Savoy

HIGH EFFICIENCY ANTENNAS
FOR HF AND VHF

NEW!

Increase your effective radiated power
the inexpensive way with the new
Bassett Wide Band VHF Collinear Antenna of sparkling white fiberglass
and chrome plated brass.

- Gets radiator above vehicle
- Quick foldover for garaging
- Completely adjustable
- 115 MHz to 175 MHz choice
- Gain with low vertical angle
- Extremely light in weight
- Sparkling white fiberglass
- Polished chrome hardware
- Easily handles 500 watts
- Standard 1/4 - 24 base thread
- For bumper or trunk lip mount

Model DGA-2F
$39.50
Postpaid in U.S.A.

- Gets radiator above vehicle
- Fixed — non adjustable
- Supplied for desired frequency
- 115 MHz to 175 MHz choice
- Gain with low vertical angle
- Extremely light in weight
- Sparkling white fiberglass
- Polished chrome hardware
- Easily handles 500 watts
- Standard 1/4 - 24 base thread
- For bumper or trunk lip mount

Model DGA-2M
$29.50
Postpaid in U.S.A.

Antennas of similar appearance and efficiency are now available for Commercial, Public Service, CB, and for use in the Amateur 10-15-20-40 and 75 Meter Bands.

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc.
P.O. Box 7127 - Fort Lauderdale, Florida - 33302
Tel: 305-566-8416 or 305-947-1191
TOP BAND SYSTEMS introduces the TBL-2000, a totally new concept linear amplifier with self-contained AC power supply and built-in RF wattmeter. Weighing but 18 pounds, the TBL-2000 packs a full kilowatt CW and 1600 watts PEP SSB on 160 through 10 meters — including MARS. Assembled in a rugged package, the TBL-2000 boasts a tube compliment of five hefty 6LF6 power pentodes, each with its own easy-reach side-panel mounted bias potentiometer for peak performance.

Our team of engineers designed the ultimate in compact linear amplifiers. Loaded with features, the TBL-2000 has the competition beat. For the discriminating Amateur who demands to know what is happening in every part of the circuit, we provide a meter switch capable of monitoring eleven different functions on an illuminated, shielded meter. With a flip of the switch, you can monitor the cathodes of each tube, the total plate current, B+ voltage, RF watts, and much, much more. Our heavy-duty band-switch “snaps” with authority at your command. Our two position tilt-stand adjusts to your eye level. And the TBL-2000 remains cool, even after hours of operation.

Order now, and enjoy the thrills which only a kilowatt can give.

BANDS: 160, 80, 40, 20, 15, and 10 meters, plus MARS
INPUT POWER: 1000W CW, 1600W PEP, 700W RTTY and SSTV
DRIVING POWER: 70W min. — 150W PEP max. before saturation
AC INPUT: TBL-2000: 200VAC-250VAC @ 8 amperes 50/60Hz TBL-2000X: 100VAC-125VAC @ 15A or 200VAC-250VAC @ 8A
WEIGHT: TBL-2000: 18 lb (8Kg), TBL-2000X: 20 lb (9Kg)
SIZE: 12¾" W x 11" D x 6½" H. (33cm x 28cm x 16.5cm)
ANTENNA: 50/70 ohms nominally. SWR not to exceed 2:1
METER FUNCTIONS: 0-200mA each tube, 0-2A total plate current, 0-2KV high voltage, 0-200mA screen current, 0-2mA grid current, 0-1000W forward & reflected power.

MODEL TBL-2000
built-in 240VAC supply .. $259
MODEL TBL-2000X
built-in 120/240VAC supply .. $299
Airmail shipping anywhere in USA $10
Airmail shipping anywhere in the world $50 or less
Spare set five 6LF6 tubes ... $20
Instruction manual only ... $2

Calif. residence add 5% sales tax
All COD orders require 20% deposit
Swan was the first to provide a low cost single sideband transceiver the average ham could afford. Again, Swan leads the field with "state-of-the-art" concepts!

- No Transmitter Tuning
- Infinite VSWR Protection
- Receiver uses FET's, IC's, and Operational Amplifiers
- IF Derived AGC
- Minimized Front-end Overload, Distortion and Cross-modulation
- Selectable Sideband, 80-10 Meters
- Built-in VOX
- Semi-CW Break-in and Monitor
- Noise Blanker, with Threshold Control
- 25 KC Calibrator

- 10 MHz WWV Receive

Mobile is "First Class!" Operates directly from 12 volt DC requiring less than 500 ma on receive. Ideal for net operation. No tune-up necessary, simply dial the station and talk!

Compatible AC power supplies and a host of other accessories available to provide "Top-Of-The-Line" fixed station operation. Operating ease and flexibility makes it a winner for contests or rag-chewing!

CHOICE OF 3 MODELS:

SWAN SS-15, 15 watt P.E.P. $579.00
SWAN SS-100, 100 watt P.E.P. $699.00
SWAN SS-200, 200 watt P.E.P. $779.00

ACCESSORIES INCLUDE:

- **SWAN PS-10,** 115V AC power supply for SS-15/SS-100 $ 89.00
- **SWAN PS-20,** 115V AC power supply for SS-200/SS-100/SS-15 $139.00
- **SWAN SS-1200,** 1200 watt P.E.P. Linear Amplifier (tube type) $299.00
- **SWAN SS-208,** External VFO $159.00
- **SWAN 610X,** Crystal Controlled Oscillator $ 53.95
- **SWAN SS-16B,** Super Selective Filter $ 79.95

Detail specifications may be found in the New 1973 SWAN Catalog. Write for your FREE copy, today!

Just 10% down is all that is needed if you use your Swan Credit Service account to put an all solid-state rig in your ham shack.

SWAN ELECTRONICS
A subsidiary of Cubic Corporation
305 Airport Road • Oceanside, CA 92054
January, 1973
volume 6, number 1

staff
James R. Fisk, W1DTY
editor
Patricia A. Hawes, WN1QJN
editorial assistant
Nicholas D. Skeer, K1PSR
vhf editor
J. Jay O’Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, W6IAK
associate editors
Wayne T. Pierce, K3SUK
cover
T.H. Tenney, Jr. W1NLR
publisher
Hilda M. Wetherbee
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is published monthly by
Communications Technology, Inc
Greenville, New Hampshire 03048

Subscription rates, world wide
one year, $7.00, three years, $14.00
Second class postage
paid at Greenville, N.H. 03048
and at additional mailing offices

Foreign subscription agents
United Kingdom
Radio Society of Great Britain
35 Doughty Street, London WC1, England

All European countries
Eskil Persson, SM5CJP, Frotunagrand 1
19400 Upplands Vasby, Sweden

African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1972 by
Communications Technology, Inc
Title registered at U.S. Patent Office
Printed by Wellesley Press, Inc
Framingham, Massachusetts 01701, USA

ham radio is available to the blind
and physically handicapped on magnetic tape
from Science for the Blind
221 Rock Hill Road, Bala Cynwyd
Pennsylvania 19440
Microfilm copies of current
and back issues are available
from University Microfilms
Ann Arbor, Michigan 48103

Postmaster: Please send form 3579 to
ham radio magazine, Greenville
New Hampshire 03048

contents

6 transmitter matching networks
Irvin M. Hoff, W6FFC

14 digital readout vfo
Gerd H. Schrick, WB8IFM

20 automatic line feed for RTTY
A. A. Kelley, K4EEU

24 multifunction fm repeater decoder
William E. Bretz, WA6TBC

34 sampling network for rf measurements
Howard F. Shepherd, Jr., W6QJW

40 tunable phase-locked loop
Kenneth W. Robbins, W1KNI

46 improved six-meter preamplifier
Gerald F. Vogt, WA2GCF

50 transient suppression
Carl C. Drumeller, W5JJ

53 solving overload problems with
vhf converters
Henry H. Cross, W1OOP

58 antenna tuning units
Edward M. Noll, W3FQJ

62 noise bridge for impedance
measurements
Gijs Pappot, YA1GJM

4 a second look 66 ham notebook
110 advertisers index 70 new products
58 circuits and techniques 110 reader service
99 flea market
This is the time of the year when many high-school seniors are scurrying around, planning their future education, sending applications off to the college of their choice and taking entrance exams. Seniors who are also radio amateurs are probably considering a career in electronics. If they're lucky, they will have a knowledgeable guidance counselor who can steer them in the right direction; if not, they'll probably pick a school with a big name and work from there. Sometimes this works out and sometimes it doesn't — it depends entirely on what the student is looking for.

Electrical engineers who graduated before 1960 would probably not recognize the engineering curriculum now offered by their old alma mater because, during the past 15 years or so, engineering education has changed significantly. During this period (referred to by some as the post-Sputnik period), classical engineering education has tended to become less applied and more and more theoretically oriented. The backgrounds of some electrical engineering teaching staffs have changed from being primarily applied electronics to applied mathematics, and attempts to develop practical engineering programs have not been very successful.

In recent years the prestige of an engineering school has generally been gauged by the theoretical emphasis of its courses. Each school has tried to outdo the other in the theoretical sophistication of its curriculum. Unfortunately, the majority of the jobs in the sphere of electronics engineering do not require such an advanced mathematical sophistication as they do a "gut" understanding of electronics. If you talk to today's electrical engineering students, you will find that many of them do not know how to solve a simple steady-state ac problem, although they can invert a matrix and use state-variable techniques.

However, several colleges are now introducing four-year electronic technology programs in an attempt to get back to the old, practical engineering concept. The new Electronic Technology program at Trenton State College, for example, emphasizes electronics hardware and laboratory techniques as well as electrical theory. Unlike most engineering programs, at Trenton State the electrical courses begin in the first semester of the freshman year and continue right on through the senior year. And because of the applications orientation, graduates of two-year associate degree technician training programs can transfer into the B.S. program with little or no loss of credit.

The graduates of B.S. Technology programs have been pictured as fitting into the occupational spectrum somewhere between the technician and the engineer. However, many professors see technology graduates as having much wider employment opportunities. Actually, technology graduates should have many opportunities in areas of electrical applications and design traditionally occupied by engineering graduates, now vacated due to the change in emphasis of engineering education.

Students who are interested in this type of engineering education should be aware that there is a wide difference in B.S. programs offered under the title of "Technology." This condition is a result of the relative newness of the concept. Some programs are managerially oriented, others are applications and design oriented, while still others are little more than a two-year technician training program with added courses in the arts and humanities. Anyone desiring to enter this area should choose his school carefully to be sure he gets what he wants.

Jim Fisk, W1DTY
editor
The most important development since the beginning of SSTV

ROBOT MODEL 70 MONITOR AND MODEL 80 CAMERA

$295 EACH

Robot Goes Factory Direct

These are the identical camera and monitor that have been selling through dealers for $495 and $465. But with our new factory direct marketing program and our substantial growth in sales volume we can now offer our complete line of SSTV equipment at new, low prices.

You can now order your equipment direct from our factory and we will ship freight collect. All prices are F.O.B. San Diego, Ca., and APPLY IN U.S. & CANADA ONLY!

DIRECT EXPORT INQUIRIES TO: MAGNUS OVERSEAS CORP. 5716 North Lincoln Avenue, Chicago, Ill. 60643. Cable ULLMAG

☐ Please send your new factory direct price list.
☐ Enclosed $___________. Please send the following equipment via AIR ☐ or SURFACE ☐
☐ Model 70 Monitor $295
☐ Model 80 Camera $295
☐ 25 mm f1.9 lens $25

Name ___________________ Call ___________________
Address ___________________
City ___________________ State ___________ Zip ___________
California residents add 5% sales tax.

ROBOT RESEARCH INC.
7591 Convoy Court
San Diego, California 92111
networks

for
transmitter
matching

Complete data on building networks for matching the impedance of your exciter to the impedance of your power amplifier

Most transmitters are designed for 50-ohm output loads and the use of 50-ohm coax cable has become quite standard on most antenna systems used by amateurs. As the typical transmitter these days has 100 to 175 watts output, it is often used as an exciter to drive a linear amplifier to higher output power. These units normally are cathode-driven and are characterized by an input impedance that falls in the region of 20 to 200 ohms. Although in many cases the exciter can drive such an amplifier directly with satisfactory results, the use of a properly-terminated matching network can be most beneficial in a variety of ways: It allows maximum energy transfer (most output), presents the best load to the exciter, minimizes harmonic radiation (tv, etc.) and allows barefoot operation without retuning.

Perhaps other advantages will come to mind. Some exciters have only a 50-ohm output, and cannot be retuned for other impedances.

input impedance

The input impedance of linear amplifiers is rarely the same from one band to another. Some amplifiers are not operated at zero-bias and actually drive the grid through a passive resistor. These systems, of course, usually present about the same impedance from one band to another, but are rarely 50 ohms to start with.
Formulas have been given to enable the calculation of the input impedance of a grounded-grid, cathode-driven amplifier. However, such formulas are all but worthless since they do not take the frequency into consideration. Measurements taken at the input of such amplifiers usually show a rather impressive variation from 10 to 80 meters, indicating that a formula would be quite misleading. These variations are caused by the manner in which the rf is isolated from the filament transformer (and hence the house wiring). Two methods are used to accomplish this: filament chokes, such as bifilar-wound coils, or low-capacitance filament transformers.

The best uniformity is normally obtained with the low-capacitance filament transformer, but such a transformer is not always available, and in any event would need to be mounted within a few inches of the tube base. This is not always convenient, so filament chokes are more commonly used. These chokes range from commercially-available units to home-made — the latter usually being two number-12 double-enamed wires wound simultaneously around a round ferrite rod until 11 turns (you would count 22 with the two wires) are on the rod. With proper bypassing these chokes allow the 60-Hz filament current to pass, but do not allow the high-frequency rf signal into the filament transformer.

Factors which seem to contribute to variations in input impedance from band to band include the voltage on the final amplifier, the type of tube or tubes being used, the frequency involved and the type of rf chokes used.

Matching

I once had a Johnson Pacemaker 90-watt ssb transmitter. This unit could tune as high as 300 ohms on the output. I did not think any type of matching network to my linear was needed, but one day, while operating on 10 meters, I got a bad rf burn on my mouth when I came too close to the microphone. This led to an investigation of the input impedance, and I found on that particular transmitter it was only 15 ohms on 28 MHz; the Pacemaker could not handle this low impedance at all. A simple pi-network was used, and when incorporated for other bands, I found I not only had better output power, but could also then switch immediately from high power to barefoot, a distinct advantage over the previous system.

One company recommended that a particular length of coax should be used between the exciter and the amplifier. I personally always thought that this was a cop-out since it would be adequate (at best) on only one band!

Various articles have been written regarding the use of networks between the exciter and the linear, and this is now standard practice for most commercial units. These usually have input networks incorporated into the design, and are often adjustable if you wish to optimize them for your specific part of the band. They are usually switched automatically as you change the band selector.

Such networks are usually made up of pi-networks although a few use the more...
simple L-network. The pi-network is usually preferred as greater control and uniformity are possible from band-to-band since the Q can be predetermined for consistent performance over a wider variety of impedances. The L-network is more simple, but at the same time it is somewhat more difficult to adjust for optimum SWR.

networks

L-networks have been covered adequately in other texts, including the ARRL Handbook, so only an example will be shown here (see fig. 1). Although this is a very simple circuit, it has several minor disadvantages.

For one thing, in the L-network Q cannot be controlled, and is usually very low. Also, if the network is used for all HF amateur bands, the capacitor often has to be switched from one end of the coil to the other. Further, the L-network has very little exciter loading due to the low Q and it offers very little harmonic suppression.

A typical pi-network is shown in fig. 2. It offers predictable performance as the Q may be preselected. It also offers additional harmonic suppression, presents a good load for exciter stability and can easily be used for all HF amateur bands.

input impedance

The input impedance of the network may be determined by testing; use of formulas should be avoided because the calculations rarely approximate the observed results.

The easiest and quickest method of measuring input impedance would be to use a variable impedance bridge, such as the long-since discontinued Heath AM-1. The ARRL Handbook also contains an excellent RF impedance bridge that may be easily built. These RF impedance bridges are basically a small SWR bridge with a variable leg in the bridge so you can match the load impedance. Since an RF impedance bridge usually takes only a few milliwatts of power, they are easily driven from a grid-dip meter or SSB transmitter with the output cranked down.

Sufficient RF is introduced (with the load disconnected) to give either fullscale meter reading or nearly so. The load is then connected and the knob dialed for minimum meter reading. The impedance is then read directly from the calibrated dial. The high voltage must be running on the amplifier, and the meter hooked as close as possible to the place the network will be added.

There are probably no typical impedances, but as a general rule I have found that most amplifiers I tested fell in to the neighborhood of 150 to 200 ohms on 80 meters, and around 15 to 30 ohms on 10 meters. The rest of the bands came somewhere in between. In many cases 20 meters offers a fairly decent match with no network at all.

If the input impedance is measured directly at the filament of the power tube it will be considerably less than 50 ohms on ten meters, and considerably more than 50 ohms on 80. The data shown below is for my own 4-1000A linear with

<table>
<thead>
<tr>
<th>impedance at tube base (ohms)</th>
<th>impedance at network (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 meters</td>
<td>180</td>
</tr>
<tr>
<td>40 meters</td>
<td>155</td>
</tr>
<tr>
<td>20 meters</td>
<td>75</td>
</tr>
<tr>
<td>15 meters</td>
<td>50</td>
</tr>
<tr>
<td>10 meters</td>
<td>40</td>
</tr>
</tbody>
</table>

6000 volts on the plate. The amplifier uses a low-capacitance filament transformer. The first column of figures is the impedance measured right at the tube base; the second column shows the impedance at the end of a 6-foot piece of
Table 1. L-network component values.

Data is for matching a 50-ohm transmitter to a cathode-driven amplifier. The Q is set by the ratio of the input and output impedances and is shown for approximately the middle of each amateur radiotelephone band. The Q at the top of the band would be slightly less, at the bottom of the band it would be slightly greater.

L-network component values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Content

<table>
<thead>
<tr>
<th>R_1 (ohms)</th>
<th>F_1 (Hz)</th>
<th>C_1 (pf)</th>
<th>L_1 (uh)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.9</td>
<td>3488 2.09</td>
<td>10.20</td>
<td>50</td>
</tr>
<tr>
<td>5.8</td>
<td>6.82</td>
<td>1200 4.82</td>
<td>20.20</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>1.59</td>
<td>800 3.59</td>
<td>30.30</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>1.23</td>
<td>500 2.12</td>
<td>40.40</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>1.01</td>
<td>356 1.01</td>
<td>50.50</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>0.87</td>
<td>250 0.87</td>
<td>60.60</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_1 (ohms)</th>
<th>F_1 (Hz)</th>
<th>C_1 (pf)</th>
<th>L_1 (uh)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0</td>
<td>9.92</td>
<td>2694 6.92</td>
<td>10.20</td>
<td>90</td>
</tr>
<tr>
<td>9.0</td>
<td>6.42</td>
<td>1200 4.82</td>
<td>20.20</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>1.59</td>
<td>800 3.59</td>
<td>30.30</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>1.23</td>
<td>500 2.12</td>
<td>40.40</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>1.01</td>
<td>356 1.01</td>
<td>50.50</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>0.87</td>
<td>250 0.87</td>
<td>60.60</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_1 (ohms)</th>
<th>F_1 (Hz)</th>
<th>C_1 (pf)</th>
<th>L_1 (uh)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>1.9</td>
<td>3488 2.09</td>
<td>10.20</td>
<td>50</td>
</tr>
<tr>
<td>5.8</td>
<td>6.82</td>
<td>1200 4.82</td>
<td>20.20</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>1.59</td>
<td>800 3.59</td>
<td>30.30</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>1.23</td>
<td>500 2.12</td>
<td>40.40</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>1.01</td>
<td>356 1.01</td>
<td>50.50</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>0.87</td>
<td>250 0.87</td>
<td>60.60</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_1 (ohms)</th>
<th>F_1 (Hz)</th>
<th>C_1 (pf)</th>
<th>L_1 (uh)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>9.92</td>
<td>2694 6.92</td>
<td>10.20</td>
<td>90</td>
</tr>
<tr>
<td>9.0</td>
<td>6.42</td>
<td>1200 4.82</td>
<td>20.20</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>1.59</td>
<td>800 3.59</td>
<td>30.30</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>1.23</td>
<td>500 2.12</td>
<td>40.40</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>1.01</td>
<td>356 1.01</td>
<td>50.50</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>0.87</td>
<td>250 0.87</td>
<td>60.60</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_1 (ohms)</th>
<th>F_1 (Hz)</th>
<th>C_1 (pf)</th>
<th>L_1 (uh)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>9.92</td>
<td>2694 6.92</td>
<td>10.20</td>
<td>90</td>
</tr>
<tr>
<td>9.0</td>
<td>6.42</td>
<td>1200 4.82</td>
<td>20.20</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>1.59</td>
<td>800 3.59</td>
<td>30.30</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>1.23</td>
<td>500 2.12</td>
<td>40.40</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>1.01</td>
<td>356 1.01</td>
<td>50.50</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>0.87</td>
<td>250 0.87</td>
<td>60.60</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_1 (ohms)</th>
<th>F_1 (Hz)</th>
<th>C_1 (pf)</th>
<th>L_1 (uh)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>9.92</td>
<td>2694 6.92</td>
<td>10.20</td>
<td>90</td>
</tr>
<tr>
<td>9.0</td>
<td>6.42</td>
<td>1200 4.82</td>
<td>20.20</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>1.59</td>
<td>800 3.59</td>
<td>30.30</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>1.23</td>
<td>500 2.12</td>
<td>40.40</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>1.01</td>
<td>356 1.01</td>
<td>50.50</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>0.87</td>
<td>250 0.87</td>
<td>60.60</td>
<td>50</td>
</tr>
</tbody>
</table>
RG-58A/U where my matching network is placed.

You can instantly see the futility in trying to cut a piece of coax to just the right length to provide proper matching on a number of different bands. This table also illustrates how unpredictable it would be to try to use a formula to find the impedance!

In one rig I built, using a pair of 813s and a commercial FC-30 filament choke, the impedance varied widely, from 12 ohms on 10 meters to over 200 ohms on 80 meters. Replacing the commercial filament choke with a homemade bifilar-wound unit gave results that varied much less, from about 30 ohms minimum on one band to 130 ohms on 80 meters. These figures are given only to illustrate the wide impedance variations possible from 3.5 through 29 MHz, and are unlikely to be typical of what you may experience with your own particular amplifier.

wattmeter method

The majority of you will not have access to an rf impedance bridge. You can still match the exciter to the amplifier, but it will take longer. The name of the game is low SWR between the two units, so a wattmeter makes a good trial-and-error method of initially tuning the network. Once the settings have been found, you can mark them on the box and paste on tabs or use the sheet of paper I use.

In this case you observe, from the computer charts, the approximate inductance and capacitance, and start out by setting the inductance somewhere near what you think would be appropriate. With about half-power on the transmitter, rotate the variable capacitors while observing the reflected power. If it does not go to zero, tap up or down on the inductor and try again (the tap on the coil should be temporary until properly selected). This same technique is used on each different band.

using a swr bridge

This is the least desirable of the various methods. It will usually work, but is the most time-consuming of all and can be misleading. If you think you have gotten it just right, switch to the exciter barefoot and see if the antenna presents approximately the same load, plate current, output power, etc. without returning the exciter. This will provide a check on your accuracy, and is, of course, the desired end result anyway — the ability to switch from antenna to amplifier with similar results.

network placement

In commercial rf power amplifiers the matching network is usually quite near the tubes in the amplifier, and usually there is a separate network for each band. The appropriate network is switched in automatically with the band-selector knob.

It is not at all necessary to have the networks in the same cabinet with the rest of the transmitter. You may find it considerably more convenient to have it a few feet away from the amplifier where a simple network can be changed quickly whenever you bandswitch. This is the arrangement I have used successfully for a number of years. I have a short piece of coax connecting the network minibox to the input of the amplifier. The length of the coax is in no way critical, but once the network is adjusted, of course, the coax length should then remain the same.

A piece of paper was temporarily placed on the front panel of the minibox, the correct settings for the various bands found and the paper marked. Then a
Table 2. Pi-network component values. Data is for matching a 50-ohm transmitter to a cathode-driven amplifier. The Q has been chosen quite low to obtain broadband characteristics. The Q figure in the last column shows the worst-case condition at the bottom of the band using the inductance value shown.

RI	F	C1	L1	C2	R2	Q'	RI	F	C1	L1	C2	R2	Q'		
50	1.8	1159	5.64	1867	50	1.8	1389	148	50	1.8	1467	150	1.8	1542	152
50	1.8	1159	5.64	1867	50	1.8	1389	148	50	1.8	1467	150	1.8	1542	152
50	1.8	1159	5.64	1867	50	1.8	1389	148	50	1.8	1467	150	1.8	1542	152
50	1.8	1159	5.64	1867	50	1.8	1389	148	50	1.8	1467	150	1.8	1542	152
50	1.8	1159	5.64	1867	50	1.8	1389	148	50	1.8	1467	150	1.8	1542	152

January 1973
nicer looking paper was drawn up with markings for those settings, typewritten with the band-markings, and attached to the minibox. This allows very rapid setting of the box whenever I bandswitch, yet only one coil and two variable capacitors are used.

Other methods may come to mind that will work adequately for your purpose. Trying to put the networks into the amplifier usually makes additional problems with regard to space, synchronizing with the bandswitch, etc. Thus, the remote minibox idea may appeal to some of you who do not have space in the amplifier or the technical capability of providing mechanical selection when the bandswitch is rotated.

components

Even with 100 watts output, there is only about 1.4 rf amps flowing. Consequently, rather small inductors, such as B&W stock can be used successfully. B&W type 3018 comes in 4-inch lengths, 8 turns per inch; the full 4 inches is 9.4 microhenries. Price is well under $2. B&W type 3014 is also 8 turns per inch, 3-inches long, and 4.8 microhenries; cost is approximately $1.50. These should give you ideas, and a wide variety of similar inductances are available.

Even with 100 watts output, the voltage across 50 ohms is only about 70 rms. Almost any type of variable capacitor, including the common 365 pF broadcast type will be more than adequate. You can easily find these for free from junker a-m radios of another era, and usually in gangs of two or three on the same shaft.

You will probably want a bandswitch for the network. Any type of switch capable of handling small amounts of rf will be adequate, and the additional pole/poles may be used to switch in fixed values for the lower frequencies, if desired. Ceramic or steatite switches are recommended.

Fixed capacitors should be rated for at least 150 or 200 volts, and capable of handling rf currents. Mica transmitting types are excellent. Low-cost door-knob capacitors are also good and are usually capable of handling kilowatt outputs.

Some commercial amplifiers use fixed capacitors and a slug-tuned variable inductor. Unless you have some means of determining the actual impedance to be matched, tuneup could be very time consuming, and fairly costly unless a large supply of capacitors suitable for rf is available. Also, many of the available slug-tuned inductors will not handle the amp or two of rf current without damage.

summary

Some method of matching the 50-ohm output impedance to the input of a linear amplifier should be offered. A good, simple but effective method is to build a single, variable pi-network and place it in a convenient place a few feet from the amplifier. A rf wattmeter may be used for initial tuneup, and simple markings placed on the box containing the network so rapid band changes can be made. Tables are included for both pi-networks and L-networks. These were computer-derived and include values for 1.9 through 29.7 MHz.
RAYTHEON MODEL-1230 RECEIVER

THE NEW STANDARD OF RECEIVER EXCELLENCE

• SYNTHESIZER STABILITY (Better than 1 Hz/day at any freq.)
• CONTINUOUS TUNING (2-30 MHz)
• TRACKED PRE-SELECTION ON ALL BANDS
• DIRECT DIGITAL READOUT TO NEAREST Hz
• PHASE LOCKED DETECTORS FOR AM, FM, FSK
• INDEPENDENT SIDEBAND AVAILABLE
• ALL SOLID STATE including DISPLAYS

$3930

FOR COMPLETE DATA WRITE TO:

RAYTHEON COMPANY

MARKETING DEPT. (ISP)
6380 HOLLISTER AVENUE
GOLETA, CALIFORNIA 93017
AREA CODE 805 967-5511

January 1973
This digital readout vfo covers the range from 5.0 to 5.5 MHz and costs less than $100 to build.

Frequency counters have been around for some time, but only recently has the market become abundant with suitable parts and components making it possible to build a digital frequency station readout in a few evenings for under $100.00. The counter described here measures the frequency of the transceiver vfo or any other piece of equipment. It is designed for the Heath-kit HW100 which has a 5 to 5.5 MHz variable oscillator and requires a downcount for proper frequency reading. However, the design can easily be changed to accommodate other equipment.

The prototype was built into an external vfo which in turn is connected to my HW100. However, since it is very compact it can be incorporated into almost any existing equipment. The digital dial reads the frequency of the oscillator, indicating hundreds, tens, ones and a decimal of kilohertz. You have to remember the band, which in many cases is required anyway, for dial reading. A switch makes it possible to start reading at either 000.0 or at 500.0, taking care of the 75- and 10-meter bands which start out at 500.0. Another switch makes it possible to correct for errors that are introduced by inaccurate crystals.

The entire project (without power supply) consists of only 13 integrated circuits, four numerical readout ICs, two surplus crystals and a few resistors and...
capacitors. The following paragraphs will describe the various functions of the counter. The actual hardware consists of only three parts: a 3.75 x 6-inch Vero-board with the ICs and crystals, the 1 x 2-inch readout panel, which can be seen in fig. 4.

The oscillator uses a 74L00 IC, followed by three 7493 ICs and one 7492 IC connected as dividers (see fig. 1). The 7492 divide-by-12 IC plus two multiple-gate ICs (7420 and 7400) are used to derive the time-base functions: P (present), R (reset) and S (suppress). The bar over the P indicates a negative-going pulse. The suppress function turns the readout numbers off briefly and permits counting during the last two-thirds of the cycle. A complete schematic of the time-base circuit and the times involved can be seen in fig. 4.

mixer

The 5- to 5.5-MHz output of the vfo is not measured directly, but is mixed with another crystal oscillator. This not only reduces the accuracy requirements for the timebase; the entire counting process is relaxed since the actual frequency being measured is now only in the hundreds of kHz. Also, it is possible to choose the right crystal for the particular vfo and up or down counting scheme without changing anything else in the counter.

