focus on communications technology...

this month

- frequency synthesizer 16
- all-band dipole 22
- sonobaby crystal deck 26
- 160-meter vertical 34
- multi-function IC's 46

four-channel spectrum analyzer
Complete packaged Multi-Band Antenna Systems employing the famous Bassett Sealed Resonators and a special Balun. Air has been evacuated from both and replaced with pure helium at one atmosphere.

Highly efficient system packages including all hardware, insulation, coax cable, and copperwe elements assembled at the factory. Complete installation instructions included.

Multi-frequency models available for all amateur bands and for commercial use, point to point ground to air, military and government.

MODEL DGA-4075 — $59.50
A complete system package for primary use in the 40 and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-152040 — $79.50
A complete system package for primary use in the 15, 20, and 40 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-2040 — $59.50
A complete system package for primary use in the 20 and 40 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-204075 — $79.50
A complete system package for primary use in the 20, 40, and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc.
P.O. Box 7127 - Fort Lauderdale, Florida - 33304
Tel: 305-566-8416 or 305-947-1191
The most important development since the beginning of SSTV

ROBOT MODEL 70 MONITOR AND MODEL 80 CAMERA

$295 EACH

Robot Goes Factory Direct

These are the identical camera and monitor that have been selling through dealers for $495 and $465. But with our new factory direct marketing program and our substantial growth in sales volume we can now offer our complete line of SSTV equipment at new, low prices.

You can now order your equipment direct from our factory and we will ship freight collect. All prices are F.O.B. San Diego, Ca., and APPLY IN U.S. & CANADA ONLY!

DIRECT EXPORT INQUIRIES TO: MAGNUS OVERSEAS CORP. 5716 North Lincoln Avenue, Chicago, Ill. 60645. Cable ULLMAG

☐ Please send your new factory direct price list.
☐ Enclosed $. Please send the following equipment via AIR ☐ or SURFACE ☐
☐ Model 70 Monitor $295
☐ Model 80 Camera $295
☐ 25 mm fl.9 lens $25

Name ___ Call ____________________
Address ________________________________
City_________________________ State_________ Zip__________
California residents add 5% sales tax.

ROBOT RESEARCH INC.
7591 Convoy Court
San Diego, California 92111

More Details? CHECK—OFF Page 110
Meet the new Heathkit "Mini-Rig"

Heathkit HW-7 CW QRP Transceiver: $69.95*

Tired of competing barefoot with the kilowatt crowd? Looking for something a bit more challenging than running a full gallon with 6 elements? Try the flea-power route with the new HW-7. This hot new little CW rig delivers up to 3 full watts...provides better than 1 uV'sensitivity.

The new HW-7 gives you a dauntless 3 watts of minipower on 40...2½ on 20...and a magnificent 2 whole watts on 15 meters...more than enough to work the globe...if you've had it with the kilowatt boys. For novices up to the challenge, there's crystal transmit and receive...for General and up, use the built-in VFO...either mode provides full coverage of the CW portions of all three bands. Band changing and tune-up are a snap, with push-button band-switching and 6-1 vernier drive main tuning. Other features include built-in sidetone...midget size and weight...and all-solid-state, single circuit board design.

Order your HW-7 today...and join the gang on QRP. You may never turn your gallon on again.

Kit HW-7, transceiver, less batteries, 6 lbs...$69.95*

Kit HWA-7-1, AC power supply for fixed station use, 4 lbs.$14.95*

HW-7 SPECIFICATIONS: RF Power Input: 3 watts on 40 meters; 2.5 watts on 20 meters; 2 watts on 15 meters. Frequency Control: 40 meter crystal or built-in VFO on 40 meters, 20 meter crystal or built-in VFO on 20 meters. 15 meter crystal or built-in VFO on 20 meters. Output Impedance: 50 ohm unbalanced. Sidetone: built-in. Spurious and Harmonic Levels: at least 25 dB down. RECEIVER; Sensitivity: less than 1 uV for a readable signal. Selectivity: 2 kHz @ 6 dB down. Reception: CW or SSB. Audio Output: 1 k ohm nominal. Receiver frequency response is ±3 dB at 200 to 2500 Hz. GENERAL: Frequency Coverage: 40 meters: 7.0 to 7.2 MHz. 20 meters: 14.0 to 14.2 MHz. 15 meters: 21.0 to 21.3 MHz. Frequency Stability: less than 100 Hz drift after 10 minutes warmup. Power Requirements: 13 VDC, 35 mA receive, 450 mA transmit. Dimensions: 9¼" W x 8½" D x 4¼" H, including knobs and feet. Weight: 4½ lbs.
October, 1972
volume 5, number 10

staff
James R. Fisk, W1DTY
editor
Douglas S. Stivison, WA1KWJ
assistant editor
Nicholas D. Skeer, K1PSR
vhf editor
J. Jay O’Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, WA6IAK
associate editors
Wayne T. Pierce, K3SUK
cover
T. H. Tenney, Jr., W1NLB
publisher
Hilda M. Wetherbee
advertising manager

contents

6 four-channel spectrum analyzer
H. F. Priebe, Jr., W9IA

16 high-frequency frequency synthesizer
Albert D. Helfrick, K2BLA

22 efficient all-band tuned dipole
E. R. Cook, ZS6BT

26 five-frequency crystal deck
for the Sonobaby
Robert D. Shriner, WA0UZO
Robert C. Heptig, K0PHF
Earl A. Gill, W8OED

29 pulse-snap diode impulse generator
Bernard S. Siegal
Michael K. Turner

34 adding 160 meters to a 40-meter vertical
Kenneth Cornell, W21MB

38 predicting six-meter sporadic-E openings
Morris S. Goldman, WA9RAQ

42 low swr high-frequency dipole pairs
F. J. Bauer, Jr., W6FPO

46 multi-function integrated circuits
Edward M. Noll, W3FQJ

54 printed circuit for RTTY speed converter
Earl E. Palmer, W7POG

58 low-level rf power meter
Howard F. Burgess, W5WGF

4 a second look

99 flea market

110 advertisers index

62 ham notebook

46 circuits and techniques

70 new products

64 comments

110 reader service
The FCC has finally taken action on the so-called fm repeater docket (Docket 18803) which concerns licensing and operating rules for amateur repeaters. If you will remember, in a notice filed in February, 1970, the Commission invited comments on rules proposed for repeater stations. Since that time there has been a lot of discussion between fm operators and repeater groups, with many counter-proposals and comments submitted to the FCC.

On August 29th the Commission adopted several amendments to Part 97 of the rules. Since the present rules do not specifically refer to repeater stations, up until now it has been FCC policy to permit amateur stations to operate as repeaters under the rules applicable to all amateur stations.

Under the new rules, however, a separate station license will be required for every amateur repeater station (beginning July 1, 1973). These stations will be identified by a callsign having the distinctive prefix WR. To qualify for a repeater station license, an applicant must hold at least a Technician Class amateur license, and must submit certain data concerning the technical and operational provisions of his proposed repeater.

An amateur’s license, which now specifies the location of his station and his operator privileges, will also include the privileges authorized for his station. At a minimum, the station privilege would be a primary station. Various kinds of station privileges may be combined with a primary station license upon submittal of appropriate information.

The remote-control operator may be any qualified amateur designated by the repeater licensee. The new rules permit a licensee to use his own repeater station while he is operating mobile or portable; they also provide for auxiliary link stations to be used when terrain makes multiple-hop control links necessary. The new rules also provide for wire remote control.

Under the new rules, approximately one-half of each amateur vhf band, and 8 MHz of the 420-MHz band, is authorized for repeater usage, and Technician Class licensees will be permitted to operate in the entire 145- to 148-MHz segment of the two-meter band. The new rules also restrict linked repeater operation, place limits on the effective radiated power from a repeater station antenna, and require the licensee to maintain supervision and control of both the technical and operational performance of his repeater.

The new rules also provide for operation of stations by visiting operators and automatic identification of repeater stations by telephony as well as telegraphy. In addition, they provide for continuous monitoring of remotely-controlled repeaters to prevent interference to communications already in progress on a given frequency.

Although the new rules do not prevent amateur stations from being automatically interconnected to a telephone exchange system, the Commission said that, because of numerous violations of rules regarding interconnection, it may be necessary to examine the use of auto-patch facilities and possibly restrict the use of such devices in the amateur service. They also warned that, until new regulations are adopted, interconnection devices must be limited to amateur communication, and may not be used for any type of business communication.

The new rules become effective on October 17th, 1972.

Jim Fisk, W1DTY
editor
REPEATERBILITY
by Standard Communications

NEW! SOLID STATE 2M REPEATER SC-ARPT-1
Complete packaged repeater designed for today's popular 2M FM band. 12 vdc. Ideal for new system or emergency portable operation.

FEATURES:
- Adjustable C.O.R.
- Time-out timer, adjustable 0-5 min.
- Adjustable carrier delay.
- Remote Control and accessory provisions.
- 10 watt R.F. output.
- Receiver: 0.4 µV or less.
- Maximum 3 amp current drain.
- 19" Rack Panel Mounting.
- Size: 19"w x 5"h x 9"d.

$640 00
Suggested
Amateur
Net Price

2M FM TRANSCEIVER SRC-146A
Solid state, 2 watt, 5 channel, hand held transceiver.

$289 00
Suggested
Amateur
Net Price

Write for complete specifications.

Standard Communications Corp.
213 / 775-6284 · 639 North Marine Avenue, Wilmington, California 90744

More Details? CHECK-OFF Page 110
four-channel
spectrum analyzer

This large-screen, four-channel spectrum analyzer will display four different amateur bands at one time.

The conventional spectrum analyzer displays a portion of the rf spectrum in one continuous sweep. However, for many applications only certain portions of the spectrum are of interest. One such case is the testing and adjustment of frequency-multiplier circuits; another is the monitoring of a particular class of radio service where numerous separate segments or bands are involved. The amateur radio service is just such a service with the popular 80-, 40-, 20-, and 15-meter bands.

Usually, the panoramic adapter or Heathkit Scanalyzer has been used in conjunction with the station receiver to provide a number of receiving conveniences. When a-m was popular, the panoramic adapter was exceedingly helpful in net operation. The net-control station could see a signal off frequency when he could not hear him. With the improvements that came with ssb there are far less problems with off-frequency operation. But one of the practical operating problems is that of locating an unused frequency or finding where the action is.

A major shortcoming of the adapter type of panoramic reception is that it is
slaved to the station receiver and the display is centered about the received frequency. You can see what is on the band or part of the band you are listening to, but that is all. And, all too often you know what’s happening on the band you’re operating on but wonder what the activity might be on another band. That’s one of the advantages of the large-screen 4-channel spectrum analyzer. While operating on one band, even during transmission, you can tell what is happening on the other bands.

description

A block diagram of the spectrum analyzer is shown in fig. 1; specifications are listed in table 1. The rf input is connected via an i-f trap to four high-frequency converters, each consisting of a dual-gate, mosfet rf amplifier with agc, a second dual-gate mosfet mixer, and bipolar transistors in an oscillator and switch. An enhancement-mode mosfet in the input circuit switches the antenna so actually only one converter at a time is electrically in the signal path. Converter outputs are 6 to 6.5 MHz, and for simplicity, are broadbanded.

The first i-f, second mixer and second oscillator are electronically tuned with variable-capacitance diodes. Sweep is adjusted to give in excess of 500-kHz dispersion, but even greater range is possible. The two-stage second i-f is at 455-kHz with approximately 10-kHz band-width. A diode detector supplies the rf envelope to the video amplifier. A separate detector is used for agc.

The channel selector and video amplifier consists of suitable synch-pulse shaping circuits, a two-stage binary counter.

table 1. Complete specifications of the four-band spectrum analyzer.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency coverage</td>
<td>3.5-4.0 MHz</td>
</tr>
<tr>
<td></td>
<td>7.0-7.5 MHz</td>
</tr>
<tr>
<td></td>
<td>14.0-14.5 MHz</td>
</tr>
<tr>
<td></td>
<td>21.0-21.5 MHz</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>1 μV (50-ohm source) provides 1/4" deflection</td>
</tr>
<tr>
<td></td>
<td>0.1 V (50-ohm source) provides 2" deflection</td>
</tr>
<tr>
<td>Resolution bandwidth</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Display</td>
<td>better than 3 dB on any band segment</td>
</tr>
<tr>
<td>Flatness</td>
<td>60 Hz sequenced through four segments for frame rate of 15 Hz</td>
</tr>
<tr>
<td>Sweep</td>
<td>60 Hz sequenced through four segments for frame rate of 15 Hz</td>
</tr>
<tr>
<td>Spurious signals</td>
<td>none for the four band segments</td>
</tr>
</tbody>
</table>

6: 6.5MHZ
i-f trap

CHANNEL 4
80 Meters

CHANNEL 3
40 Meters

CHANNEL 2
20 Meters

CHANNEL 1
15 Meters

HF CONVERTERS

FIRST IF
6: 6.5 MHZ
Sweep

SECOND IF
455 KHZ

DETECTOR
AND AGC

CHANNEL SELECTOR
AND VIDEO AMPLIFIER

TO DEFORMATION YOKE

TO 60-HZ SYNC

fig. 1. Block diagram of the four-channel spectrum analyzer.

october 1972 HP 7
and translator. This system provides the
time-division multiplexing of the four
converters to the common swept i-f cir-
cuit and provides the crt with a four-trace
display.

The display unit is a converted tv set
which provides a large picture that is easy
to view from across the room. The
horizontal sweep is synchronized with the
60-Hz power lines; a pulse from the
sweep circuits in the tv set is used to
synchronize the receiver.

converters

The circuit diagram of one high-
frequency converter is shown in fig. 2. All
converter circuits are the same; only the
tuned circuits and the crystal are dif-
ferent.

The antenna is connected through a
normally-off enhancement-mode mosfet
which is turned on. The on resistance is a
few hundred ohms so the match to a
50-ohm source is not too good, but this
has been no problem. The converters are
set to the same sensitivity with the rf gain
adjustment. However, in actual on-the-air

The output of the mixer stage is
connected in parallel with the other
converters and each mixer-oscillator com-
bination is gated through a transistor
switch. A 15-volt zener diode is used to
shift the level of the channel-select gate
pulse to operate the switch with negative
voltage supply.

sweep i-f amplifier

The sweep circuits are shown in fig. 3.
Rf input from the converters is 6 to 6.5

<table>
<thead>
<tr>
<th>band (kHz)</th>
<th>crystal</th>
<th>L1,L2 (µH)</th>
<th>L1A (turns)</th>
<th>L3 (µH)</th>
<th>C1,C2 (pF)</th>
<th>C3 (pF)</th>
<th>C4 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10,005</td>
<td>16</td>
<td>6</td>
<td>3.2</td>
<td>100</td>
<td>68</td>
<td>220</td>
</tr>
<tr>
<td>40</td>
<td>13,505</td>
<td>8</td>
<td>5</td>
<td>2.5</td>
<td>47</td>
<td>47</td>
<td>200</td>
</tr>
<tr>
<td>20</td>
<td>20,505</td>
<td>4</td>
<td>4</td>
<td>1.5</td>
<td>27</td>
<td>33</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>27,505</td>
<td>2</td>
<td>4</td>
<td>1.1</td>
<td>68</td>
<td>27</td>
<td>68</td>
</tr>
</tbody>
</table>

fig. 2. High-frequency converters used in the
four-channel spectrum analyzer. One converter
is required for each channel.
MHz. The sweep oscillator is on the low side with a frequency of 5.545 to 6.045 MHz to produce a second i-f of 455 kHz. Each of the three tuned circuits has its own variable-capacitance sweep-voltage .01-μF capacitor via a 2 megohm resistor. Each capacitor is discharged by a clamping transistor with an adjustable emitter potential. The emitter potential is adjusted at the high-frequency end while

The voltage applied to the variable-capacitance diode is developed across a time-constant components to permit independent adjustment.

Since the hf oscillator is on the low side of the first i-f frequency, the left-hand side of the crt display is the low-frequency end. Since the hf oscillator is on the low side of the first i-f frequency, the left-hand side of the crt display is the low

fig. 3. Circuit of the sweep amplifier. Sweep synch is picked up from the converted tv set (see fig. 6).
fig. 4. Vertical deflection and channel selector circuits for the spectrum analyzer.
end of the rf input but this corresponds to the high-frequency end of the swept i-f.

The vertical gain adjustment permits use of various size cathode-ray tubes since the larger screens require greater deflection current. The detector threshold adjustment is used to limit base line noise and to offset the input voltage threshold of the video amplifier (vertical deflection amplifier).

channel selector

The four channels are obtained with the circuit shown in fig. 4. The 60-Hz synchronizing signal from the tv chassis is shaped by an overdriven amplifier and monopulser. A two-stage binary counter, a MC790P IC, and the four 2-input AND gates provide the four-channel gate signals. Each gate signal drives a constant-current vertical position circuit. Constant-current positioning circuits are used to give maximum band width since the high current, low voltage and rather large yoke inductance would otherwise give a long time constant and consequently, narrowband response.

Each trace is positioned by setting the base current to the constant current transistor. Adequate range is provided to handle a crt size of 16 to 21 inches with reasonable variation in transistor current gain.

Two voltages, +15 and -15 volts, are obtained from a single transformer with two rectifiers and regulators as shown in fig. 5. These circuits are conventional.

converting the tv

The portions of the tv receiver which remain are the cathode-ray tube, its high-voltage supply and portions of the verti-
Modifications to the tv set used for display in the four-channel spectrum analyzer. An improved 60-Hz sweep circuit is shown in fig. 7.

1. The deflection yoke is rotated 90°, and the two leads from the horizontal yoke are brought out to a connector. These are used for the vertical deflection. To insure that the high-voltage flyback supply in the set will function normally, an old yoke, horizontal winding, is connected in place of the yoke wires that are removed.

2. An ac outlet is added on the tv chassis or cabinet and connected to the ac supply in the tv set that is energized through the switch. When the tv set is turned on, power will be applied to this outlet which furnishes power to the panoramic receiver rf unit.

3. A synch pulse is brought out through a shielded lead from the vertical output circuit. These circuit modifications are shown in fig. 6.

With these simple modifications sweep linearity and stability are not the best. Although they work, eliminating the vertical multivibrator and adding the changes shown in fig. 7 are well worthwhile.

When converting the tv set it is advisable to remove all the unused parts, the tuner, the i-f, the audio, speaker, etc. The only functional controls on the tv set are the on-off switch, brightness, vertical linearity and vertical height. However, since

fig. 6. Modifications to the tv set used for display in the four-channel spectrum analyzer.

fig. 7. Improved 60-Hz sweep circuit for the modified tv set.
the yoke was rotated 90°, the old vertical linearity and height controls are now horizontal linearity and width adjustments.

construction

The panoramic receiver, not including the display section, is assembled on seven individual L-shaped subchassis. These are assembled together in a 10- by 17- by 2-inch aluminum chassis. The top of the chassis was cut out and the individual chassis mounted in place of the cutout. The bottom plate is used as this allows troubleshooting the entire assembled unit by merely removing the plate. This could not have been done if the individual subchassis were assembled underneath the chassis, although it would have been a lot easier.

All the subchassis are 2 inches deep by 10 inches long; the rf subchassis are each 2 inches wide, while the sweep, video multiplexer and power supply are each 3 inches wide. All unit interconnections are made through connectors. Rf signals use coax and coaxial connectors and power supply leads and others use Jones plugs.

operation

If you use a large-screen tv set as I did, you will find plenty of room inside the tv cabinet for the receiver circuits. I put the rf chassis in the bottom of the tv cabinet.
behind the speaker grill. One of the nice things about the console tv is that it doesn’t take up any room on the operating table and the large screen can be viewed from anywhere in the radio shack. The unit is excellent for keeping up to the minute on band activities while you are occupied with something else. For the past year I’ve had mine in operation in the workshop.

The sensitivity of the receiver permits excellent operation with just a short piece of wire for an antenna, although it is designed for a 50-ohm input.

additional uses

The dynamic range is approximately 100 dB. With a 100,000-microvolt signal this results in a 2-inch vertical deflection, while a 1-microvolt signal produces 1/4-inch vertical deflection. The vertical deflection does not give much discrimination between strong signals because of the wide dynamic range.

A very useful application of this multi-band spectrum analyzer is in troubleshooting harmonic-producing circuits such as frequency multipliers, or when measuring harmonics in amplifiers and oscillators. If a conventional frequency analyzer is used to measure the harmonic amplitudes of a 7-MHz fundamental, the second harmonic is 14 MHz and the third harmonic is 21 MHz, etc. Therefore, each pair of pips is separated by 7 MHz. Since, in this example, we are interested in only three frequencies with a slight dispersion to either side of each frequency, the four band segments are more efficient. With four channels, the fundamental appears on one segment, second harmonic on another, and the third on still another. The total dispersion of the four bands is 2 MHz, whereas with a conventional spectrum analyzer, it would be greater than 14 MHz.

conclusion

If you think this would be a worthwhile addition to the radio shack, you will have to build one because none are being manufactured at the present time. The closest you can come with commercial gear is a general-purpose spectrum analyzer at considerable expense, and you still will not have the desirable feature of selecting the segments of the spectrum you are interested in.

reference

Vertical deflection and channel selector circuit chassis.

High-frequency converter.

Sweep i-f chassis.
Everything you always wanted in keyers and QRP equipment.

POWER-MITES

MODEL PM2B. Popular two watt CW transceiver. Operates on 80-40-20 meters. Side-tone. Lantern battery or 12 VDC power source. Size 10 3/4” W X 4 1/2” H X 6 1/2” D. Weight 2.5 lbs. Price $64.95.

ANTENNA TUNER

MODEL AC5. Matches 52 ohm output of Power-Mites to open wire on random length antennas. Maximum power 10 watts. Size 4” W X 2” H X 4” D. Weight 1 lb. 4 oz. Price $8.95.

SWR BRIDGE

MODEL AC4. Favorite for QRP. Measures from 1/2 watt to 200 watts. Size 4” W X 2” H X 4” D. Weight 1 lb. 4 oz. Price $14.95.

SIGNALIZER

MODEL S20. Complete audio and speaker system for receivers/transceivers. Plugs into headphone jack. Provides maximum AGC to keep all signals constant level. Front panel headphone jack. Size 8 1/2” W X 4 1/2” H X 6 1/2” D. Weight 3 1/2 lbs. Price $39.95.

MODEL S30. Similar to S20 but has built in FR4 CW filter; switchable. Size 8 1/2” W X 4 1/2” H X 6 1/2” D. Weight 4 lbs. Price $49.95.

KEYERS AND KEYER PADDLES

Ask your TEN-TEC dealer to show you our complete line. If there is no dealer in your area, send your order direct. Include $2.00 shipping for each Argonaut, all other items shipped postpaid.
high-frequency

frequency synthesizer

This inexpensive frequency-synthesized 300-kHz to 10-MHz signal generator keeps cost low and performance high through the use of low-cost ICs.

Many amateurs own some sort of radio-frequency signal generator. It is used mainly as a source of accurately known frequencies for receiver or transmitter alignment. Most signal generators found in the ham-shack are capable of ±1% accuracy, at best, which is insufficient for modern radio alignment. For example, 455 kHz on the dial of a signal generator of 1% accuracy would actually be somewhere between 459.5 kHz and 450.5 kHz. This sort of accuracy makes the signal generator of little value for aligning a modern ssb receiver with a passband of only 2.1 kHz.

One of the techniques used to remedy this situation is continuous monitoring of the output frequency with a frequency counter, and periodically adjusting to correct for drift of the signal generator. This technique works quite well, but it is annoying to reset the signal generator constantly.

It would be nice if an electronic circuit could be made to read the counter and automatically make the frequency change. This is exactly what is done by the phase-locked loop synthesizer. The
circuit not only checks the frequency and makes the adjustment, but does it a thousand times per second.

The phase-locked loop frequency synthesizer consists of four basic parts; the voltage-controlled oscillator, the programmable divider, the frequency discriminator and the reference frequency source (see fig. 1).

voltage controlled oscillator

The vco is just as its name implies — an oscillator where the frequency is controlled by voltage. This can be achieved in several ways. A varactor diode may be placed across a vfo tank circuit so that the varying diode capacitance with bias voltage changes shifts the vfo frequency. This type of oscillator usually has a limited range and requires considerable bandswitching or manual tuning.

However, integrated circuits have been designed especially for frequency synthesizers; they overcome the narrow tuning range and provide a more than three-to-one frequency range. The Motorola

MC4024 voltage-controlled multivibrator operates from a single 5-volt supply to frequencies over 30 MHz. A graph of frequency vs voltage for the Motorola MC4024 is shown in fig. 2.

programmable divider

The output frequency is determined by the programmable divider. The divider produces an output frequency which is the input divided by some N, which is selected by the frequency switches. For example, if the input frequency is 2 MHz, and the switches are set to \(N = 2000 \), the output frequency would be

\[f_{\text{out}} = \frac{f_{\text{in}}}{N} = \frac{2 \text{ MHz}}{2000} = 1000 \text{ Hz} \]

The popular SN74192 decimal counter IC was chosen for this circuit because of its low cost, simple operation and counting speed. A one-shot multivibrator was required to insure proper resetting of the counters. Sometimes the programmable divider is referred to as a frequency-to-frequency converter.

reference frequency

The reference frequency is generated by a 1-MHz crystal oscillator which is divided by 1000 to produce a 1-kHz square wave. Three SN7490s are used to divide the 1-MHz signal to 1000 Hz. A SN7400 gate is used for the crystal oscillator/buffer.

frequency discriminator

The frequency discriminator is a com-
plex integrated digital and analog circuit. Its function will not be completely explained here, but a complete explanation may be found in Motorola Application Notes AN541 and AN535. The frequency discriminator functions as a frequency-to-voltage converter. If the input frequency is below the reference, the discriminator produces a high output voltage; if the input frequency is above the reference, the discriminator produces a low output voltage. This voltage is called the control voltage, and determines the VCO operating frequency.
Refer to fig. 1 and consider the following: assume the vco is operating at 2.50 MHz, and the programmable divider is set at 3000, corresponding to a frequency of 3.000 MHz. The output frequency of the divider is

$$f_{\text{out}} = \frac{f_{\text{in}}}{N} = \frac{2.5 \times 10^6}{3.0 \times 10^3} = 833 \text{ Hz}$$

This frequency is lower than the 1000-Hz reference. Therefore, the frequency discriminator will produce a high control voltage which will raise the vco frequency. The vco will continue to change until the vco frequency is exactly 3.000 MHz. When that happens, the system is said to be phase-locked. If anything should happen to change the vco frequency the frequency discriminator will correct the fault.

A commercial frequency synthesizer is a very expensive piece of equipment. It must be assumed that such an inexpensive unit as the one described in this article must have shortcomings, and indeed it does. This unit has a range of about 300 kHz to more than 10 MHz in 1-kHz steps. A commercial unit may have a range of a few Hz to hundreds of MHz in fractional Hz steps.

This degree of resolution and wide range is not necessary for amateur builders; neither is the corresponding price tag. The output of my unit is a square wave which may also be a disadvantage. The unit also has a certain amount of frequency modulation generated by noise voltages in the system. For general receiver and transmitter alignment

Table 1. Parts list and cost breakdown for the frequency synthesizer.

<table>
<thead>
<tr>
<th>qty</th>
<th>component</th>
<th>price</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>SN74192</td>
<td>$2.25</td>
<td>$9.00</td>
</tr>
<tr>
<td>3</td>
<td>SN7490</td>
<td>1.40</td>
<td>4.20</td>
</tr>
<tr>
<td>1</td>
<td>SN7400</td>
<td>.33</td>
<td>.33</td>
</tr>
<tr>
<td>1</td>
<td>MC4024</td>
<td>2.60</td>
<td>2.60</td>
</tr>
<tr>
<td>1</td>
<td>MC4044</td>
<td>2.60</td>
<td>2.60</td>
</tr>
<tr>
<td>1</td>
<td>SN74121</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>IC sockets</td>
<td>.40</td>
<td>4.40</td>
</tr>
<tr>
<td>2</td>
<td>2N2222</td>
<td>.50</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>filament</td>
<td>1.49</td>
<td>1.49</td>
</tr>
<tr>
<td>1</td>
<td>transformer</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>1</td>
<td>LM309K</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>4</td>
<td>1-MHz crystal</td>
<td>2.25</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Resistors, capacitors, cabinet end plates, etc. $10.00

$54.12

October 1972
A. Vco control voltage with step frequency change from 510 kHz to 500 kHz.

B. Vco control voltage with step frequency change from 500 kHz to 510 kHz.

C. Output voltage at 500 kHz.

D. Output voltage at 5.000 MHz.

Waveforms of the frequency synthesizer. In A and B time base is 100 milliseconds per division; vertical scale is 50 mV per division. In C and D time base is 1 microsecond per division; vertical scale is 0.5 volt per division. Tektronix 545B oscilloscope with CA plug-in and X1 probe.

this fm is not objectionable. However, the synthesizer should not be used for direct transmitter control.

construction

The entire synthesizer is built on perforated fiber boards as separate modules, carefully shielded and filtered to reduce noise to a minimum. The reference oscillator and divider, the vco and the frequency discriminator should be mounted in separate aluminum boxes.
The power supply and programmable divider are mounted on the rear and front, respectively, of the cabinet.

It is absolutely necessary that all ground leads for the power supply and the individual modules be returned to a common point to discourage ground loops. This system is susceptible to even the slightest ac ripple, and ground loops are difficult to analyze.

Likewise, a topnotch power supply is indispensable as a tool for general receiver and transmitter alignment. It is well worth the $50.00 or so it costs to build.
Getting maximum efficiency from an outstanding multiband antenna

The most popular antenna for 80 and 40 meters is the dipole. For the higher frequencies, the rotary beam is the favorite. However, there is much to be said for the all-band antenna, and the one described here will outperform a three-band Yagi in the dipole's favored direction and will only be about 6 dB down from the Yagi off the dipole's ends.

