model Motrac, Motrans, Mocom and Micor radios the first i-f has been changed from 12 MHz to 8 MHz. When aligning the first i-f it must be determined which frequency is involved. If the first i-f adjustments are tuning capacitors, the i-f is a 12-MHz unit. If the adjustments are slug-tuned coils, the i-f is at 8 MHz.

logic test probe

In the circuit for the logic test probe featured in the *ham notebook* section in the February, 1973, issue, no power connections were shown for the IC. Connect +5 volts to pin 14 and ground pin 7 of the IC.
antenna and control-link calculations

The appendix for W7PUG's "Antenna and Control-Link Calculations" article in the November, 1973, issue of ham radio was inadvertently not included with the article. The Tymshare Superfortran program for antenna pattern calculations is shown in table 1, below. Examples of computer printouts for the two types of antennas discussed in the article are shown in tables 2 and 3.

Table 1. Tymshare Superfortran computer program for calculating antenna patterns. Sample computer printouts for a J-pole and Station-master antenna are shown in tables 2 and 3, respectively.

Table 2. Computer-generated antenna pattern information for a 4-element J-pole antenna.

<table>
<thead>
<tr>
<th>ELEV</th>
<th>GAIN</th>
<th>RELATIVE</th>
<th>DEG</th>
<th>DB</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.9</td>
<td>0.00</td>
<td>1</td>
<td>8.9</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>8.8</td>
<td>0.00</td>
<td>10</td>
<td>8.9</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>0.00</td>
<td>10</td>
<td>8.9</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>8.3</td>
<td>0.00</td>
<td>30</td>
<td>8.8</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>7.6</td>
<td>0.00</td>
<td>40</td>
<td>6.4</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>7.1</td>
<td>0.00</td>
<td>50</td>
<td>8.6</td>
<td>0.97</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>0.00</td>
<td>60</td>
<td>8.4</td>
<td>0.95</td>
</tr>
<tr>
<td>7</td>
<td>5.3</td>
<td>0.00</td>
<td>70</td>
<td>8.1</td>
<td>0.98</td>
</tr>
<tr>
<td>8</td>
<td>4.8</td>
<td>0.00</td>
<td>80</td>
<td>7.6</td>
<td>0.87</td>
</tr>
<tr>
<td>9</td>
<td>4.5</td>
<td>0.00</td>
<td>90</td>
<td>7.0</td>
<td>0.81</td>
</tr>
<tr>
<td>10</td>
<td>7.39</td>
<td>0.00</td>
<td>100</td>
<td>8.2</td>
<td>0.74</td>
</tr>
<tr>
<td>11</td>
<td>6.2</td>
<td>0.00</td>
<td>110</td>
<td>5.6</td>
<td>0.67</td>
</tr>
<tr>
<td>12</td>
<td>5.0</td>
<td>0.00</td>
<td>120</td>
<td>4.0</td>
<td>0.59</td>
</tr>
<tr>
<td>13</td>
<td>4.0</td>
<td>0.00</td>
<td>130</td>
<td>5.1</td>
<td>0.51</td>
</tr>
<tr>
<td>14</td>
<td>2.0</td>
<td>0.00</td>
<td>140</td>
<td>1.8</td>
<td>0.44</td>
</tr>
<tr>
<td>15</td>
<td>1.8</td>
<td>0.00</td>
<td>150</td>
<td>1.9</td>
<td>0.41</td>
</tr>
<tr>
<td>16</td>
<td>1.1</td>
<td>0.00</td>
<td>160</td>
<td>1.6</td>
<td>0.34</td>
</tr>
<tr>
<td>17</td>
<td>0.76</td>
<td>0.00</td>
<td>170</td>
<td>1.5</td>
<td>0.30</td>
</tr>
<tr>
<td>18</td>
<td>0.5</td>
<td>0.00</td>
<td>180</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>19</td>
<td>0.19</td>
<td>0.00</td>
<td>190</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>20</td>
<td>0.19</td>
<td>0.00</td>
<td>200</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>21</td>
<td>0.19</td>
<td>0.00</td>
<td>210</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>22</td>
<td>0.19</td>
<td>0.00</td>
<td>220</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>23</td>
<td>0.19</td>
<td>0.00</td>
<td>230</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>24</td>
<td>0.19</td>
<td>0.00</td>
<td>240</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>25</td>
<td>0.19</td>
<td>0.00</td>
<td>250</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>26</td>
<td>0.19</td>
<td>0.00</td>
<td>260</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>27</td>
<td>0.19</td>
<td>0.00</td>
<td>270</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>28</td>
<td>0.19</td>
<td>0.00</td>
<td>280</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>29</td>
<td>0.19</td>
<td>0.00</td>
<td>290</td>
<td>1.3</td>
<td>0.21</td>
</tr>
<tr>
<td>30</td>
<td>0.19</td>
<td>0.00</td>
<td>300</td>
<td>1.3</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Table 3. Computer-generated antenna pattern information for a type-2 antenna (Communications Products Stationmaster).

<table>
<thead>
<tr>
<th>ELEV</th>
<th>GAIN</th>
<th>RELATIVE</th>
<th>DEG</th>
<th>DB</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.7</td>
<td>1.00</td>
<td>5</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>1</td>
<td>5.7</td>
<td>1.00</td>
<td>10</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>2</td>
<td>3.2</td>
<td>0.00</td>
<td>10</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>3.2</td>
<td>0.00</td>
<td>30</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>4</td>
<td>3.2</td>
<td>0.00</td>
<td>40</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>3.2</td>
<td>0.00</td>
<td>50</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>6</td>
<td>3.2</td>
<td>0.00</td>
<td>60</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>7</td>
<td>3.2</td>
<td>0.00</td>
<td>70</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>8</td>
<td>3.2</td>
<td>0.00</td>
<td>80</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>9</td>
<td>3.2</td>
<td>0.00</td>
<td>90</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>10</td>
<td>3.2</td>
<td>0.00</td>
<td>100</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>11</td>
<td>3.2</td>
<td>0.00</td>
<td>110</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>12</td>
<td>3.2</td>
<td>0.00</td>
<td>120</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>13</td>
<td>3.2</td>
<td>0.00</td>
<td>130</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>14</td>
<td>3.2</td>
<td>0.00</td>
<td>140</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>15</td>
<td>3.2</td>
<td>0.00</td>
<td>150</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>16</td>
<td>3.2</td>
<td>0.00</td>
<td>160</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>17</td>
<td>3.2</td>
<td>0.00</td>
<td>170</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>18</td>
<td>3.2</td>
<td>0.00</td>
<td>180</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>19</td>
<td>3.2</td>
<td>0.00</td>
<td>190</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>20</td>
<td>3.2</td>
<td>0.00</td>
<td>200</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>21</td>
<td>3.2</td>
<td>0.00</td>
<td>210</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>22</td>
<td>3.2</td>
<td>0.00</td>
<td>220</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>23</td>
<td>3.2</td>
<td>0.00</td>
<td>230</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>24</td>
<td>3.2</td>
<td>0.00</td>
<td>240</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>25</td>
<td>3.2</td>
<td>0.00</td>
<td>250</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>26</td>
<td>3.2</td>
<td>0.00</td>
<td>260</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>27</td>
<td>3.2</td>
<td>0.00</td>
<td>270</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>28</td>
<td>3.2</td>
<td>0.00</td>
<td>280</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>29</td>
<td>3.2</td>
<td>0.00</td>
<td>290</td>
<td>5.75</td>
<td>0.98</td>
</tr>
<tr>
<td>30</td>
<td>3.2</td>
<td>0.00</td>
<td>300</td>
<td>5.75</td>
<td>0.98</td>
</tr>
</tbody>
</table>
EAST COAST SERVICE CENTER
We also service all other popular makes.
Complete professionally staffed laboratory fully equipped for all aspects of maintenance and service. Graduate Engineer on duty. Custom Design services available.

VHF SPECIALISTS
PROFESSIONAL ELECTRONICS CO., INC.
1710 JOAN AVE. EUDOWOOD BRANCH
BALTIMORE, MD. 21204
301-661-2123

Want to Meet Some Old-Timers?
New Vintage Radio Book
Re-live the early days of wireless and radio. Over 1,000 pictures. 1887-1929.

Radio Collector's Guide
Over 50,000 useful facts. 1921-1932

ORDER NOW! Send check to
McMahon's Vintage Radio, Box 2045,
Palos Verdes Peninsula, Calif., 90274

Vintage Radio, hard cover $6.95 □
Vintage Radio, handbook 4.95 □
Radio Collector's Guide 3.95 □

California residents add 6% State Sales Tax

Name _____________________________
Street ____________________________
City ___________________ State______ Zip_____

The Ideal Holiday Gift!

Crystal Bargains
Depend on...
We supply crystals from 16kHz to 100MHz. Over 6 million crystals in stock.

SPECIAL
Crystals for most amateur 2-Meter F.M. Transceivers:

$3.75 Each

Inquire about quantity prices. Order direct. Send check or money order.

For first class mail add 15¢ per crystal...for airmail add 20¢ ea.

Specials! Crystals for:
Frequency Standards
100 KHz: (HC13/U) $4.50
1000 KHz: (HC6/U) 4.50

Almost All CB Sets, Trans. or Rec.
(CB Synthesizer Crystal on request) 2.50

Any Amateur Band in FT-243
(Except 80 meters) 1.60
80 Meter Range in FT-243 4 for 5.00
Color TV 3579.545 KHz: (wire leads) 4 for 5.00

More Details? CHECK-OFF Page 126
LESS THAN 82¢ PER WATT

SWAN's NEW 700CX CHAMPION TRANSCEIVER
700 WATTS P.E.P./SSB/AM/CW/5-BANDS

SWAN's 700CX is a real inflation fighter. You can experience more powerful communications with this one rugged value-packed transceiver, for less cost, than any other ham rig in its class. Here is all the dynamic power you need to punch through QRM — without an expensive accessory amplifier.

Shop around and compare. There's just no competitive method that'll give you everything the CHAMPION has to offer for such a reasonable investment.

Here's some of the many standard features built into the 700CX: Automatic Level Control • Fast attack AGC, with controlled decay • Dual-ratio planetary tuning • CW sidetone • Selectable sideband • 2.7 kHz bandwidth • S-meter • 5.5 MHz crystal I.F. filter • Wide-range “Pi” antenna coupler.

See any authorized SWAN dealer for complete specifications and a demonstration. Then figure it out — all this AND 700 watts, too, for $569.95 — that IS less than 82¢ per watt — it's a real value.

Options include: SWAN 117XC, matching AC power supply and speaker — $109.95; SWAN 14-117, DC power supply — $139.95; SWAN FP-1, phone patch — $48.95.

NEED PORTABILITY? IF SO, MAKE IT WITH THE SWAN 300B CYGNET de novo!! The New 1974 SWAN Cygnet transceiver with 300 watts P.E.P., an internal power-supply, and built-in speaker ... weighing less than 25 pounds ... is now available. Take it anywhere. Features: 5-Bands • SSB/CW • CW sidetone • AGC • ALC • S-meter • Semi-CW break-in with optional VX-2 VOX unit • Excellent sensitivity and selectivity.

Sets up right now! Simply connect an AC source, plug in your microphone and antenna — you're on the air!

SWAN ELECTRONICS
305 Airport Road
Oceanside, CA 92054
(714) 757-7525

THE BEST PRACTICAL DEVELOPMENTS IN AMATEUR RADIO
Introducing the Atlas 180 SSB Transceiver

SPECIAL ANNOUNCEMENT

Dear OM:

You are cordially invited to examine the new Atlas 180 SSB Transceiver. This is an all solid state rig, now being delivered to our dealers, and is the initial product of our new transceiver. There are so many features to talk about, both in circuit design and packaging, we can only touch on the high points in this introductory ad.

One of the big things going for us (and you) is the license agreement between Atlas and Southcom International, Inc. Southcom manufactures military and commercial SSB gear, and their chief engineer, Les Earnshaw (K7LAX) is considered to be one of the foremost solid state engineers in the world. Thus we are able to bring Les' advanced solid state designs to the amateur radio market.

Another important point: it is our sincere intention to provide quality control and customer service second to none.

For complete information, see your Atlas dealer soon.

73 Herb Johnson W6GKX

10 meters

SOLID STATE 4 BAND SSB TRANSCEIVER

- Covers 20, 40, 80 and 160 meters • 180 watts P.E.P. input, and CW input • All solid state, including 18 transistors, 4 I.C.s, and 14 diodes • Internal speaker, calibrator, S-meter, and sideband selector, with provision for addition of other accessories • Operates on 12-14 volts DC, 0.15 amp. • 16 amps peak Trans • Modular construction, plug-in circuit boards, easy servicing • Only 3% wide, 9% deep, 8% deep, yet has full size knobs and dials • Accessories include plug-in type mobile mount, and AC power supply. Sold only through Atlas dealers.

Net price $ 479

5580 El Camino Real • Carlsbad, CA 92008 • (714) 723-8985

ELECTRONIC ADVERTISER

GRAY Electronics
P. O. Box 941, Monroe, MI 48161

SOLARTEST 3000

Industrie Automation Systems

62 december 1973 More Details? CHECK-OFF Page 126
DYCOMM SUPER D 80 WATT KIT

DYCOMM OFFERS YOU THE BEST DEAL EVER FOR A 2M FM (or Oscar CW) AMPLIFIER.

ONLY $49.95 SAVE $60–$100.00

THE LIST PRICE OF THE TRANSISTORS IS MORE THAN TWO (2) TIMES THE PRICE OF THIS SUPER D KIT!!!

We use a pair of 2N6084 Transistors (each one rated 40 W Infinite VSWR) featuring Emitter Ballasted construction and of first quality, so you can't burn them out in tuning or under any load mismatch; each Transistor has been individually Hand tested at DYCOMM before shipment.

Typical assembly time is 5 hours. Kit is complete with full assembly procedure, including lay-out Photos, and Manual. Tune-up and alignment is easy and straightforward using a watt-meter, dummy load and VOM.

Kit includes: 6' control wire, 6' power cables (fused), 4' RG58 to make interconnect cable, 2 PL 259 connectors, and all other parts required for this PROFESSIONAL $150.00 Amplifier.

SUPER D SPECIFICATIONS:

Prices: KIT $49.95; Wired and Tested $149.95. Residents of Florida add 4% sales tax, shipping (UPS where possible) included. For Airmail add $2.00, Foreign-add postage extra. EXTRA TRANSISTORS $20.50 each (1/3 off list). All parts are guaranteed and if a defective part should be found it will be replaced free within 30 days of shipment. Quantities Limited. First come—First served; this Special offer ends January 10, 1974. Send check or money order to DYCOMM, 948 Ave. E., P.O. Box 10116, Riviera Beach, Florida, 33404. (305-844-1323)

More Details? CHECK-OFF Page 126 december 1973
The 1974 Callbook is here.

Hallelujah!

Here they are, the Brand New 1974 Callbooks. Both the U.S. and DX Callbooks have been completely updated in these exciting larger than ever editions.

Buy your 1974 Callbooks today and you will enjoy the very latest edition for 12 full months as the next new ones are a year away. Put it off and only you will be the loser.

The CALLBOOK is a vital part of every amateur radio station. Over 285,000 listings in the US CALLBOOK and approximately 200,000 in the DX edition make these two volumes an indispensable reference. Not only do the CALLBOOKS list QTH's, but they also have page after page of valuable charts, tables and maps all designed to make your operating more efficient and more fun.

To makes these volumes even more valuable special service editions are issued each 3 months, but only to owners of the 1974 CALLBOOKS, which give complete cumulative updated information for the 1974 CALLBOOKS.

US CALLBOOK
(less service editions)
Just $9.95

US CALLBOOK
(with service editions)
$15.95

Mail orders add 50c per CALLBOOK postage and handling.

See your favorite dealer or send today to:

WRITE FOR FREE BROCHURE

RADIO AMATEUR CALLBOOK INC.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

More Details? CHECK-OFF Page 126
IT'S HERE NOW The NEW FT101B

With These Added Features and NO INCREASE IN PRICE

1. VFO (warning lite) on or off
2. Clarifier (warning lite) on or off
3. Noise blanker on insert card
4. 8 pole filter for better rejection
5. Sidetone output
6. Antitrip input

$649.00

Amateurs and Maritime operators around the world have discovered the FT101's versatility and reliability. Many of the outstanding signals you hear are using the FT101. It's all here—AM, CW, SSB. Receiver sensitivity 0.3 microvolts 10dB signal to noise ratio, 160 meters through 10 meters. Citizen's Band, WWV, 25 and 100 kc calibrators, 5 kc clarifier for net or mobile operation. The built-in noise blanker assures in-motion mobile-peak performance with minimum of noise.

Transmitter stability under most adverse conditions is superb. PEP 260 watts SSB, 80 watts AM, 180 watts CW. 117 V AC supply built-in. 12 V DC fused power cable, AC cable, all accessory plugs are furnished. Matching units available for FT101B, FP101 patch, FP101, speaker FV101 VFO, FL2100 linear. See your local dealer for demo and brochure.

DEALER'S SERVICE POLICY—Factory Service available after warranty has expired.
For the most powerful antennas under the sun

the REPEATER

2 Meter Fixed Station

Designed for the man who demands professional standards in 2 meter equipment. REPEATER LINE fixed station antennas are the 2 meter HAM’s dream come true. With everything you need for top fixed station performance...toughness, efficiency and the gain to gain access to distant repeaters with ease. Work many stations, fixed or mobile, without access to a repeater.

The right antennas for the new FM transceivers...or any 2 meter fixed station.

REPEATER LINE Fixed Station Antennas

Tough, high efficiency antennas with a long, low radiation. For the top signal and reception you want...and the top performance your transceiver’s ready to deliver.

267 Standard 1/4 wave ground plane. May be precision tuned to any discrete frequency between 108 and 450 MHz. Takes maximum legal power. Accepts PL-259. Constructed of heavy gauge seamless aluminum tubing.

268 For repeater use. Special stacked 4 dipole configuration. 9.5 db offset gain. 6.1 db omnidirectional gain. Heavy wall commercial type construction. 144 thru 174 MHz. 1.5:1 VSWR over 15 MHz bandwidth eliminates field tuning. Extreme bandwidth great for repeater use. Center fed for best low angle radiation. DC ground. Complete with plated steel mounting clamps.
340 3 element high performance beam. 9 db gain. Coaxial balun. Special VHF Beta Match configuration. Unidirectional pattern. VSWR 1.5:1. 52 ohm impedance. Heavy gauge aluminum tubing and tough aluminum rod construction.

338 Colinear ground plane. 3.4 db gain omnidirectionally. Vertically polarized. 52 ohm match. Radiator of seamless aluminum tubing; radials of solid aluminum rod. VSWR less than 1.5:1. All steel parts iridite treated. Accepts PL-259.

362 SJ2S4 high performance all-driven stacked array. 4 vertically polarized dipoles. 6.2 omnidirectional gain. 52 ohm. May be mounted on mast or roof saddle. Unique phasing and matching harness for perfect parallel phase relationship. Center fed. Broad band response. DC ground.

WRITE FOR DETAILS
For top fixed station performance on 2 meters...

THE REPEATER LINE
From

HY-GAIN ELECTRONICS CORPORATION
Dept. BM, 8601 Northeast Highway Six, Lincoln, NE 68507
402/434-9151
Telex 48-6424
MOBILERS: HERE IS HIGH QUALITY IN 12 VDC HIGH CURRENT RELAY, SPST(NO) 50 AMP CONTACTS, COIL IS 28 OHMS, BY ADVANCE. STOCK # DC1250......$2

COMPUTER GRADE CAPACITORS, BRAND NEW ELECTROLYTICS BY MALLORY OR SPRAGUE, DUE TO OUR SPECIAL PURCHASE, WE ARE ABLE TO OFFER THESE AT LESS THAN USUAL DEALER NET COST.

CGC-3633...JMIX/S1MVDC..52.25
CGC-7217..720/S1MVDC..51.25

LIGHTED POWER SWITCH 6.5A, SPST, PUSH-ON, PUSH-OFF, EASY CLIP MOUNTING, FITS 7/8"X1-1/8" RECTANGULAR HOLE, WITH 6" WIRES ATTACHED STOCK # LPS1065....$1,2/$1.75

SILVERED MICA CAPS RECTANGULAR "REDS" 30 ASSORTED...$1.00
100 ASSORTED...$2.50

TO-66 HEATSINK, BLACK, ANODIZED ALUMINUM, FITS TO-66 HOLE PATTERN. #1H2066....15c,2/75c.

MINIATURE TRANSFORMER 6.3VCT, 80mA. ONLY...8X "8X1.1-" LONG, COLOR CODED LEADS, 65c, 2/51.

6 AMP, 200V MOLDED SILICON BRIDGE, 6" SQUARE - CENTER MOUNTING HOLE STOCK #8R-0622....$1.00....2/75.

NEW AND SURPLUS ELECTRONIC COMPONENTS FOR THE PRO AND SERIOUS AMATEUR. AN ORDER OR 8c STAMP PUTS YOU ON OUR MAILING LIST. MINIMUM ORDER $3.00 US., $15.00 FOREIGN. ALL ORDERS POSTPAID. PLEASE ADD INSURANCE SATISFACTION GUARANTEED

8MC. XTALS-8333-9000. Silk Screened Panel.
18 Watts Output.

SIX METER TRANSMITTER

ExCELTRONICS RESEARCH LABS
MANUFACTURERS OF ELECTRONIC DEVICES
224-15 Linden Blvd. Cambria Heights, N. Y. 11411

THE ULTIMATE MORSE KEYBOARD

- 64 character buffer
- Standard typewriter format with space
- Compatible with KM-420 memory

Available 1 November Model #KB-4200
Write for specifications $499.95

THE ULTIMATE MORSE KEYBOARD

- MOBILE
- FIXED STATION
- EMERGENCY
- AVIATION

EXCELTRONICS RESEARCH LABS
MANUFACTURERS OF ELECTRONIC DEVICES
224-15 Linden Blvd. Cambria Heights, N. Y. 11411

DUAL 16VCT 3AMP TRANSFORMER IDEAL FOR YOUR OP AMP SUPPLY STOCK # TDS-1625....$3.25, 2/$6

3AG FUSE POST, LITTLEFuse 342 MOUNTED ON A METAL L BRACKET NEW, UNUSED $5.30

IC SOCKETS BY T.I., THESE ARE BRAND NEW FIRST GRADE SOCKETS, LOW PROFILE SOLDER TAIL, 14 PIN DIP 45c, 10/$4.10
SOLDER TAIL, 16 PIN DIP 50c, 10/$4.50
WIRE WRAP, 14 PIN DIP 55c, 10/$5.00
WIRE WRAP, 18 PIN DIP 60c, 10/$5.40

MONOLITHIC CAR CERAMIC 22uf/25V C10122...$0.70

Brand new deposited carbon film resistors, 1/4WATT, 5%. COMPARE THESE LOW PRICES:
ALL STANDARD VALUES FROM 1 OHM TO 4.7 M
ANY SINGLE VALUE 10 per pkg., 10/45c, 100/3.75
MIXED VALUES (minimum 5 per value) 100/4.00

INC. BOX 4080 MOUNTAIN VIEW CA. 94040

Price 49.95

Net to Amateurs Complete with Tubes Power Supply $9.95

SIX METER TRANSMITTER

TUBE COMPLIMENT
6U8 Oscillator Multiplier
12AX7 Speech Amplifier
2E26 Final Amplifier
6BQ5 Modulator

The dual 16vct 3amp transformer is ideal for your op amp supply. Stock # TDS-1625 is available for $3.25 or 2 for $6. The 3ag fuse post, little fuse 342 is mounted on a metal l bracket and is new, unused for $5.30. New first-grade sockets by T.I., low profile solder tail, 14 pin DIP are available for 45c each, 10 for $4.10, or 16 pin DIP for 50c each, 10 for $4.50. Wire wrap, 14 pin DIP is available for 55c each, 10 for $5.00, and 18 pin DIP for 60c each, 10 for $5.40.

Monolithic car ceramic 22uf/25v is available as C10122 for $0.70.

Brand new deposited carbon film resistors are available in 1/4watt, 5% value from 1 ohm to 4.7 m. Detailed sample pricing includes:
- All standard values from 1 ohm to 4.7 m are available at 10 per pkg. for 45c, or 100 for $3.75.
- Mixed values (minimum 5 per value) are available for 100 for $4.00.

New and surplus electronic components for the pro and serious amateur. An order or 8c stamp puts you on our mailing list. Minimum order $3.00 US., $15.00 foreign. All orders postpaid. Please add insurance. Satisfaction guaranteed.
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR
 RF MIXER
 A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
 RF AMP
 A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
 RF POWER AMP
 A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND AMP
 General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur $3.75

5. OX OSCILLATOR
 Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
 Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ± 0.02% when operated in international OX circuit or its equivalent. (Specify frequency) $3.95

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3098E.

CRYSTAL TYPES:
- (GP) for "General Purpose" applications
- (CS) for "Commercial Standard"
- (HA) for "High Accuracy" close temperature tolerance requirements

write for CATALOG

INTERNATIONAL
CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLA. CITY, OKLA. 73102

More Details? CHECK-OFF Page 126
Seconds To Bond... Years To Undo!

Literally thousands of uses; Repair printed circuit boards, cabinets, install knobs, controls, all types of hardware... metal, ceramic, porcelain, glass, etc. One Drop should be in every workshop. It's ideal for repairing jewelry, appliances, sporting goods, tools and countless other items.

If unavailable in your area order direct with 30 Day Money-Back Guarantee

☐ 132 Drop Dispenser (2 grams) $3.00 postpaid
☐ SAVE... Order two for only $5.00

Send check or money order — No C.O.D.'s.

Name __________________________
Address _________________________
City _____________________________
State __________ Zip _____________

Note: This One-Drop formula is not recommended for use on porous materials unless it is properly filled. Request Instant-Weid 240 for use on porous materials. No. 260 sets in about 3 minutes on most materials.

GATEWAY ELECTRONICS
8123 PAGE AVENUE
ST. LOUIS, MISSOURI 63130
314-427-6116

LASER DIODE $7.50
DIGITAL CLOCK CHIP — NATIONAL 5314 — 6 DIGIT — 12/24 HOUR $12.95
100 kHz Crystal $5.00
200 kHz Crystal $5.00
250 kHz Crystal $1.50
1 MHz Crystal $5.00
5 MHz Crystal $2.50
10 MHz Crystal $2.50

THUMBWHEEL SWITCHES
STANDARD SIZE — 0.5 x 2.125 x 1.78
— 10 position decimal $3.00
— 10 position BCD & Compliment $4.00
— End Plates (per pair) $1.45

MINIATURE SIZE — 0.312 x 1.3 x 1.3
— 10 position decimal $2.50
— 10 position BCD & Compliment $4.00
— 10 position BCD only $2.75
— End Plates (per pair) $1.00
— Divider Plates $1.25
— Blank Body $0.30

$5 Minimum Order.
Visit us when in St. Louis.
Please include sufficient postage.

NEW MODEL CWF-2BX $19.95
Model CWF-2 $12.95, K.I.

Ready to use. Please include $1.00 postage.

• Get Razor Sharp selectively from any receiver or transistor.
• Extremely high skirt rejection.
• Extremely reduced all background noise.
• No audible ringing.
• No impedance matching.
• Ultra modern active filter design uses IC's for super high performance.

We have what we think is the finest CW filter available anywhere. The 80 Hz selectivity with its steep aided skirts will allow you to pick out one signal and eliminate all other QRM and QRN. Simply plug it into the phonograph or connect it to the speaker terminals of any receiver or transmitter and use headphones, small speaker or speaker amplifier. Better yet, connect it between any audio stages to take advantage of the built in receiver audio amplifier. Build the 2'x3' CWF-2 PC board into your receiver or get the set contained and ready to use CWF-2BX and plug in!