A rather unknown type of mixer using a D-type flip-flop (7474) is used (fig. 2). With this mixer there is no need for any external filter components whatsoever; moreover, there is no loss involved and consequently no need for amplification.

fig. 1. Block diagram of the digital readout vfo. All interconnections are shown except supply leads, grounds and switches.
fig. 2. Digital mixer uses D-type flip-flop.

The oscillator uses a surplus 5600-kHz crystal and a 7400 IC to beat the 5- to 5.5-MHz vfo down to 100 to 600 kHz. The crystal oscillator can be adjusted with a trimmer capacitor to within ±300 Hz, so it can take care of some of the various band crystal frequency offsets.

counter

The counter is a simple ripple counter consisting of four individual decade counter ICs, fig. 3. The first and last ICs are 8280s or 74196s, and the two middle ones are 7490s. Each counter has a four-line (ABCD) output leading directly to the respective numeric indicators.

The first counter, which provides the last digit or hundreds of Hz, can be preset by properly grounding the four data lines DA, DB, DC and DD to any number from 0 to 9, thus permitting a correction (by separate switch) for individual bands. The last counter can be preset by switch to read from either 000.0 to 500.0 or from 500.0 to 1000.0. The middle counters have only normal reset capability. The individual counting process takes 10 milliseconds (1/100 of a second) and is repeated about 17 times per second, causing a slight flicker like a home movie.

fig. 3. Four-stage ripple counter.
However, this is not at all annoying and indicates that the counter is operating properly. If, for instance, the flicker is not visible, the time base might be oscillating at a harmonic, thus giving an erroneous reading.

correction switch

The switch for correcting frequency offsets of inaccurate band crystals is a five-position, four-contact switch. The contacts correspond to the DA, DB, DC and DD data lines leading to the first counter chip, and the five positions correspond to the 75- through 10-meter amateur bands. Some people might want to use more positions to cover other 10-meter segments. The contact leads are brought out to a long socket capable of accepting double-sided circuit boards.

Short pieces of wire are inserted between contacts according to the offset to be corrected and the BCD-code depicted in fig. 5.

power supply

This is a straight-forward power supply design. However, many similar schemes can be used. You might want to extract the power from 6.3-V filament winding. Approximately 600 mA at 5 V is required. An IC is used for regulation. This IC now costs about $2.00, looks and mounts like a TO3 transistor and regulates any supply having between 7 and 25 V input to 5 volts output. Make sure you use several thousand microfarads for the filtering capacitor. The 2N3719 PNP-transistor (or similar) is used for switching the display. A separate ze-
ner-regulated voltage is available for an external transistor vfo.

Hewlett-Packard type 5083-7300 numerical indicators were used in the unit.* These display numbers by utilizing a 4 x 7 light-emitting diode dot matrix. They accept a four-line BCD code from the actual counter. They also have a memory capability which is not being used in this counter.

Although each digit is only 0.2 by 0.3 inch, they are rather bright and can be seen clearly from up to 10 feet away. A missing dot, if it should occur, does not give an erroneous reading as would a missing section of a seven-segment readout. No extra power supply is required, nor is a decoder, as would be needed for almost all other designs.

The Hewlett-Packard light-emitting readouts are somewhat more expensive than Nixie tubes, but they offer enough advantages to be well worth the price difference (the cost for one 7300 is $14.50). The readout can be mounted with a 36-pin IC socket, resulting in a rather flat, 1 x 2-inch display.

timebase

A frequency counter has to derive a gate from some standard, which is pretty much the same as using a crystal calibrator, except that the final result with the counter is a readout every 100 Hz and you do not have to search and zero beat those frequency marks.

This particular timebase starts off with a surplus crystal at 409.6 kHz and then, using a divide-by-two scheme, arrives at a gate which is 10 milliseconds wide (fig. 4). The number of Hz measured with this gate gives frequency directly with the last digit being in hundreds of Hertz. Other crystals and dividers can be used, providing you build an accurate 10-millisecond gate.

*The Hewlett-Packard 7300 light-emitting digital display ICs are available from any H-P Sales Office. To find the address of your local Sales Office, look in the Yellow Pages, or write to Hewlett-Packard, 1501 Page Mill Road, Palo Alto, California 94304.
Although it is quite helpful to understand digital ICs, it is not absolutely necessary for this project. No special wiring diagram or printed circuit layout has been attempted. However, from the figures and schematics accompanying this article it should be relatively easy to perform the wiring chore; it can be done in two evenings.

It is recommended that you make major interconnections with IC socket pins and pieces of wire. Multicolor, no. 24 telephone wire is best suited; it should not be difficult to obtain scrap pieces. Great care must be exercised to ensure correct connections; every wire is important, components are rather small and IC lugs are spaced only 1/10 inch.

calibration

In the question of calibration a detailed procedure is being worked out. There are problems with the accuracy of the customary 100-kHz crystal and problems in detecting a beatnote on an ssb receiver that attenuates frequencies below 300 Hz. Also, there is the question of what exactly is the frequency of an ssb signal; is it, as the FCC questionnaire implies, the carrier frequency, which of course is never transmitted, or is it a nominal center frequency in the middle of the sideband as used in Heathkit equipment?

conclusion

The counter was first shown at the Dayton Hamvention in April, 1972, and has been in use ever since. You very soon become accustomed to reading the numbers, and although my vfo used the excellent Drake SPR4 dial, I hardly look at it any more. Quick departure from the operating frequency is possible. To look for a clear frequency, for example, and in an instant you can be back within a 100 Hertz of the old frequency, almost making the external vfo scheme or the clarifier obsolete.

One final comment about the improvement in frequency reading. First: Once the counter is checked out and calibrated there is no need for recalibration since only crystals are used for reading the frequency. Second: Compared to the ±1 kHz of the Drake dial the accuracy is now ±0.1 kHz, a ten-fold improvement over the very good Drake dial.

This counter exhibits the usual ±1 ambiguity in the last digit. However, this can be avoided by synchronizing the gate with the incoming frequency. A conversion taking care of this problem will be forthcoming.

fig. 8. Base connections of the ICs used in the digital readout vfo (top views).
automatic line feed
for RTTY

This low-cost, all solid-state automatic line-feed prevents end-of-line print garble and overprinting

When an RTTY transmission begins, there is no assurance that the receiving printer will start on the same line as the transmitting printer. Sometimes the line feed character is garbled, occasionally it's not even sent — these are all causes for loss of copy (or a "black box" of overstrikes on the right margin).

When no line feed is received, the printer runs up to the right margin and stops there, overprinting characters until a valid line-feed signal is received. This copy may be missed even if the operator is present, because attempts to manually inject a line-feed signal through the local loop may fail due to incoming signal interference.

An automatic RTTY line-feed system greatly improves the quality of the received copy, and is a definite operating convenience. There are various mechanical line-feed systems available, but they are unreliable and sometimes difficult to adjust. The all solid-state system described here has proved to be very reliable, requires only one simple adjustment, and doesn’t cost an arm and a leg.
the circuit

This automatic line-feed system uses six TTL integrated circuits and two transistors to generate a line-feed character locally and insert it into the loop. A microswitch is mounted on the frame of the printer so that it is actuated by a projection on the type carriage when the printer reaches the end of a line (see photo). Two gates then act as electronic switches to shutoff print, insert the line-feed character, and restore print. The entire sequence happens very quickly, and only three characters are lost in the copy, even at full machine speed. However, in practice, only one or two characters are lost as few RTTY operators actually type at 60 words per minute (the auto-line feed occurs at full machine speed).

Normally, the output of the TTL NAND gate is at logic 1. The output of the two-input gate will be zero if, and only if, both inputs are logic 1. A 7400 IC is used as a start/stop latch, with the output at pin 14 normally logic zero.

fig. 1. Logic for the RTTY automatic linefeed circuit.

fig. 2. Timing sequence of the automatic line feed.
When the line-feed microswitch closes, the start/stop latch trips, pin 14 goes to logic 1 and pin 3 goes to logic zero, triggering a 74121 monostable multivibrator.

The length of one RTTY bit. The 7442 decoder IC is connected to an eight-input 7430 gate so that decimal zero is mark-hold, decimal one is the start pulse, and the remaining bits follow in order through the sequence until the stop pulse is reached on pins 9 and 10 (decimal seven and eight).

Both pins 9 and 10 of the decimal decoder are connected to the gate, giving a 44-millisecond stop pulse. When the counter reaches decimal nine, pin 11 goes low, immediately resetting the flip-flop to the automatic line feed may be used with most solid-state RTTY demodulators as shown here.

At rest, pin 5 of the 7400 is at logic 1; with pin 14 at logic 1, pin 6 would be at logic zero except that the 74121 has been triggered and the output of the one-shot is low for about 163 milliseconds. This gives the printer time to clear any parts of an incoming signal (print is inhibited by the 7410 gate as soon as the voltage at pin 3 of the 7400 falls to logic zero).

After the one-shot pulse is completed, pin 5 of the 7400 goes high, and since the start latch has tripped, pin 4 is also high, meeting the condition for a logic zero at pin 6. The next 7400 section is used as an inverter and is at logic 1; this is about 4 volts. The 1-µF capacitor in the unijunction emitter circuit starts to charge, and fires the unijunction transistor, generating a sawtooth wave at a frequency of 45.5 Hz. The 2N706 transistor is used as an interface between the unijunction transistor and the 7490 TTL decade counter.

The 7490-7442 counter-decoder combination converts the 45.5-Hz sawtooth to a series of 22-millisecond pulses, each through the sequence until the stop pulse is reached on pins 9 and 10 (decimal seven and eight).

Both pins 9 and 10 of the decimal decoder are connected to the gate, giving a 44-millisecond stop pulse. When the counter reaches decimal nine, pin 11 goes low, immediately resetting the flip-flop to the automatic line feed may be used with most solid-state RTTY demodulators as shown here.

At rest, pin 5 of the 7400 is at logic 1; with pin 14 at logic 1, pin 6 would be at logic zero except that the 74121 has been triggered and the output of the one-shot is low for about 163 milliseconds. This gives the printer time to clear any parts of an incoming signal (print is inhibited by the 7410 gate as soon as the voltage at pin 3 of the 7400 falls to logic zero).

After the one-shot pulse is completed, pin 5 of the 7400 goes high, and since the start latch has tripped, pin 4 is also high, meeting the condition for a logic zero at pin 6. The next 7400 section is used as an inverter and is at logic 1; this is about 4 volts. The 1-µF capacitor in the unijunction emitter circuit starts to charge, and fires the unijunction transistor, generating a sawtooth wave at a frequency of 45.5 Hz. The 2N706 transistor is used as an interface between the unijunction transistor and the 7490 TTL decade counter.

The 7490-7442 counter-decoder combination converts the 45.5-Hz sawtooth to a series of 22-millisecond pulses, each through the sequence until the stop pulse is reached on pins 9 and 10 (decimal seven and eight).

Both pins 9 and 10 of the decimal decoder are connected to the gate, giving a 44-millisecond stop pulse. When the counter reaches decimal nine, pin 11 goes low, immediately resetting the flip-flop to
standby and restoring print. The 7490 is simultaneously reset to zero, ready for the next microswitch closure.

The same circuit could be used to generate any RTTY character by proper connections to the 7430 gate. In this circuit only the line-feed character is generated, and it is assumed that the printer is already modified for non-overline; that is, it is only necessary to send a line-feed signal to obtain both carriage return and line feed (kits are available for this*).

installation

The automatic line-feed system described here is compatible with most solid-state transistor or IC RTTY demodulators. However, proper signal polarity must be observed, and the input to the TTL IC must not exceed 5 volts (a zener diode will take care of this). Fig. 3 shows the general interconnection of the automatic line-feed; fig. 4 shows how the ST-3 and ST-4 RTTY demodulators may be adapted, and fig. 5 shows the ST-5.

Power for the automatic line-feed circuit can usually be taken from the demodulator. The logic requires about 80 mA at 5 volts. An LM309K voltage-regulator IC is the most convenient way to obtain the proper voltage from an unregulated demodulator positive supply.

The microswitch is mounted on the teleprinter as shown in the photographs. To prevent ground loops it's necessary to use shielded wiring between the microswitch and the logic. In my unit, I used printed-circuit sockets and phono connectors for easy servicing.

The only adjustment required is that of setting the clock frequency to 45.5 Hz. There are two ways of doing this. One is to temporarily disconnect the reset line at pin 11 of the 7442 decoder; this makes the clock run continuously so its frequency can be measured with a digital frequency counter, if the 10k potentiometer will not reach the proper setting, change the 27k resistor to another value to compensate for wide tolerances in the electrolytic capacitor. If you do not have access to a frequency counter, simply adjust the clock for proper line-feed operation while manually actuating the microswitch.

*Modification kits for non-overline are available from several sources, including Typetronics, Box 8873, Fort Lauderdale, Florida.

references
multi-function

fm repeater decoder

This multi-function Touchtone-actuated repeater decoder provides over 3500 different functions with a 16-button pad.

A repeater usually has some sort of simple control system that requires, perhaps, one tone to turn the repeater on and a timer to shut it off. Some of the more elaborate systems use Touchtone coding which allows the users 12 different functions (or maybe 16) by using the pad from a Touchtone telephone. These functions may be: repeater on; repeater off; tight squelch; open squelch; 450 link on; 450 link off; etc. The system described here is the next step forward. It uses a three-digit combination that provides facilities for up to 810 functions using a ten-button Touchtone pad, up to 1464 functions with a 12-button Touchtone pad, and up to 3616 functions using a 16-button pad.

In developing this system, the intention was not to start off with a full 3616 function decoder, but to build a unit so that functions could be added to the decoder in modules as more and more functions were required. It was decided that it would be easiest to add functions in modular groups of ten. In the decoder described here, up to ten of these modules (100 functions) can be added to the basic decoder. By adding four more integrated circuits, another ten modules can be added (a total of 200 functions). Still another set of ICs will expand the system to 1000 functions.

This article describes a basic 20-function decoder that can easily be expanded to 100 functions. Instructions for further expansion are also included. The decoder consists of many subsystems, some of which may be eliminated or replaced with an existing design. Each subsystem is a distinct entity and may be useful for other purposes apart from this particular decoder.

In addition to the three-digit decoder, which consists of a memory unit and function modules, this system includes a base tone decoder, two different prefiltering systems and a display. Either of the two prefiltering systems may be used to increase the differential tone input range to the tone decoders. The display converts Touchtone coding to binary, and then uses a seven-segment display and binary decoder/driver to display 16 different characters, corresponding to the 16 buttons.

basic touchtone decoder

There are several reasons for using phase-locked loops for tone decoders: their small size, excellent bandwidth, relative immunity to bandwidth with level changes and their ability to decode Touchtone signals when the levels of the two tones differ by as much as 6 dB. However, they are expensive — about $9.00 apiece, and there are eight required for 16 digits, seven for 10 or 12 digits.

The tone decoder circuit in fig. 1 is typical. Proper resistor values for each of
eight tones are included. Audio, on the order of 200 mV rms is applied to the input of the IC. Each chip has its own RC combination for timing, and will respond only to the tone that it is timed for. Each IC produces a low output when its tone is being received and rests at +5 V. Bandwidth for these decoders with 200 mV rms input and the filtering capacitors shown in the schematic is on the order of 70 Hz.

The decoder, as shown in the schematic, requires the level of the two different tones (differential tone level) to be within 6 dB of each other. This level imposes a fairly stringent requirement on the audio response of the repeater receiver and the repeater users transmitter. Rather than requiring all users to clean up their transmitters, it may be easier to build a pre-filter to increase the differential response of the decoder.

prefilters

Two different prefilter systems were built and tried; both will be described here. One filter system is completely passive. It has two bandpass filters, one for the high group frequencies, the other for low group frequencies. These filters are built from standard 88-mH toroids and off-the-shelf capacitors and require no tuning. Schematics for these two filters are shown in fig. 2.

The other filter system is considerably more elaborate. It basically consists of notch-filters cascaded together with an active limiter at the output and is used for band-reject filtering at the input to the tone decoders. Consequently, all the high-group tones are rejected at the input to the low-group decoder and vice-versa. The schematic for this filter is shown in fig. 3. Tune-up instructions for these filters will be discussed under construction. The passive bandpass filter furnishes an additional 16-dB minimum isolation between the decoders while the active band-reject filters supply a minimum of 20 dB. This allows a total differential tone range of 22 dB for the passive filters and 26 dB for the active filters.

The advantage of the notch-filters over the bandpass filters is that with the notch-filter, the input of the tone decoder is looking at the entire audio spectrum except for the tone that is notched out. This requires that the overall signal-to-noise ratio be better than 6 dB for the decoder to function. With the bandpass filters, the input of the tone decoder looks at a very narrow portion of the spectrum, and the unit will work with very marginal signal-to-noise ratios.
The schematic for the display is shown in fig. 4. Notice that DTL logic is used instead of TTL. This is so that wired-OR can be used at the input to the inverters driving the binary to seven-segment display driver (MSD047). If TTL logic is to be used, all gates with the exception of U1 must have open-collector outputs and associated pull-up resistors. Another factor to be considered is that the display logic requires positive logic while the Touchtone decoder shown here furnishes negative logic. For operation directly from the decoder, inverters will have to be used between the decoder outputs and the display logic inputs. A Monsanto MSD047 decoder-driver was chosen; however, an SN7447A could be used in place of the Monsanto unit.

memory unit

The operation of the memory unit requires some explanation. Basically, it consists of a recognizer (which recognizes legitimate Touchtone signals and not noise), an access system which has access to the memory, a counter to count digits and the memory itself (see fig. 5).

Essentially, the memory unit works as follows. The access command is sent to the decoder. This single-digit Touchtone command resets the counter and enables the system to store the next three digits in the memories. After the next three digits are sent, the unit produces an output to tell the function modules that there is a command in memory (command enable), and to shut the access to the memory down until the next access command is sent. It is possible to use single row or file accessing, as is common on the West Coast, with minor circuitry changes.

The four high-group tone decoders are applied to the clock on one set of four lines, while the four low-group tone decoders are applied on another (fig. 6). Each group of lines is looked at by a set of exclusive OR gates (U7 and U8). These gates produce an output only when one of the high-group lines and one of the low-group lines go low. This happens only when a legitimate Touchtone command is being sent.

Since this integrator has a 100-ms time constant, the 311 comparator will fire...
only if the command is present for more than 100 ms. The output of the comparator is connected to a one-shot so that a pulse is produced when the comparator fires. This 7-ms pulse is produced 100 ms after a button is pushed on the pad. This NOR gate output goes high when the access digit is being sent. The output of the access programmer resets the four-bit counter, resets the access flip-flop (U15), and starts the NE555V timing. The Q output of the access flip-flop is connected to the j-k inputs of the four-bit counter. In this manner the counter may only count as long as this flip-flop is reset. The Q output of the access flip-flop is inverted, and then sent to the function modules as an indication that there are three digits in memory (command enable).

The NE555V is triggered by the access digit and its output remains high for only three seconds. In this way the access flip-flop can only be set if the inhibit signal appears on the clock line before the NE555V times out. If the inhibit does not occur, the flip-flop does not get set, and the command enable line does not go active. This keeps the decoder from accidentally hanging-up when an access digit is sent and not followed by three more digits within a three-second span.

The four-bit counter consists of one dual j-k flip-flop, U12, three dual-input NAND gates and a two-input NAND gate (fig. 7.). The counter is programmed so that when it is reset, output 1 is high, outputs 2 and 3 are low, and output 4 is high. Output 1 occurs when the counter is reset by the access command. Output 1 is connected to the first digit memory (1st digit memory enable). This high input to these two memory units allows them to look at their input and remember what it was when this line goes low again.

fig. 4. Display logic. U1 is a MC1809P; U2 is a MC837P; and U3, U4 and U5 are MC846Ps.
If a *digit present* pulse appears at the input to the counter, the counter will advance, making output 1 low and output 2 high with no change in outputs 3 or 4.

Thus, the digit that was present when the *digit present* pulse occurred is stored in the first digit memory, and the second digit memory is ready to accept a digit. When the next digit is sent, another *digit present* pulse is produced, locking this digit in the second digit memory and allowing the third digit memory to accept a digit. The same thing happens when the third digit is sent, except that output 4 now goes low which sets the access flip-flop so that no more *digit present* pulses may get to the four-bit counter unless it is accessed again. The access flip-flop can be set only if the NE555V has not timed out. Therefore, output 4 of the counter must occur within 3 seconds after *access* or the access flip-flop will stay reset.

The memory consists of two SN7475 quad latches for each digit (fig. 8). The output of the memory to the function modules is from the Q outputs. The unit is so constructed that resending the *access command* at any time resets the four-bit counter and reaccesses the counter input, as well as restarting the NE555V. Thus, the *access command* can be sent at any time to restart the decoder. By the same token, this *access digit* cannot be used as a digit in the three-digit command.

For single rank or file accessing (i.e., single-tone produced by pushing two adjacent buttons on the pad), the following addition must be made. For single-tone, low-group accessing, a four-input NAND gate is installed between gate 2 and the high-group tone decoder inputs. The output of this added gate is connected to pin 12 of gate 2, and the inputs are connected to the high-group tone decoder inputs. This gate functions as a NOR gate in this configuration, and gate 2 will now produce an output only when none of the high-group tones are present and when the low-group tone, to which the other input of the access programmer is strapped, is present. For single-tone, high-group accessing, put the added gate between the low-group decoder inputs and pin 11 of gate 2.

Function modules

The function modules are built in groups of ten. One pair is shown in fig. 9. Each pair of functions are electrically the same, except for programming. Each group of ten functions is prefaced by hex-inverters on the memory output lines for fan-out; this is why the number 10 was chosen for a group of functions. Each function module is an eight-input NAND gate, followed by a two-input NAND gate. One of the eight inputs is permanently tied high, so the gate functions as a seven-input gate.
Programming is accomplished by tying two of the inputs to the right coding for each digit. The seventh input is tied to the command enable line. In this way, if the right three digits are in memory, and the command enable is active, the eight-input gate will produce a low output. The output of this gate is applied to one input of a two-input NAND gate. By strapping with the next adjacent command, it is possible to use one three-digit combination to turn something on, and another three-digit combination to turn something off. If latching output such as this is desired, then strap 2 and 6 together, and 3 and 5 together. Then command 1 will remain high until command 2 is sent, and command 2 will remain high until command 1 is sent. If momentary outputs are desired, i.e., the output only stays high until the next time the access digit is sent, strap 1 and 2 together, and 4 and 5 together.

construction

Printed-circuit boards were used for the tone decoders, each of the pre-filters, the memory unit and the function modules. Three of the display logic assemblies were built on one wire wrap card, due to the high density. The tone decoder board has provisions for 8 circuits. Do not try
to substitute values for any of the capacitors, otherwise you may have bandwidth and/or temperature stability problems.

The best way to set the center frequency of each decoder is to connect a counter to pin 5 of the decoder being aligned and adjust the pot for the proper center frequency.

For use without prefiltering, all inputs to the decoders are tied together and a 1 \(\mu F \) coupling capacitor is used to connect this common input to the audio input. When using either of the prefilers, the audio inputs of the four low-group decoders are tied together and called the low-group audio input; the four high-group decoder audio inputs are tied together and called the high-group audio input. When using the passive prefilter, both the low-group audio input and the high-group audio input are connected to the output of its filter through a 1-\(\mu F \) capacitor.

When building the passive prefilter shown in fig. 2 it is essential that the capacitor values be exactly as shown. There is no tuneup necessary for these units. However, the input and output impedances are critical. Each filter must see 600 ohms at both input and output. Connect the filters as shown in fig. 10. If a 600-ohm line is available for use, the 600-ohm resistor can be removed. If all that is available is a speaker line, use an output transformer backwards to jack the impedance up.

The active prefilers are built on two identical PC cards, one for the high group, the other for the low group. It is easier to begin tuning this filter before it is constructed. Temporarily connect C1 across an 88-mH toroid. Install the combination in the test fixture shown in fig. 11. Measure the resonance point of the combination. This is indicated by a peak on the voltmeter. Chances are, the peak will not correspond with the needed frequency. For low-group, C1 should produce resonance at 697 Hz, C2 at 770 Hz, C3 at 852 Hz, and C4 at 941 Hz. For high-group, C1=1209 Hz, C2=1336 Hz, C3=1447 Hz and C4=1633 Hz.

In all cases, the resonance should be lower in frequency than desired with the capacitors called for in fig. 3. To tune the combination to the proper frequency, start removing turns from the toroid. Remove turns equally from both windings. After tuning, install this LC combination on the circuit board. Connect C2 across another toroid, install in the jig, and continue as above, tuning the combination for 770 Hz. Do the same for C3 and C4.

Temporarily install 2000-ohm resistors at RB2, RB3 and RB4. Do not install RA1, RA2, RA3 or RA4 at this time. Connect an audio oscillator and counter to the input of the filter board. Check the resonant frequency and notch depth of first tuned circuit by connecting an ac voltmeter to the emitter of Q2. Use a decade resistance box for RB1 to determine the correct resistance for the deepest notch (typically 50 dB). It may be necessary to add or subtract turns from the toroid to finalize the frequency of the notch.

Install a fixed resistor for RB1 and connect the decade box where RA1 should be. Determine the value of RA1 required to broaden the notch to \(\pm 10 \) to 15 Hz. This should bring the notch depth to about 20 dB. Permanently install RA1, and continue on to the next frequency by removing the temporary RB2 and replac-
ing it with the decade box and moving the voltmeter to the emitter of Q3.

access programming

Pick one of the digits on the Touch-tone pad for access. Let's use 0 as an example. Referring to table 1, digit 0 is low-group 4 and high group 2. Run jumpers from high-group tone decoder 2 (1336) and low-group tone decoder 4 (941) to the two-input NOR gate used for access. This is all that is required for access programming.

To program the decoder for specific digit combinations, pick three digits (except for the access digit). Let's use 159. Referring to table 1, digit 1 is high-group 1, low-group 1. Run jumpers from the first digit memory outputs high 11 (1H1) and low 1 (1L1) to two of the inputs on the eight-input gate. This programs first digit one.

Referring again to table 1, digit 5 is high-group 2 and low-group 2. Run jumpers from second digit memory outputs high 2 (2H2) and low 2 (2L2) to two more of the inputs of the eight-input gate. This programs second digit 5. Digit
9 is high-group 3, and low-group 3. Run jumpers from third digit memory outputs high 3 (3H3) and low 3 (3L3) to the last two inputs of the eight-input gate. This programs third digit 9. Now, whenever the access digit is sent followed by 159, the output of this module will go high. Note that if access digit and then 519, 951, 195 or 915 or any other combination of these 3 digits except 159 is sent, nothing will happen.

complete system

The complete unit consists of the sub-assemblies installed together in a box. It was decided to make the unit rackmountable. In keeping with the easy-to-expand philosophy, it was decided to mount everything except the function modules in one chassis. The function modules were mounted in a separate chassis so that more and more chassis could be added as expansion is required. On the initial model the tone decoders, prefilters, memory, three-digit display and power supply are mounted behind one 1¼-inch panel.

The three-digit display consists of three of the circuits shown in fig. 4 and are connected to the NOT outputs of the quad latches on the memory board. Therefore, the display displays the three digits in memory, even if the three digits are not a command. This chassis has a BNC connector for audio input, a fuse, a 9-pin connector for power output and a 25-pin connector for logic output.

Two of the ten-function module boards are mounted behind another 1¼-inch panel. This gives 20 functions per 1¼-inch rack space. This chassis has two 25-pin connectors, for logic in from the memory unit and logic out to the next function-module unit and a 9-pin connector for power.

Expanding the decoder is simple. Up to ten groups of ten function modules can be added in parallel with each other.

<table>
<thead>
<tr>
<th>low group</th>
<th>high group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 3 4</td>
</tr>
<tr>
<td>2</td>
<td>4 5 6</td>
</tr>
<tr>
<td>3</td>
<td>7 8 9</td>
</tr>
<tr>
<td>4</td>
<td># # #</td>
</tr>
</tbody>
</table>

with no other consideration. Adding another set of ten groups can be accomplished by adding inverters between the NOT outputs of the memory and the NOT output of the command enable flip-flop and driving this set of ten groups from these inverters. More sets of ten groups can be added as above, until there are a total of ten sets being driven by the NOT outputs.

summary

As of this writing, three of these decoders have been built. All are in use in different Northern California repeater systems. The unit appears to be very reliable and allows for great versatility in the system.

My profound thanks to Dave Bradley, K6AMA, who did much of the preliminary breadboarding, and to Lance Ginner, K6GSJ, who offered so much skepticism about the unit working, that he forced me to actually build it.

ham radio
escape from the 2 meter crowd

The all new
220 MHz Clegg FM-21 Transceiver
puts you in tomorrow’s channels today!

220 MHz FM is the early solution to overcrowded 2 meter channels. Here’s your chance to get in on the ground floor of the FM future. The new FM-21 all solid-state transceiver is an opportunity to “do it right” this time and start with the leader. The FM-21 uses only 1 crystal in any channel . . . one crystal gives you a separate transmit and receive frequency as well as automatic 1.6 MHz programming in the repeat mode. We call this unique triple-duty crystal feature Clegg Crystal Saver Frequency Control. For the complete story, see your Clegg Dealer or call or write us today for detailed data sheet and avoid the crowd.

Amateur Net $299.95

CHECK THESE FEATURES
- 8-10 watts output (minimum).
- Speech clipping.
- Sensitive receiver—$25 μV (max.) for 12 db Sinad.
- Selectivity—Adjacent channel (40 KHz) down 50 db.
- Each crystal does triple-duty, providing a transmit and receive frequency (Crystal Saver Frequency Control).
- Monolithic crystal filter.
- Compact, rugged, attractive.
rf sampling network —
the Milli-tap

This unit allows accurate measurements of rf voltage, vswr, frequency, spectrum and power without materially affecting the vswr on the line.