The average three-element three-band beam is actually very inefficient in transferring power from the transmitter into the ionosphere; it merely transmits its radiated power in a focused beam. Losses due to standing waves, mismatch and imbalances all reduce the efficiency so that the gain over an efficient reference dipole is not as great as it seems.

A well-balanced, highly-efficient tuned dipole, properly matched to the transmitter, radiates more power than does the untuned, unbalanced, coax fed dipole of a three-band beam. However, it wastes a lot of energy in unwanted directions while the less-efficient tribander makes the best use of whatever power it does radiate. Overall, the tribander does the better job.

The purpose of this article is to describe an all-band dipole which gives normal performance on 80 and 40, but competes favorably with a three-element beam on the higher frequencies. Apart from its ability to lay down a good signal, the antenna has attributes not possessed by a tribander.
basic design

The basic design is simple and well known. Take two pieces of 14 gauge wire 132 feet long, and use anything from 54 to 65 feet of each to form half of a center-fed dipole between 108- and 130-feet long. Use all of the remaining wire to build an open-wire transmission line with six-inch spacing. How to dispose of the feedline is a problem for the individual to solve. The result is an open-wire-fed dipole which is, effectively, a half wave on 80 meters with quarter-wave feeders. If your masts are less than 108 feet apart, arrange matters so that 8 or 10 feet at each end of the dipole drops vertically, but stop these dangling ends from swinging in the wind.

The feedline at ZS6BT is 78-feet long, and the antenna is 40-feet high. There is a six-foot length of feeder in the shack, and 30 feet goes vertically to the dipole. The remaining 42 feet runs horizontally at a height of 10 feet and is strung between the shack and a pole 10 feet high. It is held taut by a pair of turnbuckles, and there are no spreaders on the horizontal feedline.

The antenna is tuned by a balanced-to-unbalanced Z-match tuner connected through six feet of 50-ohm coax to the transmitter. Because of the quarter-wave feedline on 80, parallel tuning is used on all bands. There is no need to describe the tuner as many good designs have already appeared in the various amateur magazines and in the ARRL Handbook. The Johnson Matchbox does the job well and the tuneup information in this article is based on the Matchbox.

It is essential to use an SWR bridge in the coax between the transmitter and the tuner. A twin-meter frequency-independent instrument is ideal, but any bridge will do. The idea is to tune the antenna to frequency anywhere in any band and to reduce the standing wave on the coax to zero. This produces a very efficient antenna.

There is no need for diagrams at this stage. A beginner could put up the antenna from the written description, and he would have an excellent all-band antenna. There are probably many such already in use. Radiator length is not important, as can be seen, and we need not be particular to 6 inches with the 132 feet of wire. The secret does lie in having quarter-wave feeders.

What we have done, to date, is describe a normal antenna which is an excellent performer on 80 and 40, and a reasonably good performer on all bands 80 thru 10. By strapping the feeders together and working against a good ground, it does an excellent job on 160 as a T. At ZS6BT, I copy North Americans on 160 and have been heard on that band at 2,000 miles with 10 W input.

improvements

Now, to that wasteful radiation from a dipole. There is nothing we can do about 80 and 40, but much we can do about the other bands. If we stack two dipoles, one above the other, and drive them in phase, we pull down a lot of that wasted upwards power and force it broadside to good effect. Stacked, driven dipoles and all-band performance do not go together very well.

If we sling a parasitic reflector, a half wavelength long and a half wavelength below a dipole, we have the proper phase for broadside performance, even though we do not have the efficiency of the driven array. Moreover, this reflector interferes with the ground effect and tends to alter the angle of radiation beneficially. Once we consider that we can sling two such reflectors in-line for 20, three in-line for 15 and five in-line for 10; we see a chance for considerable improvement.

Neither reflector length nor spacing is all that critical. In fact, if we narrow the spacing we may correct the phase by lengthening the reflector. If we have not sufficient head-room on 20, we may lift the reflectors another 5 feet and lengthen them by about 5 feet without ill effect.
Fig. 1 shows the arrangement and normal dimensions. The idea can be tried out on existing dipoles too.

tuneup

The initial tuneup of the antenna should be done with the aid of a dummy load, in order to calibrate the antenna tuner, and thereafter band changing will be a simple matter.

On each band, tune and load the transmitter into a dummy load until the power. As you move around in the band, see that you maintain a zero on the bridge meter.

Now, about the bonuses which the tuned dipole can offer. It will attenuate harmonics because it is not tuned to them. If you use a TVI filter the extra tuned circuit between transmitter and antenna will improve the filter performance.

On reception, be sure to tune the antenna to the right band or you may get poor results; you have an extra tuned circuit between antenna and the receiver input. For some, this may be an extra bonus.

Modern receivers do not suffer greatly from images, but there is a possible exception. With shortwave broadcasts running to megawatts, they can break through even though the first i-f is 4 MHz or so. They will do this more easily if the antenna will respond to the broadcast station's frequency. Even a three-band beam is not very frequency conscious on reception, in part due to pickup on the coax outer shield, but a tuned dipole tends to attenuate signals to which it is not actually tuned.

fig. 1. General arrangement and nominal dimensions for ZS6BT's all-band dipole.
There is no need to use particularly heavy gauge wire for the reflectors as they are under no strain. The 20 meter, and perhaps the 15 meter reflector may be tied to the masts. The 10 meter ones may require halyards. To prevent unnecessary absorption, it is better to use nylon cord for guy wires and halyards.

160 meter operation

The first essential for 160 is a really good ground connection. Basically, the

![fig. 2. Arrangement for using the all-band dipole on 160 meters.](image)

matching to the coax is done by an L-network. However, with a T antenna of the dimensions given, the L inductance appears to be unnecessary and only the capacitor is used at ZS6BT. Aim for maximum forward current and no reverse current on the bridge. My system is shown in fig. 2. The capacitor is an Aerovox Series 1650, 1200 V, 0.001 mF. The matching unit, therefore consists of a coax socket and the mica capacitor. Individual installations would call for some experimentation regarding matching.

During the past 45 years, most of the usual, and some unusual, antennas have been tried; most were up less than a year and not one gave six-band results which were acceptable. The present antenna has been in use for over eight years and there is no intention of trying any other. At last I am satisfied.

ham radio

The EL Socket

Test new circuit ideas... I.C. circuits... discreet components... at no risk!

Money back guarantee!

$17 25

All you need are #4 mounting screws... just plug-in components... like ¼ watt resistors, ceramic capacitors, diodes, I.C.s, transistors and more... and your circuit's built! No special patch cords needed! Components interconnected with any solid No. 22-26 gauge wire.

And you can try it with absolutely no risk for 5 days. If not satisfied, just return your EL Socket and receive a full refund. Trying is believing. How can you go wrong? Order your EL Socket now!

- Nickel/silver plated terminals — very low contact resistance
- Low insertion force
- Mounts with #4 screws
- Initial contact characteristics beyond 10,000 insertions
- Vertical, horizontal interconnecting matrices
- Accommodates wide range of wire and component leads from .015-.032
- Send check or M.O. today!
- Add 50¢ for postage and handling
- 25% deposit on C.O.D.s

Call Dick Vuillequez, W1FBS

EL INSTRUMENTS, INC
61 First St., Dept. HR
Derby, Conn. 06418 - 203/735-8774

October 1972
five-frequency crystal deck
for the Sonobaby

By popular demand, here is how to add frequency flexibility to the Sonobaby, and how to make a handy signal generator.

The Sonobaby transmitter, featured in the October 1971 issue of *Ham Radio*, was an all-transistorized two-meter FM transmitter. Since the article was published, we have had numerous requests for a similar multiple-frequency transmitter. This is understandable in areas served by many repeaters or by the mobile wishing to operate through the different repeaters encountered in his travels.

The modification described here is applicable to the Sonobaby and other transmitters using 18-MHz crystals, and provides five-channel capability. No parts of the original transmitter need be thrown away and the five-frequency deck is small enough to fit into a hand-held portable as well as a base or mobile unit.

As an added feature, the five-frequency deck can be used as a five-frequency signal generator. In order to do this a separate audio board has been developed allowing the signal generator to have an unmodulated carrier, a constant tone or a microphone input.

The circuit was designed with the idea of not wasting any parts while still enabling the original Sonobabys to be used on five frequencies. The original Sonobaby oscillator is changed to a buffer stage and a new oscillator is built on the five-frequency deck. Mechanical switching offers design simplicity and economy. For those who want only two or three frequencies, the answer is simple — only mount the crystals and trimmer capacitors desired. If more frequencies are needed later, they can be added easily at that time.

The five-frequency deck is soldered directly to the switch tabs thus minimizing lead length capacitance.

Audio and operating voltages are taken from the Sonobaby. The RF output of the deck is taken from the collector of the new oscillator and fed via 50-ohm coax.*

*An etched and drilled circuit board for the five-frequency deck is available for $2.00. Boards for the frequency deck and audio stage, suitable for making a signal generator, are available for $3.50. Write to Sonobaby, Box 969, Pueblo, Colorado 81002.
and a capacitor to the base of the original Sonobaby oscillator.

An etched and drilled circuit board is available for the five-frequency deck, or you can make your own following the layouts in the photos. Construction is very easy and should not take more than an hour. As in all printed-circuit work, clean the board thoroughly first. An ordinary pencil eraser rubbed over the board will facilitate soldering and is well worth the few minutes it takes.

To get started on the five-frequency deck, use a pair of long nose pliers to break off the tab on the back of switch S1 that goes to terminal 6. Mount the switch on the circuit board with the tabs protruding through to the foil side. Solder the tabs of the switch to the circuit board.

Install the remainder of the components, with the exception of trimmer capacitors C7 through C11, following the photographs and schematic layout. Be very careful about applying too much solder which might tend to bridge the circuitry. Also, clip all the leads as short as possible after soldering. After a thorough examination of the board for bridged circuits and bad solder joints, install trimmer capacitors C7 through C11. Note that the trimmer capacitors are installed on the foil side of the circuit board instead of the epoxy side as are all the rest of the parts.

Refer to the October 1971 issue of *Ham Radio* and the schematic diagram of the Sonobaby transmitter. Remove CR1, Y1 and C12. Note that these parts are used on the five-frequency deck, so don't throw them away.

We recommend that at this time you mount the five-frequency deck on your chassis with the original Sonobaby. Mounting is done by drilling a 1/4-inch hole in your chassis in a convenient location. Make sure there is enough room inside the chassis for the circuit board.

Audio is taken from the Sonobaby at the junction of L1 and C8. Run it over to the audio input of the frequency deck with a piece of shielded wire. Take the operating voltage from the Sonobaby at the junction of R15 and C12. A short piece of hookup wire will do.

The rf output from the oscillator on the frequency deck goes to the point where the crystal Y1 was originally connected to the junction of C9 and C10.

Foil side of the frequency deck board. Parts layout can be gleaned from the other photos.

fig. 1. Schematic of the five-frequency deck for the Sonobaby.

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2-C6</td>
<td>15 pF NPO</td>
</tr>
<tr>
<td>C7-C11</td>
<td>5.5 to 18 pF, Erie 538-011A-5.5-18</td>
</tr>
<tr>
<td>L1,L2</td>
<td>15-µH choke, J.W. Miller 9310-40</td>
</tr>
</tbody>
</table>

S1 1P6T switch, Daven 18-KM
Y1-Y5 see text
Use a piece of 50-ohm coax for this run and keep it as short as possible — not over ten inches.

Adjust C9 on the original Sonobaby for maximum capacitance, check everything carefully and you are ready to go. Capacitors C2 through C6 are used to put each crystal on frequency. Adjust C9 on the original Sonobaby board for best injection voltage to the buffer stage. Check for spurious radiation and adjust C9 for maximum power output and minimum spurii.

We have had no difficulty with the installation of these five-frequency decks. It is a good idea not to attempt to locate the deck over a foot away from the Sonobaby transmitter — the closer the better. The tuning of the Sonobaby should be touched up and it should be peaked on one of the lower frequencies to be used.

We ordered our crystals from International Crystal. Besides specifying operating frequency and commercial standard tolerance, mention that the crystals are for a Westinghouse Air Brake Company Carry-phone II, 20TS-1 transmitter.

If you want to go hog wild and have more than five frequencies, merely install two decks and you’ll have ten frequencies. In this instance, set one of the decks at switch position 6. This will turn it off and allow you to use the other board for the next five frequencies.

signal generator

To construct a signal generator that will cover the two-meter band, merely take the frequency deck and add an audio board, fig. 2. This board supplies the regulated voltage required by the varactor CR1 on the frequency deck. S1A on the audio board selects either a steady tone to the signal generator or a microphone input. A crystal or hi-impedance mike will work fine.

About 50 microvolts of signal can be taken from C1 of the frequency deck, and as the signal is rich in harmonics, it can be injected into the front end of a receiver for tuneup and alignment.

We would like to take this opportunity to thank all of you for your letters praising the original Sonobaby. It is very gratifying to know that we have helped so many get on the air and that you have been so well pleased with the circuit.
One of the many interesting devices to make the scene in the world of solid-state components is the pulse snap diode. Also known as a step-recovery diode, this device was included in Hank Olson's review of frequency multipliers that appeared in an earlier issue of *ham radio.*¹ The diode described in the article was the Siliconix SV110. Its use is by no means limited to the application shown, and it's priced within the means of most experimenters. Let's take a look at the SV110 and see what makes it snap.

features

The SV110 was designed to meet the need for an impulse generator that would produce a high-amplitude pulse (up to 70 volts) of subnanosecond width. Some of the applications of the SV110 include:

1. An rf calibrator.
2. Local-oscillator frequency source.

*Since the time this article was submitted, Siliconix has dropped the pulse-snap diode product line. Suitable replacements for the SV110 are the Microwave Associates Snap-varactor 4756, and the Hewlett-Packard Associates Step Recovery Diode 5082-0180. Some slight variation in circuit element values may be required to accommodate either of the two suggested replacement diodes.
3. Accurate signal source for testing components.
4. Clock generator.
5. Phase-locked-loop signal source.

In short, the SV110 is the answer for the designer looking for a stable signal source with usable harmonics over a wide frequency range.

Basic circuit

All applications of the pulse snap diode rely on the charge-storage characteristics of the device. During forward conduction, the diode stores charge and exhibits a very low impedance (typically less than one ohm). The device maintains its low-impedance state with reverse bias until the charge stored in the junction is depleted. At the instant charge is depleted, the diode will switch from its low impedance state to a high-impedance state.

The time required to complete the change in impedance (approximately 300 picoseconds) is called the transition time. This parameter depends on the amount of charge stored in the diode. More details on operational characteristics will be found in references 2 through 5.

A basic circuit of the impulse generator is shown in fig. 1. Parameters are defined as follows: \(Z_g \) is the generator impedance, \(L_d \) is the driving inductance, \(Z_l \) is the load impedance, and \(V_b \) is the bias voltage. Fig. 2 shows waveforms at various operating points in the circuit.

The generator voltage, \(e_g \), and current, \(i_g \), waveforms appear in fig. 2A and fig. 2B. Generator current \(i_g \) lags \(e_g \) by approximately 90 degrees due to the inductance, \(L_d \). When \(V_b \) is zero, the diode current, \(i_d \), waveform will be the same as the \(i_g \) waveform in fig. 2B.

Charge is stored in the diode junction during the positive half-cycle and removed during the negative half-cycle. The amount of charge removed must always be equal to the charge stored, less recombination losses.

When \(V_b \) is greater than zero, as in fig. 2C, the diode will not begin to store charge until the voltage across the diode is greater than the sum of \(V_b \) and one diode voltage drop. For any given input, the greater the value of \(V_b \), the less charge is stored in the diode, as the diode is forward biased for increasingly smaller portions of the positive half-cycle.

Impedance transition

For values of \(V_b \) greater than zero and less than the maximum value of \(e_g \) minus one diode drop, the time required to remove the charge stored in the diode will

Fig. 1. Basic circuit using the pulse snap diode.

Fig. 2. Waveforms at various operating points in the circuit.
be less than one half-cycle. The diode will return to its high-impedance state even though \(i_d \) is a negative, non-zero value. By proper selection of \(V_b \), the transition can occur when \(i_d \) is at its maximum negative value as shown in fig. 2C; this is the point of maximum pulse energy.

A 50-ohm load was used for test equipment convenience. Any value of \(Z_L \) between 25 and 75 ohms could be used with only total power output affected. Design equations for \(Z_L \) can be found in Hewlett-Packard Application Note 9203.

At transition, the energy stored in \(L_d \) will charge the reverse capacitance of the diode, and a ringing waveform will appear across the load (fig. 2D). The characteristics of the ringing waveform are determined by the resonance of \(L_d \) and the reverse capacitance of the diode, in combination with the load impedance. Only a single negative pulse is generated for every input cycle, since the positive excursion of the ringing waveform is clipped by the diode. A time-domain profile of the output would show a comb spectrum with a spike at every harmonic of the input frequency. The spectral envelope will show a decay in amplitude until a null is reached at \(3/2 \, t_p \), where \(t_p \) is the pulse width.

practical circuit

A schematic of a practical impulse generator is shown in fig. 3. Parameters \(C_t, L_d \) and the pulse snap diode, PSD, form the impulse generator. The driving inductance, \(L_d \) resonates with the reverse capacitance of the diode to obtain the output pulse. \(L_d \) should include any stray

table 1. Calculated values for components in fig. 3.

<table>
<thead>
<tr>
<th>parameter</th>
<th>equation</th>
<th>example</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_p)</td>
<td>see text</td>
<td>2 ns</td>
<td>Determined by application</td>
</tr>
<tr>
<td>(L_d)</td>
<td>(L_d \approx \frac{t_p^2}{\pi}) + (\frac{1}{C_{TR}})</td>
<td>100 nH</td>
<td>(C_{TR} =) reverse capacitance of PSD = 4 pF</td>
</tr>
<tr>
<td>(C_t)</td>
<td>(C_t = \frac{C_{TR}}{(2t_{in}t_p)^2})</td>
<td>2500 pF</td>
<td></td>
</tr>
<tr>
<td>(R_{in})</td>
<td>(R_{in} = 2 \frac{1}{t_{in}L_d})</td>
<td>6.28 (\Omega)</td>
<td>Required for matching network</td>
</tr>
<tr>
<td>(L_m)</td>
<td>(L_m = \frac{Z_gZ_{in}}{2\pi f_{in}})</td>
<td>283 nH</td>
<td></td>
</tr>
<tr>
<td>(C_m)</td>
<td>(C_m = \frac{1}{2\pi f_{in}Z_gZ_{in}})</td>
<td>900 pF</td>
<td></td>
</tr>
<tr>
<td>(R_b)</td>
<td>(R_b = \frac{Z_b}{2\pi})</td>
<td>25 (\Omega)</td>
<td>(T =) minority carrier lifetime (ref. 6)</td>
</tr>
<tr>
<td>(R_{db})</td>
<td>(R_{db} = \frac{N^2}{2t_{in}})</td>
<td></td>
<td>(N = \frac{1}{2t_{in}}/t_p)</td>
</tr>
</tbody>
</table>
Pulse profile from the circuit of fig. 3. Pulse width is near the calculated value of 2 ns.

A slight variation in pulse power is shown, which is caused by uncompensated stray inductance in the test circuit.

inductance as well as the diode package inductance (reference 6). C_t resonates with L_d at f_{in}, the input frequency, for maximum power transfer. C_t must present a good rf short circuit to the output frequencies.

L_m, C_m comprise a low-pass matching network between the input impedance and Z_{in}, the impedance of the pulse generator. The matching network is bandwidth limited:

$$BW \approx \frac{2f_{in}}{\left(Z_gZ_{in} + 1\right)^{1/2}}$$

where BW is the bandwidth. Wideband matching networks may be substituted to obtain a wider spectrum of input frequencies.

bias network

It is important that series resonances are not introduced into the bias network, L_b, R_b (fig. 3). Such resonances, especially those below f_{in}, may cause the diode to act as a negative resistance, which would probably result in spurious signals in the output. L_b should present a high impedance at f_{in}. A commercially available molded choke with a self resonance at f_{in} will give the greatest isolation between the bias network and the input to the impulse generator.

R_b is shown as a simple resistor; however, R_b could be replaced with a variable resistor, external bias-voltage source, or a combination of external and self bias.

impulse width

The impulse width, t_p, is important. All critical component values, as well as power variations between harmonics in the impulse train, are determined by t_p. The following design example shows the importance of t_p.

A frequency of 10 MHz was chosen for f_{in}. Any frequency could have been selected, providing the period of f_{in} is less than the minority-carrier lifetime of the PSD (see reference 6). For the SV 110, the minimum value of f_{in} is approximately 5 MHz. Power variations between f_1 and f_{20}; i.e., between the input and its 20th harmonic, were held within 1 dB. A flat power response is desirable if the impulse generator is to be used as a signal source for calibration work. To provide this small power variation over a large number of harmonics, t_p must be quite small. Reference 3 provides a graphical method of finding the required t_p.

For the example mentioned, t_p was approximately 2 nanoseconds. Values for minority carrier lifetime, $\tau = 200$ ns, and reverse capacitance, $C_{TR} = 4$ pF, were obtained from the SV110 data sheet. With this information and that in table 1, the component values for fig. 3 were obtained.
The entire spectral envelope, or comb line. Discontinuity near beginning of envelope marks start of comb line.

test results

The circuit of fig. 3 was constructed on double-clad copper board. Stray capacitances and inductances were kept to a minimum. The oscillographs show circuit performance. Pulse width is very near its calculated value. Variations from the calculated value are caused by uncompensated stray inductance. Power variations in the harmonics can be traced to the same cause.

references

adding 160-meters to a 40-meter vertical

It is a myth that only lighthouse keepers and cattle ranchers can get on 160 meters because of the real estate needed to erect a really effective 160 meter antenna. Anyone can get up an inexpensive and effective 160-meter antenna in a limited space. For my first operating on 160, I used my 80-meter doublet with the feed end shorted and worked against ground as a T antenna. An improvement over this was an end-fed L run out my basement window, up the side of my house and across my yard. It also was operated against ground — provided by a convenient cold water pipe in my basement station.

outline

As I started working real DX with this last scheme — 8’s and 9’s — I noticed that the best signals on the band invariably were using verticals. I decided to try adding 160 capability to my reliable 40-meter vertical standing in my back yard. The basic plan was to add a 40-meter trap at the top of the existing vertical, add a piece of plastic pipe wound with a 160-meter loading coil and top this combination off with an 8-foot section of aluminum tubing as a top load. I could drive a ten-foot ground stake and use the antenna for both 40 and 160.
40-meter vertical

My 40-meter vertical consists of some World War Two surplus mast sections, labeled AB-85/GRA-4. Each section is 36-inches long, 1 5/8-inch diameter and has a wall thickness of 1/8-inch. One end of each section is swedged down to 1 1/2-inch diameter for about a six-inch length where the sections join together. The female ends of each section also have four wiper springs that help to insure electrical continuity. These were selling quite inexpensively and I picked up several hundred feet of them one Field Day. While these sections might be hard to find, almost any type of aluminum or galvanized steel pipe will work for the lower 32%-foot mast section. I do not recommend aluminum tubing with less than 1/8-inch thick walls (12 gauge). Most of the aluminum TV mast sections I have seen look pretty skimpy, but could probably be used with proper guying and support.

construction

The first order of business was to find the plastic pipe for the loading coil. I called several warehouses that stock this item, but they have a $25 minimum order gimmick. I finally found a local plumbing supply house that had one piece of 1 1/4-inch PVC pipe twenty-feet long. I had to take the whole piece (for $7.80), but they cut it into three equal pieces for me. The 1/4-inch inner diameter of this plastic pipe made a nice tight telescopic fit to the swedged end of my mast section.

If you have trouble getting the proper inside and outside diameters of the plastic pipe and tubing, I would suggest that you get the plastic pipe with a larger inside diameter than your top and bottom mast sections. By wrapping several bands of tire tape spaced about 4- to 6-inches apart, you can adjust the diameter of the masts for a snug telescopic fit into the plastic pipe. Once fitted, secure the joints with a bolt.

Assembling the mast material should not be difficult. Remember to install a bolt and solder lug at the top of the 32%-foot mast, one about three inches above the bottom of the plastic pipe (jumper these two lugs), one about three-inches higher (for the 40-meter trap), one at the top of the plastic pipe and one at the start of the 160-meter loading coil (jumper these last two lugs).

![Diagram of the 40- and 160-meter antenna.](image)

The lugs and jumpers provide the electrical continuity between the masts and the coils.

40-meter trap

I had a few 40-meter traps left over from an old Field Day antenna. The traps were originally described in an old QST article and they used sections from commercially available air-wound coil stock. The coil in one trap consists of nine turns of number twelve wire with a 2%-inch diameter and with the turns are spaced

October 1972
about 1/8-inch apart. The coil was shunted with a 100-pF high-voltage type TV capacitor.

Feeling that these capacitors might not weather well, I decided to use a piece of RG-8/U as the capacitor. RG-8 has a capacitance of 29.5-pF per foot and RG-11 has a capacitance of 20.5-pF per foot. I cut a piece of RG-8 about four-feet long, dressed one end and soldered the shield to one end of the coil and the inner conductor to the other end of the coil. The grid-dip meter indicated resonance too low, so I trimmed the coax until I zeroed in on 7250 kHz. Be sure that the shield does not short to the inner conductor while you are trimming the cable. When you are finished, seal both ends of the coax with plastic cement to waterproof the cable.

Mount the trap concentric with the plastic pipe between the two lugs spaced at three inches, and just below where the 160-meter coil will go. Before erecting the antenna, tape the coax to one of the guy wires — allowing a little slack. Do not make the mistake I made of using RG-58 or RG-59 for the trap capacitor. It will work well with low power, but mine simply went poof when I fired up my linear on forty meters.

160-meter loading coil

Now for the fun of winding the 160-meter loading coil. The ARRL Handbook states that a helically-wound vertical antenna needs twice as much wire length as a normal quarter wavelength. Since my bottom section and top section added up to about forty feet, I figured I would need some 167 feet of wire in the trap to hit 1812 kHz. I had a new 175-foot roll of plastic-coated number-18 wire. I decided to wrap up the whole roll on the PVC pipe and grid dip it out to see where it resonated. The coil was more or less scramble wound and both ends were soldered to the lugs.

The next step was to check the assembly with a grid-dip meter. I leaned the antenna up against my garage, and using a step ladder, checked the coil for resonance. I was quite surprised that it tuned high. I then added another fifty feet of wire to the coil, and now I was too low. I began to prune ten turns at a time, then five and finally one turn at a time until I zeroed in on the desired frequency. This step requires patience, but for a good antenna, it is the most critical operation of all.

installation

The antenna is not too difficult to raise with a few helpers. The base, of course, should sit on a suitable insulator and foundation. I use two sets of non-conducting guys. One set is connected to a guy ring close to the top of the bottom mast section just below the PVC pipe and another set is connected half-way down the mast. I already had three 34-foot radials buried in the ground for the 40-meter vertical, but I added the ten-foot long half-inch diameter pipe as an extra ground for 160. We have a very heavy shale strata here about six feet below the surface, so I flattened one end of the ground rod and ground it sharp and drove it in at a 45-degree angle to get better exposure. I feed the antenna in the normal manner with RG-8/U buried under the turf.

operation

For some reason, this antenna works very well on all other amateur bands, including two meters. I also find that contrary to my expectation, it picks up less man-made noise than the inverted L, which is basically horizontal. I put this antenna up in the fall of 1970 and it has done a terrific job for me ever since. My basic feelings regarding the vertical versus the inverted L are as follows: Locally, the inverted L is stronger by several S points. From 400 to 800 miles I get conflicting reports. Over 1000 miles, however, the vertical vastly out-performs the horizontal. A final sneaky report, would be to state that the inverted L gives my wife some BCI, but I can be on the air all night with the vertical without a bit of BCI.
FACTORY NEW
COMPUTER GRADE CAPACITORS
10,000 MFD @ 40 Volts. Size is 2” dia. x 3” high. Just right for that power supply. $1.75 ea. or 3 for $4.50 p.p.d.

HIGH QUALITY
PATCH CORD
6 Foot Gray shielded cord with molded Right angle PL-55 Plug. Other end stripped and tinmed. 75c each or 3 for $2.00 p.p.d.

3000 MFD @ 30 VOLT CAPACITORS
Size: 1” Diameter x 3 1/2” Long. 75c each or 3 for $2.00 p.p.d.

1 AMP MOLDED BRIDGE RECTIFIER

ILLUMINATED
ROCKER SWITCH
American made UL approved 125 Volt 3 A ac Illuminated S.P.D.T. rocker switch. Separate, built-in S.P.D.T. switch operates built-in 115 VAC lamp. 75c ea. for $2.00

Disc Ceramic Capacitors. Very Small — About 1/4” Diameter. All Full Leads. .01 MFD @ 500 Volts .001 MFD @ 500 Volts .015 MFD @ 500 Volts Your Choice! 20 for $1.00 p.p.d.

NEW
Dipped Mylar Capacitors. .1 MFD @ 100 Volts .15 MFD @ 100 Volts .22 MFD @ 100 Volts Your Choice! 16 for $1.00 p.p.d.

1 AMP BRIDGE RECTIFIER
SEMTECH # SCBR 1
Very nice, 1/4” d. 100 Volt PIV 50c ea. p.p.d.

NEW NEW NEW
BUY OF THE YEAR
Assorted untested diodes. All new with full leads. Spot check shows about 75% good usable units. Many, many, some 1 Watt, some 3 Watt. Also power diodes. Put those testers to work and save dollars. About 1200-1400 pieces per pound. PRICE is a low $0.06.00 for half pound p.p.d. or $1.00 for a full pound p.p.d.