SPECIFICATIONS
BANDWIDTH: 80 Hz, 110 Hz, 180 Hz (Switch selectable)
SIGNAL REJECTION: At least 60 db down 1 octave from center frequency for 80 Hz bandwidth
CENTER FREQUENCY: 750 Hz
INSERTION LOSS: None. Typical gain 1.2 at 180 Hz BW, 1.5 at 110 Hz BW, 2.4 at 80 Hz BW
INDIVIDUAL STAGE 0.4 (minimums ringing)
IMPEEDANCE LEVELS: No impedance matching required
POWER REQUIRED: CWF-2 6 watts (2 mA) to 30 watts (6 mA); CWF-2BX 15 watts (6 mA)
DIMENSIONS: CWF-2 2'x3' PC board, CWF-2BX 3.5'x2'x1/2' (black nickel steel top, white aluminum bottom, rubber feet)

For this fantastic CW filter, if you don't think it is the best you have ever used ask for your money back. We will cheerfully refund it. These filters carry a full one year warranty.

CW FILTER

NEW MODEL CWF-2BX $19.95
Model CWF-2 $12.95, K.I.

Ready to use. Please include $1.00 postage.

• Get Razor Sharp selectively from any receiver or transistor.
• Extremely high skirt rejection.
• Extremely reduced all background noise.
• No audible ringing.
• No impedance matching.
• Ultra modern active filter design uses IC's for super high performance.

We have what we think is the finest CW filter available anywhere. The 80 Hz selectivity with its steep aided skirts will allow you to pick out one signal and eliminate all other QRM and QRN. Simply plug it into the phonograph or connect it to the speaker terminals of any receiver or transmitter and use headphones, small speaker or speaker amplifier. Better yet, connect it between any audio stages to take advantage of the built in receiver audio amplifier. Build the 2'x3' CWF-2 PC board into your receiver or get the set contained and ready to use CWF-2BX and plug in!

SPECIFICATIONS
BANDWIDTH: 80 Hz, 110 Hz, 180 Hz (Switch selectable)
SIGNAL REJECTION: At least 60 db down 1 octave from center frequency for 80 Hz bandwidth
CENTER FREQUENCY: 750 Hz
INSERTION LOSS: None. Typical gain 1.2 at 180 Hz BW, 1.5 at 110 Hz BW, 2.4 at 80 Hz BW
INDIVIDUAL STAGE 0.4 (minimums ringing)
IMPEEDANCE LEVELS: No impedance matching required
POWER REQUIRED: CWF-2 6 watts (2 mA) to 30 watts (6 mA); CWF-2BX 15 watts (6 mA)
DIMENSIONS: CWF-2 2'x3' PC board, CWF-2BX 3.5'x2'x1/2' (black nickel steel top, white aluminum bottom, rubber feet)

For this fantastic CW filter, if you don't think it is the best you have ever used ask for your money back. We will cheerfully refund it. These filters carry a full one year warranty.

CW FILTER

NEW MODEL CWF-2BX $19.95
Model CWF-2 $12.95, K.I.

Ready to use. Please include $1.00 postage.

• Get Razor Sharp selectively from any receiver or transistor.
• Extremely high skirt rejection.
• Extremely reduced all background noise.
• No audible ringing.
• No impedance matching.
• Ultra modern active filter design uses IC's for super high performance.

We have what we think is the finest CW filter available anywhere. The 80 Hz selectivity with its steep aided skirts will allow you to pick out one signal and eliminate all other QRM and QRN. Simply plug it into the phonograph or connect it to the speaker terminals of any receiver or transmitter and use headphones, small speaker or speaker amplifier. Better yet, connect it between any audio stages to take advantage of the built in receiver audio amplifier. Build the 2'x3' CWF-2 PC board into your receiver or get the set contained and ready to use CWF-2BX and plug in!

Specifications
BANDWIDTH: 80 Hz, 110 Hz, 180 Hz (Switch selectable)
SIGNAL REJECTION: At least 60 db down 1 octave from center frequency for 80 Hz bandwidth
CENTER FREQUENCY: 750 Hz
INSERTION LOSS: None. Typical gain 1.2 at 180 Hz BW, 1.5 at 110 Hz BW, 2.4 at 80 Hz BW
INDIVIDUAL STAGE 0.4 (minimums ringing)
IMPEEDANCE LEVELS: No impedance matching required
POWER REQUIRED: CWF-2 6 watts (2 mA) to 30 watts (6 mA); CWF-2BX 15 watts (6 mA)
DIMENSIONS: CWF-2 2'x3' PC board, CWF-2BX 3.5'x2'x1/2' (black nickel steel top, white aluminum bottom, rubber feet)

For this fantastic CW filter, if you don't think it is the best you have ever used ask for your money back. We will cheerfully refund it. These filters carry a full one year warranty.

For this fantastic CW filter, if you don't think it is the best you have ever used ask for your money back. We will cheerfully refund it. These filters carry a full one year warranty.
NEW DRAKE TR-72

2-Meter FM Transceiver

- 23 Channels
- Superior Selectivity
- Completely Solid State

$320.00

Including dynamic microphone, DC power cord, mobile mount and desk mount brackets, microphone hanger, auxiliary connector, and external speaker plug.

GENERAL:
- Frequency coverage: 144-148 MHz
- 23 channels, 2 supplied (.52/.52 and .34/.94)
- Completely solid state
- Current drain: Rcv 0.4 A, Xmit 2.7 A (Hi power) or 1.2 A (Lo power)
- Voltage required: 13.8 VDC
- Antenna impedance: 50 ohms
- Frequency adjusting trimmers on every crystal
- Size: 7½"W x 2½"H x 9½"D (18 x 6 x 24 cm)
- Weight: 5½ lbs. (2.5 kg).

TRANSMITTER:
- RF output power: 10 W min. (Hi power) or 1 W (Lo power) at 13.8 VDC
- Solid State Frequency deviation: adjustable to 215 kHz max., factory set to 6.5 kHz
- Automatic VSWR protection

RECEIVER:
- Crystal-controlled, double conversion superhet
- Sensitivity: Less than .35µV for 20 dB quieting
- Selectivity: 20 kHz at -6 dB (±30 kHz and adjacent channel rejection at least 80 dB down)
- Audio output: 1 W
- Audio output impedance: 8 ohms
- Modulation acceptance: ±7 kHz
- Image rejection: -65 dB
- Intermodulation and other spurious responses: at least 70 dB down.

AC-10 POWER SUPPLY
for 115 VAC operation
$39.95

For complete details contact:
R. L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 Telex: 288-017

More Details? CHECK-OFF Page 126
NEW - 440 MHz PREAMPS

$54.95
POSTPAID
432PA-1

Two stage preamps use KMC Bipolar and Mosfet Transistors. 20db gain, 20 MHz bandwidth. These are high quality preamps suitable for the most demanding applications. AC models have die cast case, others have metal enclosure.

432PA-1 3.5db NF 12VDC $29.95
432PA-1 3.5db NF 117VAC $54.95
432PC-1 1.5 to 2.0db NF 12VDC $69.95
432PC-1 1.5 to 2.0db NF 117WAC $94.95

Write for our Santa Claus wish list of Preamps and Converters.

JANEL LABORATORIES
P. O. BOX 112
SUCCASUNNA, N. J. 07876
201-584-6521

DIGITAL: THEORY, DESIGN, CONSTRUCTION
LOGIC NEWSLETTER
SAMPLE COPY $1.00
LOGIC NEWSLETTER
POB 252
WALDWICK, N.J. 07463

FM YOUR GONSET
(or your Clegg 22 or Poly Comm 2, PC 62, Johnson 6N2, Aeratron 500, HA-460, TX 62 or VHF 1)

- New Plug-in modulator puts a Communicator transmitter on FM.
- No modification or rewiring on your Communicator. Just plug into mike jack and crystal socket.
- Compact self-contained modulator measures 4" x 3" x 1 1/4".
- Works with Communicator I, II, III, IV and GC-105, and other rigs listed.
- Only a tenth the cost of a new rig.
- Frequency adjust for netting built in.
- $34.50 postpaid U.S.A. $36.50 for PC-2, PC-62, HA-460. Specify transmitter model. California residents add 5% sales tax. (HC-6/U crystal and 9 volt transistor battery not supplied.)
- Send for free descriptive brochure.

APOLLO PRODUCTS
by "Village Twig"

1500X-2
Rotary Antenna Switch
Single pole, 3 position Antenn a Switch - Low SWR - Use up to 30 MHz, 500 Watt handling capacity. Sloping Front Console Cab. $12.95

450X-S Antenna Switch
3-Position Slide Switch Low Loss - Walnut-grain Finish Chassis - Gold Cover $5.95

700X-2 KW Wattmeter
Dummy Load Wattmeter for 52 O'm Input. Measures RF in 4 ranges to 10000 watts. Measures modulation percentage on calibrated scale. Portable. $124.50

NEW - 440 MHz PREAMPS

$54.95
POSTPAID
432PA-1

Two stage preamps use KMC Bipolar and Mosfet Transistors. 20db gain, 20 MHz bandwidth. These are high quality preamps suitable for the most demanding applications. AC models have die cast case, others have metal enclosure.

432PA-1 3.5db NF 12VDC $29.95
432PA-1 3.5db NF 117VAC $54.95
432PC-1 1.5 to 2.0db NF 12VDC $69.95
432PC-1 1.5 to 2.0db NF 117WAC $94.95

Write for our Santa Claus wish list of Preamps and Converters.

JANEL LABORATORIES
P. O. BOX 112
SUCCASUNNA, N. J. 07876
201-584-6521

DIGITAL: THEORY, DESIGN, CONSTRUCTION
LOGIC NEWSLETTER
SAMPLE COPY $1.00
LOGIC NEWSLETTER
POB 252
WALDWICK, N.J. 07463

FM YOUR GONSET
(or your Clegg 22 or Poly Comm 2, PC 62, Johnson 6N2, Aeratron 500, HA-460, TX 62 or VHF 1)

- New Plug-in modulator puts a Communicator transmitter on FM.
- No modification or rewiring on your Communicator. Just plug into mike jack and crystal socket.
- Compact self-contained modulator measures 4" x 3" x 1 1/4".
- Works with Communicator I, II, III, IV and GC-105, and other rigs listed.
- Only a tenth the cost of a new rig.
- Frequency adjust for netting built in.
- $34.50 postpaid U.S.A. $36.50 for PC-2, PC-62, HA-460. Specify transmitter model. California residents add 5% sales tax. (HC-6/U crystal and 9 volt transistor battery not supplied.)
- Send for free descriptive brochure.

APOLLO PRODUCTS
by "Village Twig"

1500X-2
Rotary Antenna Switch
Single pole, 3 position Antenna Switch - Low SWR - Use up to 30 MHz, 500 Watt handling capacity. Sloping Front Console Cab. $12.95

450X-S Antenna Switch
3-Position Slide Switch Low Loss - Walnut-grain Finish Chassis - Gold Cover $5.95

700X-2 KW Wattmeter
Dummy Load Wattmeter for 52 O'm Input. Measures RF in 4 ranges to 10000 watts. Measures modulation percentage on calibrated scale. Portable. $124.50

FM YOUR GONSET
(or your Clegg 22 or Poly Comm 2, PC 62, Johnson 6N2, Aeratron 500, HA-460, TX 62 or VHF 1)

- New Plug-in modulator puts a Communicator transmitter on FM.
- No modification or rewiring on your Communicator. Just plug into mike jack and crystal socket.
- Compact self-contained modulator measures 4" x 3" x 1 1/4".
- Works with Communicator I, II, III, IV and GC-105, and other rigs listed.
- Only a tenth the cost of a new rig.
- Frequency adjust for netting built in.
- $34.50 postpaid U.S.A. $36.50 for PC-2, PC-62, HA-460. Specify transmitter model. California residents add 5% sales tax. (HC-6/U crystal and 9 volt transistor battery not supplied.)
- Send for free descriptive brochure.
COMPUTER KEYBOARD $7.00 (as is)

Several styles on hand in poor condition, broken key/keys, broken case or no case, etc. Still a good value at $7.00 for parts, switches, and each has encoder board in base.

$2N3152 - 45 volt 170 watt PNP-G $1.00
$2N3713 - 40 150 NPN-S $1.00
$2N3773 - 160 150 NPN-S $1.00
$2N3789 - 60 150 NPN-S $1.00
$2N5301 - 40 200 NPN-S $1.25
$2N5301 - 40 200 NPN-S $1.00

*Removed from used equipment

TRANSFORMERS
BRAND NEW, 115 volt AC input. OP - AMP XFMR, out puts: 16 VCT 1/2 amp, 17 VCT 1/4 amp.

$3.50

FILAMENT or BTRY CHARGER XFMR
output of 18 volts at 4.5 amp $3.50

CALCULATOR KEYBOARD
Brand new keyboards for hand held calculators. Two styles available. One for use with calculator chip CAL TEX 5001-5002-5012 or MOSTEK 5010-5012. Another for use with Gen. Inst. chip 5050. Priced at $8.00 each or two for $15.00.

CT 5005 CALCULATOR CHIP
Single MOS chip with all logic required for 12 digit 4 function desktop calculator with extra storage register for memory or constant. Multiplexed 7 segment outputs for LED, Incandescent, Fluorescent, or Gas Discharge displays. Brand new, bargain priced, with specs.

$8.00 each, 2 for $15.00

HP LED DISPLAYS
Brand new 4-on-a-strap LED readouts. End-butt two strips and come up with 8 digit readout. An unheard of Super Value . . . $8.00 per strip; 2 strips $15.00

Another strip . . . this one a Clock Chip readout. 2 digits . . . a space . . . and 2 more digits. Just right for a clock reading hours and minutes. This one only $8.00

313,344 CORE MEMORY $125.00
From SPECTRA computer, visually OK. 64 x 6 x 18 core stack. Figures out to 35K Byte.

LED 7 SEGMENT READOUT
Similar to MAN-1. Factory seconds but functionally OK. Fit 14 pin DIP socket.
7 segment w/left decimal #LED-A-L $3.00
7 segment w/right decimal #LED-A-R $3.25
7 segment no decimal #LED-A $2.75
Above LEDs—7 for the price of 5
Socket for above, gold plated leads 3/1.00

IC SALE YOUR CHOICE 3 for $1.00
µ1 900 BUFFER TO-5
µ1 914 DUAL 2 INPUT GATE TO-5
µ1 923 JK FLIP FLOP TO-5
µ1 926 Hi speed JK FLIP FLOP TO-5
µ1 931 JK/RS FLIP FLOP (DIP)
10 pin socket for TO-5 IC 3/1.00

GIANT NIXIE B7971
Used $1.00
Brand New $2.00
With schematic for GIANT clock.

COMPUTER TAPE DECK $75.00
Takes 1/2 inch tape, made by Computer Entry Systems. Visually ok, with electronics, no data available.

LASER DIODES, new listing just arrived, send SAE.

CMOS 4814 HEX INVERTER
CMOS HEX INVERTER, dual inline package. 3-18 volt range, dual diode protection against static charge. Dielectrically isolated complimentary MOS.

$1.00 each 12 for $10.00

DUAL 16 BIT MEMORY
Dual 16 bit memory, serial MOS by Philco TO-5 case, brand new with 2 page specs.

2048 BIT MOS MEMORY
2048 bit MOS LSI random access memory NEC 6003. All inputs and outputs are TTL compatible. 2048 word by 1 bit. 22 pin ceramic dual-in-line. With specs.

$9.00 each 2 for $17.00

ASCII KEYBOARDS LIKE NEW $45.00
From Raytheon, with encoder board in base, output on blue ribbon connector. This is the same keyboard we sell at $50 except this one has no case. 5 extra function buttons each side. Price includes shipping world wide.

JOHN MESHNA JR. ELECTRONICS
P. O. Box 62 E. Lynn, Mass. 01904

More Details? CHECK-OFF Page 126
december 1973 73
<table>
<thead>
<tr>
<th>Product Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>7443 Mix</td>
<td>1.25</td>
</tr>
<tr>
<td>7401</td>
<td>7444 Mix</td>
<td>1.30</td>
</tr>
<tr>
<td>7402</td>
<td>7445 Mix</td>
<td>1.25</td>
</tr>
<tr>
<td>7403</td>
<td>7446 Mix</td>
<td>1.45</td>
</tr>
<tr>
<td>7404</td>
<td>7447 Mix</td>
<td>1.45</td>
</tr>
<tr>
<td>7405</td>
<td>7448 Mix</td>
<td>1.50</td>
</tr>
<tr>
<td>7406</td>
<td>7450</td>
<td>.29</td>
</tr>
<tr>
<td>7407</td>
<td>7451</td>
<td>.32</td>
</tr>
<tr>
<td>7408</td>
<td>7452</td>
<td>.30</td>
</tr>
<tr>
<td>7409</td>
<td>7453</td>
<td>.32</td>
</tr>
<tr>
<td>7410</td>
<td>7454</td>
<td>.55</td>
</tr>
<tr>
<td>7411</td>
<td>7455</td>
<td>.55</td>
</tr>
<tr>
<td>7412</td>
<td>7456</td>
<td>.55</td>
</tr>
<tr>
<td>7413</td>
<td>7457</td>
<td>.30</td>
</tr>
<tr>
<td>7414</td>
<td>7458</td>
<td>.30</td>
</tr>
<tr>
<td>7415</td>
<td>7459</td>
<td>.25</td>
</tr>
<tr>
<td>7416</td>
<td>7460</td>
<td>.15</td>
</tr>
<tr>
<td>7417</td>
<td>7461</td>
<td>.25</td>
</tr>
<tr>
<td>7418</td>
<td>7462</td>
<td>.25</td>
</tr>
<tr>
<td>7419</td>
<td>7463</td>
<td>.25</td>
</tr>
<tr>
<td>7420</td>
<td>7464</td>
<td>.25</td>
</tr>
<tr>
<td>7421</td>
<td>7465</td>
<td>.55</td>
</tr>
<tr>
<td>7422</td>
<td>7466</td>
<td>.55</td>
</tr>
<tr>
<td>7423</td>
<td>7467</td>
<td>.55</td>
</tr>
<tr>
<td>7424</td>
<td>7468</td>
<td>.55</td>
</tr>
<tr>
<td>7425</td>
<td>7469</td>
<td>.55</td>
</tr>
<tr>
<td>7426</td>
<td>7470</td>
<td>.55</td>
</tr>
<tr>
<td>7427</td>
<td>7471</td>
<td>.55</td>
</tr>
<tr>
<td>7428</td>
<td>7472</td>
<td>.55</td>
</tr>
<tr>
<td>7429</td>
<td>7473</td>
<td>.50</td>
</tr>
<tr>
<td>7430</td>
<td>7474</td>
<td>.50</td>
</tr>
<tr>
<td>7431</td>
<td>7475</td>
<td>.50</td>
</tr>
<tr>
<td>7432</td>
<td>7476</td>
<td>.50</td>
</tr>
<tr>
<td>7433</td>
<td>7477</td>
<td>.50</td>
</tr>
<tr>
<td>7434</td>
<td>7478</td>
<td>.50</td>
</tr>
<tr>
<td>7435</td>
<td>7479</td>
<td>.50</td>
</tr>
<tr>
<td>7436</td>
<td>7480</td>
<td>.50</td>
</tr>
<tr>
<td>7437</td>
<td>7481</td>
<td>.50</td>
</tr>
<tr>
<td>7438</td>
<td>7482</td>
<td>.50</td>
</tr>
<tr>
<td>7439</td>
<td>7483</td>
<td>.50</td>
</tr>
<tr>
<td>7440</td>
<td>7484</td>
<td>.50</td>
</tr>
<tr>
<td>7441</td>
<td>7485</td>
<td>.50</td>
</tr>
<tr>
<td>7442</td>
<td>7486</td>
<td>.50</td>
</tr>
<tr>
<td>7443</td>
<td>7487</td>
<td>.50</td>
</tr>
<tr>
<td>7444</td>
<td>7488</td>
<td>.50</td>
</tr>
<tr>
<td>7445</td>
<td>7489</td>
<td>.50</td>
</tr>
<tr>
<td>7446</td>
<td>7490</td>
<td>.50</td>
</tr>
<tr>
<td>7447</td>
<td>7491</td>
<td>.50</td>
</tr>
<tr>
<td>7448</td>
<td>7492</td>
<td>.50</td>
</tr>
<tr>
<td>7449</td>
<td>7493</td>
<td>.50</td>
</tr>
<tr>
<td>7450</td>
<td>7494</td>
<td>.50</td>
</tr>
<tr>
<td>7451</td>
<td>7495</td>
<td>.50</td>
</tr>
<tr>
<td>7452</td>
<td>7496</td>
<td>.50</td>
</tr>
<tr>
<td>7453</td>
<td>7497</td>
<td>.50</td>
</tr>
<tr>
<td>7454</td>
<td>7498</td>
<td>.50</td>
</tr>
<tr>
<td>7455</td>
<td>7499</td>
<td>.50</td>
</tr>
</tbody>
</table>

LOW POWER TTL

- **74L00**: .40 ea.
- **74L02**: .40 ea.
- **74L04**: .40 ea.
- **74L10**: .40 ea.

8000 SERIES

- **8091**: .69 ea.
- **8092**: .69 ea.

LINEAR

- **LM301 TO5**: .45 ea.
- **LM302 TO5**: .95 ea.
- **LM304 TO5**: 1.25 ea.
- **LM306 TO5**: 1.25 ea.
- **LM309 TO3**: 1.95 ea.
- **LM309H TO5**: 1.25 ea.

PHASE-LOCKED LOOP MEMORIES

- **NE561**: 2.95 ea.
- **NE565**: 2.95 ea.
- **NE566**: 2.95 ea.
- **NE567**: 2.95 ea.

LED

- **MV10B Visible red SUPER SPECIAL**: .25 ea.
- **MV50 TO3**: .25 ea.
- **MV520 Large red**: .35 ea.
- **ME4 Infra red TO18**: .69 ea.
- **MA1 The original**: 4.25 ea.
- **MAN 3 type**: 1.95 ea.
- **MAN 4 type**: 2.75 ea.

Data-Lite 707 (MAN 1 repl)

- 4.25 ea.

CALCULATOR CHIPS

- **SM01 LSI (40 pin)** with data
- **SM02 LSI (40 pin)** with data
- **SM03 LSI (40 pin)** with data

DIGITAL CLOCK

- **MM5311 (28 pin)** with spec sheet
- **MM5312 (24 pin)** with spec sheet
- **MM5313 (24 pin)** with spec sheet
- **MM5314 (24 pin)** with spec sheet

SYNCHRONOUS

- **SM05 (0 pin)** with spec sheet

SPECIAL

- 10% off on orders of $25.00 or more

Satisfaction Guarantee

All items except as noted are fully tested. Minimum order $5.00 prepaid in the U.S. and canad. Calif. residents add sales tax. Orders filled in 3 days after receipt. Please add $.50 per spec sheet for items priced at less than $1.00 ea.
Hundreds Sold...
YOUR LAST CHANCE TO MAKE THE 2-METER BUY OF THE YEAR

MAIL ORDER ONLY
18995
Plus S3 Shipping

25-WATT SOLID-STATE SECOND GENERATION 2-METER 12-CHANNEL FM TRANSCEIVER

• Manufactured Prior to Revaluation of the Dollar — Manufacturer's Cost Today Would Be Greater Than Our Selling Price!

The Unimetrics ULTRACOM-25 is a 144-148 MHz FM transceiver with provision for 12 crystal-control transmit channels and 12 crystal-control receive channels. It features rugged, commercial-quality construction throughout. The dual-gate FET front end results in a sensitivity of better than 0.5 µV for 20 dB quieting. It includes controls for volume, power and squelch, illuminated channel selector, RF power output signal-strength meter, hand-held dynamic mike and mobile mounting bracket. The transceiver is factory equipped for operation on the following frequencies — 94/94 Simplex, 34/76 Duplex, 76/76 Simplex and 34/94 Duplex. It also has an integral 12 VDC power supply — if you purchase it with our antenna below, you will be ready for immediate mobile operation. Its compact size, 8 1/2 x 3 x 10 1/2” (WHD), makes it ideal for mounting in most any vehicle. An AC power supply, additional crystals, and touch-tone pad for auto patch are also available. For further information or phone orders, contact Walt Corrigan W8BPCP, Olson Electronics (216) 535-1800.

Hustler 2-Meter Mobile Antenna. 9° wavelength, stainless steel, 3.4 dB gain. With trunk lip mobile mount.

Regulated AC Power Supply, 4 amps, 12 volts. Operate the Ultracom-25 from 117 VAC house current.

Crystal Certificates. Fill out and mail to manufacturer with desired transmit or receive frequency indicated. Each certificate is good for a single crystal.

Touch-Tone Encoder. Ties Ultracom-25 into repeaters with TT auto patch facilities.

FREE! 1974 Olson Catalog Reg. $2 W9IOP DX Calculator GIVEN AWAY with first 250 catalog requests!

Olson electronics THE VALUE LEADER SINCE 1931
260 S. Forge Street, Dept. HO, Akron, Ohio 44327

Please send me the following:

☐ Ultracom-25. 192**
DX-067
☐ AC Power Supply. 29**
BA-234
☐ Mobile Antenna. 17**
AA-762
☐ Touch-Tone Encoder. 44**
DX-076
☐ Crystal Certificate. 4**
DX-041
Check or money order for $______ enclosed. (Total amount plus applicable sales taxes).

☐ Send me my FREE 1974 Olson Catalog
(DX calculator with 1st 250 requests)

Name__________________________Apt.__________________________
Address________________________City__________________________State__________________________

Zip [] [] [] []
Charge Card No.________________________
Charge my purchase to
☐ BankAmericard
☐ Master Charge* *Interbank No. [] [] [] []

Good Thru Date:________________________

More Details? CHECK—OFF Page 126
december 1973 75
Dual tone decoder decodes one Touch-Tone digit.

Available for 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, #, * and other dual tones 700-3000 Hz.

Latch and reset capability built-in.

- COR control built-in.
- Relay output SPST ½-amp.
- Octal plug-in case.
- Compact 1-½" square, 3" high.
- Free descriptive brochure on request.

T-2 Touch-Tone Decoder ... $39.95 PPD.

Specify digit or tone frequencies. (Include sales tax in Calif.)

FERRITE CORES

We supply AMIDON equivalents to the popular sizes and mixes of Ferrite Toroid Cores. Please include all information in your inquiry. Same famous fast service that we have featured since 1963.

BEADS

Use Amidon Ferrite Beads for Parasitic Suppression, Shielding, Noise Suppression, Spike and Transient Clipping, EMI Suppression, Antenna Loading and for Special Inductors. The Regular 3 mm bead accepts up to 18 wire. The Husky 7.5 mm bead accepts ±12 AWG. Each Husky bead exhibits an inductance of 1.25 Microhenry. Permeability Factor: 900

Regular Beads

Package of 12. $2.00

Husky Beads

Package of 12. $3.00

76 December 1973
an extraordinary combination of digitally synthesized receivers...

each with built-in capacity to satisfy a broad spectrum of singular applications.

ITT Mackay Marine 3020A and 3021A Radio Receivers feature solid state construction, dual conversion and super-heterodyne design providing continuous frequency coverage from 15kHz to 29.9999MHz. Frequency selection is accomplished by step tuning, while the 3021A Receiver uses sweep tuning. These receivers meet strict requirements of British MPT, German FTZ, Norwegian NTA, Dutch and Spanish PTT and Canadian DOC, and can be used wherever maximum reliability and ease of maintenance are required.

Write or call Ed Engebretson, General Sales Manager (K4ID), today for complete information on these two quality, high performance receivers.

ITT Mackay Marine, 2912 Wake Forest Road, Raleigh, North Carolina 27611. Telephone: (919) 828-4441.

ITT Mackay Marine
Mr. Ed Engebretson, General Sales Manager
2912 Wake Forest Road
Raleigh, North Carolina 27611

Please send complete FREE information on the exciting new:

- 3020A Step Tuning Receiver
- 3021A Sweep Tuning Receiver

NAME

COMPANY

ADDRESS

CITY

STATE

ZIP

COUNTRY

Federal Supply Schedule Group 58 Part VII, Contract 05-005-24916

ITT Mackay Marine
Professional test equipment for the HAM...