Most amateurs use coax transmission line to deliver their transmitter output to the antenna. While there are many test units that will give an indication of what goes on inside the line — such as directional wattmeters, impedance and vswr bridges — high-quality instruments are priced beyond the operator’s pocketbook. Those of lesser quality are not only inaccurate but can themselves upset the transmission line circuit to compound errors. In an effort to solve this dilemma, the Milli-tap was developed and its specifications disclose the advantages to be gained.

First, its vswr is less than 1.08:1. Hence, it can be put into a line without materially degrading the system. The attenuation to signals in the coax line is virtually zero (the major loss is in the chassis connectors themselves), and the attachment of readout instruments such as vtvms, oscilloscopes or whatever have no effect on the line operation. The test signal measurement point provides very close to 1/1000th of the coax line signal level across 50 ohms and hence duplicates in miniature the voltage in the line itself. With the recommended parts it can be used with transmitters running the full legal maximum power on CW, a-m or ssb.

construction

Construction is made easy by using an LMB “Tite-Fit” aluminum chassis, 4 x 2 1/8 x 1 5/8 inches in size. All of the circuit is constructed in one half of the chassis with the other forming the cover. The drilling layout appears in fig. 1. The heart of the unit is the air coax section, and this is where to begin. Each of the female uhf coax connectors (SO-239) is
altered by carefully sawing off the terminal and then filing it to a length of about 1/32 inch. The photograph shows how each will appear when finished. Apply a touch of solder to the stud end, wipe clean while hot and mount in the chassis holes with 6-32 machine screws and nuts. Tighten lightly as the screws will be removed later.

At this point, install the BNC female fitting which will provide the test signal point. In order to stay as close as possible to an impedance of 50 ohms, the brass center conductor rod should be machined from 5/16-inch stock to a diameter of 0.270 inch and a length of 1-16/32 inches. If you do not wish to be a purist, quarter-inch rod can be used, although the overall accuracy will suffer. The center of each rod end is drilled to a depth of 1/16 inch using a number 30 drill. A hole is also drilled in the center of its length with a number 60 drill to a depth of 3/16 inch. Use the edge of a thin file to create a flat notch centered on this small hole to a width of 1/8 inch and a depth of 1/16 inch.

Heat one end of the rod while holding it vertical and melt enough solder into the end hole to fill it almost to the top. After cooling, do the same to the other end. File away any excess, clean out each hole with the number 30 drill to a depth of 1/32 inch.

Next prepare R1 by cutting one lead to 1/8 inch and the other to 3/16 inch. Tin both ends. Heat the center conductor rod with a heavy soldering tool on the opposite side of the center hole and place a very small amount of solder in the small hole. Keep the rod warm and insert the 1/8-inch end of the R1 into the hole until the body of the resistor fits all the way down in the slot. Cool it well without moving the resistor or rod. Clean off any excess solder from the area. Place the rod between the coax plug terminal stubs by first clipping one rod end over the terminal stub and then the other. You should be able to preliminarily position it so R1 is parallel to the back of the chassis and projects toward the test signal terminal. Again heat each end of the center connector rod until it slips over a coax terminal. Some amount of solder will be forced out of the joint as the chassis box edges are clamped toward each other. Clean it away using a knife or file. The photograph shows the assembly complete to this point.

outer conductor

The outer conductor is next cut from
0.003-inch brass shim stock using lightweight tinsnips to form a rectangle 1-26/32 inches wide by 1 31/32 inches long. Carefully drill a hole 1/4 inch from a short edge, centered on the sheet, with a number 26 drill. See fig. 2 for detail. Using a piece of half-inch dowel or a half-inch drill shank, form the conductor sheet into a cylindrical shape. Remove the nuts and bolts holding the female uhf coax connectors and, after slipping R1 through the hole in the conductor sheet, form it around the shoulders of the connectors. Cut four pieces of solid number 24 to 28 AWG tinned bare wire and pass them around the line assembly, twisting the ends with long nose pliers until the conductor sheet edges meet smoothly. The chassis should now appear as in the third photograph (the upper soldering lug was not used in the final version).

After rotating the uhf connectors so that their holes and the chassis holes align, the outer conductor is finished by applying solder to the point where each of the four retaining wires crosses the gap. Put a generous drop of solder on the top of a hot iron and apply it to the bottom of the outer conductor so that solder will not flow inside the line. After inspecting to see that each retaining wire is secured to each edge of the outer conductor sheet, use small diagonal pliers to cut the wires on each side of the joints. Replace the nuts and bolts securing the uhf connectors, but this time bend two solder lugs into right angles so that when placed under the top nuts on each connector the flat side of the lugs will be right at the surface of the outer conductor. Solder each lug after the bolts and nuts have been tightened. The air coax section is now finished. Next install the attenuator network R2, R3 and R4 as shown in fig. 3 and the photograph.

The unit is now ready for final testing. This is accomplished by using a voltage source of from 100 to 300 Vdc or a 60 Hz ac voltage which is connected between the inner conductor of one of the uhf plugs and the chassis. Be certain to exercise every precaution to avoid personal contact with this high voltage. Measure this source voltage carefully using the most accurate voltmeter you have available. Next measure the voltage across the BNC test signal point. It should be 1/100th of the applied voltage (0.1 volt for 100 volts, 0.3 volt for 300 volts, etc.). As resistor tolerances are rather wide and the effects of heating during soldering are unpredictable, an exact 1000 to 1 division may not occur; however, tests with several of these units have shown very close results.

If you are satisfied as to the accuracy of your voltmeter but an exact 1000 to 1
ratio does not exist, change the value of R3 up or down as needed to get the exact division. It should be noted that while this test is carried out with dc or 60-Hz ac, it can be made at any rf frequency and the values of the attenuator changed to obtain even greater accuracy at your frequency of interest. Tests have shown, however, that for ranges up to 56 MHz, the dc or ac check is generally sufficient. After testing fit and bolt on the cover portion of the chassis.

operation

To use the Milli-tap, simply insert it in your coax line at any convenient point near your transmitter. If you wish to check power, load into a 50-ohm non-reactive dummy load and read the voltage at the test signal point on a vtvm with an rf Probe or on an oscilloscope. Most vtvms are calibrated with rms values. Remember your scope will show peak values. Apply the formula

\[P = \frac{(1000E)^2}{50} \]

where E is the voltage measured at the output tap, to determine the power being transmitted in the line. Please note that this power test is accurate only if your antenna feed point is truly 50 ohm non-reactive in nature and you are using true 50-ohm coax or if you are feeding a 50-ohm dummy load through 50-ohm coax. If the foregoing is not true, then the actual power cannot be determined without first determining the impedance existing at the point where the Milli-tap is inserted into the transmission line. However, it can be used for relative power measurements and for other purposes as noted below.

The Milli-tap also furnishes a means of determining vswr by use of two one-eighth wavelength sections of coax line for the frequency to be used which are inserted in the antenna transmission line as shown in fig. 4A. The Milli-tap is then inserted in turn into the three junctions that result, and voltage readings are recorded with a constant power applied to the line in the manner described by Fisk.³

Another less sophisticated approach is to utilize a single quarter-wave line section at the frequency of interest, per fig. 4B. Apply some convenient level of transmitter carrier power and read the voltage at signal test point A. Next remove power and move the Milli-tap to the opposite end of the quarter-wavelength section. Restore the same amount of power and again read the voltage. Obviously, if the voltage readings are essentially the same the system being measured is close to a true 1-to-1 vswr. If not, adjustments can be made to the antenna with further construction stage in which the air-coax outer conductor is being formed and held in place by twisted wires. Note resistor R1 which is led through the hole drilled in the sheet brass.
measurements to minimize the voltage difference.

An hf oscilloscope can also be connected to the test signal point in order to observe the wave shapes produced by the transmitter or a spectrum analyzer can be tapped in to examine carrier suppression, sidebands, harmonic or spurious signals. Likewise, a sensitive frequency counter can be so connected to monitor carrier frequency. Less sensitive counters may be used by utilizing an amplifier to raise the level of the test signal to that required by the instrument. Many other test applications are possible and provided the maximum voltage in the coax line itself does not exceed 325 volts rms (which represents over 2000 watts PEP in a non-reactive 50-ohm line). Other test procedures will suggest themselves to the reader, and due to its simplicity, the Milli-tap should give a lifetime of performance.

references

The Argonaut has a stalwart new companion—a Solid State Linear!

Model 505 Argonaut
A Complete Low Power Transceiver, 10-80 Meters

Model 405 Linear
For Medium Power, 10-80 Meters

Here is the ultimate in station flexibility—The Argonaut plus the new Model 405 solid state linear amplifier. Now, you can enjoy the fun and extreme portability of QRP yet increase power 25 times by adding the “405” amplifier—simply and easily.

The “405”, with less than 2 watts RF input, produces 50 clean sine wave watts to the antenna. Yet, it retains utter simplicity in installation, operation and tuning.

With the “405” there is no “tune-up”. Just select the desired band. That’s all. Change bands in seconds with no danger to the final amplifier. Even with the wrong antenna.

Two meters constantly monitor the output in RF watts and SWR. No switches or controls to delay band changing.

The antenna changeover is exciter actuated with front panel time delay control. It can be set for nearly instant CW break-in or optimum hold time for SSB.

The portability of the “405” is unequaled. Weight is just 2½ pounds and the size 4½" x 7" x 8". The power supply for 115/230 VAC is about the same size and weighs 8 pounds. It is a separate unit so it need not be included in a mobile installation or where 12 VDC is available.

The “405” will retain its stamina for the years ahead. Computer estimated life of the output transistors is 25.7 years. That’s a lot of QSOs, a lot of fun and excitement.

TEN-TEC products are sold by selected dealers. If one is in your trading area, by all means patronize him. It will help you and Amateur Radio. However, if it is more convenient, send your order directly to us. Include $2.00 for shipping. (Tennessee residents include 5% sales tax.) Write for catalog and specifications.

Argonaut, Model 505 $288.00
Linear Amplifier, Model 405 149.00
Power Supply, Model 250 (Will supply both units) 49.00
Power Supply, Model 210 (Will power Argonaut only) 24.95
Microphone, Model 215 17.00
Keyer, Model KR5/605 34.95

TEN-TEC, INC.
SEVIerville, TENNESSEE 37862
tunable six- and ten-meter phase-locked loop

This novel circuit is based on the use of a D-type flip-flop.

Dual or triple conversion in VHF receivers is a common method of obtaining the adequate frequency stability required in modern communications systems. The crystal-controlled first oscillator heterodynes incoming signals to a lower band where tunable oscillator stability is acceptable. Single conversion using a high i-f such as 9 MHz and a tunable heterodyned first oscillator is another approach. A frequency-synthesized first oscillator is yet a third technique, but currently too costly for ham use. Described here is an inexpensive version of a circuit developed by Motorola.\(^1\)

This circuit uses the unusual properties of a type-D flip-flop operating as a mixer, phase locking a VHF oscillator to a stable broadcast-band VFO. In this unit a VFO, tunable from 0.5 to 1.5 MHz, has a locked oscillator tracking it from 48.4 to 49.4 MHz. This latter signal mixes with 50- to 51-MHz signals and heterodynes them into a fixed i-f at 1.6 MHz (a solid state car radio).
Vhf stability is the same as the vfo which can be made very stable and easily checked against broadcast stations. There is nothing special about the various frequencies; these can even be chosen to obtain conversion to 20 meters.

D-type flip-flop

Since the most intriguing item in this circuit is a D-type flip-flop, some parameter tests were run on a common SN7474N. It performed very well for clock frequencies up to 9 MHz, and with the D input signal, ran up to about 80 MHz. Normal operation causes an odd sort of square wave to be developed at the Q and Q outputs; if the inputs have crystal stability, the beat-frequency output, as measured on a counter, will also have the same stability, even though the scope trace may indicate timing jitter.

Initial checks were carried out using an FT243 crystal on 6.747 MHz and an old General Radio 1001A signal generator. Although it was capable of driving the D input with a necessary minimum 2-volt sine wave, it was found that identical results could be obtained by setting up a 1.3-volt dc bias, and ac-coupling a 0.1 V rms or larger rf signal in. This also simplified the buffer circuitry installed later. Setting the generator on 48.229 MHz produced a 1.0-MHz beat with the seventh harmonic of the crystal at 47.229 MHz. This beat was stable to a few Hz for minutes at a time.

circuit adjustment

Satisfied with flip-flop mixing performance, my attention next focused on the MC4044P edge-triggered phase detector which requires TTL logic swings for operation. One input is fine as it comes from the flip-flop. The other input, vfo derived, starts out as a low amplitude sine wave and this must be squared up to develop a proper driving signal. One half of a 7413 dual Schmitt trigger was used initially and worked alright, but in the interest of reducing cost and improving isolation, RTL squaring amplifier was used in the final design.

The jfet source-follower dc output level must be optimized. I found that for this circuit correct adjustment for maximum lock range requires the following procedure: Set vfo to 1.0 MHz. Close push-to-test switch, which applies 1.65 V to the gate, then vary source resistor to obtain either 2.6 V on pin 8 of the 4044 or a mid-scale reading on a 5-mA meter.

Complete printed-circuit layouts for the PLL are available from ham radio magazine for 25 cents.
(see fig. 1). Next, tune vco to wanted frequency, then release switch.

Phase locking will take hold and may be verified by meter tracking of any further tuning-slug change. Set slug for a mid-scale reading. That's it. Vfo tuning limits will cause a current variation of about plus or minus 1 mA. If a voltmeter is used, pin 8 will be 2.0 V at 1.5 MHz and 3.2 V at 0.5 MHz. Maximum possible swing is 1.0 to 4.5 V.

A pilot lamp and transistor wired as shown in fig. 2 is entirely adequate in lieu of a milliammeter. A steady full on or off lamp condition when vco tuning is changed means out-of-lock, while half normal brilliance indicates lock-up. Correct circuit adjustment follows the same procedure as before, first setting up 2.6 V on pin 8 of the 4044. With the vfo on 1.0 MHz, alternately depress and release push-to-test switch while varying vco tuning until there is no change in lamp brightness. This corresponds to a midscale current meter reading. Lamp glow will change slightly for full vfo coverage.

fig. 1. Circuit of the tunable 6- and 10-meter phase-locked loop. L1 is 6 turns no. 28 enameled (48-54 MHz) on a CTC 3/16" slug-tuned form; use 12 turns no. 28 for 26-32 MHz.
A scope connected to pin 9 of the 7474 is very useful in observing the in-lock and out-of-lock square wave present there. Depending upon vco tuning, its frequency will be anywhere from zero to several MHz unlocked, but exactly the same as the vfo when phase locked. RTL buffer output has unsymmetrical fast rise and fall pulses, with edges being in the order of 30 nano-seconds. A pair of inexpensive MC1350P wideband amplifiers provide excellent isolation and amplification of the vco. This oscillator uses only stray capacitance across the tank coil to maximize pull range of the Epicap diode.

fig. 2. Alternate phase-lock indicator using a number 49 pilot lamp.

The slug-tuned vfo is built from a car radio tuner. Its normal 0.55- to 1.6-MHz spread may be used unaltered, but the high-end signal tends to come through directly on a 1.6-MHz i-f, so this one was fudged to cover .5 to 1.5 MHz. Lacking such an assembly, a Colpitts vfo may be built using a dual-section 420 pF broadcast variable and fixed inductor. RTL buffer drive would be via a link.

An earlier version of this phase-locked loop used a MC4024P dual voltage-controlled multivibrator. One half functioned as a crystal-controlled oscillator while the other half amplified and squared up the vfo signal. Crystal oscillator warmup drift was unacceptable mainly because a high harmonic is used for mixing. Also, chip isolation was insufficient in preventing integral harmonics of the vfo from zero beating with the crystal and developing enough spurious variation in Epicap control voltage to randomly push the vco frequency around a few hundred Hz. This is because pull range is something like 1 kHz/mV. Therefore, control signal purity is extremely important.

circuit operation

This circuit, in a room temperature environment, has frequency drifts from start-up amounting to about 3 Hz for the crystal oscillator and not more than ten times that for the vfo. Total drift of the locked vco is less than 50 Hz at 48 MHz; a few half-hour runs made during testing checked out at about 38 Hz. For minimum waveform distortion, the untuned buffer should work into a moderate impedance of a few kilohms such as the resistive-loaded input of a dual-gate mixer. The buffer may have a tuned tank and link coupled output if you desire.

Wired as shown, signals at pins 1 and 3 of the phase detector produce direct tracking. That is, as the vfo moves up in frequency, so does the vco. If these leads are interchanged, tracking inverts and this mode may be useful, depending upon
If test equipment is available to monitor the phase-locked loop, an informative experiment can be run to induce this malfunction by using a low-end 80-meter crystal, vfo set near its high end, vco locked, and rapidly changing the vco slug tuning. These worst-case factors are absent in normal operation, of course, but confidence in the circuit is gained by being aware of its limitations and operating within such bounds.

An additional tradeoff for simplicity is that each 1-MHz tuning range will require another crystal as shown on the chart. Frequencies listed do not have to be matched exactly; vfo dial calibration will take care of it. One exception appears in the transmitter control list where a single 5.500-MHz crystal serves for the first 1 MHz on 6 and 10 meters.

Table 1. Crystal chart for using the phase-lock signal for transmitter control. The 48-MHz output may be multiplied three times for use on 144 MHz.

<table>
<thead>
<tr>
<th>vco output MHz</th>
<th>crystal frequency MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0/51.0</td>
<td>5.50, 6.18, 7.07, 8.25</td>
</tr>
<tr>
<td>51.0/52.0</td>
<td>5.61, 6.31, 7.21, 8.41</td>
</tr>
<tr>
<td>48.0/49.0</td>
<td>5.27, 5.93, 6.78, 7.91</td>
</tr>
<tr>
<td>48.33/49.33</td>
<td>5.31, 5.97, 6.83, 7.97</td>
</tr>
<tr>
<td>28.0/29.0</td>
<td>5.50, 6.87, 9.16</td>
</tr>
<tr>
<td>29.0/30.0</td>
<td>5.70, 7.12, 9.50</td>
</tr>
</tbody>
</table>

Summary

The engineers at Motorola have certainly come up with a very clever circuit that should find its way into many hf and vhf amateur-band receivers because of low cost and high performance. It should also make a dandy low-drift and stable transmitter frequency control. In addition, the PLL technique neatly sidesteps problems of spurious emissions due to unwanted mixer products getting into the output signal.

Reference

Gentlemen:

Just have to drop you a note and tell you what a tough little rig the TR-22 is. I have been using mine mobile in the car and on my motorcycle and portable at the office.

Yesterday, I had it strapped to the luggage rack on the motorcycle and was working motorcycle mobile on the way to work. Unfortunately, I took a new road that turned out to be rougher than anything I had previously been on with the radio. I suddenly caught sight of the TR-22 in the rear view mirror bouncing along the pavement behind me. I was doing about 40 MPH and was dragging the TR-22 by the mike cord. I drug it for at least a block before I stopped.

The carrying case was pretty torn up and the antenna was snapped off right at the case. I returned home and hooked it up in the car and it works like it always did.

The TR-22 certainly lived up to all the expectations I had for it after owning the TR-3 and RV-3 for many years.

But you don’t have to take Gene’s word for it...we’ll be happy to see that you get a TR-22 so you can try it yourself. At your distributor: $199.95

Gene C. Berrier

R. L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342

Phone: (513) 866-2421 • Telex: 288-017

January 1973
In an article entitled, "Improved Two-meter Preamplifier," which appeared in the March 1972 issue of *ham radio*, I described an easy-to-duplicate, non-neutralized two-meter preamplifier and offered to make kits available to other amateurs. The response to the article was overwhelming. Apparently, there is quite a need for such units; something which comes as no great surprise. Among the replies received were many interesting notes describing experiences of others in trying to build preamps for a variety of uses.

Of course, I did my best to answer the many questions received including the numerous requests for information on adapting the two-meter unit to 50,220 and 432 MHz. The mail prompted not only the design for the new six-meter preamp described here, but also some additional work in refining the existing two-meter preamp. Among other things, the overall size was reduced by half, and

improved
six-meter
preamplifier

A six-meter version of a popular two-meter unit along with hints and improvements for both units
the input circuit was made considerably sharper to provide additional out-of-band rejection. The six-meter preamp in this article reflects the refinements developed for the new two meter unit.

The schematic of the six-meter preamplifier is shown in fig. 1. The design parameters are essentially the same as previously detailed in the March issue. Suffice it to mention that the circuit is an ac-coupled cascode configuration, without the need for neutralization. Therefore, anyone can tweak it to his heart’s content, without throwing it into oscillation.

In construction, the six-meter preamplifier is very similar to the one described and illustrated in the previous article. The unit is built on a printed-circuit board, with one shielded coil at each end and the junction field-effect-transistors with their related parts in the center. Coils are a special adaptation of a commercial plastic coil form which is not generally available to amateurs and use 10-32 slugs made of iron 9 material. The preamp may also be made with other coil forms and shields; however, the tricks are to establish a good layout for shielding and to discover how many turns of wire are required. The diligent experimenter with a vhf signal generator and an rf millivoltmeter of some sort should have no great difficulty if he observes normal vhf construction techniques.

For the amateur not so well equipped or the experimenter who doesn’t wish to re-invent the wheel, kits and wired units are available, complete with detailed construction information.* Clubs may wish to obtain kits for construction as a group. This type of project has been tried in this area with projects much more involved than this, and they have been very successful. Table 1 lists coil and capacitor data for the preamp. Although you may not duplicate the parts exactly, the table should serve as a guide for selecting alternate components.

test setup

Several readers have asked how to make a test setup for tuning the preamps after construction. As you might imagine, I use quite an elaborate setup, including an HP-608 signal generator, a specially-developed solderless test fixture with spring-loaded pin contacts and an rf millivoltmeter. The fixture includes a built-in 100-ohm load resistor and a built-in detector circuit although a resistor at the end of your coax cable or soldered to the board will also work. An

*The following are being made available in conjunction with this article. Both 6- and 2-meter models are available; so specify which you want. A complete parts kit, including drilled printed circuit board, all components, and complete instructions for construction are available at $6.00, postpaid. Completely built and tested preamps are available at $10.00, postpaid. Special frequencies between 25 and 170 MHz are available at $12.00, postpaid. Factory built preamps (only) may be returned for repair for a fixed repair charge of $3 (prepaid) if trouble develops within 90 days (usually damage incurred during installation). Quantity prices are available to clubs and individuals. Contact Hamtronics, 182 Belmont Road, Rochester, New York 14612.

table 1. Component values for six- and two-meter preamplifiers. All capacitances are in picofarads.

<table>
<thead>
<tr>
<th></th>
<th>50 MHz</th>
<th>145 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>C2</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>C3</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>C4</td>
<td>680</td>
<td>270</td>
</tr>
<tr>
<td>C5</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>C6</td>
<td>82</td>
<td>20</td>
</tr>
<tr>
<td>L1 (10-32 form)</td>
<td>8.5 t.</td>
<td>3.5 t.</td>
</tr>
<tr>
<td>L2, L3</td>
<td>5.6 μH</td>
<td>1.0 μH</td>
</tr>
<tr>
<td>L4 (10-32 form)</td>
<td>10.5</td>
<td>4.5 t.</td>
</tr>
</tbody>
</table>

fig. 1. Schematic diagram of the six- or two-meter preamplifier. Parts values are listed in table 1.
An rf probe of the type shown in the ARRL Handbook will work well for initial coil peaking if you have a very sensitive VTM (on the order of 100 mV full scale). The important thing is to keep all leads extremely short.

I use a 100-ohm load instead of a 50-ohm load, since I've found that most receivers present a greater than 50-ohm load to the preamp. Since any high-gain amplifier will take off if you don't load it properly, I do all testing with the high load resistance. There is plenty of reserve gain in the preamp due to the cascode design; so that even if loaded down to 50 ohms or less by the few receivers which do present that low a load, there is ample gain to mask out the noise in the front end of your receiver and improve the sensitivity.

Hints

After you have built your preamp, I suggest that you take a good look at some of the hints and kinks in my previous article. You would be surprised at the problems you can generate if you are careless in completing the installation in your set. I have had people tell me that they had shorted coax cables, high voltage across the 12 volt input line, coil windings wired to the wrong points in the circuit and other assorted accidents. Tran-

![The preamp is built on a small printed-circuit board just over 2-inches long. This photograph is nearly twice actual size.](image)

sistors are very unforgiving; so check everything before firing it up for the first time, especially in the set. Don't wire it into your transmit rf line (easy to do with a transceiver), don't wire with hook-up wire in lieu of coax (it's been done) and don't use a dropping resistor from your 200-volt line without a zener diode (that's been done, too). Look into the power supply section of any good handbook for zener diode regulators if you want to derive your 12 volts from a high voltage line. Handbooks give you all the details on doing it. Make sure that you anchor the preamp down to your set's chassis or case - don't let it rattle around.

I hope that some of these suggestions will help to keep you out of trouble and in good spirits. Have fun with your souped-up receiver.
Now—unexcelled picture performance with exclusive-feature equipment of highest quality in which the most advanced SSTV techniques are expertly applied—are xenon turbomolecular vacuum pumps. Here, carefully considered design has simplified operation to the point where the non-engineer radio amateur can have his SBE Scanvision monitor connected and start enjoying slow scan in just a matter of minutes.

Most of the many hundreds of SSTV'ers now active on the air agree that the full excitement and enjoyment of SSTV can best be realized only when a tape recorder is part of the system. Incoming pics are taped for future viewing on SS monitor—pre-taped pictures, scenes, I-D—can be transmitted. So-exclusive!—every SBE Scanvision monitor has a cassette-type tape recorder built-in—wired—ready to go and selectable with panel switch. Here is the ultimate in convenience.

SBE Scanvision is conservative—reliable, with picture-proved circuitry and is all solid-state except for the scope tube in the monitor and the videocon picture pickup tube, heart of the SB-1CTV camera. Both tubes are standard types with predictable characteristics—not surplus.

High quality is everywhere evident—throughout, the to-be-expected SBE approach—fastidious—professional. The SBE Scanvision, SB-1MTV Monitor, complete with cassette recorder and SB-1CTV Camera with f/1.9, 25mm lens, connect with patch cable to comprise a system. Units are also separately available.
zap that transient

No, this is not a dissertation on killing bums or hitchhikers! Rather, it is some advice on preventing transient voltage surges from killing your solid-state components. These surges, which have a duration normally measured in microseconds or, at most, in milliseconds, still can be deadly to devices that have a limited puncture voltage rating. And that takes in most solid-state components!

Transient high-voltage surges come from so many sources and are so easily (universally?) generated that they are inescapable facts of life which one must expect to live with — and to cope with. They can be originated in either dc or ac circuits, and most often get their start in a brief but destructive life by either the closing or the breaking of a circuit having a flow of current. If, for instance, that circuit contains some inductance, breaking the current flow causes a collapse of the lines of force about that inductor, generating a voltage pulse that can range to surprisingly-high values.

How high? Ten times, if there are no limiting conditions present. That means the innocent-appearing 117-volt power line feeding your power supply transformer can be the source of a pulse peaking at 1170 volts! Usually, though, and we can be thankful for this, there are factors present that limit such wild excursions to a little over twice the normal voltage. But don’t bet your transistors

How to use transient suppressors to protect sensitive solid-state components from high voltage pulses

Carl C. Drumeller, W5UJ, 5824 N.W. 58 Street, Warr Acres, Oklahoma 73122
and diodes on Lady Luck always riding your shoulder; she's notoriously fickle! Those fortuitous circumstances that save our necks (and diodes) usually take the form of intentional or accidental capacitances, resistances and inductances that serve to soften the abrupt thrust of the escalating voltage. A transformer is an excellent example. Fortunately, it's less expensive to produce a power transformer with a poor frequency response; therefore, our 60-Hz transformers simply balk at passing those high-frequency components of the steep wavefront of a transient pulse. Then, too, the effects of turn-to-turn and layer-to-layer capacitance add soothing and smoothing.

If, however, you're using a rectifier connected directly to the power line (a dangerous practice itself), there's no transformer to protect your diode; so you'll have to rely on other factors such as the cold resistance of a 117-volt pilot lamp across the line. There are many circuits, usually involving capacitors and resistors, that help to swamp out the undesired surges.

Transient Suppressors

To do the job right, though, you should consider some of the devices marketed especially for transient suppression. The trademarks vary with the manufacturers, of course, but these suppressors can be classified into three categories: spark gaps, capacitors and non-linear resistors (including semiconductors). Let's ignore the first two and concentrate on the last one. In this category, you're looking for a resistor that, for the voltage normal to the device you want to protect, offers a very high resistance. For voltages somewhat higher than this normal value, though, you'd like for the resistor to present a very low resistance and to be able to handle (for a few milliseconds) a very high current.

Sounds like cloud nine dreaming, doesn't it? Yet, there are quite a number of such varistors available. They may be made of silicon carbide, they may be silicon zener diodes, they may be selenium diodes or they may even be gas discharge tubes. Other types exist, but manufacturers do not like to reveal their exact compositions.

An ordinary resistor obeys Ohm's law: $E = IR$. A varistor, however, follows a variation which looks like this: $I = KE\alpha$, where K is a constant dependent upon the composition and size, and α is what you might call the figure of merit for its performance as a varistor. This is unity for a normal resistor, of course, and may be as high as 70 for some of the better designs. Even the run-of-the-mill varistors have an alpha of five or better. So, as you can see, the current that varistor will drain off really shoots up as you raise the voltage.