BATTERY CLIPS

CDE TYPE WMF MYLAR CAPACITORS
ALL 100 VOLTS
.033 MFD @ 100V 8c ea. 14 for $1.00
.1 MFD @ 100V 10c ea. 12 for $1.00
.22 MFD @ 100V 10c ea. 12 for $1.00
1.0 MFD @ 100V 25c ea. 5 for $1.00

DIODES

TOP-HAT EPOXY EPOXY STUD- MOUNT
PIV 1.5 AMP 1.5 AMP 3 AMP 6 AMP
50 .04 .06 .12 .15
100 .04 .06 .12 .20
200 .12 .14 .28 .50
400 .14 .16 .32 .58
800 .20 .20 .40 .65
1000 .24 .24 .48 .75

ZENERS
All Units Tested And Guaranteed
400 MILLIWATT UNITS — 3, 3.3, 3.6, 3.9, 4.3, 4.7, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1, 18, 22, 24, 27, Volts.
1 WATT UNITS — 10, 11, 12, 13, 15, 16, 18, 20, 22, 27, 30, 33, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91, 100, 110, 120, 130, 150, 160, 180, Volts. ALL UNITS 10% — 4 for $1.00 p.p.d.
5% — 3 for $1.00 p.p.d.

HIGHEST QUALITY,
AMERICAN MADE
POWER CORE
6 Foot Gray Cord. Good For At Least 7 Amps. Plugs Into Auto Cigarette Lighter. A Hard To Find Item. 75c Each or 3 For $2.00 p.p.d.

Black, Aluminum, Ano-
dized, Heat Sink. Size Approximately 4 1/2” x 1 1/2” h. x 1 1/2” w. Predrilled For TO-3 Transistors. Delco Part #7277151. Factory New. 75c Each or 3 for $2.00 p.p.d.

1.5 AMP BRIDGE RECTIFIER
1200 Volts PIV per leg. $1.00 ea. or 3 for $2.50 p.p.d.

DPDT SLIDE SWITCHES
UL Approve American Made 3 Amp Slide switches. Your choice of RED or Black. 20c ea. or 6 for $1.00 p.p.d.

Extruded Aluminum Heat Sink for TO-5 Transistors. 2 for 25c p.p.d.

Very nice American made 1 1/2” square meters. Mount in 1 1/2” dia. hole. Your choice 50a or 50ma. $2.40 ea. p.p.d.

6.3 Volt 1 Amp Transformer. Fully Shielded. $1.60 Each p.p.d.

m. weinschenker
K 3DPJ
BOX 353 - IRWIN, PA. 15642

more Details? CHECK-OFF Page 110
new system
for predicting
six-meter sporadic-E
openings

Here's a
unique system
for predicting
six-meter
sporadic-E
propagation
well in advance

The concept of using beacon transmitters to alert operators of the presence of vhf openings is certainly not a new one. For years, vhf enthusiasts have left their receivers parked on beacon frequencies, hoping to hear one of the relatively few low-power vhf beacons. Well known vhf experimenter Bob Cooper described such a beacon in ham radio.¹

The use of amateur beacon transmitters is not, however, without its drawbacks. It goes without saying that one of the greatest problems with this early warning system is the low number of amateur beacons. It takes a devoted vhfer to build and maintain a device which will help others far more than it helps him.

Another reality is that it really isn't an early warning system. A warning yes — early, no. By the time you start to hear six-meter activity, the band is already open; not about to open! This means that you have probably already missed a great deal of the opening. Skip propagation is often quite selective, and the opening may have been to a relatively small geographic area.

If the notion of actually predicting a sporadic-E opening sounds far fetched, you're only partially correct. Long-range predictions for non-auroral related sporadic-E are still experimental, very involved and largely unproven. However, very short range predictions are practical. Predictions on the order of hours or minutes can be made with a high degree of accuracy and often you can pinpoint the affected geographic areas.

The sporadic E-(Es) maximum usable frequency (muf) begins low, and as ionization density increases, the muf increases. Es will appear on 11 meters before it develops on 10, and on 10 meters before reaching 6, and so on. However, just because it occurs on 27 and 28 MHz does not always mean that it will reach 50 MHz. During the summer months, you can hear a residual level of short-skip on Citizen Band — a mass of heterodynes and squeals, and a multitude of accents from different transmitters. Opening on 6 meters, or for that matter, 10 meters, are not nearly so common.

So the question, and the main point of this article, is, how can we effectively put to use this known fact to predict Es?
Clearly, we need a more accurate means of following the maximum usable frequency. It should also require little attention and be continuously operative.

I began by discussing amateur beacons and their shortcomings. There is a substitute for these beacons which can be far more effective. It consists of transmitters staggered across the 30- to 50-MHz range, operating 24 hours a day with, by amateur standards, moderate to high power. These pseudo-beacons are provided by commercial paging stations.

These paging stations are operated by commercial companies to relay messages to their customers. Customers carry small receivers which are activated by a tone squelch or selective calling units, alerting them to repair orders, telephoned messages, etc. When there are no messages to transmit, many of the stations continue to transmit their call letters and location.

Vhf operators will be concerned primarily with those paging stations operating on 35.22, 35.58, 43.22 and 43.58 MHz. These four channels are the standardized low-band paging channels and will prove most effective for unattended monitoring.

Fortunately, receivers for this range are plentiful. They range from small inexpensive handheld portables to higher priced automatic-scanning monitors. Many older tube-type 30- to 50-MHz monitors can be found at bargain prices at hamfests. In many cases they are not as sensitive as the new portables, but most have effective squelch circuits and far better image rejection. These receivers are all designed for fm but a few have a-m-fm switches.

Most of the paging stations use a-m, which would seem to be a problem, but it isn’t. All of the public-service-band receivers designed for consumer use that I’ve used have had such poor discriminator circuits that they also received a-m quite well. A well designed receiver might cause a problem, but I haven’t run across one!

Unfortunately, all paging stations do not identify. Some operate on a tone-only system, and you never hear a human voice. Hearing a station of this type will alert you to Es, but not to where it’s coming from. Some stations give their call letters in modulated CW but not their location. However, most pagers are still using voice and give both call and location. Many use names such as, “Paging Orlando,” “Air Call Chicago,” “Fresno Radio Page,” etc. After awhile you will start to recognize the voices of operators from some of the stations most commonly received in your area.

From various sources, including my own observations and those of members of The Worldwide TV-FM DX Association,* I have compiled a list of paging stations shown in table 1. It is not a complete list by any means, but it should give you a good start. Accurate lists are nearly impossible to obtain, and I believe that the latest record of paging stations kept by the Chicago FCC Field Office is dated 1963!

Callsign prefixes are not as clearly defined as in the amateur service as far as geographical area is concerned, but there is a general pattern, as shown in table 2.

The messages, callsign and other information broadcast by paging stations are usually recorded on a magnetic metal strip or endless tape cartridge, and continue to repeat until new messages come in. Many stations, as we mentioned earlier, transmit a recording of their callsign when there is no other traffic. Most of the MCW stations (or perhaps all) are off the air more often than on. When KSC645 in Chicago switched to tone-only operation, I finally began to hear weak signals on 35.58 MHz. Previously, only the strongest signals overrode the KSC645 signal. When the tones are on, however, nothing can make it through!

The procedure for using paging stations to monitor vhf conditions is a simple one. If you’re using a tunable receiver, or a manually switchable crystal controlled receiver, set it to 35.22 MHz.

*The Worldwide TV-FM DX Association publishes a monthly “Vhf-Uhf Digest” which includes technical articles, FCC news and reports on all phases of vhf and uhf DX. Sample copy is $5.50; one-year subscription is $6.00 from WTFDA, Post Office Box 163, Deerfield, Illinois 60015.
<table>
<thead>
<tr>
<th>Station Code</th>
<th>Frequency</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIV757</td>
<td>35.22 MHz</td>
<td>Birmingham, AL</td>
</tr>
<tr>
<td>KCH280</td>
<td>35.22 MHz</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>KKT608</td>
<td>35.22 MHz</td>
<td>Little Rock, AR</td>
</tr>
<tr>
<td>KMD342</td>
<td>35.22 MHz</td>
<td>Fresno, CA</td>
</tr>
<tr>
<td>KMD998</td>
<td>35.22 MHz</td>
<td>Lodi, CA</td>
</tr>
<tr>
<td>KMD681</td>
<td>35.22 MHz</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>KMD305</td>
<td>35.22 MHz</td>
<td>San Francisco, CA</td>
</tr>
<tr>
<td>KDN407</td>
<td>35.22 MHz</td>
<td>Colorado Springs, CO</td>
</tr>
<tr>
<td>KCI299</td>
<td>35.22 MHz</td>
<td>New Haven, CT</td>
</tr>
<tr>
<td>KIN645</td>
<td>35.22 MHz</td>
<td>Miami, FL</td>
</tr>
<tr>
<td>KLY508</td>
<td>35.22 MHz</td>
<td>Orlando, FL</td>
</tr>
<tr>
<td>KLY719</td>
<td>35.22 MHz</td>
<td>Pensacola, FL</td>
</tr>
<tr>
<td>KOK344</td>
<td>35.22 MHz</td>
<td>Boise, ID</td>
</tr>
<tr>
<td>KSA623</td>
<td>35.22 MHz</td>
<td>Ft. Wayne, IN</td>
</tr>
<tr>
<td>KSD320</td>
<td>35.22 MHz</td>
<td>South Bend, IN</td>
</tr>
<tr>
<td>KAI934</td>
<td>35.22 MHz</td>
<td>Des Moines, IA</td>
</tr>
<tr>
<td>KLB760</td>
<td>35.22 MHz</td>
<td>Baton Rouge, LA</td>
</tr>
<tr>
<td>KKT407</td>
<td>35.22 MHz</td>
<td>New Orleans, LA</td>
</tr>
<tr>
<td>KOF328</td>
<td>35.58 MHz</td>
<td>Tucson, AZ</td>
</tr>
<tr>
<td>KMD344</td>
<td>35.58 MHz</td>
<td>Long Beach, CA</td>
</tr>
<tr>
<td>KME437</td>
<td>35.58 MHz</td>
<td>Santa Cruz, CA</td>
</tr>
<tr>
<td>KMD347</td>
<td>35.58 MHz</td>
<td>Stockton, CA</td>
</tr>
<tr>
<td>KMD986</td>
<td>35.58 MHz</td>
<td>Sacramento, CA</td>
</tr>
<tr>
<td>KGB807</td>
<td>35.58 MHz</td>
<td>Baltimore, MD</td>
</tr>
<tr>
<td>KCC266</td>
<td>35.58 MHz</td>
<td>Springfield, MA</td>
</tr>
<tr>
<td>KGD601</td>
<td>35.58 MHz</td>
<td>Flint, MI</td>
</tr>
<tr>
<td>KAD931</td>
<td>35.58 MHz</td>
<td>Wichita, KS</td>
</tr>
<tr>
<td>KMB309</td>
<td>35.58 MHz</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>KMM960</td>
<td>35.58 MHz</td>
<td>San Rafael, CA</td>
</tr>
<tr>
<td>KMM881</td>
<td>35.58 MHz</td>
<td>Taylor Mountain, CA</td>
</tr>
<tr>
<td>KCC802</td>
<td>35.58 MHz</td>
<td>Waterbury, CT</td>
</tr>
<tr>
<td>KIN645</td>
<td>35.58 MHz</td>
<td>Miami, FL</td>
</tr>
<tr>
<td>KMB309</td>
<td>43.22 MHz</td>
<td>Los Angeles, CA</td>
</tr>
<tr>
<td>KMM960</td>
<td>43.22 MHz</td>
<td>San Rafael, CA</td>
</tr>
<tr>
<td>KMM660</td>
<td>43.22 MHz</td>
<td>Taylor Mountain, CA</td>
</tr>
<tr>
<td>KCC802</td>
<td>43.22 MHz</td>
<td>Waterbury, CT</td>
</tr>
<tr>
<td>KIN645</td>
<td>43.22 MHz</td>
<td>Miami, FL</td>
</tr>
<tr>
<td>KOE257</td>
<td>43.58 MHz</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>KMD986</td>
<td>43.58 MHz</td>
<td>Sacramento, CA</td>
</tr>
<tr>
<td>KGA806</td>
<td>43.58 MHz</td>
<td>Washington, DC</td>
</tr>
<tr>
<td>KIE367</td>
<td>43.58 MHz</td>
<td>Miami, FL</td>
</tr>
<tr>
<td>KIG300</td>
<td>43.58 MHz</td>
<td>Atlanta, GA</td>
</tr>
<tr>
<td>KSC644</td>
<td>43.58 MHz</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>KSD326</td>
<td>43.58 MHz</td>
<td>Evansville, IN</td>
</tr>
<tr>
<td>KAD927</td>
<td>43.58 MHz</td>
<td>Wichita, KS</td>
</tr>
<tr>
<td>KGB807</td>
<td>43.58 MHz</td>
<td>Baltimore, MD</td>
</tr>
<tr>
<td>KCC266</td>
<td>43.58 MHz</td>
<td>Springfield, MA</td>
</tr>
<tr>
<td>KGD601</td>
<td>43.58 MHz</td>
<td>Flint, MI</td>
</tr>
<tr>
<td>KAD931</td>
<td>43.58 MHz</td>
<td>Kansas City, KS</td>
</tr>
<tr>
<td>KCC802</td>
<td>43.58 MHz</td>
<td>Waterbury, CT</td>
</tr>
<tr>
<td>KIN645</td>
<td>43.58 MHz</td>
<td>Miami, FL</td>
</tr>
</tbody>
</table>

(Continued on the next page.)
table 2. Paging station callsigns by general geographic area.

KA Midwest, including Colorado, Iowa, Kansas, Missouri, Minnesota, North Dakota and South Dakota
KC New England, including Maine, Massachusetts, Connecticut, New Hampshire, Rhode Island and Vermont
KE Mid-Atlantic, including New York and New Jersey
KI Southeast, including Alabama, Georgia, Florida, Kentucky, North Carolina, South Carolina, Tennessee and Virginia
KG Mid-Atlantic, including District of Columbia, Delaware, Maryland and Pennsylvania
KK Gulf Coast, including Arkansas, Louisiana, Mississippi, New Mexico, Oklahoma and Texas
KM West Coast, including California
KO West, including Arizona, Idaho, Montana, Nevada, Utah, Washington, Wyoming and Oregon
KQ East central, including Ohio, Michigan and West Virginia
KS Central, including Illinois, Indiana and Wisconsin
KU Pacific, including Hawaii
KW Alaska
WW Puerto Rico

(if 35.22 is not used in your area, use 35.58). If you are using a tunable receiver the calibration will probably not be accurate enough. In this case, you'll have to mark your dial for these channels when skip, and pagers, are in.

Once you've set your dial on 35.22 or 35.58 MHz, turn the squelch up slightly and leave it on. When conditions start to pick up, you'll hear activity. Now flip up to the 43-MHz channels and lock in. If activity is not noted on these channels within the next hour or so, periodically check back to the 35-MHz channels. The muf may never have made it much beyond 35 MHz.

On the other hand, the Es may be into an area with no 43-MHz pagers (or worse yet, with no pagers!). So, when 35 MHz is active, alert yourself to a possible sporadic-E opening on six meters. When 43 MHz is active, watch for a probable six meter Es opening within the next few minutes!

If you're using a scanning receiver, and one that will cover an eight MHz stretch on low band, let it scan all the paging channels open in your area. If it sticks on one of the 35-MHz channels, switch that position off, and let the receiver scan the 43 MHz channels only. With some practice you'll start to get an idea when six-meter Es is likely.

General directions of the Es origin can be plotted for the expected six-meter opening. As you might expect, the 43-MHz channels are of greatest help for this task; 35 MHz is of less use as refractive angles are substantially sharper. In addition, ionization patches that affect 35 MHz may allow 50 MHz or 43 MHz to pass.

Actually, there are an almost infinite number of stations operating within this frequency range. When Es is strong, numerous public service stations and other two-way stations pour in, adding useful information about the potential opening. A mobile phone channel around 35.35 MHz is also very helpful, as mobile radiotelephone operators identify by their cities. European tv audio channels can be monitored as well. BBC audio is transmitted on 41.5 MHz (BBC-1 service is scheduled to be discontinued before the next sunspot maximum) and the French ORTF is on 41.25 MHz.

During the recent sunspot peak, BBC and ORTF were both received on many occasions across the US. BBC-1 has also been received on the East Coast via auroral E. Over most of that sunspot peak, the 30- to 50-MHz range was quite lively. Paging stations on 35-MHz were received here in Chicago on a daily basis from Hawaii, California, Puerto Rico and other locations. Of course, changes in sunspot activity affect reception greatly, often creating a mass of heterodynes on the paging channels. Most common here were Fresno, California and San Juan, Puerto Rico, both on 35.22 MHz.

Armed with this tool for catching six-meter Es openings you're set for more vhf fun than you ever bargained for!

references
After reading Bill Orr's article on multiband dipoles for 10, 15 and 20 meters, I decided to try some of his ideas on the lower-frequency bands, together with a few innovations needed to solve the bandwidth problem.\(^1\) If you calculate the percentage bandwidth of each amateur band from 160 through 10 meters, you come up with the figures in table 1.

Reference to the table tells us immediately that the only amateur bands requiring broadband treatment are 80 and possibly 10 meters, since conventional dipoles will readily meet the bandwidth and swr requirements for bandwidths of 5% or less.

The first dipole pair to be considered in an all-band installation is the 160- and 80-meter combination, since it is the biggest and is usually mounted near the top of the mast or tower. Both antennas may be mounted as inverted Vs as long as a minimum angle of thirty degrees is maintained between them. The thirty degree separation is necessary to keep antenna interaction to a minimum.

The 160-meter section is a simple wire dipole cut for 1850 kHz and then adjusted for minimum swr with the 80-meter dipole connected and mounted in place.

The 80-meter dipole is a standard broadband double bazooka.\(^2\)\(^3\) This antenna has a fairly good broadband characteristic and works well with the 160-meter dipole as a two-band antenna system.

Construction details for my antennas are shown in fig. 1 and tables 2 and 3. They depart somewhat from the original design, but mine are simpler and perform

<table>
<thead>
<tr>
<th>band</th>
<th>bandwidth (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>5.1</td>
</tr>
<tr>
<td>80</td>
<td>13.3</td>
</tr>
<tr>
<td>40</td>
<td>4.2</td>
</tr>
<tr>
<td>20</td>
<td>2.7</td>
</tr>
<tr>
<td>15</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>5.9</td>
</tr>
</tbody>
</table>
just as well. I used twinlead for the ends instead of ladder line because twinlead was more readily available.

The antenna is most easily set up by cutting the coaxial center section for 3750 kHz according to the formula in table 3 and then adjusting the length of the end sections for identical SWR at each band edge. This final adjustment must be made with the antenna connected to the 160-meter dipole. The result should be an SWR curve similar to fig. 2 for both dipoles. If the 2:1 SWR on the band edges is objectionable, the curve may be modified by lengthening or shortening the twinlead ends slightly to favor that portion of the band used most frequently.

The double bazooka is a fine antenna for this application — but, as usual, there is a catch. It works well in conjunction with any dipole that is lower in frequency than the double bazooka. Thus, a 10-meter double bazooka will work well with a 20-meter dipole, just as an 80-meter double bazooka will work with a 160-meter dipole. However, any attempt to use the antenna with a higher frequency dipole will result in an absolutely unmanageable SWR on the higher-frequency band. This peculiar behavior is caused by the center conductor of the coaxial section acting as a pair of short-circuited quarter-wave stubs on the second harmonic. Therefore, if 160-meter operation is not desired, the 80-meter double bazooka will have to be run on a transmission line separate from the other dipole pairs.

40 and 15 meters

Well accepted theory states that dipoles working from a common feedline or balun must be harmonically related to be effective, the implication being that the relationship usually involves the fundamental and the second harmonic. The question arose, when developing these dipole pairs, what to do about fifteen meters? The only amateur band to which

fig. 1. Construction details for the 80- and 10-meter broadband dipoles. Table 3 includes the necessary formulas and some typical dimensions. The end segments (D3) will vary somewhat from the calculated values and, like all dipoles, may need pruning once the antenna is in place.
it is harmonically related is forty, so I set up a 40-meter dipole with a low swr. When I tried operating on fifteen, the swr jumped to 3:1 and higher. This should really not be surprising since theory again tells us that the radiation resistance of an antenna increases as the number of half waves increases. The thought then occurred that the addition of a 15-meter dipole to the 40-meter dipole might solve the problem. This worked out very well indeed, as a reference to fig. 3 will reveal.

The 40- and 15-meter combination, unlike the previous dipole pair, does not require the application of broadband techniques. Conventional single-wire dipoles will do the job and, if carefully adjusted, will result in a swr of 1.5:1 or less on both bands. Incidentally, I did not attempt to center the swr curves as in the previous case. The 40-meter dipole is a little short and the 15-meter dipole a little too long, a situation readily corrected by the perfectionist.

To set up the pair, begin by adjusting the 40-meter dipole for equal swr at the band edges. This should be done with a pre-cut 15-meter dipole connected to the 40-meter dipole. Also, be sure to space the ends of the 15-meter dipole at least 8 feet from the 40-meter dipole, otherwise severe antenna interaction may result. This will show up as an excessive swr, usually on 15 meters. After obtaining a satisfactory swr curve on forty, proceed to adjust the 15-meter dipole. Usually very little adjustment of the 15-meter element will be required.

20 and 10 meters

The 10- and 20-meter dipole combination may be regarded as a scaled-down version of the 160- and 80-meter dipole pair, since both pairs use a simple wire dipole for the lower-frequency band and a broadband antenna for the higher-frequency band. The similarity ends there. You will find that the dipoles of this antenna pair are more interdependent and therefore more critical to adjust.

Begin by cutting both antennas to their calculated length. Connect both to a common balun, and make sure that the ends of the 10-meter dipole are at least 10 feet from the 20-meter dipole.

Adjust the 20-meter antenna for minimum swr. After obtaining a satisfactory swr similar to fig. 4, proceed to adjust the 10-meter dipole for minimum swr by adjusting the lengths of the twinlead ends. As a final touch, check both bands once again to see if any significant shift has occurred in either swr curve. By following this procedure you will experience little difficulty in setting up this last dipole pair.

The dipole pairs described in this article are the direct result of much experimentation done while developing a

Table 2. Wire dipole lengths.

<table>
<thead>
<tr>
<th>band</th>
<th>overall length</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>243' 0''</td>
</tr>
<tr>
<td>40</td>
<td>64' 2''</td>
</tr>
<tr>
<td>20</td>
<td>33' 0''</td>
</tr>
<tr>
<td>15</td>
<td>22' 0''</td>
</tr>
</tbody>
</table>

Table 3. Bazooka antenna dimensions.

\[
D_1 = \frac{492}{f(MHz)} \text{ for foam coax and } D_1 = \frac{325}{f(MHz)} \text{ for polyethylene coax.}
\]

<table>
<thead>
<tr>
<th>band</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>105'</td>
<td>125'</td>
<td>10'</td>
<td>foam</td>
</tr>
<tr>
<td>10</td>
<td>11' 2''</td>
<td>15' 6''</td>
<td>26''</td>
<td>poly</td>
</tr>
</tbody>
</table>
simple, effective, all-band antenna system for Doc, WB6UWK. Doc is a blind amateur who likes to work all bands on all modes without the need for fooling with couplers or matching gimmicks of any kind. A coaxial switch makes antenna switching extremely simple.

The dipole pairs have been in service for about a year now and have given no trouble, even when running the legal power limit. No superlative DX claims are made for this system, but on each band it seems to perform as well as a simple dipole.

references
Multi-function integrated circuits comprise two or more basic functional systems within the same case. Input, output and control leads from each system are brought out. Hence, the internal systems can be interwired externally to serve a variety of applications. These versatile devices are a specialty of the Exar Corporation. Last month the XR-205 Waveform Generator was introduced. Several additional circuits of this 16-pin in-line device are described this month. Also covered is their multifunction XR-S200, mounted in a 24-pin, in-line package. This is an extraordinary unit planned for communications systems.

XR-205 applications

In the XR-205 circuits covered previously the upper frequency limit was no more than several megahertz. A modified circuit, fig. 1, permits a sinusoidal output up to at least 10 MHz. Output level at pin 11 is less in this circuit arrangement being approximately 700 mV. Frequency capability is now in the amateur vfo spectrum for either high-frequency or vhf operation. This single device can serve as a vfo (keyed or unkeyed), double-sideband a-m, suppressed carrier (for single-sideband application), or fm signal source. All are tied together in one neat package. Furthermore, it makes available a variety of non-sinusoid signals for transmitter test circuits, synchronizing or other applications.

Such a basic signal source could be
followed by a chain of linear amplifier and mixer-oscillator integrated circuit stages, fig. 2. The final power amplifiers of such a transmitter could be designed to operate either in the linear or class-C amplifier mode. The latter would permit more efficient CW and fm signal amplification when desired. Several basic and modulated wave-forms are given in fig. 3. Also, the circuit for single-supply operation is given in fig. 4. This circuit has an upper frequency limit of 2 to 4 MHz and an output voltage of 2 to 3 volts peak-to-peak. Characteristics are given in table 1.

The single unit cost of $16.00 might jar you. But how much would it cost to duplicate this versatility with discrete transistors? What a tremendous fortune it would take to duplicate this performance with vacuum tubes!

Exar makes available an a-m/fm generator design kit for $28.00. This includes two XR-205 generators, a printed circuit board (etched and drilled), detailed components parts list, and assembly instructions. Estimated cost of additional parts is approximately $27.00.

The basic circuit is given in fig. 5. The IC on the left provides a modulating signal. Sine, square, triangle or ramp type is selected with switch S1. Frequency of

fig. 2. Block diagram of a transmitter using the waveform generator IC.

fig. 3. Typical waveforms generated by the XR-205 IC.
The modulation mode selector, fm, a-m or CW.

The second waveform generator operates at high frequency. It includes switches S4 for setting the duty cycle of non-sinusoidal output, and S5, which determines the output waveform. Capacitor C2 determines the output frequency. Again, switched capacitors and a variable capacitor permit frequency control. The adjustment of the modulation and carrier waveforms can be made with potentiometers R4 and R5. Potentiometer R1 sets the level of the modulating signal while potentiometer R3 sets the output carrier level. Potentiometer R2 is a carrier zero adjustment for use with suppressed-carrier modulation.

multi-function XR-S200 IC

The XR-S200 is also a three-function unit which includes an analog multiplier, vco and operational amplifier. More versatility, including operation as phase-locked loop (PLL), is present as compared to the XR-205, which consists of a voltage-controlled oscillator, balanced modulator and buffer amplifier. A number of additional applications are possible, and fre-

table 1. Characteristics of the XR20S circuit shown in fig. 4.

<table>
<thead>
<tr>
<th>Waveform</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinusoidal:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Frequency Limit</td>
<td>2</td>
<td>4</td>
<td>MHz</td>
<td>Measured at Pin 11</td>
</tr>
<tr>
<td>Peak Output Swing</td>
<td>2</td>
<td>3</td>
<td>Vpp</td>
<td>S1, S3 closed</td>
</tr>
<tr>
<td>Distortion (THD)</td>
<td>2.5</td>
<td>4</td>
<td>%</td>
<td>S2 open</td>
</tr>
<tr>
<td>Triangle:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Swing</td>
<td>2</td>
<td>3</td>
<td>Vpp</td>
<td>S1, S2 open</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>±1</td>
<td>%</td>
<td></td>
<td>S3 closed</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>±1</td>
<td>%</td>
<td></td>
<td>f = 10 kHz</td>
</tr>
<tr>
<td>Sawtooth:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Swing</td>
<td>2</td>
<td>3</td>
<td>Vpp</td>
<td>S2 open</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>1.5</td>
<td>%</td>
<td></td>
<td>S2 and S3 closed</td>
</tr>
<tr>
<td>Ramp:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Swing</td>
<td>1</td>
<td>1.4</td>
<td>Vpp</td>
<td>S2 and S3 open pin 10 shorthed to pin 15</td>
</tr>
<tr>
<td>Non-Linearity</td>
<td>1</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squarewave (Low Level):</td>
<td>0.5</td>
<td>0.7</td>
<td>Vpp</td>
<td>S2 and S3 open, pin 10 shorthed to pin 12</td>
</tr>
<tr>
<td>Output Swing</td>
<td>±1</td>
<td>±4</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle Asymmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>20</td>
<td>ns</td>
<td></td>
<td>10 pF connected from pin 11 to ground</td>
</tr>
<tr>
<td>Fall Time</td>
<td>20</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
frequency range is extended to 30 or 40 MHz. The additional versatility requires a 24-pin case and unit cost of $28.00.

Applications for the XR-S200 include phase-locked loops, fm demodulation, FSK detection, PSK demodulation, signal conditioning, tracking filters, frequency synthesis, telemetry coding and decoding, a-m detection, (quadrature and synchronous detectors), linear sweep and fm generation, tone generation and detection, waveform generation and analog multiplication. That's quite a list, and you say there is no more room for experimentation in ham radio?

How many applications for amateur radio use could you come up with using this device? Maybe it would help us to be frank and admit that often we don't want to assign the time, or we have lost or never developed the patience and perseverance that experimentation requires.

typical circuits

The pin-out diagram for the multiplier, amplifier and vco is given in fig. 6. The analog multiplier is an especially versatile section which can be used as detector, balanced modulator/demodulator, frequency multiplier, etc. Several external components permit you to assemble a phase-comparator very simply as shown in fig. 7. You will obtain an output voltage that corresponds to the relative phase of reference and signal inputs.