ONLY $199.95

NEW! MODEL 282
3 1/2-DIGIT DVM
- DC accuracy, 0.5%.
- Automatic polarity.
- 1 mV resolution.
- 100% solid state.

For fast, easy-to-read, accurate multimeter readings. 100% overrange capability, all ranges; auto polarity and decimal point positioning; very large, 7-segment, non-blinking display; 10 meg input impedance; full overload protection. SPECs: DCV, 0-1000V, 4 ranges; ACV, 0-1000V RMS, 4 ranges. Current: AC and DC, 0-1000 mA, 4 ranges each. Ohms: 0-10.00 megohms, 6 ranges. AC Response: Volts and current, 50 Hz to 1 kHz. Size: 3½" x 7 x 9". For 105-125 VAC, 50-60 Hz; 3-wire cord. With PR-21 probe with switchable 100K ohm isolation resistor — prevents capacitive loading when measuring DC in RF circuits.

MODEL 282 3½-DIGIT DVM $199.95

PREPAID ANYWHERE IN U.S.A.

OHIO ONLY — ADD 4½% TAX

stotts-friedman
“TRU” — K8JUG
108 N. Jefferson Street
Dayton, Ohio 45402

HIGHLAND HAS THE LATEST IN AMATEUR FM RIGS
ICOM IC230 2 METER SYNTHESIZED TRANSCEIVER $489.95 ASK OUR PRICE
MIDLAND 13-520 2 METER 2-WATT HAND-HELD TRANSCEIVER $229.95 ASK OUR PRICE

DISTRIBUTORS FOR THE COMPLETE MIDLAND & ICOM LINE OF QUALITY AMATEUR EQUIPMENT

HIGHLAND AMATEUR SUPPLY CO.
“Personalized Service for the Discriminating Amateur”
P. O. BOX 568
BORO HALL STATION
JAMAICA, NEW YORK 11424
(212) 277-1693

Ask for
GEORGE WB2GWU OR DEBI WB2JXY

— PCB KITS —

RTTY SPEED CONVERTER Drilled PCB 5 & 11 VDC $40.00
DRILLED PCB ONLY $ 6.00

RTTY AFSK Gen. All Shifts & CW I.C. 9 VDC @ 2ma $6.60
100 KHz XTAL CALIBRATOR Less XTal 9 VDC @ 2ma $4.75

POWER SUPPLY — 28 VDC @ 650 ma output $8.95
PREAMP MICROPHONE, 26 DB Gain 9 VDC @ 1ma $3.50

LIMITER PREAMP For High Z Mike 9 VDC @ 1ma $4.80

PRODUCT DETECTOR For Your Receiver 9 VDC @ 1ma $3.60

“S” METER KIT Less 1ma Meter $6.75

SWR METER, Stripline. Less 200 ma Meter $2.95

WWV CONVERTER 3.5-4.0 Mhz Output 9 VDC @ 5ma $5.25

Request $4.6 MHz Crystal

6 METER CONVERTER FET Front End 9 VDC @ 5ma $5.95

7-11 MHz Output. Less 43 MHz XTAL

CW KEYING MONITOR, RF Keyed, Less 5ma $4.00

POWER SUPPLY — 9 VDC @ 5ma $4.85

6 OR 2 METER CASCODE PREAMP 60 VDC @ 4.5ma $4.95

Wired & Tested Less 2 ea 6CW4 $5.95

Nuvistors. Specify 6 or 2 Meter Model

DRILLS, #5, #6, #8 OR #10 (each) $0.40

Finest Quality for PCB’S, Made in USA Three For $1.00

EXCEPT AS NOTED ABOVE, ALL KITS ARE NEW, 100% SOLID STATE, AND COME COMPLETE WITH AN UNDRILLED 6-10 PCB (PRINTED CIRCUIT BOARD) AND ALL PCB MOUNTED COMPONENTS. KITS ARE LESS POWER SUPPLIES, CHASSIS, AND ENCLOSURE HARDWARE. SEND SELF-ADDRESSED, STAMPED ENVELOPE FOR COMPLETE DATA SHEET AND SCHEMATIC.

SATISFACTION GUARANTEED. RETURN IN 30 DAYS FOR REFUND. ALL KITS POSTPAID. INCLUDE 25¢ HANDLING CHARGE. WASHINGTON RESIDENTS ADD 5.3% SALES TAX.

P. M. ELECTRONICS INC.
519 SOUTH AUSTIN, SEATTLE, WASH. 98108

More Details? CHECK-OFF Page 126
CRYSTAL FILTERS
and
DISCRIMINATORS

by
K.V.G.

9.0 MHz MODELS

9.0 MHz FILTERS
XF9-A 2.5 kHz SSB TX $33.55
XF9-B 2.4 kHz SSB RX $47.70
XF9-C 3.75 kHz AM $51.40
XF9-D 5.0 kHz AM $51.40
XF9-E 12.0 kHz NBFM $51.40
XF9-M 0.5 kHz CW $35.95

9.0 MHz DISCRIMINATORS
XD9-01 ± 5 kHz RTTY $25.30
XD9-02 ± 10 kHz NBFM $26.35
XD9-03 ± 12 kHz NBFM $25.30

9 MHz CRYSTALS (He25/u)
XF900 9000.0 kHz Carrier $4.00
XF901 8998.5 kHz USB $4.00
XF902 8991.5 kHz LSB $4.00
XF903 8999.0 kHz BFO $4.00
F-05 Hc25/u Socket .50

10.7 MHz MODELS

10.7 MHz FILTERS
XF107-A 14kHz NBFM $45.90
XF107-B 16kHz NBFM $42.65
XF107-C 32kHz WBFM $42.65
XF107-D 38kHz WBFM $45.90
XM107-S04 14kHz NBFM $19.95

XM107-S04 14kHz NBFM $19.95
(CRystal SOCKET (for XM107-S04) type DG1 $1.50

10.7 MHz DISCRIMINATORS
XD107-01 30kHz NBFM $24.25
XD107-02 50kHz WBFM $23.15

1296-1300 MHz

CRAYAL SOCKET (for XM107-S04) type DG1 $1.50

VHF CONVERTERS

MMc 50
RF Freq. (MHz) ±
50-54 144-148
IF Freq. ±
28-32 28-32
N.F. (typical)
2.5dB 2.8dB
Nom. Gain
30dB 30dB
Power 12V D.C.
$53.70 $53.70
1¾” x 2½” x 4½” + connectors

MMc 144

1220-1244 144-148
28-32 28-32
3.4dB 3.8dB
26dB 28dB
$64.45 $64.45

1296-1300 MHz

144-148
9.0dB 9.0dB

12 watts min.
12 watts min.

12 watts min.

VHF VARACTOR TRIPLERS

MMv 432
INPUT: 140-153 MHz
20 watts max.
OUTPUT: 420-459 MHz
12 watts min.
Size: 4½” x 2½” x 1¼” + connectors

MMv 1296
INPUT: 420-459 MHz
20 watts max.
OUTPUT: 1260-1377 MHz
12 watts min.
Size: 4½” x 2½” x 1¼” + connectors

SPECTRUM INTERNATIONAL
wish our customers and readers
a Very Happy Christmas
and a Successful New Year

J-BEAM AERIALS $47.50
70/MBM46 420 — 460 MHz
46 ELEMENT BEAM
GAIN. REF DIPOLE 17.3 dB
STACKING KITS AVAILABLE

SPECTRUM INTERNATIONAL
BOX 1084 CONCORD
MASSACHUSETTS 01742

More Details? CHECK-OFF Page 126
december 1973 79
USES Standard 7447 Decoder-driver. Seven Segment Readouts. All tested and guaranteed. Fit standard 14 pin DIP socket. Full .335 inch high. Color, RED. Less Decimal $2.25 ppd. With Decimal $2.25 ppd. With Colon $2.50 ppd. Same unit only contains numeral 1 and plus and minus sign. $2.25 ppd.

GL Printed Circuit type bridge rectifiers. 200 v PIV @ 1.5 A 50c ea or 3 for $1.25 400 v PIV @ 1.5 A 60c ea or 3 for $1.75

LED Pilot Lites. Full 3/16 inch Dia. 4 for $1.00 ppd. JUMBO Seven Segment Readouts. Full .770 inches high. RED. Uses 7447 Decoder-driver. Specs included. With Decimal point. $5.00 ppd. Same unit only numeral 1 and plus & minus sign. $5.00 ppd.

NEW NEW NEW 6 foot Koil-Cord with molded PL-55 plug. Very nice. 75c Each, 3 for $2.00 ppd.

NEW Transformer — American Made — Fully shielded. 115 V Primary. Sec. 24-0-24 @ 1 amp with tap at 6.3 volt for pilot light. Price — A low $2.90 each ppd.

400 Volt PIV at 25 Amp. Bridge Rectifier. $4.00 ea. or 3 for $10.00 ppd.

6.3 Volt 1 Amp Transformer. Fully Shielded $1.60 Each ppd.

NEW TRANSFORMER. 115 volt primary, 12 volt ½ amp secondary. $6.00 ea. ppd.

NEW NEW Transformer 115 volt primary, 12 volt ½ amp secondary. $1.50 ppd.

Featherweight TO-5 Heat Sinks 2 for 25c ppd.

Major Brand 2N706 Transistors. 3 for $1.00 ppd.

Miniature Terminal Strips 1" Long x ½" High. 3 Term. plus Ground 20 for $1.00 ppd.

SEND STAMP FOR BARGAIN LIST Pa. residents add 6% State sales tax ALL ITEMS PPD. USA

PRE-AMP

HIGH GAIN • LOW NOISE

35dB power gain, 2.5-3.0 dB N.F. at 150 MHz. 2 stage, R.F. protected, dual-gate MOSFETS. Manual gain control and provision for AGC. 4¾" x 1¾" x 1¾" aluminum case with power switch and choice of BNC or RCA phone connectors (be sure to specify). Available factory tuned to the frequency of your choice from 5 MHz to 350 MHz with approximately 3% bandwidth. Up to 10% B.W. available on special order.

N. Y. State residents add sales tax. Model 201 price: 5-200 MHz $24.95 201-350 MHz $28.95

Vanguard Labs 196-23 JAMAICA AVE. HOLLIS, N. Y. 11423

RECEIVERS, OK GRTD, WITH BOOKS:

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-600-JX</td>
<td>0.54-54 MHz continuous</td>
<td>275.00</td>
</tr>
<tr>
<td>R3688U/R</td>
<td>AM, CW, ½-30 MHz linear dial, PTO</td>
<td>325.00</td>
</tr>
<tr>
<td>R390A/R</td>
<td>½-32 MHz by digits, PTO tuning</td>
<td>595.00</td>
</tr>
<tr>
<td>AN/WRR-2: 3-32 MHz digital tune each 500 Hz or continuous, A1, 2, 3, 9, F1, 4, FAX FSTTY, SSB, carrier suppressed, either band or both for 2 different intelligences. Stable and accurate enough to use as freq. meter. Net wt. 276 lbs. in 2 cabinets in rack cradle</td>
<td>750.00</td>
<td></td>
</tr>
<tr>
<td>Less the rack cradle but interconnected</td>
<td>700.00</td>
<td></td>
</tr>
<tr>
<td>NEMS-CLARKE #1670-T-F & receiver 55-150 MHz</td>
<td>195.00</td>
<td></td>
</tr>
<tr>
<td>WWVB 60 KHz rccr/comparator</td>
<td>295.00</td>
<td></td>
</tr>
<tr>
<td>WWVB 1 KHz tones, use to calib. 100 KHz</td>
<td>175.00</td>
<td></td>
</tr>
<tr>
<td>38-1000 MHz by Band Switching, 4 bands: Separate antenna for each band. AN/FALR-5 modified for 117 v 50/60 cy line, AN/FM. The Tuner is a plug-in converter; the receiver is 30 MHz IF and all that follows IF. Choose selectivities 200 KHz or 2 MHz each side of center. Factory checkout sheet, typical for the original-pack tuner you got, says sensitivity ranges from 1.1µV at 28 MHz to 7 at 1 GHz. IF attenuator is calibrated in 6 dB steps to —74 dB. Diode current meter makes this rccr useful for relative field strength measurements and harmonic finder. Rccr unit is exc. used and checked out OK</td>
<td>375.00</td>
<td></td>
</tr>
<tr>
<td>30 MHz PANADAPTER may be used with above</td>
<td>245.00</td>
<td></td>
</tr>
<tr>
<td>A.I.L. #132 30 MHz rccr/amplifier/atten. calib.</td>
<td>199.50</td>
<td></td>
</tr>
<tr>
<td>EDDYSTONE AM/GW/FM/NSFM 19-165 MHz rccr</td>
<td>295.00</td>
<td></td>
</tr>
<tr>
<td>CV-591A: SSB Converter either sideband</td>
<td>137.50</td>
<td></td>
</tr>
<tr>
<td>OCT-3 TTY PSK deviation meter receiver, new</td>
<td>49.50</td>
<td></td>
</tr>
<tr>
<td>MOTOROLA 3 MHz OSCIL. 5 parts in 10 to 11th</td>
<td>199.50</td>
<td></td>
</tr>
</tbody>
</table>

Attention!

Buyers, Engineers, advanced Technicians: We have the best test-equipment & oscilloscope inventory in the country so ask for your needs . . . don’t ask for an overall catalog . . . we also buy, so tell us what you have. Price it.

R. E. GOODHEART CO. INC. Box 1220-HR, Beverly Hills, Calif. 90213 Phone: Area Code 213. Office 272-5707

More Details? CHECK-OFF Page 126
Now . . . SBE opens up a new high speed route that leads to instant 450MHz operation from any 2 meter transceiver! Rev up—
switch in the exclusive SBE, SB-450TRC "Cloverleaf"—arrive instantly on 450! Return at will!

Installation couldn't be more simple. Outwardly, "Cloverleaf" is a small black box that connects between your existing 144 MHz FM transceiver and its antenna, also to the microphone and car 12 volt battery. You plug the 450MHz antenna into another receptable provided. SB-450TRC has no external tuning, no controls other than a switch that allows instant shift between the 144 and 450MHz ranges. No mods are necessary. Your existing 144MHz transceiver remains intact.

Transmitter-wise, SBE "Cloverleaf" is entirely passive—draws no DC power yet delivers 40% of the RF drive at three times the frequency. Example: 4 watts out on 450 MHz for 10 watts drive on 2 meters. This high efficiency frequency multiplication is accomplished by a power varactor diode in conjunction with multiple high Q tuned circuits. The 450MHz output is of course frequency modulated; overswing, due to frequency multiplication, being compensated by a fixed pad in the microphone circuit within the unit.

Receiver-wise, "Cloverleaf" has a front end with unity conversion gain that converts 450MHz band signals to I-F frequencies corresponding to 144MHz channels. Limiter, discriminator, output audio and loud speaker in the 2 meter transceiver continue to function in the usual manner.

Mobile wise, this all-solid-state transceiver is ideal—a compact box that can mount wherever space is available. "Cloverleaf" current drain is negligible.

Price-wise, this SBE high value/performance breakthrough represents worthwhile savings over the cost of a complete 450MHz transceiver with comparable characteristics. Truly, SBE has done it again!
POTTER BRUMFIELD MINI CAP RELAY

Only $2.00 each - 3/35 50-MF or Mutch.

Measures only 3/4 x 1 x 1'/4. Plastic case. Like KNP type.
For pc board or socket. 14 amps, 18/32 stud to. Both 404T.
All ceramic construction. 3 amp, contacts. For r.f. only.
Switching. Dc. 1'0. Wherever space is prime, you need a
"mini cap" relay.

115 VAC 60 cpi
24 VDC

MODEL "A" Frequency Counter Price $299.00
10Hz to 20 MHz (±1 Hz) Direct Count guaranteed (1Hz to over 100MHz) typical.
Read Out: 5 LED digits + LED Over Range Sensitivity: Less than 100 millivolts over entire range.
Power Req.: Either 120 VAC or 12 VDC 15 watts approx.
Small Size: 2-3/4" x 5-6/8" x 8-1/8" Overload protected input and DC power input.
MODEL "AS" Frequency Counter Price $375.00
Exactly as above plus an internal 250MHz Scaler (±10Hz to well over the guaranteed frequency of 250 MHz). No external power is required.
Shifting DECIMAL POINT gives a DIRECT READOUT of VHF Frequencies.
One BNC INPUT for both ranges. No cable changing from HF to VHF.
(CA residents add State Sales Tax)
Dealers inquiries invited

YAESU FT-101
now with 160 meters
SEE WILSON for your Yaesu products

FTDX 401 Transceiver
FL2100 Linear Amplifier
FL2000B Linear Amplifier
Interested in trading Tempo One's and other Yaesu equipment.

WILSON ELECTRONICS
BOX 794 HENDERSON, NEVADA, 89105
702-451-5791

MORE DETAILS? CHECK-OFF PAGE 126
Now . . . a universal AC power supply for your FM transceiver and your amplifier!

At last, you can get the power you want at the price you want, with the new PW-4 from E&L. Plug it into any 110-120 volt AC source and you get a rated output of 13 volts DC @ 12 amps, I.C. regulated to ±3%! The PW-4 features a circuit breaker reset, modern cabinet design, and heavy duty components for reliability. Use it with most 12-13 volt DC transceivers, together with your 50-60 watt amplifier. The PW-4 sells for $84.95, direct from the factory.

Get your mobile rig into the house . . . get a PW-4!

Write to:

E&L INSTRUMENTS, INC.
61A First Street
Derby, Connecticut 06418
attn: Dick Vuillequez — W1FBS
A COMPLETELY PORTABLE FREQUENCY COUNTER WITH . . .

- 10 HZ to 65 MHZ range
- Full six digit readout (L.E.D.)
- Sensitive front end (LESS THAN 10 MV.)
- Only $199

FEATURES

• High capacity rechargeable Ni Cd batteries
• Crystal controlled time base (can be field calibrated)
• Convenient 3-position range select switch allows:
 1. Readout always in MHZ.
 2. Eight digit resolution by range selection
 3. Direct reading pre-scalar operation to 999,999 MHZ.
• "Battery Save" switch for spot checks
• Less than 5 watts power consumption (5 volts @ 0.9 AMPS)
• Dimension 6" x 3.5" x 2.3"
• TTL input for use with pre scalar
• Can be operated on internal or external power, with trickle charge and full charge positions
• Sample control lets operator determine how often the readout is updated. Can "hold" present count without being updated

Mail orders directly to:
Great American Miniatures, Inc.
P. O. Box 10990
Midwest City, Okla. 73110

Model C-65 Freq. counter $199.90
Battery charger 8.90
Battery charger & eliminator 18.90

LOW PRICES ON POPULAR COMPONENTS

IF FILTERS

• Monolithic crystal filters at 10.7 and 15.9 MHZ
• Ceramic filters at 455 kHz

SEMICONDUCITORS

• VHF power transistors by CTC-Varian
• J and MOS FETS
• Linear ICs — AM/FM IF, Audio PA
• Bipolar — RF and AF popular types

INDUCTORS

• Molded chokes
• Coil forms — with adjustable cores

CAPACITORS

• Popular variable types

QUALITY COMPONENTS

• No seconds or surplus
• Name brands — fully guaranteed
• Spec sheets on request

GREAT PRICES

• Price breaks at low quantities
• Prices below large mail-order houses

WRITE FOR CATALOG 173
Amtech
P. O. Box 624, Marion, Iowa 52302
(319) 377-7927 or (319) 377-2638
New! Solid State 2M Repeater SC-ARPT-1
Complete packaged repeater designed for today's popular 2M FM band. 12 vdc. Ideal for new system or emergency portable operation.

Features:
- Adjustable C.O.R.
- Time-out timer, adjustable 0-5 min.
- Adjustable carrier delay.
- Remote Control and accessory provisions.
- 10 watt R.F. output.
- Receiver: 0.4 µV or less.
- Maximum 3 amp current drain.
- 19" Rack Panel Mounting.
- Size: 19" w x 5" h x 9" d.

$695.00
Suggested Amateur Net Price
220 MHz & 450 MHz versions available

2M FM Transceiver SRC-146A
Solid state, 2 watt, 5 channel, hand held transceiver.
UHF version available

Write for complete specifications.

Suggested Amateur Net Price

$289.00

Standard Communications Corp.
213 / 775-6284 · 639 North Marine Avenue, Wilmington, California 90744
It seems as though the political scene is undergoing a period of approval to check out our government leaders. The Bible tells us... "put the evil deeds in everything you do so that all can approve your behavior, and don't spend your time in wild parties and getting drunk or in belligerency and lust or fighting or jealousy. But ask the Lord Jesus Christ to help you live as you should, and don't make plans to enjoy evil." (Rom. 3:13,14)

Each of our lives are governed with decisions where we must decide between right and wrong. During this Christmas Season open your heart and "ask Jesus Christ to help you live as you should." Jesus said, "I have been standing at the door and I am constantly knocking. If anyone hears me calling him and opens the door, I will come in and fellowship with him and he with me." (Rev. 3:20)

Don't put off until tomorrow what you should do today!

Merry Christmas and Happy New Year from the gang:

Lee, Andy, Rick, Denny, Deb, Jane, Denny, Tom, & Bob

2 METER FM only SELL more STANDARDS than Erickson...and here's why!

SRC-146A CHRISTMAS SPECIAL

WITH

- Charger
- "Stubby" antenna
- Leather case
- Ni-Cads
- 84/44, 34/94 and one channel of your choice

$369 List
-50 Package Discount

$319 Prepaid - Cashiers

Check or M.O.

ERICKSON COMMUNICATIONS
3501 W. Jarvis
Skokie, Ill. 60076 (312) 275-1166

FREE CATALOG CRAMMED WITH GOVT SURPLUS ELECTRONIC GEAR WRITE TODAY!

BC-348 RADIO RECEIVER
200-500 Kc & 1.5 18 Mc. 8-Tube 6-Band Communications Receiver, Excellent Used, with tubes and Dynamotor. Checked out...

$58.50

BC-603 FM RECEIVER
Converted for 36-50 mHz. 10 preset pushbutton channels or manual tuning. Complete with 10 tubes, checked out, like new...

$36.50

AC Power Supply, New...

$14.95

DM-34 12V Power Supply, New...

$4.45

DM-36 24V Power Supply, Exc. Used...

$2.25

Technical Manual...

$2.50

Set of 10 tubes for BC-603 Receiver...

$5.95

TG-34A CODE KEYER, self-contained, automatic reproduces code practice signals from paper tape. 5 to 12 WPM Built-in speaker. Brand new with tech manual, take-up reel and AC line cord. Code practice tapes for above P.U.R...

$24.50

BC-1206-C RECEIVER
Aircraft Beacon Receiver 200 to 400 Kc. Operates from 24V DC 1.5A. Continuous tuning, vol control, on-off switch and phone jack. Very sensitive. Compact. Complete with tubes, New...

$12.50

APN-1 FM TRANSCEIVER 400-500 Mc...

$9.95

R-4/ARR-2 RECEIVER 11 TUBE, NEW...

$8.95

G&G RADIO ELECTRONICS COMPANY
TERMS: FOB NYC 25% deposit with order. Balance COD or remittance in full. MINIMUM ORDER $5.00. Subject to prior sale and price change.

ERICKSON COMMUNICATIONS 3501 W. Jarvis Skokie, Ill. 60076 (312) 275-1166
CW or RTTY, whichever way you go,

HAL HAS TOP QUALITY YOU CAN AFFORD!

TOP QUALITY RTTY ... WITH THE HAL MAINLINE ST-6 TU. Only 7 HAL circuit boards (drilled G10 glass) for all features, plug-in IC sockets, and custom Thordarson transformer for both supplies, 115/230V, 50-60Hz. Kit without cabinet, only $135.00; screened, punched cabinet with pre-drilled connector rails, $35.00; boards and complete manual, $19.50; wired and tested units, only $280.00 (with AK-1, $320.00).*

OTHER HAL PRODUCTS INCLUDE:
- ID-1 Repeater Identifier (wired circuit board) $75.00*
- ID-1 (completely assembled in 1½” rack cabinet) $115.00*
- HAL ARRL FM Transmitter Kit $50.00*
- W3FFG SSTV Converter Kit $55.00*
- Mainline ST-5 TU Kit $50.00*
- Mainline AK-1 AF SK Kit $27.50*

NEW FROM HAL—TOP QUALITY RVD-1002 RTTY VIDEO DISPLAY UNIT. Revolutionary approach to amateur RTTY ... provides visual display of received RTTY signal from any TU, at four speeds (60, 66, 75, and 100 WPM), using a TV receiver modified for video monitoring. Panasonic solid-state TV receiver/monitor, or monitor only, available. RVD-1002, $525.00; Panasonic TV receiver/monitor, $160.00; monitor only, $140.00.*

TOP QUALITY...WITH THE HAL 1550 ELECTRONIC KEYER. Designed for easy operation; perfectly timed CW with optional automatic ID for sending call letters, great for DX and RTTY; TTL circuitry, transistor switching for grid block, cathode keying. Handsome rugged cradle cabinet with brushed aluminum panel. With ID, only $90.00; without ID, $65.00.*

TOP QUALITY... WITH THE HAL MKB-1 MORSE KEYBOARD. As easy as typing a letter—you get automatic CW with variable speed and weight, internal audio oscillator with volume and tone controls, internal speaker, and audio output jack. Smooth operation; completely solid-state, TTL circuitry using G10 glass boards,regulated power supplies, and high voltage transistor switch. Optional automatic ID available. Assembled MKB-1, $275.00. In kit form, $175.00.*

HAL provides a complete line of components, semi-conductors, and IC’s to fill practically any construction need. Send SAE to cover postage for catalog with info and photos on all HAL products. Above prices do not include shipping costs. Please add 75¢ on parts orders, $2.00 on larger kits. Shipping via UPS whenever possible. Therefore, street address required.

HAL COMMUNICATIONS CORP.
Box 365 L, Urbana, Ill. 61801 • 217-359-7373

More Details? CHECK—OFF Page 126
L. I. Electronic Supermart
(Off the wall self service)

New P.C. Boards — G10, 1 oz. - 1 side copper-fiber glass
6" x 6" $1.10 ea. — 6 x 12, $1.50 ea. - 12 x 12, $2.85 ea.
New P.C. Boards — G10, 1 oz. - 2 side copper-fiber glass
6" x 6" $1.10 ea. - 6 x 12, $2.00 ea. - 12 x 12, $3.75 ea.
New P.C. Boards — Fiber glass punch:
F Pattern 4.5 x 6.5, .042 holes, 10 per 1" $1.30
P Pattern 4.5 x 6.5, .042 holes, 25 per 1" $1.35
G Pattern 4.5 x 6.5, .042 holes, 50 per 1" $1.30
Pkg. 10 .042, met. meter slides $1.00
Package of 50 flex clips for above punched boards, .062 $1.00
30 " or 1/2 W resistors, packaged 5 per value
your choice of values $1.00
25-W resistors, packaged 5 per value
your choice of values $1.00
15-W resistors, packaged 5 per value
your choice of values $1.00
5 1/2 or 1/2 W, 1% resistors, packaged 5 per value,
your choice of values $1.00
5 ceramic disk caps, .001-01, packaged 5 per value,
your choice of values $1.00
5 mica dip caps, 150 pf-150, packaged 5 per value,
your choice of values $1.00
5 mica dip caps, 100 pf-1000, packaged 5 per value,
your choice of values $1.00
5 mica dip caps, 910 pf-1500, packaged 5 per value
your choice of values $1.00
Wire Kit #22 solid PVC, 6 spools, 6 colors,
50' ea. spool $3.50
Wire Kit #22 stranded PVC, 6 spools, 6 colors,
50' ea. spool $3.50
Wire Kit #24 Solid PVC, 6 spools, 6 colors,
50' ea. spool $3.50
Wire Kit #24 stranded PVC, 6 spools, 6 colors,
50' ea. spool $3.50
Central Lab DPDT push momentary. SPEC.
88 december 1973 More Details? CHECK-OFF Page 126

Central Lab DPDT push momentary. SPEC.