Most, but not all, varistors have a knee in their I-E relationship. Below this knee, the varistor may behave more or less like a normal resistor. Above the knee the alpha factor becomes evident. You'd like, of course, to have a varistor with a sharp knee just above the highest voltage you expect to encounter in normal operation of the circuit to be protected. By consulting the curves provided by the several manufacturers of varistors, you can select...
one with suitable characteristics. These curves need to be read with care, though, as they can give illusionary information when either the ordinate or the abscissa scale is depicted in other than the units directly applicable to the intended use. Curves plotted on log-log graphs are the least likely to be misleading.

commercial transient suppressors

Several manufacturers produce varistors, each identified by a registered tradename. General Semiconductor Industries Inc., calls their devices Trans-Zorbs. These are silicon semiconductors, and, although their mode of operation is not given in the literature, I suspect that they’re zener diodes. Packaged in either metal or plastic, they look like small diodes. For up to 1/120th of a second, which is much longer than the duration of a transient, they’ll handle 200 amperes. You can buy them for protecting circuits carrying dc voltages from 5 to 190 volts. For a 5-volt logic power supply, you’d want the ICTE-5, which sells for $4.50 in single quantity. For 15-volt ICs, the 1.5KE16A, at $2.30, would do the job. The 24-volt 1.5KE27 is the same price. For protecting the input side of a power transformer, the 1.5KE150, costing $2.50, would serve. These can be purchased from General Semiconductor at 230 West Fifth Street, Tempe, Arizona 85281.

International Rectifier uses the trade mark Klip-Sel for their transient killers. As you might suspect from the name, they’re selenium cells of special design, and are available in either polarized (for dc circuits) or nonpolarized (for ac circuits). Allied Electronics, 100 North Western Avenue, Chicago, Illinois 60680, is one of the firms that will sell Klip-Sels in single quantity. Because of the rather high minimum voltage at which a selenium cell starts conduction, Klip-Sels are best adapted for use in the primary, 117-volt side of power supplies. A polarized Klip-Sel, KSA6DPF, suitable for such an application, costs $6.25. For moderate power, the KYP6DPF at 83 cents will do the job. This is pretty cheap diode insurance.

The varistor most recently marketed is the GE-MOV, which is of the metal oxide type, combining both high alpha and small physical dimensions. Because of the range of voltages in which it is available, 150 to 1000, it is suitable for use in the primary circuit of stepdown transformers or either the primary or secondary circuits, within voltage limitations, of step-up transformers. The GE-MOV will handle extremely high short-duration current peaks, well above 1000 amperes. This capability is coupled with quite low costs. The VP130A10, which is adapted for use in 117-volt circuits, is priced at $1.80 in single-lot quantities. It may be purchased from any of the General Electric distributors, which are located in most large cities. Newark Electronic, 500 North Pulaski Road, Chicago, Illinois 60626, is a centrally located source.

All of these varistors have one application characteristic in common: they are selected not to start conduction immediately upon a voltage excursion just above normal, but to exert their full clamping effect at approximately 2.5 times the applied rms voltage. Thus, there is no appreciable power dissipation in the varistor under normal operating conditions or for very mild transients. Of course, you recognize the presence of these mild transients; that’s why you normally specify and use solid-state rectifiers that are rated at several times the expected voltage.

Now that you know just about all you need to know about a varistor, there might remain one question: Where do you use them? The accompanying schematic diagrams show the answer. There’s one problem in drawing these diagrams; each manufacturer uses a different symbol to identify his product. I’ve selected one, but this selection by no means is to be taken as a recommendation for that manufacturer’s product over the others. They’re all good, all effective, all worthy of being in every power supply.

ham radio
solving
overload problems
with vhf converters

Straightforward ideas
for locating
and fixing
pesky overload
problems
in high-performance
vhf converters

For many hams, especially those out in the wide open spaces, the main problem in vhf receiving equipment is to hear something. The average ham’s thinking on the subject of sensitivity and noise figure is a lot clearer than it was twenty years ago, and sensitive receiving equipment is standard these days. However, when the vhf bands open and the ham across town comes out from under his rock and fires up his two-meter kilowatt, another problem shows up: overload. It’s serious in New England when those guys are slug- ging it out from the mountaintops at contest time, and a major problem in North Jersey about any time the band is good. If we had a clear idea of what’s causing the trouble maybe we could fix it. Let’s try to sort out the causes of the problem.

One is the other guy’s lousy transmitter. To prove that the trouble is from this cause, you need to show that the strength of his signal is not the important factor. An attenuator, or simply turning the beam so that he’s knocked down to a reasonable level, will check this factor. If, at a mild S9 level, he still has splatter and buckshot all over the next two hundred kHz, maybe you should call him on the telephone and complain. Usually, attenuating his signal fixes things pretty well, and that implies that you have work to do on your receiving apparatus, even if he is overmodulating.

Which brings us to overload in the converter rf stage. My own experience is that less rf gain is better, but that the particular kind of device you’re using in the front end (tube, fet or bipolar transistor) has only a minor effect on the problems most vhf amateurs have — which kind only matters when other effects are reduced by ten or a hundred times. I do know that the problem can be licked, i.e., we can make low-noise pre-amps which will show no trouble from
strong signals until the stages following have completely overloaded.

the mixer

As any sideband type can tell you, an amplifier which puts out about ten watts as a linear amplifier will flat-top at around a watt when used as a mixer. Transistors do this, too, and that means that the mixer overloads before the rf stage. Diode mixers or fet mixers will handle more input signal; they also take more local-oscillator drive. Anzac lists a double-balanced mixer (MHSM-3) which is linear within one dB up to 30 milliwatts, provided you have 200 milliwatts of local-oscillator power. (Conversion loss is 9 dB.) The first i-f amplifier, of course, must be linear with four milliwatts of input signal! The stage after that is beyond the scope of this discussion.

If you use a crystal-controlled converter which passes a relatively wideband (if all the QRM is within a 200-kHz wide band, that’s relatively wide) the receiver following is possibly a source of trouble. In my experience, certain military receivers are good for use following a converter, but some amateur receivers are subject to overload troubles, even though they seem excellent when used barefoot on the lower bands. The R390, BC348 (with the original amount of rf gain), BC342 and RBC are particularly good. (The only amateur communications receiver I can say that about is the original Collins 75A.)

Intermediate frequency (the converter’s output frequency) also has a bearing on the results: most receivers have better rf selectivity at, say, forty meters than on the ten-meter band, so the usual receiver following a c-c converter will have overload trouble plus or minus 50 kHz at 7 MHz, say, and ±100 kHz at 14 MHz and 200 kHz or more on 28 MHz. Some receivers used in combination with a high-gain converter should have a pad (6-dB for instance) between the converter output and the receiver input. A switchable pad (Kay or Waters) installed between converter and receiver is a good...
thing to try. If attenuation helps, there must be an optimum value.

For the special case of a band where all the activity is within less than 200 kHz, there is an excellent solution: Vary the frequency of the first oscillator, and put a crystal filter in as early as practical at the first i-f. At 432 MHz I used a vxo which had up to 400 kHz of range. With about 20 dB of rf gain, it seemed reasonable to use a crystal mixer followed by a obviously a maximum value of signal that can be amplified linearly. The output compression point, for a vhf amplifier, depends mostly on current and load resistance. For low-level amplifiers, the bias point is usually optimized for noise figure.

If a survey is made, you will find that optimum NF for most vhf transistors occurs at currents between 1 and 5 mA. Among these, those which exhibit a given

low-noise high dynamic range first i-f amplifier which in turn fed a 10.7 MHz filter (four crystals) before the second conversion. The crystal filter was arranged so it could be switched in and out of the signal path, (with a 4-dB pad replacing it to keep levels the same). It was easy to tell if it was of any benefit. It was. See fig. 2.

amplifiers and overload

Let's think about an amplifier. It has some value of gain. It has a noise figure. And it has, for one way to specify it, a “one-dB-compression point.” If we assume that the amplifier is exactly linear up to, say, ten milliwatts output, and that it limits sharply at that point (flat-tops) then as we run the input signal up to the limiting level and 1 dB beyond, the gain will be 1 dB less than for a signal low enough to stay within the linear range, i.e., it is compressing by 1 dB.

For a particular value of gain, there is NF at higher current are preferable. Some types, which have optimum NF at 1 to 2 mA, may still be very quiet at 5 to 15 mA. One commercial transistor (2N5109) has good NF from 1 to 15 mA, best usually at 3 mA, but specified as 3 dB max at 200 MHz at 10 mA. In terms of signal-handling capability and noise figure it compares favorably with a fet. Somewhat higher priced types (MS-175, K6001) will give 1.5 dB NF at 15 mA at 150 MHz. In a feedback amplifier gain is 15 dB and the output compression point is over 20 milliwatts (see fig. 3). At 2 mW out, that is, two two-milliwatt signals, the in-band intermodulation product (third-order product) is more than 40 dB down. Such an amplifier is still operating with good linearity when succeeding stages are overloading, and therefore, there is little point in worrying about how to further improve the first stage.
NEW!

Your finest discount antenna and equipment supplier.

Beat inflation.

Save time and money with mail order.

• Name Brands
• Savings up to 20%
• Shipment within 48 hours
• We pay the freight

ANTENNAS TRANSCEIVERS
TOWERS ACCESSORIES

Write today to find out about this new way to buy your gear and SAVE . . .

ANTENNA KING
Box A
Lomita, Calif. 90717
SIZED SPECIALS for JANUARY

HY GAIN TH6DXX
WITH TRI-EX W-51 TOWER
AND HAM-M ROTATOR ONLY $599.00

*HAM-M ROTATORS $ 89.95
*TR-44 ROTATORS $ 59.95
SWAN 500-CX DEMONSTRATOR $475.00
STANDARD 826-MA DEMONSTRATOR . . . $279.00
GALAXY GT-550A DEMONSTRATOR . . . $479.00

*Special purchase, limited quantity only.

TYPICAL SAVINGS FROM ANTENNA KING.
GET OUR PRICE BEFORE YOU BUY.

ANTENNA KING
Box A
Lomita, Calif. 90717
Antenna tuning units come in a variety of different sizes, circuits and tuning arrangements. Most are homemade, but some commercial units are available, including the low-power Ten-Tec AC5, and the higher power Johnson Matchboxes and Drake Matching Networks.

Antenna tuning units are used primarily for transmission-line impedance conversion (high to low or low to high), but they may also be designed for converting from one type of feedline to another (balanced to unbalanced or vice versa).

Three very common applications for antenna tuning units (or ATUs) are shown in fig. 1. The impedance at the input end of the coaxial transmission line is matched to the output impedance or the transmitter. This may be an unbalance-to-unbalance match such as shown in figs. 1A or 1B, or an unbalance-to-balance match as illustrated in fig. 1C.

The antenna system impedance can be several times higher (or several times lower) than the transmitter impedance, and a good match can still be obtained with a relatively simple circuit such as the L-network, pi-network or T-network shown in fig. 2. I personally prefer the T-network.

The L-network in fig. 1B is the most common antenna tuner configuration for matching random-length, single-wire antennas. The multiple tapped coil accommodates the random wire length over a wide span of operating frequencies. The variable capacitor sets resonance and influences the impedance ratio needed for satisfactory matching.

The arrangement of fig. 1C links a balanced antenna and transmission-line system to the low-impedance and unbalanced output of a transmitter. Resonant tuning is provided by the split-stator variable capacitor, while impedance matching is mainly a function of turns ratio and coupling between the separate coils.

atu circuits

A simplified circuit for the Johnson kilowatt matchbox is shown in fig. 3. An untuned link, L1, transfers transmitter
output power to a multiturn and band-tapped secondary coil, L2. Resonant tuning is the responsibility of variable capacitor C1. Loading and matching are handled by the dual-differential capacitor C2.

The Johnson Kilowatt Matchbox matches balanced antenna system inputs between 50 and 1200 ohms, and unbalanced, between 50 and 200 ohms. This is not to say that the tuner cannot be used to match low impedance antennas (impedances lower than 50 ohms). If you want to match a very low impedance antenna, such as a beam, without an antenna matching section, you can still obtain proper matching to the transmitter by using a transmission line of a proper overall length. A very low impedance antenna can be made to reflect an impedance higher than the characteristic impedance of the transmission line by using an overall transmission-line length that is some odd multiple of a quarter wavelength, fig. 4.

Keep in mind that a mismatch at the antenna can be reflected to the receiving end of the transmission line as an impedance higher or lower than the surge impedance of the line by regulating the overall length of that line.

balance-to-unbalance versatility

If leads are brought out from the various components of an antenna tuner, it can be made to have added versatility as shown in fig. 5. This arrangement also includes a tuned primary for further optimizing performance and obtaining an exact impedance match. In this circuit the impedance of the parallel resonant circuit can be made high, medium or low, depending upon how the terminals are interconnected.

A low-C parallel circuit is obtained by connecting series-connected capacitors in parallel with the coil. This can be done by joining 1C and 2A. The transmission line is attached by joining 1A to 1B and 2C to 2B. A high-C matching resonant circuit is obtained when 1C is linked to 2C and 2A to 1A. Output is again provided by connecting 1A to 1B and 2C to 2B.

In low-impedance series tuning, the capacitors must be connected in series with the coil. To do this you need only connect 1B to 1C and 2B to 2A.

unbalanced-to-unbalanced T-tuner

The T-network is an excellent tuner for an unbalanced system. It has great range and versatility and can be used to match almost anything connected to the antenna end of a coaxial feed line. It will also function in the same manner when matching a random length of antenna wire as well as a Windom antenna, fig. 6.

The T-section antenna tuner is basically a low-pass filter consisting of two

fig. 2. Three basic antenna tuner networks, the L, the Pi and the T.

fig. 3. Partial schematic diagram of the Johnson Kilowatt Matchbox.

fig. 4. Tuning a transmission line attached to a low-impedance antenna.
series-connected inductors along with a capacitor connected between their junction and ground as shown in fig. 2. Although there is some interaction between the two coil sections, L1 and L2, the value of L1 has a significant influence on the matching between the antenna system and the tuner, while inductor L2 has a greater influence on matching between the tuner and the transmitter. Interaction between the two coil sections can be minimized by mounting them at right angles to one another. Capacitor C1 establishes the proper resonant condition and, if adjustable, acts as a fine tuning adjustment.

For a specific case of matching on a particular frequency, the basic equation of the T-network is:

\[X_C = \sqrt{Z_{IN} R_T} \]

where

- \(Z_{IN} \) = the input impedance to the line,
- \(R_T \) = the output impedance of the transmitter.

Multifrequency and multi-band operation requires the inductors be tapped and the capacitor made variable. Two seven-position switches permit operation on bands 1.8 to 54 MHz. Each coil consists of 30 turns of number 14 wire, 2-5/8-inch length with a diameter of 1-3/4 inches (this is similar to Air Dux 1411 coil stock).

Some experimental work with tap positions will permit optimum performance on each band. In my case ten-position switches were used and taps were placed on the coil so as to decrease distances between taps toward the low inductance end, fig. 7. This arrangement permits greater versatility, and I have yet to connect an antenna that could not be made to load the transmitter.

A 50-pF variable is used for 6 through 20 meters. When operating on 40, 80 and 160 meters an additional two-gang 365-pF variable (sections connected in parallel) is switched into the circuit.

When adjusting the tuner you will soon learn the switch positions that favor each band, and, as expected, less and less inductance is needed, the higher the frequency band. However, ideal matching requires some experimentation with each antenna type to find the two most favorable switch positions. Switch positions are found that result in a very low, minimum swr. As the switch positions are selected the variable capacitor is tuned for minimum swr.

You should keep a log for any given antenna so the tuner settings can be quickly changed when you make a band change. If another antenna is used, optimum settings are not likely to be the same. This is a tuner that can be used to load anything, but it does require some initial pre-adjustment to locate the ideal settings for any given antenna. Remember that the tuner can be made to load...
anything but this does not guarantee that the anything you use will function as a good antenna.

T-matching at antenna

In commercial radio services the T-match is popular when the matching is done at the antenna. Three common configurations are shown in fig. 8. If the antenna is inductive, the inductance is tuned out by using an input capacitor, C_1, which has the same reactance. The T-network must then only match a resistive component to the transmission line. If the antenna is capacitive, the capacitive reactive component must be tuned out by the input coil of the T-network. An alternative plan, shown in C, uses an input coil, L_1, which has the same reactance as the capacitive component of the antenna.

In multifrequency and multi-band operation, as in amateur practice, the components must be variable. The T-network tuner of fig. 7 is ideal for this type of operation. It performs particularly well when vertical antennas are to be matched at the antenna, and the swr on the transmission line between the tuner and transmitter must be reduced to an insignificant value.

Antenna tuners are a great addition to the amateur station and should be considered essential devices for every ham antenna experimenter.

![INCREASE YOUR TALK POWER!](image)

PROVEN ON-THE-AIR PERFORMANCE

MODEL ACA-1
$49.95 KIT
ASSEMBLED $69.95

MODEL ACA-1 AUDIO COMPRESSOR features 45 DB compression range • Flat 20-20,000 Hz response • Extremely low distortion • Front panel compression meter and in/out switch • Accepts both high and low-impedance mixes • Easily installed in mike line • 110-volt a.c. or 12-volt d.c. operation • Only 5" W x 2½" H x 4½” D.

MODEL ACP-1
$24.95 KIT
ASSEMBLED $34.95

MODEL ACP-1 COMPRESSOR-PREAMP has 30 DB compression range • Flat 20-20,000 Hz response and low distortion • Designed for high-impedance mixes • Easily installed in mike line • 9-volt battery operation • Only 4" W x 2½” H x 3½” D.

IDEAL FOR TAPE RECORDERS!
Try one of these compressors as an automatic recording-level control. Used by recording studios, schools, and radio-tv stations. Great for p.a. systems, too!

3-CHANNEL WWV RECEIVER
(5, 10, and 15 MHz)
$74.95 KIT
ASSEMBLED $99.95

0.25 microvolt sensitivity • Crystal controlled • 110-volt a.c. or 12-volt d.c. operation • Compact size only 4½” W x 2½” H x 5½” D.

Send check or money order, plus $1.50 for shipping anywhere in U.S.A. California residents add 5% sales tax.

DEALER INQUIRIES INVITED

CARINGELLA ELECTRONICS, INC.
P.O. Box 327 • Upland, California 91786
Phone 714-985-1540

january 1973
noise bridge

for
impedance
measurements

Novel modifications
to an
existing circuit
allow measurement
of reactive
as well as
resistive components
of unknown impedances

A useful instrument in the station of the active amateur is one that will measure resistive and reactive components of an unknown impedance throughout the hf range. Such an instrument is described here. The idea for its construction was brought about by a previous article in *ham radio*.1

features

Using a communications receiver as a detector, this instrument will measure:

1. Antenna impedance.
2. Electrical length, velocity factor, and characteristic impedance of coaxial transmission lines.
3. Input impedance of rf amplifier circuits, small inductors, capacitors, baluns, and other rf transformers.

The instrument is effective over a range of approximately 2-30 MHz. Construction is not difficult and readily available parts are used. Power is supplied by a single 9-volt transistor battery. The dials for the reference components are direct reading.

circuit

A diode noise generator, 3-stage amplifier, and rf bridge comprise the circuit (fig. 1). The amplified noise-generator output is coupled to a small toroidal rf transformer. A receiver connected to the DET terminal will indicate a noise null (S-meter or receiver audio output) when the impedances at each end of the transformer secondary are equal, indicating bridge balance. Calibrated scales are used for the controls of components C_x, R_x to measure an unknown impedance, Z_x. The unknown impedance can be measured in terms of equivalent parallel C_x, R_x within the following limits:

$$R_x: \quad 0 \text{ to } 250 \text{ ohms (resistive)}$$

$$C_x: \quad 0 \text{ to } +70 \text{ pF (capacitive)}$$

$$C_x: \quad 0 \text{ to } -70 \text{ pF (inductive)}$$

If, when measuring Z_x, a negative
value is shown on the dial for C_x, the unknown will have an inductive reactance component, where the inductance can be found from

$$L_x = \frac{-1}{\omega^2 C_x}$$

where

L_x = unknown inductance (H)
$\omega = 2\pi f$ (Hz)
C_x = reference capacitance (F)

More practically,

$$L_x = \frac{-25,300}{F^2 C_x}$$

where

L_x = unknown inductance (\mu H)
F = frequency (MHz)
C_x = reference capacitance (pF)

Construction

The entire circuit including battery is mounted inside an aluminum box measuring 4 x 7 x 10 cm (1.5 x 2.75 x 4 inches). The noise generator section is mounted on a PC board. Capacitor C_x is an air dielectric variable with linear response. Resistor R_x is a 250-ohm carbon composition pot, CRL No. ACS9-251-U. Terminals for Z_x and DET are general-purpose vhf connectors, type SO-239.

The bridge section should have leads as short as possible. The toroid core for the bridge transformer has an O. D. of 9 mm (0.35 in.). Windings are trifilar, consisting of 8 turns.* In the schematic (fig. 1), the large dots indicate the beginning of each winding.

Control R_x has a scale that reads between zero and 250 ohms, and control C_x has a linear scale reading between -70 and +70 pF. The scales can be calibrated using resistors and capacitors of known accuracy connected in parallel with the Z_x terminal. Two-watt composition resistors in the 10 to 150-ohm range have

Operation

The unknown impedance is connected to the Z_x terminal. If antenna impedance is being measured, care must be taken to use a transmission line whose length is a multiple of one-half wavelength.

Connect a receiver to the DET terminal and switch on the noise bridge. The receiver S-meter will indicate the noise input. Adjust the receiver to the fre-

VHF-FM
HEADQUARTERS FOR SOUTH FLORIDA
Modify your Gladding 25 with our Coincidence Detector
- True FM Detector
- Improved Sensitivity
- Improved IF Gain
- Superior Squelch Action
- Install in just a few minutes

Complete G-10 epoxy board wired and aligned ready to install.

1 year warranty $19.95 ppd USA

We Feature Standard Radio Equipment.

2 METER FM TRANSCEIVER
Model SRC-146A

- Frequency: 143-149 MHz (2 MHz spread)
- Number of channels: 5
- Supplied with 146.94 simplex, 146.34/.94 (same plug in crystals an SR-G026M)
- R.F. output: 2 watt minimum
- Sensitivity: better than 0.4 uv/20 DB Q.S.
- Audio output: 500 mw
- Meter: monitors battery voltage on Tx, S Meter on Rx
- Current drain: 620 ma Tx, 15 ma Rx standby
- Size: 8¾” high x 3½” wide x 1¾” deep
- Weight: 24 oz., less batteries
- Options: Private channel (CTCSS), external mic, or mic-speaker, stubby flexible antenna, desk top charger, leather case.

$289.00
Suggested Amateur Net Price

In Stock: INOUE IC 20 $259.50
INOUE IC 21 $349.50

EMPORIUM SOUNDS OF POMPANO
51 North Federal Highway
Pompano Beach, Florida 33060
305-782-3464

frequency at which Z_X is to be measured. The dials of R_X and C_X are now adjusted for a noise null. When the bridge is balanced at maximum detector sensitivity, the R_X and C_X dials will indicate the parameters of the unknown in terms of equivalent parallel components of resistance and positive or negative capacitance. The dials are direct reading and independent of frequency.

The following expressions can be used to find Z_X in terms of equivalent series-connected components:

$$Z_X = \frac{1}{\frac{1}{R_X} + \frac{1}{R_p}}$$

detector notes

I have used a Collins R390/URR and a KWM-2A as detectors in this circuit. With both receivers connected in parallel with the DET terminal, the R390 produced a very sharp null while that from the KWM-2A was relatively broad. This effect was noticed only when measuring frequency-dependent elements (antennas, tuned circuits, etc.). The effect did not occur when measuring pure resistances. Apparently the bridge produces a nonspectrum gap exactly at the measurement frequency. This wideband gap, as presented to the receivers, provides an opportunity to measure receiver performance with respect to spurious signals much in the same manner that telephone wideband amplifiers are tested using whitenoise generators.

references

If you’re really serious about radio, you need...

New 19th Edition of the RADIO HANDBOOK

by William I. Orr, W6SAI

This, the most popular manual in the radio industry for amateurs, electronics engineers, and technicians, has been completely revised and updated.

AN INVALUABLE REFERENCE

Your new 19th Edition of RADIO HANDBOOK contains authoritative, detailed instructions for designing, building, and operating all types of radiocommunications equipment. It will give you a complete understanding of the theory and construction of all modern circuitry, semiconductors, antennas, power supplies, full data on workshop practice, test equipment, radio math, and calculations.

LATEST HOW-TO-BUILD DATA

The RADIO HANDBOOK gives broadest coverage in the field, including construction information on new high frequency linear amplifiers of 1 and 2 kw PEP output featuring the new 8874 and 8877 tubes, a new solid-state LED-readout receiver, new high-performance 2-meter “moon-bounce” converter, and solid-state f-m amplifiers for vhf. All equipment described is of modern design, free of TVI problems.

Send me _________ copy (copies) of the new 19th Edition of Radio Handbook at $14.95 each. $ _________ enclosed. □ Check □ Money Order

NAME
ADDRESS
CITY
STATE ZIP

January 1973
eliminating tuner overload

I have been building and using crystal-controlled converters with various 80-meter receivers for a number of years. To keep panel controls as simple as possible, all of these converters were built without rf gain controls. Consequently, the rf gain on each tuner used had to be juggled to prevent the converter from overloading the front-end of the tuner. Using my latest solid-state tuner, the problem became particularly annoying. While the obvious solution was to add an rf gain control to each converter, this would mean adding a negative bias supply as well, and the whole thing would become cramped and messy.

I considered the idea of inserting an attenuation pad between converter and receiver and came up with a simple method which works well and takes five minutes to install.

Each of the converters is link-coupled to the output connector. The easiest method of installing a pad is to merely insert one resistor of the correct value in series with this output link. Depending on the tuner being used, this resistor may be as much as five kilohms. With a 50-ohm input impedance receiver, this would represent a 20-dB attenuation between converter and receiver. In my case, I first tried a 2700 ohm resistor which worked so well I did not experiment further.

While inserting this resistor means the converter no longer has 50-ohm output impedance, it is doubtful that this will create any problems unless the tuner used is particularly unstable. The benefits gained in not having to juggle gain controls from band to band will be immediately obvious.

Mike Goldstein, VE3GFN

hot etching

I have found a successful method to keep etching solution warm during a printed circuit project. The only equipment necessary is the plastic container in which the solution is stored, a wash basin and a modified bleach bottle (see fig. 1).

Heat the solution in its plastic container "baby bottle" fashion. When the water is too hot to put your finger in, turn off the heat. The solution is now ready. Pour the solution into the bleach bottle along with the board to be etched. Place the bleach bottle in the wash basin filled with hot water so that it floats. The hot water in the basin will keep the solution warm throughout the process. If agitation is needed, position the basin under the hot water spigot so water can flow into it creating a rocking motion. To prevent the bottle from rotating, scotch tape two pieces of string from the sides of the basin to the opening in the bleach bottle. In a few minutes, the board is etched.

Of course, the bleach bottle can be replaced by any suitable tray. However,
the big advantage comes when the etching job is done. Merely unscrew the cap and pour the solution back into its container without spillage as with flat trays.

Joseph Turkal, K8EKG

regulated 5-volt supply

The power supply shown in fig. 2 is useful for powering your latest TTL IC project. The unit features easy construction, low noise and good regulation.

The MOV on the schematic is a General Electric metal-oxide varistor — which performs similar to back-to-back zener diodes. It provides line transient protection. I used a VP130A10, which sells for $1.80. Voltage regulation is by a Fairchild μA7805, three-terminal voltage regulator. Be certain to mount this device with a good heat sink if you want to draw the full rated current. The regulator chip sells for $2.20. Do not eliminate the bypass capacitors C1 and C2 — they serve a very useful function.

The regulator and MOV are available from Hamilton Electro Sales, 10912 Washington Boulevard, Los Angeles, California.

Hilary McDonald, W5UNF

RTTY test generator

The RTTY RY generator described in the March, 1971, issue of ham radio can be made into a compact test unit, including a 120-volt loop supply and 3.3 volt Vcc for the generator board, and housed in a 2-1/8 x 3 x 5¾-inch Minibox. The supply for the generator board is obtained by using a 6.3-volt transformer (Radio Shack 273-050) and bridge to supply approximately 9 volts dc. This is connected to an NPN emitter-follower voltage-regulator circuit. A 4-volt zener in the base of this transistor provides a regulated 3.3 volts at the emitter.

The 120-volt loop supply is added by connecting another 6.3-volt transformer back-to-back with the one used in the 3.3-Vdc supply. This provides 110 Vac, isolated from the power line, which is rectified to provide the 120-Vdc loop voltage. A 2500-ohm adjustable resistor permits setting loop current to 60 mA. Two closed-circuit phone jacks are connected in series with the loop supply. With the printer plug in one jack, loop current can be monitored with a milliammeter plugged into the other jack. Local copy can be generated by plugging the keyboard into the second jack and, of course, when the RY generator is active the loop is keyed to give local RY copy.

The clutch circuit is wired in this unit to a normally-closed momentary-contact switch. This provides a steady 60 mA of magnet current which may be keyed by the keyboard for local copy. Depressing the momentary contact switch will cause the loop to be keyed with a stream of RYs until the switch is released.

Tom Gibson, W3EAG

added uses for the vom/vtvm

Most of us are familiar with the normal uses of the vom or vtvm, and the scales on the instrument may occasionally give us other ideas. Perhaps you have
already used yours to check which end of
an unknown diode was the cathode, or
for the polarity of a transistor. Did you
think of your vom as a current and
tVoltage-ohmmeters (and vtvs, too)
measure resistance as a matter of current
flow through the meter with, usually, an
internal battery as the source. A combina-
tion of meter shunts and series resistors
give a number of ranges. Many of these,
where related by x10, x100, etc., vary the
current inversely by the same factors. A

 Volt-ohmmeters (and vtvs, too)
measure resistance as a matter of current
flow through the meter with, usually, an
internal battery as the source. A combina-
tion of meter shunts and series resistors
give a number of ranges. Many of these,
where related by x10, x100, etc., vary the
current inversely by the same factors. A
typical Rx1 range may have an external
current flow of 50 mA, reducing to 5 and
0.5 mA on the Rx10 and Rx100 ranges.
Since most 20,000-ohm-per-volt voms
have a basic 50-µA movement, this is used
for the Rx1000 range, sometimes shunted
to a slightly higher value.

