high-frequency power amplifier
PI NETWORK DESIGN

this month
- hf log-periodics 28
- RTTY distortion 36
- frequency scaler 41
- repeater timers 46

focus on communications technology...
Complete packaged Multi-Band Antenna Systems employing the famous Bassett Sealed Resonators and a special Balun. Air has been evacuated from both and replaced with pure helium at one atmosphere.

Highly efficient system packages including all hardware, insulation, coax cable, and copperweld elements assembled at the factory. Complete installation instructions included.

Multi-frequency models available for all amateur bands and for commercial use, point to point, ground to air, military and government.

MODEL DGA-4075 — $59.50

A complete system package for primary use in the 40 and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-2040 — $59.50

A complete system package for primary use in the 20 and 40 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-152040 — $79.50

A complete system package for primary use in the 15, 20, and 40 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-204075 — $79.50

A complete system package for primary use in the 20, 40, and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc.
P.O. Box 7127 - Fort Lauderdale, Florida - 33304
Tel: 305-566-8416 or 305-947-1191
Build quality in your amplifier...

use Barker & Williamson

band switching pi-net inductors.

1 K.W. and 500 Watt models available:

Heavy duty coil with ceramic end plates and rugged heavy duty switch contacts to assure positive switching to eliminate losses.

SPECIFICATIONS:

<table>
<thead>
<tr>
<th></th>
<th>MODEL 850A</th>
<th>MODEL 851</th>
<th>MODEL 852</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER RATING</td>
<td>1 KW* 2 KW**</td>
<td>250 watts* 500 watts**</td>
<td>1 KW* 2 KW**</td>
</tr>
<tr>
<td>PLATE VOLTAGE</td>
<td>2000-4000 max. D.C.</td>
<td>1250 volts at 200 MA*</td>
<td>2000-4000 max. D.C.</td>
</tr>
<tr>
<td>PLATE LOAD IMPEDANCE</td>
<td>2500-5000 ohms</td>
<td>2500-5000 ohms</td>
<td>1500-3000 ohms</td>
</tr>
<tr>
<td>INDUCTANCE TAP (Each Band)</td>
<td>13.6-6.5-1.75-1.0-0.8 UH</td>
<td>14-6.3-1.8-0.87-0.52 UH</td>
<td>7-3.72-2.34-1.34-0.95 UH</td>
</tr>
<tr>
<td>Capacity To Resonate Each Band</td>
<td>150-80-70-55-50 MMFD</td>
<td>150-80-70-55-50 MMFD</td>
<td>268-144-73-48.5-36 MMFD</td>
</tr>
<tr>
<td>OVERALL DIMENSIONS</td>
<td>(Length, Width, Height)</td>
<td>(Length, Width, Height)</td>
<td>(Length, Width, Height)</td>
</tr>
<tr>
<td></td>
<td>10" x 4½" x 7¾"</td>
<td>7" x 3" x 3¾"</td>
<td>10" x 4½" x 8"</td>
</tr>
<tr>
<td>OUTPUT IMPEDANCE</td>
<td>50-75 ohms unbalanced</td>
<td>50-75 ohms</td>
<td>50-75 ohms unbalanced</td>
</tr>
<tr>
<td>SHIPPING WEIGHT (Pounds)</td>
<td>7½</td>
<td>3%</td>
<td>7½</td>
</tr>
<tr>
<td>SUITABLE TUBE TYPES</td>
<td>Single tube or parallel (2 tube) series or shunt fed circuits. 813, 4-125A, 4-250A, 4-450A, 4-400A, 4-1000A.</td>
<td>Single tube circuit, types 4-125A, 4-250A, 4-400A, 813, Parallel (2 or 4 tubes) shunt fed circuit, 807, 837, 6146, 811, 6005.</td>
<td>Single tube circuits—4CX-1000A, PL-172, 3-1000Z. Parallel—two tube circuits—(2) 3-400Z.</td>
</tr>
<tr>
<td>PRICE</td>
<td>$59.95</td>
<td>$29.95</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

*Under amplitude modulated conditions. **PEP, CW and SSB conditions.

BARKER & WILLIAMSON INC.

ean Canal Street, Bristol, Pennsylvania 19007 • (215) 788-5581

More Details? CHECK—OFF Page 110

september 1972
The voice of

HY-GAIN'S
THUNDERBIRD
10-15-20

is heard around the world

Here's why Thunderbirds outperform all other tri-banders:

* Thunderbird's "Hy-Q" traps provide separate traps for each band. "Hy-Q" traps are electronically tuned at the factory to perform better at any frequency in the band—either phone or CW. And you can tune the antenna, using charts supplied in the manual, to substantially outperform any other antennas made.

* Thunderbird's superior construction includes a new, cast aluminum, tilt-head universal boom-to-mast bracket that accommodates masts from 1 1/4" x 2 1/2". Allows easy tilting for installation, maintenance and tuning and provides mast feed-thru for beam stacking.

 Taper swaged, slotted tubing on all elements allows easy adjustment and readjustment. Taper swaged to permit larger diameter tubing where it counts! And less wind loading. Full circumference compression clamps are mechanically and electrically superior to self-tapping metal screws.

* Thunderbird's exclusive Beta Match achieves balanced input, optimum matching on all 3 bands and provides DC ground to eliminate precipitation static.

 * 25 db front-to-back ratio.
 * SWR less than 1.5 to 1 on all bands.
 * 24-foot boom...none longer in the industry.
 * Extra heavy gauge, machine formed, element to boom brackets, with plastic sleeves used only for insulation. Bracket design allows full mechanical support.
 * Interlaced, optimum spaced elements for higher gain and better pattern control.
 * 3 active elements on 20 and 15 meters. 4 active elements on 10 meters.

New 6-Element Super Thunderbird
Model 389
Suggested retail price, $179.95

Improved 3-Element Thunderbird
Model 388
Suggested retail price, $144.95

Fabulous 3-Element Thunderbird, Jr.
Model 221
Suggested retail price, $99.95

Popular 2-Element Thunderbird
Model 390
Suggested retail price, $99.95

Buy one today at your favorite Hy-Gain distributor!

HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407-WI, Lincoln, Nebraska 68505

2 September 1972 More Details? CHECK-OFF Page 110
September, 1972
volume 5, number 9

staff
James R. Fisk, W1DTY
editor
Douglas S. Stivison, WA1KWJ
assistant editor
Nicholas D. Skeer, K1PSR
vhf editor
J. Jay O'Brien, W6GDO
fm editor
Alfred Wilson, W6NF
James A. Harvey, WA6IAK
associate editors
Wayne T. Pierce, K3SUK
cover
T. H. Tenney, Jr., W1NLB
publisher
Hilda M. Wetherbee
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is
published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048

Subscription rates, world wide
one year, $6.00, three years, $12.00
Second class postage
paid at Greenville, N. H. 03048
and at additional mailing offices

Foreign subscription agents
United Kingdom
Radio Society of Great Britain
35 Doughty Street, London WC1, England
All European countries
Eskil Persson, SM5CJP, Frotunagrand 1
19400 Upplands Vasby, Sweden

African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg, Republic of South Africa

Copyright 1972 by
Communications Technology, Inc.
Title registered at U. S. Patent Office
Printed by Wellesley Press, Inc.
Wellesley, Massachusetts 02181, USA

ham radio is available to the blind
and physically handicapped on magnetic tape
from Science for the Blind
221 Rock Hill Road, Bala Cynwyd
Pennsylvania 19440
Microfilm copies of current
and back issues are available
from University Microfilms
Ann Arbor, Michigan 48103

Postmaster: Please send form 3579 to
ham radio magazine, Greenville
New Hampshire 03048

contents

6 power amplifier pi-network design
Irvin M. Hoff, W6FFC

24 speaker driver module
Gerald F. Vogt, WA2GCF

28 high-frequency log-periodic antennas
George E. Smith, W4AEO

36 reducing RTTY distortion
Herbert G. Drake, Jr., WB6iMP

41 ten-to-one frequency scaler
F. Everett Emerson, W6GBC

46 simple repeater-control timers
George R. Allen, W2FPP
Richard J. Sobus, K2QLE

50 solid-state hang agc circuit
Jerome L. Hartke, W1ERJ

58 using surplus tubes in linear
amplifier service
Carl C. Drumeller, W5JJ

62 circuits and techniques
Edward M. Noll, W3FQJ

68 ham notebook

72 new products

77 advertisers index

82 circuits and techniques

89 reader service

99 flea market

greenville, new hampshire 03048

telephone: 603-878-1441

ham radio magazine is
published monthly by
communications technology, inc.
greenville, new hampshire 03048

subscription rates, world wide
one year, $6.00, three years, $12.00
second class postage
paid at greenville, n. h. 03048
and at additional mailing offices

foreign subscription agents
united kingdom
radio society of great britain
35 doughty street, london wc1, england
all european countries
eskil persson, sm5cjp, frotunagrand 1
19400 upplands vasby, sweden

african continent
holland radio, 143 greenway
greenside, Johannesburg, republic of south africa

copyright 1972 by
communications technology, inc.
title registered at u. s. patent office
printed by wellesley press, inc.
wellesley, massachusetts 02181, usa

ham radio is available to the blind
and physically handicapped on magnetic tape
from science for the blind
221 rock hill road, bala cynwyd
pennsylvania 19440
microfilm copies of current
and back issues are available
from university microfilms
ann arbor, michigan 48103

postmaster: please send form 3579 to
ham radio magazine, greenville
new hampshire 03048

99 flea market

september 1972

contents

6 power amplifier pi-network design
irvin m. hoff, w6ffc

24 speaker driver module
gerald f. vogt, wa2gcf

28 high-frequency log-periodic antennas
george e. smith, w4aeo

36 reducing rtty distortion
herbert g. drake, jr., wb6imp

41 ten-to-one frequency scaler
f. everett emerson, w6gbc

46 simple repeater-control timers
george r. allen, w2fpp
richard j. sobus, k2qle

50 solid-state hang agc circuit
jerome l. hartke, w1erj

58 using surplus tubes in linear
amplifier service
karl c. drumeller, w5jj

62 circuits and techniques
edward m. noll, w3fqq

68 ham notebook

71 new products

77 advertisers index

82 circuits and techniques

89 reader service

99 flea market

september 1972

contents
A whole new family of ICs which is blooming in the development stage promises to revolutionize communications. These new ICs, called OICs (pronounced oyks) for optical integrated circuits, use technology borrowed directly from the semiconductor IC industry.