Connectors, PL259, $.45; PL258, $.70; 175U,
$.20 ea.; UG 88 cu., $.50; UG 201 a/u
(N to BNC adapter), $.75; RCA to UHF, $.90
Encapsulated chokes up to 5 MHz, choice $3.00
Vary type mini bridge rectifiers, approx. 1/2"
sq. size: 2 amp. - .060 v.; 1 amp. - .125 v.
.5 amp. - .250 v.; .25 amp. - .50 v.; .125 amp.
- 1.00 v.; .125 amp. - 1.25 v.; .25 amp. - 1.25 v.
.5 amp. - 2.50 v.; .25 amp. - 5.00 v.; .125 amp.
- 10.00 v.; .125 amp. - 20.00 v.; .25 amp.
- 40.00 v.; .5 amp. - 80.00 v.; .125 amp.
- 160.00 v.; .25 amp. - 400.00 v.; .5 amp.
- 800.00 v.; .125 amp. - 1600.00 v.; .25 amp.
- 4000.00 v.; .5 amp. - 8000.00 v.
Triacs — thermo tab package — 1 amp.
- 400 v.; 800 v.; 3 amp. - 400 v.; 10.000 v.;
4 amp. - 4000 v.; 6 amp. - 6000 v.;
8 amp. - 8000 v.; 10 amp. - 10000 v.
Send self addressed envelope for free mailer. Includes many hundreds of items not listed above.

Radio Amateurs Reference Library of Maps and Atlas

DUAL BAND ANTENNAS
These ready to mount antennas consist of full 150' wavelength elements of No. 12 copperweld wire and can be used as either dipoles or inverted vees. No traps, coils, gimmicks, etc. are used to shorten the elements. 20/15 meters.
Single coax feedline required. Individually mounted dipoles with common center insulator:
80/40, $21.95; 40/20, $16.25; 20/15, $14.10.
Other combinations available. Send for free catalog listing dual band, monoband, and folded
dipole antennas. Baluns available. Postpaid

HOUSE OF DIPLOES
P. O. BOX 8484
ORLANDO, FLORIDA 32806

LEARN RADIO CODE
THE EASY WAY!

• No Books To Read
• No Visual Gimmicks To Distract You
• Just Listen And Learn

Based on modern psychological techniques—This course will take your talents beyond 13 w.p.m. in
LESS THAN HALF THE TIME!
Available on magnetic tape $9.95 — Cassette, $10.95

EPISTOL RECORDS
508 East Washington St., Arcola, Illinois 61910

WORLD DIRECTION
WORLD DIRECTION
WORLD DIRECTION

WORLD PREFIX MAP — Full color, 40" x 28", shows prefixes on each country . . . DX zones, time zones,
cities, cross referenced tables $1.25

AMATEURS MAP OF NORTH AMERICA! Full color, 30" x 25" — includes Central America and the
Caribbean to the equator, showing call areas, zone
boundaries, prefixes and time zones. FCC frequency
chart, plus useful information on each of the 50
United States and other Countries $1.25

WORLD ATLAS — Only atlas compiled for radio ama-
teurs. Packed with world-wide information — includes
11 maps, in 4 colors with zone boundaries and coun-
try prefixes on each map. Also includes a polar pro-
tspective map of the world plus a map of the Antarctica — a convenient fold map of the world, 24" x 36"
size 8¼" x 12" $2.50

Complete reference library of maps — set of 4 as listed
above $3.75

See your favorite dealer or order direct.
Mail orders please include 50¢ per order for postage and handling.
What has feathers, a lot of class, and loves hams?

Why, the FLAMINGO of course.

SAROC
The Fun Convention
hosted by SOUTHERN NEVADA AMATEUR RADIO CLUB, INC. at
FLAMINGO HOTEL CONVENTION CENTER, LAS VEGAS, NEV. 89109 - JANUARY 3-6, 1974

ADVANCE REGISTRATION — $10.50 per person includes:
1. Special room rate of $15.00 plus room tax per night single or double occupancy, effective January 3 through 10, 1974 while 500 rooms last at the Flamingo Hotel.
2. Advance Registration drawing ticket for Saturday.
3. Regular Registration drawing ticket for Saturday.
4. Complimentary cocktail at the Flamingo Hotel.
5. Complimentary KENO ticket at the Flamingo Hotel.
6. Admission to technical seminars, meetings and exhibit area, Friday and Saturday.
7. Ticket for admission to cocktail party hosted by SAROC and HAM RADIO MAGAZINE, Friday.
8. Ladies who register will receive admission ticket for their program on Saturday.
9. Ticket for admission to cocktail party hosted by SAROC and SWAN ELECTRONICS, Saturday.
10. Ticket for Flamingo Hotel Buffet Hunt Breakfast with Champagne, Sunday.
11. Tax and Gratuity on all items 1 through 10 except hotel accommodations.

ADVANCE REGISTRATION with midnight show — $17.50 per person:
Includes all items 1 through 11, plus Flamingo Hotel Midnight Show and two drinks. Sandler and Young are scheduled in the Flamingo Hotel Main Show Room.

ADVANCE REGISTRATION with dinner show — $21.50 per person:
Includes all items 1 through 11, plus Flamingo Hotel Dinner Show (Entree: Brisket of Beef) no cocktails. Sandler and Young are scheduled in the main show room.

Advance registration must be received in SAROC, P. O. Box 73, Boulder City, NV 89005 on or before December 15, 1973. Refunds will be made if request in writing received in P. O. Box 73 on or before January 3, 1974.

SEVENTH NATIONAL FM conference Friday and Saturday, FM Hospitality Room 16/76, 28/88 and 34/94 repeaters. WCARS-7255 and WPSS 3952 special events stations to assist mobile operators.

Mail accommodations request to Flamingo Hotel, Las Vegas, NV 89109 — Do it now!
Mail Advance Registration fee to, SAROC, P. O. Box 73, Boulder City, NV 89005 — Before December 15

More Details? CHECK-OFF Page 126
december 1973
KLM Electronics

30-140 Watts NEW

PA30-140B

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Range</th>
<th>Nominal P0</th>
<th>Nominal Amps</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>1 - 4</td>
<td>12</td>
<td>18</td>
<td>$44.95</td>
</tr>
<tr>
<td>144</td>
<td>5 - 15</td>
<td>20</td>
<td>30</td>
<td>$49.95</td>
</tr>
<tr>
<td>144</td>
<td>15 - 20</td>
<td>30</td>
<td>40</td>
<td>$59.95</td>
</tr>
<tr>
<td>144</td>
<td>20 - 30</td>
<td>40</td>
<td>50</td>
<td>$79.95</td>
</tr>
<tr>
<td>144</td>
<td>30 - 40</td>
<td>50</td>
<td>60</td>
<td>$99.95</td>
</tr>
<tr>
<td>144</td>
<td>40 - 50</td>
<td>60</td>
<td>70</td>
<td>$119.95</td>
</tr>
<tr>
<td>144</td>
<td>50 - 60</td>
<td>70</td>
<td>80</td>
<td>$139.95</td>
</tr>
<tr>
<td>144</td>
<td>60 - 70</td>
<td>80</td>
<td>90</td>
<td>$159.95</td>
</tr>
<tr>
<td>144</td>
<td>70 - 80</td>
<td>90</td>
<td>100</td>
<td>$179.95</td>
</tr>
<tr>
<td>144</td>
<td>80 - 90</td>
<td>100</td>
<td>110</td>
<td>$199.95</td>
</tr>
<tr>
<td>144</td>
<td>90 - 100</td>
<td>110</td>
<td>120</td>
<td>$219.95</td>
</tr>
</tbody>
</table>

VHF POWER AMPLIFIERS

Calif. residents add 5% sales tax, add $2 per unit for ppd.
USA prices subject to change without notice.

NEW 5 ELEMENT

DEALER LIST

- **ARIZ.** Apache Auto Sales — Tucson/Phoenix
- **CALIF.** Ham Radio Outlet — Burlingame
- Quantum Electronics — San Jose
- L. A. Electronics Sales — Torrance
- Research Unlimited — Clovis/Fresno
- Communication Devices — El Cajon
- Gary Radio — San Diego
- CANADA Dollard Electronics — Vancouver, B. C.
- CONN. Marcus Communications — Manchester
- FLORIDA Amateur Wholesale Electronics — Miami
- IDAHO United Electronics Wholesales — Twin Falls
- ILL. Erickson Communications — Chicago
- IOWA Hunter Sales — Des Moines
- MASS. South Shore Radiophone Inc. — Plymouth
- N. Y. South Fork Electronics Corp. — Southampton
- PENN. Hamtronics — Trevose
- TEXAS Madison Electronics Supply, Inc. — Houston
- FLORIDA Amateur Television

WE PAY HIGHEST PRICES FOR ELECTRON TUBES AND SEMICONDUCTORS

H & L ASSOCIATES

ELIZABETHPORT INDUSTRIAL PARK

ELIZABETH, NEW JERSEY 07206

(201) 351-4200

A5

Amateur Magazine

Be seen as well as heard

SUBSCRIPTIONS ONLY

$2.50 A YEAR

P.O. Box 6512, Phila., Penna. 19138

MOR&AIN

EXCLUSIVE 66 FOOT 75 THRU 10 METER DIPOLE

NO TRAPS — NO COILS — NO STUBS — NO CAPACITORS

Fully Air Tested — Thousands Already in Use

#16 40% Copper Weld wire annealed so it handles like soft Copper wire—Rated for better than full legal power AM/CW or SSB-Coxial or Balanced 50 to 75 ohm feed line—VSWR under 1.5 to 1 at most—Stainless Steel hardware—Drop Proof Insulators—Terrific Performance—No coils or traps to break down or change under weather conditions—Completely Assembled ready to put up—Guaranteed 1 year—ONE DESIGN DOES IT ALL; 75-10HD—ONLY $12.00 A BAND!

Model 75-10HD...$60.00...66 Ft...75 Thru 10 Meters
Model 75-20HD...$50.00...66 Ft...75 Thru 20 Meters

Model 75-10HD...$40.00...66 Ft...75 Thru 40 Meters
Model 40-20HD...$35.00...35 Ft...40 Thru 20 Meters

Model 80-40HD...$42.00...69 Ft...80-40-15 Meter (CW)

ORDER DIRECT OR WRITE FOR FULL INFORMATION

300H Shawnee

Leavenworth, Kansas 66048

More Details? CHECK—OFF Page 126
Fill your Christmas Stocking with the exciting family of INOUE 2-meter FM gear!

Make your Christmas bright with the most advanced 2-meter gear around today... the all new, super-compact, 67-channel synthesized (with Inoue’s unique Phase Locked Loop System), IC-230 for $489... or the 22-channel IC-22 for $289 (including 10 xtals)... or the 24-channel base/mobile IC-21 with all the features you'd imagine... add on the unique optional rcv VFO for the 21, or the deluxe 3p base power supply for the 22 and 230.

Put a whole lot of Jollies in your Christmas by seeing or writing for the name of your nearby ICOM-INOUE dealer today!

Distributed by:

ICOM WEST, INC.
Suite 232 - Bldg. II
300-120th Ave. N.E.
Bellevue, Wash. 98005
(206) 454-2470

ADIRONDACK RADIO SUPPLY
185 West Main Street
Amsterdam, N.Y. 12010

ICOM EAST
Div ACS, Inc.
Box 331
Richardson, Tex. 75080
(214) 235-0479

More Details? CHECK-OFF Page 126
THE ULTRA-BAL 2000
NOW-An extremely rugged, weather-proof BALUN!
- Full 3KW. 3-30 MHZ. 11 or 3rd bands.
- Special Teflon insulation, may be used with tuned lines and tuners.
- With dipole insulator and hang-up hook.
ONLY $8.95 p.d. (state ratio)
At your dealer or order direct
K.E. Electronics
Box 1279, Tustin Calif. 92680

Greatest Advance in Soldering Since Electricity
CORDLESS INDUSTRIAL SOLDERING IRON

- Completely Portable.
- Heats in 5 Sec.
- Recharges automatically on its own stand.
- Solders up to 150 joints per charge.
- New working freedom anywhere — SHOP — LAB — IN THE FIELD...

#7500 Kit includes cordless soldering iron, fine tip, automatic 110 VAC recharging stand and instruction booklet... $19.95 postpaid. No COD's

Accessories
#7585 Automobile charger for cordless iron $4.95
#7545 Fine Replacement Tip $2.50
#7535 General Purpose Tip $2.50
#7546 Heavy Duty, high temp. tip $2.50

ALARM COMPONENT DIST.
Dept. HR, 33 New Haven Ave., Milford, CT 06460

FIRE & BURGLAR ALARMS
1973 Handbook & Catalog

Save Hundreds of Dollars

Professional equipment from famous manufacturers. New and expanded to include laser photo-electronic systems, dialers, electronic sirens, perimeter controls and radio actuated systems that install in less than 2 hours. Save up to 75%. This handbook is a must for every homeowner and businessman. Just $1 cash, check or M.O. $1 refunded with first order.

ALARM COMPONENT DISTRIBUTORS
Dept. HR, 33 New Haven Ave., Milford, CT 06460

NEED A KW
TO MAKE IT IN AMATEUR RADIO?
Try having some fun for a change.

Solid state 100 watts. Full break in, side tone, off-set tuning. One year warranty. Many extras.

Lou Goldstein - K4LAN
P. O. BOX 3561
PENSACOLA, FLA.
904-455-2533

24 HOUR PHONE SERVICE
Also have — ICOM, Gladding, Regency, Standard, Hy-Gain, Galaxy, Hallicrafters, Mosley, SBE and Magnum 6 RF Processors.

Money talks big savings.
"If I don't have it, you don't need it."

C F P ENTERPRISES
866 RIDGE ROAD
LANSING, N. Y. 14882
Central Upstate New York's Mail-Order Headquarters
Specializing in Two-Meter FM and Quality Used Gear
Office & Salesroom Hours by Appointment Only
24-Hour Phone: 607-533-4297
Send SASE for Bi-Monthly Listing of Used Equipment and Bargain Goodies
Trade-ins accepted on both new and used equipment. Cash deals get prepaid shipping in the Continental U.S.A. plus a 15% discount on used items on our regular listing!!

CZ series towers, cranks up, installs without guy wires. New lacing design creates greater strength.
Mini and Magna rotating masts... high strength galvanized tubing, self-supporting crank-up.

For complete details and prices please check your local dealer or write
Certified Welders L.A. City License #634

TRISTAO TOWER CO.
P.O. Box 115, Hanford, California 93230

SPACE SAVER TOWERS & MASTS

More Details? CHECK—OFF Page 126
INTRODUCING: SUPER CRYSTAL —
The New DELUXE DIGITAL SYNTHESIZER from RP

MFA-22 Dual Version: $275.00*
SUPER • TRANSMIT and RECEIVE OPERA-
TION — SIMPLEX and REPEATER
MODES in both versions.
SUPER • READOUT — DIRECT DIGITAL READ-
OUT — fast acting lever switches.
SUPER • LOW SPURIOUS OUTPUT LEVEL —
low spurious output is similar to a
crystal output, not spurious laden as
with some other units.
SUPER • FAST ACTING CIRCUITS — 0.15
second typical settling time.

MFA-2 Single Version: $210.00*
SUPER • ACCURATE FREQUENCY CONTROL
— .0005% accuracy, both transmit
and receive, on all channels.
SUPER • STABLE LOW DRIFT OUTPUT —
20 Hz per degree C typical drift rate.
SUPER • COVERAGE — FULL 2 METER BAND
COVERAGE: 144.00 to 147.99 MHz in
10 kHz steps.
SUPER • LOW IMPEDANCE OUTPUTS — 50
ohm output impedance allows, long
cable runs, both transmit and receive,
for trunk or remote units.

SEND FOR FREE DETAILS TODAY
ORDER DIRECT or THROUGH YOUR DEALER
(*Add $3.00 per unit shipping charge. UPS areas. $5.00 otherwise. ILLINOIS RESIDENTS
add 5% Illinois sales tax.)

TONE BURST ENCODERS
AND DECODERS
- UP to 5 fixed tones
 (factory set)
- ADJUSTABLE
 — Duration
 — Output
- NO BATTERIES needed.
- FULLY ADAPTABLE
- EASY INSTALLATION
- CONTINUOUS TONE POSSIBLE
- FULL 1 YEAR RP Warranty

PRICES:
TB-5 5 tone std. encoder $37.50
(1800, 1950, 2100, 2250, 2400 Hz.)
ST-2 Single tone decoder $37.50
(Specify 1800, 1950, 2100, 2250, or 2400 Hz.)
Special tones — Inquire
Add $1.80/unit for shipping
(Ill. residents add 5% tax)

A SPEECH COMPRESSOR
THAT REALLY WORKS

RPC-3M Module
($82.50)
- Low distortion
 circuit.
- Fully wired & test-
ed. NOT A KIT
- Works with phone
 patch.
- Internal units &
 modules work mobile.
- FULL WARRANTY — ONE YEAR
- INTRODUCTORY LOW PRICES
 (Illinois residents add 5% Sales Tax)
 Add $2.00/unit shipping (RPC-3C)
or add $1.00/unit shipping (RPC-3, 3U, 3M)

RPC-3U Internal Unit
($24.95)
RP-3C Cabinet Model
($34.95)

RPC-3C
- Internal units &
 modules work mobile.
- FULL WARRANTY — ONE YEAR
- INTRODUCTORY LOW PRICES
 (Illinois residents add 5% Sales Tax)
 Add $2.00/unit shipping (RPC-3C)
or add $1.00/unit shipping (RPC-3, 3U, 3M)

ELECTRONICS

BOX 1201H
CHAMPAIGN, ILL. 61820

More Details? CHECK—OFF Page 126
december 1973
TEST EQUIPMENT SALES

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 542A</td>
<td>COUNTER: DC to 10 MHz, 6 digit neon, 2 meters</td>
<td>$125.00</td>
</tr>
<tr>
<td>HP 542C</td>
<td>COUNTER: DC to 10 MHz, 8 digit nixie</td>
<td>$295.00</td>
</tr>
<tr>
<td>HP 542D</td>
<td>COUNTER: DC to 10 MHz, 8 digit neon</td>
<td>$195.00</td>
</tr>
<tr>
<td>HP 525A</td>
<td>CONVERTER PLUG-IN: 10 MHz to 110 MHz</td>
<td>$75.00</td>
</tr>
<tr>
<td>HP 525B</td>
<td>CONVERTER PLUG-IN: 110 MHz to 220 MHz</td>
<td>$75.00</td>
</tr>
<tr>
<td>HP 526B</td>
<td>CONVERTER PLUG-IN TIME INTERVAL UNIT</td>
<td>$40.00</td>
</tr>
<tr>
<td>HP 526C</td>
<td>CONVERTER PLUG-IN PERIOD UNIT</td>
<td>$35.00</td>
</tr>
<tr>
<td>NORTHEASTERN 14-26C CONVERTER PLUG-IN: 200-1000 MHz for HP 524 series "As Is"</td>
<td>$150.00</td>
<td></td>
</tr>
</tbody>
</table>

BECKMAN 8175R COUNTER: 10 Hz to 110 MHz, 8 digit readout | $195.00

HP 540BR TRANSFER OSCILLATOR: 10 MHz to 12.4 GHz | $125.00

LAMPKIN 105B FREQUENCY METER: | $195.00

MCTARY F-531 FREQUENCY METER: 1 to 20 MHz | $50.00

BALLANTINE 300 VTVM: 1mV to 100V, 10 Hz to 150 kHz | $35.00

BALLANTINE 310AR VTVM: 100mV to 100 volts, 10 Hz to 2 MHz | $65.00

BALLANTINE 314 VTVM: 1mV to 1kV, 15 Hz to 6 MHz, less probe | $75.00

BALLANTINE 316R VTVM: Peak to peak, 0.05 Hz to 30 MHz | $35.00

GENERAL PURPOSE 45, 50, 500 METER: | $35.00

GR 1800 VTVM: 0.1 to 150V full scale, DC-800 MHz, 2% | $50.00

GR 1803A VTVM: 1.5V to 150V | $35.00

HP 400V VTVM: 10 Hz to 4 MHz, 1mV to 300V | $75.00 to $115.00

HP 400DR VTVM: 10 Hz to 4 MHz, 1mV to 300V, 2% accuracy | $65.00

HP 400H VTVM: 10 Hz to 4 MHz, 1mV to 300V, 1% accuracy | $120.00

HP 400HR VTVM: 10 Hz to 4 MHz, 1mV to 300V, 1% accuracy | $95.00

HP 410B MULTI-FUNCTION VTVM: AC/DC volts and ohms, 20 Hz to 700 MHz, ±3% accuracy, probes built-in | $90.00

HP 415A VSWR INDICATOR: | $25.00

HP 430B MICROCHROME POWER METER: Reads directly in dBm or mW, 0.01 to 10W full scale, 10MHz to 40 GHz with appropriate thermistor mount | $35.00

HP 430C MICROCHROME POWER METER: Later version of 430B | $65.00

HP 51A MICROCHROME POWER METER: Automatic self-balancing power meter uses temperature compensated thermistor mounts | $150.00

TEKTRONIX 310 OSCILLOSCOPE: Portable, DC to 4 MHz | $350.00

TEKTRONIX 517 OSCILLOSCOPE: DC to 1 GHz with power supply | $295.00

TEKTRONIX 531 OSCILLOSCOPE: DC to 11 MHz less plug-in | $295.00

TEKTRONIX 533 OSCILLOSCOPE: DC to 15 MHz less plug-in | $325.00

TEKTRONIX 535 OSCILLOSCOPE: DC to 11 MHz less plug-in | $425.00

TEKTRONIX 541 OSCILLOSCOPE: DC to 30 MHz less plug-in | $350.00

TEKTRONIX 543 OSCILLOSCOPE: DC to 30 MHz less plug-in | $425.00

TEKTRONIX K PLUG-IN: DC-30 MHz Fast rise time | $50.00

TEKTRONIX B PLUG-IN: DC-20 MHz high gain wideband | $50.00

TEKTRONIX C PLUG-IN: DC-24 MHz dual trace | $125.00

TEKTRONIX CA PLUG-IN: DC-24 MHz dual trace | $150.00

TEKTRONIX E PLUG-IN: DC-60 kHz differential | $75.00

TEKTRONIX R PLUG-IN: Transistor Rise-Time | $75.00

SORENSEN T50-15 POWER SUPPLY: 0 to 50 VDC @ 1.5 amps | $75.00

SORENSEN 500B POWER SUPPLY: 0-500 VDC @ 150mA | $35.00

SORENSEN 500BB POWER SUPPLY: 0-500 VDC @ 500mA | $65.00

HAMMARLUND SP500 RECEIVER: 560 kHz to 54MHz | $225.00

NEMS-CLARKE 1306 RECEIVER: 30 to 260 MHz, BW 10, 300, 500, 1000 kHz, receives AM, CW and SSB | $400.00

NEMS-CLARKE 1400 RECEIVER: 215-260 MHz, crystal controlled, selectable IF bandwidth of 100 or 500 kHz | $50.00

NEMS-CLARKE 1412 RECEIVER: 215-260 MHz, crystal controlled | $75.00

NEMS-CLARKE 1455 RECEIVER: 215-260 MHz, crystal controlled or internal VFO, 150/300 IF bandwidth | $125.00

NOTICE — THOUSAND OF INSTRUMENTS ARE NOT LISTED

but are available from the warehouses of TECO. Call and spell out your requirement. If we don’t have it - we can get it or tell you where you can get it. WRITE FOR CATALOG — SATISFACTION GUARANTEED: If you are not convinced that the instrument you receive is worth every cent you paid - return it within 10 days, paying only the freight and your money will be cheerfully refunded.

94 [December 1973] page 126
HELP! Eastern Stereo Servicenter in Bergen County, N. J. needs a top-flight technician strong on theory, solid state circuitry, experience, who loves to fix equipment. We are leading audio component service facility. Have latest and best test gear. Top conditions, benefits. Top pay, position, bonus plan for right person. Write 127 Pleasant Avenue, Upper Saddle River, N. J. 07458, or call Dave at (201) 327-9333.

WEATHER UNION DESK-FAX TELEFAAX Teleceiver Manual: Complete theory of operation, adjustment, lubrication, preventive maintenance, troubleshooting, parts list. Includes all schematics and mechanical parts drawings. $3.80 postpaid. Bill Johnston, 1808 Pomona Drive, Las Cruces, New Mexico 88001.

WANTED — SWR bridge $9.00, and Heath SB1O & an SWR bridge $9.00, and Heath SB1O, $2.50/box, 6 for $12 (50 pounds). Paper for weather map recorders, 6 for $10 (50 pounds). Paper for Desk-fax recorders, $2.50/box, 6 for $12 (50 pounds).

FAX FAX FAX. Paper for weather map recorders, $2.50/box, 4 for $10 (50 pounds). Paper for Desk-fax recorders, $2.50/box, 6 for $12 (50 pounds). Free listing in Cooper, WB2VE, POB 73, Paramount, N. J. 07652.

FOR YOUR FUTURE ROBYN RADIOS send your order to, Two Way Radio Sales, 1501 Monroe Street, Bogalusa, La. 70427 or 202 Farrell Street, Picayune, Miss. 39466.

HELP! For future Robyn Radios send your order to, Two Way Radio Sales, 1501 Monroe Street, Bogalusa, La. 70427 or 202 Farrell Street, Picayune, Miss. 39466.

WANTED — 1968 volume Ham Radio — Alt. 1968 unbonded copies. Don Austin, WA3KKC.

WANTED: 1968 volume Ham Radio — Alt. 1968 unbonded copies. Don Austin, WA3KKC.

FOR YOUR FUTURE ROBYN RADIOS send your order to, Two Way Radio Sales, 1501 Monroe Street, Bogalusa, La. 70427 or 202 Farrell Street, Picayune, Miss. 39466.

TONE-LOGIC Educational Systems for WWV, SSTV, RTTY. Eight 21/4" x 3" PCB’s, plans, $3. Hornung, Box 24614, San Jose, Cal. 95154.

WANTED: 1968 volume Ham Radio — Alt. 1968 unbonded copies. Don Austin, WA3KKC.

WANTED — 1968 volume Ham Radio — Alt. 1968 unbonded copies. Don Austin, WA3KKC.

FOR YOUR FUTURE ROBYN RADIOS send your order to, Two Way Radio Sales, 1501 Monroe Street, Bogalusa, La. 70427 or 202 Farrell Street, Picayune, Miss. 39466.

TONE-LOGIC Educational Systems for WWV, SSTV, RTTY. Eight 21/4" x 3" PCB’s, plans, $3. Hornung, Box 24614, San Jose, Cal. 95154.

WANTED: 1968 volume Ham Radio — Alt. 1968 unbonded copies. Don Austin, WA3KKC.
for the most advanced antennas under the sun!

HY-GAIN 204BA
MONOBANDER

...a tiger on 20 meters

The best antenna of its type on the market. Four wide spaced elements (the longest 36'6") on a 26' boom along with Hy-Gain's exclusive Beta Match produce a high performance DX beam for phone or CW across the entire 20 meter band.

- 10 db forward gain
- 28 db F/B ratio
- Less than 1.05:1 SWR at resonance
- Feeds with 52 ohm coax
- Maximum power input 1 kw AM; 4 kw PEP
- Wind load 99.8 lbs. at 80 MPH
- Surface area 3.9 sq. ft.

The 204BA Monobander is ruggedly built to insure mechanical as well as electrical reliability, yet light enough to mount on a lightweight tower. (Recommended rotator: Hy-Gain's new Roto-Brake 400.) Construction features include taper swaged slotted tubing with full circumference clamps; tiltable cast aluminum boom-to-mast clamp; heavy gauge machine formed element-to-boom brackets; boom 2" OD; mast diameters from 1½" to 2½"; wind survival up to 100 MPH. Shipping weight 51 pounds.