The three quite similar schematics of fig. 8 show how the multiplier section can be used as suppressed-carrier modulator,
double-sideband a-m modulator and frequency doubler. Your source of carrier signal can be the vco section. Come up with a simple switching arrangement and you will have a versatile CW, a-m and dsb signal source. Inasmuch as the vco can be frequency modulated, you will also have an fm signal source. Since the vco can also be crystal controlled you can generate a signal source with crystal stability. The simple circuit of fig. 9 will do the job.

The device also has receiver applications and, therefore, versatile transceiver possibilities. A simple a-m detector using only the multiplier is given in fig. 10. The PLL connection arrangement, fig. 11, is appropriate for demodulating CW, ssb, dsb and FSK. A PLL fm demodulation system, fig. 12, uses the multiplier section as the phase detector. The voltage-controlled oscillator and external resistor-capacitor filter provides fm demodulation. The amplifier section increases the level of the demodulated audio.

There is more. The same device can be used as a waveform generator, forming the same variety of signals possible with the XR-205.

three-sided antennas

A letter from Jim Gray, W2EUQ, indicates that he has become an eager three-sided antenna experimenter. His open-loop configuration is shown in fig. 13. He corner-feeds at the apex. This differs from the usual triangle and its feed point at the center of one of the sides. The antenna operates 5/2-wavelength on 15 meters, and 3/2-wavelength on 20. Jim uses a knife switch to add an extension for proper resonance on 14 MHz.

fig. 7. Phase comparator circuit based on the multiplier section of the XR-S200 multifunction IC.

fig. 8. Using the multiplier section of the XR-S200 as a suppressed-carrier a-m modulator (A), double-sideband a-m modulator (B) and frequency doubler (C).
When the end of the extension is shorted, the assembly becomes a closed full-wave loop on 40 meters. In this case it operates as a delta loop because of the corner feed point.

Another three-sided arrangement comes from the South Australian Wireless Institute Journal by way of Leo Gunther, VK7RG. This 160-meter antenna was designed by VK5EF for a site with space limitations. As shown in fig. 14 it is fundamentally an 80-meter inverted dipole with two sides folded around toward the mast. These include an 80-meter trap and an appropriate wire extension to obtain 160-meter resonance. VK5EF resonates his trap on 3.6 MHz. With the dimensions given there is also short-length resonance on 1.82 MHz. No antenna tuner is required.

interference-reducing antennas

The catv industry has been doing much research in the development of co-channel interference-reducing antenna systems. Two techniques that have possible application in radio amateur circles appeared in the June, 1972 issue of *Communications News*. The work is
being conducted at Scala Radio by its president Bruno Zuconi and project engineer Charles B. Carter. An improvement in front-to-back ratio is accomplished by placing the top antenna one-quarter wavelength in front of the bottom one as shown in fig. 15. This top antenna is also fed 90° later than the bottom one. Table 2 provides useful dimensions for the amateur bands from two through twenty meters. Values are for band center.

If your interference is largely from the forward direction, two Yagis or other narrow-beam, high-gain antennas are fed in phase, fig. 16. With suitable horizontal displacement there is signal cancellation from some specific receive angle off the beam direction. You only have to know the angle of arrival of your most troublesome QRM. The information in Table 3 then permits you to so space the two antennas to give the most rejection at a particular angle off the forward beam direction.

The pattern of fig. 17 shows the type of deep null that can be obtained 20° off the beam direction. With your antenna system mounted on a rotator, you can do some fine nulling of interference coming from the same general direction. Perhaps 20 degrees is not the ideal angle in amateur operation. Some experimentation with horizontal displacement of the two Yagis may help you decide on the most favorable null angle for your particular location.

By the laws of reciprocity your trans-

Table 2. Antenna spacing and feedline length for increasing front-to-back ratio of stacked Yagi antennas.

<table>
<thead>
<tr>
<th>Band</th>
<th>2 meters</th>
<th>6 meters</th>
<th>10 meters</th>
<th>15 meters</th>
<th>20 meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free space</td>
<td>20½"</td>
<td>57"</td>
<td>86"</td>
<td>117½"</td>
<td>174"</td>
</tr>
<tr>
<td>Line*</td>
<td>13½"</td>
<td>37½"</td>
<td>58"</td>
<td>77"</td>
<td>116½"</td>
</tr>
</tbody>
</table>

*Based on 0.66 velocity factor.

Table 3. Spacing of Yagi antennas to obtain desired null angles as described in the text.

<table>
<thead>
<tr>
<th>Null angle</th>
<th>10°</th>
<th>15°</th>
<th>20°</th>
<th>25°</th>
<th>30°</th>
<th>35°</th>
<th>40°</th>
<th>45°</th>
<th>50°</th>
<th>55°</th>
<th>60°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing in wavelengths</td>
<td>2.5</td>
<td>1.75</td>
<td>1.5</td>
<td>1.25</td>
<td>1.0</td>
<td>.85</td>
<td>.75</td>
<td>2.25</td>
<td>1.9</td>
<td>1.7</td>
<td>1.65</td>
</tr>
</tbody>
</table>
mit pattern will be similar. On 2-meter fm these techniques have great possibility in areas crowded with repeaters operating on the same and adjacent channels. Your antenna could be made to beam on your particular repeater, and still have nulls in the directions of the repeaters you do not wish to activate. Operate your base sta-

tion with two antennas, one omnidirectional for simplex and one highly directional for repeater communications.

references
1. "XR-205 Monolithic Waveform Generator Kit," Exar, 733 North Pastoriz Avenue, Sunnyvale, California 94086.
A printed-circuit board is now available for this versatile and accurate RTTY speed converter originally described by WA6JYJ.

The RTTY electronic speed converter described by WA6JYJ in a recent issue of *Ham Radio* provides an inexpensive method of converting low-speed RTTY signals for printout on a higher speed teleprinter. This is much more simple than the mechanical gear shifts that are usually required for this purpose.

The circuit, which uses ten ICs, seven transistors and a bunch of other components, is quite sophisticated and strains the ability of the most proficient home builder. I attempted to simplify construction by replacing the point-to-point wiring with a printed-circuit board. With the exception of rearranging the IC pin numbers to simplify the board layout, this was easily accomplished. Drilled printed-circuit boards are now being made available to other interested RTTY amateurs.*

construction

To keep construction costs down, a single-sided printed-circuit board is used. This requires jumpers between some of the pads on the board. These jumpers should be made with insulated, tinned number-20 hookup wire. Complete instructions are furnished with the boards.

The board is designed for inexpensive, vertically-mounted 50,000-ohm trimmers. These are used to set the unijunction oscillator frequency. To install the miniature 20-turn trimmers suggested by WA6JYJ, the board must be re-drilled to accept their terminals, and jumpers installed to make the necessary connections.

*Drilled, fiberglass printed-circuit boards for the RTTY speed converter are available from P&M Electronics, Inc., 519 South Austin, Seattle, Washington 98108. The price is $6.00. The board includes a schematic of the converter as well as a component layout diagram.
The unijunction oscillator frequency is determined by R1, C2 and the 50k trimmer (see fig. 1 of WA6JYJ's article). With the inexpensive board-mounted trimmers I used (CTS type Z-201-R503B), a 10% Mylar capacitor and 5% deposited-carbon resistor resulted in satisfactory long-term frequency stability for the normal ambient temperatures found in most ham shacks. If the speed converter must be installed where wider temperature variations are encountered, precision components should be used.

The following suggestions are the results of building two separate speed converters. First of all, buy 100% tested integrated circuits. They cost a little more, between 10 and 50 cents each, but it's money well spent. ICs that are 100% tested are marked by the manufacturer with a "T" suffix or some other means, and must be specified when they are purchased.

Many manufacturers only sample test their ICs, and a few bad ones are bound to turn up in any production run. Of the ten ICs I purchased for my original speed converter, one was bad (a shift register), and many unnecessary hours were spent in locating the problem.

Also, when building the speed converter, be generous with noise-suppression capacitors. Noise problems exhibit themselves as unexplained, consistent garbles which defy troubleshooting. In addition, short leads to a well-regulated power supply are a must. The power supply suggested by WA6JYJ in his article is very satisfactory.

Two .01-μF noise-suppression capacitors are mounted on the printed-circuit board near each shift-register IC. If noise problems are still suspected, solder additional .01-μF, 600-volt disc ceramic bypass capacitors directly across the Vcc and Vee IC pins on the copper side of the PC board. The shift registers and flip-flops are usually the source of noise problems.

When building the unit, be sure you use IC sockets. Use them if for no other reason than troubleshooting. The continuous-strip IC sockets manufactured by Molex are inexpensive and quite satisfactory for printed-circuit construction.

operation

When incorporating the RTTY speed converter into your station, make sure that the input of the converter is after the normal-reverse switch. The speed converter requires normal (not reverse) input for proper operation.

When snooping around for press copy, it's often difficult to determine what speed you are receiving. The best method I have found is to measure the period of the incoming bauds with an oscilloscope with a calibrated time base. For 67 wpm, the period is 20 milliseconds, slightly longer for 60 wpm, and slightly shorter for 75 wpm. The period for 100 wpm is 13 milliseconds.

Multi-speed conversion greatly enhances the versatility of any RTTY station, and it is especially useful when looking around the amateur bands. More and more multi-speed stations are now being heard as amateurs add the ability to operate at high speeds. As more RTTY enthusiasts learn of the advantages of higher speeds, amateur usage is expected to increase still further.

reference

These universal counting modules have heavy duty outputs to drive all 7 segment displays requiring up to 15V and 40mA per segment. TTL used throughout. Requires 5 volt @ 120mA per module and any number of modules may be cascaded. Typ. count rate is 20MHz except the NR-3H which is 70 MHz. Will drive any display in this ad (not included).

NR-3 Modulo 10 Counter 20 MHz $7.95
NR-3A Modulo 6 Counter 20 MHz 7.95
NR-3H Modulo 10 Counter 70 MHz 8.95
NR-3B Modulo 12 Counter clock 12.95

The most versatile multi-digit counting kit ever offered! Comes with 5½ digits of counting and 7 segment decoding with the same heavy duty outputs as the NR-3. Typ. maximum count rate is 70 MHz. Each counting stage is completely independent allowing a custom approach to your application. The "+" and "-" sign are great for DVM or over-under circuity. The overrange stage also has an overflow latch and reset buffer. Displays not included. PC board is 3½" x 6".

NR-3FM Multi-Stage Counting Unit $33.95

Contains a .002% crystal oscillator with TTL decade dividers to give output frequencies of 10, 1 MHz, 100, 10, 1 kHz, 100, 10, 1, & 0.1 Hz. Kit requires 5 volt supply @ 175mA. Uses low TC components and has zero-beat trimmer. Great for freq. meter, digital clock, etc. W/ complete instructions. CRO-ID $22.95

The DCC-2 derives precision gating and clock signals from the 60 Hz line. The input is a combination schmidt trigger and integrator which eliminates false triggering from line noise. The input is over-voltage protected and requires no adjustment. TTL compatible output frequencies are 10, 1, 0.1, & 0.01667 (1 pulse/min.) Hz. PC board measures 1.2" x 3.5".

DCC-2B Line Frequency Standard $9.95

Power your OP-AMPS with this versatile, low cost, dual-polarity regulator. One control varies both outputs simultaneously over the range of 0-15V. Electronic current limiting may be set separately for each output over the range of 25-200mA. Regulation is 0.1% and the ripple is below 3mV RMS. All parts conservatively rated for long life.

APS-5A Op-amp Power Regulator $13.95
TR-200 Transformer for APS-5A 3.95

Both kits have an output range of 3.3V to 5V with current limiting and short circuit shut down. Regulation is 1% and ripple & noise is 10mV RMS. Heavy duty components insure long life and allow rugged use.

DPS-1A Output current 0.6A $7.95
DPS-2A Output current 2.2A 10.95
TR100 Transformer for DPS-1A 2.29
TR1500 Transformer for DPS-2A 4.50

More Details? CHECK-OFF Page 110
LED READOUT MODULE - COUNTER - LATCH - DRIVER

This new module has all the most desirable features required in counting and display. Fits 18 pin connector. 5V supply. All TTL logic. 20 MHz count rate.

$15.95

LED

Electrically and physically identical to the popular MAN-1. Has higher light output than MAN-1. Includes LH decimal point. W/spec sheet & app information.

LED700 7 Segment LED Display $6.95
(QUANTITY DISCOUNTS AVAILABLE)

Build several instruments with this chip and little else. First really useful LSI chip for the experimenter. Contains:

- Four decade counters & overrange
- Four 4 bit latches w/BCD outputs
- Seven segment decoder
- Display multiplexing circuitry
- Two programmable oscillators
- Single 5 volt supply at 5mA !
- Inputs TTL compatible
- Housed in 28 pin dual in-line pak

MP-1A 4000 Bit Core Plane $12.95
MP-2A 16K Core Stack 47.50
MPB-1 80 Page Core Memory Booklet 5.00

WE STOCK THESE ITEMS & MORE
INTEGRATED CIRCUITS TRANSISTORS & DIODES POWER TRANSFORMERS RESISTORS & CAPACITORS PC BOARD DRILLS

LED 7 Segment display mounts in 16 pin dual in-line socket. 5V operation at 8 mA per segment. 100,000 hr. life. W/decimal pt.

3015 Miniature Display $3.45 3/$10.00

LARGER 7 segment display as pictured with the NR-3 series kits. Bright numerals can be seen even in direct sunlight. Mounts in 9 pin miniature socket supplied with the kits.

2010 7 Segment Display 0-9 DP $4.45
2020 As above except “1” “4” “7” 3.95

The 1101 Random Access Memory (RAM) will store and readout 256 bits. The chip is TTL compatible and comes with a complete spec sheet w/applications.

1101 256 Bit RAM $8.95

At last! Noncritical memory planes for the experimenter. Made by Ampex for IBM spares. They were removed from NEW core stacks. The large 50 mil cores allow the use of the most inexpensive sense amps. The cores are in an 80x50 array. All the necessary core specs are included with each plane. Available is an 80 page booklet describing an 8 bit x 1000 word memory using the MP-2A. Parts lists, schematics, and app notes are included in the booklet.

MPB-1 80 Page Core Memory Booklet 5.00

ENVIRONMENTAL PRODUCTS
PO BOX 1014
Glenwood Springs, CO 81601

303 + 945-8527

More Details? CHECK-OFF Page 110

October 1972
an accurate rf power meter for very low power experiments

This inexpensive meter will measure low power levels up to 148-MHz without expensive calibration equipment.

If you are fascinated by the miles per watt statistics of very low-power communication or if you just enjoy building miniature transmitters, you will have a lot more fun if you really know how much power your little rig is putting out. Rf power is not easy to measure, and most of us have had our troubles even at moderate power levels. With power below a watt a good measurement is a real problem. There are many good designs for rf power meters, but most of them require a precision load resistor accurate at your operating frequency. In addition, a good rf voltmeter or another wattmeter is usually required to complete the calibration. Not many hams have access to these items.

My simple meter requires no special test equipment or calibration, and all of the parts can be found in any Radio Shack or similar store. I decided to drag an ancient technique out of the cobwebs and combine it with a few pieces of modern hardware. The results were even better than I had hoped for. The final model measures power as low as one milliwatt and works as well on two
meters as it does on eighty. With care the accuracy of the readings can approach 1%.

Theory

For many years experimenters have known that a small lamp with a short filament will require the same amount of rf, dc or audio power to bring the filament to a given temperature. To make an accurate power measurement, load the transmitter into a suitable lamp and record the light level with a photocell and meter. Remove the rf and substitute enough metered dc to give the same light reading.

Yes, it is true that the bulb will probably never have a resistance even close to 52 ohms, and that the resistance will change as the power level changes. This is no great problem. Most transmitters have enough tuning range to match the bulb for maximum output. This same tuning that gives you maximum output will also tune out any small reactance which may be in the power meter. Just keep the lead from transmitter to power meter as short as possible.

circuit

Originally, I had visions of photo transistors, transistor dc amplifiers and expensive meters to get the sensitivity that I thought the unit should have. Happily the schematic in fig. 1 shows how simple life can be at times.

The cadmium-sulphide photocell acts as a light-sensitive resistor: the more light, the less resistance. The battery, two resistors and meter form a simple ohmmeter circuit to indicate the change of resistance in the photocell. With moderate light on the cell, the meter can be set to full scale (similar to zeroing an ohmmeter). With no light on the cell, the meter will read 0. The capacitor across the cell is just to bypass stray rf from the cell.

In the rf portion of the circuit, the power to be measured is connected to J1 and is fed to the load lamp through the 0.01 blocking capacitor. When dc is substituted for the rf, it is adjusted to the correct value with the 30- and 100-ohm variable resistors. The dc connections to the load lamp are through the rf chokes which keep the transmitter rf out of the battery and meter circuits.

The dc meters that are used to read the input power to the lamp were left external for convenience. In this way any meters which happen to be handy can be pressed into service. Meter M2 should be capable of reading the maximum voltage that will be used on the bulb, and M3 must be able to read the current required by the bulb at maximum voltage.
construction

I built the unit on an aluminum chassis, but it could just as well have been built on a piece of plywood. If you are not interested in the measurement of very low power, the system can be as simple as an old photo exposure meter and a load bulb. There are only two precautions to consider. Keep the rf leads short and heavy and enclose the photo cell and lamp in a light-tight compartment while making a measurement.

All of the parts are mounted on a 3 x 5 x 9-inch chassis. There is lots of empty space, but this makes life a little easier. A bread pan from the variety store makes a good chassis. The load lamp and photocell are mounted on top of the chassis to facilitate the bulb changing and photocell adjustment. The cover which forms a light tight compartment is a dime store cake pan. All surfaces inside of this compartment are painted flat black to prevent reflections.

The photocell is mounted on a small three-terminal strip. A single phone tip is soldered to the center terminal of this strip. To adjust the distance from the load lamp to the photocell, plug the phone tip into any of the four tip jacks as shown in the photo. The position and angle of the cell can be adjusted for the desired light pickup from the load bulb. The photocell is a Vactec cadmium sulfide unit and came from a Radio Shack No. 276-600 package which contains four cells (for only $1.19). However, there are many other similar cells that will work just as well. The other components are standard, and the schematic is self-explanatory.

The two variable resistors in the dc circuit of the load lamp are wire wound and should have at least two watts dissipation rating. All capacitors must be mica or ceramic suitable for high-frequency use. The variable resistor in the photocell circuit is an ordinary carbon control. The rf chokes are the ordinary pie-wound variety and are not critical. A value of 1 mH will work just as well, but the chokes must be of good quality for good vhf performance.

operation

Operation of the meter is simple. Select a bulb from table 1 with a power rating higher than the power that you plan to measure. The bulb must be operated below full brilliance for the best results. Just couple the output of the transmitter to J1 and adjust for maximum output (as indicated by the bulb) while maintaining the dc input to the transmitter at the desired level. At this point, if the bulb appears to be near full brilliance, replace it with a higher wattage bulb.

Turn the transmitter off and expose the photocell to room light. This can be either daylight or artificial light of about the same level as you would use to read

<table>
<thead>
<tr>
<th>No.</th>
<th>bead color</th>
<th>volts</th>
<th>amps</th>
<th>max power (watts)</th>
<th>resistance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40A</td>
<td>Brown</td>
<td>6-8</td>
<td>.15</td>
<td>1.0</td>
<td>40</td>
</tr>
<tr>
<td>43</td>
<td>White</td>
<td>2.5</td>
<td>.50</td>
<td>1.25</td>
<td>5</td>
</tr>
<tr>
<td>44</td>
<td>Blue</td>
<td>6-8</td>
<td>.25</td>
<td>1.5</td>
<td>25</td>
</tr>
<tr>
<td>47</td>
<td>Brown</td>
<td>6-9</td>
<td>.15</td>
<td>1.0</td>
<td>40</td>
</tr>
<tr>
<td>49</td>
<td>Pink</td>
<td>2.0</td>
<td>.06</td>
<td>.12</td>
<td>33</td>
</tr>
<tr>
<td>49A</td>
<td>White</td>
<td>2.1</td>
<td>.12</td>
<td>.25</td>
<td>17</td>
</tr>
<tr>
<td>51</td>
<td>White</td>
<td>6-8</td>
<td>.20</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>14</td>
<td>.12</td>
<td>1.7</td>
<td>110</td>
</tr>
</tbody>
</table>

Resistance is for the power shown and will vary with a change of input current.
this magazine. Turn S1 on and set the meter M1 to full scale by adjusting R1.

Replace the light tight cover and turn the transmitter on. If the meter reads more than about 85% of full scale or less than 20%, change the distance or position of the photocell until the reading is somewhere between these two values. If the meter reads too low, an accurate reading cannot be made. If it reads too high, small changes cannot be seen.

Note the meter reading and shut down the transmitter. With a battery or low voltage supply connected to DC IN, adjust R2 and R3 until the meter reads the same value as noted for the transmitter. The dc power computed from M2 and M3 will now be the power output of the transmitter.

A somewhat different method is used for very low power. Use a type 49 pilot lamp as a load and position the photocell as close to the lamp as possible for the best transfer of light. Adjust the dc current to make the photocell meter read about mid scale. Note the dc power as read by M2 and M3. With the dc power still on, the rf power is applied to the bulb. The reading of M1 will increase. Reduce the dc input to the lamp until the meter M1 returns to its original reading (the reading before rf was applied). The difference between the first dc-input reading and the second dc-input reading is the amount of power removed to keep the filament level constant. This is equal to the amount of rf power that was added.

Many amateurs will feel that the photocell method of dc substitution is too long and involved for power measurement. They are right. However, it is just about the only accurate way to measure low power over such a wide frequency range and at a cost that the ordinary experimenter can afford. It is one of the very few methods that can be put in operation anywhere without using rf calibration standards.

Laboratory work has shown this method to be about as accurate as or as sloppy as you care to make it.

ham radio
The unit described here uses a silicon-controlled rectifier with a biased gate as the heart of a circuit-breaker system which trips when any predetermined voltage has been reached. It can be used to trip at overloads or underloads. This is accomplished by using a biasing voltage between cathode and gate in connection with a second voltage which either adds to or subtracts from it. When adding voltages the device trips on overload; when subtracting, on underload.

R1 is a voltage divider and R2 a dropping resistor (fig. 1). It is the supply voltage minus the voltage between the anode side of R1 and the gate side of R2 that establishes the firing voltage of the SCR. If another voltage source is inserted between R2 and the gate, it can become the critical voltage in the firing of the SCR. This voltage can be introduced to reinforce or buck the voltage between the anode and the gate side of R2. This process determines whether the SCR fires on increasing or decreasing current in the monitored circuit. The voltage is developed across Rx and should be about one volt. As an example, take a transmitter whose plate current is not to rise above 150 mA. Then Rx = E/I = 1/0.15 = 6.6 ohms.

R1 is adjusted so that the SCR just fires when 150 mA flows through Rx. Current through both the SCR and Rx is then turned off briefly, and R1 is backed off a degree or two. Current through the SCR and Rx is again turned on. The SCR should not fire. If the current through Rx has to be increased too much to fire the SCR, move the slider back toward the original firing position just a shade. A position should be found where the SCR does not fire until the maximum allowable current is exceeded.

If the unit is to be used to cut off current to a circuit when current in that circuit drops to some level, Rx is attached to buck the voltage between the anode and the gate side of R2. Again, adjust R1 after the proper current has been established through Rx. R1 is adjusted, as before, this time getting the SCR to fire when the current through Rx drops to the predetermined level.

When the monitored circuit is low voltage and low current (say a driving transistor in an audio or rf stage), a relatively high-impedance input dc amplifier (fig. 2) can be used to provide the voltage across what was called Rx earlier. An n-channel fet (MPF-103) and a germanium pnp transistor (HEP 3) do the job nicely. Rx here is a 300-ohm resistor which can be connected into the circuit.
of fig. 1 to reinforce or buck just as in the situation described earlier. The 20k variable resistor is adjusted (with nothing across the 5k variable resistor) to the point where current through Rx just reaches a minimum. Then the 5k resistor (with the load which it is monitoring connected across it) is adjusted to provide a reading of between one and three volts across Rx. The two rf chokes isolate the circuit from rf which might cause erratic triggering of the SCR.

The power supply should be capable of supplying the current and voltage necessary to actuate the relay, and the scr should be capable of handling these quantities, too. The power supply for the dc amplifier - if one is used - should be separate from the one for the relay. I use a model racing car power pack rated at 20 VA output, and a heavy-duty 24 V 6pdt relay with a 180-ohm coil. For the dc amplifier I use a small battery pack with eight AA cells in series. Since only three to eight mils are drawn, the battery should last quite a while.

George Hirshfield, W5OZF

sequential switching

This switching circuit provides delay in the make and break modes of switching and can be used to protect frontend transistors, diodes and coils due to momentary simultaneous operation of receiver and transmitter. The operation of the circuit is very simple, and the device is not at all delicate.

When S1 is thrown from receive to transmit, current flows to both the relay coil and the capacitor. The large capacitance across the coil has the effect of acting as a near short circuit until, while charging through R, the energizing voltage for the relay is reached. When S1 is thrown from transmit to receive, the capacitor is discharged through the relay coil. Both processes occur, of course, in a finite and adjustable amount of time. The net effect here is about one-third of a second delay when switching from either mode to the other. The values shown are not critical. Voltages and resistances may vary according to relay requirements, but operation should be similar to what is described here.

The actual switching takes place when the centertaps of the receiver and transmitter power transformers are grounded through S1 and the contacts of the relay. Contacts of the relay may be ganged for operation of additional circuits such as indicator lights, antenna switching or other relays for additional sequencing of other circuits.

The parts for this gimmick are generally available and can probably either be found in the junkbox or purchased from a single supplier.

George Hirshfield, W5OZF

fig. 2. The dc amplifier.

fig. 3. This circuit provides delay in make and brake switching.
past is prologue

Dear HR:

I can’t resist a few comments on your June editorial. The old timers you heard on 40 meters expressed the opinion that amateur radio today lacks the allure it used to have, that it has less uniqueness and fewer opportunities to offer. As a private pilot I hear the same song around airports. In part time marine radio work I hear much the same thing among boatmen.

I think the whole gang had better join a group I met last summer. I was invited to display a 66 year old car steam engine I’ve been saving to put in a boat. I met a gang of enthusiastic old timers who really get a kick out of their hobby. If amateurs feel jaded at the thought of competing in the technology race, pick up a hobby where the technology hasn’t seen much change in the last 60 years, and isn’t likely to change much in the next 60, either.

To me, the complaints of hobbyists who are caught up in the technological race are symptomatic of the state of the nation. There never has been an era when so many had so much yet were so dissatisfied. By comparison, I get a kick out of my wife’s gardening adventures. Year in and year out she never tires of creating a riot of color from frost to frost. It is a tremendous source of satisfaction for her, and, perhaps more important, a chance to get away from the everyday rat race.

I think we are beginning to see a glimmer of that same thing in amateur radio today. The QRP gang are tossing aside all the usual equipment in order to create something different. They’re having fun, but only because they’ve broken away from the crowd. Instead of saying, “Me, too,” they are once again individualists. We need that sort of thing badly.

I’ve been in radio for 40 years, yet I wish I had 40 more years. The opportunities in amateur radio today are to me, incredible. I only hope that the QRP movement is only the start of a move towards greater individualism that will lead to new performance criteria, and once again, the opportunity for technical advances by the amateur body.

Your editorial suggests one such advance. “We at Ham Radio note that the day of the amateur-built receiver may have passed in favor of the vastly superior and less expensive commercial version.” You are correct in this respect: The available receivers today could be compared to a luxurious car with power everything and loaded with accessories satisfactory to a majority of buyers, and perhaps to many a status symbol. Yet any one of maybe 100,000 kids could “home-brew” a performance car that could cream that Detroit iron on a drag strip.

Maybe we might see conditions in amateur radio reach the point where the individualists see the situation correctly. That the best receivers built today, while excellent, are not in truth “vastly superior” in performance. In fact, many of the most expensive receivers are indeed inferior.

A rabid DX man could, for instance,
settle for a single band receiver — maybe 20 meters. Many fine commercial receivers have sensitivity greater than you can use, due to the limitations of atmospheric noise level. However, over the span of frequencies the 20-meter band represents, noise distribution will be relatively uniform. If so, suppose he narrows the front end passband to half that of the commercial receiver? In a given situation, his receiver will show a 3-dB improvement in signal to noise ratio. If he cuts that bandwidth again in half, the improvement is 6 dB. If he can cut the front end passband by a factor of 8 he is 9 dB better. Of course, at this point the receiver front end may have to be re-peaked for relatively minor changes in frequency. Already his cross-modulation capability is improving. Careful selection of rf and mixer will enable him to top any commercial receiver in this respect. It would take some care in determining optimum gain distribution, too. In the same manner he can top the best receivers in stability and selectivity, and still not have as much invested in parts cost.

If a trend developed in the direction of true "competition" receivers, I wouldn’t be surprised to find a parallel to today’s automotive performance parts business. It wouldn’t be big business any more than the speed shops are in comparison to Detroit. Such a trend would sure separate the men from the boys on the amateur bands, particularly if as much care were devoted to antenna design.

That’s one example, and there are a lot more loopholes in amateur radio that enterprising individuals can plug to their own advantage. I just hope we are seeing the start of a trend.

Bill Wildenhein, W8YFB

ground-plane antenna

footnote

Dear HR:

I was intrigued by the simple elegance of Peter Brekken’s ground-plane antenna in the May, 1972, issue and built the single-band, 20-meter version. I had a reasonable duplicate of the vertical element already mounted on my roof — a 40-foot heavy-duty tv mast that had supported a variety of wire antennas. Brekken’s design calls for 75-ohm coax for the transmission line; however, I wanted to use RG-8/U 50-ohm line, which I had on hand. I also wanted to use existing materials and junkbox parts to keep expense at a minimum. The total cash outlay for my version of the antenna was $1.85. The following comments are offered for those who might want to try this excellent antenna with the more common 50-ohm coax cable.