OICs are closely related to laser communications, and provide lasing, coupling, modulating, filtering and multiplexing for future optical communications systems. Practical application of these new devices is anywhere from two to ten years in the future, depending on who you talk to. However, it is just a matter of time before optical communications systems carry the bulk of industrial traffic, including telephone, digital data and television. The big advantage of the optical system, of course, is the huge message-carrying bandwidth which is available.

Early optical communications systems depend upon short laser links, but in future systems there will give way to fiber-optic wires which carry the signal from point to point. The optical fiber, already developed by Corning Glass, will carry a coherent laser signal with relatively small losses. OICs will be used to process the optical signal once it reaches its destination.

Both active and passive types of OICs are being developed at the present time. The most successful passive types use a thin glass film deposited on a glass plate. A masking and etching process similar to that used by IC manufacturers removes the excess glass deposit. These passive structures can be formed into frequency-selective filters and directional couplers as well as straight signal-carrying optical waveguides.

Development work on active OICs is progressing on several different, divergent fronts. Some scientists are fabricating optical waveguides in gallium-arsenide compounds, a familiar semiconductor material. Waveguide effects have also been produced in zinc selenide diffused in cadmium. The materials and processes being developed for OICs remind me of the then-new and strange semiconductor processes which spawned the transistor industry in the late 1950s.

Many problems will have to be solved before optical communications and OICs become a practical reality, including a method of putting laser energy into the device and taking it out. Two methods that show promise include prisms placed very close to the surface and optical gratings etched on the waveguide surface. Prisms are much more efficient than the gratings, but they cost considerably more and are more difficult to build. However, research is progressing in this area, and in all probability, a low-loss grating will eventually be developed.

Although few amateurs have added laser-communications to their repertoire, some amateurs have had good success, including the two-way laser phone contact of WABEWJ and W4UDS, and W4KAE's nearly 4-mile QSO with a keyed laser beam. With the availability of new optical equipment, including OICs, range will increase, and someday, in the not too distant future, we may even have an amateur band in the visible light range. Anyone for a schedule on 500 Terahertz?

Jim Fisk, W1DTY
editor
Plug yourself into a bargain

You don't plug the Yaesu FTdx 570 into a power supply, you plug it into the wall. The 570 is ready-to-go, with 560 watts of PEP SSB and 500 watts of CW power built-in.

In a rig selling for $549.95, clearly other rigs don't hear at all. Plus a lot of other features detailed in our brochure. Features that would cost you a fortune if you could find them all in any other rig.

For a little more than the $549.95 price tag, you can order the 570 with a CW filter. Send us the coupon and we'll send you a brochure on the FTdx 570. Include a check for $549.95 and we'll send you the real thing. Do that, and you'll be plugged in to amateur radio operation at its finest.

SPECTRONICS WEST
Dept. Q, 1401 E. 28th, Signal Hill, Ca. 90806 / (213) 426-2593

SPECTRONICS EAST
Dept. Q, Box 1457, Stow, Ohio 44224 / (216) 923-4567

More Details? CHECK-OFF Page 110 septem
ber 1972
A complete discussion of pi and pi-L network design, with computer-derived component values for a wide range of operating conditions.
The pi network is so named because of its resemblance to the Greek letter pi as shown in fig. 1. The same network in its electrical form with input and output impedances is shown in fig. 2. Since most amateurs use 50-ohm coaxial transmission line, the output load impedance of the pi network is usually 50 ohms.

When the pi network is used in a power amplifier, the circuit looks like that shown in fig. 3. The antenna provides the output load impedance, \(Z_L \), and the power tube provides the input load impedance \(Z_p \). Since the plate load impedance usually falls into the range of 1200 to 5000 ohms, the pi network transforms the high impedance of the vacuum tube into the 50-ohm antenna load. It performs this job quite efficiently, and with predictable results.

harmonic attenuation

Actually, the pi network is a basic form of three-pole low-pass filter. With proper care in design it will attenuate the second harmonic by 35 dB or more.\(^1\) This would be for a loaded \(Q \) of 12; if the \(Q \) is doubled, attenuation is increased by approximately 6 dB.

The pi-L network shown in fig. 4 consists of a standard pi network with an additional inductor. Since the pi-L network is a four-pole low-pass filter, second harmonic attenuation is increased to approximately 50 dB. This is particularly important if you want maximum suppression of TVI.

In addition to increased harmonic suppression, the pi-L network offers greater bandwidth for a given variation in operating \(Q \), requires less output capacitance, and is able to operate efficiently with lower \(Q \) at very high plate load impedances. These advantages will become more apparent later in this article.

plate load impedance

The dc plate resistance of a vacuum tube, at a given input power level, can be calculated with Ohm’s law: \(R = E/I \), where \(E \) is the dc plate voltage and \(I \) is the dc plate current. However, since we are dealing with an ac circuit, this is of little value. What we need to know is the plate load impedance. This is given approximately by the following equation which has been derived from the complex functions of a vacuum tube operating in class \(B \).

\[
Z_p \approx \frac{E}{1.57I}
\] (1)

where \(Z_p \) is the plate load impedance, \(I \) is the indicated plate current and \(E \) is the dc plate voltage.

When the vacuum tube is operated in class \(C \), as for CW, the plate load impedance is approximated by

\[
Z_p \approx \frac{E}{2.1I}
\] (2)

If you are using a linear amplifier that runs with very high idling current, and approaches class \(A \), the following approximation for plate load impedance would be more appropriate.

\[
Z_p \approx \frac{E}{1.3I}
\] (3)

Zero-bias grounded-grid linears are usually thought of as being class \(B \), but there is no hard and fast rule in this regard. A number of articles have been written on this subject, and you are likely to have already formed some opinions of your own.

Consider the case of a class-B rf power amplifier with a 2100-volt plate power supply and indicated plate current of 476 mA (1 kW input). As calculated from eq. 2, the plate load impedance is 2800 ohms:

\[
Z_p = \frac{2100}{1.57 \cdot 0.476} = 2800 \text{ ohms}
\]

Typical plate load impedances for various power levels and different operating...
voltages and currents are shown in table 1. It can be seen from this data that the plate load impedance rises to very high levels when the plate voltage is increased above 4000 volts. More amateurs than might be expected use 4000 to 6000 volt power supplies, and many of the associated problems have not been adequately discussed in the past.

circuit Q

The letter Q stands for quality factor, and is used to describe, in simple numerical terms, the efficiency and performance of capacitors and inductors. Actually, there are two types of Q — loaded Q and unloaded Q. The unloaded Q is the inherent quality factor of the component itself; loaded Q is the quality factor of the component when it is used (and loaded down) by the circuit.

\[Q \] stands for quality factor, and is used to describe, in simple numerical terms, the efficiency and performance of capacitors and inductors. Actually, there are two types of Q — loaded Q and unloaded Q. The unloaded Q is the inherent quality factor of the component itself; loaded Q is the quality factor of the component when it is used (and loaded down) by the circuit.

\[Q \]

The unloaded Q of a component is given by

\[Q_u = Q \text{ (unloaded)} = \frac{X}{r} \tag{4} \]

where X is reactance and r is ac resistance. The unloaded Q of a high-quality capacitor might be 1000 or more, and a silver-plated inductor might have an unloaded Q of more than 500.

The loaded Q of a pi network is usually on the order of 10 to 20 for maximum harmonic attenuation, and is given by:

\[Q_o = Q \text{ (loaded)} = \sqrt{\frac{Z_p \cdot Z_L}{Z_L}} \]

where \(Z_p \) is the input impedance to the network, and \(Z_L \) is the output impedance.

When designing pi networks a value of

\[Q \]

fig. 3. Pi network used in the output of a rf power amplifier is coupled to the power tube through a dc blocking capacitor (C3). C1 is the tuning capacitor, C2 is the loading capacitor, and L1 is the tank inductor.

loaded Q is chosen on the basis of harmonic attenuation, and is used in the design equations to determine the inductance and capacitance values for a given operating frequency.

L networks

A typical step-down L network is shown in fig. 5. This network is used to transform its input impedance to a lower output impedance. The Q of this circuit is entirely dependent upon the ratio of the input and output impedances as given in eq. 5.

For example, if the input impedance to an L network is 2500 ohms, and the output impedance is 50 ohms, the loaded Q of the network is 7:

\[Q_o = Q \text{ (loaded)} = \sqrt{\frac{2500 \cdot 50}{50}} = \sqrt{49} = 7 \]

However, a loaded Q of 7 is much too low for good harmonic suppression. To determine the L-network input im-

\[Q \]

fig. 4. The pi-L network requires an additional inductor, and provides increased second harmonic attenuation.
pedance required to provide a desired value of loaded Q, eq. 5 is rearranged as shown below:

$$Z_p = Z_L (Q_0^2 + 1)$$ \hspace{1cm} (6)$$

For example, with an output load impedance of 50 ohms, and a desired loaded Q of 12 (for good harmonic suppression), the required input impedance is 7250 ohms. This is very restrictive and does not allow the designer sufficient latitude. So, although the L network is extremely efficient (98% typical), a pi network is usually used in transmitter output circuits.

pi network design

You can think of the pi network as being two L networks in tandem as shown in fig. 6. The first L network is a step-down type while the second L network is reversed for impedance step up. As an example, consider the case where the input impedance to the dissected pi network in fig. 6 is 2900 ohms. With a Q of 12, the first L network would step the input impedance down to 20 ohms. This is often called the virtual impedance.

$$Z_L = \frac{Z_p}{Q_0^2 + 1} = \frac{2900}{12^2 + 1} = \frac{2900}{145} = 20 \text{ ohms}$$ \hspace{1cm} (7)$$

The second L network would then be designed to raise this virtual impedance of 20 ohms to 50 ohms to match the antenna. The Q of the second section would be quite low, on the order of 1.5.