See the best distributor under the sun...the one who handles the Hy-Gain 204BA Monobander.

Model 204BA (4-element, 20 meters)...........................$159.95
Model 203BA (3-element, 20 meters)...........................$149.95
Model 153BA (3-element, 15 meters)...........................$ 79.95
Model 103BA (3-element, 10 meters)...........................$ 64.95

FERRITE BALUN MODEL BN-86
Improves transfer of energy to the antenna; eliminates stray RF; improves pattern and F/B ratio. $14.95

ELECTRONICS CORPORATION
Dept. BM, 8601 Northeast Highway Six, Lincoln, NE 68507
402/434-9151
Telex 48-6424

Hy-gain

96 december 1973 More Details? CHECK-OFF Page 126
World’s Most Advanced STATE-OF-THE-ART TRANSCEIVER

Available ANYWHERE IN THE WORLD directly from ELECTRONIC DISTRIBUTORS, INC.

- Communication Specialists for over 35 years
- 1960 Peck St., Muskegon, Michigan 49441
- Tel. (616) 726-3196
- Telex 228-411

THE TRITON by TEN-TEC TOTAL SOLID STATE HF TRANSCEIVER

Get all the details from your nearest Fluke sales office. Dial toll-free 800-426-0361 for address of office nearest you.

More Details? CHECK-OFF Page 126
POLY PAKS — THE INFLATION FIGHTER
YULETIDE SALE!

SUBTRACT $1. FROM ANY $15. PURCHASE

LINEAR Op Amps
FACTORY GUARANTEED FACTORY TESTED
Buy 3 — Take 10% off

531 Hi slew rate op amp (TO-5) $3.50
532 Micro power 741 (TO-5) $3.50
537 FET input op amp (TO-5) $3.95
531C Precision 741 (mini DIP) $3.25
550 Precision 273 voltage reg. (DIP) $1.17
558 5 Times faster than 741C $2.11
559 Dual 741 (mini DIP) $1.00
573 Dual 741C (mini DIP) $0.65
574 Phase lock loops (DIP) $3.25
575 Phase lock loops (TO-5) $3.25
576 Phase lock loops (mini DIP) $3.25
577 Phase lock loops (mini TO-5) $3.25
579 Four quadrant multiplier $3.10
580 Hi-grain, DC amp (TO-5) $4.40
703C Op amp, 14-chips (TO-5) $1.50
704 TV sound IF system $1.50
709C TV sound IF system $1.50
709CV Op amp (mini DIP) $0.45
711C Dual diff. comp. (A) $0.95
711C Dual diff. comp. (B) $0.95
711C Dual microamp (A) $0.95
711C Dual microamp (B) $0.95
733 Dual, Video Amp $1.75
741C Frequency compensator 709 (A) $1.40
747C Dual 741C (A) $1.40
748C Quad, adj. 741C (A) $1.40
749C Quad, adj. 741C (B) $1.40
753 Gain Block $1.75
759C Dual 709C (DIP) $1.95
759C Dual 709C (mini DIP) $1.95
781C Dual stereo preamp $1.95
784C Quad, adj 741C (A) $1.95
10A-5 or 12B dual in line pak

$14.95

"ALARM CLOCK ON A CHIP!"

MOS 16-pin dual IC, four display modes time, seconds, date, year, day of week, etc., on high quality digital clock face, forces directly with Segment fluorescent and liquid crystal displays. Requires single power supply, 7.2 volts, 24-hour alarm setting, featuring audible SNOOZE ALARM, and pre-selectable 12-hour or 24-hour time, low power dissipation only 82 mW or 0.082 watt, operates from 3 to 29 volts. ICs available in TO-5, 14-chips, or mini DIP. Has seconds provision, with instant pause of bottom. Has many, many more features than ALARM CHIP on the market today at this low Poly Pak price. With 5 pages of tech info, plus applications.

LARGEST SELECTION TTL ICs

Discount Order type number! A simple switch can change the display mode from analog clock to digital clock, or vice versa, depending on the IC selected. Each IC has a different set of specifications and features. For more information, please contact Poly Pak for a detailed specification sheet.

LOWEST PRICES

Money Back Guarantee

With Spec Sheet!

Money Back Guarantee

More Details? CHECK—OFF Page 126

DADE RADIO CLUB
P.O. Box 73, B.A.
Miami, Florida 33152

TROPICAL HAMBOREE & SOUTHEASTERN ARRL CONVENTION
JANUARY 19-20, 1974
(MIAMI BAYFRONT AUDITORIUM)
MIAMI, FLORIDA

Take a break from winter for some fun in the sun!

- Manufacturers' exhibits
- Giant indoor flea market
- DX and OSL Manager booth
- ARRL Forum with late info from Board Meeting
- YL/XYL activities

SATURDAY EVENING EVENTS

ADVANCED CONVENTION REGISTRATION — $1.00
Everglades Convention Hotel Rates
$19 Single / $22 Double by January 10

MORE INFO? WRITE:
DADE RADIO CLUB
P.O. Box 73, B.A.
Miami, Florida 33152
WHY FIGHT QRM?

Win the battle against CW QRM with the new DE-101 using advanced integrated circuit design. Connect it between your receiver and high impedance earphones for a guaranteed superior CW reception. Operate your receiver the same way as before except now you discriminate against QRM. No adjustments, the DE-101 is factory tuned and complete with built-in ac supply. One year warranty. 4 1/2 x 2 1/4 x 6" $29.95 plus $2.00 shipping.

ATTENTION EXPERIMENTERS

Raise your printed circuits and breadboards with inexpensive 1/4 inch long plain metal spacers for a #4 screw. 30 for $1.00 postpaid.

Ala. residents add 5% sales tax.

DYNAMIC ELECTRONICS INC.

BOX 1131 DECATUR, AL. 35601

BARGAINS!

KLEINSCHMIDT TELETYPE EQUIPMENT

(1) TT-100 PAGE PRINTER, AS IS 50 or 100 WPM $59.95
(2) TT-117 PAGE PR OR (B) IMPRINT & A to, AS IS $59.95
ABOVE CHECKED OUT, OILED & ADJUSTED, EA. $59.95
(3) TABLE 519-60G (C) TABLE $59.95 (D) OP-UPHOLDR $59.95
(4) PAPERWINDER 3/16" 95 (4) TT-107 RETPER. ONLY $99.95
TH-5 CONVERTER TRANS/REC 100 CYCLES ADJUST TO 170 SHIFT $99.95

Andy Electronics Co., Inc.

6431 Springer Street / Houston, Texas 77017

ALL PRICES FOR HOUSTON, TEX.

ON LINE SWR & POWER METERS

PRICE — $29.95

FREQUENCY RANGE: 3 - 150 MHz
IMPEDEANCE: 50 or 75 ohms
POWER: 0 - 1 Kw

PRICE — $49.95

FREQUENCY RANGE: 3.5 - 150 MHz
IMPEDEANCE: 50 or 75 ohms
POWER: 0 - 2 Kw

For further information and catalogs write, cable or call:
CARVILL INTERNATIONAL CORP.
P.O. Box 4039, Foster City, Ca., U.S.A. 94404
Cable "CARVILL" Phone (415) 341-9959 Telex349334

STAR-TRONICS

INDUSTRIAL AND GOVERNMENT ELECTRONIC SURPLUS

PARTS & PIECES FOR SCHOOLS, SHOPS, HAMS & HOBBYISTS

SEND FOR OUR LATEST ALL DIFFERENT MONTHLY PICTURE CATALOG. NOW!

Box 17127, Portland, Ore. 97217

AK-1 BOARD ONLY $3.25
AK-1 KIT OF ELECTRONIC PARTS $20.00
ST-5 BOARDS ONLY $5.25
ST-5 KIT OF ELECTRONIC PARTS $47.50
ST-5A1 BOARD ONLY $5.25
ST-5A1 KIT OF ELECTRONIC PARTS $5.49
ST-6 BOARDS ONLY (These are the 8 original by W6FFC) $10.00
ST-6 KIT OF ELECTRONIC PARTS $128.50
MOD. KIT FOR UPDATING THE ST-5 TO THE STS $9.00
PEMCO 250 EIGHT DIGIT COUNTER WITH BUILT-IN PRE-SCALER AND POWER SUPPLY SEMI KIT $165.00
PEMCO MODEL 50A FREQUENCY COUNTER SEMI-KIT $125.00
PEMCO 5250 DIGIT COUNTER SEMI-KIT $125.00

These are fully assembled and tested boards only, you add your own cabinet, etc. Write for details.

You must supply the cabinet, A.C. cord, meter, switches, etc. on all kits except where noted otherwise. All prices are postage paid (we pay shipping).

We will do most any printed circuit board for individuals or prototypes. If required we will also do the layout of the boards. All our boards are G-10 glass-epoxy solder plated and come drilled only. At present time we can only do single sided. All component parts used in our kits are new manufacturers stock. We Do Not Use Any Used or Surplus Parts. All inquiries are answered promptly.

PEMCO ELECTRONICS MANUFACTURING

4221 18th St., N.E., Salem, Ore. 97301, (503) 585-1641

100 december 1973

More Details? CHECK—OFF Page 126
LIKE FM OR CW?

Then you'll love Data Engineering's new catalog

Write for your free copy today!

TOUCH TONE PADS
More features than any other pad including built-in monitor speaker and latest Phase-Lock loop circuitry.
TTP-1 Standard pad for portable transceiver mounting.
TTP-2 Standard pad in attractive case for home or mobile use.
TTP-3 Mini-pad in attractive case for home or mobile use.
TTP-4 Mini-pad for portable transceiver mounting.
TTP-1, 2, 3 & 4, Sh. wt. 1 lb. $44.50
TTP-1K, 2K, 3K & 4K, Sh. wt. 1 lb. $34.50

CRICKET 1
A popularly priced IC keyer with more features for your dollar. Cricket 1 is a small size, solid state keyer designed for the beginner as well as the most advanced operator. It provides the user with fatigue-free sending and its clean, crisp CW allows for easy copying at all speeds. Turned on its side, the Cricket can be used as a straight key for manual keying.
CRICKET 1 Sh. Wt. 3 lbs. $49.95

2-METER PREAMP
Specially made for both OLD and NEW receivers. The smallest and most powerful preamp available. Provides 20dB gain at 2.5 N.F. to bring in the weakest signals.
Sh. wt. 4 oz. $9.50 kit
$12.50 wired

Please include sufficient postage for shipping.

DATA ENGINEERING INC.
Ravenswood Industrial Park, Springfield, Va. 22151
5554 Port Royal Road • 703-321-7171
SLINKY® DIPOLE ANTENNA

- A new 20, 40 and 80 meter antenna
- Operates at any length from 24 feet to 70 feet
- No external balun or matching required
- Erects and stores in minutes
- Durable attic or vacation antenna
- Takes full legal power
- Kit includes balun, 50 ft. RG 58/U feedline, PL259 connector, nylon rope & insulator card
- Low VSWR over complete 20, 40 or 80 meter band

Complete Kit $24.95, plus $1 postage
Special slinky coils alone...$14.95, plus $1 postage

Send for your antenna or information to:

TELETON CORP.
SLINKY ANTENNA DEPT.
2950 Veterans Memorial Highway
Bohemia, L.I., N.Y., 11716
(516) 981-8333

FM Schematic Digest

A COLLECTION OF MOTOROLA SCHEMATICS

Alignment, Crystal, and Technical Notes covering 1947-1960
136 pages 11½" x 17" ppd $6.50

S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173

WORLD QSL BUREAU
THE ONLY QSL BUREAU to handle all of your QSLs to anywhere; next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 5¢ each.

5200 Panama Ave., Richmond, CA USA 94804

PRINTED CIRCUIT BOARDS
Available for any amateur project appearing with artwork in any amateur periodical.

Write for complete details and prices

D. L. "Mac" McClaren, W8URX
Printed Circuit Service for the Amateur
19721 Maplewood Ave. Cleveland, Ohio 44135
216-267-3263

VHF DX OPS
MODEL 50 SPEECH PROCESSOR — QRO the average-to-peak ratio of the speech waveform as much as 0 dB, using a logarithmic principle. Operates with FM, SSB and AM transmitters and transceivers. Low/High impedance Mic input. Two 9Vdc batteries provide a self-contained unit!
Model 50W (Processor Assembled) $26.50
Model 50K (Processor Kit) $21.90
Model 50Q (Processor Board Kit) ... $12.95

MATRIC

DEALERS:
VE AMATEUR RADIO SALES, Downview, Ontario, Canada • SBT ELECTRONICS, Louisville, CA 90260 • AMATEUR WHOLESALE ELECTRONICS, Miami FL 33165 • ANTEK INDUSTRIES, Elkton, IN 46517 • SIGNAL SYSTEMS, Bed ford OH 44146 • KASS ELECTRONICS DISTRIBUTORS, Dallas TX 75206 • M. WEINHECHNER KDOPJ, Fram, PA. 15642 • HAMTRONICS, Toronto, PA 15642

QRO ?

MODEL 20 DIGITAL DIAL — Available for Collins and Drake gear. Optional four digit readout and crystal time base. QSY your fixed or mobile transmitter, receiver or transceiver with 100 Hz accuracy and no last digit jitter. Simple one wire connects dial to rig and you're ready to go. Specify your type of rig.
Model 200 (Dial) $29.95
Model 200 (Dial) $29.95

MODEL 11A PADDLE — Designed with reliability in mind. No mechanical switches or bearings to fail. Paddle contact spacing adjusts easily.
Model 11A (Assembled) $9.95

MODEL 10A ELECTRONIC KEYER — Has NEW features at no extra cost. Linear Speed Control and Operate/Tune Switch Plus internal penlight cells and reed relay output provide a compact, portable, versatile unit.
Model 10A (Assembled) $33.95
Model 10A (Assembled) $26.50
Model 10A (Keyer Kit) $12.95
Model 10A (Keyer Kit) $12.95
Model 10A (Keyer Board Kit) $4.95

CW OPS

DECEMBER 1973 More Details? CHECK-OFF Page 126
2 METER
144-146 MHz

15 or 25 WATTS

- 1-2 WATTS IN
 PA-1501H — 15-20 WATTS OUT
 PA-2501H — 25-30 WATTS OUT
- ONLY 2” x 21/2” x 6”

- 12—14 VOLTS NEGATIVE GROUND
- LESS THAN 1 DB LOSS ON RECEIVE
- SOLID STATE SWITCHING

PA1501H $49.95 WIRED & TESTED $39.95 COMPLETE KIT
PA2501H $69.95 $59.95

Also available:
- RX-50C 30-60 MHz receiver kit w/crystal filter $59.95
- RX144/220A 2/220 receiver kit 59.95
- RX-144/220F 2/220 receiver w/ceramic filter 65.95
- RX-144/220C 2/220 receiver kit w/crystal filter 69.95
- TX-144 1 watt exciter 29.95
- TX-220 1 watt exciter 29.95
- PA-144/220 15 watt amp less cabinet, connectors, and switching 29.95
- PA-144/220 25 watt amp less cabinet, connectors, and switching 49.95
- PA-8005H 90 watt amp 5 watts in wired/tested 159.95
- PA-8020H 90 watt amp 25 watts in wired/tested 129.95
- PA-432 10 watt amp less cabinet, connectors, and switching 39.95
- PS-12 12 amp regulated 12-15 volt power supply kit 59.95
- PS-12W Wired/tested 69.95
- PS-24 24 amp same as PS-12 less case 69.95
- COR-1 COR with 3 second and 3 minute timers 19.95

Write for data sheets on any above units. Add postage. NY state residents add sales tax.

VHF ENGINEERING
— DIV. OF BROWNIAN ELECT. CORP. —
320 WATER ST. POB 1921 BINGHAMTON, N.Y. 13902 607-723-9574
ham radio
cumulative index
1968-1973

antennas and transmission lines

general

high-frequency antennas

Double bi-square array
W6FF
Dual-band antennas, compact
W6SAI
DX antenna, single-element
W6FHM
Performance (letter)
p. 52, Dec 72
Folded mini-monopole antenna
W6SAI
Ground-plane, multiband (HN)
JA1QY
Ground-plane, three-band
LA1EI
Correction
p. 91, Dec 72
Footnote (letter)
p. 65, Oct 72
High-frequency amateur antennas
W2WLR
High-frequency diversity antennas
W2WLR
Inverted-vee antenna (letter)
W6BAQF
Inverted-vee antenna, modified
W2KTW
Log-periodic antenna, 14, 21 and 28 MHz
W4AEO
Log-periodic antennas, 7-MHz
W4AEO
Log-periodic antennas, vertical monopole, 3.5 and 7.0 MHz
W4AEO
Log-periodic, three-band
W4AEO
Long-wire multiband antenna
W3FQJ
Low-mounted antennas
W3FQJ
Mobile antenna, helically wound
ZE6JP
Mono-loop antenna (HN)
WBBW
Multiband dipoles for portable use
W6SAI
Quad antenna, multiband
DJ4VM
Receiving antennas
W6ZGQ
Simple antennas for 40 and 80
W5RUB
Simple 1-, 2- and 3-band antennas
W9EQQ
Sloping dipoles
W5RUB
Performance (letter)
p. 76, May 73
Small-loop antennas
W4YOT
Stub bandswitched antennas
W2EYE
Suitcase antenna, high-frequency
VK5BI
Tailoring your antenna, how to
KH6HD
Three-band ground plane
W6PHP
Triangle antennas
W3FQJ
Triangle antennas
W6KIV
Triangle antennas (letter)
K4ZZV
Triangle beams
W5FQJ
Unidirectional antenna for the low-frequency bands
GW3NJY
Vertical antenna, low-band
W4YH
Vertical beam antenna, 80 meter
VE1TG
Vertical dipole, gamma-loop-fed
W6SAI
Vertical for 80 meters, top-loaded
W2MB
Vertical radiators
W4OQ
Vertical, top-loaded 80 meter
VE1TG
Vertical-tower antenna system
W4OQ
Whips and loops as apartment antennas
W2EYE
Zepp antenna, extended
W6QVI
160 Meters with 40-meter vertical
W21MB
v.h.f. antennas
Collinear antenna for two meters, nine-element
W6RJO
Collinear antenna (letter)
W6SAI
Collinear array for two meters, 4-element
W6KGF
Collinear antenna, four element 440-MHz
WA6HTP
Collinear, six meter
K4ERD
Corner reflector antenna, 432 MHz
WA2EFS
Cubical quad, economy six-meter
W6DOR
Ground plane, two-meter, 0.7 wavelength
W3WZA
Ground plane, portable v.h.f. (HN)
K9DHD
J-pole antenna for 6-meters
K4SDY
Log-periodic, yagi beam
K6RL, W6SAI
Microwave antenna, Low-cost
K6HIJ
Mobile antenna, six-meter (HN)
W4PSJ
Moonbounce antenna, practical 144-MHz
K6HCQ
Parabolic reflector, 16-foot homebrew
WB610M
Quad yagi arrays, 432- and 1296-MHz
W3AEED
Short circuit
p. 30, May 73
Simple antennas, 144-MHz
WA3NFV
Switch, antenna for 2 meters, solid-state
K2ZSQ
Two-meter antenna, simple (HN)
W6BLZ
Two-meter fm antenna (HN)
W6KYE
Two-meter mobile antennas
W6BLZ
V.h.f. antenna switching without relays (HN)
K2ZSQ
Whip, 5/8-wave, 144 MHz (HN)
W6QVI
Yagi, 1296-MHz
W2QCH
matching and tuning
Antenna coupler for three-band beams
ZS6BT
Antenna coupler, six-meter
K1RAK
Antenna impedance transformer for receivers (HN)
W6NIF
Antenna matcher, one-man
W4SD
Antenna tuner, automatic
WA0AQC
Antenna tuner for optimum power transfer
W2WLR
Antenna tuners
W3FQJ
Balun, adjustable for yagi antennas
W6SAI p. 14, May 71
Balun, Simplified (HN)
WA0KKC p. 73, Oct 69
Baluns, wideband bridge
W6SAI, WAGAN
Broadband Antenna Baluns
W6SAI p. 6, Jun 68
Couplers, random-length antenna
W2EEY
Gamma-matching networks, how to design
W7ITB p. 46, May 73
Impedance bridge, low-cost RX
W8YFB p. 6, May 73
Impedance-matching baluns, open-wire
W6MUR p. 46, Nov 73
Impedance-matching systems, designing
W7CSD p. 58, Jul 73
Loads, affect of mismatched transmitter
W5JJ p. 60, Sep 69
Matching, antenna, two-band with stubs
W6MUR p. 18, Oct 73
Matching system, two-capacitor
W6MUR p. 58, Sep 73
Mobile transmitter, loading
W4YB p. 46, May 72
Noise bridge for impedance measurements
YA1GMJ p. 62, Jan 73
Phase meter, rf
VE2AYU, Korth
Stub-switched, stub-matched antennas
W2EEY p. 34, Jan 69
Swr alarm circuits
W2EEY p. 73, Apr 70
Swr bridge
WB2ZSH p. 55, Oct 71
Swr bridge and power meter, integrated
W6DOB p. 40, May 70
Swr bridge readings (HN)
W6FFP p. 63, Aug 73
Swr meter
W6SVS p. 6, Oct 70
Transmission lines, grid dipping (HN)
W20LU p. 72, Feb 71
Transmission lines, uhf
WA2VTR p. 36, May 71
Tuning units, antenna
W3FQJ p. 58, Jan 73
Uhf coax connectors (HN)
W0LCP p. 70, Sep 72

towers and rotators
Antenna and rotator preventive maintenance
WA1ABP p. 66, Jan 69
Antenna mast, build your own tilt-over
W6KRT p. 42, Feb 70
Keeping your beam, tips for
W6LZ
Rotator, AR-22, fixing a sticky
WA1ABP p. 34, Jun 71
Rotator, T-45, Improvement (HN)
WA0YAM p. 64, Sep 71
Stress analysis of antenna systems
W2FZJ
Telescopig tv masts (HN)
WA0KKC p. 57, Feb 73
Tilt-over tower base, low-cost
WA1ABP p. 86, Apr 68
Tower, homemade tilt-over
WA3EWH p. 28, May 71
Tower, wind-protected crank-up (HN)
W6HKF p. 74, Oct 69

transmission lines
Coax cable dehumidifier
K4RJ p. 26, Sep 73
Coax connectors, repairing broken (HN)
W6HDF p. 66, Jun 70

audio
Audio agc principles and practice
WA5SNZ p. 28, Jun 71
Audio amplifier and squelch circuit
W6AIF p. 36, Aug 69
Audio CW filter
W7DI p. 54, Nov 71
Audio filters, aligning (HN)
W4ATE p. 72, Aug 72
Audio filters, inexpensive
W8YFB p. 24, Aug 72
Audio filter mod (HN)
K6HILL p. 60, Jan 72
Audio module, a complete
K4DHJ
Audio-oscillator module, Cordover
WB2QTY p. 44, Mar 71
Correction
WA7KRE p. 80, Dec 71
Compressor, dual channel
W2EEY p. 40, Jul 68
Distortion and splitter
K5LLI p. 44, Dec 70
Filter for CW, tunable audio
WA1JSJ
Filter-frequency translator for cw reception, integrated audio
W2EEY p. 24, Jun 70
Filter, simple audio
W4NVK p. 44, Oct 70
Filter, tunable peak-notch audio
W2EEY p. 22, Mar 70
Filter, variable bandpass audio
W3AEJ p. 36, Apr 70
Hang agc circuit for ssb and CW
W1ERJ p. 50, Sep 72
Headphones, lightweight
K6KA p. 34, Sep 68
Impedance match, microphone (HN)
W5JJ p. 67, Sep 73
Intercom, simple (HN)
W4AYV
Microphone preamplifier with audio
Bryant
Microphone, using Shure 401A with
the Drake TR-4 (HN)
G3XOM p. 68, Sep 73
Oscillator, audio, IC
W6GKN p. 50, Feb 73
Oscillator-monitor, solid-state audio
WA1JSJ p. 48, Sep 70