The feed point of my antenna is almost exactly ¼ wavelength above ground at the design frequency (14.15 MHz). I built a tuning unit based on the formula in Brekken’s article, but added a few extra turns to the coil. The entire arrangement was made of odds and ends available around the house — nothing sophisticated — just ordinary hardware and the usual junkbox parts.

For example, the coil was made from tv “ground wire,” which is no. 8 soft-drawn aluminum wire. This material is self-supporting if a reasonable form factor is used for a coil. My coil is 3 inches in diameter by 6 inches long, supported at both ends by standoff insulators. A short length of RG-8/U coax connected between an appropriate tap on the coil and the antenna vertical element adds support to the coil. The coil, which is about 3 μH, was wound over a quart beer bottle (empty) and hand formed. A weather shield covers the entire assembly.

The impedance characteristics of my 5/8λ vertical antenna were measured with a General Radio model 916A bridge. Check points are:

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>resistance (ohms)</th>
<th>reactance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.0</td>
<td>128</td>
<td>-j305</td>
</tr>
<tr>
<td>14.05</td>
<td>118</td>
<td>-j223</td>
</tr>
<tr>
<td>14.15</td>
<td>108</td>
<td>-j215</td>
</tr>
<tr>
<td>14.20</td>
<td>92</td>
<td>-j196</td>
</tr>
<tr>
<td>14.25</td>
<td>82</td>
<td>-j175</td>
</tr>
<tr>
<td>14.30</td>
<td>74</td>
<td>-j158</td>
</tr>
</tbody>
</table>
The capacitive reactance of $-j215$ ohms at 14.15 MHz was tuned out by making many trips between the transmitter and the coil at the antenna base until a minimum swr was achieved by adjusting the coil tap. The lowest swr obtainable was 2.5. This meant that the $-jX$ component of impedance was accounted for, but the resistive component, 108 ohms, still had to be compensated to achieve a good match at the antenna resonant frequency.

A $\frac{\lambda}{2}$ transformer made of RG-8/U cable connected in series with the transmission line and antenna feed point solved this problem. The $\frac{\lambda}{2}$ transformer was made according to

$$Z_t = \sqrt{Z_a Z_o}$$

where

$Z_t = \text{characteristic impedance of}
\text{transformer (ohms)}$

$Z_a = \text{antenna resistance (ohms)}$

$Z_o = \text{characteristic impedance of transmission line (ohms)}$

Substituting values,

$$Z_t = \sqrt{(108) (52)} = \sqrt{5610} = 75$$

A 17-foot length of RG-11/U cable was used to make the matching transformer. This was purchased from a local surplus house for $1.00. With the $\frac{\lambda}{2}$ transformer installed between the $\frac{5}{8}\lambda$ vertical and the RG-8/U transmission line, the swr between 14.0 and 14.3 MHz was pretty low; the mean value was measured at 1.15.

A simple weather shield completes the assembly. I found a plastic tub in a local supermarket for $85c$, which I mounted over the tuning assembly at the base of the antenna.

If you don’t have the exact materials on hand that are called for in published articles, try substitutes. That is what makes ham radio fun.

Alf Wilson, W6NIF
San Diego, California

microwave equipment

Dear HR:

I wish to point out that if you are willing to search out suppliers and take your time, the equipment listed in the article by W. T. Roubal in your June, 1972, issue on “Getting Started in Microwaves” can be purchased for 10% or less of the costs listed in his article.

I have many 2K25 formerly 723A/B Klystrons that I have purchased for 50c to $1.00 (Do not tune the cavity too often as the bellows will fatigue and let air into the tube.)

I have several variable attenuators bought for less than $5.60.

The only problem with this equipment is that it has not been checked out for its working condition. This means that you must do the checking yourself. The procedures for doing the checking can be found in the Berkley Lab series books A, B and C or, for a much deeper explanation, the MIT Radiation Laboratory series now put out by Doer Press for 2 to 4 dollars each.

The procedures are fairly simple if you ignore the math in these books. Many tests can be run with nothing more than a 2K25, its power supply and waveguide mount, a waveguide mounted detector and a meter to measure detector current.

If you want to make swept frequency measurements you must have an oscilloscope that has at least a dc to 1-kHz bandwidth.

The slide screw tuner of fig. 5 in Roubal’s article can be made into a slotted line by replacing the micrometer with a detector diode and a small antenna that sticks into the guide like the plunger of the micrometer.

This setup will allow you to measure standing waves in the wave guide. For an sase I am willing to answer any questions on the above subject.

Edward A. Benjamin, WA1HYX/4
1010 13th Street North
St. Petersburg, Florida 33705

66 october 1972
prologue to the future

Dear HR:

It has been my observation that it is participation in the act of communication, rather than the material communicated, that has been the unique attraction of amateur radio over the decades. I think your editorial in the June issue strongly (and correctly) points up the attrition of this aspect of the game, but I cannot share your optimism.

We all seem to agree that, whether we like it or not, amateur radio is losing its unique flavor. In fact, it is tending to become just another communications system, operating roughly in parallel with Ma Bell and her sisters.

It is the intimate contact with the inner techniques and difficulties that enthralls most of us who read ham radio. We enjoy building gear, however simple, tuning it up, and solving real problems in the communications process. For a large number of us this may even be the whole game.

After we've gotten things working as we think they should, it's time to tackle another problem. What gets communicated via the system is, for the most part, incidental. Unfortunately, the rapidly advancing techniques place most of us further and further from as many significant problems as were formerly within our reach - day by day we're being phased out.

It is my personal belief that no sophistication of technique nor improvement of communications efficiency can ever, in any way, replace genuine human satisfaction. The proven pleasures of personal involvement, even of the simplest sort, are irreplaceable by mere machinery, no matter how sophisticated. When Mr. Walker's vaunted satellite is up there, it will be fun to "work through" a few times, just to satisfy ourselves, but then what?

Just as the finest product of American professional engineering cannot truly replace the beloved haywire in the true home-brewer's heart, so the finest satellite will never, for many of us, replace the inefficient, capricious ionosphere. For the satellite is only machinery, while the ionosphere, like the haywire, is adventure. And adventure is the priceless ingredient in amateur radio.

C.F. Rockey, W9SCH
Deerfield, Illinois

tape head cleaning

Dear HR:

The Multiple Audio Distribution (MAD) System at Western Michigan University consists of Magnecord 1048 tape machines which are in use almost continuously. Currently, seventeen machines are in use, with eleven machines in use 24 hours a day, 7 days a week, 48 weeks a year. Some of the machines are six years old, while the newest is three years old.

The machines are cleaned Monday through Friday with alcohol and xylene. Xylene is used on the tape heads, metal tape guides, stabilizer rollers and capstan. The xylene, as mentioned in your May issue, requires care in use as it is damaging to plastics and some paints. The ability to dissolve the binder in the tape oxide is what makes the xylene worth the care needed in use. A Q-tip full of xylene will remove the biggest glob of dirt and oxide.

Alcohol is used on the pinch wheel, because, when it is used often, it is sufficiently strong to dissolve the oxide without drying out the pinch wheel. The staff at WMU-TV uses xylene on their video tape recorders, but in an emergency when a head clogs during playback they give it a shot of Freon TF* which loosens the clog without dissolving the oxide on the tape as xylene would do.

James R. Buchanan
Western Michigan University

*Freon TF is manufactured by the Tex-Wipe Company, Hillsdale, New Jersey.
NEW ANTENNA HANDBOOK
from W6SAI

Simple, Low-Cost Wire Antennas
by William I. Orr

By the author of the famous Cubical Quad and Beam Antenna Handbooks, this 192-page book describes over 40 horizontal, vertical, multiband trap and beam antennas for 2 thru 160 meters. Covers novice antennas, tuners, and ground systems.

An exciting value at only $1.95 ppd.

COMMERCIAL RADIO THEORY COURSE
by Martin Schwartz

Sufficient information to pass the FCC exam for the First Class Radiotelephone license and the Second Class Radiotelephone license. It is written in a simple, easy-to-understand manner. A complete radio theory course, starting at the beginning with basic electricity, and continuing up through radio transmission and reception. All the information required by the FCC Study Guides is covered in this course. There are 18 lessons, and at the conclusion of each, there are questions presented in the same manner as the FCC examination. The questions are of the multiple-choice type because the FCC uses this type of question on their examinations. It is actually a home study course — no other material is necessary. Approximately 400 pages. Only $5.95

COMMERCIAL RADIO OPERATOR'S QUESTION AND ANSWER LICENSE GUIDE, ELEMENT 1, 2 & 9
by Martin Schwartz
48 pages — 75¢

COMMERCIAL RADIO OPERATOR'S QUESTION AND ANSWER LICENSE GUIDE, ELEMENT 3
by Martin Schwartz
160 pages — $1.95

COMMERCIAL RADIO OPERATOR'S QUESTION AND ANSWER LICENSE GUIDE, ELEMENT 4
by Martin Schwartz
80 pages — $1.25

COPPER CLAD LAMINATES
G10 EPOXY GLASS
1 oz. Copper 1 Side

Pkg. Quan. 3/64" 1/16" 3/32" 1/8"
1 9x12" $1.50 $2.50 $3.50 $5.00
2 6x9" " " " "
4 4½x6" " " " "
6 3x4½" " " " "

This item postage prepaid.
Every order unconditionally guaranteed.

TRI RIO Electronics
2614 Lake Shore Dr. LaCrosse, 2, Wis. 54601
The crowd pleaser

Working portable is never more enjoyable than when you’re working with Yaesu’s incomparable FT-101. It's a 30-pound power package, with 260 watts PEP SSB, 180 watts CW and 80 watts AM input power. Plus 0.3 microvolts receiving sensitivity, with a 10 db signal-to-noise ratio.

The FT-101 includes a noise blanker. And built-in 117 VAC, 12 VDC power supplies. As well as built-in VOX, 25 KHz and 100 KHz calibrators, the WWV 10 MHz band and a high-Q permeability tuned RF stage. Plus a ±5 KHz clarifier.

The FT-101 is all solid-state, except for finals and driver. It's equally at home in your shack or on a mountain-top. Or on a Sunday afternoon outing.

We'll be glad to send you a detailed brochure on the FT-101. Or, for only $559.95, we'll send you the rig.

You’ll have a crowd pleaser on your hands. Including the crowd of hams out there who’ll copy you loud and clear.

Please send detailed information on all Yaesu products.

Please send model(s) ________

Name __________________________
Address _________________________
City ____________________________
State ______ Zip ______

All prices F.O.B. Signal Hill, Ca.
Master Charge and BankAmericard accepted. "H4"
A new easy-to-use transistor curve generator, known as the Model TCG-1, is now available from Caringella Electronics, Inc. This high performance instrument is designed for experimenters, hobbyists, schools, engineering labs and service shops. Transistors and other semiconductor devices can be tested in or out of circuit with this versatile new test instrument. The transistor curve generator is used with any oscilloscope, and displays the dynamic characteristics of both npn and pnp transistors, fets, mosfets and dual-gate mosfets, diodes, zener diodes, tunnel diodes and other devices.

The instrument incorporates all the circuits required to generate the base steps and collector sweeps. The collector sweep generator provides a ±10-volt saw-tooth, operating at a frequency of 550 Hz, for a flicker-free display. A fully regulated power supply, utilizing a ±15-volt IC regulator, and a solid-state LED panel indicator light, are also features of the solid-state design. Operation is simple and straightforward due to the minimum number of front panel controls. Several unique features highlight the Model TCG-1: direct transistor “beta” readout is provided on the front panel base-drive control, npn and pnp transistors can be tested consecutively without changing controls or switches and vertical and horizontal channels of the oscilloscope are calibrated simultaneously for accurate readings.

In addition to displaying the collector current versus collector voltage family of curves, the instrument also tests transistor “open base” and “shorted base” collector breakdown voltage. Two TO-5 transistor test sockets and a set of three binding posts are provided on the front panel and are selected by a 3-position lever switch.
Semiconductor devices can be compared or matched easily, and even unknown transistors types can be identified quickly. The versatile binding posts will accommodate external test leads or a variety of test fixtures for production testing. A set of three color-coded test leads is provided with each instrument.

The Model TCG-1 is available in kit form, complete with all parts, high quality glass-epoxy printed circuit board, wire, solder and step-by-step assembly instructions. Kit price is only $79.95 complete. Factory wired and tested units are only $99.95 complete. All shipments are F.O.B. Upland, California, and the kits and wired units are available for immediate delivery from stock.

A free data sheet, complete with technical specifications, schematic diagram and circuit description, is available on request. For further information contact: Caringella Electronics, Inc., Box 327, Upland, California 91786 or use check-off on page 110.

cricket keyer

Data Engineering has introduced a new small keyer with a built-in key, sidetone oscillator, speaker and ac power supply. The key features jam-proof spacing, self-completing dots and dashes, a heavy duty 300V, 1A relay, speed range from 3.5 to 50 wpm and a jack for powering the unit directly from 12 Vdc.

Ready-built and with Data Engineering's five-year guarantee, the unit sells for $49.94. For more information write to Data Engineering, Box 1245, Springfield, Virginia 22151 or use check-off on page 110.

uhf digital frequency scalers

A ten-fold increase in the range of many frequency counters is possible with the use of Belmont Spectrum Research frequency scalers.

Two Models are offered. The Model A includes a two-stage preamplifier and is the more sensitive. Typically, it requires inputs of less than 3 mV up to 100 MHz, 15 mV at 200 MHz, 45 mV at 250 MHz, 75 mV at 275 MHz and 120 mV at 300 MHz. Guaranteed to 280 MHz. $90 plus California sales tax and shipping charge of $1.50.

The Model B has no preamplifier and thus requires greater signal input. Typically, it requires 20 mV up to 100 MHz, 140 mV at 200 MHz, 260 mV at 250 MHz, 340 mV at 275 MHz and 800 mV at 300 MHz. Guaranteed to 260 MHz. $70 plus California sales tax and shipping charge of $1.50.

These scalers use Fairchild's 95H90, high-speed, ECL, MSI devices for the basic divide-by-ten function. Each model also uses Fairchild's 7805 regulator, thus assuring a highly reliable and constant 5.0-volt power supply. They were first introduced at the 1972 West Coast VHF/UHF conference in May.

For more information, contact Belmont Spectrum Research, 1709 Notre Dame Avenue, Belmont, California 94002, or use check-off on page 110.

proximity detectors and metal locators

Written in a comprehensive but easy-to-read style, the updated second edition of "How To Build Proximity Detectors and Metal Locators" by John Peter...
Shields, contains a reservoir of valuable information on the principles and circuits used in proximity detectors and metal locators. It also covers the closely related theremin, the source of many of the eerie sound effects heard on the radio, on television and in the movies.

This handy guide begins with a simple explanation on the basic types and functions of proximity detectors and metal locators, and elementary proximity detector and metal locator projects are given. Here any novice or experienced electronics enthusiast can learn how to build basic one or two stage circuits. Then the more complicated or advanced electronics projects containing additional stages or more complex circuitry are included. Examples of two advanced circuits analyzed are the Hall-effect metal detector and the fm-discriminator proximity detector.

These circuits are used for a wide variety of purposes including burglar alarms, touchswitches for activating lights and other electric devices, locators for finding pipes and studs in walls and floors and for locating lost metal objects such as coins, jewelry, keys and tools in the ground or under water. In addition, this edition has important facts on several new circuits, some of which utilize a modern development in solid-state components — the silicon triac thyristor.

Each circuit has been thoroughly tested and uses components that are available at most electronic parts distributors. Complete parts lists and illustrated assembly instructions are included for each project reviewed.

Students, technicians, hobbyists or anyone else interested in learning about or building proximity detectors and metal locators will enjoy this "do-it-yourself" book.

This 160-page softbound book is available from Comtec Books, Greenville, New Hampshire 03048 for $3.95.
J. Waters. This new edition is an easy-to-grasp, but comprehensive introduction to the broad field of electronics. The author avoids complicated technical concepts and mathematical terms as much as possible and relies on simple language and analogies familiar to everyone.

The text presents a detailed analysis of the principles of electricity, functions of atoms and electrons, magnetism and solid-state physics. Individual chapters are devoted to electrical resistance, capacitance and inductance. The remainder of the book deals with alternating currents, circuit impedances, electromagnetic radiation, vacuum tubes, transistors, integrated circuits, radio wave production and propagations and the various electro-mechanical devices.

Each chapter concludes with a number of review questions; the corresponding answers are located in an appendix. The appendices also contain valuable reference data on electronic standards, mathematical formulas and color codes of resistors and capacitors.

The new edition is a reservoir of knowledge supplemented by many illustrations; it was written to keep up with the rapidly changing field of electronics.

crystal filter

Housed entirely in a standard HC-6/U can, the new SM 107S04 crystal filter offers a four-pole crystal filter centered on 10.7 MHz. The new unit features a minimum ±7 kHz bandwidth at -40 dB, ±12 kHz maximum bandwidth at -40 dB and a maximum 3 dB insertion loss. Maximum ripple is 1 dB, ultimate attenuation is 60 dB minimum. The attractive packaging of the filter uses one of the pigtail leads for input, one for output and the case is grounded. Units are available from stock postpaid for $15.95. More information is available from Spectrum International, Box 87, Topsfield, Massachusetts 01983 or by using check-off on page 110.

BRAND NEW FREQ-SHIFT TTY MONITOR:

NAVY OCT-3; FM Receiver type, freq. range 1 to 26 MHz in 4 bands, cont. tuning. Crystal calib. Reads up to 1500 Hz deviation on built-in VTVM. Cost $1100.00 each! In original box, with instruc. book & cord, fob Mariposa, Calif. Min. signal needed: 15 mv. Shpg wt 110 lbs. 49.50

HIGH-SENSITIVITY WIDE-BAND RECEIVER

COMMUNICATIONS + BUG DETECTION

SPECTRUM STUDIES

38,1000 MHZ AM/ALR-5: Consists of brand new tuner/converter CV-253/ALR in original factory pack and an exc. used, checked OK & grid main receiver R-444 modified for 120 v. 50/60 Hz. The tuner covers the range in 4 bands; each band has its own Type N Ant. Input. Packaged with each tuner is the factory inspector's checkout sheet. The one we opened showed SENSITIVITY: 1.1 kv at 38.4 mhz, 0.9 at 133 mhz, 5 at 538 mhz, 4½ at 778 mhz, 7 at 1 ghz. The receiver is actually a 30 mhz IF ampl. with all that follows, including a diode meter for relative signal strengths; an atten. Calibrated in 6 db steps to -= 74 db, followed by an AVC position; Pan., Video & AF outputs; switch select pass of ±200 kHz or ±2 mhz and SELECT AM or FM! With Handbook & pur. input plug, all only CV-253 Converter only, good used, w/book. 99.50. We have SP-600-JX, R390, WRR-2 Receivers. Ask!

REGUL. PWR SPLT FOR COMMAND, LM, ETC.

PP-106/U: Metered. Knob-adjustable 90-270 v up to 80 ma dc; also select an AC of 6.3 v 5A, or 12.6 v 2½ A or 28 v 2½ A. With mating output plug & all tech. data. Shpg wt. 60 lbs. 19.50

BARGAINS WHICH THE ABOVE WILL POWER:

LM(-6°) Freq. Meter: 125—20 MHz, .01%, CW or AM, with serial—matched calib. book, tech. data, mating plug. Shipping wt. 16 lbs. 37.50

TS-323 Freq. Meter: 20—480 MHz .001%, 49.50

RZ3A/ARC5 Command ALR-5: 190-350 MHz, exc. cond. 16.95

A.R.C. R15 (MIL R-909) Command, 108-135 MHz, new 17.50

NEMS-CLARKE #3670 FM Revr 55-250 MHz

like new. 275.00

WWV Rev/Comparator 2½—20 MHz w/scope. 250.00

Empire Devices NF-114 RFI meter is a red-hot receiver from 150 KH to 80 MHz. 295.00

Attention! Buyers, Engineers, Advanced Technicians: We have the best test-equipment & oscilloscope inventory in the country so ask for your needs. We also buy, so tell us what you have. Price it.

R. E. GOODHEART CO. INC.
Box 1220-HR, Beverly Hills, Calif. 90213
Phone: Area Code 213, Office 272-5707

FM Schematic Digest

COLLECTION OF MOTOROLA SCHEMATICS

Alignment, Crystal, and Technical Notes covering 1947-1960

136 pages 11½ x 17½ ppd $6.50

S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173

More Details? CHECK—OFF Page 110
Hallicrafters catalog

The Hallicrafters Company has issued a four-page, well-illustrated, short-form catalog “You should be talking with a Hallicrafters.” It features the company’s entire line of shortwave receivers and amateur radio equipment.

Designed for both the beginner and the experienced amateur, the easy-to-read catalog gives the major features of the SR-2000 “Hurricane” transceiver, HA-20 remote vfo/swr console, HA-1A T.O. keyer, SR-400A “Cyclone III” transceiver plus the entire line of accessory equipment.

Also featured in the catalog are the company’s SX-122A communications receiver and the SX-133 high-performance receiver. The latest addition to the Hallicrafters line, the FPM-300 solid-state hf ssb/CW transceiver, is also included in the catalog as well as in a separate data sheet.

For a copy of “You should be talking with a Hallicrafters” or the FPM-300 data sheet, write The Hallicrafters Company, Department PR-300, 600 Hicks Road, Rolling Meadows, Illinois 60008 or use check-off on page 110.

iambic keyer

An iambic keyer with many new convenience features has been announced by Curtis Electro Devices. The EK-404 is an offshoot of the EK-402 programmable keyer introduced about a year ago and employs the same styling and features with the exception of the message memory.

Standard features in the EK-404 in-
include jam-proof dots, dashes and spaces; iambic or standard operation; dot memory; variable weighting; tune switch; built-in sidetone and speaker; a self-contained 115-Vac power supply and complete rf immunity. New features include a connection for 12-Vdc mobile or portable operation, front panel control of sidetone pitch, a self-test mode, two sidetone outputs (Hi-Z, Lo-Z) and provision for either grid block and cathode keyed or solid state rigs. A manual key jack is also provided.

Price of the EK-404 is $124.95 complete with all cables and connectors. It is available direct from the factory or from dealers. For further information write Curtis Electro Devices, Box 4090, Mountain View, California 94040 or use check-off on page 110.

universal key driver

A new hand tool for driving L-keys has been introduced by Jensen Tools and Alloys. Known as the GLA Universal Key Driver, this new tool will be found particularly useful to anyone who uses special screws in his hobby or vocation.

The GLA tool is a common sense, high-torque driver for any type of English or metric screw key up to 0.217 inch (5.5 mm). It accommodates hex (Allen), spline (Bristol), clutch-head, Scrulox, cross recessed (Phillips), Reed and Prince, or any other type of L-key within its dimensional capability. The key is simply slipped into one of nine different bushings (any one which clears), the bushing is slid into the handle and the tool is ready for use. There are no set screws to tighten and no broached holes or plastic to strip or break.
Torque is tremendously increased over that of conventional driver designs, being limited only by the ultimate strength of the key being driven (over 30 foot-pounds). The tool may be used as a "T" driver by applying the short arm of the key to the screw and rotating the handle in propeller fashion instead of axially. Also, a socket wrench can be applied to the handle hex, to obtain any desired reach. The GLA tool is 5 inches long by 3/4-inch hex and is made of hard aluminum. Standard O-rings keep the bushings in place. Bushings have graded hole sizes to accept all keys of any cross section type, up through 3/16-inch hex.

A twenty-piece set is offered which includes the basic GLA tool, nine bushings, a nine-piece hex-key set including all sizes from 0.050 to 3/16 inch and a wooden box. The wood box serves as an island stand. The set sells for $14.25 postpaid. For further information, contact Jensen Tools and Alloys, 4117 North 44th Street, Phoenix, Arizona 85018 or use check-off on page 110.

HEP data sheets

Engineering and design data sheets are now available for many Motorola HEP semiconductor products. These descriptive sheets contain complete and comprehensive information on the specified devices including design curves, rating charts and application schematics. A Motorola spokesman explained, "We believe that we are the only manufacturer specializing in this type of sales, to make information this comprehensive available to the hobbyist and radio amateur. These data sheets will help eliminate guesswork and 'make do' applications."

Copies of the data sheets and additional information are available from HEP representatives throughout the country. HEP is Motorola's sales program for making semiconductor devices readily available to the hobbyist-experimenter and to professional service dealers through a nationwide network of authorized suppliers. Motorola HEP Semiconductors, Box 20924, Phoenix, Arizona 85001.
breadboards

EL Instruments has a very comprehensive line of electronic breadboards, semiconductors and experimental power supplies. Features of the electronic breadboards include solderless connections and adaptability to all standard electronic components including direct plug-in of DIP ICs. Interconnections are made either by internal ties or externally with ordinary hookup wire — no special cords are needed. The units are completely reusable and the nickel-silver contacts are designed for over 10,000 component insertions.

Boards come in many different forms including plug-in boards for card racks, a standard screw-mounted plain breadboard and a number of deluxe breadboxes which include boards and cabinets for more complex or more permanent circuits.

The complete catalog gives more details on all these units and on other experimenter’s supplies. The catalog is free from EL Instruments, Inc., 61 First Street, Derby, Connecticut 06418 or by using check-off on page 110.

antenna catalog

A comprehensive, new 96-page general catalog listing over 250 models of professional communications antennas has been released by The Antenna Specialists Company. Complete mechanical and electrical specifications and radiation patterns are provided, along with full details of mounting options. The catalog covers full lines for all land-mobile antennas, plus selected base and mobile antennas for professional monitoring, marine, avionics and CB.

Of particular interest to amateurs, there is plenty of general information on transmission line characteristics, side-mounting patterns and element cutting charts. The catalog is available on request to Professional Communications Department, The Antenna Specialists Company, 12435 Euclid Avenue, Cleveland, Ohio 44106 or by using check-off on page 110.
Atmospheric Probe

Tri-Ex Tower Corporation has completed field tests on their new 205 foot XM-205 "Atmospheric-Probe" crank-up tower. This new tower has been under development for several months and was designed, engineered and manufactured by Tri-Ex.

The three lower sections of the new tower are X braced and the upper five sections are M braced. The tower has a total standing weight of 2500 pounds. At the start of erection, the tower stands 40feet high with a triangular base of 27½ inches and reaches a 205-foot full erection height with 9¾ inch triangular top section.

The new "Atmospheric-Probe" tower features "safety lock fixtures" at every one of the seven levels and is raised approximately three feet per minute by a self-contained motorized winch.

This tower's stiffness and strength is enhanced by the use of a generous five-foot overlap between sections. The tower is progressively guyed, as the sections extend upwards.

This tower, to date, is the largest and tallest crank-up tower manufactured by Tri-Ex. Other models in the XM series...
will soon be available.

Complete information is available by contacting Tri-Ex Tower Corporation, 7182 Rasmussen Avenue, Visalia, California 93277 or by using check-off on page 110.

scr manual

General Electric has produced a new fifth edition of its "SCR Manual." This latest edition, issued on the fifteenth anniversary of General Electric's invention of the SCR, consists of over 75% new text and covers SCRs, TRIACs, unijunctions and triggers.

An idea of the comprehensiveness of this new book can be gathered from this list of the major chapters: Construction and Basic Theory of Operation; Symbols and Terminology; Ratings and Characteristics of Thyristors; Gate Trigger Characteristics, Ratings and Methods; Dynamic Characteristics of SCRs; Series and Parallel Operation; The Triac; Static Switching Circuits; AC Phase Control; Motor Control Employing Phase Control; Zero Voltage Switching; Choppers, Inverters and Cycloconverters; Solid State Temperature and Air Conditioning Control; Light Activated Thyristor Applications; Protecting the Thyristor Against Overloads and Faults; Voltage Transients in Thyristor Circuits; Radio Frequency Interference and Interaction of Thyristors; Mounting and Cooling the Power Semiconductor; SCR Reliability; Test Circuits for Thyristors; Selecting the Proper Thyristor and Checking the Completed Circuit Design. There is a final chapter on garnering specific device application notes.

Copies of the book can be obtained from any authorized General Electric Component distributor or by sending $3.00 plus applicable tax to General Electric Company, SCR Manual, Department B, 3600 North Milwaukee Avenue, Chicago, Illinois 60641.

700X-2 KW WATTMETER

Dummy Load Wattmeter for 52 Ohm Input. Measures RF in 4 ranges to 1000 watts. Measures modulation percentage on calibrated scale. Portable. $124.50

900X-2 WATTMETER

Measures RF in 2 ranges 25 and 250 watts. 52 Ohm input. $29.95

Available at Your Favorite Distributors

"LITTLE GIANT" VACATION OR OCCASIONAL MINIATURE ANTENNA. Measures 27" High. 22" Wide, 4" Thick! 7 MC Antenna! 40 meters! Ideal for apartment, motel, hotel, travel use. 1972 production if demand warrants

“VILLAGE-TWIG”

APOLLO PRODUCTS

P. O. BOX 245

VAUGHNSVILLE, OHIO 45893

WANTED WANTED

When you want an authoritative, up to date, complete reference
It's the CALLBOOK and you know it

The U.S. and DX Editions lists licensed radio amateurs throughout the world plus many other valuable features including maps, charts & tables all designed to make your operating more efficient and more fun.

PLUS
New this year!
A special subscription service of one basic CALLBOOK plus three service editions, one issued every three months to keep you completely up-to-date for less than half of the cost of purchasing four complete CALLBOOKS as before. You save money — you stay better informed.