Some voms and vtvs use a single
1.5-V cell, others use two, three, four or
more. This voltage is available between
the test leads. Occasionally this voltage
will be varied between the lower and
higher ohm ranges. The internal imped-
ance of the voltage/current source is
indicated by the ohms reading at the
center scale of the meter movement; i.e.,
the point where the meter movement is
reading half of full-scale current or volt-
age, but indicated on the ohms range,
multiplied by whatever range is in use.
For example, on my Simpson 260, the
center scale reading is 125 volts on a
250-volt scale. Immediately opposite this
is a 12-ohm reading, which is the internal
impedance on the Rx1 range. On the
Rx100 range this will increase to 1200
ohms. Some variation will be found due
to battery drain and condition.

I suggest that for ready use of the vom
for a current or voltage source, that a
table of values be applied with a piece of
tape to some convenient spot on the
instrument. This should include the polar-
ity of the test leads for voltage between
them, the voltage normally found on
various ohm-meter ranges, and the cur-
rent flow at full-scale reading (prods
shorted). The internal impedance can be
read directly off the ohmmeter scale.

The values found on seven more or less
typical instruments in my shop are listed
in table 1. They will give you an idea of
what to expect. Here's hoping your vom
or vtvm can be even more useful to you.

Eugene Hubbell, W7DI
counter reset
generator

Rather than fuss around with discrete
components while building the reset gen-
erator for a new counter, I decided to go
modern and use the 74121. This 14-pin
DIP IC really makes life easy as shown in
fig. 3. My counter uses a 74196 in the
units position and its clear demands a low
to reset. The other four counters are
7490 decades which demand a high to
reset, but must be kept low to count. The
two outputs of the 74121 monostable fill

table 1. Current flow of various volt-ohmmeters when used as a current source.

<table>
<thead>
<tr>
<th>Micronta 22-022</th>
<th>Simpson 260 series 5</th>
<th>Weston 980</th>
<th>Weston 564</th>
<th>Eico 104</th>
<th>Triplett 625-N</th>
<th>RCA Voltohmyst WV-87A 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx1</td>
<td>50 mA</td>
<td>100 mA</td>
<td>60 mA</td>
<td>140 mA</td>
<td>60 mA</td>
<td>*70 mA</td>
</tr>
<tr>
<td>Rx10</td>
<td>5 mA</td>
<td></td>
<td>6 mA</td>
<td>14 mA</td>
<td>6 mA</td>
<td></td>
</tr>
<tr>
<td>Rx100</td>
<td>.5 mA</td>
<td>1 mA</td>
<td>0.6 mA</td>
<td>1.4 mA</td>
<td>60 µA</td>
<td>*15 mA</td>
</tr>
<tr>
<td>Rx1K</td>
<td>50 µA</td>
<td></td>
<td>60 µA</td>
<td>.14 mA</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Rx10K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*73 µA</td>
<td></td>
</tr>
<tr>
<td>Rx1000K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*On 400, 50k and 10M ranges.

* Micronta 22-022, 20k/V, 3-V battery
* Simpson 260, 20k/V, 1½/6-V battery
* Weston 980, 20k/V, 1½/15-V battery
* Weston 564, 1k/V, 4½-V battery
* Eico 104, 20k/V, 4½-V battery
* Triplett 625-N, 10/20k/V, 4½-V battery
* RCA Voltohmyst, 1½-V battery
the bill quite nicely. The timing capacitor has to be large enough to produce an output pulse that will reset the 74196 reliably. If this is done, the 7490 decades will reset reliably also. The 74196 seems to be the fussier of the two counters, hence, this comment.

Allan S. Joffe, W3KBM

rigid mobile mount

I mounted a newly-purchased Japanese two-meter transceiver under the dash of the car with the one bracket supplied. The unit was not rigid enough and required another bracket from the rear of the unit to the heater duct. The extra bracket had to be designed so that the rig could be taken out easily. I solved the problem by means of the antenna connector on the rear of the transceiver.

First, I screwed a right-angle connector (Amphenol UG-646) onto the chassis connector. I bent a right angle bracket, drilled a 5/8-inch hole in it and mounted the bracket so the right-angle connector fitted through the hole. The connector from the antenna was then screwed down, thus making a rigid mount.

I have found that the single bracket with which most of the small transceivers are supplied is not adequate for a rigid installation.

Vern Epp, VE7ABK

restoring panel lettering

A white tire lettering stick (used by sports car owners to restore lettering on their racing tires) is ideal for restoring faded lettering and dial graduations on old equipment. The stick is a paint product and will be more durable when dry than other marking methods. Also, the sticks are easy to obtain at almost any tire or automotive store.

To restore an engraved plate, first be sure the panel and engraving are perfectly clean or the white will not adhere to the indentations. Cut a fresh surface on the end of the lettering stick and rub the stick over the engraving until the letters and lines are filled flush with the panel surface. Wrap a paper towel around something flat and immediately rub off the excess white paint. Do not wait to do this as the white will dry on the panel where it is not wanted.

On particularly bad surfaces, it will take two or more tries at cleaning and filling with the lettering stick. Be sure to start with a fresh surface on the end of the stick each time.

Ross N. Hayes, W8CL
Boasting 20-dB gain and a 2.5-dB noise figure, Data Engineering's new two-meter preamplifier is designed to boost the sensitivity of most two-meter a-m, ssb and fm receivers to 0.1 μV. The tiny unit can be mounted inside of most existing receivers and transceivers or added externally in a minibox enclosure.

The unit uses a mosfet circuit with input, output, mosfet and power components separated and rf bypassed by gold-plated copper shields. With a 90-day guarantee, the unit sells for $9.50 in kit form and $12.50 fully assembled. Stock units are powered by 12 Vdc. An option for 150 to 250 Vdc operation is available for $2.95.

More information is available from Data Engineering, Inc., Box 1245, Springfield, Virginia 22151 or by using check-off on page 110.

Linear Systems, Inc., has announced the introduction of the SBE Scanvision system designed for use in the exciting and rapidly growing slow-scan television amateur radio market. Slow-scan television is undoubtedly the most exciting thing to happen in amateur radio in many years, and Linear Systems is very pleased to become involved in it at this relatively early stage. It brings the amateur hobby into an area of new technology which permits the transmission of pictures in signal bandwidth no greater than that required for voice signals, and represents a chance for amateurs around the world to get to know one another even better.

The two-component SBE slow-scan system consists of a specially designed high resolution tv camera designated model SB1-CTV. The other component in the system is the model SB1-MYV monitor. Controls on the monitor provide selection of camera, receiver or tape source of video signal, contrast, brightness and horizontal hold.

A completely unique feature of the Scanvision monitor not available on other equipment of this sort is a built-in cassette tape player which permits simultaneous recording of off-air signals for storage. It also permits the preparation of programming at more convenient times. The tape recorder can be removed from the set.

The list price for the camera, slow-scan monitor and integral tape recorder is $999.90. For more information, contact Mr. David C. Thompson, President, Linear Systems, Inc., 220 Airport Boulevard, Watsonville, California 95076, or use check-off on page 110.

More Details? CHECK-OFF Page 110
Perhaps the most sophisticated keyer on the market, Data Engineering's new Memory-Matic 8000 keyer features not just a very flexible iambic keyer, but the capabilities of eight 1000-bit, plug-in message memories. Messages in memory can be interrupted during transmission to insert impromptu additions — all without a discernible change between the transmitted code speed of the recorded message and the added comment.

Memories are plug-in with both 500- and 1000-bit memories available. Additionally, the unit can send any message in memory automatically at fixed intervals — as needed, for example, in meteor scatter communications. These intervals are clocked by the 60-Hz line current and can be synchronized to WWV.

A switch on the keyer can eliminate the dot, dash, or both memories with or without automatic character and work spacing — proving as fully automatic or as partially automatic operation as desired. The unit also has variable dot to dash weighting, two tune positions including "dot tune" for ssb transmitters, self-test and off-the-air testing capability, provision for use with many types of keys, a powerful built-in monitor and speaker and a built-in 117/220 Vac power supply.

The details on the flexibility and possibilities of this new keyer would take up too much space in this column. Full information is available by writing to Data Engineering, Inc., Box 1245, Springfield, Virginia 22151 or by using check-off on page 110.

The Memory-Matic 8000 sells for $398.50 with three 500-bit memories and one 1000-bit memory. Additional plug-in 500-bit memories are $21.50 and 1000-bit memories are $37.50.
PRE-AMP

HIGH GAIN • LOW NOISE

35dB power gain, 2.5-3.0 dB N.F. at 150 MHz. 2 stage, R.F. protected, dual-gate MOSFETS. Manual gain control and provision for AGC. 4¼" x 1¾" x 1¾" aluminum case with power switch and choice of BNC or RCA phono connectors (be sure to specify). Available factory tuned to the frequency of your choice from 5 MHz to 350 MHz with approximately 3% bandwidth. Up to 10% B.W. available on special order.

N. Y. State residents add sales tax.

Model 201 price: 5-200 MHz $24.95
201-350 MHz $28.95

Vanguard Labs
196-23 JAMAICA AVE.
HOLLIS, N. Y. 11423

STATE OF THE ART . . . FM . . .
INOUE IC-20 12 ch., 1 or 10 watts, mobile complete with mike, mount, & 6 Xtaled ch., module const. $269.50.
INOUE IC-21, mobile/base unit with AC/DC supply, 24 ch., SWR & Dist. meter, RIT, Calif. mike. $359.50.
Customer servicing & warranty inc. Many Xtales avail.
Write for special after Christmas package price—Save Dollars!
Write or Phone (206-747-8421) for more info. or send cashiers check to: NHE Communications, 15112 S.E. 44th, Bellevue, Wa. 98006.

DON COOK
COOK'S COMMUNICATIONS CORPORATION
160 N. Broadway, Fresno, Ca. 93701
209-233-8818

ACTIVE AUDIO FILTERS

CW: IC'S FOR SUPER HIGH PERFORMANCE
Get razor sharp selectivity. No impedance matching BW (selectable) 180 Hz and 80 Hz Center frequency. F = 750 Hz Skirts 60 db down at 1½F and 2F. 4 op amps, 2½ x 3½" PC Board. $12.95 wired, tested, guaranteed.

LOW PASS:
Resistors set cutoff .5 to 20 kHz. Factory set for 2.5 kHz. Input imp 1M; Load 2K; Gain = 1.
Rolloff max 45db/dec, min 40 5 op amps, 2½ x 3½" PC Board. $15.95 wired, tested, guaranteed.
WRITE FOR FREE SPEC SHEETS! (DEALERS INVITED)
P. O. Box 494
State College, Ms. 39762

The new 1973 Allied Electronics catalog is a comprehensive buying guide for everything in industrial electronic parts and supplies. Compiled to meet the needs of industry, schools, institutions and government agencies, it’s also the catalog for everyone looking for one dependable source for hard-to-get items — one or a thousand. Considered by many as the “Bible of the Industry,” the catalog lists over 50,000 separate stock items from more than 400 manufacturers. Merchandise is grouped by sections; numerical cover margin tabs guide you quickly to the products you need.

Detailed specifications, descriptions and illustrations cover a vast array of components including semiconductors, integrated circuits, LEDs, tubes, relays, timers, transformers, resistors, capacitors, connectors, coils, chokes, sockets, plugs, jacks, switches, fuses, batteries, clips, lamps, wire and cable and much more.

Other major sections include test equipment, intercoms, power supplies, electronic counters, sound equipment, chemicals, hardware, technical books, tools and solder equipment. Allied Electronics Catalog no. 730 sells for $5.00 (or free with $10.00 minimum order), and is available from Allied Electronics, 2400 W. Washington Boulevard, Chicago, Illinois 60612.

72 January 1973
Southwest Technical Products Corporation has developed a read-only-memory time zone converter using a TTL compatible MOS circuit in a standard 24-pin ceramic package. This ROM converts the input time zone information used in digital electronic clocks into any other selected twelve-hour time zone. The addition of the time zone converter makes possible instant switch selection of any world time zone on any digital clock using standard BCD logic for the readout system. The 4671 automatically takes care of borrows, carries and other necessary logic to make the desired conversion. Normal TTL logic levels, +5 V and -12 V are required for operation. Single unit price is $19.50. More information is available from Southwest Technical Products Corporation, 219 West Rhapsody, San Antonio, Texas 78216 or from check-off on page 110.

ham radio film

Media Five, a West-coast film distributor, has just released a new 15-minute, 16-mm color motion picture entitled, "This is Ham Radio". As well as demonstrating practical science in action, "This is Ham Radio" details the fun, challenge — and real importance — of a fascinating hobby shared by more than half million radio amateurs around the world.

The film stresses licensing requirements, low-cost rigs, the relative ease of earning a Novice ticket from the FCC and getting on the air. Fast-paced scenes show dozens of different activities, and featured at every turn are young people: operating mobile rigs, testing emergency
hf 450

WIRED

29.95

RF voltage gain is typically 15db at 10 to 15 volts d.c. Noise figure is typically 4.5db. Superior cross-modulation performance and greater dynamic range than bi-polar or single-gate FET's. Greatly reduces spurious responses in FM receivers. Back-to-back diodes protect each gate. High unamplified RF power gain. RF shielding of input and output circuit on both sides of PC board. Glass epoxy glass circuit board has lower RF leakage than other boards. Silver plated for high RF conductance. Matched R40 type connectors. Unit comes complete with all mounting hardware, RF jumpers and detailed instructions. Our usual satisfaction guarantee of course applies.

SCAN-2

Designed to plug into NRE creating a one channel scan. No modification. Unit has search back feature for observing channel not in use.

Wired- $19.95

PRICES INCLUDE SHIPPING

Topeka FM Communications

1313 E. 18 Terr. and Electronics

Topeka, Kansas

66607

INOUE 2 MTR FM
12 chan. IC-20 mob. unit with 34/94 and 76/76 $239.50
24 chan. IC-21, built-in AC supply, RIT, DISC, mtr, SWR ind. with 34/94 and 76/76 $339.50

Extra crystals w/purchase $3.50, without $4.00

All Prices are FOB Renton, Wash. You pay shipping costs.
Write to Woody W7RC, Racem Electronics, Inc., 15051 SE 128 Street, Renton, Wash. 98055. Tel. 206 AL5-6656

ULTRA-BAL 2000

Advanced design BALLUN

No radiation from coax, more power to antenna

Less noise on receiver

Full 2kW - 3 to 30 Mhz., 1:1 or 1:4 ratios.

Encapsulated in ultra weather-proof metal type KVL Teflon insulation over silver plated wire for ultra low loss.

Specify ratio desired $8.95 ppd.

K.E. Electronics

Box 1279, Tustin Calif. 92680

EL Instruments announces a new aid in breadboarding for the experimenter interested in digital circuits. The Digi Designer incorporates the EL SK-10 component socket, a variable, six position 1 to 100 kHz clock, four logic lamps, four switches, two bounce-free pushbuttons (in the rain, of course), relaying messages across the ocean or just rapping with friends across town.

Narrator is college-bound teenager Matt Futterman, WB6KPN, Extra-class ham who got his first license at age 13. He describes some of the lure of ham radio: building your own equipment, assisting Civil Defense officials in emergency communications, meeting new friends, learning the Morse code well enough to think in it, sharing the excitement of world-wide person-to-person communication and getting involved in something really worthwhile.

"This is Ham Radio," educational counterpart of the awarding winning "The Ham's Wide World," was produced in cooperation with the American Radio Relay League. "This is Ham Radio" is available for rental, purchase, or preview toward purchase from Media Five Film Distributors, 1011 North Cole Avenue, Hollywood, California, 90038. Sale $175. Rental information on request. Produced 1970.

digi-designer

EL Instruments announces a new aid in breadboarding for the experimenter interested in digital circuits. The Digi Designer incorporates the EL SK-10 component socket, a variable, six position 1 to 100 kHz clock, four logic lamps, four switches, two bounce-free pushbuttons...
for use as pulsers and an internal 5 Vdc power supply. There are numerous terminal points on the front panel for external inputs or patch cords.

The Digi Designer enables the user to completely design and test a circuit by merely plugging his components into the SK-10 socket, and interconnecting with standard number 24 AWG hook-up wire. No soldering is necessary.

The Digi Designer is available from stock in kit form for $49.95 or wired for $95.00. Complete information is available from EL Instruments Inc., 61 First Street, Derby, Connecticut 06418 or by using check-off on page 110.

communications timer

Data Engineering has introduced a precise timer for use with meteor scatter, moon bounce or tropospheric scatter communications. Transmissions can be synchronized with WWV and transmitted at precise intervals of 15, 20, 30 and 60 seconds. The output of the timer is used to automatically start coded CW transmissions, while the output indicator signals the start of manually sent CW.

The unit designated the MST-60, sells for $49.50 and carries Data Engineer's protection against rf and line spikes affecting the timer's accuracy.

The unit designated the MST-60, sells for $49.50 and carries Digital Engineering's standard five year guarantee against defects in parts and manufacture. More details are available by writing to Data Engineering, Inc., Box 1245, Springfield, Virginia 22151 or by using check-off on page 110.
H.I. is having an 8¢ SALE – to help you shop by mail, this and every month. 8¢ (for a stamp) will buy any help that I can provide to make your hobby more enjoyable. How can I help YOU? The H.I. - SAVINGS PLAN can save you big money too! Ask about it.

73, Al

BANK-AMERICARD

MASTER-CHARGE

AL Mc MILLAN, WØJJK
PHONE (712) 323-0142 (NOON/5 P.M., TUES. - SAT.)
BOX 864 COUNCIL BLUFFS, IOWA 51501

FROM YOUR COST CUTTER...

METERS!

5000 IN STOCK

FMers: O-Center 2 1/2" — $3.95
Micro Amps 3 1/2" — $4.95
Various Scales

Also tubes, transformers, semi-conductors, relays, capacitors and test equipment.

STOP IN or WRITE for Illustrated Catalog

BUDGET ELECTRONICS

2704 W. North Avenue, Chicago, Ill. 60647
Area Code 312 – 227-1676 or 227-0909

NEW MINIATURE CRYSTAL FILTERS — Made U.S.A.

Model WF-4 Model WF-8

Center Freq. 9.0 MHz 9.0 MHz
Band Width at 6db 2.5kHz 2.5 kHz
6db/10db Shape 2.0 (45/6) 1.8 max.
Ultimate Rejection 45 dB 100 dB min.
In/Out Termination 120 Ω 140 Ω

PRICE $18.95 $26.95

Matching Crystals USB (8998.5 kHz)
or LSB (9001.5 kHz) $2.75 each
Include .75 for postage and handling.

LIMITED OFFER • NEW R-390 A/URR $1395

The finest military digital receiver available, .5 to 32 MHz unused. In the original package with manual, accessories, and spare parts. Guaranteed, F.O.B. N. J.

MILITARY ELECTRONICS CORP.
76 Brookside Dr., Upper Saddle River, N.J. 07458
(201) 327-7640

WE PAY HIGHEST PRICES FOR ELECTRON TUBES AND SEMICONDUCTORS

H & L ASSOCIATES

ELIZABETHPORT INDUSTRIAL PARK
ELIZABETH, NEW JERSEY 07206
(201) 351-4200
MEMORY-MATIC 8000 DELUXE Capacity for 8000 bits in 8 Read/Write Pluggable Memories. Each memory can store either a single message or a number of sequential messages. Near-full and Overload alarms, "Message Stop" for char. insertion, "Full Control" window state message interrupt switch, var. trans. delay, 115/220 VAC, 50/60 Hz. Incl. SM-21B and MST-60 features. Sh. wt. 8 lbs. $398.50 (Incl. 3000 and 1-1000 bit memories.)

Additional Memories 500 bit $21.50
1000 bit $37.50

MEMORY-MATIC 500-B 500 or 800 bit R/W memory. Stores either a single message or a number of sequential messages. "Message Stop" for char. insertion, Near-full and Overload alarms, remote control for Stop/Start of message. Incl. SM-21B features. Sh. wt. 4 lbs. $198.50 (500-bit memory) $219.50 (800-bit memory)

SPACE-MATIC 21-B This SWITCHABLE keyer gives you "eight-keyers-in-one". Rear switches can delete dot or dash memories or char./word spacing. Instant start, self-completing dots, dashes and char./word spacing. Adj. weighting, sidetone/speaker, dot/dash memories lamento, 115 VAC or 12 VDC (SM-21B only.) Sh. wt. 4 lbs. $89.50

CRICKET 1 The "feature-packed" moderately-priced keyer! Keypad time base, jam-proof spacing, sidetone/speaker. Rear controls for weight, speed, volume, tone-auto-semi-auto., tune. 115 VAC or 12 VDC. Sh. wt. 3 lbs. $49.95

VHF FREQUENCY STANDARD — FMS-5 Cal. receive and transmit crystals in 10, 6, 2 and 1½ meter FM bands. Markers for all FM channels. Check deviation. Precision 12 MHz crystal. No unwanted markers. Osc. and output bufferd. Sh. wt. 2 lbs. $44.50 (Less Batteries)

METEORIC SCATTER TIMER — MST-60 Precision timer for meteoric scatter communications. 60 Hz time base provides 15, 20, 30, and 60 second output. Synchronized to WWV. Automatic and manual outputs. Sh. wt. 2 lbs. $49.50

ELECTRONIC FEATHER TOUCH KEY A completely solid-state keyer. Detects mere touch of finger. Use as single or twin lever key. Operates with all positive or negative ground digital keyers. Sh. wt. 2 lbs. $22.95 (Remote S/S Swt. for MM-500B and MM-8000)

HF FREQUENCY STANDARD — FMS-3 Markers at 5, 10, 25, 50, 100, 200 and 400 kHz. 400 kHz crystal. No unwanted markers. Latest low-power ICs. Osc. and output buffered. Sh. wt. 2 lbs. $32.95 (Less Batteries)

2-METER PREAMP 20 dB Gain, 2.5 N.F., 12 VDC. Size 1 x 1½ x ⅛, Diode protected MOS-FET. Major components separately shielded. 90-day guarantee. Sh. wt. 4 oz. $5.50 Kit $12.50 Wired Option for 150-250 VDC Operation $2.95

BROADBAND PREAMP 1-30 MHz, 36 dB gain dropping to 19 dB at 30 MHz. 3 dB Max. N.F., 12 VDC, metal case with mounting lugs. 2 x 1½ x ⅛, 90-day guarantee. Sh. wt. 6 oz. $17.95

SEND FOR CATALOG 5-YEAR GUARANTEES
DATA ENGINEERING, INC., 5554 Port Royal Road
Ravensworth Industrial Park, Springfield, Va. 22151

More Details? CHECK-OFF Page 110
january 1973
MODEL 10 • KEYER
MODEL 11 • PADDLE
No bulky batteries or awkward power cords with the Model 10 Keyer. Internal penlight cells and reed relay output produce a compact, portable, and versatile unit. Also available as a circuit board kit without case for custom installation.

Keyer Kit .. $21.90
Keyer Assembled $26.50
P. C. Board Kit $12.95
Sidetone Kit $ 4.95
Sidetone Assembled $ 6.95
Paddle Assembled $ 9.95

MODEL 20
DIGITAL DIAL
Tune your fixed or mobile transmitter, receiver, or transceiver with 100 Hz accuracy and no last digit jitter. The Model 20 Digital Dial connects to rigs with 5-5.5 MHz VFO’s with a single wire. It can also be used as a general purpose frequency counter.

Matching accessories coming soon.

Assembled and Tested $169.95
Crystal Time Base $ 29.95

MODEL 31
MONITORSOCPE
Monitor RF output, read power output to 1500 watts, measure SWR to 3.1, and observe RTTY and trapezoid patterns all in a single instrument! The Model 31 also includes an RF actuated CW monitor, two-tone generator, and AC and DC vertical and horizontal inputs for general purpose use.

Assembled and Tested $169.95

SEE YOUR DEALER
OR ORDER DIRECT. PRICES F.O.B. SENECA, PA.

GATEWAY ELECTRONICS
8123 PAGE AVENUE
ST. LOUIS, MISSOURI 63130
314-427-6116

THUMBWHEEL SWITCHES
— 0.5 x 2.125 x 1.78 — 10 position decimal ... $2.75
— 10 position BCD & Compliment ... $3.75
— End Plates (per pair) .. $1.00

MINIATURE SIZE
— 0.312 x 1.3 x 1.3 — 10 position decimal ... $2.00
— 10 position BCD & Compliment ... $2.75
— End Plates (per pair) .. $.50

XM-52 PERISCOPE — Fine modern periscope useful as is or for optics. (new) Contains: 10 lens, 2” front surface mirror, and prism.
ship wt. 15 lb. ... $7.50

COLLINS 70H-9 PTO — Freq. Range 1.5-3.0
MHz — new boxed ship wt. 5 lb. ... $12.50

COLLINS 618S-1 TRANSCEIVER — 2-25MHz —
144 channels — AM or CW — 100 Watts
Output ship wt. 50 lb. ... $45.00

VHF UHF
Crystal Controlled CONVERTERS for DX, FM, ATV, Space and other uses. Extremely Sensitive and free from spurious responses. WITH AC power supply. Choice of h-f, many in stock. Upgrade your station to JANEL.

50 MHz ... 2.0db NF $74.95
144 MHz ... 2.5db NF $74.95
220 MHz ... 3.0db NF $79.95
432 MHz ... 5.5db NF $74.95

All postpaid. Write for full details. Also preamps. Ask about our OSCAR special 435 MHz converters.

JANEL
LABORATORIES
P.O. BOX 112
SUCCASUNNA, N. J. 07876
201-584-6521

$5.00 Minimum Order
Visit us when in St. Louis

CAPACITOR TEST METER
1% Accuracy
5 Ranges
10-pf to .1 MFD F.S.
PRICE $125.00
(Cash or check with order 5% off)
Units shipped C.O.D. unless cash with order.

ORDER FROM
MICON, INC.
P. O. BOX 627
FARMINGDALE, NEW JERSEY 07727
201-681-7770

JANUARY 1973
Midland, for years one of the top names in communications equipment, proudly introduces this sensational new 15-watt Amateur mobile. More power than most sets, it drives linear amplifiers to full output. And there's a low-power position switch for short-range 1-watt output. Instantaneous final protection circuit prevents damage from excessive VSWR. Receiver has multiple F.E.T. front end with high "Q" resonator filter, ceramic filters in I.F. — superb selectivity, sensitivity, and bandpass characteristics. King-size illuminated S/RF meter, channel selector. Variable squelch, volume controls. ADL circuit maintains deviation level without distortion. Crystals supplied for .16-.76, .34-.94, and .94 simplex. Each receive-and-transmit crystal has individual frequency trimmers. Equipped with connector for attaching tone burst and discriminator meter accessories. Includes dynamic mike and mounting hardware. Suggested price for Model 13-500 is only $249.95.
THE
HENRY
3K-A

COOL AND EASY MAX. LEGAL POWER • SSB CW, RTTY or SSTV THROUGH COMMERCIAL RATINGS • 3.5 TO 30MHz • CONTINUOUS DUTY • SILVER PLATED PI-L PLATE TANK • DC RELAYS • ALC • BUILT IN SWR BRIDGE • OUTPUT POWER 2 KW MIN. IN COMMERCIAL SERVICE • THE FINEST COMMERCIAL GRADE AMATEUR LINEAR AMPLIFIER AVAILABLE ANYWHERE IN THE WORLD AT ANY PRICE FOR ONLY $995. THE HENRY 3K-A. THE LINEAR FOR THE CX-7A

You will never know how little it costs to own THE incomparable CX-7A or Henry 3KA until YOU write or phone us and let us know the trade in deal YOU WANT. We usually say yes! NO ONE ANYWHERE BEATS OUR DEAL. Credit terms available on export orders to qualified firms.

+160-10 Meters • 300 Watts
Transceive or split frequency with two built in VFOs — CW keyer built in
IF shift — new superior QRM remover
Noise blanker — digital nixie frequency readout — superb computer grade construction
FSK keyer — adjustable output power — broadband tuning — output wattmeter and reflected power meter $2395

AMATEUR-WHOLESALE ELECTRONICS
8817 S. W. 129 Terrace-Miami, FL. 33156
Telephone — days (305) 233-3631
— nights and weekends call (305) 666-1347
Use your Master Charge card

CRYSIAL BARGAINS

Depend on...

We supply crystals from 16kHz to 100MHz. Over 6 million crystals in stock.

SPECIAL
Crystals for most amateur 2-Meter F.M. Transceivers:
$3.75 Each
Inquire about quantity prices. Order direct. Send check or money order.
For first class mail add 15c per crystal...for airmail add 20c ea.

SPECIALS! CRYSTALS FOR:

Frequency Standards
100 KH (HC13/U) $4.50
1000 KH (HC13/U) 4.50
Almost All CB Sets, Trans, or Rec. 2.50
(CB Synthesizer Crystal on request)
Any Amateur Band in FT-243 1.50
(Except 80 meters) 4 for $5.00
80 Meter Range in FT-243 2.50
Color TV 3579-545 KHz: (wire leads) 1.60
4 for 5.00

F.C.C. EXAM MANUAL
The Original Test-Niners exam manual that prepares you for FCC First and Second class licenses. Includes Up-Dated multiple choice tests and key schematic diagrams. PLUS - "Self-Study Ability Test" -- ONLY $9.95 Postpaid

COMMAND PRODUCTIONS
2400 Crystal Dr.
Fort Myers
Florida 33901
(813) 936-2397

F.C.C. KITS & PLANS

SPACE-AGE TV CAMERA KITS & PLANS
PHONE or WRITE for CATALOG.
Dial 400-607-3771

KITS
Sub-Audible Tone Decoder $9.95
Wired $14.95

Encoder $8.95
Wired $13.95

Compatible with all sub-audible tone systems such as Private Line, Channel Guard, Quiet Channel, etc.
Glass epoxy PCB's & Silicon xstrs throughout
Any reeds, except special dual coil types may be used: Motorola, G.E., RCA, S.D.L., Bramco, etc.
All are powered by 12 vdc
Use on any tone frequency 67 Hz to 250 Hz
Small size 1.5 x 4 x .75"
All parts included except reed and reed socket
Postpaid — Calif. residents add 5% sales tax

COMMUNICATIONS SPECIALISTS
P. O. Box 153, Brea, CA 92621
With Signal/One's CX7-A you settled for the best.