As the input impedance is increased with Q held constant, the virtual impedance increases, and when the virtual impedance is equal to the desired output impedance, the pi network reverts to an L network. For example, with a plate load impedance of 7250 ohms and a Q of 12, the virtual impedance is 50 ohms. This is the maximum possible impedance transformation for a Q of 12 and an output impedance of 50 ohms.

Normally, about 70% of the maximum possible impedance transformation is used in a practical circuit. For a Q of 12 and an antenna load of 50 ohms, this would represent a plate load resistance of 5075 ohms. If the plate load resistance in a rf power amplifier is higher than 5075 ohms, a Q of more than 12 is required to retain the same level of harmonic suppression. This problem is circumvented by the use of the pi-L network, as discussed below.

pi-L network design

Another L network may be added to fig. 6. Pi network is basically two L networks in tandem.

The pi network as shown in fig. 7 for additional harmonic attenuation. In actual practice C2 and C3 are combined into one capacitor so the circuit used in the transmitter is like that shown in fig. 4.

In the pi-L network, the input pi
section transforms the plate load impedance to some lower figure, such as 300 ohms; this is often called the image impedance. The final L network transforms the image impedance down to 50 ohms to match the antenna.

From eq. 6 it can be seen that with an image impedance of 300 ohms and a Q of 12, the pi network has a maximum transformation of 43500 ohms. Using 70% of the maximum possible transformation as a practical maximum, as noted before, results in a maximum practical input impedance of 30500 ohms with a Q of 12. This is far in excess of what you will ever need in a power amplifier designed for amateur service.

The image impedance usually falls in the range between 200 and 400 ohms. It is selected for good harmonic attenuation, as well as balance in the T section of the pi-L network and reasonable component values for the capacitors and inductors. If the image impedance is too high, the tuning capacitor (C1) will be too small on 10 and 15 meters, and the two inductors will be very large. Large inductors, of course, increase circulating currents which result in higher losses due to heat.

\[Q_p = \frac{Z_p}{X} \]

Q vs frequency

The loaded Q of a pi network (or any tank circuit, for that matter) is equal to its parallel-resonant impedance divided by either the inductive or capacitive reactance of the network. The resonant impedance because the pi network is designed to match the tube operating conditions.

The reactance of any inductor is directly proportional to frequency, increasing as the frequency increases. Therefore, from eq. 8 it can be seen that if a particular inductor is used, loaded Q will vary inversely with frequency. As the frequency is lowered, for example, Q is raised a proportionate amount. With this in mind, it is easy to determine the Q for a given network on a different frequency from the following formula:

\[\frac{f_1}{f_2} \approx \frac{Q_2}{Q_1} \]

Where \(f_1 \) and \(Q_1 \) are the frequency and Q at one frequency, and \(f_2 \) and \(Q_2 \) are at the second, different frequency.

For example, if an 80-meter pi network has a Q of 12 at 4.0 MHz, what is the Q at 3.5 MHz?

\[\frac{4.0}{3.5} = \frac{Q_2}{12} \]

\[Q_2 = 13.7 \]

Although the actual loaded Q is somewhat dependent upon the value of plate load impedance used in the circuit, this approximation is accurate within 1%. In the above example, with a plate load impedance of 3000 ohms, \(Q_2 \) would actually be 13.84.

Since the Q of the network goes up as

<table>
<thead>
<tr>
<th>input power (W)</th>
<th>V</th>
<th>mA</th>
<th>plate impedance (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2000</td>
<td>500</td>
<td>2546</td>
</tr>
<tr>
<td>2000</td>
<td>2000</td>
<td>1000</td>
<td>1273</td>
</tr>
<tr>
<td>2500</td>
<td>2000</td>
<td>1250</td>
<td>1019</td>
</tr>
<tr>
<td>1000</td>
<td>2500</td>
<td>400</td>
<td>3979</td>
</tr>
<tr>
<td>2000</td>
<td>2500</td>
<td>800</td>
<td>1989</td>
</tr>
<tr>
<td>2500</td>
<td>2500</td>
<td>1000</td>
<td>1592</td>
</tr>
<tr>
<td>1000</td>
<td>2800</td>
<td>357</td>
<td>4912</td>
</tr>
<tr>
<td>2000</td>
<td>2800</td>
<td>714</td>
<td>2496</td>
</tr>
<tr>
<td>2500</td>
<td>2800</td>
<td>893</td>
<td>1996</td>
</tr>
<tr>
<td>1000</td>
<td>3300</td>
<td>303</td>
<td>6933</td>
</tr>
<tr>
<td>2000</td>
<td>3300</td>
<td>606</td>
<td>3466</td>
</tr>
<tr>
<td>2500</td>
<td>3300</td>
<td>758</td>
<td>2773</td>
</tr>
<tr>
<td>1000</td>
<td>4000</td>
<td>250</td>
<td>10186</td>
</tr>
<tr>
<td>2000</td>
<td>4000</td>
<td>500</td>
<td>5093</td>
</tr>
<tr>
<td>2500</td>
<td>4000</td>
<td>625</td>
<td>4074</td>
</tr>
<tr>
<td>1000</td>
<td>5000</td>
<td>200</td>
<td>15915</td>
</tr>
<tr>
<td>2000</td>
<td>5000</td>
<td>400</td>
<td>7958</td>
</tr>
<tr>
<td>2500</td>
<td>5000</td>
<td>500</td>
<td>6366</td>
</tr>
<tr>
<td>1000</td>
<td>6000</td>
<td>167</td>
<td>22918</td>
</tr>
<tr>
<td>2000</td>
<td>6000</td>
<td>333</td>
<td>11459</td>
</tr>
<tr>
<td>2500</td>
<td>6000</td>
<td>417</td>
<td>9167</td>
</tr>
</tbody>
</table>
the frequency goes down, it's a good idea to design the pi network for the highest frequency that is to be used. With this approach, when the same inductor is used at lower frequencies within an amateur band, Q increases somewhat, improving harmonic attenuation.

Table 2 shows how Q varies as a pi network is retuned to a different frequency (same inductor). Table 2A shows a pi network designed for 4.0 MHz which is retuned to 3.5 MHz; Q increases from 12 at 4.0 MHz to 13.8 at 3.5 MHz. The values of the tuning and loading capacitors are shown for comparison.

Table 2B shows the case where a pi network is designed for 3.5 MHz with a Q of 12 and retuned to 4.0 MHz (same inductor). The Q drops to 10.4, well below the selected minimum of 12.

network efficiency

As the loaded Q of a network is increased, efficiency goes down because of higher circulating currents and higher losses in the components. Approximate efficiency is given by

\[
\text{efficiency} = 100(1 - \frac{Q_L}{Q_U})
\]

where \(Q_L\) is the loaded circuit Q, and \(Q_U\) is the unloaded component Q. The graph in fig. 8 shows that efficiency is a linear function of loaded Q. For minimum loss, the loaded Q should be as low as convenient, while still providing adequate harmonic attenuation. This figure has arbitrarily been chosen as 12.

When the pi network is designed, the minimum Q of 12 can only be obtained at the upper frequency of each amateur band, and then only at the maximum input power level. For other frequencies or lower input powers, the loaded Q is higher than 12.

pi network design

Usually, when you are trying to design a pi network for your transmitter or linear amplifier, you must refer to graphs

table 2. Variations in Q as the resonant frequency of the pi network is changed (same inductor).

<table>
<thead>
<tr>
<th>frequency</th>
<th>plate impedance (ohms)</th>
<th>load impedance (ohms)</th>
<th>C1 (pF)</th>
<th>L1 (μH)</th>
<th>C2 (pF)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Decreasing</td>
<td>4.0 MHz</td>
<td>2500</td>
<td>50</td>
<td>191</td>
<td>9.18</td>
<td>1097</td>
</tr>
<tr>
<td></td>
<td>3.5 MHz</td>
<td>2500</td>
<td>50</td>
<td>252</td>
<td>9.18</td>
<td>1536</td>
</tr>
<tr>
<td>B. Increasing</td>
<td>3.5 MHz</td>
<td>2500</td>
<td>50</td>
<td>218</td>
<td>10.49</td>
<td>1254</td>
</tr>
<tr>
<td></td>
<td>4.0 MHz</td>
<td>2500</td>
<td>50</td>
<td>165</td>
<td>10.49</td>
<td>863</td>
</tr>
</tbody>
</table>
shown in reference books such as the ARRL "Radio Amateur's Handbook." These graphs are often somewhat confusing because you must first determine the
and then find the reactance of each of the plate load impedance, select a value of impedance is greater than about 5000 ohms, and most give vague refer-

values for each of the designs are calculated for within the 160-meter amateur band.