106 December 1973
commercial equipment

Alliance rotator improvement (HN) K6JVE p. 68, May 72
Alliance T-45 rotator Improvement (HN) WAGVAM p. 64, Sep 71
CDR AR-22 rotator, fixing a sticky WA1ABP p. 34, Jun 71
Collins S-line, rf clipper for K6JYO p. 18, Aug 71
Correction Collins 32S-3 audio (HN) K6KA p. 64, Oct 71
Collins 32S-1 CW modification (HN) WIDTY p. 82, Dec 69
Collins 75A4 hints (HN) W6VFR p. 68, Apr 72
Collins 75A-4 modifications (HN) W4SD p. 67, Jan 71
Collins 51J pto restoration W6SAI p. 36, Dec 69
Collins 75A-4 receiver, improving overload response in W6ZIO p. 42, Apr 70
Short circuit Collins S-line spinner knob (HN) W6VFR p. 69, Apr 72
Collins S-line transmitter mod (HN) W6VFR p. 71, Nov 72
Comdel speech processor, increasing the versatility of (HN) W6SAI p. 67, Mar 71
Drake R-4 receiver frequency synthesizer for W6NBI p. 6, Aug 72
Drake R-4C, electronic bandpass tuning in Horner p. 58, Oct 73
Drake TR-4, using the Shure 401A microphone with (HN) G3XOM p. 68, Sep 73
Drake W-4 directional wattmeter WIDTY p. 86, Mar 68
Elmac chirp and drift (HN) W50ZF p. 68, Jun 70
EX crystal and oscillator WB2EZG p. 60, Apr 68
Galaxy feedback (HN) W8TFK p. 71, Jan 70
Hallcrafters HT-37, increased sideband suppression W3CM p. 48, Nov 69
Hammarlund HQ215, adding 160-meter coverage W2GMR p. 32, Jan 72
Heath CA1, ten-minute timer from (HN) KBHZ p. 74, Jul 68
Heath HG-10B vfo, independent keying of (HN) K4BRR p. 67, Sep 70
Heath HW-12 on MARS (HN) K8AUX p. 63, Sep 71
Heath HW-16 keying (HN) W7D1 p. 57, Dec 73
Heath HW-16, vfo operations for W6SMZ N p. 54, Mar 73
Short circuit Heath HW-17A, perking up (HN) p. 58, Dec 73
Heath HW-17 modifications (HN) W5PWX p. 66, Mar 71
Heath HW-100, HW-101, grid-current monitor for K4MRF p. 46, Feb 73
Heath HW-100 incremental tuning (HN) K1GJR p. 67, Jun 69
Heath HW-100, the new W1NLB p. 64, Sep 68
Heath HW-100 tuning knob, loose (HN) VE3EPY p. 68, Jun 71
Heath SB-100, using an outboard receiver with (HN) K4GMR p. 68, Feb 70
Heath HW-101, using with a separate receiver (HN) W6AMKP p. 63, Oct 73
Heath SB-200 amplifier, modifying for the 8873 zero-bias triode W6GUOV p. 32, Jan 71
Heath SB-200 amplifier, six-meter conversion K1RAK p. 38, Nov 71
Heath SB-300, RTTY with W2ARZ p. 76, Jul 68
Heath SB-400 and SB-401, improving alc response in (HN) W6VFR p. 71, Jan 70
Heath SB-650 using with other receivers K2BYM p. 40, Jun 73
Heath SB receivers, RTTY reception with (HN) K9HWV p. 64, Oct 71
Heath SB-series crystal control and narrow shift RTTY with (HN) WA4YVL p. 54, Jun 73
Heath ten-minute timer K6KA p. 75, Dec 71
Heathkit Sixer, spot switch (HN) WA6FNR p. 84, Dec 69
Heathkit, noise limiter for (HN) W7CKH p. 67, Mar 71
James Research oscillator/monitor W1DTP p. 91, Mar 68
James Research permaflex key W1DTY p. 73, Dec 68
Knight-kit inverted/charger review W1DTY p. 64, Apr 69
Knight-kit two-meter transmitter W1DTY p. 62, Jun 70
Mini-mitter II W6SLQ p. 72, Dec 71
Motorola channel elements WB4NEX p. 32, Dec 72
Motorola Dispatcher, converting to 12 volts WB6HXU p. 26, Jul 72
Motorola fm receiver mods (HN) VE4RE p. 60, Aug 71
Motorola P-33 series, improving WB2AEB p. 34, Feb 71
Motorola receivers, op-amp relay for W6GDO
Motorola voice commander, improving W6DKU
Motrac Receivers (letter) K5ZBA
Quenement circular slide rule W2DZH
Regency HR-2, narrowbanding WA8TMP
SBE linear amplifier tips (HN) WA6DCW
SB301/401, improved sidetone operation W1WLZ
Signal One review WINLB
Swan television interference: an effective remedy W2OUX
Swan 120, converting to two meters K6RIL
Swan 350 CW monitor (HN) K1KKA
Swan 350, receiver incremental tuning (HN) K1KKA
Swan 350 and 400, RTTY operation (HN) W8B2MIC
Swan 350, update your (HN) K8HZH
Ten-Tec RX10 communications receiver WINLB
T150A frequency stability (HN) WB2MCP
Yaesu sideband switching (HN) W2MUU
Yaesu spurious signals (HN) K6KA
Units affected (letter) p. 67, Oct 73
P

construction techniques

AC line cords (letter) W6EG
A dab of paint, a drop of wax (HN) VE3BUE
Aluminum's new face W4BRS
Antenna insulators, homemade (HN) W7ZC
APC trimmer, adding shaft to (HN) W1ETT
Blower-to-chassis adapter (HN) KS7YO
BNC connectors, mounting (HN) W9KXJ
Capacitors, oil-filled (HN) W2OLA
Center insulator, dipole WA1ABP
Coaxial cable connectors (HN) WA1ABP
Coax connectors, repairing broken (HN) W9HFK
Coax relay coils, another use (HN) K2QVY
Cold galvanizing compound (HN) WSUNF
Color coding parts (HN) WA7BPO
Component marking (HN) W1JE
Deburring holes (HN) W2DZH
Drill guide (HN) W5BVF
Exploding diodes (HN) VE3FEZ
Ferrite beads W5JAJ
Ferrite beads, how to use K1ORV
Filter chokes, unmarked W2KMF
Grommet shock mount (HN) VE3BUE
Grounding (HN) W9KXJ
Heat sinks, homemade (HN) WAQ0WZ
Homebrew art W0PEM
Hot etching (HN) K8EKG
Hot wire stripper (HN) W8DWT
Industrial cartridge fuses, using (HN) VE3BUE
Magnetic fields and the 7360 (HN) W7DI
Miniature sockets (HN) Lawyer p. 84, Dec 69
Mobile installation, putting together W2FCH
Mobile mount bracket (HN) W4NJF
Modular converter, 144-MHz WG6UV
Neutralizing tip (HN) ZE6JP
Noisy fans (HN) WA8UF
Correction (letter) p. 67, Oct 73
Nuvistor heat sinks (HN) WA0KKC
Parasitic suppressor (HN) WA9JMY
Printed-circuit boards, cleaning (HN) W5BVF
Printed-circuit boards, how to make K4EEU
Printed-circuit boards, low-cost W6CMQ
Printed-circuit boards, practical photofabrication of Hutchinson Printed-circuit labels (HN) WA4WDK
Printed-circuit tool (HN) W2GZ
Printed circuits without printing W4ZG
Professional look, for that VE3GFN
Punching aluminum panels (HN) W7DIM
Rack and panel construction W7OE
Rack construction, a new approach K1EUJ
Rectifier terminal strip (HN) W5PKK
Restoring panel lettering (HN) W8CL
Screwdriver, adjustment (HN) WA0KGS
Silver plating for the amateur W4KAE
Small parts tray (HN) W2GA
Solder dispenser, simple (HN) W2KID
Soldering aluminum (HN) ZE6JP
Soldering fluxes (HN) K3HNP
Soldering tip (HN) Lawyer
Tilt your rig (HN) WA4NED

108 december 1973
features and fiction

Binding 1970 issues of ham radio (HN)
W1DHz p. 72, Feb 71
Dynistor, the W6GKN p. 49, Apr 68
Catalina wireless, 1902 W6BLZ p. 32, Apr 70
Early wireless stations W6BLZ p. 64, Oct 68
Electronic bugging K2ZSQ p. 70, Jan 68
Fire protection in the ham shack Darr p. 54, Jan 71
First wireless in Alaska W6BLZ p. 48, Apr 73
Ham Radio Sweepstakes Winners, 1972 WINLB p. 58, Jul 72
Ham Radio sweepstakes winners, 1973 WINLB p. 68, Jul 73
How to be DX W4XND p. 58, Aug 68
Nostalgia with a vengeance W6HOM p. 28, Apr 72
QLS return, statistics on WB6IUH p. 50, Dec 68
Photographic illustrations WAGNW p. 72, Dec 69
Reminiscences of old-time radio K4NW p. 40, Apr 71
Secret society, the W4XND p. 82, May 68
Use your old magazines Foster p. 52, Jan 70
What is it? WA1ABP p. 84, May 68
Wireless Point Loma W6BLZ p. 54, Apr 69

fm and repeaters

Amateur vhf fm operation W6AYZ p. 36, Jun 68
Antenna and control-link calculations for repeater licensing W7PUG p. 58, Nov 73
Short circuit W6NPO p. 59, Dec 73
Antennas, simple, for two-meter fm WA3NFW p. 30, May 73
Antenna, two-meter fm (HN) WB6KYE p. 64, May 71
Audio-amplifier and squelch unit W6AJF p. 36, Aug 68
Base station, two-meter fm W9JTQ p. 22, Aug 73
Carrier-operated relay KOPHF, WAOJUZ p. 58, Nov 72

Carrier-operated relay and call monitor VE4RE p. 22, Jun 71
Cavity filter, 144-MHz W1SNN p. 22, Dec 73
Channel scanner W2FFP p. 29, Aug 71
Channels, three from two (HN) VE7ABK p. 68, Jul 71
Collinear antenna for two meters, nine-element W6RJO p. 12, May 72
Collinear array for two meters, 4-element WB8KGF p. 6, May 71
Continuous tuning for fm converters (HN) W1DHZ p. 54, Dec 70
Control head, customizing VE7ABK p. 28, Apr 71
Deviation measurement (letter) K5ZBA p. 68, May 71
Deviation measurements W3FOJ p. 52, Feb 72
Deviation meter (HN) VE7ABK p. 58, Dec 70
Distortion in fm systems W5JJ p. 26, Aug 69
Encoder, combined digital and burst K8AUH p. 48, Aug 69
Filter, 455-kHz for fm WAOJYK p. 22, Mar 72
Fm demodulator, TTL W3FOJ p. 66, Nov 72
Fm receiver frequency control (letter) W3AFN p. 65, Apr 71
Fm techniques and practices for vhf amateurs W6SAL p. 8, Sep 69
Fm transmitter, solid-state two-meter W6AJF p. 14, Jul 71
Fm transmitter, Sonobaby, 2 meter WA0UZ0 p. 8, Oct 71
Crystal deck for Sonobaby W6AJF p. 26, Oct 72
Frequency meter, two-meter fm W4JAZ p. 40, Jan 71
Short circuit p. 72, Apr 71
Frequency synthesizer, inexpensive all-channel, for two-meter fm WQOAO p. 50, Aug 73
Frequency-synthesizer, one-crystal for two-meter fm W0MV p. 30, Sep 73
Frequency synthesizer, for two-meter fm WB4FPK p. 34, Jul 73
Identifier, programmable repeater W6AYZ p. 18, Apr 69
Short circuit W6TEI p. 76, Jul 71
S-f system, multimode WA2IKL p. 39, Sep 71
Indicator, sensitive rf WB9DNI p. 38, Apr 73
Interference, scanning receiver (HN) K2YAH p. 70, Sep 72
Logic oscillator for multi-channel crystal control W1SNN p. 46, Jun 73
Mobile operation with the Touch-Tone pad W2LPQ p. 58, Aug 72
Correction W6NPO p. 90, Dec 72
Modification (letter) W6Tee p. 72, Apr 73
Modulation standards for vhf fm W6TEE p. 16, Jun 70
Motorola channel elements WB4NEX p. 32, Dec 72
Motorola fm receiver mods (HN) VE4RE p. 60, Aug 71
Motorola P-33 series, improving the W2AEB p. 34, Feb 71
Motorola voice commander, improving W0DKU p. 70, Oct 70
Motrac Receivers (letter) K5ZBA p. 69, Jul 71
Narrow-band fm system, using ICs in W6AJF p. 30, Oct 68
Phase-locked loop, tunable, 28 and 50 MHz
W1KNI p. 40, Jan 73

Power amplifier, rf 220-MHz fm
K7JUE p. 6, Sep 73

Power amplifier, rf, 144 MHz
Hatchett p. 6, Dec 73

Power amplifier, rf, 144-MHz fm
W4GCG p. 6, Apr 73

Power supply, regulated ac for mobile fm equipment
WATMP p. 28, Jun 73

Preamplifier, two-meter
WA2GCF p. 25, Mar 72

Push-to-talk for Styleline telephones
WIDRDP p. 18, Dec 71

Receiver for two meter, fm
WS1EK p. 22, Sep 70

Receiver isolation, fm repeater
WIDTY p. 54, Dec 70

Receiver, modular fm communications
K8AUH p. 32, Jun 69
Correction p. 71, Jan 70

Receiver, modular, for two-meter fm
WA2GBF p. 42, Feb 72

Added notes p. 73, Jul 72

Receiver performance, comparison of
VE7ABK p. 68, Aug 72

Receiver, tunable vhf fm
K8AUH p. 34, Nov 71

Receiver, vhf fm
WA2GCF p. 6, Nov 72

Receiver, vhf fm (letter)
K8IQH p. 76, May 73

Relay, operational-amplifier, for Motorola receivers
W6GDO p. 16, Jul 73

Repeater control with simple timers
W2FPP p. 46, Sep 72
Correction p. 91, Dec 72

Repeater decoder, multi-function
WA6TBC p. 24, Jan 73

Repeater installation
W2FPP p. 24, Jun 73

Repeater problems
VE7ABK p. 38, Mar 71

Repeater, receiving system degradation
KS2BA p. 36, May 69

Repeater transmitter, improving
W6GDO p. 24, Oct 69

Repeaters, single-frequency fm
W2FPP p. 40, Nov 71

Scanner, vhf receiver
K2LZG p. 22, Feb 73

Sequential encoder, mobile fm
W3JJU p. 34, Sep 71

Sequential switching for Touch-Tone repeater control
W6GRG p. 22, Jun 71

Test set for Motorola radios
K0BKD p. 12, Nov 73
Short circuit p. 58, Dec 73

Timer, simple (HN)
W3CIX p. 58, Mar 73

Tone-burst generator (HN)
K4COF p. 58, Mar 73

Tone-burst keyer for fm repeaters
W6GRG p. 36, Jan 71

Tone encoder and secondary frequency oscillator (HN)
K8AUH p. 66, Jun 69

Touch-tone circuit, mobile
K7QWR p. 50, Mar 73

Touch-tone decoder, multi-function
K5PHF, WAGUZO p. 14, Oct 73

Transmitter for two meters, phase-modulated
W6AJF p. 18, Feb 70

Transmitter, two-meter fm
W9SEK p. 6, Apr 72

Whip, 5/8-wave, 144 MHz (HN)
WE3DDD p. 70, Apr 73

Integrated circuits

Amateur uses of the MC1530 IC
W2EEY p. 42, May 68

Amplifiers, broadband IC
W6GKN p. 36, Jun 73

Applications, potpourri of IC
W7DIT, Thorpe p. 8, May 69

Balanced modulator, an integrated-circuit
K7QWR p. 6, Sep 70

Counter gating sources
K6GA p. 48, Nov 70

Counter reset generator (HN)
W3KBM p. 68, Jan 73

Digital counters (letter)
W1LGN p. 76, May 73

Digital ICs, part I
W3FQJ p. 41, Mar 72

Digital ICs, part II
W3FQJ p. 58, Apr 72
Correction p. 66, Nov 72

Digital mixers
WB8IFM p. 42, Dec 73

Digital multivibrators
W3FQJ p. 42, Jun 72

Digital oscillators and dividers
W3FQJ p. 62, Aug 72

Digital readout station accessory, part I
K6GA p. 6, Feb 72

Digital station accessory, part II
K6GA p. 50, Mar 72

Digital station accessory, part III
K6GA p. 36, Apr 72

Electronic counter dials, IC
K6GA p. 44, Sep 70

Emitter-coupled logic
W3FQJ p. 62, Sep 72

Flip-flops
W3FQJ p. 60, Jul 72

Flip-flip, using (HN)
W3KBM p. 60, Feb 72

Function generator, IC
WIDTY p. 40, Aug 71

Ic power (HN)
W3KBM p. 68, Apr 72

Ic-regulated power supply for ICs
W6GKN p. 28, Mar 68

Integrated circuits, part I
W3FQJ p. 40, Jun 71

Integrated circuits, part II
W3FQJ p. 58, Jul 71

Integrated circuits, part III
W3FQJ p. 50, Aug 71

Logic monitor (HN)
WA55AF p. 70, Apr 72
Correction p. 91, Dec 72

Logic test probe
VE6RF p. 53, Dec 73

Logic test probe (HN)
Rossman p. 56, Feb 73

Short circuit p. 58, Dec 73

Low-cost linear ICs
WA7KRE p. 20, Oct 69

Modular modules
W9SEK p. 63, Aug 70

Motorola MC1530 IC, amateur uses for
W2EEY p. 42, May 68

Multi-function integrated circuits
W3FQJ p. 46, Oct 72

National LM373, using in ssb transceiver
W5BAA p. 32, Nov 73

Operational amplifiers
W82EGZ p. 6, Nov 69

Phase-locked loops, IC
W3FQJ p. 54, Sep 71

Phase-locked loops, IC, experiments with
W3FQJ p. 58, Oct 71

Plessey SL600-series ICs, how to use
G8FNT p. 26, Feb 73

Removing ICs (HN)
W6NIF p. 71, Aug 70
keying and control

Break-in circuit, CW WBSYK p. 40, Jan 72
Break-in control system, IC (HN) WZ7K p. 68, Sep 70
Bug, solid-state K2FV p. 50, Jun 73
Carrier-operated relay K0PHF, WAO/UZO p. 58, Nov 72
Contest keyer (HN) K2UBC p. 79, Apr 70
Electronic hand keyer KSTCK p. 36, Jun 71
Electronic keyer, IC VE7BFK p. 32, Nov 69
Electronic keyer notes (HN) ZL1BN p. 74, Dec 71
Electronic keyer package, compact WA4TE p. 50, Nov 73
Electronic keyer with random-access memory WB9FHC p. 6, Oct 73
Electronic keys, simple IC W4STRS p. 38, Mar 73
Grid-block keying, simple (HN) WA4DHU p. 78, Apr 70
Key and vox clicks (HN) K6KA p. 74, Aug 72
Keying the Heath HG-10B vfo (HN) K4BRR p. 67, Sep 70
Memo-key WA7SCB p. 58, Jun 72
Mint-paddle K6RIL p. 46, Feb 72
Morse sounder, radio controlled (HN) K6EQ p. 66, Oct 71
Oscillators, electronic keyer WA6JNJ p. 44, Jun 70
Paddle, electronic keyer (HN) KL7EDV p. 68, Sep 72
Paddle, homebrew keyer W3NK p. 43, May 69
Push-to-talk for Styline telephones W1DRP p. 18, Dec 71
Relay activator (HN) K6KA p. 62, Sep 71
Relays, surplus (HN) W2OLU p. 70, Jul 70
Relay, transistor replaces (HN) W3NK p. 72, Jan 70
Relays, undervoltage (HN) W2OLU p. 64, Mar 71
Remote keying your transmitter (HN) WA3JOU p. 74, Oct 69
Sequential switching (HN) W5OSF p. 63, Oct 72
Solenoid rotary switches W2EYY p. 36, Apr 68
Station control center W70E p. 26, Apr 68
Step-start circuit, high-voltage (HN) W6VFR p. 64, Sep 71

measurements and test equipment

Ac power-line monitor W2OLU p. 46, Aug 71
AFSK generator, crystal-controlled K7BVT p. 13, Jul 72
AFSK generator, phase-locked loop K7ZOF p. 27, Mar 73
Amateur frequency measurements K6KA p. 53, Oct 68
A-m modulation monitor, vhf (HN) K7UNL p. 67, Jul 71
Antenna gain, measuring K6JYO p. 26, Jun 69
Antenna matcher WA4SD p. 24, Jun 71
Beta master, the KR9ERV p. 18, Aug 68
Bridge for antenna measurements, simple W2CTK p. 44, Sep 70
Bridge, rf noise WB2EGZ p. 18, Dec 70
Calibrators and counters K6KA p. 41, Nov 68
Calibrator, plug-in IC K6KA p. 22, Mar 69
Capacitance meter, direct-reading ZLA2UE p. 45, Apr 70
Capacitance meter, direct-reading W6MUR p. 48, Aug 72
Capacitance meter, direct reading, for electrolytics W9DJZ p. 14, Oct 71
Coaxial cable, checking (letter) W2OLU p. 68, May 71
Coaxial-line loss, measuring with a reflectometer W2VCI p. 50, May 72
Converter, mosfet, for receiver instrumentation WA9ZMT p. 62, Jan 71
Counter, compact frequency K4EEU p. 16, Jul 70
Counter, digital frequency K4EEU p. 72, Dec 70
Counter gating sources K6KA p. 62, Sep 71
Counter readouts, switching (HN) K6KA p. 48, Nov 70
Counter reset generator (HN) W3KBM p. 68, Jan 73
Counters: a solution to the readout problem WA9GOZ p. 66, Jan 70
CRT intensifier for RTTY K4VFA p. 18, Jul 71
Crystal checker W6GXN p. 46, Feb 72
Crystal test oscillator and signal generator K4EEU p. 46, Mar 73

Suppression networks, arc (HN) WASEKA p. 70, Jul 73
Transmitter switching, solid-state W2EYY p. 44, Jun 68
Typewriter-type electronic keys, further automation for W6FRO p. 26, Mar 70
Vox and mox systems for ssb Beit p. 24, Oct 68
Vox, IC W2EYY p. 50, Mar 69
Vox keying (HN) V7EIG p. 83, Dec 69
Vox, versatile W9KIT p. 50, Jul 71
Short circuit p. 96, Dec 71
RTTY monitor scope, solid-state
W2BMPZ p. 33, Oct 71
RTTY signal generator
W72TC p. 23, Mar 71
Short circuit
W4BOIK p. 38, Dec 71
RTTY test generator (HN)
W3EAG p. 67, Jan 71
RTTY test generator (HN)
W3EAG p. 59, Mar 73
Safer suicide cord (HN)
K6JYO p. 64, Mar 71
Sampling network, rf — the milli-tap
W6QIW p. 34, Jan 73
Signal generator, tone modulated for
Two and six meters
W3AOK p. 54, Nov 69
Signal generator, wide range
W6GXXN p. 18, Dec 73
Signal injection in ham receivers
Allen p. 72, May 68
Signal source for 432 and 1296 MHz
K6RIL p. 20, Sep 68
Signal tracing in ham receivers
Allen p. 52, Apr 68
Slow-scan tv test generator
K4EUE p. 6, Jul 73
Small-signal source for 144 and 432 MHz, stable
K6JC p. 58, Mar 70
S-meter readings (HN)
W1DTY p. 56, Jun 68
Spectrum analyzer, four channel
W3JA p. 6, Oct 72
Ssb, signals, monitoring
W6VFV p. 35, Mar 72
Sweep generator, how to use
Allen p. 60, Apr 70
Sweep response curves for low-frequency i-f’s
Allen p. 56, Mar 71
Switch-off flasher (HN)
Thomas p. 64, Jul 71
Swr bridge
W8ZSH p. 55, Oct 71
Swr bridge and power meter, integrated
W6DOB p. 40, May 70
Swr bridge (HN)
W6STK p. 66, May 72
Swr bridge readings (HN)
W6FPO p. 63, Aug 73
Swr meter
W6SIV p. 6, Oct 70
Swr meters, direct reading and expanded scale
WA4WDK p. 28, May 72
Correction
Moore p. 90, Dec 72
Time-domain reflectometry, experimenter’s approach to
W@PIA p. 22, May 71
Transconductance tester for fets
W6NBI p. 44, Sep 71
Transformer shorts
W6BLZ p. 36, Jul 68
Transformer and diode tester
ZL2AMJ p. 65, Nov 70
Transistor curve tracer
WA9LCX p. 52, Jul 73
Transistor tester
WA5NIL p. 48, Jul 68
Transistor tester for leakage and gain
W4BRS p. 68, May 68
Transmitter tuning unit for the blind
W9NTP p. 60, Jun 71
Trapezoidal monitor scope
VE3CUS p. 22, Dec 69
Troubleshooting around fets
Allen p. 42, Oct 68
Troubleshooting by resistance measurement
Allen p. 62, Nov 68
Troubleshooting transistor ham gear
Allen p. 64, Jul 68
Uhf tuner tester for tv sets (HN)
Schuler p. 73, Sep 69
Vacuum tubes, testing high-power (HN)
W2OLU p. 64, Mar 72
Vhf pre-scaler, improvements for
W6PBC p. 30, Oct 73
Voltmeter, improved transistor, part I
Meadover p. 74, Apr 68
Voltmeter, transistor, part II
Meadover p. 60, Jul 68
Vom/vtvm, added uses for (HN)
W7DI p. 67, Jan 73
Vtvm modification
W6PHH p. 51, Feb 69
Wavemeter, indicating
W6NIF p. 26, Dec 70
Short circuit
W72AP p. 72, Apr 71
Weak-signal source, stable, variable-output
K6JYO p. 36, Sep 71
WWV receiver, simple regenerative
WA5SNZ p. 42, Apr 73
WWV- WWVH, amateur applications for
W3FQJ p. 53, Jan 72
Zener tester, low-voltage (HN)
K3DPJ p. 72, Nov 69

miscellaneous technical

Alarm, wet basement (HN)
W2EMF p. 68, Apr 72
Amateur anemometer
W6GXXN p. 52, Jun 68
Amateur circuit in Space — a bibliography
W6OLO p. 60, Aug 68
Addenda
WA6NCT p. 77, Oct 68
Antennas and capture area
K6MIO p. 42, Nov 69
Bandpass filter design
K4KJ p. 36, Dec 73
Bandpass filters for 50 and 144 MHz, etched
W5KHT p. 6, Feb 71
Bandpass filters, single-pole
W6PHH p. 51, Sep 69
Basic electronic units
W6DXH p. 18, Oct 68
Bypassing, rf, at uhf
W6BBIH p. 50, Jan 72
Capacitors, oil-filled (HN)
W2OLU p. 66, Dec 72
Clock, 24-hour digital
K4ALS p. 51, Apr 70
Short circuit
K3SVK p. 76, Sep 70
Coil-winding data, vhf and uhf
K3SVK p. 6, Apr 71
Communications receivers, designing for strong-signal performance
Moore p. 6, Feb 73
Computer-aided circuit analysis
W1DTY p. 30, Aug 70
Converting vacuum tube equipment to solid-state
W2EEX p. 30, Aug 68
Converting wavelength to inches (HN)
WA6XNC p. 56, Jun 68
Current flow?, which way does
W2DXH p. 34, Jul 68
Digital mixer, introduction
W8BIFFM p. 42, Dec 73
Double-balanced mixers
W1DTY p. 48, Mar 68
Double-balanced modulator, broadband
W6NCT p. 8, Mar 70
Earth currents (HN)
W70UI p. 80, Apr 70
Effective radiated power (HN)
VE7CB p. 72, May 73
Ferrite beads
W5IJ p. 48, Oct 70

december 1973
Smith chart, how to use

W1DTY p. 16, Nov 70
Correction

W6DNS p. 67, Dec 71
Solar activity, aspects of

W6DNS p. 21, Jun 68
Speech clippers, rf, performance of

G6XN p. 26, Nov 72
Square roots, finding

K9DHG p. 67, Sep 73
Standing-wave ratios, importance of

W2HB p. 26, Jul 73
Stress analysis of antenna systems

W2FZJ p. 23, Oct 71
Tetrodes, external-anode

W6SAI p. 23, Jun 69
Thermoelectric power supplies

K1JE p. 48, Sep 68
Thermometer, electronic

VK3ZNV p. 30, Apr 70
Three-phase motors (HN)

W6PHI p. 79, Aug 68
Thyrists, introduction to

WA7KRE p. 54, Oct 70
Toroids, calculating inductance of

W9BFHC p. 50, Feb 72
Toroids, plug-in (HN)

K8EEG p. 60, Jan 72
Transistor amplifiers, tabulated characteristics of

W5JJ p. 30, Mar 71
Tuning, Current-controlled

K2ZSQ p. 38, Jan 69
TV sweep tubes in linear service, full-blast operation of

W6SAI, W6OUV p. 9, Apr 68
Vacuum-tube amplifiers, tabulated characteristics of

W5JJ p. 30, Mar 71
Warning lights, increasing reliability of

W3NK p. 40, Feb 70
Wind direction indicator, digital

W6GAX p. 14, Sep 68
Y parameters, using in rf amplifier design

WA2TGC p. 46, Jul 72

operating

Beam antenna headings

W6FFC p. 64, Apr 71
Code practice stations (letter)

W64LXJ p. 75, Dec 72
Code practice — the rf way

WA4NEQ p. 65, Aug 68
Code practice (HN)

W2OUX p. 74, May 73
Computers and ham radio

W3TOM p. 60, Mar 69
CW monitor

W2EEY p. 46, Aug 69
CW monitor and code-practice oscillator

K6RL p. 46, Apr 68
CW monitor, simple

WA9OHY p. 65, Jan 71
CW transceiver operation with transmit-receive offset

W1DAX p. 56, Sep 70
DXCC check list, simple

W2CNQ p. 55, Jun 73
Fluorescent light, portable (HN)

K8BYO p. 62, Oct 73
Great-circle charts (HN)

K6KA p. 62, Oct 73
How to be DX

W4NXD p. 58, Aug 68
Morse code, speed standards for

VE2ZK p. 68, Apr 73
Protective material, plastic (HN)

W6BKB p. 58, Dec 70
QLS return, statistics on

WB6IUM p. 60, Dec 68
Replays, instant (HN)

W6DNS p. 67, Feb 70
Sideband location (HN)

K6KA p. 62, Aug 73
Tuning with ssb gear

W2KD p. 40, Oct 70
Zulu time (HN)

K6KA p. 58, Mar 73

oscillators

AFSK oscillator, solid-state

WA4FGY p. 28, Oct 68
Blocking oscillators

W6GAX p. 45, Apr 69
Clock oscillator, TTL (HN)

W9ZTK p. 56, Dec 73
Crystal oscillator, frequency adjustment of

W9ZTK p. 42, Aug 72
Crystal oscillator, miniature

W6DOH p. 68, Dec 68
Crystal oscillators

W6GAX p. 33, Jul 69
Crystal switching (HN)

K6LZM p. 70, Mar 69
Crystal test oscillator and signal generator

K4EEU p. 46, Mar 73
Crystals, overtone (HN)

G8ABR p. 72, Aug 72
Local oscillator, phase locked

YESFP p. 6, Mar 71
Monitoring oscillator

W2JO p. 36, Dec 72
Multivibrator, crystal-controlled

WM2MQY p. 65, Jul 71
Oscillator, audio, IC

W6GAX p. 50, Feb 73
Oscillator, electronic keyer

WA6JMJ p. 44, Jun 70
Oscillator, Franklin (HN)