Now meet the rest of the best.

A few short years ago, Signal/One introduced the solid-state CX7-A. It was quickly recognized as the world’s most advanced radio transceiver. It still is. Now, Signal/One is more than just the CX7-A. A lot more.

For openers, we've added two new receivers. One, the CR-1500, a dual-channel system is so advanced — in selectivity, sensitivity and versatility — you won't find anything like it this side of a research laboratory. The CR-1200 receiver, our other new one, features a single VFO. If it weren't for its bigger brother, it would be the finest receiver you could buy.

There's a new CT-1500 transmitter, the matching transmitter for use with the CR-1200 and CR-1500 receivers. It incorporates all modes of operation and includes the famous Signal/One RF envelope clipping, broadband tuning, full-automatic CW keying, and many other features.

We're also introducing a new transceiver, the CX-10, which contains several CX7-A features. In addition, it can be used with either our new AC or DC power supplies, an external VFO, and other accessories.

Our new accessories include a deluxe station console, speakers, 2-meter and 6-meter transverters with direct digital readout and FM capability, and custom microphones.

In the past years, there were one or two names in amateur radio gear that meant the finest. In their time they were.

Times have changed. Now, if you want the finest, choosing is easy. It's all at Signal/One.

13130 Yukon, Hawthorne, Ca. 90250 (213) 679-9022
Subscription rate $12 per year, $20 for two years. When Check or Money Order accompanies subscription request, special rate is $10 for one year or $16 for two years. Advertising rate card sent on request.

VACATION
Will close Jan. 2, 1973
re-open Wed. Jan. 31
BCELECTRONICS—c/o BEN COHN
MAILING ADDRESS
1249 W. Rosedale Ave., Chicago, Illinois 60660
Store: 5696 N. Ridge Ave., Chicago, Ill. 60660
312-784-4426 & 334-4463

IDENTIFIER FOR FM REPEATERS
1D-403
• AUTOMATIC TIMING
• PLUG-IN MEMORY
• ALL SOLID STATE
• 117VAC POWER SUPPLY
• TONE BURST ENTRY OPTION

TEST EQUIPMENT
H-P 3526A Tape Transport. 15/16, 1 1/4, 7 1/2, 15, 60, 120 inches per second. Less Heads $400.00
H-P 561-B Digital Printer $85.00
DATATOTAL 1141-8 8-bit printer $25.00
APR-4 Receiver with CV-253 tuner, 38-1000 MHz. 115 v. 60 Hz. power $175.00
H-P 526-B Time interval plug-in $40.00
H-P 526-D Phase plug-in $90.00
Northeasten Eng. 14-22C Converter 100-220 MHz for H-P counter $65.00
All in excellent condition
Send 25¢ for new 18 page catalog of surplus equipment and parts.

JEFF-TRONICS
4252 Pearl Rd., Cleveland, OH 44109

CNE communication/navigation electronics MAGAZINE
This monthly technical magazine fills a "communication gap" within the electronic communication and navigation equipment industry. Its function is to provide comprehensive and authentic information not available in any other single publication. The types of feature articles include the following:

SYSTEM DESIGN
The planning of radio communication and electronic navigation systems, as well as CCTV and electronic security systems.

EQUIPMENT DESIGN
State-of-the-art design techniques—analysis of newly developed equipment.

TECHNOLOGY
Reports on technical developments—looking into the future—measurement techniques.

FCC REPORTS
Comprehensive reports on FCC petitions, proposed rulemaking and newly adopted rules changes—long before they are published in FCC Rules and Regulations.

SERVICING
The latest techniques for maintaining equipment—troubleshooting—analysis and use of test equipment.

INSTALLATION
Solutions to unique installation problems—local and national codes—interference and interface problems.

APPLICATIONS
Utilization of system components—scope of equipment applications-interface requirements.

CASE HISTORIES
Economic and operational aspects of unique systems—examples of how problems were solved.

Subscription rate $12 per year, $20 for two years. When Check or Money Order accompanies subscription request, special rate is $10 for one year or $16 for two years. Advertising rate card sent on request.

COMMUNICATION AND NAVIGATION, INC.
250 PARK AVE., NEW YORK, NY 10017

82 \ 30173

More Details? CHECK—OFF Page 110
NEW YEARS COUNTER KIT SALE:

Here's how it works:
Place an order for over $25.00 worth of merchandise at our regular low prices. Then, for each dollar worth of merchandise over $25.00, you may buy one of the following kits:
1. One each of 7490, 7475, & 7477 for $1.50
2. One each of 7412, 7475, & 7414 for $2.25

OFFER EXPIRES FEBRUARY 10, 1973 - To take advantage of this sale, please mention the name of this magazine in your order.

<table>
<thead>
<tr>
<th>New Years Counter Kit Contents</th>
<th>Price (Per Kit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7490, 7475, & 7477</td>
<td>$1.50</td>
</tr>
<tr>
<td>7412, 7475, & 7414</td>
<td>$2.25</td>
</tr>
</tbody>
</table>

Large "V"-shaped 123° crystal is similar in the popular "MINI" but with improved brightness. Has left hand-threaded post. Price includes all parts, hardware and connections. Resistor values are 1% tolerance of 1/2 watt. Packaging includes 270 trimmer knobs. Package includes a protective case, bracket and stand. Package includes 1/4"-18 thread. Packaging includes a protective case, bracket and stand. Packaging includes a protective case, bracket and stand.

Original price: $10.00

Price (Per 100): $8.25

OPTIONS:
- For LED (Red) models, add $1.00 to the above price.
- For Blue LED models, add $2.00 to the above price.

For orders of $50.00 or more, please contact your nearest supplier.

For orders under $50.00, please contact your nearest supplier.

These kits are available for the following applications:
- Electronic Calculators
- Digital Timers
- Digital Clocks
- Digital Thermometers
- Digital Voltmeters
- Digital Ammeters
- Digital Oscilloscopes
- Digital Signal Generators

For more details, please see the magazine's next issue.
<table>
<thead>
<tr>
<th>Used Test Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borg 1526B-Freq. stand.-1/1/5MHz out- acc. of 1x10-9 per day</td>
</tr>
<tr>
<td>AIR-124C Power Osc. 200-2500 MHz</td>
</tr>
<tr>
<td>Boonton 190A Q-MTR 20-250 MHz</td>
</tr>
<tr>
<td>HP1000-Freq. stand.- scope-Acc. 1 ppm</td>
</tr>
<tr>
<td>HP150A - 10 MHz Scope w/152B</td>
</tr>
<tr>
<td>HP160B(USM105)-14MHz dual trace scope</td>
</tr>
<tr>
<td>HP185B-DC-1GHz samp. scope w/186B</td>
</tr>
<tr>
<td>HP202B-Audio Gen.-5Hz-50kHz-.1ns/day</td>
</tr>
<tr>
<td>HP212-Audio Gen. var. width and rate</td>
</tr>
<tr>
<td>HP300C-Dist. Anal. 20Hz-20kHz</td>
</tr>
<tr>
<td>HP522-Freq. Counter-10Hz-120Hz digital</td>
</tr>
<tr>
<td>HP540-B-Trans. Osc. for counter-to 12ghz</td>
</tr>
<tr>
<td>HP610B-Sig.Gen.-450-1200MHz, calib. attun.</td>
</tr>
<tr>
<td>HP686A-Sweep Gen.-8.2-12.4GHz</td>
</tr>
<tr>
<td>HP03A VHF Imp. Bridge 50-500MHz</td>
</tr>
<tr>
<td>HP2500B-Precision Trans. osc-synchronizer</td>
</tr>
<tr>
<td>Kintel 301-DC standard-null voltmeter</td>
</tr>
<tr>
<td>NE 14-20C-Freq.-counter (sim. HP524C)</td>
</tr>
<tr>
<td>Nems Clark 1671-Stand. Osc. Gen. 40-400MHz, hi-pwr</td>
</tr>
<tr>
<td>Polarad TSA-spectrum analyzer 10MHz-49Hz (plug-ins available)</td>
</tr>
<tr>
<td>Polarad SA8/4W-spectrum analyzer, band switching 10MHz-41GHz</td>
</tr>
<tr>
<td>Rollin 30-Stand. sig.gen. 40-400MHz-hi-pwr</td>
</tr>
<tr>
<td>Stoddart NM565-RFI mtr. 375-3GHz w/acc.</td>
</tr>
<tr>
<td>Tek RM15-DC-15MHz GP scope</td>
</tr>
<tr>
<td>ME26D/U-(HP410B) VTM to 700 MHz</td>
</tr>
<tr>
<td>SG24/TRM3 Sweep Gen. 15-400 MHz, CW, AM</td>
</tr>
<tr>
<td>FM Xtal markers, scope Dev. to 20%</td>
</tr>
<tr>
<td>TS-403A-Sig. Gen. (HP616) 1.8-4GHz</td>
</tr>
<tr>
<td>URM-26 Stand. Sig. Gen. 3-400MHz</td>
</tr>
<tr>
<td>USM-16-Stand. Sig. Gen.10-440MHz AM-CW-FM Pulse-Sweep, Phase-locked osc.</td>
</tr>
</tbody>
</table>

WANTS TO BUY

All types of military electronics equipment and parts. Call collect for cash offer.

SPACE ELECTRONICS division of **MILITARY ELECTRONICS CORP.**

76 Brookside Drive, Upper Saddle River
New Jersey 07458 • (201) 327-7640

FM Schematic Digest

A COLLECTION OF MOTOROLA SCHEMATICS

Alignment, Crystal, and Technical Notes covering 1947-1960

136 pages 11⅛" x 17" ppd $6.50

S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173

GRAY Electronics

P. O. Box 941, Monroe, MI 48161
Specializing in used test equipment

FM-404 DELUXE KEYER $124.95

- **ALL THE FEATURES YOU'VE ASKED FOR**
 - **115 Vac and 12Vdc**
 - **READ JAN 1972 CD AND MAR. SPACE ELECTRONICS FOR REPRINT OF SAME**
 - **ILR EK-402 PROGRAMMABLE KEYER**

WRITE FOR BROCHURES

**GET A FREE ELECTRIC DEVICES **

January 1973

More Details? CHECK-OFF Page 110
INTRODUCING: SUPER CRYSTAL — The New DELUXE DIGITAL SYNTHESIZER from RP

- TRANSMIT and RECEIVE OPERATION — SIMPLEX (transceive) and REPEATER MODES
- ACCURATE FREQUENCY CONTROL — .0005% accuracy
- STABLE LOW DRIFT OUTPUT — 20 Hz per degree C typical
- FULL 2 METER BAND COVERAGE — 144.0 to 147.99 MHz
- 10 KHz CHANNEL SPACING
- FAST ACTING CIRCUIT — 0.15 second typical settling time
- LOW IMPEDANCE OUTPUTS — 50 ohm output impedance both transmit and receive
- LOW SPURIOUS OUTPUT LEVEL — similar to crystal output

SEND FOR FREE DETAILS & PRICES TODAY
Will Work With: STANDARD, REGENCY & OTHERS
$30.00 will HOLD YOUR PLACE IN LINE for FASTEST DELIVERY

GIFT IDEAS FROM RP — FAST SERVICE!

TONE BURST ENCODERS AND DECODERS

- UP to 5 fixed tones (factory set)
- ADJUSTABLE
 - Duration
 - Output
- NO BATTERIES needed.
- FULLY ADAPTABLE
- EASY INSTALLATION
- CONTINUOUS TONE POSSIBLE
- FULL 1 YEAR RP Warranty

PRICES:
TB-5 5 tone std. encoder ... $37.50
(1800, 1950, 2100, 2250, 2400 Hz.)
ST-2 Single tone decoder .. $37.50
(Specify 1800, 1950, 2100, 2250, or 2400 Hz.)
Special tones — Inquire
Add $1.80/unit for shipping
(Ill. residents add 5% tax)

A SPEECH COMPRRESSOR THAT REALLY WORKS

RPC-3,3U Internal Unit ... ($24.95)
RPC-3C Cabinet Model ... ($34.95)
- Low distortion circuit.
- Fully wired & tested. NOT A KIT
- Works with phone patch.
- Internal units & modules work mobile.
- FULL WARRANTY — ONE YEAR
- INTRODUCTORY LOW PRICES
 (Illinois residents add 5% Sales Tax)
Add $1.00/unit shipping (RPC-3, 3U, 3M)
Add $2.00/unit shipping (RPC-3C)

RPC ELECTRONICS
BOX 1201H
CHAMPAIGN, ILL. 61820

More Details? CHECK—OFF Page 110
CRYSTAL FILTERS
and
DISCRIMINATORS
1 27/64" x 1 3/64" x 3/4"

9.0 MHz FILTERS
XF9-A 2.5 kHz SSB TX $25.40
XF9-B 2.4 kHz SSB RX $36.15
XF9-C 3.75 kHz AM $39.95
XF9-D 5.0 kHz AM $39.95
XF9-E 12.0 kHz NBFM $39.95
XF9-M 0.5 kHz CW $27.30
XL10-M 0.5 kHz CW $69.50

9.0 MHz DISCRIMINATORS
XD9-01 ± 5 kHz RTTY $19.20
XD9-02 ± 10 kHz NBFM $19.95
XD9-03 ± 12 kHz NBFM $19.20

9 kHz CRYSTALS (Hc25/u)
XF9-D 5.0 kHz AM $38.95

9.0 MHz FILTERS
XD9-01 9000.0 kHz Carrier $3.05
XD9-02 8998.5 kHz USB $3.05
XD9-03 9001.5 kHz LSB $3.05

RF Freq. (MHz) 2.5dB 2.8dB 3.4dB 3.8dB
Nom. Gain $49.95 $49.95 $49.95 $49.95

Standard I.F. 28-30MHz
Power 12v DC
1¾" x 2¾" x 4¾" + connectors.
† Other ranges available on request

VHF CONVERTERS
RF Freq. (MHz) 50-52 144-146 220-222 432-434
N.F. (typical) 2.566 2.8dB 3.4dB 3.8dB
Nom. Gain $49.95 $49.95 $49.95 $49.95

THE KLEINSCHMIDT
TELETYPewriter
Model TT-100. Capable of sending 60-100 wpm., 115 v, 60 cyc. Self contained power supply. F.O.B. Houston. Tex. $59.50 ea.

115 volt 60 cyc., shipping wt. 90 lbs. $545.00

1-142/ART-13 TRANSMITTER
This unit is ideal for HAM use on 80, 40, 20 and 10 meters. It has a power output of 100 Watts, AM, CW and MCW in a range of 2-18 MHz and can be preset to the desired frequency on any of 10 preselected channels. Complete with oscillator, 12" x 16" x 24" shipping wt. 75 lbs. SPECIAL $20.00

NEW! BALUN
1:1 ratio for dipole or inverted Vee.
Replaces center insulator.
Cuts noise in receive. Cuts TVI in transmit.
Wideband 1.7 to 30 MHz. Full Kw power.
$12.95 PPD USA. 5% tax in Calif.
Order direct. Free brochure. Send to:
PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

SPECTRUM
INTERNATIONAL
BOX 1084 CONCORD
MASS. 01742 U.S.A.

SURPLUS BARGAINS
KLEINSCHMIDT TELETYPewriters
Model TT-100. Capable of sending 60-100 wpm., 115 v, 60 cyc. Self contained power supply. F.O.B. Houston, Tex. $59.50 ea.

REPERFORATOR-TRANSMITTER
Model TT-179/FG. Mfg. by Kleinschmidt. Tape printing & punching, also transmitter-distributor. 115 volts 60 cyc., shipping wt. 90 lbs. Used $59.50

RECEIVERS
SRR-13 — 2 - 20 MHz. This fine receiver is tunable in 4 bands and is modular in construction, very stable $350
HAMMARLUND SP-600. A great general coverage receiver, tunable in 6 bands, 540 kHz to 54 MHz. 115 volts 60 HZ $400

USM-79/FR-4 FREQUENCY METER
This unit has a frequency range of 100 kHz to 20 MHz in seven bands and is used to calibrate transmitters and receivers. Uses a blinking light for accurate zero beat settings. Has a built-in scope for interpolation. Complete with calibration book. 115 volt 50-1000 Hz. Shipped in own transit case. Wt. 100 lbs. $100

T-142/ART-13 TRANSMITTER
This unit is ideal for HAM use on 80, 40, 20 and 10 meters. It has a power output of 100 Watts, AM, CW and MCW in a freq. range of 2-18 MHz and can be preset to the desired frequency on any of 10 preselected channels. Complete with oscillator, 12" x 16" x 24" shipping wt. 75 lbs. SPECIAL $20.00

ANDY ELECTRONICS
6427 Springer Houston, Texas 77017
713-645-7057 TELEX NO. 762-951
F.O.B. Houston, Tex. Payment with order

86 January 1973

More Details? CHECK-OFF Page 110
CW or RTTY, whichever way you go,

HAL HAS TOP QUALITY
YOU CAN AFFORD!

TOP QUALITY RTTY...WITH THE HAL MAINLINE ST-5 TU. Only 7 HAL circuit boards (drilled G10 glass) for all features, plug-in IC sockets, and custom Thordarson transformer for both supplies, 115/230 V, 50-60 Hz. Kit without cabinet, only $135.00; screened, punched cabinet with pre-drilled connector rails, $35.00; boards and complete manual, $19.50; wired and tested units, only $280.00 (with AK-1, $320.00).*

OTHER HAL PRODUCTS INCLUDE:
ID-1 Repeater Identifier (wired circuit board) ... $75.00
ID-1 (completely assembled in 11/2” cabinet) ... $115.00
HAL ARRL FM Transmitter Kit ... $50.00
W3FFG SSTV Converter Kit ... $55.00
Mainline ST-5 TU Kit ... $50.00
Mainline AK-1 AFSK Kit ... $27.50

NEW FROM HAL—TOP QUALITY RVD-1002 RTTY VIDEO DISPLAY UNIT. Revolutionary approach to amateur RTTY...provides visual display of received RTTY signal from any TU, at four speeds (60, 66, 75, and 100 WPM), using a TV receiver modified for video monitoring. Panasonic solid-state TV receiver/monitor, or monitor only, available. RVD-1002, $525.00; Panasonic TV receiver/monitor, $160.00; monitor only, $140.00.*

TOP QUALITY...WITH THE HAL 1550 ELECTRONIC KEYER. Designed for easy operation; perfectly timed CW with optional automatic ID for sending call letters, great for DX and RTTY; TTL circuitry, transistor switching for grid block, cathode keying. Handsome rugged crackle cabinet with brushed aluminum panel. With ID, only $90.00; without ID, $65.00.*

TOP QUALITY...WITH THE HAL MKB-1 MORSE KEYBOARD. As easy as typing a letter—you get automatic CW with variable speed and weight, internal audio oscillator with volume and tone controls, internal speaker, and audio output jack. Smooth operation; completely solid-state, TTL circuitry using G10 glass boards, regulated power supplies, and high voltage transistor switch. Optional automatic ID available. Assembled MKB-1, $275.00. In kit form, $175.00.*

TOP QUALITY...WITH THE HAL RKB-1 RTTY KEYBOARD. Gives you typewriter-easy operation with automatic letter/number shift at four speeds (60, 66, 75, and 100 WPM). Use with RVD-1002 video display system, or insert in loop of any teleprinter, for fast and easy RTTY. Completely solid state, TTL circuitry using G10 glass boards, regulated power supplies, and transistor loop switch. RKB-1 assembled, only $275.00.*

HAL provides a complete line of components, semi-conductors, and IC's to fill practically any construction need. Send 24¢ to cover postage for catalog with info and photos on all HAL products available.

*Above prices do not include shipping costs. Please add 75¢ on parts orders, $2.00 on larger kits. Shipping via UPS whenever possible; therefore, street address required.

HAL COMMUNICATIONS CORP., Box 365 H., Urbana, Illinois 61801

HAL HAS TOP QUALITY YOU CAN AFFORD!
1 WATT "FLANGELESS"
Volts
4.7 10 16.8
TOP HAT ZENERS
$0.55
Type TK, Metal Case
$1.10

BRAND NEW LOWEST PRICES
$2.95
ELECTRIC
3 for $6.00

3-WATT AUDIO AMP
Delivers 3 watts continuous, 10 watts peak. With heat sinks; micro-mo...
Linear Op Amps

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Take 10% Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>531</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>350</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>536</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>518</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>503</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>400</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>507</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>506</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>505</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>515</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

Hand Book Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Take 10% Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>531</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>350</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>536</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>518</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>503</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>400</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>507</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>506</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>505</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>515</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

Potter & Brumfield KAP RELAYS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Take 10% Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>531</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>350</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>536</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>518</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>503</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>400</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>507</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>506</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>505</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
<tr>
<td>515</td>
<td>55V, 1000pF</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

Philo-Ford Dynamic Mike

- Replacement for tape recorders, PA systems, audio amps, 200 ohm, 6.5-ft cord and minpins.
- Internal Amp: 2000 ohm.
- Steady state reference 1 mA.
- Price: $1.99

Digital Clock Kit

- **Slim:** 3 for $5.60

Dollar Stretchers

<table>
<thead>
<tr>
<th>Description</th>
<th>Take 10% Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 for $9</td>
<td>$3.95</td>
</tr>
</tbody>
</table>

Texas 4-Watt Audio Amplifier

- Type: SN71024
- Good up to 70 hr, 4 W, into an 8 ohm load, 50% duty cycle, 24 DIP pack with heat sink, 15 transistors, 5 diodes.

National "Op Amps"

- Type: SN70024
- Good up to 70 hr, 4 W, into an 8 ohm load, 50% duty cycle, 24 DIP pack with heat sink, 15 transistors, 5 diodes.

PNX Catalogue 4G2, Lynnfield, Mass., Vol. 1940

More Details? CHECK—OFF Page 110
send perfect code
get automatic CW with continuously variable speed from 5 to 55 WPM.

- All solid-state.
- Fully assembled and ready to plug-in and operate.
- Features built-in audio-oscillator/ amplifier, monitor, and audio output jack.
- Regulated A.C. power supply suits both 115 and 220-240 Volt operation.
- Deal direct with the manufacturer and save.
- Phone or write for our free illustrated brochure.
- Send your check or money order for $198.00 (plus Sales Tax for California residents) and we pay freight or order C.O.D. freight collect.

$198.—

MARTRONICS
Post Office Box 4646
Anaheim, California 92803
Telephone (714) 628-7571

TROPICAL HAMBOREE
AND
SOUTHEASTERN ARRL CONVENTION
JANUARY 20-21, 1973
MIAMI, FLORIDA
Combine it with a flight to VP7 for a glorious vacation!

ADVANCED CONVENTION REGISTRATION — $1.00
Convention Hotel Rates
$14 single - $18 double
(No advance deposit but reserve by January 15)

More info? Write:
DADE RADIO CLUB
P. O. BOX 73, B.A.
Miami, Florida 33152

Air Force 1 man life raft Type C2A,
A-1 Condition $24.95
ARC R19 RCR (R508) 118-148 MHz
Tunable, AM 9 tube superhetodyne with
schematic like new $14.95

Westinghouse 3 PH Full Bridge Rectifier
290 V @ 75 A. 6 IN203 diodes new
$4.95

Headset-Microphone H-63/U 600Ω earphones 100 ohm
mike suspended on headband new
$4.95

Chest Set AN/GSA-6 adapts above to GRC-VRC equipment
NEW $2.95

Potter & Brumfield industrial control relay
New KU-4129-2 SPDT, SPST 115 VAC 60 cps
$1.00

Teletype tape ¾" canary
10 rolls $1.00

Modification Kit Gen diodes, transistors, etc. $1.50 p/p
Sprague Electrolytic 90 MFD 500 VDC
75¢
Manometer Test Set 69-100 A 18" size "U" tube pressure
or vacuum measurements, tools and hardware included
$4.95

Temperature gauge for Jeeps #15124 100-220* F $1.00
#20 gauge shielded cable teflon coated 3¢ per foot.
Motorola 2 mtr FM transceiver, 6 volt input, 7 watt
output. Model FMTRU-5-V with schematic, $14.95.
Large quantity electronic equip., and parts in stock. All
inquiries answered. We also buy electronic parts and equip-
ment.

FRANK ELECTRONICS, 407 Ritter Rd., Harrisburg, PA 17109

More Details? CHECK-OFF Page 110
Look into the FTdx 570

You're invited to take an inside look at Yaesu's new FTdx 570 transceiver. What you'll see inside is quality. Construction features like a heavy-gauge, compartmented steel chassis with integral outer case, and instrument quality VFO gearing. You'll see a beautifully-arranged circuit layout, with each component identified by part number. And you'll see only the highest quality components — rated well above their operating levels.

The FTdx 570 is one of the best built rigs around. Anywhere. We built it like a tank. But like a fine watch, too.

The FTdx 570 is also filled with performance features you won't find in any other rig in its price range. A noise blanker. Built-in power supply. Calibrators, WWV, VOX and a cooling fan. Not to mention 560 watts PEP SSB, 500 watts CW input power. Plus a super-sensitive receiving section. Even a built-in speaker.

For a little extra money, you can have a CW filter included.

Those are the highlights. Send us the coupon, we'll send you the details. Better yet, send us $549.95 and we'll send you the FTdx 570, complete with a one-year warranty. Why wait to get into a Yaesu?

SPECTRONICS WEST
Dept. Q, 1491 E. 28th, Signal Hill, Ca. 90806 / (213) 426-2593

SPECTRONICS EAST
Dept. Q, Box 1457, Stow, Ohio 44224 / (216) 923-4567

Please send detailed information on all Yaesu products.

Enclosed find $.

Please send model(s).

Name

Address

City State Zip

All prices F.O.B. Signal Hill, Ca. "H-2"

Master Charge and BankAmericard accepted.

January 1973 91
NEW REPEATER

2 Meter Fixed Station

Designed for the man who demands professional standards in 2 meter equipment. REPEATER LINE fixed station antennas are the 2 meter HAM's dream come true. With everything you need for top fixed station performance…toughness, efficiency and the gain to gain access to distant repeaters with ease. Work many stations, fixed or mobile, without access to a repeater.

The right antennas for the new FM transceivers...or any 2 meter fixed station.

REPEATER LINE Fixed Station Antennas

Tough, high efficiency antennas with a long, low radiation. For the top signal and reception you want...and the top performance your transceiver's ready to deliver.

267 Standard 1/4 wave ground plane. May be precision tuned to any discrete frequency between 108 and 450 MHz. Takes maximum legal power. Accepts PL-259. Constructed of heavy gauge seamless aluminum tubing.

268 For repeater use. Special stacked 4 dipole configuration. 9.5 db offset gain. 6.1 db omnidirectional gain. Heavy wall commercial type construction. 144 thru 174 MHz. 1.5:1 VSWR over 15 MHz bandwidth eliminates field tuning. Extreme bandwidth great for repeater use. Center fed for best low angle radiation. DC ground. Complete with plated steel mounting clamps.

338 Colinear ground plane. 3.4 db gain omnidirectionally. Vertically polarized. 52 ohm match. Radiator of seamless aluminum tubing; radials of solid aluminum rod. VSWR less than 1.5:1. All steel parts iridite treated. Accepts PL-259.

362 SJ2S4 high performance all-driven stacked array. 4 vertically polarized dipoles. 6.2 omnidirectional gain. 52 ohm. May be mounted on mast or roof saddle. Unique phasing and matching harness for perfect parallel phase relationship. Center fed. Broad band response. DC ground.

Antennas with real PUNCH!

WRITE FOR DETAILS
For top fixed station performance on 2 meters...
THE REPEATER LINE
From
HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407-WL Lincoln, Nebraska 68505

more Details? CHECK-OFF Page 110
There will never be a better time to get your 1973 CALLBOOKS. Here are the brand new 1973 editions - Don't delay, the next editions are still 12 months away.

Get your copies today and you will enjoy the latest edition for the next twelve months. Put it off and only you will be the loser.

The CALLBOOK is a vital part of every amateur radio station. Over 285,000 listings in the US CALLBOOK and nearly 200,000 in the DX Edition make these two volumes an indispensable reference. Not only do the CALLBOOKS list QTH's, but they also have page after page of valuable charts, tables and maps all designed to make your operating more efficient and more fun.

To make these volumes even more valuable special service editions are issued each 3 months, but only to owners of the 1973 CALLBOOKS, which give complete cumulative updated information for the 1973 CALLBOOKS.

<table>
<thead>
<tr>
<th>US CALLBOOK</th>
<th>DX CALLBOOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>(with service editions)</td>
<td>$14.95</td>
</tr>
<tr>
<td>(less service editions)</td>
<td>$8.95</td>
</tr>
</tbody>
</table>

Mail orders add 50¢ per CALLBOOK postage and handling.