<table>
<thead>
<tr>
<th>Values</th>
<th>F</th>
<th>C1</th>
<th>L1</th>
<th>C2</th>
<th>R</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>1.8</td>
<td>117</td>
<td>7.94</td>
<td>5919</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>1700</td>
<td>1.8</td>
<td>102</td>
<td>7.25</td>
<td>4962</td>
<td>50</td>
<td>13.7</td>
</tr>
<tr>
<td>1600</td>
<td>2.0</td>
<td>955</td>
<td>7.46</td>
<td>5979</td>
<td>50</td>
<td>12.8</td>
</tr>
<tr>
<td>1500</td>
<td>2.0</td>
<td>949</td>
<td>7.21</td>
<td>4419</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>1400</td>
<td>2.0</td>
<td>949</td>
<td>7.22</td>
<td>5917</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>1300</td>
<td>2.0</td>
<td>764</td>
<td>6.74</td>
<td>5947</td>
<td>50</td>
<td>13.0</td>
</tr>
<tr>
<td>1200</td>
<td>1.9</td>
<td>741</td>
<td>6.47</td>
<td>5369</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>1100</td>
<td>1.9</td>
<td>708</td>
<td>6.18</td>
<td>5510</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>1000</td>
<td>1.9</td>
<td>631</td>
<td>5.69</td>
<td>5114</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>900</td>
<td>1.8</td>
<td>638</td>
<td>5.81</td>
<td>5113</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>800</td>
<td>1.7</td>
<td>617</td>
<td>5.22</td>
<td>5172</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>700</td>
<td>1.5</td>
<td>546</td>
<td>5.26</td>
<td>5202</td>
<td>50</td>
<td>12.6</td>
</tr>
<tr>
<td>600</td>
<td>1.4</td>
<td>593</td>
<td>4.94</td>
<td>5320</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>500</td>
<td>1.3</td>
<td>551</td>
<td>4.61</td>
<td>5561</td>
<td>50</td>
<td>13.5</td>
</tr>
<tr>
<td>400</td>
<td>1.2</td>
<td>477</td>
<td>4.15</td>
<td>5199</td>
<td>50</td>
<td>13.6</td>
</tr>
<tr>
<td>300</td>
<td>1.1</td>
<td>327</td>
<td>3.00</td>
<td>5576</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>200</td>
<td>1.0</td>
<td>420</td>
<td>2.59</td>
<td>5267</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>100</td>
<td>0.9</td>
<td>302</td>
<td>1.84</td>
<td>5104</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>50</td>
<td>0.8</td>
<td>435</td>
<td>1.56</td>
<td>5084</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>25</td>
<td>0.8</td>
<td>532</td>
<td>1.56</td>
<td>5194</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>12.5</td>
<td>0.8</td>
<td>452</td>
<td>1.05</td>
<td>5278</td>
<td>50</td>
<td>15.4</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>396</td>
<td>0.80</td>
<td>5235</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>6</td>
<td>0.7</td>
<td>347</td>
<td>0.56</td>
<td>5256</td>
<td>50</td>
<td>13.0</td>
</tr>
<tr>
<td>4</td>
<td>0.7</td>
<td>356</td>
<td>0.41</td>
<td>5215</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>354</td>
<td>0.71</td>
<td>5291</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>314</td>
<td>0.78</td>
<td>5094</td>
<td>50</td>
<td>14.2</td>
</tr>
<tr>
<td>1.5</td>
<td>0.7</td>
<td>365</td>
<td>0.31</td>
<td>5364</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>1.25</td>
<td>0.7</td>
<td>356</td>
<td>0.28</td>
<td>5442</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>394</td>
<td>0.19</td>
<td>4705</td>
<td>50</td>
<td>13.0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>333</td>
<td>0.16</td>
<td>4224</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>0.33</td>
<td>0.6</td>
<td>273</td>
<td>0.19</td>
<td>4167</td>
<td>50</td>
<td>13.0</td>
</tr>
<tr>
<td>0.25</td>
<td>0.6</td>
<td>316</td>
<td>0.37</td>
<td>4234</td>
<td>50</td>
<td>12.4</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6</td>
<td>285</td>
<td>0.32</td>
<td>4061</td>
<td>50</td>
<td>12.9</td>
</tr>
<tr>
<td>0.15</td>
<td>0.6</td>
<td>255</td>
<td>0.30</td>
<td>4081</td>
<td>50</td>
<td>12.9</td>
</tr>
<tr>
<td>0.1</td>
<td>0.6</td>
<td>246</td>
<td>0.29</td>
<td>4098</td>
<td>50</td>
<td>12.8</td>
</tr>
<tr>
<td>0.09</td>
<td>0.5</td>
<td>250</td>
<td>0.29</td>
<td>4090</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>0.08</td>
<td>0.5</td>
<td>225</td>
<td>0.25</td>
<td>4257</td>
<td>50</td>
<td>12.7</td>
</tr>
<tr>
<td>0.05</td>
<td>0.4</td>
<td>264</td>
<td>0.19</td>
<td>3779</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>0.03</td>
<td>0.3</td>
<td>236</td>
<td>0.14</td>
<td>3493</td>
<td>50</td>
<td>13.7</td>
</tr>
<tr>
<td>0.02</td>
<td>0.2</td>
<td>212</td>
<td>0.15</td>
<td>3444</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>0.01</td>
<td>0.2</td>
<td>259</td>
<td>0.33</td>
<td>3664</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>0.005</td>
<td>0.2</td>
<td>224</td>
<td>0.26</td>
<td>3393</td>
<td>50</td>
<td>13.3</td>
</tr>
<tr>
<td>0.001</td>
<td>0.2</td>
<td>291</td>
<td>0.17</td>
<td>3155</td>
<td>50</td>
<td>13.5</td>
</tr>
<tr>
<td>0.005</td>
<td>0.1</td>
<td>257</td>
<td>0.46</td>
<td>3195</td>
<td>50</td>
<td>13.4</td>
</tr>
<tr>
<td>0.001</td>
<td>0.1</td>
<td>212</td>
<td>0.37</td>
<td>3115</td>
<td>50</td>
<td>15.7</td>
</tr>
<tr>
<td>0.0005</td>
<td>0.1</td>
<td>191</td>
<td>0.37</td>
<td>3177</td>
<td>50</td>
<td>15.8</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.1</td>
<td>293</td>
<td>0.01</td>
<td>3166</td>
<td>50</td>
<td>15.7</td>
</tr>
<tr>
<td>0.0005</td>
<td>0.1</td>
<td>281</td>
<td>0.13</td>
<td>3108</td>
<td>50</td>
<td>15.8</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.1</td>
<td>281</td>
<td>0.13</td>
<td>3106</td>
<td>50</td>
<td>15.8</td>
</tr>
<tr>
<td>0.00005</td>
<td>0.0</td>
<td>282</td>
<td>0.01</td>
<td>3159</td>
<td>50</td>
<td>16.3</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.0</td>
<td>257</td>
<td>0.01</td>
<td>3177</td>
<td>50</td>
<td>16.8</td>
</tr>
<tr>
<td>0.000005</td>
<td>0.0</td>
<td>177</td>
<td>0.01</td>
<td>3142</td>
<td>50</td>
<td>12.8</td>
</tr>
<tr>
<td>0.000001</td>
<td>0.0</td>
<td>615</td>
<td>0.38</td>
<td>3167</td>
<td>50</td>
<td>15.4</td>
</tr>
<tr>
<td>0.0000005</td>
<td>0.0</td>
<td>193</td>
<td>0.28</td>
<td>3128</td>
<td>50</td>
<td>15.1</td>
</tr>
<tr>
<td>0.00000015</td>
<td>0.0</td>
<td>173</td>
<td>0.18</td>
<td>3162</td>
<td>50</td>
<td>15.1</td>
</tr>
<tr>
<td>0.0000001</td>
<td>0.0</td>
<td>211</td>
<td>0.11</td>
<td>3167</td>
<td>50</td>
<td>14.9</td>
</tr>
<tr>
<td>0.00000005</td>
<td>0.0</td>
<td>189</td>
<td>0.09</td>
<td>3109</td>
<td>50</td>
<td>14.1</td>
</tr>
<tr>
<td>0.00000001</td>
<td>0.0</td>
<td>178</td>
<td>0.08</td>
<td>3142</td>
<td>50</td>
<td>13.0</td>
</tr>
</tbody>
</table>

plate load impedance, select a value of Q, and then find the reactance of each of the components. Then you must locate yet another graph to convert these reactance values into actual values of inductance and capacitance. Few of these charts and graphs are extended above plate load impedances of 5000 ohms, and most give vague reference to the fact that if the plate load impedance is greater than about 5000 ohms, the Q should be increased.

The charts in table 3 and table 4 are computer derived and offer all the required information to build a practical pi network. The pi networks in table 3 for plate load impedances above 5000 ohms have increasing Q so that the transformation ratio never exceeds the 70% maximum. In addition, the inductors chosen for each of the designs are calculated for the highest frequency in the band.
Table 4A. PI-L network component values for matching a 50-ohm antenna load. Values have been chosen for a Q of 12 at the top edge of each amateur band. The image impedance (R3) has been chosen to provide a balanced transformation in the T section of the PI-L network. R1 is the plate load impedance.

<table>
<thead>
<tr>
<th>R1</th>
<th>C1</th>
<th>L1</th>
<th>C2</th>
<th>L2</th>
<th>R2</th>
<th>R3</th>
<th>Q'</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>C1</td>
<td>L1</td>
<td>C2</td>
<td>L2</td>
<td>R2</td>
<td>R3</td>
<td>Q'</td>
</tr>
<tr>
<td>4000</td>
<td>5.5</td>
<td>152</td>
<td>16.47</td>
<td>593</td>
<td>4.45</td>
<td>241</td>
<td>59</td>
</tr>
<tr>
<td>4000</td>
<td>7.8</td>
<td>71</td>
<td>9.12</td>
<td>255</td>
<td>2.44</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>4000</td>
<td>14.0</td>
<td>55</td>
<td>4.45</td>
<td>123</td>
<td>1.24</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>4000</td>
<td>21.0</td>
<td>17</td>
<td>1.74</td>
<td>60</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>4000</td>
<td>29.7</td>
<td>16</td>
<td>2.44</td>
<td>56</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>5000</td>
<td>5.5</td>
<td>122</td>
<td>28.57</td>
<td>593</td>
<td>4.45</td>
<td>241</td>
<td>59</td>
</tr>
<tr>
<td>5000</td>
<td>7.8</td>
<td>71</td>
<td>11.13</td>
<td>255</td>
<td>2.44</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>5000</td>
<td>14.0</td>
<td>55</td>
<td>5.46</td>
<td>192</td>
<td>1.24</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>5000</td>
<td>21.0</td>
<td>17</td>
<td>1.74</td>
<td>60</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>5000</td>
<td>29.7</td>
<td>16</td>
<td>2.44</td>
<td>56</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>6000</td>
<td>5.5</td>
<td>111</td>
<td>22.31</td>
<td>496</td>
<td>4.45</td>
<td>241</td>
<td>59</td>
</tr>
<tr>
<td>6000</td>
<td>7.8</td>
<td>71</td>
<td>12.12</td>
<td>213</td>
<td>2.44</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>6000</td>
<td>14.0</td>
<td>55</td>
<td>5.55</td>
<td>192</td>
<td>1.24</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>6000</td>
<td>21.0</td>
<td>17</td>
<td>1.74</td>
<td>60</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>6000</td>
<td>29.7</td>
<td>16</td>
<td>2.44</td>
<td>56</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>7000</td>
<td>5.5</td>
<td>137</td>
<td>24.03</td>
<td>496</td>
<td>4.45</td>
<td>241</td>
<td>59</td>
</tr>
<tr>
<td>7000</td>
<td>7.8</td>
<td>47</td>
<td>13.11</td>
<td>281</td>
<td>2.44</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>7000</td>
<td>14.0</td>
<td>25</td>
<td>6.98</td>
<td>98</td>
<td>1.24</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>7000</td>
<td>21.0</td>
<td>11</td>
<td>3.22</td>
<td>45</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
<tr>
<td>7000</td>
<td>29.7</td>
<td>7.8</td>
<td>4.45</td>
<td>45</td>
<td>0.60</td>
<td>281</td>
<td>59</td>
</tr>
</tbody>
</table>