W6J p. 61, Jan 72
Oscillator, frequency measuring

W6IEL p. 16, Apr 72
Oscillator-monitor, audio

WA1JSN p. 48, Sep 70
Oscillator, phase-locked

YESFP p. 6, Mar 71
Oscillator, two-tone, for ssb testing

W6GAX p. 11, Apr 72
Oscillators (HN)

W1DTY p. 68, Nov 69
Oscillators, cure for cranky (HN)

W8YFB p. 55, Dec 70
Oscillators, repairing

Allen p. 69, Mar 70
Oscillators, resistance-capacitance

W6GAX p. 18, Jul 72
Oscillators, ssb

Belt p. 26, Jun 68
Overtone oscillator (HN)

W5USQ p. 77, Oct 68
Quartz crystals (letter)

WB2EGZ p. 74, Dec 72
Vco, crystal-controlled

WB5IOM p. 58, Oct 69
Vco buffer amplifier (HN)

W3QBO p. 66, Jul 71
Vfo, digital readout

W8BIFM p. 14, Jan 73
Vfo for solid-state transmitters

W3QBO p. 36, Aug 70
Vfo, high stability

W8YFB p. 14, Mar 69
Vfo, high-stability, vhf

W2HCD p. 27, Jan 72
Vfo, multiband fet

K8EEG p. 39, Jul 72
Vfo, stable

K4BGF p. 8, Dec 71
power supplies

Ac power supply, regulated, for mobile fm equipment
W2MP

Arc suppression networks (HN)
WA5EK

Current limiting (HN)
W2LPQ

Current limiting (letter)
K5MKO

Diodes for power supplies, choosing
W6BLZ

Diode surge protection (HN)
WA7LUJ

Added note
Dual-voltage power supply (HN)
W1OOP

Short circuit
Dual-voltage power supply (HN)
W6JL

High-power trouble shooting
Allen

IC power (HN)
W3KBM

IC regulated power supply
W2FBW

IC regulated power supply
W9SEK

IC regulated power supply for ICs
W6GXL

Short circuit
Klystrons, reflex power for (HN)
W6BPK

Line transient protection (HN)
W1DTY

Load protection, scr (HN)
W5OZ

Low-value voltage source (HN)
WA5EK

Low-voltage supply with short-circuit
Protection
WB2EGZ

Low-voltage supply (HN)
WB2EGZ

Meter safety (HN)
W6VFR

Mobile power supplies, troubleshooting
Allen

Mobile power supply (HN)
WN8DJV

Mobile supply, low-cost (HN)
W4EG

Motorola Dispatcher, converting to 12 volts
W66HU

Operational power supply
WA2IKL

Pilot-lamp life (HN)
W2OLU

Polarity inverter, medium current
Laughlin

Power supplies for single sideband
Belt

Power-supply hum (HN)
W8YFB

Power supply, improved (HN)
W4ATE

Power supply, precision
W7SK

Power supply protection for your solid-state circuits
W5JJ

Protection for solid-state power supplies (HN)
W3NK

Rectifier, half-wave, improved
Bailey

Regulated 5-volt supply (HN)
W6UNF

SCR-regulated power supplies
W4GOC

Step-start circuit, high-voltage (HN)
W6PF

Survey of solid-state power supplies
W6GKN

Short circuit
Thermoelectric power supplies
K1AJE

Transmitters, high-voltage, repairing
W6NIF

Transformer shorts
W6BLZ

Transistors, miniature (HN)
W4ATE

Transistors, reducing
W5IJ

Vibrator replacement, solid-state (HN)
W6KAP

Voltage regulators, IC
W7FLC

Voltage-regulator ICs, three-terminal
W6SEMI

Zener diodes (HN)
K3DPJ

propagation

Echoes, long delay
WB6KAP

Ionospheric E-layer
WB6KAP

Ionospheric science, short history
WB6KAP

Long-distance high frequency communications
WB6KAP

Maximum usable frequency, predicting
WB6KAP

Quiet sun, the
WB6KAP

Scatter-mode propagation, frequency synchronization for
K2QVS

Sunspots numbers
WB6KAP

Sunspots numbers, smoothed
WB6KAP

Sunspots and solar activity
WB6KAP

Tropospheric-duct vhf communications
WB6KAP

6-meter sporadic-E openings, predicting
WA9RAQ

receivers and converters

general

Antenna impedance transformer for receivers (HN)
W6NIF

Antenna tuner, miniature receiver (HN)
WA7KRE

Anti-QRM methods
W3FQJ

Audio agc amplifier
W6SNZ

Audio agc principles and practice
W6SNZ
Audio amplifier and squelch circuit
W6AJF p. 36, Aug 68
Audio filter for CW, tunable
WA1JSM p. 34, Aug 70
Audio filter-frequency translator for CW
reception
W2EEY p. 24, Jun 70
Audio filter mod (HN)
K6H1U p. 60, Jan 72
Audio filter, simple
W4NVK p. 44, Oct 70
Audio-filters, inexpensive
W8YFB p. 24, Aug 72
Audio filter, tunable peak-notch
W2EEY p. 22, Mar 70
Audio filter, variable bandpass
W3AXE p. 36, Apr 70
Audio module, complete
K4QHC p. 18, Jun 73
Batteries, how to select for portable
equipment
W5GAIK p. 40, Aug 73
Calibrator crystals (HN)
K6KA p. 66, Nov 71
Calibrator, plug-in frequency
K6KA p. 22, Mar 69
Calibrator, simple frequency-divider
using mos ICs
W5GQMN p. 30, Aug 69
Communications receivers, designing
for strong-signal performance
Moore p. 6, Feb 73
Converting a vacuum-tube receiver to
solid-state
W10OP p. 26, Feb 69
Counter dials, electronic
K5KA p. 44, Sep 70
CW filter, adding (HN)
W2OLUX p. 66, Sep 73
CW monitor, simple
WA9OHR p. 65, Jan 71
CW processor for communications
receivers
W6GVR p. 17, Oct 71
CW reception, noise reduction for
W2ELV p. 52, Sep 73
CW selectivity with crystal bandpassing
W2EEY p. 52, Jun 69
CW transceiver operation with transmit-receive
offset
W1DAX p. 56, Sep 70
Detector, reciprocating
W15N p. 32, Mar 72
Detector, superregenerative, optimizing
Ring p. 32, Jul 72
Detectors, ssb
Belt p. 22, Nov 68
Diversity receiving system
W2EEY p. 12, Dec 71
Filter, vari-Q
W15N p. 62, Sep 73
Frequency calibrator, how to design
W3AXE p. 54, Jul 71
Frequency calibrator, receiver
W5QUS p. 28, Dec 71
Frequency measurement of received
signals
W4AAD p. 38, Oct 73
Frequency spotter, general coverage
W5JJ p. 36, Nov 70
Frequency standard (HN)
WA7JIK p. 69, Sep 72
Hang agc circuit for ssb and CW
W1ERJ p. 50, Sep 72
1-f cathode jack
W6PH p. 28, Sep 68
1-f system, multimode
WA2IKL p. 39, Sep 71
Image suppression (HN)
W6NIF p. 68, Dec 72
Intelligibility of communications receivers,
improving
WASRAQ p. 53, Aug 70
Interference, electric fence
K6KA p. 68, Jul 72
Interference, rf
W1DYN p. 12, Dec 70
Local oscillator, phase-locked
VE5FP p. 6, Mar 71
Noise blanker
K4DHC p. 38, Feb 73
Noise blanker, hot-carrier diode
W4KAI p. 16, Oct 69
Noise blanker, IC
W2EEY p. 52, May 69
Noise figure, the real meaning of
K5MIO p. 26, Mar 63
Panoramic reception, simple
W2EEY p. 14, Oct 68
Phase-shift networks, design criteria
G3NRW p. 34, Jun 70
Product detector, hot-carrier diode
VE3GFN p. 12, Oct 69
Radio-direction finder
W6JTT p. 38, Mar 70
Radio-frequency interference
W4FLW p. 30, Mar 73
Radiotelegraph translator and
transcriber
W7CUU, K7KFA p. 8, Nov 71
Eliminating the matrix
K6HAP p. 60, May 72
Receiver impedance matching (HN)
W2ZFN p. 79, Aug 68
Receiving RTTY, automatic frequency
control for
W6NPS p. 50, Sep 71
S-meter readings (HN)
W1DYN p. 56, Jun 68
Spectrum analyzer, four channel
W9IA p. 6, Oct 72
Squelch, audio-actuated
K4MOG p. 52, Apr 72
Ssb signals, monitoring
W6VFR p. 36, Mar 72
Superregenerative detector, optimizing
Ring p. 32, Jul 72
Superregenerative receiver, improved
JA1BH p. 48, Dec 70
Threshold-gate/limiter for CW reception
W2ELV p. 46, Jan 72
Added notes (letter)
W2ELV p. 59, May 72
Weak signal reception in CW receivers
ZS6BT p. 44, Nov 71

high-frequency receivers

Bandpass tuning, electronic, in the
Drake R-4C
Hornet p. 58, Oct 73
BC-603 tank receiver, updating the
WA6IJK p. 52, May 68
BC-1206 for 7 MHz, converted
W4FIN p. 30, Oct 70
Collins 75A4 hints (HN)
W6VFR p. 68, Apr 72
Collins 75A-4 modifications (HN)
W4SD p. 67, Jan 71
Communications receiver for 80
meters, IC
VE3ELP p. 6, Jul 71
Communications receiver, micropower
W89FH p. 30, Jun 73
Short circuit
W15N p. 58, Dec 73
Companion receiver, all-mode
W15N p. 18, Mar 73
Converter, hf, solid-state
VE3GFN p. 32, Feb 72
Direct-conversion receivers
W3FQJ p. 59, Nov 71
Direct-conversion receivers, improved
selectivity
K6BIJ p. 34, Apr 72
ESSA weather receiver
W6GKN p. 36, May 68
Fet converter, bandswitching, for
40, 20, 15 and 10 (VE3GFN) p. 6, Jul 68
postscript p. 68, May 69
Fet converter for 10 to 40 meters, second-
generation
VE3GFN p. 28, Jan 70
Short circuit p. 79, Jun 70
Frequency synthesizer for the Drake R36
WSNBI p. 6, Aug 72
Gonset converter, solid-state modification of
Schuler p. 58, Sep 69
Hammarlund HQ215, adding 160-meter
coverage
W2GHK p. 32, Jan 72
Heath SB-650 frequency display, using
with other receivers
K2BYM p. 40, Jun 73
Incremental tuning to your
transceiver, adding
VE3GFN p. 66, Feb 71
Monitoring oscillator
W2JIO p. 36, Dec 72
Outboard receiver with a transceiver
WIDTY p. 12, Sep 68
Outboard receiver with the SB-100,
using an (HN)
K4GMR p. 68, Feb 70
Overload response in the Collins 76A-4
receiver, improving
W6ZO p. 42, Apr 70
Short circuit p. 76, Sep 70
Phasing-type ssb receiver
W4QJK p. 6, Aug 73
Short circuit p. 58, Dec 73
Preampilifier, emitter-tuned, 21 MHz
WA5SNZ p. 20, Apr 72
Preampilifier, low-noise high-gain transistor
W2EYE p. 66, Feb 69
Preselector, general-coverage (HN)
W50ZF p. 75, Oct 70
QSer, solid-state
WSTP p. 20, Aug 69
Receiver, communications, five band
KE6DX p. 6, Jun 72
Receiver incremental tuning for the
Swan 350 (HN)
K1XXA p. 64, Jul 71
Receiver, reciprocating detector
WISNN p. 44, Nov 72
Correction (letter) p. 77, Dec 72
Receiver, simple WWV (HN)
WA3JBN p. 68, Jul 70
Short circuit p. 72, Dec 70
Receiver, simple WWV (HN)
WA3JBN p. 55, Dec 70
Receiver, versatile solid-state
W1PLJ p. 10, Jul 70
Receiving RTTY with Heath SB receivers (HN)
K9HWW p. 64, Oct 71
RF amplifiers, selective
K6BJ p. 58, Feb 72
Regenerative detectors and a wideband
amplifier for experimenters
W8YF p. 61, Mar 70
RTTY monitor receiver
K4EEU p. 27, Dec 72
RTTY receiver-demodulator for net
operation
VE7BRK p. 42, Feb 73
RTTY with SB-300
W2ARZ p. 76, Jul 68
Swan 350 CW monitor (HN)
KIXA p. 63, Jun 72
Transceiver selectivity improved (HN)
VE3BWD p. 74, Oct 70
Tuner overload, eliminating (HN)
VE3GFN p. 66, Jan 73
Two-band novice superhet
Thorpe p. 66, Aug 68

Weather receiver, low-frequency
W6GKN p. 36, Oct 68
WWV receiver, fixed-tuned
W6GKN p. 24, Nov 69
WWV receiver, regenerative
WA5SNZ p. 42, Apr 73
WWV-WWH, amateur applications for
W3FQJ p. 53, Jan 72
455-kHz info, transistorized
W6BLZ, K5GXR p. 12, Jul 68
160-meter receiver, simple
W6FPO p. 44, Nov 70
1.9 MHz receiver
W3TNO p. 6, Dec 69
28-MHz superregen receiver
K2ZQS p. 70, Nov 68

vhf receivers

and converters

Converters for six and two meters, mosfet
W82E EZ p. 41, Feb 71
Short circuit p. 96, Dec 71
Cooled preamplifier for vhf-uhf
WA2RDX p. 36, Jul 72
Fet converters for 50, 144, 220 and
432 MHz
W6AJF p. 20, Mar 68
Filter-preamplifiers for 50 and 144 MHz
etched
W5KNT p. 6, Feb 71
Fm channel scanner
W2FPP p. 29, Aug 71
Fm communications receiver, modular
K8AUH p. 32, Jun 69
Correction p. 71, Jan 70
Fm receiver frequency control (letter)
W3AFN p. 65, Apr 71
Fm receiver performance, comparison of
VE7ABK p. 68, Aug 72
Fm receiver, tunable vhf
K8AUH p. 34, Nov 71
Fm receiver, uhf
WA2GCF p. 6, Nov 72
Fm repeaters, receiving system
degradation in
K5ZBA p. 36, May 69
HW-17A, perking up (HN)
W8EGZ p. 70, Aug 70
Interdigital preamplifier and comb-line
bandpass filter for vhf and uhf
W5KHT p. 6, Aug 70
Interference, scanning receiver (HN)
K2YAH p. 70, Sep 72
Overload problems with vhf converters,
solving
W1OOP p. 53, Jan 73
Receiver, modular two-meter fm
WA2GFB p. 42, Feb 72
Six-meter converter, improved
K1BQT p. 50, Aug 70
Six-meter mosfet converter
W82E EZ p. 22, Jun 68
Short circuit p. 34, Aug 68
Ssb mini-tuner
K1BQT p. 16, Oct 70
Two-meter converter, 1.5 dB NF
WA6SXC p. 14, Jul 68
Two-meter mosfet converter
W82E EZ neutralizing
p. 22, Aug 68
Two-meter preamp, MM5000
W4KAE p. 49, Oct 68
Vhf converter performance, optimizing (HN)
K2FQW p. 18, Jul 68
Vhf fm receiver (letter)
K8HQ p. 76, May 73
Vhf receiver scanner
K2LZG p. 22, Feb 73
Vhf superregenerative receiver, low-voltage
W4SSNZ
50-MHz preamplifier, improved
WA2GCF
144-MHz converter (HN)
K6QVY
144-MHz converter (letter)
W9LER
144 MHz converter, hot-carrier diode
KSCU
144-MHz preamplifier, modular
W6UOV
144 MHz converters, choosing fets for (HN)
K6JYO
144-MHz preamp, super (HN)
K6HCP
144-MHz preamplifier, Improved
WA2GCF
Added notes
p. 73, Jul 72
220-MHz mosfet converter
WB2EGZ
Short circuit
p. 76, Jul 69
432-MHz converter, low-noise
K6JC
432-MHz fct converter, low noise
WA6CLC
432 MHz preamp (HN)
W1DTY
1296-MHz converter, solid-state
VK4ZT
1296-MHz preamplifier, low-noise
WA2VTR
Added note (letter)
p. 65, Jan 72
2340-MHz converter, solid-state
K2JNG, WA2LTM, WA2VTR
2304-MHz preamplifier, solid-state
WA2VTR
p. 20, Aug 72

test and troubleshooting
Converter, mosfet, for receiver instrumentation
WA9ZMT
Receiver alignment
Allen p. 62, Jan 71
RF and IF amplifiers, troubleshooting
Allen p. 64, Jun 68
Signal injection in ham receivers
Allen p. 60, Sep 70
Signal tracing in ham receivers
Allen p. 72, May 68
Small-signal source for 144 and 432 MHz
K6JC p. 58, Mar 70

RTTY
AFSK generator, crystal-controlled
K7BV
AFSK generator, crystal-controlled
W6LLO
AFSK oscillators, solid-state
WA4FGY
Audio-shift keyer, continuous-phase
WE6GTP
Automatic frequency control for receiving RTTY
W5NPO
p. 50, Sep 71
Added note (letter)
p. 66, Jan 72
Autostart, digital RTTY
K4EEU
p. 6, Jun 73
Autostart monitor receiver
K4EED
p. 37, Dec 72
CRT intensifier for RTTY
K4VFA
Crystal test oscillator and signal generator
K4EEU
p. 46, Mar 73
Electronic speed conversion for RTTY teleprinters
WA2UYJ
p. 36, Dec 71
Frequency-shift meter, RTTY
VK3ZNV
p. 53, Jun 70
Line feed, automatic for RTTY
K4EEU p. 20, Jan 73
Mainline ST-5 RTTY demodulator
W6FFC
p. 14, Sep 70
K6FOO
Short circuit
p. 72, Dec 70
Mainline ST-6 RTTY demodulator
W6FFC
p. 6, Jan 71
Short circuit
p. 72, Apr 71
Mainline ST-6 RTTY demodulator, more uses for (letter)
W6FFC
p. 69, Jul 71
Mainline ST-6 RTTY demodulator, troubleshooting
W6FFC
p. 50, Feb 71
Monitor scope, phase-shift
W3CIX
p. 36, Aug 72
Monitor scope, RTTY, solid-state
WB2MPZ
p. 33, Oct 71
Phase-locked loop AFSK generator
K7ZOF
p. 27, Mar 73
Phase-locked loop RTTY terminal unit
W5FQM
p. 8, Jan 72
Correction
p. 60, May 72
Precise tuning with ssb gear
W92KD
p. 40, Oct 70
Printed circuit for RTTY speed converter
W7PQG
p. 54, Oct 72
Receiver-demodulator for RTTY net operation
WE7BKR
p. 42, Feb 73
Ribbon re-inkers
W6FFC
p. 30, Jun 72
RTTY converter, miniature IC
K9MRL
p. 40, May 69
Short circuit
p. 80, Aug 69
RTTY distortion: causes and cures
WB6JMP
p. 36, Sep 72
RTTY for the blind (letter)
WE7BKR
p. 76, Aug 72
RTTY, introduction to
K6JFP
p. 38, Jun 69
RTTY line-length indicator
WA2VTR
p. 6, Nov 70
RTTY reception with Heath SB receivers (HN)
K3HGW
p. 64, Oct 71
RTTY with the SB-300
W2ARZ
p. 76, Jul 68
Signal Generator, RTTY
W7ZTC
p. 23, Mar 71
Short circuit
p. 96, Dec 71
ST-5 autostart and antispace
K2YAH
p. 46, Dec 72
Swan 350 and 400 equipment on RTTY (HN)
WB2MHO
p. 67, Aug 69
Synchrophase afsk oscillator
W6FOO
p. 30, Dec 70
Synchrophase RTTY reception
W6FOO
p. 38, Nov 70
Teleprinters, new look in
WA6SXC
p. 66, Aug 72
Terminal unit, phase-locked loop
W4FQM
p. 8, Jan 72
Correction
p. 60, May 72
Terminal unit, variable-shift RTTY
W3VF
p. 16, Nov 73
Test generator, RTTY (HN)
W3EAG
p. 67, Jan 73
Test generator, RTTY (HN)
W3EAG
p. 59, Mar 73

semiconductors
Antenna switch for meters, solid-state
K2ZSQ
p. 48, May 69
Avalanche transistor circuits
W4WV
p. 22, Dec 70
Beta master, the
K8ERV
p. 18, Aug 68

december 1973

Minutiner, ssb
K1BQT p. 16, Oct 70
Modifying the Heath SB-200 amplifier
for the new 8873 zero-bias triode
W6UOV p. 32, Jan 71
Oscillators, ssb
Belt p. 26, Jun 68
Phase-shift networks, design criteria for
G3NRW p. 34, Jun 70
Phase-shift ssb generators
Belt p. 20, Jul 68
Power supplies for ssb
Belt p. 38, Feb 69
Precise tuning with ssb gear
W0KD p. 40, Oct 70
Pre-emphasis for ssb transmitters
OH2CD p. 38, Feb 72
Rating tubes for linear amplifier service
W6UOW, W6SAI p. 50, Mar 71
Rf clipper for the Collins S-line
K6JYO p. 18, Aug 71
Letter
RF speech processor, ssb
W2MB p. 18, Sep 73
Sideband location (HN)
K6KA p. 62, Aug 73
Speech clipper, IC
K6HTM p. 18, Feb 73
Added notes (letter)
W6XN p. 64, Oct 73
Speech clipper, rf, construction
G6XN p. 12, Dec 72
Speech clippers, rf, performance of
G6XN p. 25, Nov 72
Added comments (letter)
W6XN p. 58, Aug 73
Speech clipping
K6KA p. 24, Apr 69
Speech clipping in single-sideband
equipment
K1YZW p. 22, Feb 71
Speech processing
W1DTY p. 60, Jun 68
Speech processor for ssb
K6PHT p. 22, Apr 70
Speech process, logarithmic
W43FY p. 38, Jan 70
Speech processor, ssb
VK9GN p. 31, Dec 71
Solid-state circuits for ssb
K6EAA p. 24, Apr 70
Speech exciter, 5-band
K1UKX p. 10, Mar 68
SSb generator, phasing-type
W7CMJ p. 22, Apr 73
Added comments (letter)
W6NIF p. 65, Nov 73
SSb generator, 9-MHz
W9KIT p. 6, Dec 70
SSb transceiver using LM373 IC
WSBAI p. 32, Nov 73
Switching and linear amplification
W3FQJ p. 61, Oct 71
Transceiver, single-band ssb
W1DTY p. 8, Jun 69
Transceiver, 3.5-MHz ssb
VE6EKP p. 6, Mar 73
Transmitter alignment
Allen p. 62, Oct 69
Transmitting mixers, 6-2 meters
K2ISP p. 8, Apr 69
Transverter, 6-meter
K8DOC, K8TVP p. 44, Dec 68
Trapezoidal monitor scope
VE3CUS p. 22, Dec 69
Tuning up ssb transmitters
Allen p. 62, Nov 69
TV sweep tubes in linear service,
full-blast operation of
W6SAI, W6UOV p. 9, Apr 68
Two-tone oscillator for ssb testing
W6GKX p. 11, Apr 72
Vacuum tubes, using odd-ball types in
linear amplifier service
WSJJ p. 58, Sep 72
Vhf, uhf transverter, input source for (HN)
F6MK p. 69, Sep 70
Vox and mox systems for ssb
Belt p. 24, Oct 68
Vox, versatile
W9KIT p. 50, Jul 71
Short circuit
3-500Z in amateur service, the
W6SAI p. 56, Mar 68
144-MHz linear, 2kW
W6UOV, W6ZO, K6DC p. 26, Apr 70
144-MHz low-drive kilowatt linear
W6HNN p. 26, Jul 70
144-MHz transverter, the TR-144
K1RAK p. 24, Feb 72
432 MHz rf power amplifier
K6JC p. 40, Apr 70
432-MHz ssb converter
K6JC p. 48, Jan 70
Short circuit
K6JC p. 79, Jun 70
432-MHz ssb, practical approach to
WA2FSQ p. 6, Jun 71

television

Camera and monitor, sstv
VE3EGO, Watson p. 38, Apr 69
Color tv, slow-scan
W4UMF, WBBDQT p. 59, Dec 69
Computer, processing, sstv pictures
W4UMF p. 30, Jul 70
Fast- to slow-scan conversion, tv
W3EFG, W3YZC p. 32, Jul 71
Slow-scan television
WA2EMC p. 52, Dec 69
Synch generator, sstv (letter)
W1JA p. 73, Apr 73
Television DX
WA9RAQ p. 30, Aug 73
Test generator, sstv
K4EU p. 6, Jul 73

transmitters and power amplifiers

general

Amplitude modulation, a different approach
WA5SNZ p. 50, Feb 70
Batteries, how to select for portable
equipment
WAGA1K p. 40, Aug 73
Blower maintenance (HN)
W6NIF p. 71, Feb 71
Blower-to-chassis adapter (HN)
K6JYO p. 73, Feb 71
Converting a-m power amplifiers to
ssb service
WA4GNYW p. 55, Sep 68
Efficiency of linear power amplifiers,
how to compare
WSJJ p. 64, Jul 73
Filters, ssb (HN)
K6KA p. 63, Nov 73
Frequency multipliers
W6GKN p. 6, Aug 71
Frequency translation in ssb
Transmitters
K6KA p. 22, Sep 68
Grid-current measurement in
grounded-grid amplifiers
W6SAI p. 64, Aug 68
Intermittent voice operation of power
tubes
W6SAI p. 24, Jan 71
Key and vox clicks (HN)
K6KA p. 74, Aug 72

december 1973
Grounded-grid 2

ART-13, Modifying for noiseless CW

Heath Frequency synthesizer, high frequency

Field-effect transistor transmitters

Low-frequency transmitter, solid-state

Linear amplifier, five-band
W7IV

Linear amplifier, five-band conduction-cooled
W9KIT

Linear amplifier performance, improving
W4PSJ

Linear, five-band hf
W7DI

Linear for 80-10 meters, high-power
W6HNH

Short circuit
W6DI

Linear amplifiers, three bands with two (HN)
W7QZ

Low-frequency transmitter, solid-state
W4KAE

Modifying the Heath SB-200 amplifier for the new 8873 zero-bias triode
W6NUS

Phase-locked loop, 28 MHz
W1KNI

Ssb exciter, 5-band
K1UUK

Ssb transceiver using LM373 IC
W5BAA

Tank circuit, inductively-tuned high-frequency
W6SAI

Transceiver, single-band ssb
W1DTH

Transceiver, 3.5-MHz ssb
W6ABX

Transmitter, low-power
W6NIF

Transmitters, QRP
W7OE

Transmitter, universal flea-power
K2ZSQ

Transmitter, high-level hf
K4ERO

3-500Z in amateur service, the
W6SAI

14-MHz vfo transmitter, solid-state
W3QBO

28-MHz transmitter, solid-state
K2ZSQ

40-meters, transistor rig for
W6BLZ, K5GXR

vhf and uhf

Converting the Swan 120 to two meters
K6REL

Fm repeater transmitter, improving
W6GDO

Linear for 2 meters
W4KAE

Linear for 1296 MHz, high-power
W61OM

Phase-locked loop, 50 MHz
W1KNI

Transistors for vhf transmitters (HN)
W1Q0P

Transmitter, flea power
K2ZSQ

Transmitting mixers for 6 and 2 meters
K2ISP

Transmitter for 6 meters
W9AiGU

Tunnel diode phone rig, 6-meter (HN)
K2ZSQ

Vhf linear, 2kW, design data for
W6NUS

50-MHz linear amplifier
K1RAK

50-MHz linear amplifier, 2-kW
K6NUS

50-MHz transmitter, solid-state
W2EGZ

50-MHz transverter
K1RAK
test and troubleshooting

Aligning vhf transmitters
Allen p. 58, Sep 68

Ssb transmitter alignment
Allen p. 62, Oct 69

Transverter, 6-meter
KBDQ, K8TV
p. 44, Dec 68

Tuning up ssb transmitters
Allen p. 62, Nov 69

troubleshooting

Analyzing wrong dc voltages
Allen p. 54, Feb 69

Mobile power supplies, troubleshooting
Allen p. 56, Jun 70

Ohmmeter troubleshooting
Allen p. 52, Jan 69

Oscillators, repairing
Allen p. 69, Mar 70

Oscilloscope, putting to work
Allen p. 64, Sep 69

Oscilloscope, troubleshooting amateur gear with
Allen p. 52, Aug 69

Rf and i-f amplifiers, troubleshooting
Allen p. 60, Sep 70

Speech amplifiers, curing distortion
Allen p. 42, Aug 70

Ssb transmitter alignment
Allen p. 62, Oct 69

Sweep generator, how to use
Allen p. 60, Apr 70

Transistor testing
Allen p. 62, Jul 70

Tuning up ssb transmitters
Allen p. 62, Nov 69

vhf and microwave general

Amateur vhf fm operation
W6AYZ p. 36, Jun 68

A-m modulation monitor (HN)
K7UNL p. 67, Jul 71

APY-6 transponder, notes on
W6OSA p. 32, Apr 68

Band change from six to two meters, quick
K2QYQ p. 64, Feb 70

Bandpass filters, single-pole
W6PHF p. 51, Sep 69

Bandpass filters, 25 to 2500 MHz
K6RL p. 46, Sep 69

Bypassing, rf, at vhf
W66BH p. 50, Jan 72

Cavity filter, 144-MHz
W1SNN p. 22, Dec 73

Coaxial filter, vhf
W6SAI p. 36, Aug 71

Coaxial-line resonators (HN)
WA7KRE p. 82, Apr 70

Coil-winding data, practical vhf and uhf
W6AJ p. 6, Apr 71

Crystal mount, untuned
W1D1Y p. 68, Jun 68

Effective radiated power (HN)
VE7CB p. 72, May 73

Frequency multipliers
W6GXN p. 6, May 73

Frequency multipliers, transistor
W6AJF p. 49, Jul 70

Frequency synchronization for scatter-mode propagation
K2OVS p. 26, Sep 71

Gridded tubes, vhf/uhf effects in
W6UOV p. 8, Jan 69

Harmonic generator (HN)
W5DQ p. 76, Oct 70

Impedance bridge (HN)
W59ZK p. 67, Feb 70

Indicator, sensitive rf
W8DIN p. 38, Apr 73

Lunar-path nomograph
WA6NCT p. 28, Oct 70

Microwave communications, amateur standards for
K6HI p. 54, Sep 69

Microwave hybrids and couplers for amateur use
W2CTK p. 57, Jul 70

Short circuit
W2CTK p. 72, Dec 70

Microwaves, getting started in
Roubal p. 53, Jun 72

Microwaves, introduction to
W1C6Y p. 20, Jan 72

Moonbounce to Australia
W1D1Y p. 85, Apr 68

Noise figure, meaning of
K5MIO p. 26, Mar 69

Noise figure measurements, vhf
W6B6MT p. 36, Jun 72

Noise generators, using (HN)
K2ZSO p. 79, Aug 68

Phase-locked loop, tunable 50 MHz
W1KNI p. 40, Jan 73

Power dividers and hybrids
W1DAX p. 30, Aug 72

Proportional temperature control for crystal
ovens
W65FP p. 44, Jan 70

Reflex klystrons, pogo stick for (HN)
W6BPK p. 71, Jul 73

December 1973
receivers and converters

Cooled preamplifier for vhf-uhf reception
WA0RDX p. 36, Jul 72

Fet converters for 50, 144, 220 and 432 MHz
W6AJF p. 20, Mar 68

Interdigital preamplifier and comb-line bandpass filter for vhf and uhf
W6KHT p. 6, Aug 70