See your favorite dealer or send today to:

WRITE FOR FREE BROCHURE
RADIO AMATEUR CALLBOOK INC.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

94 January 1973

More Details? CHECK-OFF Page 110
An Incomparable Pair from PAYNE RADIO

Ancomparable Pair from PAYNE RADIO

ALPHA 77

- **SENSITIVITY:** Better than 10db signal-plus-noise-to-ratio for 25 microvolts at 25 MHZ.
- **SELECTIVITY:** 2.4 KHZ @—6db, 1.8:1 (6:60db) shape factor. (16 pole crystal lattice Filters)
- **Optional:**
 - CW 250 and 400 Hz. FSK-1200 Hz.
 - CARRIER and unwanted sideband suppression. Minimum 60db.
 - IMAGE and IF REJECTION; more than 60db.
- **POWER LEVEL:** 300 to 500 watts p.e.p. continuous duty cycle.
- **POWER AMPLIFIER:** 8072 final completely broad-banded driver and final. 150 watts continuous dissipation rating.
- **BROAD-BAND TUNING.** Instant band changes without tuning.
- **TRUE BREAK-IN CW** with T/R switching.
- **RF ENVELOPE CLIPPING** — sounds like a Kw.
- **Two VFO'S** transceiver Plus receiver.
- **BUILT-IN:** Spotter, FSK shift, transmit offset, wattmeter, SWR meter, electronic CW Keyer.
- **New Eimac 8877/3CX1500A7** air-cooled grounded-grid triode 4000 volts on plate 1500 watts plate dissipation 1500 watts continuous-duty transformer — tape-wound core of grain-oriented steel — cuts size and weight by 40% 25 mfd oil-filled filter capacitor Vacuum relays that don't "clank" — ultra-quiet, instant T/R switching 6000 volt-20 Amp band-switch Battleship construction — 1/4" aluminum sides Electrical and mechanical safety interlocks Complete metering by two broad-banded quality meters — including 0-5000 RF wattmeter — forward and reverse ALC-adjustable 120/240 volts 50/60 Hz.
- **IF SHIFT** — deluxe QRM slicer.
- **PRE-IF NOISE-BLANKER** that really works.
- **RF ENVELOPE —** sounds like a Kw.
- **TWO VFO'S** transceiver Plus receiver.
- **BUILT-IN:** Spotter, FSK shift, transmit offset, wattmeter, SWR meter, electronic CW Keyer.

CX7A Deluxe Integrated Station.....**$2395**
CX10 Integrated Station.............**$1795**
CR1200 Receiver....................**$1095**
CR1500 Receiver....................**$1650**
CT1500 Transmitter..................**$1450**
P/S10 A/C (CX10, CT1500)..........**$210**

If you want to move up to the finest, phone/write Don Payne, K41D, for a brochure, operating experience, and a top trade-in on any gear you have — one piece — or the whole station. Exports are our specialty.

distributed by PAYNE RADIO

Box 525
Springfield, Tenn. 37172

New West Coast Dealer:
Ham Radio Outlet
Bob Ferrero, K6AHV
999 Howard Ave.
Burlingame, CA. 94010
Phone Days - 415-342-5757

More Details? CHECK-OFF Page 110
LATEST SIGNAL/ONE CX7A
IN STOCK FOR IMMEDIATE SHIPMENT
WRITE FOR 4 PAGE BROCHURE
BEST DEALS ON TRADE-INS, ETC.

LATEST ALPHA MODEL PA77 LINEAR AMPLIFIERS
5 Bands, full power, write for information

DRAKE
SPR-4 new, $579.00 MS4 new, $22.00
TR4/C new, $599.95 W4 new, $61.95
LAB write or call TR22 new, $199.95
AC4 new, $99.95 ML2 new, $299.95
TV1000 - LP $18.75
AA-10 10 Watt FM Amplifier new, $49.95
AC-10 Power Supply $39.95
SC-2 2 meter converter, SC-6 6 meter converter,
CPS-1 power supply, SCC-1 calibrator all in
CC-1 console. 30% off net

TEN TEC
All below is new merchandise
ARGONAUT MODEL 505 $288.00
210 POWER SUPPLY $24.95
ARGONAUT 405 LINEAR AMP. 50w. out $149.00
250 POWER SUPPLY, powers 505 & 405 $49.00
TX100 ... $109.95
KR20 ... $59.95
RX10 ... $59.95
KR40 ... $89.95
AC4 .. $14.95
Microphone $17.00
KR1 ... $18.95
PM2B ... $64.95
KR2 ... $12.95
PM3A ... $79.95
KR5 ... $34.95

COLLINS
KWM-1 w/516-F1 $395.00
MP1 mobile supply good $95.00
351D2 mobile mount fair $65.00
DL1 Dummy Load good $49.95
301L spare parts kit less chassis/cab. etc. $99.00
51J-4 Deluxe all band revr $425.00

HALLICRAFTERS
SX-122A reg. $550 net, new cond., $350.00
HT-32A $195.00
FPM-300 new $595.00

LINEAR SYSTEMS
SB-36 5 Band 500W SSB/CW Digital readout
transceiver complete with AC power supply new, $969.95

DYCOM
2 Meter Amplifiers (Power ratings approx.)
BRICK BOOSTER, 2w in 35w out $79.95
SUPER BRICK, 2 in 45w out $99.95
BLOCK BOOSTER, 10 in 50w out $109.95
10-0 35-0, 25-35w in 100w out $189.95

CLEGG FM-27B NO XTALS
25w out Synthesized $479.95

INSTRUMENTS
HP 415CR SWR METER good, $65.00
HP 430CR POWER METER good, $65.00
HP 130C 200uV SCOPE mint, $225.00
GR 1001A SIGNAL GEN mint, $595.00
HEATH 10-18 SCOPE mint, $85.00
DUMONT 304H DUAL BEAM SCOPE ok, $125.00
HEATH IP-17 POWER SUPPLY ok, $64.95
HEATH IG-82 GENERATOR good, $40.00
HICKOK 455 VOM good, $39.00
BOONTON AM/FM GEN good, $250.00
HP DY5003 X BAND TEST SET excl. $350.00
HP 5415X TRANSFER OSC xint, $275.00
HP 685A H BAND OSC good, $225.00
GR 1208A UNIT OSC good, $95.00
HP 416A RATIO METER good, $195.00
HP 492A TWT AMPLIFIER good, $125.00
HP KS19353 TELEPHONE TEST OSC mint, $225.00
DIGIPET 60 digital freq. counter, with 160 scaler.
Range 1 kHz - 160 MHz $349.00
TEKTRONIC 316-S1 3" scope same as model
317. To 15MHz with probe $225.00
HP ATTENUATORS, 1/2 W, 500, DC 1000 MHz
Model 355C like new, $75.00
Model 355D like new, $75.00
FR-114U 6 digit E-put meter, frequency .1 - 10k,
,.0001 to 10 sec. like new, $225.00

12 VOLT DC POWER SUPPLIES: 110 AC INPUT
MODEL 102, is a 4 amp overload protected
power supply that automatically resets itself
when the overload is removed new, $249.50
MODEL 104R, is a regulated power supply with
the same electronic overload protection as the
model 102. MODEL 104R new, $34.95
MODEL 107M is a heavier duty supply with
the same features as the Model 102 but puts out 4
amps, useful for Clegg 27 series, etc. new, $27.95

INVERTER/CONVERTER:
MODEL 612 is a special purpose unit to provide
12 VDC negative ground power in automobiles
with either 6 volt negative ground or 12 volt
positive ground. 10 amp surge, 3 amp continuous
new, $22.95

CASH PAID . . . FAST! For your unused TUBES,
Semiconductors, RECEIVERS, VAC. VARIABLES,
Test Equipment, ETC. Write or call Now! Barry,
W2LNJ. We Buy!
We ship all over the World. DX Hams only.
□ Send for Green Sheet Supplement 23.
<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISC.</td>
<td></td>
</tr>
<tr>
<td>0-25 VDC Voltmeter by Honeywell</td>
<td>$3.95</td>
</tr>
<tr>
<td>JOHNSON VHF MATCHBOX excel.</td>
<td>$90.00</td>
</tr>
<tr>
<td>without coupler (swr)</td>
<td></td>
</tr>
<tr>
<td>2 METER VHF DUMMY LOAD/WATTMETER</td>
<td>$19.95</td>
</tr>
<tr>
<td>Good up to 15 watts — w/ SO-239 CONNECTOR</td>
<td></td>
</tr>
<tr>
<td>500 PIV 12 Amp Diodes</td>
<td>75¢</td>
</tr>
<tr>
<td>ANTENNAS</td>
<td></td>
</tr>
<tr>
<td>MOSLEY TA-33 Jr. write</td>
<td></td>
</tr>
<tr>
<td>MOSLEY TA-36 write</td>
<td></td>
</tr>
<tr>
<td>2M MAGNETIC MOUNT w/ RG58 & PL-259</td>
<td>$9.95</td>
</tr>
<tr>
<td>with 10 ft. RG 58 ready to go</td>
<td></td>
</tr>
<tr>
<td>DI-2 DIPLOMAT</td>
<td>$13.35</td>
</tr>
<tr>
<td>14AV/WD VERTICAL</td>
<td>$47.95</td>
</tr>
<tr>
<td>18AVT/WD VERTICAL</td>
<td>$69.95</td>
</tr>
<tr>
<td>TH3MK3 10/15/20 Beam Super T. Bird</td>
<td>$144.95</td>
</tr>
<tr>
<td>HY GAIN 2 METER, 15 element beam</td>
<td></td>
</tr>
<tr>
<td>write</td>
<td>$13.95</td>
</tr>
<tr>
<td>NEW ULTRA BALUN 1:1</td>
<td>$9.95</td>
</tr>
<tr>
<td>C.D.HAM "M" ROTATORS, new, complete</td>
<td>$99.95</td>
</tr>
<tr>
<td>HAM "M" CABLE</td>
<td>@12¢/ft.</td>
</tr>
<tr>
<td>C.D. TR-44 ROTATORS, new, complete</td>
<td>$63.95</td>
</tr>
<tr>
<td>CABLE FOR TR-44</td>
<td>6¢/ft.</td>
</tr>
<tr>
<td>RG8A/U 100 ft. rolls, VHF connector PI-259</td>
<td>$12.50</td>
</tr>
<tr>
<td>one end Type "N" (UG-21E/U) other end</td>
<td></td>
</tr>
<tr>
<td>RG8A/U — 65 feet with PL-259 connectors on each end</td>
<td>$9.95</td>
</tr>
<tr>
<td>Authorized factory dealers for Antenna Specialists, CushCraft, Gam, Heights Towers, Hy Gain, Mor-Gain Antenna, Mosley, Newtonics, Tri-Ex, Rohn</td>
<td></td>
</tr>
<tr>
<td>DX ENGINEERING SPEECH COMPRESSORS</td>
<td></td>
</tr>
<tr>
<td>DIRECT PLUG-IN FOR COLLINS 32S</td>
<td>$79.50</td>
</tr>
<tr>
<td>DIRECT PLUG-IN FOR KWM — 2</td>
<td>$79.50</td>
</tr>
<tr>
<td>DIRECT PLUG-IN FOR DRAKE TR3 OR DRAKE TR4</td>
<td>$98.50</td>
</tr>
<tr>
<td>BIRD</td>
<td></td>
</tr>
<tr>
<td>4350 80-10M 2KW Ham Mate</td>
<td>$79.00</td>
</tr>
<tr>
<td>4351 80-10M 1KW Ham Mate</td>
<td>$79.00</td>
</tr>
<tr>
<td>4352 6-2M 400W Ham Mate</td>
<td>$79.00</td>
</tr>
<tr>
<td>43 Wattmeter</td>
<td>$100.00</td>
</tr>
<tr>
<td>BIRD 43 SLUGS, spec. freq./power</td>
<td>$35.00</td>
</tr>
<tr>
<td>81 50 W Dummy Load</td>
<td>Fair $49.95</td>
</tr>
<tr>
<td>74 Coaxswitch SP6T New Surplus</td>
<td>$37.50</td>
</tr>
<tr>
<td>72-R Reversing Switch New Surplus</td>
<td>$37.50</td>
</tr>
<tr>
<td>Overseas friends. Barry can help you with the purchase of ROBOT SSTV Gear. Write or drop in when you are in NYC.</td>
<td></td>
</tr>
<tr>
<td>BARKER & WILLIAMSON</td>
<td></td>
</tr>
<tr>
<td>Dummy Load - Wattmeters 520 334A DC 300 MHz, 1000 watts int.</td>
<td>$139.95</td>
</tr>
<tr>
<td>374 DC - 230 MHz, 1500 watt</td>
<td>$169.95</td>
</tr>
<tr>
<td>333 DC - 300 MHz, 250 watt int.</td>
<td>$79.95</td>
</tr>
<tr>
<td>Transistorized Little Dipper, battery operated, 2 MHz-230 MHz continuous ±3% accuracy with modulation</td>
<td>$94.50</td>
</tr>
<tr>
<td>ARR B & W Kits, all available from Barry</td>
<td></td>
</tr>
<tr>
<td>850A, 852 Inductors</td>
<td>$59.95</td>
</tr>
<tr>
<td>851 Inductor</td>
<td>$29.95</td>
</tr>
<tr>
<td>FC-15A Filament choke</td>
<td>$17.95</td>
</tr>
<tr>
<td>FC-30A Filament choke</td>
<td>$21.95</td>
</tr>
<tr>
<td>FC-25A Filament choke</td>
<td>$9.95</td>
</tr>
<tr>
<td>B & W MODEL 800 HiPower RF Choke</td>
<td>$5.49</td>
</tr>
</tbody>
</table>

Write for free Deluxe B & W Catalog
BUILDERS!
Barry has lots of James Millen and National Radio parts in stock.
Write for Barry's latest Green Sheet, No. 23.

PASS FCC COMMERCIAL AND HAM EXAMS QUICKLY AND EASILY

WITH AMECO BOOKS AND CODE COURSES—WORLD-FAMOUS FOR SIMPLIFIED EXPLANATION OF TECHNICAL MATTERS.

OMMERCIAL RADIO OPERATOR THEORY COURSE for Radiotelephone. First and Second class licenses. Contains 21 lessons and over 600 FCC-type multiple-choice questions. Starts with basic electricity. No previous technical experience required. Complete course—450 pages.

#15-01 .. only 5.95

AMATEUR THEORY COURSE. Complete home study course in Amateur Theory, contains 14 lessons (from DC through transmission and reception), study guides and hundreds of FCC-type questions. Excellent foundation for all ham licenses. No previous experience required. 256 pages.

#12-01 .. 4.50

ADVANCED CLASS GUIDE contains simple, detailed, easy-to-understand answers for each FCC study question, plus sample FCC-type exams using multiple-choice questions. Excellent foundation for the General Class license. 16-01 .. 7.50

EXTRA CLASS GUIDE. Similar to above, but written for Extra Class exam. #17-01 .. 7.50

RADIO AMATEUR Q & A LICENSE GUIDE. Same as above, but written for Novice and General Class licenses. #5-01 .. 7.50

EXTRA CLASS CODE COURSE. Contains 10 lessons from 13 to 22 WPM for Extra Class code exam. Includes sample FCC-type exams. One 12" LP. #104-33 ..$3.95

EXTRA CLASS SUPPLEMENTARY CODE COURSE. Concentrated code practice from 19 to 24 WPM. Sample FCC tests are given. Serves as additional code study for Extra Class exam. One 12" LP. #106-33 $3.95

JUNIOR CODE COURSE. For beginners—from start to 8 WPM. Preparation for Novice and Technician code exams. Sample exam and instruction booklet. One 12" LP. #100-33 $3.95

ADVANCED CODE COURSE. As above, except that it covers 10 to 18 WPM, for General Class code test. One 12" LP. #103-33 $3.95

SENIOR CODE COURSE is a combination of the Junior and Advanced code courses Two 12" LPs. #101-33 ... $7.50

GENERAL CLASS SUPPLEMENTARY CODE COURSE. Concentrated code practice from 12 to 15 WPM. Sample FCC tests are given. Serves as additional code study for General Class code exams. One 12" LP. #105-33 $3.95

BOOKS

Greenville, New Hampshire 03048
INTRODUCING NEW DEVICES AT NEW LOW PRICES

LA3018 (replaces CA3018) $1.60
LA3046 (replaces CA3046) $1.60
LS370 (replaces LM370) $4.00
LS1496 (Improved MC1496) $2.00
LS3028A (replaces CA3028) $1.60
LP1000 (a new fun-type device to make LED flashers, audio osc, timer, etc) $1.60
Coming soon the LP2000 Micro-transmitter in a 10-pin IC package.

NATIONAL DEVICES
LM370 AGC/Squelch amp $4.85
LM373 AM/FM/SSB IF strip/Det $4.85
LM309K 5V 1A regulator. If you are using TTL you need this one. $3.00

MOTOROLA TUNING DIODES
Silicon voltage variable capacitance diodes in TO-92 plastic case like plastic transistors. Both standard Motorola and HEP numbers are listed; devices are same. Capacitance value is typical at -4Vdc. Tuning ratio is approx. 3:1.

MV2101/R2500 6.8 pF $1.10
MV2103/R2501 10 pF $1.10
MV2105/R2502 15 pF $1.10
MV2109/R2503 33 pF $1.10
MV2112/R2504 56 pF $1.10
MV2115/R2505 100 pF $1.10

MORE RCA IC's
CA3088E AM rcvr subsystem $2.50
CA3089E FM IF system with circuits for IF amp., Det., AF preamp., AFC, Squelch, & tuning meter $3.90
CA3018 Transistor array $1.55

NEW FAIRCHILD ECL HIGH SPEED DIGITAL IC's
9528 Dual "D" FF toggles beyond 160MHz $4.65
9582 Multi-function gate & amplifier $3.15
95H90 300 MHz decade counter $16.00
A 95H90 & 9582 makes an excellent prescaler to extend low frequency counters to VHF — or use two 9528s for a 160 MHz prescaler.

SEMINATOR Supermart
• MOTOROLA • RCA • FAIRCHILD • NATIONAL • HEP • PLESSEY

DIGITAL READOUT
At a price everyone can afford
$3.20
Operates from 5 VDC
Same as TTL and DTL
Will last 250,000 hours.

Actual Size
The MiNiTRON readout is a miniature direct viewed incandescent filament (7-segment) display in a 16-pin DIP with a hermetically sealed front lens. Size, and appearance are very similar to LED readouts. The big difference is in the price. Any color filter can be used.

POPULAR IC's
MC1550 Motorola RF amp $1.80
CA3020 RCA 1/2 W audio $3.07
CA3020A RCA 1 audio $3.92
CA3028A RCA RF amp $1.77
CA3001 RCA $6.66
MC1306P Motorola 1/2 W audio $1.10
MC1350P High gain RF amp/IF amp $1.15
MC1357P FM IF amp Quadrature det $2.25
MC1496 Hard to find Bal. Mod. $3.25
MFC9020 Motorola 2-Watt audio $2.50
MFC4010 Multi-purpose wide-band amp $1.25
MFC8040 Low noise preamp $1.50
MC1303P Dual Stereo preamp $2.75
MC1304P FM multiplexer stereo demod $4.95

FET's
MPF102 JFET $0.60
MPF105/2N5459 JFET $0.96
MPF107/2N5486 JFET VHF/UHF $1.26
MPF121 Low-cost dual gate VHF RF $0.85
MFE3007 Dual-gate $1.98
40673 .. $1.75
3N140 Dual-gate $1.95
3N141 Dual-gate $1.86

MOTOROLA DIGITAL
MC724 Quad 2-input RTL Gate $1.00
MC788P Dual Buffer RTL $1.00
MC789P Hex Inverter RTL $1.00
MC790P Dual J-K Flip-flop $2.00
MC799P Dual Buffer RTL $1.00
MC780/880 RTL decade counter $3.00
MC1013P 85 MHz Flip-flop MECL $3.25
2-WAY TECHNICIAN or SERVICE MANAGER, experienced, needed by expanding 2-way service organization in Dallas, Texas. Send resume to RAM Broadcasting, Attention Cecil White, Post Office Box 10373, Dallas, Texas 75207.

10 PIN EDGE CONNECTOR for p.c. card mount — single readout — solder tab contacts. With or without polarizing key (specify) $3 @ $1.00. Ferrite beads 10 @ $1.00. Ferroxcube #2616C-A1000-3B7 Pot Core, $7.50 each. Postpaid. S.a.s.e. for list of other components. CPO Surplus, Box 189, Braintree, Mass. 02184.

QSLS. Second to none. Same day service. Samples 25¢. Ray, K7HLR, Box 331, Clearfield, Utah 84015.

TOROIDs. iron "E" powder 80-100 meters. 500" — $8/1.00, 940" — $4/1.00, 1437" — 75¢ each or 3/$2.00, 2,310" — $1.50 or 3/$4.00. Please include 50¢ postage, slightly more on large orders. Fred Barken, WA2BLE, 274 E. Mt. Pleasant Ave., Livingston, N. J. 07039.

FREE "WANT" ADS! Details, plus 4 big issues $1. HAM ADS, P. O. Box 46-653H, L. A., Calif. 90046.

ROCHESTER, N. Y. is the place to go for the finest amateur equipment is sold. Individual, personal service by experienced and active hams. Factory-authorized dealers for Drake, Regency, Standards, Hy-Gain, Cushcraft, Mosley, Ham-M, plus many more. Orders for in-stock merchandise shipped the same day. Write today for our low quotes and try our personal, friendly service. Hoosier Electronics, R. R. 25, Box 403, Terre Haute, Indiana 47802.

HELP! I'm trying to collect a ham auto license plate from each state. Please write Jim Fox, 11 Deepwood Blvd., #5, Mentor, Ohio 44060.

WANTED: Ham Radio, Greenville, N. H. 03048.

ROCC \EIGHT\ ANNIVERSARY January 4-6, 1973. Advance Registration $10.00 per person entitles registrant to SAROC Special room rates at $15.00 per night plus room tax, single or double occupancy, tickets for admission to technical seminars, Swan Electronics and SAROC Social Hour Friday; Hy-Gain/Galaxy Electronics and SAROC Cocktail Party Saturday, Buffet Hunt Breakfast Sunday; Ladies who register will be offered a special program on Saturday. Advance Registration with Flamingo Hotel mid-night show, two drinks, $17.00. Advance Registrations with Flamingle Hotels united, listed in other categories. Send to SAROC Southern Nevada ARC, Inc., Box 73, Boulder City, Nevada 89005, before December 31st.

BEL 6M BEAMS. A/S HM171 regular list $109.95. Close out price $29.95, FOB Cleveland, OH. Communications World, Inc., 4788 State Rd., Cleveland, OH. 44109.

MODERNIZE FOR PEANUTS! Frame & Display QSL’s with 20 pocket plastic holders. Two for $1.00, seven for $5.00, prepaid. Used, absolutely in mint condition. Send S.A.S.E. for information. John P. Overbeck, 915 E. 1200 S., N. Provo, Utah 84640.

RATES Commercial Ads 25¢ per word; non-commercial ads 10¢ per word payable in advance. No cash discounts or agency commissions allowed.

COPY No special layout or arrangements available. Material should be type-written or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue. Deadline is 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

11TH ANNUAL MID-WINTER SWAP AND SHOP on Sunday, February 11, 1973 at the DuPage County Fairgrounds, Bensenville, Illinois from 1:00 PM to 5:00 PM. $1.50 advance/$2.00 at the door. We are expanding to two buildings this year. Refreshments and unlimited coffee and donuts 9:00 to 9:30 AM. Hams, CB'ers, electronic hobbyists, friends and commercial exhibitors (especially invited. Write W.C.R.A., Bill Rambo, WB9AVD, P. O. Box 56L, Wheaton, Illinois 60187 for information.

HOOSIER ELECTRONICS Your ham headquarters in the heart of the Midwest where only the finest amateur equipment is sold. Individual, personal service by experienced and active hams. Factory-authorized dealers for Drake, Regency, Standards, Hy-Gain, Cushcraft, Mosley, Ham-M, plus many more. Orders for in-stock merchandise shipped the same day. Write today for our low quotes and try our personal, friendly Hoosier service. Hoosier Electronics, R. R. 25, Box 403, Terre Haute, Indiana 47802.

TELL YOUR FRIENDS about Ham Radio Magazine.
Get the American Made Regency HR-2A
2 Meter Mobile FM Transceiver.
15 watts minimum output. Only $229.00 Amateur Net.

Specifications
Power Output: 15 watts at 13.6 V DC
Frequency Range: 144-148 MHz
Channels: 6 transmit; 12 receive capability
Sensitivity: 0.35 μV (nom.)
20 DB quieting
Spurious Rejection: 60 DB
Size: 2½” x 5½” x 7½”

Model HR-2A
Mobile Unit. Includes microphone, mounting bracket, tx and rx crystals for 146.94 MHz

for all your 2 Meter FM needs

Model HR-2MS 8 channel Transcan™
with signal search reception and 15 watts minimum output. $319.00 Amateur Net.

NEW! Model HR-212
12 channel 2 Meter FM Transceiver. 20 watts output power. $259.00 Amateur Net.

Model AR-2 Amplifier boosts 2 Meter FM output power 300%. $119.00 Amateur Net.

Many thousands of you have become very familiar with the various Radio Society of Great Britain books and handbooks, but very few of you are familiar with their excellent magazine, Radio Communication.

It includes numerous technical and construction articles in addition to a complete rundown on the month’s events in amateur radio. Surely a most interesting addition to your amateur radio activities.

We can now offer this fine magazine to you along with the other advantages of membership in the RSGB (such as use of their outgoing QSL Bureau) for $9.95 a year.

Total country points times number of diagram mint. G. W. B. 555 220 FM 1 WATT town.

QSL's calculated specifically from your own location.

POINT YOUR ANTENNA ACCURATELY! Send SASE for information on how to obtain bearing and distance to nearby 300 and 400 volt locations calculated specifically from your own location. W6WAH, Dean C. Hildebrand, 1461 Colonial Ave., Vallecito, Calif. 94590.

220 FM 1 WATT Xmtm and rec. conv. Requires 250-400 VDC and 12 VAC plus your 2M rec. To put you on 220 FM, rig up & tune in your own location, draw a radio antenna diagram, mint. G. W. B. 555 Patten Ave., Apt. 3B. Long Branch, N. J. 07740. Ph. 201-222-4508. 2M FM talky, tunes range 1/4 watt $75.

DRAKE TR-3AC-3: Excellent condition; break-in CW; receiver offset tuning. $400 or trade for D-200 or not often used. (C and A) McAlister, 10 Leacrest, North Little Rock, Ar. 72116.
BRAND NEW BC-645 TRANSCEIVER

EASILY CONVERTED FOR 420MC OPERATION

This equipment originally cost over $1,000. You get all in original factory carton.

Dependable Two Way Communication beyond 15 miles.

- FREQUENCY RANGE: About 435 to 500 Megacycles.
- TRANSMITTER has 4 tubes: WE-315A, 2A75, 7F7.
- RECEIVER has 11 tubes: 2F-55, 4F-77, 7F60, 3F77.
- RECEIVER I.F.: 40 Megacycles.
- SIZE: 10 1/2” x 13 1/4” x 7 1/2”.

Makes wonderful mobile or fixed rig for 420 to 500 Mc.

Easily converted for phone or CW operation.

R-4/MR-2

"SPECIAL PACKAGE OFFER"

BC-645 Transceiver, Dynamotor and all accessories below, including conversion instructions for Citizens Band.

F.O.B. NYC or Open, UF for Sales on Freight Charges.

Accessories for BC-645

- PE-101C Dynamotor, 12.24 V (easily converted to 6 volts).
- Mounting for BC-645 transceiver.
- PE-101C Dynamotor, 12.24 V (easily converted to 6 volts).
- Mounting for BC-645 transceiver.

TRANSCIEVER ONLY $16.95

SCR-274-N, ARC-5 COMMAND SET SQ!

FREQ. Range Type Complete With Tubes Exc. Used Like New BRAND NEW RECEIVERS 150-550 Mc BC-455 $16.95 $23.50 — RECEIVERS 69-91 Mc BC-455 — — $16.95 — RECEIVERS 1.5-3 Mc BC-455 — — $21.50 — TRANSCEIVERS Complete With Tubes 4-5 Mc BC-457 $8.95 $11.95 $11.95 5-7 Mc BC-458 $8.95 $11.95 $11.95 CRT AGEING & CHECKING TESTER $6.95 WILLARD 2-VOLT STORAGE BATTERY (Model 20-2)

Rated at 20 amperes hours. Completely rechargeable, fine for models. $2.79

BC-348 Radio Receiver $69.50

BC-312 Radio Receiver $69.50

AN/ARN-7 Receiver $19.50

ARC-811A Modern G-5 Receiver 150 - 500 KHz $10.95

ARC-1150 MD - 1600 KHz Receiver with tuning graph $15.95

R-4/ARC-2 Receiver 234-238 Mc, 11 tubes, NEW $8.95

BC-603 FM RECEIVER

Converted for 35-50 Mc. 10 preset pushbutton channels or manual tuning. Complete with 10 tubes, checked out, like new $39.50

AC Power Supply, New $14.95

DM-34 12V Power Supply, New $4.45

DM-36 24V Power Supply, Exc. Used $2.25

Technical Manual $2.50

Set of 10 tubes for BC-603 Receiver $5.95

BC-604 FM TRANSCEIVER

20 to 27.9 Mc. Output approx. 50 watts. 10 crystal controlled channels. Complete with tubes, NEW $12.50

AN/APR-4Y FM & AM RECEIVER

High precision lab instrument, for monitoring and measuring frequency and relative signal strength, 38 to 4000 Mc. In 5 tuning ranges. For 110v 60 cycle AC. Built-in power supply. Original circuit diagram included. Checked out. Perfect.

LIKE NEW $88.50

All tuning units available for above. Price upon request.

TG-34A CODE KEYER. self-contained, automatic, reproduces code practice signals from paper tape. 5 to 12 WPM Built-in speaker, Brands of tech manual, take-up reel and AC fine cord. Code practice tape for above F.U.R. $24.50

ARR-1 OSCILLATOR (GOLD-PLATED PLATE) $4.25

ARC-5 VHF RECEIVER, TRANSMITTER, MODULATOR 100-156 Mcs

R-28 RECEIVER with tube and crystal.

Excellent Used $8.95

T-23 TRANSMITTER with tubes and crystals. Brand New in Original Carton $23.50

R-28 MODULATOR with tubes.