Over 285,000 QTH's in the U.S. edition Complete for 1972 U.S. CALLBOOK subscription
just $14.95

U.S. CALLBOOK for 1972 (less service editions)
$8.95

Over 180,000 QTH's in the DX edition Complete for 1972 DX CALLBOOK subscription
just $11.45

DX CALLBOOK for 1972 (less service editions)
$6.95

See your favorite dealer or Send today to
(Mail orders add 25¢ per CALLBOOK for postage and handling)

new HEP catalog

Approximately 38,000 semiconductor devices are cross-referenced to HEP replacements in the new 1972 Motorola HEP Semiconductor Cross-Reference Guide and Catalog. Included in the catalog are 1N, 2N, 3N, JEDEC, manufacturers' regular and special house numbers as well as many international devices, with particular emphasis on Japanese types.

A total of 467 different HEP items are included in this guide, including hardware, accessories, technical manuals and hobby project books. As in previous editions, the Motorola HEP devices are listed by type number with a packaging index, device dimension drawings and selection guide information.

This cross-reference guide and catalog is available free at local Motorola HEP suppliers throughout the country. It should be of particular interest to the electronic hobbyist and radio experimenter since it gives the minimum/maximum ratings and the electrical characteristics for the HEP devices as well as cross-reference information.

W9IOP's second op

The new, 6th edition of W9IOP's famous and useful Second Op is available now. This 10½-inch circular operating aid is covered with up-to-date information for the active DXer. The user sets the pointer to the call-letter prefix, and the Second Op displays the country name, WAZ zone number, continent and great circle beam headings from four different United States population centers. Also shown is the local-time to local-time conversion factor between the DX location and three United States time zones. Postage information for letters and QSL cards by air and sea mail along with the number of International Reply Coupons necessary for an airmail letter reply is also displayed. There are two boxes next to every prefix for recording the prefix worked and the prefix confirmed. Printed on the Second Op are complete instructions for its use and a list of North
American and worldwide QSL bureaus.

Previous editions of the Second Op have earned it a reputation as a valuable operating aid to identify, work and QSL DX stations. The operating aid is printed in three colors on sturdy card stock. Produced by Publications in Electronics, it is available for $2.00 from Comtec Books, Greenville, New Hampshire 03048.

pocket receiver

Old ideas seem to come back in many new forms. Induction wireless has reappeared in the Lowcom Systems wireless induction pocket receiver. The receiver, a tiny and attractively packaged unit, is designed to allow you to monitor a receiver, audio system, radio or TV without being confined to the immediate vicinity of the unit. The audio output of the receiver (or other system) is fed into a wire induction system. The pocket-sized receiver is inductively coupled to this output loop and feeds its output through an amplifier to a personal earpiece. This system allows complete freedom of movement while monitoring a receiver without bothering anyone else with a blaring speaker.

This particular system is patented, confirming one's suspicion that this particular little device is a spin-off of Lowcom's industrial paging and audio distribution systems. The unit is attractively packaged and comes with a brass plate neatly engraved with your call letters. For those who can remember experimenting with large coils of wire, dry cells and old telephone microphones; it is quite a sight to see some of the old schemes existing in this modern, tiny, commercial box.

The unit sells for $24.95, postpaid with batteries, case, earphone, installation instructions and engraved call plate. Quantity discounts are available.

For more information write to Lowcom Systems, Inc., 10727 Indian Head Industrial Boulevard, Saint Louis, Missouri 63132 or use check-off on page 110.

VHF-FM HEADQUARTERS FOR SOUTH FLORIDA

Modify your Gladding 25 with our Coincidence Detector

- True FM Detector
- Improved Sensitivity
- Improved IF Gain
- Superior Squelch Action
- Install in just a few minutes

Complete G-10 epoxy board wired and aligned ready to install.

1 year warranty

$19.95 ppd USA

WE FEATURE THE COMPLETE LINE OF STANDARD AMATEUR FM EQUIPMENT

ALSO IN STOCK

REGENCY, CUSHCRAFT, HY-GAIN

DIGIPET 160 Frequency Counter

1000 Hz - 160 MHz

.05 microvolt sensitivity

$349.95 ppd USA

EMPIREUM SOUNDS OF POMPANO

51 North Federal Highway
Pompano Beach, Florida 33060
For the most powerful antennas under the sun

Go all the way into
the REPEATER

There's nothing half-way about the new Hy-Gain REPEATER LINE. Designed for the man who demands professional standards in 2 meter mobile equipment, the REPEATER LINE is the 2 meter HAM's dream come true. It's got everything you need for top performance... toughness, efficiency and the muscle to gain access to distant repeaters with ease. Reaches more stations, fixed or mobile, direct, without a repeater.

The right antennas for the new FM transceivers...or any 2 meter mobile rig.

Rugged, high riding mobiles. Ready to go where you go, take what you dish out...and deliver every bit of performance your rig is capable of.

261 Commercial duty 1/4 wave, claw mounted roof top whip. Precision tunable to any discrete frequency 108 thru 470 MHz. Complete with 18' of coax and connector. 17-7 ph stainless steel whip.

260 Same as above. Furnished without coax.

262 Rugged, magnetic mount whip. 108 thru 470 MHz. Great for temporary or semi-permanent no-hole installation. Holds secure to 100 mph. Complete with coax and connector. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip.

263 Special no-hole trunk lip mount. 3 db gain. 130 thru 174 MHz. 5/8 wave. Complete with 16' coax. Operates at DC ground. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip.

264 High efficiency, vertically polarized omnidirectional roof top whip. 3 db gain. Perfect 52 ohm match provided by base matching coil with DC ground. Coax and connector furnished.

265 Special magnetic mount. 3 db gain. Performance equal to permanent mounts. Holds at 90 mph plus. 12' of coax and connector. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip. DC ground.

269 Rugged, durable, continuously loaded flexible VHF antenna for portables and walkie talkies. Completely insulated with special vinyl coating. Bends at all angles without breaking or cracking finish. Cannot be accidentally shorted out. Furnished with 5/16-32 base. Fits Motorola HT; Johnson; RCA Personalfone; Federal Sign & Signal; and certain KAAR, Aerotron, Comco and Repco units.

More Details? CHECK-OFF Page 110
2 meter mobile! with

Top performance for 2 meter mobiles
THE REPEATER LINE
from
HY-GAIN ELECTRONICS CORPORATION
BOX 5407 WJ LINCOLN, NEBRASKA 68505
WRITE FOR DETAILS
For the most powerful antennas under the sun

NEW REPEATER

2 Meter Fixed Station

Designed for the man who demands professional standards in 2 meter equipment. REPEATER LINE fixed station antennas are the 2 meter HAM’s dream come true. With everything you need for top fixed station performance...toughness, efficiency and the gain to gain access to distant repeaters with ease. Work many stations, fixed or mobile, without access to a repeater.

The right antennas for the new FM transceivers...or any 2 meter fixed station.

REPEATER LINE Fixed Station Antennas

Tough, high efficiency antennas with a long, low radiation. For the top signal and reception you want...and the top performance your transceiver's ready to deliver.

267 Standard 1/4 wave ground plane. May be precision tuned to any discrete frequency between 108 and 450 MHz. Takes maximum legal power. Accepts PL-259. Constructed of heavy gauge seamless aluminum tubing.

268 For repeater use. Special stacked 4 dipole configuration. 9.5 db offset gain. 6.1 db omnidirectional gain. Heavy wall commercial type construction. 144 thru 174 MHz. 1.5:1 VSWR over 15 MHz bandwidth eliminates field tuning. Extreme bandwidth great for repeater use. Center fed for best low angle radiation. DC ground. Complete with plated steel mounting clamps.

338 Colinear ground plane. 3.4 db gain omnidirectionally. Vertically polarized. 52 ohm match. Radiator of seamless aluminum tubing; radials of solid aluminum rod. VSWR less than 1.5:1. All steel parts iridite treated. Accepts PL-259.

362 SJ2S4 high performance all-driven stacked array. 4 vertically polarized dipoles. 6.2 omnidirectional gain. 52 ohm. May be mounted on mast or roof saddle. Unique phasing and matching harness for perfect parallel phase relationship. Center fed. Broad band response. DC ground.

84 october 1972 More Details? CHECK-OFF Page 110
WRITE FOR DETAILS
For top fixed station performance on 2 meters...
THE REPEATER LINE
From
HY-GAIN ELECTRONICS CORPORATION
BOX 5407 WJ LINCOLN, NEBRASKA 68506
CRYSTAL FILTERS and
DISCRIMINATORS
1 27/64" x 1 3/64" x 3/4"

10.7 MHz FILTERS
XF107-A 14kHz NBFM $34.75
XF107-B 16kHz NBFM $33.25
XF107-C 32kHz WBFM $34.75
XF107-D 38kHz WBFM $33.25
XM107-S04 14kHz NBFM $15.95

CRystal SOCKET (for XM107-S04) $1.50

10.7 MHz DISCRIMINATORS
XD107-01 30kHz NBFM $18.35
XD107-02 50kHz WBFM $17.55

VHF CONVERTERS UHF
RF Freq. (MHz) N.F. (typical) Nom. Gain Price
MM 50 50-52 2.5dB 30dB $49.95
MM 144 144-146 2.8dB 30dB $49.95
MM 220 220-222 3.4dB 30dB $54.95
MM 432 432-434 3.8dB 30dB $59.95
MM 1296 COMING SOON

SPECTRUM INTERNATIONAL
BOX 1084 CONCORD MASSACHUSETTS 01742

New
3 Digit Counter

The model fm-36 3-digit frequency meter has the same features that has made the 2 digit model so popular with Hams — low price, small size (smaller than a QSL card). 35 MHz top frequency, simple connection to your transmitter, +0 — 0.1 KHz readout — PLUS the added convenience of a third digit to provide a 6 digit capability. Kit or Assembled.

Example: 28,649,800 Hz reads 28.6 MHz or 45.8 KHz. (Add the 10 Hz module to read 5.80.)

FM-36 KIT $134.50

NEW
300 MHz PRESCALER only $45.00
with fm-36 order

Micro-Z Co.
Box 2426 Rolling Hills, Calif. 90274

INDEX
VHF CONVERTERS UHF
RF Freq. (MHz) N.F. (typical) Nom. Gain Price
MM 50 50-52 2.5dB 30dB $49.95
MM 144 144-146 2.8dB 30dB $49.95
MM 220 220-222 3.4dB 30dB $54.95
MM 432 432-434 3.8dB 30dB $59.95
MM 1296 COMING SOON

SPECTRUM INTERNATIONAL
BOX 1084 CONCORD MASSACHUSETTS 01742

Radio Amateurs Reference Library of Maps and Atlas

WORLD PREFIX MAP — Full color. 40" x 28". shows prefixes on each country — DX zones, time zones, cities, cross referenced tables. postpaid $1.25

WORLD ATLAS — Only atlas compiled for radio amateurs. Packed with world wide information — includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus informative information on each of the 50 United States and other Countries. postpaid $1.25

WORLD ATLAS — Only atlas compiled for radio amateurs. Packed with world wide information — includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus informative information on each of the 50 United States and other Countries. postpaid $1.25

See your favorite dealer or order direct.

WRITE FOR FREE BROCHURE!

RADIO AMATEUR Callbook INC
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044
MEMORY-MATIC 8000 DELUXE Capacity for 8000 bits in 8 Read/Write Pluggable Memories. Each memory can store either a single message or a number of sequential messages. Near-full and Overload alarms, "Message Stop" for char. insertion, "Full Control" weight ratio, message interrupt switch, var. trans. delay, 115/220 VAC, 50/60 Hz, Incl. SM-21B and MST-60 features. Sh. wt. 8 lbs. $398.50 (Incl. 3-500 and 1-1000 bit memories.)

Additional Memories 500 bit $21.50
1000 bit $37.50

MEMORY-MATIC 500-B 500 or 800 bit R/W memory. Stores either a single message or a number of sequential messages. "Message Stop" for char. insertion, Near-full and Overload alarms, remote control for Stop/Start of message. Incl. SM-21B features. Sh. wt. 4 lbs. $198.50 (500-bit memory) $219.50 (800-bit memory)

SPACE-MATIC 21-B This SWITCHABLE keyer gives you "eight-keyers-in-one!". Rear switches can delete dot or dash memories or char./word spacing. Instant start, self-completing dots, dashes and char./word spacing, Adj. weighting, sidetone/speaker, dot-dash memories lami, 115 VAC or 12 VDC (SM-21B only.) Sh. wt. 4 lbs. $89.50

CRICKET 1 The "feature-packed" moderately-priced keyer! Keyed time base, jam-proof spacing, sidetone/speaker. Rear controls for weight, speed, volume, tone, auto-semi-auto., tune, 115 VAC or 12 VDC. Sh. wt. 3 lbs. $49.95

VHF FREQUENCY STANDARD — FMS-5 Cal. receive and transmit crystals in 10, 6, 2 and 1 1/4 meter FM bands. Markers for all FM channels. Check deviation. Precision 12 MHz crystal. No unwanted markers. Osc. and output buffered. Sh. wt. 2 lbs. $44.50 (Less Batteries)

METEORIC SCATTER TIMER — MST-60 Precision timer for meteoric scatter communications. 60 Hz time base provides 15, 20, 30, and 60 second output. Synchronized to WWV. Automatic and manual outputs. Sh. wt. 2 lbs. $49.50

ELECTRONIC FEATHER TOUCH KEY A completely solid-state key. Detects mere touch of finger. Use as single or twin lever key. Operates with all positive or negative ground digital keyers. Sh. wt. 2 lbs. $22.95 $27.95 (Remote S/S Swts. for MM-500B and MM-8000)

HF FREQUENCY STANDARD — FMS-3 Markers at 5, 10, 25, 50, 100, 200 and 400 kHz. 400 kHz crystal. No unwanted markers. Latest low-power ICs. Osc. and output buffered. Sh. wt. 2 lbs. $32.95 (Less Batteries)

2-METER PREAMP 20 dB Gain, 2.5 N.F., 12 VDC. Size 1 1/4 x 2 1/4 x 1/2. Diode protected MOS-FET. 90-day guarantee, Sh. wt. 4 oz. $9.50 Kit $12.50 Wired Option for 150-250 VDC Operation $2.95

BROADBAND PREAMP 1-30 MHz, 36 dB gain dropping to 19 dB at 30 MHz. 3 dB Max. N.F. 12 VDC, metal case with mounting lugs. 2 x 1 1/4 x 1 1/4. 90-day guarantee. Sh. wt. 6 oz. $17.95

SEND FOR CATALOG 5-YEAR GUARANTEES

DATA ENGINEERING, INC., 5554 Port Royal Road
Ravensworth Industrial Park, Springfield, Va. 22151

More Details? CHECK-OFF Page 110
Incomparable

Features:

- RELIABILITY IS NOW standard equipment. Every CX7A “burnt-in” and cycled more than 96 hours.
- QUALITY-PLUS. Every component is instrument grade, American-made, and individually tested.
- ALL MODES 10 thru 160 meters in full 1 MHZ bands with overlaps.
- BROAD-BAND TUNING. Instant band changes without tuning.
- TRUE BREAK-IN CW with T/R switching.
- IF SHIFT — deluxe QRM slicer.
- PRE-IF NOISE-BLANKER that really works.
- RF ENVELOPE CLIPPING — sounds like a Kw.
- TWO VFO’S. Transceiver Plus receiver.
- BUILT-IN: Spotter. FSK shift, transmit offset, wattmeter SWR meter, electronic CW Keyer.

If you want to move up to the BEST, give DON PAYNE, K41D, a call for personalized service, a brochure, and a KING-SIZE trade-in on any gear you have — one piece — or the whole station.

PAYNE RADIO
Box 525
Springfield, Tenn. 37172

Six Days
(615) 384-5573
Nites - Sundays
(615) 384-5643

<table>
<thead>
<tr>
<th>Specifications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSITIVITY: Better than 10db signal-plus-noise-to-noise ratio for .25 microvolts at 28MHZ.</td>
</tr>
<tr>
<td>SELECTIVITY: 2.4 KHz @ -6db 1.8:1 (6:60db) shape factor. (16 pole crystal lattice filters) optional: CW-400 and 250 HZ. FSK-1200 HZ.</td>
</tr>
<tr>
<td>CARRIER and unwanted sideband suppression: Minimum 60db.</td>
</tr>
<tr>
<td>IMAGE and IF REJECTION: more than 60db.</td>
</tr>
<tr>
<td>POWER LEVEL: 300 to 500 watts p.e.p. plus, continuous duty cycle.</td>
</tr>
<tr>
<td>POWER AMPLIFIER: 8072 final completely broadband driver and final. 150 watt continuous dissipation rating.</td>
</tr>
</tbody>
</table>

CLEARANCE SALE
30% OFF ON ALL USED EQUIPMENT IN STOCK
Large Selection — Send For Free List:
FRECK RADIO & SUPPLY CO. INC.
38 BILTMORE AVENUE
ASHEVILLE, N. C. 28801
704-254-9551

GOVERNMENT SURPLUS ELECTRONICS
R-388/URR RADIO RECEIVER — 550 KC to 30.5 MHz; 30 Bands — Used, Serviceable: $375.; Checked: $400.
AN/URM-32 FREQUENCY METER — 125 KC to 1000 MC in 3 Ranges — Used, Serviceable: $150.; Checked: $175.00
FR-4/U FREQUENCY METER — 100 kHz to 20 kHz. — Used, Serviceable: $85.00; Checked: $110.00.
FR-5/U FREQUENCY METER — 10 MHz to 100 MHz. — Used, Serviceable: $80.00; Checked: $105.00.
FR-6/U FREQUENCY METER — 100 kHz to 500 kHz. — Used, Serviceable: $80.00; Checked: $105.00.
With 5258 Plug-In for 100-220 MHz. Extra: $50.00
All Prices F.O.B. Lima, O. — Dept. HR — SEND FOR BIG NEW CATALOG

FAIR RADIO SALES
P. O. Box 1105 · LIMA, OHIO · 45802

More Details? CHECK-OFF Page 110
CW or RTTY, whichever way you go,

HAL HAS TOP QUALITY YOU CAN AFFORD!

TOP QUALITY RTTY...WITH THE HAL MAINLINE ST-6 TU. Only 7 HAL circuit boards (drilled G10 glass) for all features, plug-in IC sockets, and custom Thordarson transformer for both supplies, 115/230 V, 50-60 Hz. Kit without cabinet, only $135.00; screened, punched cabinet with pre-drilled connector rails, $35.00; boards and complete manual, $19.50; wired and tested units, only $280.00 (with AK-1, $320.00).*

OTHER HAL PRODUCTS INCLUDE:
- ID-1 Repeater Identifier (wired circuit board) ... $75.00*
- ID-1 (completely assembled in 1½" rack) ... $115.00*
- HAL ARRL FM Transmitter Kit ... $50.00*
- W3FPG SSTV Converter Kit ... $55.00*
- Mainline ST-5 TU Kit ... $50.00*
- Mainline AK-1 AFSK Kit ... $27.50*

NEW FROM HAL—TOP QUALITY RVD-1002 RTTY VIDEO DISPLAY UNIT. Revolutionary approach to amateur RTTY...provides visual display of received RTTY signal from any TU, at four speeds (60, 66, 75, and 100 WPM), using a TV receiver modified for video monitoring. Panasonic solid-state TV receiver/monitor, or monitor only, available. Complete, $526.00; Panasonic TV receiver/monitor, $180.00; monitor only, $140.00.*

TOP QUALITY...WITH THE HAL 1550 ELECTRONIC KEYER. Designed for easy operation; perfectly timed CW with optional automatic ID for sending call letters, great for DX and RTTY; TTL circuitry, transistor switching for grid block, cathode keying. Handsome rugged crackle cabinet with brushed aluminum panel. With ID, only $90.00; without ID, $65.00.*

TOP QUALITY...WITH THE HAL MKB-1 MORS KEYBOARD. As easy as typing a letter—you get automatic CW with variable speed and weight, internal audio oscillator with volume and tone controls, internal speaker, and audio output jack. Smooth operation; completely solid-state, TTL circuitry using G10 glass boards, regulated power supplies, and high voltage transistor switch. Optional automatic ID available. Assembled MKB-1, $275.00; in kit form, $175.00.*

TOP QUALITY...WITH THE HAL RKB-1 TTY KEYBOARD. Gives you typewriter-easy operation with automatic letter/number shift at four speeds (60, 66, 75, and 100 WPM). Use with RVD-1002 video display system, or insert in loop of any teleprinter, for fast and easy RTTY. Completely solid state, TTL circuitry using G10 glass boards, regulated power supplies, and translator loop switch. Optional automatic ID available. RKB-1 assembled, only $275.00.*

HAL provides a complete line of components, semi-conductors, and IC's to fill practically any construction need. Send 24¢ to cover postage for catalog with info and photos on all HAL products available.

*Above prices do not include shipping costs. Please add 75¢ on parts orders, $2.00 on larger kits. Shipping via UPS whenever possible; therefore, street address required.

HAL COMMUNICATIONS CORP., Box 365 H, Urbana, Illinois 61801

More Details? CHECK-OFF Page 110

October 1972
FM TRANSCEIVER under $100.00

Easily assembled solid state modules for VHF-FM construction. Kits include predrilled and etched 1/10 circuit boards. The four receiver modules measure 1 1/2 x 4 inches, transmitter module 2 x 6 inches.

- RF-144, RF-220
A high gain low noise front end using dual gate Zener protected mosfets. Sensitivity better than .5 microvolts. Over 40 db gain with 55 db image rejection. (Slightly less at 220). Makes an excellent converter with the addition of an output coil.

- IF-10.7
A 10.7 MHz IF amplifier and 455 kHz converter using two IC's. Double tuned 10.7 IF cans, insure excellent image rejection. Over all gain is better than 50 db. Second oscillator crystal controlled. (Crystal supplied)

- FM-455
A 455 kHz IF amplifier, limiter, FM detector, and audio preamplifier using two IC's. Double IF cans insure a sharp IF response. Limiting starts at 20 microvolts and a 5 kHz deviation signal will provide over one volt output.

- AS-1
An audio amplifier and squelch using two IC's. An input of .1 volt will drive a 4-8 ohm speaker to one watt. The noise operative squelch circuit provides a gating voltage for the FM-455 board.

- TX-144 or 220
144 or 220 MHz transmitter with better than one watt output on 12.6 volts. Audio limiting, active filter, and adjustable deviation to 10 kHz. Contains one IC and four transistors, seven tuned circuits for clean output.

Complete receiver parts kit including drilled and etched circuit board $59.95. Complete transmitter kit $39.95. Ten watt power amplifier kit $29.95. Prices do not include crystals. 146.34, 146.52, 146.94, 220.98, or 224.98 receive or transmit crystals $4.00 each.

Kits shipped within twenty-four hours. Wired and tested units allow two to three weeks delivery.

VHF ENGINEERING — W2EDN
1017 CHENANGO STREET
BINGHAMTON, NEW YORK 13901

Just About EVERYONE WILL BE THERE!
* 1972 ARRL Hudson Division Convention
October 21-22

The Hudson Amateur Radio Council cordially invites you to enjoy two full days of exciting events that feature virtually every interest and specialty in amateur radio. Special program for YLs and XYLs, too.

Exhibits, lectures, demonstrations, contests, prizes, banquet, New York sightseeing, fun. All at the Hilton Motor Inn, Tarrytown, N. Y., located on the scenic and historic Hudson River.

- ARRL Hq. Speakers
- MARS — DX — VHF Sessions
- Wouff Hong — SWOOP — Initiations
- Spectacular Banquet • Prominent Speaker
- Contests and Prize Drawings
- 2 Meter FM • RTTY
- Many Other Special Events

Advance registration: Checks or money orders to Dave Popkin, W2CCF
303 Tully Road, Englewood, N. J. 07631
Advance registration includes Free Gift.
Registration $3.00; — Banquet, Advance, $10.00; $12.00 at the door.
Make room reservations direct to the Hilton Inn, 455 South Broadway, Tarrytown, N. Y. 10591.
- Plenty of Free Parking

90 October 1972
In a time when transceivers are a dime a dozen,

ours costs an arm and a leg.

The signal/one CX7A will set you back $2,395 — but set you way ahead in amateur radio operation.

That's because the CX7A has just about every feature you can think of. Including the most sensitive receiver made, the most "talk-powered" 300 watts of power you ever heard, and much more. Like an extra receiver, an RF clipper, a built-in power supply and an electronic keyer.

Suddenly, $2,395 sounds more like a bargain than a bundle. Because you're getting, in effect, a room full of gear in one compact desk-top unit. A unit that features the industry's highest quality control standards, the finest components obtainable, the most features, the best performance . . . we could go on.

Better yet, you go on over to your signal/one dealer and see the rig for yourself. Or write us for a detailed brochure. Once you see the CX7A, you'll be willing to give up an arm and a leg for it. Or at least $2,395.

signal/one

a subsidiary of Computer Measurements, Inc.

1645 West 135th Street

Gardena, California 90249

Phone: (213) 532-9754

October 1972
MORSETYPER

send perfect code
get automatic CW with continuously variable speed from 5 to 55 WPM.

$198.---

MARTRONICS
Post Office Box 4646
Anaheim, California 92803
Telephone (714) 628-7571

CNE
communication/navigation electronics
MAGAZINE

This monthly technical magazine fills a "communication gap" within the electronic communication and navigation equipment industry. Its function is to provide comprehensive and authentic information not available in any other single publication. The types of feature articles include the following:

SYSTEM DESIGN
The planning of radio communication and electronic navigation systems, as well as CCTV and electronic security systems.

EQUIPMENT DESIGN
State-of-the-art design techniques—analysis of newly developed equipment.

TECHNOLOGY
Reports on technical developments—looking into the future—measurement techniques.

FCC REPORTS
Comprehensive reports on FCC petitions, proposed rulemaking and newly adopted rules changes—long before they are published in FCC Rules and Regulations.

SERVICING
The latest techniques for maintaining equipment—troubleshooting—analysis and use of test equipment.

INSTALLATION
Solutions to unique installation problems—local and national codes—interference and interface problems.

APPLICATIONS
Utilization of system components—scope of equipment applications—interface requirements.

CASE HISTORIES
Economic and operational aspects of unique systems—examples of how problems were solved.

Subscription rate $12 per year, $20 for two years. When Check or Money Order accompanies subscription request, special rate is $10 for one year or $16 for two years. Advertising rate card sent on request.

COMMUNICATION AND NAVIGATION, INC.
250 PARK AVE., NEW YORK, NY 10017

92 october 1972
MAXIMIZE
YOUR AMATEUR RADIO

What new 2M FM gives me most for my money, performance vs. price? The answer's as clear as the superb reception you'll get on the new Standard 826MA, 10 watt, 2 meter FM transceiver. You'll find such outstanding features as 12 channels — with the four most popular ones included — and a RF output meter with selection of 10 watts or 0.8 watt for battery conservation. And of course, our "Astropoint" system that assures: top selectivity, great sensitivity, and rejection of unwanted signals on today's active 2M band. Helical Resonators & FET front end provide the performance needed for tomorrow's crowded channels. Provision for tone coded squelch to activate modern repeaters. A radio that won't become obsolete. Occupies less than 200 cu. in. Weighs less than 5 lbs. It has all the same "Astropoints" as entire Amateur line.

NEW 22 CHANNEL BASE STATION
SRC-14U
Ultimate in a 2M FM Transceiver features:

- 22 channels
- AC & DC supplies Built In
- 10W (1, 3 & 10 selectable)
- Receiver offset tuning
- VOX
- Three Front Panel Meters
- Plus many more exciting features.

For detailed information on these, the complete Standard line and the name of your nearest dealer write:

Standard Communications Corp.
213 / 775-6284 • 639 North Marine Avenue, Wilmington, California 90744

More Details? CHECK-OFF Page 110

October 1972 93
THE ALPHA 77A

NEW Alpha 77A now by CMI

- New 8877 final — Vacuum relays and capacitor — Cool and easy max. legal power - SSB, CW, RTTY or SSTV through commercial ratings — Six second band change — Electronic bias control-plate dissipation zero until RF drive signal is actually present — THE linear for THE CX-7A

YOU will never know how little it costs to own THE incomparable CX-7A or Alpha 77A until YOU write or phone us and let us know the trade in deal YOU WANT. We usually say yes! NO ONE ANY... WHERE BEATS OUR DEAL.

NEW Alpha 77A now by CMI

- 160-10 Meters — 300 Watts
- Transceive or split frequency with two built in VFOs — CW keyer built in
- IF shift — new patented QRM remover
- IF noise blanker — digital nixie frequency readout — superb computer grade construction by CMI
- AFSK keyer — adjustable output power — broadband tuning — output wattmeter and reflected power meter $2395

AMATEUR-WHOLESALE ELECTRONICS
8817 S. W. 129 Terrace-Miami, FL 33156
Telephone — days (305) 233-3631 — nights and weekends call (305) 666-1347
Use your Master Charge card

RADIO DATA BOOKS

INVENTORY CLEARANCE

$10.00 each

Originally sold for 2.5-3.5 Times More

WHILE SUPPLY LASTS...

Contains all FCC Radio License Data Including Call Signs, Frequency, Licensee Name & Address, Type and Number of Radios, Location, etc.

EXCELLENT DATA FOR MONITORING USE.

- Fire (April '70)
- Police (March '71)
- Local Government (Feb. '71)
- Highway Maintenance/Forestry Conservation (March '71)
- Special Emergency (Feb. '71)
- Taxi/Auto Emergency (May '71)
- Business-Low Band (July '71)
- Business-Hi Band (July '71)
- Business-450 MHz & Up (July '71)

Send money order or check to:
ACTION RADIO INFORMATION
Lebanon, New Jersey 08833

(WORLD'S ONLY WEEKLY DX MAGAZINE
CURRENT DX NEWS - COMING EVENTS - DATES - FREQUENCIES - TIMES - ALL THE NEWS IN DEPTH - 160 METERS THROUGH 10 METERS - DX CONTEST INFO & CLAIMED SCORES - MONTHLY PROPAGATION PREDICTIONS - DX HONOR ROLLS - and a very SPECIAL "FLASH CARD" SERVICE TO both SUBSCRIBERS and NON-SUBSCRIBERS - 10¢ PER CARD FOR SUBSCRIBERS & 25¢ PER card from NON-SUBSCRIBERS. YOU FURNISH STAMPED AND SELF ADDRESSED CARD (CAN BE EITHER AIR MAIL OR REGULAR FIRST CLASS POST CARD. JUST PUT PREFIX ON LOWER LEFT, BOTTOM ON FRONT OF YOUR CARD (WE ONLY FILE BY PREFIXES) ANY GOOD DX NEWS FROM THE PREFIXES ON YOUR CARDS SENT TO YOU IMMEDIATELY! DXING EASY!!