The Q of the network at the highest frequency is 12 except when the plate load impedance is greater than 5075 ohms. The chart shows the capacitance values required to resonate the network to the lowest frequency in the band (maximum capacitance), as well as the operating Q at that frequency. In table 4, the image impedance (R3) at the lower frequency is also given.
<table>
<thead>
<tr>
<th>band</th>
<th>turns</th>
<th>approximate inductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>11,000</td>
<td>4.43 μH</td>
</tr>
<tr>
<td>40</td>
<td>7,125</td>
<td>2.43 μH</td>
</tr>
<tr>
<td>20</td>
<td>4,5000</td>
<td>1.23 μH</td>
</tr>
<tr>
<td>15</td>
<td>3,500</td>
<td>0.83 μH</td>
</tr>
<tr>
<td>12.75</td>
<td>2,875</td>
<td>0.60 μH</td>
</tr>
</tbody>
</table>

You will notice that the Q of the Pi-L network does not go up as fast when frequency is lowered as it does with the pi network. Also, the Q remains the same for the Pi-L for higher plate loads.

In both table 3 and table 4 the...
numbers for ten meters are for 29.7 MHz, the highest frequency in the band. This is because you need to know minimum capacitance values to reach this frequency in a five-band transmitter.

effect of swr
A standing-wave ratio of 4:1 will affect the capacitance required at C1 by ±10%, and at C2 by ±25%. If the swr is caused by capacitive reactance, the tuning and loading capacitors are on the smaller side, and if the swr is the result of inductive reactance, the loading and tuning capacitors must be larger. Keep this in mind when selecting component values for a transmitter so you will be able to compensate for an antenna that is not exactly matched to your transmission line.

ssb and CW operation
Table 1 shows that for a given plate supply voltage the plate load impedance is inversely proportional to the input power level. That is, 1000 watts at 2800 volts represents 5000 ohms, while 2 kW at the same supply voltage is 2500 ohms. Pi network values for a Q of 12 for each of these impedances are shown below (capacitance in pF, inductance in µH):

<table>
<thead>
<tr>
<th>f (MHz)</th>
<th>R1 (kΩ)</th>
<th>C1 (pF)</th>
<th>L1 (µH)</th>
<th>C2 (pF)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>2500</td>
<td>91</td>
<td>1.18</td>
<td>1097</td>
<td>12.0</td>
</tr>
<tr>
<td>4.0</td>
<td>5000</td>
<td>95</td>
<td>17.38</td>
<td>534</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Note that the required inductance values are quite different.

As an example of what you may expect under actual operating conditions, consider the 2-kW design above (9.18 µH inductor). At 3.5 MHz with 2 kW input, C1 is 252 pF, C2 is 1536 pF and Q is 13.8; not too bad. However, if the input power is reduced to 1000 watts at 3.5 MHz, C1 is 246 pF, C2 is 2287 pF, and Q reaches 27.0, increasing the circulating currents and heat losses in the network.

These figures point out the problems you can run into when you use the same operating voltage and same inductor at different power levels. Fortunately, there are several things which the designer can do to minimize these problems.

variable inductors
There are various variable rotary inductors available on the market which allow the operator to select the proper inductance for 1000 watts CW at the bottom of a band as well as 2000 watts PEP ssb at the top. When compared to fixed inductors, these variable units are fairly expensive, and require a turns counter, further increasing cost. However, they are available in various inductance and current-carrying abilities, so they encompass practically any design requirement. Also, using a variable inductor eliminates the need for a bandswitch.

bandswitch
The primary purpose of the bandswitch is to change the tap on the tank-circuit inductor to one better suited for the band in use. However, there are several other important functions for the bandswitch:

1. Used to switch input networks to match the 50-ohm output of the exciter.
2. Changes taps on the second inductor in a pi-L network.
3. Sometimes used to switch in additional tuning/loading capacitance on the 80-meter band so smaller variable capacitors may be used in the circuit.

Since you may wish to use a bandswitch in your power amplifier because of these additional uses, the variable inductor may lose some of its appeal.

tapping the inductor
In a novel approach to this problem a ten-position bandswitch has been used in

*A large selection of variable inductors is available from the E. F. Johnson Company, 1848 10th Avenue, SW, Waseca, Minnesota 56093.

†A good source for excellent high voltage bandswitches and variable capacitors is James Millen Manufacturing Company, 150 Exchange Street, Malden, Massachusetts 02148. Millen, unlike some manufacturers, is glad to sell to amateurs in unit quantities.
one design to select different amounts of inductance for the CW and ssb ends of the band. However, the additional switch leads and the large number of inductor taps makes this approach seem impractical for the typical home builder.

Table 5 compares the performance of 1000- and 2000-watt transmitters, as well as a 2000-watt transmitter run at 1000 watts input. In the latter case some additional losses are evident, but they're hardly large enough to cause much excitement. The same comparison shows that the 2-kW transmitter with a Q of 12 at 4 MHz, has a Q of 16.2 at 3.0 MHz. However, considerably more capacitance is required at C1 and C2. The pi-L network will alleviate this problem to some extent as the Q of the pi-L does not increase as rapidly as frequency is lowered as it does with the straight pi network.

Since the 80-meter band is proportionally wider than any other high-frequency amateur band, there is some merit in using an extra bandswitch position for 80 meters. While I have shown previously that this is not required, it would be beneficial because you could select the 75-meter inductor for 4 MHz and 2-kW input, with the 80-meter inductor chosen for 3.7 MHz and 1-kW input.

The primary advantage in such an arrangement would be the ability to add a second input network to match the exciter. Since the input networks have low Q (typically 2 to 3), they are quite broadband and are usually set to a frequency in the middle of the band. However, it would be literally impossible for the same input network to work equally well on both 3.5 and 4.0 MHz, so it would be desirable to have one for each end of the band. From a practical standpoint, this might not be necessary because most operators have ample drive on CW if they are able to push the final to 2-kW PEP on ssb.

table 5. Comparisons between a 1-kW transmitter, a 2-kW transmitter and the 2-kW transmitter operated at 1-kW input. A frequency of 4 MHz was used, but other frequencies from 3 to 30 MHz should produce comparable results. (These calculations are computer derived for comparative purposes and only approximate actual operating conditions.)

<table>
<thead>
<tr>
<th></th>
<th>1 kW</th>
<th>2 kW</th>
<th>2 kW on 2-kW transmitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate voltage</td>
<td>2800</td>
<td>2800</td>
<td>2800 volts</td>
</tr>
<tr>
<td>Plate current</td>
<td>357</td>
<td>714</td>
<td>357 mA</td>
</tr>
<tr>
<td>Plate load impedance</td>
<td>5000</td>
<td>2500</td>
<td>5000 Ohms</td>
</tr>
<tr>
<td>Power input</td>
<td>1000</td>
<td>2000</td>
<td>1000 watts</td>
</tr>
<tr>
<td>Tube output (typical)</td>
<td>700</td>
<td>1400</td>
<td>700 watts</td>
</tr>
<tr>
<td>Power at antenna</td>
<td>672</td>
<td>1343</td>
<td>647 watts</td>
</tr>
<tr>
<td>Transmitter efficiency</td>
<td>67.2</td>
<td>67.1</td>
<td>64.7 percent</td>
</tr>
<tr>
<td>Network efficiency</td>
<td>96.0</td>
<td>95.9</td>
<td>92.5 percent</td>
</tr>
<tr>
<td>Lost in L1 (heat)</td>
<td>27.9</td>
<td>56.9</td>
<td>52.6 watts</td>
</tr>
<tr>
<td>Circuit Q</td>
<td>12</td>
<td>12</td>
<td>23.6</td>
</tr>
<tr>
<td>Inductor Q (typical)</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Frequency</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0 MHz</td>
</tr>
<tr>
<td>Antenna load</td>
<td>50</td>
<td>50</td>
<td>50 Ohms</td>
</tr>
<tr>
<td>C1 tuning capacitor</td>
<td>95.5</td>
<td>191.0</td>
<td>187.8 pF</td>
</tr>
<tr>
<td>L1 inductor</td>
<td>17.38</td>
<td>9.18</td>
<td>9.18 µH</td>
</tr>
<tr>
<td>C2 loading capacitor</td>
<td>533.8</td>
<td>1096.9</td>
<td>1703.0 pF</td>
</tr>
<tr>
<td>C1 reactance</td>
<td>416.7</td>
<td>208.3</td>
<td>211.9 ohms</td>
</tr>
<tr>
<td>L1 reactance</td>
<td>436.9</td>
<td>230.7</td>
<td>230.7 ohms</td>
</tr>
<tr>
<td>C2 reactance</td>
<td>74.5</td>
<td>36.3</td>
<td>23.4 ohms</td>
</tr>
<tr>
<td>Current in C1</td>
<td>4.49</td>
<td>8.98</td>
<td>8.83 amps</td>
</tr>
<tr>
<td>Current in L1</td>
<td>4.73</td>
<td>9.29</td>
<td>8.93 amps</td>
</tr>
<tr>
<td>Current in C2</td>
<td>2.46</td>
<td>7.14</td>
<td>7.70 amps</td>
</tr>
<tr>
<td>Voltage across C1</td>
<td>2645.8</td>
<td>2645.8</td>
<td>2645.8 peak volts</td>
</tr>
<tr>
<td>Voltage across C2</td>
<td>259.2</td>
<td>366.5</td>
<td>254.4 peak volts</td>
</tr>
<tr>
<td>Voltage on antenna</td>
<td>183.3</td>
<td>259.1</td>
<td>179.9 rms volts</td>
</tr>
<tr>
<td>Current in antenna</td>
<td>3.67</td>
<td>5.18</td>
<td>3.60 amps</td>
</tr>
</tbody>
</table>

September 1972
power supply voltage

Since, as I just mentioned, most exciters have more than ample drive for 1000-watts input on CW if they are capable of driving the final to 2000-watts PEP on ssb, it's desirable to include some sort of automatic swamping so the exciter can be run in a normal manner for both ssb and CW. Lowering the plate supply voltage on the final-amplifier tubes decreases the plate load impedance required for a given input power level, therefore requiring more drive to reach this input power level.