Excellent Used $10.50

Set of Plugs for MD-7 $8.50

HANDMIDE Rugged, heavy-duty carbon hand mike with press-to-talk switch. Equipped with 4-ft cord & phone plug. SPECIAL, New, boxed $1.88 for $2.25

HEADSET Low Impedance. With large chomito ear cushions. 4-ft cord and plug. Reg. $12.95 Our Special Price $2.95

Like above, for above $69

SCR-522 TRANSMITTER/RECEIVER

Designed to operate from 100 to 156 Mc. This unit makes fine 2-meter rig for 2-way mobile radio! Both units can be removed from case separately. Complete with 18 tubes.

LIKE NEW $36.50

BC-659 FM TRANSCEIVER/RECEIVER

27 to 39.9 Mc. Control crystal on any 2 pre-selected channels. 80 channels. Uses FT-243 Crystal; 13 tubes: (1) LH4, (1) LC6, (4) 1LHS, (2) 1291, (4) 1299 & (2) 1290. New and complete with tubes, speaker and meter.

BRAND NEW $27.50

APN-1 FM TRANSCEIVER 400-450 Mc

Freq. modulated by moving coil transducer. Easily converted for radio control or 300 mms. Comp. with 14 tubes, dyn. BRAND NEW $9.95

LM FREQUENCY METER

Fine general purpose Hobby unit 125 to 20,000 Hz. Operates on 12 or 24 VDC. Complete with tubes, crystal, calibration book. Checked out. Excellent Used $59.50

As above, less book $32.50

CATHODE RAY TUBES

All New in Original Carton

STANDARD MAKE

3AP1 2.95

5MP1 2.75

3FP1 4.45

90P7 4.95

3CP1 1.98 ea. Sold in Lots of 3 Only

3 Shield $1.34 5 Shield $3.25

3" and 5" Sockets 69¢ ea.

3" and 5" tubes sold with shields and sockets only.

TERM: F.O.B. NYC. 25% deposit with order, balance COD or remittance in 30 days. MINIMUM ORDER $5.00. Subject to prior sale and price change.

G&G RADIO ELECTRONICS COMPANY

45-47 Warren St. (2nd Fl) New York, N.Y. 10007 Ph. 212-267-4605

January 1973
"DON AND BOB" GOODSIES. SBE450 MHz Transceiver (399.95L) 339.00; SBE144 2FM 209.00; Caddie 81250 with HC 255.00; Standard 826-299.00; SBE SSV system, monitor, camera (999.95L) 849.00; Mosley CL33 124.00; CL36 149.00; MCQ3B quad 91.00; $420.00; Hy-Gain TH5DX 139.00; 204B 119.00; Ham-M 99.00; TR4A 149.00; AR2R 31.95; 8COND Belden 8484 rotor cable 10c/ft; RG8 Belden 8237 15c/ft; Malfory 250/1000PVC epoxy glue 29c; 1%00 13.95; Lead- er 801 GDM 49.95; Quote Clegg FM27A; Elmac; Ten-Tec; Triex, Drake, Kenwood, Tempo dealer. Used guaranteed HT37 175.00; HQ170 160.00; BW LPA1 linear/supply 200.00; KY65 code ID 5.95; RG22B/U 12c/ft; write quotes. List. Prices FOB Houston, Shipment to change without notice. Mastership, BAC. Warranty guaranteed. Madison Electronics, 1508 McKinney, Houston, Texas 77002. 713. 224-2668.

VIDEO TAPE RECORDER. Amex. $75.00 or best offer. Charged 10c/ft. With remote BAC. Warranty guaranteed. Used Texas 75240. (713) 224-2668.

LATEST GOODIES: Technical Material Corporation Model TRC-500 antenna couplers. Match 70 ohms to 150, 300, or 600 ohms over 2-3 MHz region with no tuning. In weatherproof box, like new. In original MIL packing with data sheet and mounting hardware. Cost $520 originally, now only $27.50. AT-741/A Aircraft Antenna, works up to 1220 MHz like new, $5.00. HQ-170 $120.00. TS-497B 135.00. SASE for list. All FOB Richard Solomon, Five Cherry Street, Lexington, Massachusetts, 02173.

F.C.C. TYPE EXAMS GUARANTEED to prepare you for the F.C.C. 3rd., (7.00), 2nd. ($12.00), and 1st ($16.00). phone Exams; complete package, $25.00. Research Company, Dept. D. Rt. 2, Box 448, Calera, Alabama 35040.

CANADA'S MOST UNUSUAL Surplus and Parts Catalog. jam packed with bargains and unusual items. Send $1. ETCO-HR, Box 741, Montreal, Canada.

VHF NOISE BLANKER — See Westcom ad in Dec. '70 and Mar. '71 Ham Radio.

RESISTORS: Carbon Composition brand new. All standard values stocked. 1/2 watt 10% 50; $1.00 1/2 watt 10% 100; $1.00 10% 250; $1.00 10% 100K; $2.50 10% 1 Meg; $6.00 Minimum order 100. Post paid. Pace Electronic Products, Box 161-H, Ontario Center, New York 14520.

COMMUNICATIONS TECHNICIAN seeks overseas employment. First Phone with Radar. Amateur extra license. Experience: HF, VHF communications; antennas; aircraft navigation; test equipment maintenance, calibration. Also technical writing, data entry, and management experience. Age 27. Seek challenging job with responsibility. For resume write: John Brosnahan KOUTX, P. O. Box 1716, Boulder, Colorado 80302.

RECIPROCATING DETECTOR KIT. Send SASE to Peter Meacham Associates, 19 Loretta Road, Wall, New Jersey, 07662.

RTTY SPEED CONVERTER. A drilled 4” x 61/2” PCB and all components except input output jacks, power supply, and chassis. See Dec. 71 and Oct. '72 issue of Ham Radio. $40.00 postpaid. PCB only $6.00. P & M Electronics, Inc., 519 South Austin, Seattle, Washington 98108.

KW107

SUPERMatch

$134.95

Pos in USA & Canada

Money back Guarantee

Send FREE Literature

KW Electronics

10 Peru St. Pittsfield, New York 12901

In Canada 222 New Park Rd. Richmond Hill Ontario

— PCB KITS —

RTTY SPEED CONVERTER Drilled PCB 5 & 11 VDC $40.00

DRILLED PCB ONLY 3 $6.00

RTTY AFSK Gen. All Shifts & CW I.C. 9 VDC @ 2ma $6.60

100 KHz XTL CALIBRATOR Less Xtal. 9 VDC @ 2ma $4.75

100 KHz XTL (Limited Supply) $2.50

PREAMP MICROPHONE, 26B DB Gain 9 VDC @ 1ma $3.50

LIMITER PREAMP For High Z Mike 9 VDC @ 1ma $4.80

PRODUCT DETECTOR For Your Receiver 9 VDC @ 1ma $3.60

"S" MILL KIT Less 1ma Meter 6.3VAC $4.75

SWR METER LineAR, Less 200ma Meter $2.95

WWW CONVERTER 3.5-4.0 MHz Output 9 VDC @ 5ma $2.55

Receives 6-6.5MHz Crystal

6 METER CONVERTER FET Front End 9 VDC @ 5ma $5.95

7-11 MHz Output. Less 43 MHz Xtl

CW KEYING MONITOR, RF Keyed, Less 43 MHz $4.70

POWER SUPPLY - 9 VDC @ 50ma Output 115VAC $4.85

6 OR 2 METER CASCODE PREAMP 80 VDC @ 4.5ma $4.95

Wired & Tested Less 2 za 6CW4

Novitors, Specify 6 or 2 Meter Model

DRILLS, #34, 56, 58 or 60 (each) $4.00

Finest Quality for PCB'S, Made in USA Three For $1.00

EXCEPT AS NOTED ABOVE, ALL KITS ARE NEW, 100% SOLID STATE. AND ALL PCB MOUNTED COMPONENTS. KITS ARE LESS POWER SUPPLIES, CHASSIS, AND ENCLOSED HARDWARE. SEND SELF-ADDRESSED STAMPED ENVELOPE FOR COMPLETE DATA SHEET AND SCHEMATIC.

SATISFACTION GUARANTEED, RETURN IN 30 DAYS FOR REFUND. ALL KITS POSTPAID, INCLUDE $25 HANDLING CHARGE. WASHINGTON RESIDENTS ADD 5% SALES TAX.

P. M. ELECTRONICS INC.

519 SOUTH AUSTIN, SEATTLE, WASH. 98108

More Details? CHECK—OFF Page 110
ECHO II

ALL SOLID STATE

STOCK FREQS:
 16/76
 22/82
 28/88
 34/94

2 METER AMATEUR REPEATER — ONLY $600.00

PROVEN STATE OF THE ART DESIGN
INSTALLATIONS WORKING GREAT IN U.S., EUROPE AND ASIA
STOCK FREQS DELIVERED IMMEDIATELY, OTHERS 3-4 WEEKS
WRITE FOR FREE DATA SHEET — FULL MANUAL $5.00

DYCOMM
948 AVENUE E P.O. BOX 10116
RIVIERA BEACH, FLA. 33404

Digipet-60
Frequency Counter
1 KHz-60 MHz (130-160 MHz with optional converter) only $299

A frequency counter with a range of 1 KHz to 60 MHz for 130-160 MHz when used with our Digipet-60 Converter. With a resolution of 1 KHz or 1 Hz (at 1 ms. or 1 sec. time out). It can be operated on either AC or DC, with complete overload protection. Plus a stability aging rate of 1 part in 10^7/year. And the whole unit is a mere 7 1/4" deep by 2 1/4" high.

Supra precision quality at less than half prices! Call or write for literature and trade in or our LOW INTRODUCTORY PRICE 1 YEAR WARRANTY. NO ONE ANYWHERE BEATS OUR DEAL!

AMATEUR-WHOLESALE, ELECTRONICS
6017 S.W. 129 Terrace, Miami, FL 33156
Days (305) 233-9631
Nights-Weekends (305) 666-1347

Just Printed

Application Rules for TTL Integrated Circuits
INCLUDING Operating Instructions FOR ALL POPULAR MODELS

MINITRON 7-SEGMENT READOUT $3.70
SEND 25¢ FOR CATALOG

Digital Clock Semi-kit
15 IC's & 4 MINITRONS (ONLY) $3.50

Arizona Semiconductor
PO BOX 112
GOODYEAR, ARIZONA 85338

EXCLUSIVE 66 FOOT
75 THRU 10 METER DIPOLE
NO TRAPS — NO COILS — NO STUBS — NO CAPACITORS
FULLY AIR TESTED — THOUSANDS ALREADY IN USE

#16 40% Copper Weld wire annealed so it handles like soft Copper wire—Rated for better than full legal power AM/CW or SSB-Coaxial or Balanced 50 to 75 ohm feed line—VSWR under 1.5 to 1 at most heights—Stainless Steel hardware—Drop Proof Insulators—Terrific Performance—No coils or traps to break down or change under weather conditions—Completely Assembled ready to put up—Guaranteed 1 year—ONE DESIGN DOES IT ALL: 75-10HD—ONLY $12.00 A BAND!

Model 75-10HD... $60.00 66 Ft. 75 Thru 10 Meters
Model 75-20HD... $50.00 66 Ft. 75 Thru 20 Meters
Model 80-40HD... $42.00 69 Ft. 80-40-15 Meter (CW)

ORDER DIRECT OR WRITE FOR FULL INFORMATION

300H Shawnee
Leavenworth, Kansas 66048

OR THRU YOUR FAVORITE DISTRIBUTOR

104
January 1973
FOR SALE. SB-300 $175, HW-12 H.B. P.S. $75, 2 HQ-110C 90 each, Seneca $100, HA-10 6 meter linear $50. Offers welcome. Dave Smith, Rt. 1, Box 353, Valdese, N. C. 28690.

COLLINS mechanical filters 455 kHz, 2.4 kHz bandwidth. $11.00 postpaid. V. Mozarowski VE3AIA, 1 Belgrove Dr., Islington, Ontario, Canada.

THE HORN SPEAKER, monthly newspaper about vintage radio, 50¢ each, $3.00 yearly, Box 12, Kieberg, Texas 75145.

PL-259 & SO-239 10/$4.50; UG-175/1 reducers 10/$1.50; All silver plated, not cheap nickel. IN4007 1KV. 1amp 10/$2.00, 100/$15.00; HEP 170 1KV 2½ amps 10/$3.00, 100/$25.00. 1N34 25/$1.00. Rotron "Whisper" fan 115VAC. Everything is brand new and fully guaranteed! Please include postage — excess refunded. Nurmi Electronic Supply, 1727 Donna Road, West Palm Beach, Florida 33401.

COLLINS CRYSTAL PACK — first $140 or what have you. Want basket case 75s series rcvr. J. Koehler, 2 Sullivan St., Saskatoon, Sask., S7H-3G8.

WEST ALLIS RAC Midwinter swapfest, February 3, 1973 at Hart Park, 7300 Chestnut Street, Wauwatosa, Wisconsin (Milw. suburb). Take 70th Street exit on I-94 North 1.2 miles to Chestnut. Doors open at 8 a.m. Food and liquid refreshments available at reasonable prices. One dollar in advance or one dollar fifty at the door. For details write WA9KRF, 4582 South Ahmedie Avenue, Milwaukee, Wisconsin 53207.

WORLDWIDE VHF ACTIVITY 1973, 3 p.m. local, March 10 to 10 p.m. local, March 11. Open to hams and SWL's. Exchange call letters, county and state. Count contacts with mobiles in each county worked. Mobiles can work a station once from each county of mobile or portable operation. Scoring: Contacts times counties worked, times states worked. Mail logs by April 15 to WA3NUL, Box 1062, Hagerstown, Md. 21740.

WANTED: tubes, transistors, equipment what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.

DRAKE ML-2 new with 5' antenna $250 prepaid. Trade to SSTV setup. Cline W7TMR, Box 216, Logan, Utah 84321.

22nd ANNUAL DAYTON HAMVENTION will be held on April 28, 1973 at Wampler's Dayton Hara Arena. Technical sessions, exhibits, hidden transmitters, hunter hunt, flea market, and special program for the XYL. For info write Dayton Hamvention, Dept. H, Box 44, Dayton, Ohio 45401.

YOUR AD belongs here too. Commercial ads 25¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.

More Details? CHECK-OFF Page 110
Go all the way into the REPEATER

There's nothing half-way about the new Hy-Gain REPEATER LINE. Designed for the man who demands professional standards in 2 meter mobile equipment, the REPEATER LINE is the 2 meter HAM’s dream come true. It's got everything you need for top performance... toughness, efficiency and the muscle to gain access to distant repeaters with ease. Reaches more stations, fixed or mobile, direct, without a repeater.

The right antennas for the new FM transceivers... or any 2 meter mobile rig.

Rugged, high riding mobiles. Ready to go where you go, take what you dish out... and deliver every bit of performance your rig is capable of.

261 Commercial duty 1/4 wave, claw mounted roof top whip. Precision tunable to any discrete frequency 108 thru 470 MHz. Complete with 18’ of coax and connector. 17-7 ph stainless steel whip.

260 Same as above. Furnished without coax.

262 Rugged, magnetic mount whip. 108 thru 470 MHz. Great for temporary or semi-permanent no-hole installation. Holds secure to 100 mph. Complete with coax and connector. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip.

263 Special no-hole trunk lip mount. 3 db gain. 130 thru 174 MHz. 5/8 wave. Complete with 16’ coax. Operates at DC ground. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip.

264 High efficiency, vertically polarized omnidirectional roof top whip. 3 db gain. Perfect 52 ohm match provided by base matching coil with DC ground. Coax and connector furnished.

265 Special magnetic mount. 3 db gain. Performance equal to permanent mounts. Holds at 90 mph plus. 12’ of coax and connector. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip. DC ground.

269 Rugged, durable, continuously loaded flexible VHF antenna for portables and walkie talkies. Completely insulated with special vinyl coating. Bends at all angles without breaking or cracking finish. Cannot be accidentally shorted out. Furnished with 5/16-32 base. Fits Motorola HT; Johnson; RCA Personalfone; Federal Sign & Signal; and certain KAAR, Aerotron, Comco and Repco units.
2 meter mobile! with

LINE from HY-GAIN

Top performance for 2 meter mobiles
THE REPEATER LINE
from
HY-GAIN ELECTRONICS CORPORATION
BOX 5407-WK / LINCOLN, NEBRASKA 68505
WRITE FOR DETAILS
GIANT B-7971 NIXIES (2) with 2 sockets and drive board containing hi voltage transistors. Complete plug-in board as removed from operational equipment. Schematics included. Unbelievable but true ... just $2.50 for the complete package. #72S-10 $2.50

APHA-NUMERIC keyboard removed from unused IBM Selectric machines. Bargain price at only $8.00

15¢ IC BONANZA
Brand new DTL dual inline (DIP) package, factory marked ceramic type. The price is too good to be true. Fully guaranteed and with specs.

930 Dual 4 input NAND gate similar to 7420
931 Clocked flip flop similar to 74110
932 Dual 4 input Expand Buff similar to 7440
933 Dual 4 input expander similar to 7460
936 Hex Inverter similar to 7405
945 JK Flip Flop similar to 74110
946 Quad 2 input gate similar to 7400
962 Triple 3 input gate similar to 7410

15¢ each
Buy $100 worth and deduct 10%
24 hour delivery guaranteed

Please add postage for above.

JOHN MESHNA JR. ELECTRONICS P. O. Box 62 E. Lynn, Mass. 01904

PRACTICE DRIVING SAFETY & OPERATING EFFICIENCY WITH A PATENTED MAGNETIC SAFETY MIKE

$29.95 NET AT YOUR DISTRIBUTOR
or P. P. From Factory. Ohio Residents Add Sales Tax.

Write for literature.

BOX 715 - 722H MAIN, COSHOCTON, OHIO 43812

WORLD QSL BUREAU
THE ONLY QSL BUREAU to handle all of your QSLs to anywhere; next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 5¢ each.

5200 Panama Ave., Richmond, CA USA 94804

SUPER COUNTER — $349 TO 160 MHz (as shown with scaler) 9 digits, w/display storage very compact, 4.5 lbs, AC/DC Sems 150V, Sibility 1 pt 10%_recv full wnt, immediate delivery. Order yours now or SASE for more info. 206-747-8421.

NHE COMMUNICATIONS 15112 S. E. 44TH BELLEVUE, WA. 98006

OMEGA-T ANTENNA NOISE BRIDGES Precision bridges with a broadband signal source permits you to measure both antenna resonant frequency and antenna impedance at the resonant frequency when used with your receiver.

- A must for the serious antenna enthusiast.
- Replace VSWR bridges or other antenna test equipment.
- Get optimum performance from all types of mobile and fixed antennas.

INDUSTRIES Model TE 7-01 1-100 MHz $29.95 ppd
MPQ Hernando, MS. Model TE 7-02 1-300 MHz 38632 $39.95 ppd

BOX 217

PRINTED IN U.S.A.
The thing the whole world yearns after!

...THE DRAKE RECEIVER...

beautiful sound, beautiful feeling... it's the real thing that's hit the world!

So says this ad clipped from a Japanese ham magazine:

DAIMARU 世界のドレイクが大丸に登場！

あこがれの世界第一品
モズレーアンテナ・CDEローターに加えて
ドレイクの無線機がやってきました。
高感度・高精度でおなじみの世界の本格派がやってきました！
業界一の大丸無線機コーナーだけの独占販売です。

Our distributors in Japan tell us...

Japanese radio amateurs save for months to be able to purchase Drake gear. We think you'll agree that is significant in a land which has become famous for its production of electronic equipment.

Known around the world for the finest in electronic equipment:

R. L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 • Telex: 288-017

January 1973
Advertisers Index

ATV Research .. 80
Amateur-Wholesale Electronics 80, 82, 104
Andy Equipment, Inc. 110
Antenna King .. 56, 57
Arizona Semi-Conductor 104
BC Electronics .. 76
Barry .. 96, 97
Budget Electronics 76
CNE Magazine .. 82
Coffex .. 104
Caringella Electronics 61
Circuit Specialists Co. 98
Clegg Division of ISC 104
Command Productions 80
Communications Specialists 100
Contec .. 97, 100
Cook's Communications Corporation 72
Curtis ... 82, 84
Data Engineering, Inc. 45, 109
dycomm .. 109
Elmac, Div. of Varian Assoc. Cov. IV
Emporium Sounds of Pompano 54
Fair Radio Sales 101
Frank Electronics 90
G & G Radio Supply Co. 102
Gateway Electronics 78
Global Import Company 82
Goodheart Co., Inc. R. E. 100
Gray Electronics 84
H & L Associates 76
HAL Communications Corp. 97
Ham Radio Magazine 74
Henry Radio Stores Cov. III
Hobby Industry 76
Hy-Gain Electronics Corp. 92, 93, 106, 107
International Crystal Mfg. Co. Inc. 112
Jan Crystals .. 80
Janel Labs ... 21
Jeff-Tronics .. 82
K. E. Electronics 74
KW Electronics 103
L. A. Electronics Sales 111
Larsen Electronics, Inc. 71
Linear Systems, Inc. 19
MFJ Enterprises 72
MPQ ... 108
Martronics .. 90
Matric .. 78
Meshan, John, Jr. 108
Micon, Inc. .. 78
Midland Electronics Co. 76
Military Electronics 76
Mobiliers .. 108
Morgan-Gain, Inc. 59
NHE Communications 72, 108
PM Electronics Inc. 103
Palomar Engineers 86
Payne Radio .. 95
Poly Paks .. 88, 89
RP Electronics 85
Raccom Electronics, Inc. 74
Radio Amateur Callbook 94
Raytheon Company 13
Regency Electronics, Inc. 12
Robot Research 5
Sams, Howard W. and Co., Inc. 65
Solid State Electronics Cov. II
Signal/One ... 81
Space-Military Electronics 84
Spectronics ... 84
Spectrum International 86
Star-Tronics ... 74
Swan Electronics 82
Ten-Tec, Inc. ... 39
Top Band Systems 1
Topokey FM Engineering 76
Tri-Com, Inc. .. 105
Tri-Ex Tower Corp. 75
Tropical Hambrore 70
Van's W2DLT ... 84
Vanguard Labs 72
Weinschenker, M. 73
Weatlands Electronics 82
Wolf, S. ... 84
World QSL Bureau 108
Y & C Electronics 100

Limit 15 inquiries per request.

January 1973

Please use before February 28, 1973

Tear off and mail to

HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME .. CALL
STREET ..
CITY .. STATE ZIP

110 / January 1973
BONUS
THE BEST ANTENNA PACKAGES YET!
OPTIMUM PERFORMANCE
GUARANTEED SAVINGS

Local Bank Financing - 15% Down or Trade-In Down
Good Reconditioned Equipment. Nearly all makes and models. Our reconditioned equipment carries a 30 day warranty and may be traded back within 90 days for full credit toward the purchase of NEW equipment. Inquiries invited.

*Certified Welders & Approved by L.A. City

W51 SHOWN

LAE MW35 "STANDARD" Package
(Free Standing Crank-Up Tower
9.5 Sq. Ft. - 50 MPH) (35 FT.)
CDR AR-22R Rotator*
100 ft. RG-58/U Coax & Control Cable
Substitute 50 ft. free standing, add $100
Complete with one of the following antennas:
HY-GAIN TH2MK3 $275
HY-GAIN TH3JR $275
HY-GAIN DB10-15A $285
HY-GAIN HY QUAD $285
HY-GAIN TH3MK3 $295
*TR-44 rotor w/cable add: $35
HAM-M rotor w/cable add: $65

LAE W51 "DELUXE" Package (51 Ft.)
(Free Standing, 9 Sq. Ft. - 50 MPH)
CDR TR-44 rotor*
100 ft. RG58/U Coax & Control Cable
Substitute 67 ft. free standing, add $400
Complete with one of the following antennas:
HY-GAIN DB 10-15A $590
HY-GAIN HY QUAD $599
HY-GAIN 204BA $625
HY-GAIN TH3MK3 $625
HY-GAIN TH6DX $645
Free stdg. base incld. NO/CHARGE
*HAM-M rotor w/RG8/U add: $45

LAE LM354 "SUPER" Package (54Ft.)
(16 Sq. Ft. - 60 MPH)
CDR HAM-M Rotor
100 ft. RG8/U Coax & Control Cable
Substitute 70 ft. free standing, add $650
Complete with one of the following antennas:
HY-GAIN TH3MK3 $750
HY-GAIN 204BA $765
HY-GAIN TH6DX $785
Freight PREPAID to your door in the Continental USA west of the Rockies.
For shipment east of the Rockies, add $15.00. Substitutions may be made.... write for prices.

"WEST COAST'S FASTEST GROWING AMATEUR RADIO DISTRIBUTOR"
"WE SELL ONLY THE BEST"

Electronix Sales
23044 S. CRENSHAW BLVD., TORRANCE, CALIF. 90505
Phone: (213) 534-4456 or (213) 534-4402
HOME of LA AMATEUR RADIO SALES
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
Oscillator • RF Mixer • RF Amplifier • Power Amplifier

1. MXX-1 TRANSISTOR
 RF MIXER
 A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz; Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
 RF AMP
 A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz; Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
 RF POWER AMP
 A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw. depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3.000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND AMP
 General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur $3.75

5. OX OSCILLATOR
 Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz. Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
 Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ± 0.02% when operated in International OX circuit or its equivalent. (Specify frequency) $3.95

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3098E.

CRYSTAL TYPES:
 (GP) for "General Purpose" applications
 (CS) for "Commercial Standard" applications
 (HA) for "High Accuracy" close temperature tolerance requirements.
ANNOUNCING...
A SUPERB NEW
SOLID-STATE SSB TRANSCEIVER

KENWOOD'S
TS-900

NOW THE PROMISE OF THE TRANSISTOR HAS BEEN FULFILLED.
HERE IS THE TRANSCEIVER YOU WILL WANT TO OWN AND CAN AFFORD.
FOR YEARS AMATEURS HAVE WAITED FOR THE NEW GENERATION
GENERAL PURPOSE SSB TRANSCEIVER. NOW THE WAIT IS OVER.
WHATEVER TRANSCEIVER YOU OWN GET READY TO TRADE.

FEATURES: Break-in CW with sidelobe provided ★ Built-in 100 KHz and
26 KHz crystal oscillator. ★ The receiver incremental tuning control can vary
the receive frequency ±2 KHz or more ★ RTTY ★ Built-in frequency shift
circuit for FSK operation. The frequency shift is factory set at 850 Hz ★
Built-in noise blanker designed to reduce impulse type (ignition) noise ★
Built-in VOX circuit with adjustable VOX gain and delay ★ All major
electronic circuits are built on modular (plug-in) circuit boards.

SPECIFICATIONS: Frequency range: 60 meter band — 3.5 to 4.0 MHz; 40 meter
band — 7.0 to 7.5 MHz; 20 meter band — 14.0 to 14.5 MHz; 15 meter band —
20.0 to 21.0 MHz; 10 meter band — 28.0 to 29.0 MHz; 29.0 to
29.5 MHz; 29.5 to 30.0 MHz; WWV — 15.0 MHz (receive only) ★ MODE: SSB,
CW, or FSK ★ POWER OUTPUT: 150 watts nominal into 50 ohms for FSK,
125 watts nominal into 50 ohms for CW, 50 watts nominal into 50 ohms for SSB,
RF INPUT IMPEDANCE: 50 ohms ★ FREQUENCY STABILITY: Within 100
Hz during any 15 minute period after warmup ★ CARRIER BAND
SUPPRESSION: Unwanted sideband better than 40 db down from the output
signal ★ HARMONIC RADIATION: Better than 40 db down from the output
signal ★ RECEIVER SENSITIVITY: 0.5 microvolts for a 10 db signal/noise ratio —
4 kHz bandwidth (6 db down), 4.4 kHz bandwidth (60 db down), CW — 0.5 KHz bandwidth (6 db
down), 1.5 KHz bandwidth (60 db down) (with optional CW filter installed) ★
TUBE & SEMICONDUCTOR COMPLEMENT: 3 tubes (6LO7x2 and 6G6K)
3 IC's: 16 FET's, 57 transistors. 70 diodes ★ SIZE: 12.6"W x 5.5"H x 12.6"D
The TS-900, unquestionably the best transceiver of its kind ever offered.

PRICES: TS-900 . . . $745.00, PS-900 (AC supply) . . . $110.00, DS-900 (DC
supply) . . . $130.00, VFO (External VFO) . . . $195.00.
Also, Kenwood's TS-511S five band SSB & CW transceiver . . . a superb value
at $415.00. If you want separate units, Kenwood's R-599 solid state receiver at
$349.00 and the T-599 transmitter at $395.00 are the best.

Henry Radio
11240 W. Olympic Blvd., Los Angeles, Calif. 90064
213/477-6701
971 N. Euclid, Anaheim, Calif. 92801
714/772-9200
818/879-3127

AVAILABLE AT SELECT DEALERS THROUGHOUT THE U.S.
The no-compromise
Alpha 77
is powered by
the no-compromise
EIMAC 8877.

No corners were cut in designing the rugged Alpha 77 amplifier. Rated for continuous commercial service, it loafs along at the maximum legal amateur power limit.

And, no corners were cut in designing EIMAC's air-cooled 8877 ceramic/metal, high-mu triode, the Alpha 77 power tube. The 8877 is conservatively rated at 1500 watts plate dissipation up to 250 MHz and requires less than 65 watts PEP drive signal for the legal power input limit. This impressive power gain is achieved with 3rd order intermodulation distortion products -38 decibels below one tone of a two equal-tone drive signal.

This compact, rugged, high-mu power triode has a maximum plate voltage rating of 4000 and a maximum plate current rating of one ampere in commercial service. While the 8877 is primarily designed for superlative linear amplifier service demanding low intermodulation distortion, its high efficiency also permits excellent operation as a class C power amplifier, oscillator, or as a plate modulated amplifier. The zero bias characteristic is useful for these services, as plate dissipation is held to a safe level if drive power fails, up to a plate potential of 3 kV.

The Alpha 77 is the ultimate power amplifier for the 70's. That's proven by the choice of the 8877, another example of EIMAC's ability to provide tomorrow's tubes today. For additional information on this tube or other products, contact EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070. Phone (415) 592-1221. Or contact any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.