THE DX'ERS MAGAZINE
Drawer "DX"
CORDOVA, S. C. 29039

WANTS TO BUY

All types of military electronics equipment and parts. Call collect for cash offer.
SPACE ELECTRONICS division of MILITARY ELECTRONICS CORP.
76 Brookside Drive, Upper Saddle River, New Jersey 07458 • (201) 327-7640

More Details? CHECK-OFF Page 110
ECHO II

ALL
SOLID
STATE

STOCK
FREQS:
16/76
22/82
28/88
34/94

2 METER
AMATEUR REPEATER — ONLY $600.00

PROVEN STATE OF THE ART DESIGN
INSTALLATIONS WORKING GREAT IN U.S., EUROPE AND ASIA
STOCK FREQS DELIVERED IMMEDIATELY, OTHERS 3 - 4 WEEKS
WRITE FOR FREE DATA SHEET — FULL MANUAL $5.00

DYCOMM
948 AVENUE E P.O. BOX 10116
RIVIERA BEACH, FLA. 33404

ATV IS A5
- AMATEUR TV IS NOT EXPENSIVE.
- TRANSEIVERS FOR $25.
- GET ALL OF THE FACTS.
- SUBSCRIBE TO A5, SIX ISSUES
 $2.50 A YEAR. P.O. BOX 6512
 PHILA. PENNA. 19138

MINIATURE
SUB-AUDIBLE
TONE $14.95
ENCODER
 Wired-
 Tested
- Compatible with all sub-audible tone systems such as
 Private Line, Channel Guard, Quiet Channel, etc.
- Glass Epoxy PCB, silicon transistors, and tantalum
 electrolytics used throughout
- Any miniature dual coil contactless reed may be used
 (Motorola TLN6824A, TLN6709-B — Bramco RF-20)
- Powered by 12vdc @ 3ma
- Use on any tone frequency 67Hz to 250Hz
- Miniature in size 2.5 x .75 x 1.5"
- Complete less NEED (Available in 33 freqs. for $17.50 ea)
- Output 3v RMS sine wave, low distortion
Postpaid — Calif. residents add 5% sales tax

COMMUNICATIONS SPECIALISTS
P. O. Box 153, Brea, CA 92621

WARNING!

HAM RADIO
SUBSCRIPTION RATES
ARE GOING UP.

SUBSCRIBE OR EXTEND NOW
AT TODAY'S LOW RATES
1 YEAR $6.00
3 YEARS $12.00

Offer good only until
October 15, 1972
(December 31, 1972 foreign)

HAM RADIO MAGAZINE
GREENVILLE, N. H. 03048

More Details? CHECK–OFF Page 110
REGISTRATION
SHOW
$17.00
JANUARY 4-6, 1973
SAROC ROOM RATE
15.00 per night plus tax
sponsored by Single or Double Occupancy
Southern Nevada ARC, Inc. reservations to
Box 73 FLAMINGO HILTON
Boulder City, Nevada 89009
LAS VEGAS, NEVADA
Send show reservations to SAROC
VISIT THE FLAMINGO'S NEW SPEAKEASY RESTAURANT & SALOON
Las Vegas' most unique dining spot

but it's easy to love
SAROC
JANUARY 4-6, 1973
sponsored by
Southern Nevada ARC, Inc.
Box 73
Boulder City, Nevada 89009

It's hard to love a bald flamingo

at the Flamingo
SAROC ROOM RATE
15.00 per night plus tax
Single or Double Occupancy
reservations to
FLAMINGO HILTON
LAS VEGAS, NEVADA

More Details? CHECK-OFF Page 110
TRANSFORMERS

Pri 117 V 60 Hz
Sec 840 CT @ 220 ma
3¼ x 3¼ x 4 inches
Shpg. wt. 9 lb. $2.95 ea.

Pri 115 V 60 Hz
Sec 600 V CT @ 310 ma
6.3 V @ 6 A
4½ x 4 x 6 inches
Shpg. wt. 17 lb. $3.50 ea.

Pri 120 V 60 Hz
Sec 63 V @ 3 A, 6.3 V @ 1 A
6.3 V @ 1 A & 6.3 V @ 1 A
4 x 3½ x 5½ inches
Shpg. wt. 10 lb. $2.95 ea.

Pri 105-125 V 60 Hz
Sec 5 V @ 3 A
2 x 2¼ x 2½ inches
Shpg. wt. 3 lb. $1.95 ea.

PARTS

Capacitor — axial lead —
4000 mfd @ 15 V 75° ea. 10/$6.00

IRC trimpots Style No. RT22C2
Values 1k, 5k, 10k, or 20k
35° ea. or 3/$1.00

1000 PIV Diodes 1 A epoxy 10/$2.95

Precision Resistors 100 asst. $1.98

Miniature potentiometers ½” shaft
Value 5k 35° ea. 3/$1.00

Miniature knobs for ½” shaft
Brass insert w/line indicator 5/$1.00

Nixie Tubes NL 1220S $2.95 ea.
same as NL940S, 0-9 w/2 dec. pt.
10/$27.50

Ni-Cad Batteries 1.2 Volts
(pull-outs exec. cond.)
800 ma/hr rating 1½" lg x ¾" Dia
10/$8.50

Ni-Cad Batteries 1.2 Volts
(pull-outs exec. cond.)
800 ma/hr rating 1½" lg x ¾" Dia
10/$8.50

STYLISTIC GRAND PRIX CABINETS
BUD Cabinet #MD-3-SG
Two-tone smooth gray finish
4 3/16" x 12½" x 8¼" $4.95 ea.

88 MH TOROIDS POTTED 10/3.00

Transistors Mfg Ti #GC4213 Germanium Med Pwr Transistor 15 watts @ 60 V PNP type equiv. to 2N2552 60° ea. or 2/$1.00

R & R ELECTRONICS
311 EAST SOUTH ST.
INDIANAPOLIS, IND. 46225

$5.00 minimum order.
Please add sufficient postage.

the all “NEW” CRYSTAL CALIBRATOR
FROM

- 100 - 50 - 25 KC MARKERS
- ZERO BEAT TO W V V
- USES NEW 100 KC CRYSTALS
 (included' in all units)
- GLASS EPOXY BOARDS
- VERY COMPACT
 2" x 3" x ½"
- 3.5 V. OPERATION

$12.95 KIT
with
100 KC CRYSTAL

Wired and zeroed to W W V $15.95

M-19 Printer with perforator, transmitter and power supply mounted on table. Write for info.

TT-5 Printer with power supply mounted on table. Write for info.

COOLING FAN BLOWER 4 pole 110V 60 cyc motor with 4 bladed nylon fan. Very quiet, about 50 CFM 2¼"/W x 3¼"H x 2½"D. Sh. wt. 3 lbs.

3 wire Jack Panel for std shaft 10 jacks in a line 95° ea.

Western Union Deskfax model Transceiver 115 V 60 Hz
Put on the air — or — back to back (inst incl.)

Teledata paper for above Box of 1000 shts $12.95

Radio Receiver R-257/U 25-50 MC with schematic less pwr supply $9.95

Teletype Printer model 14 $29.95

More Details? CHECK-OFF Page 110

october 1972 97
Digital Readout
At a price everyone can afford
- Operates from 5 VDC
- Same as TTL and DTL
- Will last 250,000 hours.

Actual Size
The MiNiTRON readout is a miniature direct viewed incandescent filament (7-segment) display in a 16-pin DIP with a hermetically sealed front lens. Size, and appearance are very similar to LED readouts. The big difference is in the price. Any color filter can be used.

Digital Readout
- Digital readout
- BCD to 7 - Segment Decoder/driver
- 7490 Decade Counter
- 7475 Latch

Only $8.20
with 12 pages of construction data

NATIONAL DEVICES
- LM370 AGC/Squelch amp $4.85
- LM373 AM/FM/SSB IF strip/Det $4.85
- LM309K 5V 1A regulator. If you are using TTL you need this one. $3.00

FET's
- MF102 JFET $0.60
- MF105/2N5459 JFET $0.96
- MF107/2N5486 JFET VHF/UHF $1.26
- MF121 Low-cost dual gate VHF RF $0.85
- MFE3007 Dual-gate $1.98
- 40673 $1.75
- 3N140 Dual-gate $1.95
- 3N141 Dual-gate $1.86

MOTOROLA DIGITAL
- MC724 Quad 2-input RTL Gate $1.00
- MC788P Dual Buffer RTL $1.00
- MC789P Hex Inverter RTL $1.00
- MC790P Dual J-K Flip-flop $2.00
- MC799P Dual Buffer RTL $1.00
- MC780/880 RTL decade counter $3.00
- MC1013P 85 MHz Flip-flop MECL $3.25

SPECIAL OFFER PLESSEY SL403D
3.5 W AUDIO AMP IC
HI-FI QUALITY
$4.25

October Flea Market
Build a 50-W booster for 2 meter FM — See May of 72 QST.
- 2N6084 Motorola 50-W RF power $18.00
- 7490 Decade Counter 70
- 7400 Gates 22
- N5111A Signetics FM Det $1.60
- NE555 Signetics Timer $1.10
- 1N914 Silicon diodes 16 for $1.00
- 1N270 Germanium diode 6 for $1.00
- MBD101 Motorola Hot Carrier diode $1.00

More RCA IC’s
- CA3088E AM rcvr subsystem $2.50
- CA3089E FM IF system with circuits for IF amp., Det., AF preamp., AFC, Squelch, & tuning meter $3.90
- CA301B Transistor array $1.55

New Fairchild ECL
High speed Digital IC's
- 9528 Dual 'D' FF toggles beyond 160MHz $4.65
- 9582 Multi-function gate & amplifier $3.15
- 959H0 300 MHz decade counter $16.00
A 959H0 & 9582 makes an excellent prescaler to extend low frequency counters to VHF — or use two 9528s for a 160 MHz prescaler.

Circuit Specialists Co.
Please add 35¢ for shipping
FACTORY AUTHORIZED
HEP-CIRCUIT-STIK
DISTRIBUTOR
THE HALL OF SCIENCE will conduct a series of twelve lessons for Teens and Adults in Amateur Radio beginning September 30th at the Hall, 111th Street and 48th Ave., Flushing Meadows Corona Park, Flushing, N. Y. 11352. Courses for the Novice, Technician, General and Advanced class Amateur Radio licenses with all courses scheduled from 10 a.m. to 12 noon and repeated from 1 p.m. to 3 p.m. on consecutive Saturdays. There is a registration fee of $5.00 and a nominal charge for text books and code practice equipment for participants who require these materials.

"DON AND BOB" GUARANTEED BUYS: SBE 144 ($249.00) 209.95; SBE 450 ($399.95) 399.00; Gladding 25 212.50, with AC 295.00; Standard SR82M 299.95; Motorola HA-200 170 epoxy diode 2.5A/1000 PIV 39; Ham-M 99.00; TR 44 59.95; Belden 8448 Rotor Cable $1.40/ft.; Mosley CL 33 124.00; CL 36 149.00; Hyguy TG6DXX 139.00; Hyguy 109.95; 400 Rotor 179.00; 204 BA 129.00; Airdux 2408T coil 5.00; Belden 8237 RG 18c/ft; 841 120C 68; Collins 75A4 (used) 345.00; Cetron 572B/1T60L 13.95; KY65 Code Id 5.95; Sangamo 600MF/ 450V 4.95; Mot MC12709CG Opamp 58c; write for quote. Prices collect. Mastercharge, BAC. Full warranty. Madison Electronics, 1508 McKinney, Houston, Texas 77002 (713) 224-2668.

RESISTORS: Carbon Composition brand new. All standard values stocked. 1/2 watt 10% 50/$1.00; 1/4 watt 10% 40/$1.00. 10 resistors per value please. Minimum order 50. Post paid. Pace Electronic Products, Box 161-H, Ontario Center, New York 14520.

WE BUY ELECTRON TUBES, diodes, transistors, integrated circuits, semiconductors. ASTRAL ELECTRONICS, 150 Miller Street, Elizabeth, N. J. 07207. (201) 354-2420.

COPY MORSE CODE automatically, (Ham Radio November 1971) detailed construction plans $14.95. VMG Electronics, 238 West Sunnyside, Phoenix, Arizona 85029.

2 METER FM GE MA36 w/4 freq. strip and accessories $150., also, 6 meter MA13 $35. Bob Avezzie, WA1OWL, 5 N.W. 36th, Boise, Idaho 83703. tel. 413-786-2162.

AN AWARD is available for making contacts with (5) five St. Joseph operators. General class and above can look for contacts individually or on the CHF-FHC Service Net on 3943 kHz about 0200 Z. There are only six novice operators who are active. Novices can look for WNOHNO, DPS, DNE, DNC, HEF, GGD on the following freqs: 3710, 20, 30, 7158, 66, 68, 70, 76, 80, 86. Call QSL 12110, 132, 150, 170, 177, 180, 200, 220, 240. Send application to WNOOGD.

WORLD QSL — See ad page 108.

DX'ERS — Dig out then of the Mud. New low noise Dual Gate Mosfet Preampreamer. Nominal 20 db gain. 10-30 MHz. Complete in cabinet. $29.96. Dynacomm, 1183 Wall Street, Webster, N. Y. 14580.

VOQFOS will be operating from Mah, during the period October 2nd-5th 1972. Inclusive. Contacts will be on 10, 15 & 20 continuously throughout the period, and on other bands by arrangement. A Festival QSL card will be sent to all contacts and your return QSL card should be sent to P.O. Box 321, MAHE, Seychelles.

ROBOT MODEL 70 SLOW SCAN TELEVISION MONITOR, $375. Hamfest prize, never used, factory warranty, original box. Phil Irvine, 2103 Suzanne Terrace, Huntsville, Alabama 35810.

WANTED: tubes, transistors, equipment what have you? Bernard Goldstein, W2ZNP, Box 257, Canal Station, New York, N. Y. 10013.

RTTY PICTURE TAPES. Stamp for list. John Sheetz, 5 Hansell, New Providence, NJ 07974.

F.C.C. TYPE EXAMS GUARANTEED to prepare you for the F.C.C. 3rd., ($7.00), 2nd. ($12.00), and 1st ($16.00), phone Exams, complete package, $25.00. Research Company, Dept. D. Rt. 2, Box 448, Calera, Alabama 35040

SURPLUS MILITARY RADIOS. Electronics, Radar Parts, tons of material for the ham, a free catalogue available. Sabre Industries, 1370 Sargent Avenue, Winnipeg 21, Manitoba, Canada.

PRINTED CIRCUIT DRILL BITS. Trumbull, 833 Balra Drive, El Cerrito, California 94530.

TOUCHTONE trimline dial assembly, complete. Ideal for walkie-talkie, mobile. $29.50. Jacobs, 1301 Estes, Chicago 60626.

TWO CHANNEL G. E. POCKETMATE, 2½ x 7 x ¼ in., easy conv. to 2m. First $150 M. O. takes. Ken Prouty, WB4DSP, Greensboro, N. C. 27407.

TELL YOUR FRIENDS about Ham Radio Magazine.
ARE YOU CONFUSED

 ABOUT THE NEWEST WAYS TO

 COUNT

 CLOCK

 CONTROL

 \[\begin{align*}
 2_1 \cdot 2_2 &= 11, \\
 2_1 \cdot 2_2 &= 100, \\
 2_1 + 2_2 &= 4, \\
 2_1 + 2_2 &= 10, \\
 10_1, 10_2 &= 13, \\
 10_1, 10_2 &= 15, \\
 10_1, 10_2 &= 16, \\
 10_1, 10_2 &= 10.
\end{align*} \]

XLMT

WE CAN HELP

 WITH THESE NEW PRODUCTS

\[\begin{align*}
\text{DIC1} & \quad \text{50 MHz FREQUENCY COUNTER, 6 DIGIT READOUT} \\
& \quad 10 \text{ MHz Xtal time base, better than .001% stability} \\
& \quad 6 \text{ position time base reference, auto. dec. pt.,} \\
& \quad 100 \text{mv sens., full overload protection, other features} \\
& \quad $130 \quad $170
\end{align*} \]

\[\begin{align*}
\text{DV1} & \quad \text{300 MHz PRESCALER, 50 ohms in & out, better than 100mv sens.,} \\
& \quad \text{fully compatible with all counters} \\
& \quad \text{WHEN ORDERED WITH DIC1 COUNTER} \quad $30 \quad $40 \\
& \quad \text{WHEN ORDERED SEPARATELY} \quad $40 \quad $50
\end{align*} \]

\[\begin{align*}
\text{CDC1} & \quad \text{12 or 24 HOUR DIGITAL CLOCK, FULL 6 DIGIT READOUT} \\
& \quad .005\% \text{ line frequency reference, foolproof setting circuit} \\
& \quad \text{COMPLETE WITH HANDSOME WOOD-GRAIN CABINET} \\
& \quad 36 \text{ different color filters available} \\
& \quad $60 \quad $90
\end{align*} \]

\[\begin{align*}
\text{MP1} & \quad \text{2 METER RF PREAMP, 20db gain, 4 MHz bandwidth, low noise} \\
& \quad \text{WIRED & TESTED ONLY-specify type of radio used} \\
& \quad $11
\end{align*} \]

\[\begin{align*}
\text{ST5} & \quad \text{SINGLE-TONE ENCODER, 5 ADJ. FREQ., ADJ. DURATION} \\
& \quad \text{no kit} \quad \text{no kit} \\
& \quad $30 \quad $35
\end{align*} \]

\[\begin{align*}
\text{STO1} & \quad \text{SINGLE-TONE ENCODER, 10 ADJ. FREQ., ADJ. DURATION} \\
& \quad \text{no kit} \quad \text{no kit} \\
& \quad $35 \quad $30
\end{align*} \]

\[\begin{align*}
\text{TDP1} & \quad \text{SINGLE-TONE DECODER, WIDE RANGE, NARROW BANDWIDTH, 2/pc card} \\
& \quad \text{no kit} \quad \text{no kit} \\
& \quad $25 \quad $25
\end{align*} \]

\[\begin{align*}
\text{TOP1} & \quad \text{TOUCHTONE® DECODER PACKAGE, latest PLL circuits, 16 button cap.,} \\
& \quad \text{COMPLETE WITH 19" RACK MOUNT, POWER SUPPLY, AND YOUR} \\
& \quad \text{CHOICE OF ANY TWO CARDS BELOW} \\
& \quad \text{ALL CARDS COME WITH SOCKETS & WIRING INFORMATION} \\
& \quad $125
\end{align*} \]

\[\begin{align*}
\text{TFC1} & \quad \text{SINGLE BUTTON FUNCTIONS, 4 PER CARD} \\
\text{TFC2} & \quad \text{DOUBLE BUTTON FUNCTIONS, 3 PER CARD} \\
\text{TFC3} & \quad \text{THREE BUTTON FUNCTIONS, 2 PER CARD} \\
\text{TFC4} & \quad \text{FOUR BUTTON FUNCTIONS, 2 PER CARD} \\
\text{TTC1} & \quad \text{TIMER CIRCUITS, WIDE RANGE, 2 PER CARD} \\
\text{CFC1} & \quad \text{EMITTER FOLLOWER CIRCUITS, 2 PER CARD} \\
\text{TCR1} & \quad \text{COR CIRCUITS, 2 PER CARD} \\
\text{TCP2} & \quad \text{TOUCHTONE® DECODER AND CONTROL PACKAGE, ALL FEATURES OF} \\
& \quad \text{TDP1 EXCEPT YOUR CHOICE OF ANY 6 CARDS, AND 2 TOUCHTONE} \\
& \quad \text{PADS. THIS UNIT WIRED TO YOUR SPECS ADD RADIOS AND YOU} \\
& \quad \text{HAVE AN INSTANT REPEATER} \\
& \quad \text{ALL OF OUR PRODUCTS UTILIZE THE LATEST STATE-OF-THE-ART DESIGNS, AND AS} \\
& \quad \text{TECHNOLOGICAL ADVANCES OCCUR THEY WILL BE INCORPORATED IN ALL NEW DESIGNS,} \\
& \quad \text{INSURING YOU, OUR CUSTOMER, OF AN UP-TO-DATE DEVICE.} \\
& \quad $250
\end{align*} \]

\[\begin{align*}
\text{NEW ITEMS COMING SOON:} & \quad \text{DIGITAL FREQUENCY SYNTHESIZERS} \\
& \quad \text{UHF PREAMP} \\
\text{EXIT Serial NUMBER:} & \quad \text{22 Mz TRANSCEIVERS} \\
& \quad \text{CRYSTAL ELIMINATORS} \\
& \quad \text{& MORE....}
\end{align*} \]

ALL PRICES ARE POSTPAID------ON COD's YOU PAY POSTAGE

SEE OUR COMPLETE LINE

AT

SAROC

'73

Irv Cox Enterprises

P. O. BOX 7003
LONG BEACH, CA. 90807
213 427-9748

October SPECIAL

3015F-BM

7 SEGMNT MINITRON

$3 EACH

READOUT

PFD

More Details? CHECK-OFF Page 110
COMPUTER KEYBOARD W/ENCODER $35
Another shipment just received. Alpha-numerics keyboard excellent condition. Once again we expect an early sellout. Price of $35 includes free shipment made within 24 hours of receipt of order.

We still have a few Panoramic Adapters BC 1031, excellent condition, $150-470 KC, operate from standard 115 volt 60 cycle, $45 each complete with schematic, FOB Lynn, Mass. (50 lbs.)

POWER TUNEABLE VARACTOR $5.00
Similar to HC-1060, used in doubler, triplers, amplifiers, etc. Fully guaranteed, with specs and some circuits. $5 each or 6 for $25 pp.

DIGITAL READOUTS

GE Y 4075 25V Miniature
$1.75 ea.

GE Y 1938 24V Standard
$1.75 ea.

RAY CK 1905 Standard
$1.75 ea.

MAN-3 1.7V Miniature LED
$3.50 ea. 10/$30

GIANT ALPHA NUMERIC
$1.75 ea.

MAGNO STRICTIVE MEMORY
Good for 7116.5 Bits Storage 101
Like New $10

LASER DIODE 3 WATT
RCA TA-2628 w/specs.

ROPE MEMORY MODULE
From APOLLO project

$10

All material f.o.b. Lynn, Mass. Send self-addressed envelope for complete list.

JOHN MESHNA JR. ELECTRONICS
P.O. Box 62 E Lynn, Mass. 01904

HOOSIER ELECTRONICS — Your ham headquarters of the Midwest. Individual, personal service by experienced and active hams. Factory-authorized dealers for the finest ham gear on the market. Drake, Regency, Standard, Hy-Gain, Ten-Tec, Gal- axy, Cush-Craft, and accessories. Write today for our quote and try our personal, friendly Hoosier service. We accept Master-Charge and BankAmerica card. Hoosier Electronics, R.R. 25, Box 403, Terre Haute, Indiana 47802.

$3,000.00 in FREE PRIZES! On October 7 & 8, 1972, SWAN ELECTRONICS will host its second Annual Open House. Enjoy refreshments, plant tours, technical talks, movies, etc. Free prize drawings for licensed amateur radio operators .. also, ladies and kids. Located next to Oceanside Airport, overnight trailer and camper facilities will be available. Join the “Talk-In” on 7260 kHz and 146.94 MHz. Don’t miss this family affair — include this visit to SWAN in your vacation plans. Any questions? Call: (714) 757-7525. SWAN ELECTRONICS — 305 Airport Road, Oceanside, California 92054.

WANTED: Collins 351D-1 mobile mount for KWM-1. VE2ADH, 75 Charleswood Drive, Beaconsfield 870, Quebec, Canada.

COLLINS 351D-2 mobile mounting w/cables f/KWM-2/2A, new $250. WSKE 5905 NW 42nd Oklahoma City, OK 73122 (405-789-6702).

QSLS. Second to none. Same day service. Samples 25¢. Ray, K7HLM, Box 331, Clearfield, Utah 84015.

REPRODUCING DETECTOR PARTS KIT. Write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

FOR SALE: Hammarlund HQ-170 $100, good condition WA2TLD, Richard Sauter. Tel. (914) 358-0313 TNX.

AMATEUR SALES & SERVICE. Start with discount prices and get service after the sale. We stock such leading names as Clegg, Drake, Kenwood, Regency, SBE, Signal/One, Tempo One. Antennas by Cush Craft and Mt. My Usk. Mobile mounts by Yamaha. Write or call today Amateur Sales and Service, 11 Rand Mill Road, Garmer, North Carolina 27529, Tel. 1-919-772-6044.

VHF NOISE BLANKER — See Westcom ad in Dec. ‘70 and Mar. ‘71 Ham Radio.

SELL: Drake R-4, T-4X, M-54, AC-4, 10 xtal and manuals all perfect xmt/radio factory aligned new finals also Johnson Valiant and manual good condition also 450-470 Kc receiver ser. # 534 and manual good condition. Best reasonable offer F. O. B. Dennis Vaughn 806 Park Ave., Ladysmith, Wis. 54848.

FOR SALE: Drake 2-B $155, 2-NT $85 with manuals and 11 crystals. Mosley 15 meter beam $15 WN2SKK. (914) 358-8254 after 6 p.m.

FILTERS — Panasonic Ceramic ladder type 455 kHz, bandwidth 15 kHz @ 6 dB. $5.00 each. Post paid. Pace Electronic Products, Box 161, Ontario Center, New York 14520.

More Details? CHECK-OFF Page 110
SIGNAL/ONE CX7A — $2,395.00
IN STOCK FOR IMMEDIATE SHIPMENT.
REALISTIC, GOOD TRADE-INS WELCOME

DRAKE
T4X8 new, $495.00
R4 new, $599.95
TR4 new, $599.95
AC4 new, $99.95
MC4 new, $22.00
MN4 new, $99.00
729SRD new, $17.00
W4 new, $61.95
WW4 new, $75.00
TR22 new, $199.95
MLA new, $299.95
SW4A new, $99.00
The above items are just those that are in stock. We can order any others needed.

COLLINS
7553C orig. box — unused, write
754A mint, with 500 kc filter
KWM2 with 516F2 good, $475.00
MP1 mobile supply x/nt $125.00
351D2 mobile mount fair, $75.00
1801 Antenna Tuner, Collins, military good, $49.95
DL1 Dummy Load good, $99.95
R388/URR looks new, $425.00
30L1 spare parts kit less chassis/cab. etc. $99.95

HAMMARLUND
HQ 215 RECEIVER w/speaker — mint, $250.00

HALLCRAFTERS
H144A 6M TRANSMITTER with P.S. good, $250.00
S-36 RECEIVER, AM/FM 27-144 MHz ok, $65.00
"TO" KEYER x/nt, $55.00

INSTRUMENTS
HP 41C SR METER good, $65.00
HP 430C POWER METER good, $65.00
DIGIPET 60M CLOCK new, $299.00
DIGIPET SCALER new, $50.00
HP 130C 200UV SCOPE mint, $225.00
GR 1001A SIGNAL GEN mint, $295.00
TEKTRONIX P606 PROBE new, $14.95
HEATH 10-18 SCOPE good, $85.00
DUMONT 304H DUAL BEAM SCOPE ok, $150.00
HEATH IP-17 POWER SUPPLY ok, $64.95
HEATH 82G GENERATOR good, $40.00
HICKOK 455 VOM good, $99.00
BOONTON AM/FM GEN good, $225.00
HP 355C ATTENUATOR good, $75.00
HP 355D ATTENUATOR good, $75.00
HP DYS003 X/BAND TEST SET ok, $450.00
HP 540B TRANSFER OSC good, $275.00
HEATH IP-32 POWER SUP good, $40.00
HP 685A H BAND OSC good, $275.00
GR 120BA UNIT OSC good, $95.00
MEASUREMENTS 78E GEN new, $95.00
HP 416A RADIOMETER new, $250.00
HP 492A TWT AMPLIFIER good, $125.00
FR-111 COUNTER WUTQ new, $225.00
HP KS19353 TEST OSC mint, $225.00

12 VOLT DC POWER SUPPLIES: 110 AC INPUT
MODEL 102, is a 4 amp overload protected power supply that automatically resets itself when the overload is removed — new, $24.95

MODEL 104R, is a regulated power supply with the same electronic overload protection as the model 102. MODEL 104R — new, $34.95
MODEL 107M is a heavier duty supply with the same features as the 10w but puts out 6 amps — new, $27.95

INVERTER/CONVERTER:
MODEL 612 is a special purpose unit to provide 12 VDC negative ground power in automobiles with either 6 volt negative ground or 12 volt positive ground. 10 amp surge, 3 amp continuous — new, $22.95

HONEYWELL
0-25 VDC Voltmeter — new, $3.95

MISC.
COLLINS 30L-1 x/nt-(Round Decal), $350.00
AUTORADY KEYER — new, $75.00
SBE SB-36 TRANSCIEVER — new, $895.00
JOHNSON KW MATCHBOX* mint, $105.00
JOHNSON 250W MATCHBOX mint, $90.00
*without coupler (swr)
2 METER VHF DUMMY LOAD/WATTMETER
Good up to 15 watts — w/SO-239 CONNECTOR $19.95

ANTENNAS
2M MAGNETIC MOUNT w/RG58 & PL259 $9.95

AR-2 RINGO
AR-25 RINGO (KW RINGO) $17.00
DI-2 POWER METER $13.35
12AQ VERTICAL $29.95
14AQ/DB VERTICAL $47.95
18AV/DB VERTICAL $66.00
TH3MK 10/20/40 BEAM $144.95
A144-7 2 METER BEAM $13.95

All of the above antennas are in stock. In addition, we can order any antenna made by Antenna Specialists, Cush Craft, Hy Gain, Mosley or Newtonics.