For example, if it takes 70 watts drive with 3000 volts on the plate to reach 2000-watts input, then, depending upon the tubes used, it would take 70 to 80 watts drive to reach 1000 watts input with a substantially lower plate supply voltage. At the same time, the voltage-current relationship has changed, lowering the plate load impedance to something much closer to that which would give a Q of 12 with the same inductor.

Also, the plate voltage must be lowered to retain the same Q with the same inductor at the same operating frequency. This voltage reduction can be determined from

\[E_2 = 0.71 \times E_1 \]

where \(E_1 \) is the original plate voltage for 2000 watts input and \(E_2 \) is the lowered plate voltage for 1000 watts input. For example, a plate supply of 2800 volts for 2000 watts input must be changed to 2000 volts for 1000-watts input at the same operating frequency and circuit Q. Actually, on 3.5 MHz, this would be perhaps 1800 to 1900 volts to provide a Q of 12 at 3.5 MHz (1000 watts input) using a 2-kW transmitter designed for a Q of 12 at 4.0 MHz. However, it is unlikely that you could get 1000-watts input at this plate voltage, even with 100 watts drive on a cathode-driven grounded-grid amplifier.

tuning capacitance

Table 3 and table 4 show that the C1 tuning capacitance becomes quite small on 10 and 15 meters as the plate load impedance is raised. A typical 2000-watt transmitter might use 2800 volts on the plate, providing a plate load impedance of approximately 2500 ohms. This transmitter would require only 26 pF tuning capacitance to reach the top end of the 10-meter band.

Unfortunately, most modern rf power tubes designed for the 2000-watt level have output capacitances on the order of 10 pF — this leaves about 16 pF for tuning, including stray circuit capacitance.

If you study the various air-variable capacitors available you will find that it is virtually impossible to find a variable capacitor that will provide the necessary spacing for this operating voltage as well as tune the capacitance range needed for both 10 and 80 meters. Also, you must keep in mind that ±10% leeway should be provided to compensate for any swr on the transmission line.

As the plate load impedance increases, the situation becomes even more acute. A 1000-watt transmitter with a plate supply of 2800 volts has a plate load impedance of 5000 ohms — on ten meters this means the tuning capacitor C1 is a total of 13 pF. In this case you would probably have to delete C1 entirely from the circuit and let the capacitance of the power tube supply the necessary tuning capacitance. However, although this has been done, it is not practical.
Fortunately, there are several things you can do to help alleviate this situation. You can use a smaller capacitor and add fixed capacitance on 40 and 80 meters, or use two variable capacitors, switching in the larger one on the lower bands. The vacuum capacitor is another possibility because of its low minimum capacitance, often as low as 3 pF. You can also blunder ahead and use a too-large capacitor, allowing the Q to be higher than normal.

Oddly enough, each of these different techniques is currently being used in commercial amateur-band power amplifiers. The vacuum variable provides the best answer to this problem, but it is also the most expensive (by a wide margin). However, the vacuum variable has many advantages worth considering if you are more interested in performance than in total cost.

From table 6 you can see that the Q on ten meters goes up quite rapidly if too much capacitance is used at C1. One currently available commercial amplifier uses 2800 volts at 2-kW input (plate impedance, 2500 ohms). For ten meters this calls for an input capacitor of about 15 pF after the output capacitance of the tubes has been subtracted. However, this amplifier uses two 20-150 pF capacitors in parallel which are tuned in tandem with a geared arrangement. Thus, their minimum capacitance is about 40 pF, plus 10 pF added by the power tubes, providing a minimum input capacitance of more than 50 pF without any allowance for strays.

Table 6 shows that this gives a minimum Q of 24.0 at the top end of the ten-meter band (around 25.5 at the bottom end). If the amplifier were used at 1000-watts input, the Q would be nearly 48 at the top band edge and over 50 at the bottom!

This amplifier would obviously lose substantial power output in the form of heat in the tank inductor, and proper tuning would be very critical. It would also have to be retuned more often as frequency was changed.

This design is what I call the blunder-ahead method. In my mind, it would have been relatively simple for the manufacturer to use only one of the two tuning capacitors on 10, 15 and 20 meters, switching in the second tuning capacitor on 40 and 80.

Another manufacturer does precisely this. He uses a dual-section capacitor—half is used for the three upper bands and the other half is added in parallel on 40 and 80 meters. This provides normal Q for 2000 watts input on 10 meters. It still gives Q in excess of 20 with 1000-watts input, but that's really not too bad. This tuning system gives more than twice the vernier of the other system since the maximum capacitance on 20 meters, for example, is 120 pF. On the previous amplifier there is 300 pF available, even on 20 meters. The unit with the lower capacitance is far easier to tune on the upper three bands.

One other circuit trick which can be used quite successfully is to use a dual-section variable, placing the two sections in series rather than parallel. This reduces the minimum capacitance to 10 pF or less.

Broadband power amplifier

Many operators need special frequencies outside the five amateur bands for MARS or other purposes, and need a power amplifier which can be tuned up at any frequency in the range from 3.0 to 30 MHz. Table 7 shows a pi-network design that gives continuous frequency coverage in five switch positions. A pi-L network for similar use is shown in table 8. The pi-L is more broadband for a given Q variation, and requires substantially less output capacitance. Both designs are for 2000 watts input with a 2800-volt plate supply, or 1000-watts input at 2000 volts.

Component voltage ratings

To determine the peak voltage across C1 you can use the maximum dc plate voltage. This is not precisely correct, but it's close enough. Normally you would
increase the voltage by at least 30% when selecting a capacitor to prevent arcing if the tank circuit is not perfectly resonated, and to allow for some oxidation if you use an air variable.

There are several ways to determine peak voltage. If the power output is known at this point you can use eq. 12 to determine peak voltages:

$$E_{pk} = \sqrt{2PZ}$$ \hspace{1cm} (12)

where E_{pk} is the peak rf voltage, P is output power and Z is plate load impedance. For example, in a 1-kW transmitter with 2800 volts on the plate, the peak voltage across C1 and L1 is 2646 volts. (The power output of class-B stages may be estimated at 70% of the input power as this gives some margin of protection and is suitable for this purpose.)

The peak voltage on C2 can also be figured in a similar manner, except that Z in eq. 12 is the antenna load impedance. Power output may be estimated at 65% of the input. For example, if the output power is 650 watts (for a 1-kW amplifier), and the antenna load is 50 ohms, this represents approximately 254 peak volts across C2. Thus, for a 1000-watt transmitter, a 350-volt, 365-pF broadcast receiver type capacitor could be used successfully. For 2000 watts input at 2800 volts, the peak voltage across C2 would be 367 volts, and the broadcast-tuning capacitor would be too marginal.

In the pi-L network the image impedance must be used when calculating the peak voltage across capacitor C2, and the voltage rating must be substantially higher than for the same capacitor in the pi network. For example, in a 1-kW transmitter, the peak voltage across C2 is about 635 volts: for a 2000-watt amplifier the peak voltage is about 895 volts.

Component Current Ratings

The peak voltage across C1 has already been determined, but to find the current through C1, rms voltage is more useful. This can be found from eq. 13:

$$E_{rms} = \sqrt{PZ}$$ \hspace{1cm} (13)

where E_{rms} is the rms voltage, P is the output power and Z is the plate load impedance. In the previous example of the 1000-watt transmitter with a 2800-volt plate supply, the rms voltage across C1 is nearly 1870 volts.

To calculate the current through C1 you must first determine the reactance of C1 (eq. 14) and calculate its impedance (eq. 15). The current is found from eq. 16.

$$X_c = \frac{Z_p}{Q}$$ \hspace{1cm} (14)

$$Z_{C1} = \sqrt{R^2 + X_c^2}$$ \hspace{1cm} (15)

$$I = \frac{E_{rms}}{Z_{C1}}$$ \hspace{1cm} (16)

However, since the resistance of a high-quality air-variable capacitor is very small, less than 1 ohm, for all practical purposes the impedance of the capacitor is equal to its reactance. Therefore, the current can be found from

$$I = \frac{E_{rms}}{X_{C1}}$$ \hspace{1cm} (17)
As you can see in table 5, the current through C1 is much higher than you might think, with nearly 4.5 amperes flowing through C1 in the 1000-watt transmitter with 2800 volts on the plate. Most air variables and vacuum capacitors can handle this current easily, but you still must be careful when selecting fixed capacitors to pad the variables. Transmitting-type capacitors with high Q and good current-carrying capability are required (such as the Centralab 850 series).

The current through C2 can also be determined with eq. 17. However, when calculating the rms voltage across C2 the antenna load impedance must be used in eq. 13. Again, there is substantial current flowing through C2 — nearly 2.5 amperes in the 1000-watt transmitter.