Overload problems with vhf converters, solving
W1OOP p. 53, Jan 73

Receiver scanner, vhf
K2LZG p. 22, Feb 73

Receiver, superregenerative, for vhf
WA5SNZ p. 22, Jul 73

Signal detection and communication in the presence of white noise
WB6ION p. 16, Feb 69

Signal generator for two and six meters
WA801K p. 54, Nov 69

Six-meter mosfet converter
WB2EGZ p. 22, Jun 68

Short circuit
W0WEG p. 34, Aug 68

Two-meter converter, 1.5-dB NF
WA6SXC p. 14, Jul 68

Two-meter preamp, MM5000
W4KA E p. 49, Oct 68

Vhf converter performance, optimizing (HN)
K2ZSQ p. 18, Jul 68

Weak-signal source, stable, variable output
K6JO p. 36, Sep 71

50-MHz deluxe mosfet converter
WB2EGZ p. 41, Feb 71

50-MHz etched-inductance bandpass filters
W5KHT p. 6, Feb 71

50-MHz preamplifier, improved
WA2GCF p. 46, Jan 73

144-MHz converter (HN)
K2VQY p. 71, Aug 70

144-MHz converter (letter)
K2VQY p. 71, Oct 71

144-MHz converters, choosing fets (HN)
K6JO p. 70, Aug 69

144-MHz deluxe mosfet converter
WB2EGZ p. 41, Feb 71

Short circuit
W6QDY p. 96, Dec 71

144-MHz etched-inductance bandpass filters and filter-preamplifiers
W5KHT p. 6, Feb 71

144-MHz fm receiver
W6SEK p. 22, Sep 70

144-MHz fm receiver
WA2GBC p. 42, Feb 72

Added notes
WA2GBC p. 73, Jul 72

144-MHz fm receiver
WA2GCF p. 6, Nov 72

144-MHz preamplifier, improved
WA2GCF p. 25, Mar 72

144-MHz preamp, super (HN)
K6HCP p. 72, Oct 69

144- and 432-MHz small-signal source
K6JC p. 58, Mar 70

220-MHz mosfet converter
WB2EGZ p. 28, Jan 69

Short circuit
K6JC p. 70, Jun 69

432-MHz converter, low-noise
K6JC p. 34, Oct 70
432-MHz fet converter, low-noise
W6GXC
p. 18, May 68

432-MHz fet preamp (HN)
W1DQY
p. 66, Aug 69

432- and 1296-MHz signal source
K6RIL
p. 20, Sep 68

1296-MHz converter, solid state
VK4ZT
p. 6, Nov 70

1296-MHz noise generator
W3BSV
p. 46, Aug 73

1296-MHz preamplifier, low-noise
transistor
WA2VTR
p. 50, Jun 71

Added note (letter)
p. 65, Jan 72

2304-MHz converter, solid-state
K2JNG, WA2LTM, WA2VTR
p. 16, Mar 72

2304-MHz preamplifier, solid-state
WA2VTR
p. 20, Aug 72

transmitters

Aligning vhf transmitters
Allen
p. 58, Sep 68

Converting the Swan 120 to two meters
K6RIL
p. 8, May 68

Lighthouse tubes for uhf
W6UOV
p. 27, Jun 69

Pi networks, series-tuned
W2EGH
p. 42, Oct 71

Six-meter transmitter, solid-state
WB2EGZ
p. 6, Oct 68

Six-meter transverter
K8DOC, K8TVP
p. 44, Dec 68

Six-meter tunnel diode phone rig (HN)
K2ZSQ
p. 74, Jul 68

Ssb input source for vhf, uhf transverters (HN)
FBMK
p. 69, Sep 70

Transistors for vhf transmitters (HN)
W100P
p. 74, Sep 69

Vhf linear, 2 kW, design data for
W6UOV
p. 7, Mar 69

2C39, water cooling
K6MYC
p. 30, Jun 69

50-MHz customized transverter
K1RAK
p. 12, Mar 71

50-MHz 2 kW linear amplifier
W6UOV
p. 16, Feb 71

50-MHz linear amplifier
W1RAK
p. 38, Nov 71

50-MHz transverter
WA9IGU
p. 44, Jul 69

50- and 144-MHz heterodyne transmitting
mixers
K2ISP
p. 8, Apr 69

50/144-MHz multimode transmitter
K2ISP
p. 28, Sep 70

144-MHz fm transmitter
W6AJF
p. 14, Jul 71

144-MHz fm transmitter
W9SEK
p. 6, Apr 72

144-MHz fm transmitter, Sonobaby
WA2UZO
p. 8, Oct 72

Crystal deck for Sonobaby
p. 26, Oct 72

144-MHz linear
W4KAE
p. 47, Jan 69

144-MHz low-drive kilowatt linear
W6HN
p. 26, Jul 70

144-MHz phase-modulated transmisson
W6AJF
p. 18, Feb 70

144-MHz power amplifier, high
performance
W6UOV
p. 22, Aug 71

144-MHz power amplifiers, fm
W4GCG
p. 6, Apr 73

144-MHz power amplifier, 80-watt, solid-state
Hatchett
p. 6, Dec 73

144-MHz transceiver, a-m
K1AOB
p. 55, Dec 71

144-MHz transverter
K1RAK
p. 24, Feb 72

144-MHz two-kilowatt linear
W6UOV, W6ZO, K6DC
p. 26, Apr 70

144- and 432-MHz stripline amplifier/tripler
K2RW
p. 6, Feb 70

220-MHz exciter
W6DVJ
p. 50, Nov 71

220-MHz power amplifier
W6UO
p. 44, Dec 71

220-MHz rf power amplifier
W6DVJ
p. 44, Jan 71

220-MHz rf power amplifier, fm
K7JJE
p. 6, Sep 73

432-MHz amplifier, 2-kW
W6SAI, W6NLZ
p. 6, Sep 68

432-MHz exciter, solid-state
W100P
p. 38, Oct 69

432-MHz rf power amplifier
K6JC
p. 40, Apr 70

432-MHz ssb converter
K6JC
p. 40, Jan 70

Short circuit
p. 79, Jun 70

1296-MHz frequency tripler
K45UM, W4API
p. 40, Sep 69

1296-MHz linear, high-power
W66IOM
p. 6, Aug 68

Short circuit
p. 54, Nov 68

1296-MHz power amplifier
W2COH, W2CCY, W2OJ, W11MU
p. 43, Mar 70
Limit 15 inquiries per request.

December 1973

Please use before January 31, 1974

Tear off and mail to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME .. CALL
STREET ..
CITY ..
STATE ... ZIP

Advertisers Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-5 Magazine</td>
</tr>
<tr>
<td>ATV Research</td>
</tr>
<tr>
<td>Alarm Components</td>
</tr>
<tr>
<td>Amico Associates</td>
</tr>
<tr>
<td>Amtech</td>
</tr>
<tr>
<td>Andy Electronics</td>
</tr>
<tr>
<td>Antenna Mart</td>
</tr>
<tr>
<td>Apollo Products</td>
</tr>
<tr>
<td>Atlas Electronics</td>
</tr>
<tr>
<td>BC Electronics</td>
</tr>
<tr>
<td>Babylon Electronics</td>
</tr>
<tr>
<td>Barry Electronics</td>
</tr>
<tr>
<td>CFP Enterprises</td>
</tr>
<tr>
<td>Carville International Corp.</td>
</tr>
<tr>
<td>Communications Specialists</td>
</tr>
<tr>
<td>Curtis Electric Devices</td>
</tr>
<tr>
<td>Cush Craft</td>
</tr>
<tr>
<td>Data Engineering</td>
</tr>
<tr>
<td>Drake, Co. R. L.</td>
</tr>
<tr>
<td>Dynaco</td>
</tr>
<tr>
<td>Dynamic Electronics</td>
</tr>
<tr>
<td>E & L Instruments, Inc.</td>
</tr>
<tr>
<td>EMC Associates, Inc.</td>
</tr>
<tr>
<td>Ehrhorn Technological Operations, Inc.</td>
</tr>
<tr>
<td>Elma, Div. of Varian Assoc.</td>
</tr>
<tr>
<td>Electronic Distributors, Inc.</td>
</tr>
<tr>
<td>Epsilon Records</td>
</tr>
<tr>
<td>Ericsson Electronics</td>
</tr>
<tr>
<td>Exceltronix Research Labs</td>
</tr>
<tr>
<td>Fluke</td>
</tr>
<tr>
<td>G & G Radio Supply Co.</td>
</tr>
<tr>
<td>Gateway Electronics</td>
</tr>
<tr>
<td>Goldstein’s</td>
</tr>
<tr>
<td>Goodheart Co., Inc. R. E.</td>
</tr>
<tr>
<td>Gray Electronics</td>
</tr>
<tr>
<td>Great American Miniatures</td>
</tr>
<tr>
<td>H & L Associates</td>
</tr>
<tr>
<td>HAL Communications Corp.</td>
</tr>
<tr>
<td>Heath Company</td>
</tr>
<tr>
<td>Henry Radio Stores</td>
</tr>
<tr>
<td>Highmark Amateur Supply Co.</td>
</tr>
<tr>
<td>Hobby Industry</td>
</tr>
<tr>
<td>House of Dipoles</td>
</tr>
<tr>
<td>Hy-Gain Electronics Corp.</td>
</tr>
<tr>
<td>ICT, Mackay Marine</td>
</tr>
<tr>
<td>Icon</td>
</tr>
<tr>
<td>International Crystal Mfg. Co. Inc.</td>
</tr>
<tr>
<td>International Electronics Unlimited</td>
</tr>
<tr>
<td>Jan Crystals</td>
</tr>
<tr>
<td>Janel Labs</td>
</tr>
<tr>
<td>K. E. Electronics</td>
</tr>
<tr>
<td>KLM Electronics</td>
</tr>
<tr>
<td>KRPI Electronics Supermart, Inc.</td>
</tr>
<tr>
<td>Linear Systems, Inc.</td>
</tr>
<tr>
<td>Logic Newsletter</td>
</tr>
<tr>
<td>MFJ Enterprises</td>
</tr>
<tr>
<td>Mattic</td>
</tr>
<tr>
<td>McClaren</td>
</tr>
<tr>
<td>Meshna, John, Jr.</td>
</tr>
<tr>
<td>Mor-Gain, Inc.</td>
</tr>
<tr>
<td>Nurmi Electronic Supply</td>
</tr>
<tr>
<td>Olson Electronics</td>
</tr>
<tr>
<td>Onedia Electronic Mfg. Co., Inc.</td>
</tr>
<tr>
<td>PM Electronics</td>
</tr>
<tr>
<td>Palomar Engineers</td>
</tr>
<tr>
<td>Pemco</td>
</tr>
<tr>
<td>Poly Pak</td>
</tr>
<tr>
<td>Professional Electronics</td>
</tr>
<tr>
<td>RP Electronics</td>
</tr>
<tr>
<td>Racom</td>
</tr>
<tr>
<td>Radio Amateur Callbook</td>
</tr>
<tr>
<td>Regency Electronics, Inc.</td>
</tr>
<tr>
<td>SAROC</td>
</tr>
<tr>
<td>Savoy Electronics</td>
</tr>
<tr>
<td>Spectrum International</td>
</tr>
<tr>
<td>Standard Communication</td>
</tr>
<tr>
<td>Star-Tronics</td>
</tr>
<tr>
<td>Stroff-Friedman Co.</td>
</tr>
<tr>
<td>Swan Electronics</td>
</tr>
<tr>
<td>Teco Electronics</td>
</tr>
<tr>
<td>Telectron Corp.</td>
</tr>
<tr>
<td>Ten-Tec, Inc.</td>
</tr>
<tr>
<td>Tri-Ex Tower Corp.</td>
</tr>
<tr>
<td>Tristao Tower Co.</td>
</tr>
<tr>
<td>Tri-Tek, Inc.</td>
</tr>
<tr>
<td>Tropical Hamboree</td>
</tr>
<tr>
<td>VHF Engineering, Div. of British Elect. Corp.</td>
</tr>
<tr>
<td>Vanguard Labs</td>
</tr>
<tr>
<td>Vintage Radio</td>
</tr>
<tr>
<td>Weinschenker, M.</td>
</tr>
<tr>
<td>Wilson Electronics</td>
</tr>
<tr>
<td>Wolf, S.</td>
</tr>
<tr>
<td>World Radio</td>
</tr>
<tr>
<td>World QSL Bureau</td>
</tr>
<tr>
<td>Y & C Electronics</td>
</tr>
<tr>
<td>Yaasu Musen USA</td>
</tr>
</tbody>
</table>
INVERIER/CONVERTER:
INVERTER, 12 volt DC input, 115 volt AC output, Model 12-115 solid state power supply, 200 watts continuous........................... new, $59.95

SBE
SB-450 TSC, used with 10 watt, 2 meter transceiver to operate on 450 MHz.......................$195.00

BARRY HAS ANTENNAS
C.D. HAM "M" ROTATORS, new complete............ $99.95
C.D. HAM-M for 250 VAC in stock.................... $175.00
C.D. TR-44 ROTATORS, new (complete)................. $63.95
CABLE for Ham-M & TR-44 @ 14/efl. $35.95
CD AR-22R emplt. rotator for small beams............. $33.95
BN86 Balun by HyGain................................... $14.95
RG-8/A-U 100 ft. rolls, VHF connector PL-259 one end Type "N" (UG-21E/U) other end $12.50
RG-8/A - 65 feet with PL-259 connectors on each end..................... $9.50

Times Wire & Cable, T-4-50 (FM-8) 50 ohm lowest type RG-8 cable..................... 20/ft.

Columbia Superflex, RG-8/A-U 50 ohm high quality foil..................... 12/efl.

Coaxial Cable for VHF to RG-17 (Amplon 83-86) RG-17 plug to VHF female connector $6.95

BNC to RG-17 adapter UG-167C/U $7.95

B & W Vertical, 2000 ohm, front panel antenna, 2, 6, 10, 15 & 20 meters. Hang out your window. $24.95

Take along on your vocation $19.95

Cush-Craft Trick Stick, universal dipole. 2 to 10 meters, 1.5 dB gain at 146 MHz. $8.95

English deluxe balun, low power..................... $9.95

RINGO Mag 350 dB gain, 135-175 MHz............ $14.50

BBLT-144 Trunk Lip, 3.75 dB gain................. $34.95

Newtronics CGT-144 mobile 5.2 dB gain, $37.95

Quick Disconnect by Newtronics for CGT, etc. $10.95

GC-1 Gutter Clip by Newtronics...................... $1.25

2M MAGNETIC MOUNT w/RG58 & PL259 with 10 ft. RG 58 ready to go..................... $9.95

14AV/WB VERTICAL.. $55.00

18AV/WB VERTICAL.. $50.00

HY GAIN 2 METER, 15 ele. beam, demo..................... $35.00

TELEX
610-2 Deluxe Economy 2000 ohm headset with cushions... $9.95

EN-5 Stereo Headphones... $9.95

LITTLE LULU
6 Meter AM Transmitter with VFO 12 VDC/115 VAC Power Supply
Available factory wired or as parts
Write for details

Tube Headquarters, Diversified Stock, Heavy inventories of tubes, chinnys, sockets, etc.

572B .. $17.50

Barel New Stocks, Bogen, Electrovoice & University. Compact space, light weight.

CASH PAID . . . FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLES, Test Equipment, ETC. Write or call Now! Barry, W2LN1, We Buy! We ship all over the World.

Send for Green Sheet Supplement 23. Send 50¢ postage & handling (refund 1st order).
BARRY presents

CLEGG FM-27B

Total 146-148 MHz coverage without buying a crystal. 25w. out, fully synthesized. $479.95

Clegg FM-27B Regulated AC power supply $79.95

HALICRAFTERS

SR-160 Transceiver 80, 40, 20 meters write FPM-300 new, $950.00

TEMPO

2 Meter Linear Amplifiers, 502, 5-12 watts input, 35-55 watts output $105.00
802-B 1-21/2 w. input, 80-90 w. output $195.00
CL-146 2 Meter, 15 watts $299.00

BIRD 43 WATTMETER

$100.00

Bird 43 Slugs specify frequency and power
HF $35.00 each
VHF $32.00 each
Also 4350 80-10M dual scale 200w/2kw HamMate — $79.00

MARINE

Barry stocks and has fast availability Sonar, Pearce-Simpson, Andrea, SBE and Antenna Specialists VHF Transceivers, Antennas, Depth Finders and compasses by Andrea.

DRAKE

R4B Receiver xint. $295.00
AC-10 AC Supply for AA-10, TR-22, TR-72, 13.8 VDC @ 3 amps $39.95
TR-22, in stock $219.95
AA-10 Amplifier for TR-22 $49.95
TR-72 2 meter FM Transciever, 23 channel, 1 & 10 watts, 13.8 VDC $320.00
TR4/C new, $599.95 T-4XC Trans. $530.00
R4C Rec. $499.95
AC-4 Drake A.C. Power Supply $99.95

GE INDUSTRIAL SILICON RECTIFIER
1400 PIV
250 amp., GE #41A281049-11. Quantities in stock. $90.00 value, brand new, $15.00

SWAN

SS-200 Solid State SSB Transceiver with power supply & 16 pole filter. Brand new, Write

TEN TEC

TRITON II 5 Band Solid State Transceiver 200 W pep R.I.T. $600.00
AC Power Supply 252 $89.00
315 RECEIVER 10-80 meters SSB, AM, CW $229.00
CW FILTER FOR 315 $14.95
AC4 SWR Bridge KR2 $12.95
$14.95 KR40 $89.95

ETO

ALPHA-77. The finest amplifier ever offered for amateur, commercial or military service. $3000

ETO

FM-27B Regulated AC power supply watts PEP continuous duty. $79.95

Signal/One CXTA Write or Call

SWR BRIDGE COUPLER, DC-800 MHZ
TNC Connectors (no indicator) full amateur power $90.00 Value $10.95

DX ENGINEERING

SPEECH COMPRESSORS
DIRECT PLUG-IN FOR COLLINS 32S
DIRECT PLUG-IN FOR KWM-2
$79.50 ppd. U.S.A.
$79.50 ppd. U.S.A.

INSTRUMENTS

Millen 90652 Solid State Dipper. New with 7 coils and carrying case. 1.6 - 300 MHz $110.00
PAN ADAPTER BC-100A $100.00

E. F. JOHNSON

Matchbox complete with directional coupler and indicator, 10-50 meters. 2KW PEP, 1 KW AM — new, $275.00
275 watts — new, $145.00
151-1-4 Variable Capacitor, 250 pF, medium Xmitting type $55.00

VIBROPLEX

Vibro Keyer Standard $24.95
Deluxe $32.95
Original Standard Vibroplex Bug $29.95

More Details? CHECK-OFF Page 126

BARRY 512 Broadway NY, NY 10012
DEPT. H-12
212-WA-5-7000
TELEX 12-7670
THE TEMPO ONE SSB TRANSCEIVER

Look at the specifications... look at the price tag... ask any of the thousands of Tempo ONE owners about its reliability... and the reason for its unparalleled popularity will be obvious. The Tempo ONE is now the proven ONE.

FREQUENCY RANGE: All amateur bands 80 through 10 meters, in five 500 kHz, ranges: 3.5-4 MHz, 7-7.5 MHz, 14-14.5 MHz, 21-21.5 MHz, 28.5-29 MHz. (Crystals optionally available for ranges 28-28.5, 29-29.5, 29.5-30 MHz.)

SOLID STATE VFO: Very stable Colpitts circuit with transistor buffer provides linear tuning over the range 5-5.5 MHz. A passband filter at output is tuned to pass the 5-5.5 MHz range.

RECEIVER OFFSET TUNING (CLARIFIER): Provides ±5 kHz variation of receiver tuning when switched ON.

DIAL CALIBRATION: Vernier scale marked with one kilohertz divisions. Main tuning dial calibrated 0-500 with 50 kHz points.

FREQUENCY STABILITY: Less than 100 cycles after warm-up, and less than 100 cycles for plus or minus 1% line voltage change.

MODES OF OPERATION: SSB upper and lower sideband, CW and AM.

INPUT POWER: 300 watts PEP, 240 watts CW

ANTENNA IMPEDANCE: 50-75 ohms

CARRIER SUPPRESSION: -40 dB or better

SIDEBAND SUPPRESSION: -50 dB at 1000 CPS

THIRD ORDER INTERMODULATION PRODUCTS: -30 dB (PEP)

AF BANDWIDTH: 300-2700 cps

RECEIVER SENSITIVITY: 1.5 µV input S/N 10 dB

AGC: Fast attack slow decay for SSB and CW.

SELECTIVITY: 2.3 kHz. (-6 dB), 4 kHz. (-60 dB)

IMAGE REJECTION: More than 50 dB.

AUDIO OUTPUT: 1 watt at 10% distortion.

POWER SUPPLY: Separate AG or DC required. See AC-ONE and D01-A.

TUBES AND SEMICONDUCTORS: 16 tubes, 15 diodes, 7 transistors

TEMPO™ "ONE" TRANSCEIVER

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$349.00</td>
<td>Transceiver</td>
</tr>
<tr>
<td>$99.00</td>
<td>AC/ONE POWER SUPPLY 117/230 volt 50/60 cycle</td>
</tr>
<tr>
<td>$120.00</td>
<td>DC/1-A POWER SUPPLY 12 volts DC</td>
</tr>
<tr>
<td>$99.00</td>
<td>VF-ONE EXTERNAL VFO</td>
</tr>
</tbody>
</table>

THE TEMPO 2001 LINEAR AMPLIFIER

Small but powerful, reliable but inexpensive, this amplifier is another top value from Henry Radio. Using two 8874 grounded grid triodes from Eimac, the Tempo 2001 offers a full 2 KW PEP input for SSB operation in an unbelievably compact package (total volume is .8 cu. ft.). The 2001 has a built-in solid state power supply, a built-in antenna relay, and built-in quality to match much more expensive amplifiers. This equipment is totally compatible with the Tempo One as well as most other amateur transceivers. Completely wired and ready for operation, the 2001 includes an internal blower, a relative RF power indicator, and full amateur band coverage from 80-10 meters. PRICE: $545.00

YAESU

... a name proven through world-wide use...

... now available at Henry Radio. Come in, phone or write for complete specifications. We ship almost everywhere.

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$649.00</td>
<td>Transceiver</td>
</tr>
<tr>
<td>$599.00</td>
<td>Transceiver</td>
</tr>
<tr>
<td>$339.00</td>
<td>Linear Amp with tubes</td>
</tr>
<tr>
<td>$289.00</td>
<td>Digital Counter</td>
</tr>
<tr>
<td>$99.00</td>
<td>External VFO</td>
</tr>
<tr>
<td>$59.00</td>
<td>Speaker/patch</td>
</tr>
<tr>
<td>$19.00</td>
<td>Speaker</td>
</tr>
<tr>
<td>$19.00</td>
<td>External VFO</td>
</tr>
<tr>
<td>$59.00</td>
<td>Speaker/patch</td>
</tr>
<tr>
<td>$19.00</td>
<td>Speaker</td>
</tr>
<tr>
<td>$29.00</td>
<td>Dynamic microphone</td>
</tr>
<tr>
<td>$40.00</td>
<td>C.W. filter</td>
</tr>
<tr>
<td>$19.00</td>
<td>Fan</td>
</tr>
<tr>
<td>$9.00</td>
<td>Mobile bracket</td>
</tr>
</tbody>
</table>

Prices subject to change without notice.
This compact, single tube amplifier, located in the EIMAC facility, develops over 1300 kilowatts of 100% modulated carrier. It is quickly and easily tunable over the range of 15 to 30 MHz. Drive power at the grid of the tube is less than 5 kilowatts.

Using a single EIMAC X-2159 super-power tetrode in a Continental Electronics transmission line-cavity configuration, this amplifier combines high power gain with excellent operating stability and complete freedom from circuit parasitics.

A single amplifier stage using two EIMAC X-2159 tubes is capable of over 2.5 megawatts of 100% modulated carrier. Two amplifiers combined would make a 5 megawatt transmitter a practical reality.

The EIMAC X-2159 super-power tetrode is designed for MF and HF broadcast service, VLF communications, SSB linear service and extremely high power pulse modulator applications.

The X-2159 is another example of tomorrow's tube that's ready today at EIMAC. For complete information, contact EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070. Or any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.