DX ENGINEERING
SPEECH COMPRESSORS
DIRECT PLUG-IN FOR COLLINS 325 $79.50
DIRECT PLUG-IN FOR KWM — 2 $79.50
DIRECT PLUG-IN FOR DRAKE TR3 OR DRAKE TR4 $98.50
HEATH HW-101 w/AC & DC P. S. all MINT $105.00
C.D. HAM "M" ROTATORS, new, complete $99.50
HAM "M" CABLE $12/ft.
CONNECTORS ON EACH END $9.50
C.D. TR-44 ROTATORS, new, complete $63.95
CABLE FOR TR-44 $6/ft.

Bird Ham Mate VHF-1 Wattmeter $79.00

Mor-Gain Antenna Distributor Write for Details Overseas friends. Barry can demonstrate and help you with the purchase of ROBOT SSTV Gear. Write or drop in when you are in NYC.

500 PV 12 Amp Diodes 75¢

MPC POWER SUPPLIES
All brand new, full factory warranty, with 6 line cord.
Model 102 - 115 VAC in, 12 VDC 4 Amp $24.95
Model 107M - 115 VAC in, 12 VDC 6 Amp $27.95
Model 12-115 - 12 VDC 20 Amp in, 110-17 VAC 60 Hz 200 Watts out $45.00

Look for us in Tarrytown, Oct. 21-22. Hudson Division Convention at Hilton Inn. Barry and Robot are donating a Model 70 SSTV monitor as a prize. Don’t miss out!

CASH PAID . . . FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLES, Test Equipment, ETC. Write or call Now! Barry, W2LNI.

We ship all over the World. DX Hams only. See Barry for the new Alpha 77.

Send 35¢ for 104 page catalog #20.

BARRY ELECTRONICS CORP.
DEPT. H-10 — PHONE A/C 212-925-7000
512 BROADWAY, NEW YORK, N. Y. 10012

102 hp October 1972
Enjoy CW!

Use a Matric Keyer & Paddle
- Self Completing
- Battery Operated
- Relay Output

Model 10
Circuit Board Kit (Less Case) $12.95
KIT (Less BATT) $21.90
Wired 'FSS BATT' $26.50
Sidetone Kit $4.95 *Wired $6.95*

Paddle Model 11
- Adjustable Travel
- Non-Skid Weighted Base
- Fully Assembled

Only $9.95

See Your Dealer
Or Order Direct. Prices F.O.B. Seneca, Pa.

Box 235 • Seneca, Pa. 16346
PHONE: AREA CODE (814) 648-5122

CRYSTAL BARGAINS

Depend on...

We supply crystals from 16 Khz to 1000 Mhz in many types of holders. Over 6 million crystals in stock. We manufacture crystals for almost all model SCANNERS, MONITORS, 2-WAY RADIO, Repeaters, ETC. Inquire about special quantity orders. Prices are subject to change. For first class mail add 15¢ per crystal...for airmail add 20¢ ea.

SPECIALS CRystals FOR:

- Frequency Standards
 - 100 Kh.; (HC1/U) $4.50
 - 1000 Kh.; (HC6/U) $4.50
 - Almost all CB Sets, Trans., or Rec.
 - (Synthesizer Crystal on request) Any Amateur Band in FT-243 $1.50
 - (Except 80 meters) 4 for $5.00
 - B Meter Range in FT-243: $2.50
 - Color TV 315/545 Khz: (wire leads) 4 for $5.00

More Details? CHECK OFF Page 110

October 1972
All I.C.'s are marked with manufacturer's date code and identification. Your guarantee of first run, brand new, fully tested I.C.'s.

We accept C.O.D.'s, BankAmericard and Master Charge. No minimum order.

UNIVERSAL RELAY COIL COUNTING UNITS

1. Easy to read single digit panel display, with wide angle viewing.
2. DG Design. reliability. Lamp type 1N34A. Hardwired and Master Charge are available.
3. Plug-in type units are available on special order.
4. Terminal G-19, 20, Copper, Glass Screen Board.
5. You receive a free relay for each purchase of five (5) units.
6. Grouping of 2 or more readouts for the same display bar.
 Since the number is programmed to cover count below bar.
7. Lighted displays permit continuous operation with Master Charge.
8. Built-in timing and counter preset functions available.
9. Overloads counting and power failure functions available also.
10. 60 MHz replaces Vicap. and 5VDC.
11. Options are available for TTL compatible inputs.
12. First in a series of Universal plug-in relays, for frequency counting, panel mounting and overload protection.

13. P.O. Boxes are available for $10.00 each.

For further details and specifications, contact us.

72-707

Lamp 477-1000, 4VDC, single digit, vertical in the package. Has with extended display. Lighted panel 1N34A. Easy to read single digit. 12VDC plug-in type 1N34A. These are BRAUN NEW with full date code and large MULTIPLEXING from ABER. Note, you need a 1N34A to drive and one CURRENT LIMITING RESISTOR per 1N34A. We can only supply one unit per box standard. Also, if you OPEN OVERFLOW due to the same reason. Monsanto & Overload & overload allowed to.

Package of 10, all Timing 5%

42 RELAY COIL COUNTING, With read-in display point. Panel display is 3V or 5VDC. For 1N34A $11.00. Some models are available for TTL compatible inputs. These are Brush NEW with full date code and large MULTIPLEXING from ABER. Note, you need a 1N34A to drive and one CURRENT LIMITING RESISTOR per 1N34A. We can only supply one unit per box standard. Also, if you OPEN OVERFLOW due to the same reason. Monsanto & Overload & overload allowed to.

DELIVERY TIMES: For drop shipments, please state the unit number and quantity required.

Price Quotations: For drop shipments, please state the unit number and quantity required.

104 / october 1972

More Details? CHECK-OFF Page 110
THE EIGHTH ALEXANDER VOLTA RTTY DX CONTEST. 14.00 GMT December 2 to 20.00 GMT December 3, 1972, in the 3.5-14-21-28 MHz amateur bands. Messages: check (RST); zone number. Contacts: once on each band; additional contacts with same station if different band is used. Two-way contacts with stations in one's own zone two points; with stations outside one's own zone the points stated in the Exchange Points Table. A multiplier of one for each Country contacted. A separate multiplier for the same country if different band is used. ARRL Country-list except KL7, KH6, VO to be considered as separate countries. Scoring: total exchange points times number of multipliers. Log forms and score sheets available on request from: SSB & RTTY Club, Box 144, 22100 Como (Italy). The contest is valid also for SWL contacts: once on each band; additional contacts with stations in one's own zone two points with stations outside one's own zone the points stated in the Exchange Points Table. A multiplier of one for each Station contacted. A separate multiplier for the same station if different band is used. Messages: check (RST); zone number. Contacts: once on each band; additional contacts with same station if different band is used. Two-way contacts with stations in one's own zone two points; with stations outside one's own zone the points stated in the Exchange Points Table. A multiplier of one for each Station contacted. A separate multiplier for the same station if different band is used.

WANTED: Cygnets, HQ215, SPR-4. SELL: KW/M-2, 541 FZ, P2. Darryl Dipple, Box 335, LaGrange, Texas 78945.

CAPTAIN CRUNCH 2600 Hz. Long-Distance telephone disconnect whistles (3). Each $10 (Esquire Magazine) Gorton; 1301 W. Estes; Chicago 60626.

$3,000.00 in FREE PRIZES! On October 7 & 8, 1972, SWAN ELECTRONICS will host its second Annual Open House. Enjoy refreshments, plant tours, technical talks, movies, etc. Free prize drawings for licensed amateur radio operators, also, ladies and kids. Located next to Oceanside Airport, overnight trailer and camper facilities will be available. Join the "Talk-In" on 7260 kHz and 146.94 MHz. Don't miss this family affair—include this visit to SWAN in your vacation plans. Any questions? Call: (714) 757-7525. SWAN ELECTRONICS — 305 Airport Road, Oceanside, California 92054.

WANTED: SCOTT CONSOLE RADIO, 30 tube Philharmonic or 23 tube High Fidelity model, 1930's, also ant., r.f., and osc. coils for Hammerlund SP-200 or any pre 1940 chassis for parts. J. G. Halser, 2438 S. Howell Ave., Milwaukee, Wisconsin 53207.

USE YOUR TELETYPE TO SEND PERFECT C.W. with the Morsaverter RTTY to Morse translator. 64 letter buffer memory allows smooth output even with unsteady typing and provides repeatable message for contests. Better performance than Morse keyboards or memory keyers. Operates "stand alone" or as accessory to Morsaverter console. Write for information. Petit Logic Systems, 908 Washington, Neverache, WA 98801.

NEW FROM COMTEC! Ameco books cover all grades of amateur and commercial licenses. Also code practice records. Write for full details. Comtec, Greenville, NH 03048.

FREE INFORMATION — UHF-VHF Communications Antennas, Mobile/Base, 140-470 mhz. Amateur-Commercial, Antenna Engineering Co., Inc., P. O. Box 19449, Indianapolis, Ind. 46219.

YOUR AD belongs here too. Commercial ads 25¢ per word, 10¢ if three columns. Commercial advertisers write for special discounts for standing ads not changed each month.

THE TWO - TIMER

Now you can have your cake and eat it too: Both Greenwich Mean Time and local time in ONE DIGITAL CLOCK. The K2 - Clock provides a bright red easy to read display of both.

GTM is displayed in six digits and at the flip of a switch, local time on a twelve hour basis with A.M. and P.M. indicator.

We even give you a ten minute identifier which warns you before the ten minutes are up so that you can identify your station within the legal time limits.

Attractively packaged in a simulated walnut grained wooden case, the K2 CLOCK makes a handsome addition to your operating position.

price $125.00

ALSO AVAILABLE:

K2 - KEYER

K2 AGC AMPLIFIER

WOERNER ENTERPRISES, INC.

170 Chestnut Street
Ridgewood, N. J.

FM CHANNEL SCANNERS

4 CHANNEL as described Aug. 71 Ham Radio

Wired & Tested Units $29.00 pp

Kits $15.95 pp

Undrilled Boards $3.95 pp

8 CHANNEL multi-chan osc boards

For 5 to 18 MHz Crystals Undrilled $3.95 pp

ALTON INDUSTRIES

7471 Thunderbird Rd., Liverpool, N. Y. 13088

All Boards - G10 Glass - All Prices - Post Paid

IN STOCK

Standard, Regency, others — Send For Flyer

VHF UHF

Crystal Controlled CONVERTERS for DX, FM, ATV, Space and other uses. Extremely Sensitive and free from spurious responses. With AC power supply. Choice of 1, many in stock. Upgrade your station to JANET

50 MHz 2.0db NF $74.95

144 MHz 2.5db NF $74.95

220 MHz 3.0db NF $79.95

432 MHz 5.5db NF $74.95

All postpaid. Write for full details. Also preamps. Ask about our OSCAR special 435 MHz converters.

JANET

P.O. BOX 112
SUCASUNNA, N. J. 07876

201-584-6521

October 1972
Excellent-Complete KSR 1250.00 ASR 1375.00

EXCLUSIVE 66 FOOT
(Imiq)

--

75

THRU 10 METER DIPOLE

NO TRAPS

- NO COILS

- NO STUBS

- NO CAPACITORS

Fully Air

Tested — Thousands Already in Use

#16 40% Copper Weld wire annealed so it handles like soft Copper wire—Rated for better than full legal power AM/CW or SSB-Coaxial or Balanced 50 to 75 ohm feed line—VSWR under 1.5 to 1 at most heights—Stainless Steel hardware—Drop Proof Insulators—Terrific Performance—No coils or traps to break down or change under weather conditions—Completely Assembled ready to put up—Guaranteed 1 year—ONE DESIGN DOES IT ALL; 75-10HD—ONLY $12.00 A BAND!

Model 75-10HD $60.00 66 Ft 75 Thru 10 Meters
Model 75-20HD $50.00 66 Ft 75 Thru 20 Meters
Model 80-40HD $42.00 69 Ft 80-40-15 Meter (CW)

ORDER DIRECT OR WRITE FOR FULL INFORMATION

Kw Balun Kit Still Only $5!
The AMIDON Toroid Balun Kit makes a modern, compact antenna transformer that can be wired for either 4:1 or 1:1 impedance ratio. The balun is ideal for use between a coaxial feedline and a balanced antenna. It reduces coax radiation and properly balances the energy for application to the antenna's feedpoint. The balun also acts as an isolation device and removes the capacity of the coax from the antenna which extends the low SWR frequency range of the array. Baluns made from this kit can be used to advantage on these antenna types: Dipole, Quad, Beam, Inverted Vee, Windom and Folded Dipole.

Send for Free Flyer!

AMIDON Associates
12033 Otsego Street - North Hollywood, Calif. 91607
AN/APR-4Y FM & AM RECEIVER

"FB" for Satellite Tracking!
High precision lab instrument, for monitoring and measuring frequency and relative signal strength, 38 to 4000 Mc. In 5 tuning ranges. For 110v 60 cycle AC. Built-in power supply. Original circuit diagram included. Checked out, Perfect. LIKE NEW $88.50

All tuning units available for a-bove. Price upon request.

G & G CATALOG

MILITARY ELECTRONICS

24 PAGES, crammed with Gov't Surplus Electronic Gear - the Biggest Bargain Buys in America! It will pay you to copy - Refund with your first order.

SEND 25c

ARC-5 VHF RECEIVER, TRANSMITTER, MODULATOR 100-155 Mc.

- **FM-28 RECEIVER with tubes and crystals.**
 - **Excellent Used** $19.50

- **1-23 TRANSMITTER with tubes and crystals.**
 - **Brand New in Original Carton** $23.50

- **MODULATOR with tubes.**
 - **Excellent Used** $10.50

- **Set of Plugs for MO-7.**
 - **$ 8.50**

BRAND NEW BC-645 TRANSCiever

EASILY CONVERTED FOR 420MC OPERATION

This equipment originally cost over $1000. You get all in original factory carton.

Dependable Two Way Communication more than 15 miles.

- **Frequency Range:** About 425 to 30 Megacycles.
- **Transmitter has 4 tubes: W-316A, 2 PT6, 377.
- **Receiver has 3 tubes: J-19, 4 PT7, 7; 2 PT6, 377.
- **RECEIVER: I F: 40 Megacycles.
- **SME: 105° x 135° x 45°.**

Maker's wonderful mobile or fixed rig for 420 to 500 Mc.

Easily converted for phone or CW operation

"SPECIAL PACKAGE OFFER"

BC-645 Transceiver, Dynamotor and all accessories below, including conversion instructions for Citizens Band.

F.B.B. NY City or Optron, UT for Savings on Freight Charges.

Accessories for BC-645

- **Mounting for BC-645 transceiver.**
- **PE-101C Dynamotor, 18-24 V.**
- **Quality tuning range for 420MC operation.**

BRAND NEW while stocks last. **$26.95**

TRANSCIEVER ONLY

$16.95

BC-223AX TRANSMITTER

25-Watt, CW, MOW, Voice, Crystal Control on 4 pre-selected channels. Frequency range 2000 to 5200 Kc by use of 3 plug-in tuning units. Uses FT-717 crystal & variable oscillator. New in original case with 3 Tuning Units.

ALL ACCESSORIES ARE AVAILABLE

$22.50

BC-659 FM TRANSMITTER/RECEIVER

27 to 38.9 Mc. Crystal control on any 2 pre-selected channels, 80 channels. Uses FT-243 Crystal; 13 tubes: (1) LH4, (1) LC6, (4) L115, (2) 1291, (4) 1299 & (1) 1299 New and complete with tubes, speaker and meter.

HEADSET Low impedance. With large chomos ear cushions.

4-fl cord and plug. Reg. $12.50. Our Special Price **$2.95**

SCR-274-N, ARC-5 COMMAND SET HQ!

$16.95

BC-929 U. S. GOVT. SCOPE INDICATOR

BC-929 is a compact, radar display unit with 38BP1, 2-657GT, 6C8G, 6X5GT, 2X5, 2X6-GGT; high voltage divider from -1500V; intensity, focus and positioning controls, plus DPDT motor-driven switch. BC-929 is a favorite with TTY fans as foundation for a converter with cross-line scope presentation. Also a Hams' Side Band Modulation-Monitor foundation. Small size: only 8½ x 9 x 16½" weighs only 22½ lbs. Like New (with all tubes)

CATHODE RAY TUBES All New in Original Carton

STANDARD MAKE

3FP7 .98 ea. 5MP1 2.75 ea.
5AP1 3.75 ea. 9GP7 3.95 ea.
3° SHIELD 1.29 5° SHIELD 2.25

G & G RADIO ELECTRONICS COMPANY

45-47 Warren St. (2nd Fl.) New York, N.Y. 10007 Ph. 212-267-4605
THE RIG
WITHOUT EQUAL

The CX7A by

Just look at these features

- Instant band change without tuneup
- IF Shift passband tuning
- Instantaneous continuous digital frequency readout
- Built-in pre-IF noise blanker
- SSB - CW - FSK - AM Operation
- Dual receive allows you to monitor two frequencies simultaneously
- Hang AGC levels out wide swings in signal strength
- Six Band operation 160 through 10 meters plus provision for operation on non-amateur frequencies in this range
- RF Envelope Clipping provides matchless talk power
- Metering of all critical functions
- True Break-in CW
- And much, much more such as SWR Meter, Electronic Keyer, Transmit Offset, Dual VFO operation...

An ultra-complete station for $2,395.

BARRY 512 Broadway NY, NY 10012
212-WA-5-7000

GENAVE GTX-2
FM Transceiver - 30 Watts output. ALL SOLID STATE (no tubes) - 10 Colors. With AM and mobile mounting bracket - 10 feet of antenna wire and RG-11. Complete, ready to go $199.90
RF Envelope Clipping provides matchless talk power $29.95 (with tone burst option)

WORLD QSL BUREAU
THE ONLY QSL BUREAU to handle all of your QSLs to anywhere; next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 5¢ each.

In person delivery of all PRODUCTS at HUDSON DIV. CONVENTION, Tarrytown, NY October 21-22
Send your order in now and it will be waiting for you.

HAL COMMUNICATIONS CORP., Box 365H
Urbana, Illinois 61801

FM HEADQUARTERS
Improved HF-144U Pre-amp
Kit $11.50 Wired $16.50 Ship. 60¢
Add 6 more transmit frequencies to HR-2, HR-2A & Transcan
Kit $9.50 Wired $13.50 Ship. 60¢

Central New York Specialty Headquarters
FM by STANDARD COMMUNICATIONS and CLEGG
ANTENNAS by HY-GAIN
Quality-Selected Used Ham Gear
Write for listing, updated twice monthly

CFP ENTERPRISES
866 Ridge Road
Ludlowville, N. Y. 14862
607-533-4297

More Details? CHECK-OFF page 110
NEW FOR 1973!

Never before offered at this price! You've seen them at $175. $149.95 — but now at a price a calculator user can afford. EIGHT-DIGIT DIGITAL display plus 16-digit display Indicators. Multiples! And divided in chain or mixed calculations. Includes MINUS and PLUS memory, OVERFLOW indicator to the right, memory (M/2). Memory switch. Floating decimal of 0, 1, 2, 4, 6, 8, decimal last entry error display, Scientific Notation and trailing zero suppression. LCD (Large Scale Integration) equivalent to more than 8,000 transistors. Calculations speed added and subtracted 10,000th-of-a-second. Keyboard is REED SWITCH assembly for extended trouble-free operation. Separate power switch. Removable 110 VAC line cord. Power 110-120 VAC 50-60 cycles, W H. Full 36-months black molded cabinet with roll-down cover. 2 2.5" x 5.5" x 3.75". Complete with manual and instruction book. GUARANTEED BY A MAIL ORDER ADVERTISER. Gift Packed. Uses single Texas Instrument "Chip." Features found in more expensive calculators:

For your Office, School, Shop. Student.

DIGITAL CLOCK KIT

For $57.

With CASE

Buy 3 — Take 10% off

Small & more compact

ALPHA-NUMERIC 7-SEG. READOUTS.

2.50

Fluorescent Blue-Green 0-9 numerals, decimals and letters.

H x W: Characters: Filament: 3 for $7.

MINI-7: 1.75 x 1.17 360 x 570 1.8V AC/DC 42 mils Socket: 50c

SLIM-7: 1.8 x 0.375 x .60 x .20 1.5V AC/DC 42 mils Socket: 50c

*Compatible to 7-segment driver IC's.

Dollar Stretcher

$3.95

By RCA or equal 2N3632. NPN, 25 watts, 8-amps, TO-92 socket, with stud mg. mV. VCE max 65.

8-DIGIT ELECTRONIC POCKET CALCULATOR

99.95

LED Display

BATTERY 110vac

Completely wired, ready to use! Not a kit — hours saved. Most economical and advanced battery operated pocket calculator under $100. Makes use of small 8-digit single chip LSI (Large Scale Integration), LED display, space saving logic and successor known as the "Board." The 9V battery can be thrown away after use or replaced. Uses family 9 operating power charges included. Performs Addition, Subtraction, Multiplication, Division, Trigonometric Functions, and Mixed Multiplication and Division, as well as true "complex" additions and convergence. The decimal point is fixed in two places in the eight digit display. Additional display indicators over flow beyond the eight digit range (minus sign). Includes simplified instruction booklet. Factory Guaranteed!

digital

EGS-10

H: 3 for $7.

S: 1.5V AC/DC 32 mils Socket: 50c

63 WATT AUDIO AMPLIFIER BASIC

For Class AB use. Basic includes: Signetics 540 30 transistor high power driver TO-5 "IC," with a pair of complementary 35 watts plastic amplifiers, i.e. 2N2511 npn and 2N6169 pnp, with schematics, printed circuit and parts board. Will drive your own loudspeakers.

Phone Orders: Wakefield, Mass. (617) 245-3229 Retail: 50% Discount. C.O.D.'S MAY BE PHONE IN.

POLY PAKS

P.O. BOX 842, LYNNFIELD, MASS. 01934

More Details? CHECK-OFF Page 110

October 1972
Advertisers Index

Limit 15 inquiries per request.

October 1972

Please use before November 30, 1972

Tear off and mail to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME ..
CALL ..

STREET ..
CITY ..
STATE .. ZIP

Advertisers Index

A5 Magazine ..95
ATV Research ..108
Action Radio Information Systems, Inc.104
Alton Industries ...105
Amateur-Wholesale Electronics94
Amidon Associates ..106
Apollo Products ..107
Arizona Semi-Condutor ..72
B C Electronics ..107
Barry ..102
Bauman, R. H. Sales ..72
CFP Enterprises ..108
CNE Magazine ..102
CTG BITCIL ..107
Caringella Electronics ..21
Circuit Specialists Co. ..98
Communications Specialists ...95
Comtec ...68
Curtis ..73
Dxer Magazine ..94
Data Engineering, Inc. ...87
Dycom ...95
Emac, Div. of Varian Assoc. ..Cover IV
El Instruments, Inc. ...25
Electronic Distributors, Inc. ..53
Emporium Sounds of Pompano81
Environmental Products ...57
Erickson Communications ...77
Fair Radio Sales ...88
Frank Electronics ..75
Freck Radio & Supply Co. Inc.88
G & G Radio Supply Co. ..107
Gateway Electronics ...76
Goodheart Co., Inc. R. E. ..73
Gray Electronics ..51
H & L Associates ..75
HAL Communications Corp. ..89
Ham Radio ..95
Heath Co. ..75
Heights Manufacturing Co. ...103
Henry Radio Stores ...Cover IV
Hudl Division Convention ..90
Hy-Gain Electronics Corp. ..82
International Crystal Mfg. Co., Inc.112
Irv Cox Enterprises ...103
Jan Crystals ...105
Janel Labs ..96
Jeitronics ...61
KW Electronics ..61
L. A. Electronix Sales ..91
Martoctrics ...92
Matric ...103
Mehna, John Jr. ..101
Micro-Z Co. ...86
Mor-Gain, Inc. ..106
Pelomar Engineers ...78
Payne Radio ...78
Pennwood Numechron Co. ..68
Poly Paks ...105
RP Electronics ...76
RPT Publishing Co. ...74
R & R Electronics ...
Radio Amateur Callbook, Inc. ...80
Robot Research ..1
Sams, Howard W. and Co., Inc.33
SAROC ...96
Savoy Electronics ...
Signal/One Corporation ...93
Slep Electronics Co. ..79
Solid State Systems, Inc. ..104
Space-Military Electronics ..94
Spectronics, Inc. ..94
Spectrum International ..86
Standard Communications Corp.5
Ten-Tec, Inc. ...93
Topeka FM Engineering ..108
Tri Rio Electronics ...108
VHF Communications ...88
VHF Engineering ..105
Van's, W2D1T ...74
Wagner Labs ...74
Weinschenker, M. ...73
Weinerger Enterprises, Inc. ..105
Wolf, S. ..73
World QSL Bureau ...105
World Radio Laboratories ..72
SWAN returns to LA Electronix

SWAN 500CX
550 Watt SSB-CW-AM Transceiver
ONLY $489 freight prepaid in the USA

117XC AC Power Supply $105
14-117 DC Power Supply $129

SWAN 117XC
AC POWER SUPPLY

Electronix Sales
23044 S. CRENSHAW BLVD., TORRANCE, CALIF. 90505
Phone: (213) 534-4456 or (213) 534-4402
CLOSED SUNDAY & MONDAY

BONUS COUPON
Shure 444 Microphone
Included free with every Swan 500CX from LA Electronix
A 34.95 Value
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR
 RF MIXER
 A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
 RF AMP
 A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
 RF POWER AMP
 A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw, depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND
 AMP
 General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL. Experimenter or Amateur $3.75

5. OX OSCILLATOR
 Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
 Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ± 02% when operated in International OX circuit or its equivalent. (Specify frequency) $3.95

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3098E.

CRYSTAL TYPES:
 (GP) for "General Purpose" applications
 (CS) for "Commercial Standard"
 (HA) for "High Accuracy" close temperature tolerance requirements.

write for CATALOG

INTERNATIONAL
CRYSTAL MFG. CO., INC.
10 N. LEE • OKLA. CITY, OKLA. 73102

More Details? CHECK-OFF Page 110
IF YOU CAN FIND A BETTER TRANSCEIVER FOR $415... BUY IT!

BUT WE KNOW YOU CAN'T

Superb Kenwood quality, unsurpassed performance, value you'll find hard to believe, proven reliability of both vacuum tube and solid state technology

The Kenwood TS-511S is a five band SSB and CW transceiver packed with power and performance... offering features never before available in its price range. For example: built-in VOX, crystal calibrator, noise blanker, receiver incremental tuning, 1 kHz frequency readout, 8 pole filter, stable FET VFO, dual conversion and accessory CW filter.

FREQUENCY RANGE:
- 80 meter band: 3.5 - 4.1 mHz
- 40 meter band: 7.0 - 7.6 mHz
- 20 meter band: 14.0 - 14.6 mHz
- 15 meter band: 21.0 - 21.6 mHz
- 10 meter band: 28.0 - 28.6 mHz

SELECTIVITY:
- Over 1 MHz bandwidth at 0.5 KC (at 6 db) SSB more than 2.4 KC (at 6 db) with 2 to 1 slope ratio
- Less than 100 cps frequency drift

AUDIO OUTPUT: more than 1 watt

PRICE: $415.00

The R-599 Solid State Receiver: 1.8 to 29.7 mHz (amateur bands) • 5 microvolt sensitivity nominal • Dial readout to 1/2 kHz • Special detectors for SSB, AM, and FM • Transceive operation with T-599 • Built-in 100 kc and 25 kc crystal calibrator and 500 cycle CW filter • 2 and 6 meter coverage with optional accessory self-contained converters • Adjustable threshold squelch • $149.00 • S-599 speaker $16.00 • CC-29 2 meter converter $31.00 • CC-69 6 meter converter $31.00

The T-599 Transmitter: Clear, stable, selectable sideband, AM and CW • 4 way VFO flexibility plus Receiver Incremental Tuning (RIT) when used with the R-599 • Amplified ALC • Built-in VOX • Full metering, including cathode current, plate voltage, ALC and relative Power Output • Built-in CW Sidetone monitor and semi-automatic break-in CW • Built-in power supply • Maximum TVI protection • Employs only 3 vacuum tubes • The price... $395.00

available at select dealers throughout the united states

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/767-3127

Henry Radio
Simplify UHF circuits with EIMAC's 8938 high mu triode.

All the advantages of grounded-grid, high-mu triodes become even more important when you're designing at UHF. And now EIMAC introduces a coaxial-base, focused-beam, high-mu triode especially designed for kilowatt-level UHF applications.

At UHF, cavities are small and closely coupled to the tube. There's no room for bulky bypass capacitors, rf chokes, or feedthrough capacitors. With the 8938 in cathode driven (grounded-grid) service, there's no need for the grid circuit bypass capacitor; and no need for screen capacitors, bias or screen power supplies and associated decoupling circuitry. The internal tube structure is simple and the surrounding circuitry is much less complicated.

The rugged, ceramic/metal 8938 is the latest addition to EIMAC's 8877 family of tubes. Because of the beam focusing action of a series of strip electron guns in the cathode-grid region, the 8938 produces very high mu with exceptionally low grid interception. This results in high power gain with no sacrifice of low intermodulation characteristics in cathode-driven Class AB2 amplifier service.

It's one more example of EIMAC's ability to provide tomorrow's tube today. For details, contact EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, (415) 592-1221. Or any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.