For all practical purposes, the current through inductor L1 is equal to that through C1. It is actually a little higher, and the following formula is reasonably correct for class B:

$$I_{cc} = 1.05 O_o I_p$$ \hspace{1cm} (18)

where I_{cc} is the circulating current, O_o is loaded circuit Q and I_p is the indicated plate current. Eq. 18 is a close approximation that compares favorably with answers derived from using complex vector analysis of reactive components used in rf circuits at resonance.

inductor power loss

To determine heat losses in the inductor, it is necessary to know the rf resistance of the inductor. Then you can use eq. 19 to find power loss.

$$P = I^2 r$$ \hspace{1cm} (19)

where I is the circulating current and r is the rf resistance.

To minimize these losses, the inductor should be silver plated, as should all leads to the bandswitch. Power losses on the order of 30 to 100 watts are not unusual, even with low standing-wave ratios. The use of tubing is encouraged, particularly on the higher frequencies to provide better unloaded Q.

table 8. Pi-L network component values for a broadband 3-30 MHz rf power amplifier matching a 50-ohm antenna load.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Number of Turns</th>
<th>Approximate Inductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0-5.0 MHz</td>
<td>10.00</td>
<td>3.90 \mu H</td>
</tr>
<tr>
<td>5.0-8.5 MHz</td>
<td>6.75</td>
<td>2.25 \mu H</td>
</tr>
<tr>
<td>8.5-14.4 MHz</td>
<td>4.75</td>
<td>1.33 \mu H</td>
</tr>
<tr>
<td>13.5-22.0 MHz</td>
<td>3.50</td>
<td>0.83 \mu H</td>
</tr>
<tr>
<td>20.0-30.0 MHz</td>
<td>3.00</td>
<td>0.65 \mu H</td>
</tr>
</tbody>
</table>

A suitable inductor for the L section of the pi-L network consists of two inches of Air-Dux 1606T (6 turns-per-inch, no. 14, 2" diameter). It should be placed at right angles to the main pi inductor to avoid mutual inductance.

It may come as a surprise to find that the conductivity of silver is only slightly superior to that of copper. In fact, a silver-plated coil is little more efficient than a new tank coil made of copper. Copper, however, oxidizes, and the outer rf-current-carrying layer becomes less effective. On the other hand, silver develops a form of silver sulfide on its outer surface which barely affects its conductivity. Over a period of years the silver-plated coil will retain most of its original conductivity.

safety

An rf choke should be used at the antenna output of any pi or pi-L net-
work. This choke should be large enough to blow the overload relay (or fuse) in the high-voltage power supply if the dc blocking capacitor should short out. This is the only backup protection you have to keep high dc voltage off the pi-network components if the blocking capacitor shorts out. This rf choke also keeps any dc component off the antenna.

RTTY and ssb

Many amateurs are interested in RTTY as well as CW and ssb. Since RTTY is essentially 100% key down, it's quite hard on the various components in the transmitter. On ssb, the typical duty factor is 30% to 50%, depending on how much ALC and other compression you use. Typically, however, the average circulating current in the network is perhaps one-third of that for key-down operation.

Table 5 shows that 2000-watts key-down gives comparable circulating currents to that of the same transmitter run at 1000-watts key-down with the same plate voltage and same inductor. This is due to the higher Q that is being used. Because of the lower duty cycle of ssb, running a 2000-watt transmitter key-down at 1000 watts for RTTY is three times as hard on the transmitter as running 2000-watts PEP! This is rather startling, and indicates why some rf power amplifiers should not be used on RTTY, although they are perfectly suitable for ssb at higher input power levels.

Conversely, it follows that if a manufacturer guarantees his unit to run indefinitely at 1000-watts key-down RTTY, that same transmitter should last forever at 2000-watts PEP ssb. Some manufacturers hedge if this specific question is posed to them.

summary

Using a 2000-watt rf power amplifier at the 1000-watt level for RTTY or CW poses certain inherent problems regarding heat and efficiency. High plate supply voltages raise the plate load impedance to the point where it may be difficult to get the minimum capacitance required for resonance on 10 and 15 meters.

When building a high-power final amplifier, consideration must be given to selecting components which will handle the voltage and currents encountered in the circuit. The formulas given in this article should make it relatively easy for the builder to predict what these voltages and circulating currents will be before he actually builds the amplifier.

Computer-derived tables provide much data for the builder, and clarify many design points only hinted at in previous articles. I hope that the information presented here will be of benefit to anyone who builds or buys a final rf power amplifier.

acknowledgements

Many people are interested in pi and pi-L networks, and have been of direct assistance. Providing particular assistance was Bob Sutherland, W6UOV, of EIMAC. I also spent a great deal of time reading articles written by George Grammer, W1DF, former technical editor of QST. His work in this field, and his series of three articles in QST represent an outstanding contribution. Bill Craig, WB4FPK, was most helpful, as was Garey Barrell, K4OAH. Bill Carver, K6OLG, also provided stimulating comments.

The Computer Terminal Corporation of San Antonio, Texas, provided over 100 hours of computer terminal time which was invaluable in this project.

references

CW or RTTY, whichever way you go,

HAL HAS TOP QUALITY YOU CAN AFFORD!

TOP QUALITY RTTY...WITH THE HAL MAINLINE ST-6 TU. Only 7 HAL circuit boards (drilled G10 glass) for all features, plug-in IC sockets, and custom Thordarson transformer for both supplies, 115/230 V, 50-60 Hz. Kit without cabinet, only $135.00; screened, punched cabinet with pre-drilled connector rails, $35.00; boards and complete manual, $19.50; wired and tested units, only $280.00 (with AK-1, $320.00).*

OTHER HAL PRODUCTS INCLUDE:
- ID-1 Repeater Identifier (wired circuit board) ... $75.00*
- ID-1 (completely assembled in 1½" rack cabinet) $115.00*
- HAL ARRL FM Transmitter Kit ... $50.00*
- W3FFG SSTV Converter Kit ... $55.00*
- Mainline ST-5 TU Kit ... $50.00*
- Mainline AK-1 AFSK Kit ... $27.50*

NEW FROM HAL—TOP QUALITY RVD-1002 RTTY VIDEO DISPLAY UNIT. Revolutionary approach to amateur RTTY...provides visual display of received RTTY signal from any TU, at four speeds (60, 66, 75, and 100 WPM), using a TV receiver modified for video monitoring. Panasonic solid-state TV receiver/monitor, or monitor only, available. Complete, $525.00; Panasonic TV receiver/monitor, $160.00; monitor only, $140.00.*

TOP QUALITY...WITH THE HAL 1550 ELECTRONIC KEYER. Designed for easy operation; perfectly timed CW with optional automatic ID for sending call letters, great for DX and RTTY; TTL circuitry, transistor switching for grid block, cathode keying. Handsome rugged crackle cabinet with brushed aluminum panel. With ID, only $90.00; without ID, $65.00.*

TOP QUALITY...WITH THE HAL MKB-1 MORSE KEYBOARD. As easy as typing a letter—you get automatic CW with variable speed and weight, internal audio oscillator with volume and tone controls, internal speaker, and audio output jack. Smooth operation; completely solid-state, TTL circuitry using G10 glass boards, regulated power supplies, and high voltage transistor switch. Optional automatic ID available. Assembled MKB-1, $275.00; in kit form, $175.00.*

HAL COMMUNICATIONS CORP., Box 365 H, Urbana, Illinois 61801

*Above prices do not include shipping costs. Please add 75¢ on parts orders, $2.00 on larger kits. Shipping via UPS whenever possible; therefore, street address required.
quick and easy
speaker driver module

A compact, high-output, low distortion audio module provides an easy short-cut in the design of solid-state receivers and mobile equipment.

First introduced by Bendix a few years ago, the BHA-0001, BHA-0002 and BHA-0004 hybrid solid-state audio amplifier modules provide two watts, fifteen watts and five watts of audio output, respectively, to drive a 3.2-ohm speaker from a low-level, high impedance audio source. The 1972 Allied Radio Industrial Catalog lists these as “amazing space-age microcircuit modules each containing a complete audio amplifier, employing the latest thick-film construction and requiring fewer external components than monolithic partial amplifiers. Its simplicity permits easy assembly in less than one hour, even for those with semi-technical skills, thus saving endless hours of needless drudgery.” For those who have played with the typical complementary symmetry amplifier, as I have, you will be surprised to find out that you can place one of these devices down on a board with a few external capacitors and have your amplifier working within minutes without worrying about getting the bias and feedback figured out for that long string of dc-coupled transistors.

I decided to try the BHA-0004, which provides a good amount of audio output (five watts) for a mobile rig. The rather high price, ($18.80 in single lots) was discouraging when I first looked at the catalog, but you only live once. Built as a module separate from the rest of the...
receiver, you can use it over and over on new projects.

I started thinking about possible uses for the unit. The list seemed almost endless. The circuit can be terminated at the input with a 3-ohm resistor and used as an audio booster for mobile gear with flea-power output stages. It can be used to drive one car speaker with many different radios. Each radio is fed to the module input through low-resistance pads in place of the existing radio’s speaker. You can use it to drive an electronic siren or a speaker mounted under the hood of the car, or as the basis for an intercom system. Two of them make a stereo amplifier for an fm tuner. I have built quite a few fm receivers, using the circuit.

The equivalent circuit for the device is shown in fig. 1. It is very similar to a circuit once promoted by Motorola for use with discrete transistors, using the 2N4918 and 2N4921 complementary output transistors. Basically, the internal circuit of the BHA-0004 consists of dc-coupled transistors. Output transistors, Q4 and Q6, operate as class-B symmetrical amplifiers, driven by Q3 and Q5. C1 suppresses high-frequency oscillations. R9 and R10 limit the output current that can be drawn through Q4 and Q6 from the external load. CR1 and CR2, in conjunction with R8, provide the voltage drop required between the bases of Q3 and Q5 to prevent cross-over distortion.

![fig. 1. Equivalent internal circuit of the BHA-0004 audio amplifier, with external components added for understanding.](image)

Sprague ULN-2111A IC limiter/detector and I am now starting to use this audio amplifier as a standard external module for my new receivers. The level from one of the fm detector ICs is perfect for driving these speaker amplifiers. If the bases of Q3 and Q5 were tied directly together, the emitter-base forward turn-on voltage of the two transistors would provide about 0.7 volt of reverse bias to the transistors, causing distortion, especially at low signal levels.
R5 and R6 provide a dc voltage to the biasing circuit for Q5 and Q3.

The easiest way to visualize the coupling from Q2 to the Q3 and Q5 pair is to see Q2 as a variable resistance in the bottom leg of a voltage divider consisting of R5-R6-CR1-CR2-Q2. In this way, Q2 modulates the bias applied to both Q3 and Q5 and drives them. It is at this point, where Q2 drives complementary transistors Q3 and Q5 (opposite polarities), that the single-ended signal is split to push-pull for the output stage. R8 provides compensation over the turn-on curve of CR1 and CR2. C2 suppresses parasitic oscillations. R7 acts as a load for Q1, the input transistor, which is directly coupled to the base of Q2. R1 through R4 provide dc biasing for the entire string of transistors by establishing the current flow through Q1 at idle. A tap in the circuit between R1 and R2 allows an external capacitor to be connected to filter or decouple the bias circuit.

A tap between R3 and R4 and one between R5 and R6 allow external capacitors to be connected from the output back to the input of various stages. This feedback minimizes distortion and levels the frequency response. The input is ac coupled to the base of Q1, and the output is capacitively coupled to the load, usually a loudspeaker. The circuit is optimized for operation from the normal car battery voltage of 13.6 Vdc. Preset idle current and center voltage provides ideal operation over a wide range of load conditions. Notice the benefit of this circuit in not requiring an output transformer.

external circuitry

The external connections recommended by the manufacturer are shown in fig. 2. The values given were selected for hi-fi operation, though, and are undesirable for amateur use in communications circuits. If you want to operate the module for music reproduction, however, that is the route to take. The components shown also allow you to obtain full power output, but that was not a requirement in the design which follows. Specifications for the unit in this “hi-fi” setup are 5 watts output over the range 25 Hz to 15 kHz with an input of 20-mV rms. Distortion should be 1% or less.

Although the manufacturer states that...
no heat sink is required for full-power operation at room temperature, I think it would be a good idea to cement a few aluminum fins to the ceramic top of the module for protection. Remember that a replacement is expensive if you exceed the limits a little bit. The fine print with the device tells you to consider heat-sink-

![fig. 3. The modified circuit for compact packaging and communications work.](image)

ing for operation over two watts at elevated temperatures. The thing to remember is that the unit itself generates some heat, and that heat will raise the ambient temperature if the device is operated in a package which allows no air circulation — a common method of packaging solid-state mobile gear.

construction

The circuit as modified for use is shown in fig. 3. There are three reasons for the modifications: to reduce the size of the assembled circuit board, to restrict the frequency response to the communications range and to save the cost of unnecessary expensive parts. Basically, the values of all of the capacitors were reduced. An added component, a 0.1-mF capacitor from the B+ line to the output line prevents high-frequency oscillations found in one of the breadboard models.

With the circuit shown, the sensitivity is not quite as great as with the manufacturer's recommended circuit; however, it was felt to be adequate, especially in light of the high output normally available from the fm detectors in current use in IC receivers. The modified circuit provides four watts output over the 350- to 3500-Hz range with an input of 750-mV rms. No heat sink is required with this installation. The size of the circuit board, when assembled with the components in fig. 3, is approximately 2 1/8 x 3 1/4 x 1-inch high. This size works out nicely for mounting in many of the cases available to the home builder.

There are really no secrets or tricks used in construction of the assembled circuit board.* Fig. 4 shows the basic layout I used. The board layout was based on readily available parts, and spacing was set up to allow substitution if necessary. I replaced the resistor from pin 2 of the module to the 33-mF capacitor with a plain jumper. I found the resistor unnecessary. The only part at all out of the ordinary is the 150-mF capacitor, which is a vertically mounted type which happened to be available. A more standard tantalum type (for small size) can be mounted in its place, without increasing the size of the board, by mounting it vertically with one lead folded over the side of the capacitor.

*In conjunction with this article, a limited supply of completely assembled and tested assemblies are being made available for $19.50 postpaid. Contact Hamtronics Inc., 182 Belmont Road, Rochester, New York 14612. Please include remittance with order and allow two to three weeks for delivery.

![fig. 4. Suggested layout for a printed-circuit board (not to exact scale). The layout is very flexible and can be modified to suit the parts on hand.](image)
three-band
high-frequency
log-periodic antennas

These three-band wire-beam log periodics for 20, 15 and 10 meters are inexpensive, easy to build and provide excellent performance.

Log-periodic antennas offer a number of operating advantages to the amateur who wants consistent contacts over long distances. Although there are several commercial rotatable high-frequency log periodics available on the market, they are large and complex, and home construction of a rotatable L-P is impractical for the average amateur. However, the same performance can be obtained from a lightweight wire log periodic which is fixed in one direction.

The log periodics described in this article are wire beams, so they are low cost and easy to build. The log-periodic antenna shown in fig. 1 covers the frequency range from 14 to 30 MHz and can be used on the 10-, 15- and 20-meter bands. It can be erected in a 40- by 50-foot space and provides a minimum of 8-dB forward gain, a front-to-back ratio of 15 dB or more, and has low swr that is constant over each of the three amateur bands.

Although log periodics can be designed to cover a 10:1 frequency range, they are quite large. For this reason the antennas discussed in this article are limited to fixed, non-rotatable types for 20, 15 and 10 meters.

Since all details of log-periodic theory and design have been covered in previous articles, this data will not be repeated.
I have put up a number of fixed log periodics in various directions, and for different frequency ranges, including L-Ps for 20, 15 and 10; 20 and 15; 15 and 10, and a big brute for 40, 20 and 15. All the L-Ps installed so far have provided excellent on-the-air performance.

At my station these antennas are suspended from tall pine and cedar trees, with the elements 45 to 50 feet above ground. All were originally beamed south so I could evaluate their performance rapidly with the rather consistent band openings I have to South and Central America.

The log-periodic antenna illustrated in Fig. 1 has an apex angle of approximately 36° (a=18°). If you want higher forward gain, and if space is available, the design in Fig. 2 has a minimum gain of 10 dB for each of the three bands. However, its overall length is 100 feet. This antenna has been in use at my station for the past year, and has done an excellent job.

When operating on 20 meters, using an ordinary dipole (at the same height as the log periodics), reports from South and Central America average S8 to S9. When I switch to the log periodic the signal reports usually improve to 20 dB over S9. In most cases the S-meter in my receiver confirms this.

Although these reports seem to indicate gain greater than 10 dB, when compared to the dipole I use as a standard, some of the apparent gain is probably due to the lower radiation angle of the log periodic. Also, the theoretical gain of a log periodic is the result of line-of-sight tests on vhf and uhf antenna ranges, so they are not directly translatable to high-frequency performance.

If you check the specification sheets for commercial log-periodic antennas, you will find that the manufacturers rate their 12- and 13-element log periodics at 10 to 13.5 dB over average soil conditions. Front-to-back ratios are rated from 14 to 16 dB.

The lower radiation angle of the log periodic always results in higher performance than that predicted by theory, particularly on 20 meters. And, the longer the DX path, the greater the difference when compared with a dipole.

Operational tests on 15 and 10 meters have not been as outstanding as those on 20 meters, but most reports give at least a 10 dB advantage to the log periodic.

Reports off the back of the beam generally show a front-to-back ratio of at least 15 dB (also confirmed by my receiver S-meter). The front-to-back ratio is generally best on 20 meters, and slightly less on 15. The conditions on 10 meters have been too erratic to make good front-to-back signal-level comparisons.

One of the big operating advantages of the log periodic is the apparent diversity effect on receive. This is particularly noticeable during conditions of severe fading. Even signals coming in from the back of the antenna often have less fading when compared to a dipole. Evidently the large size (large capture area) of the log periodic provides this effect.

Since the log periodic is a broadband antenna it is well suited for operating on any frequency within the amateur bands it is designed for. The swr is low and nearly constant over the entire length of each band. Also, because of its broadband characteristics, there are no critical element or impedance-matching adjustments necessary after you put it up.

Theory

According to log-periodic theory, the longest rear element must be at least 5% longer than one-half wavelength at the lowest desired operating frequency. For example, if the lowest operating frequency is 14.0 MHz ($\frac{1}{2}\lambda=33.4$ feet), the rear element must be not less than 35 feet long (33.4 feet + 5%). This element would resonate at about 13.3 MHz.

The shortest front element should be 45% to 50% shorter than one-half wave-
length at the highest operating frequency. With 29.7 MHz as the upper frequency limit of the antenna, the front element should be resonant at 44.55 MHz minimum (29.7 MHz + 50%).

For these reasons, a log periodic designed for 20, 15 and 10 meters should have a low-frequency cutoff of 12 to 13 MHz; high-frequency cutoff should be at least 45 MHz.

The log-periodic antennas shown in figs. 1 and 2, since they have the same number of elements, cost about the same, $35.00. However, this does not include support masts or feedline. This is not too bad for an antenna which provides 10 dB gain and performs equally well over each of the three amateur bands, 20, 15 and 10.

If you don't have the space for one of these large antennas, you can reduce the size by eliminating one of the bands. For example, if 20-meter operation is not required, the three rearmost elements can be deleted. This leaves a 9-element log periodic that performs admirably on 15 and 10. The smaller, two-band antenna would only require a space about 25 feet wide by 35 feet long. You could even build a rotary log periodic for 15 and 10 meters on a 25-foot boom.

If 10-meter operation is not required, you can remove the three front elements, leaving 9 active elements for operation on 20 and 15. This reduces the length of the antenna by about 6½ feet.

construction

Since I use tall trees around my house to support the log periodics, weight must be kept to a minimum to gain maximum height. For the antenna elements, I use no. 15 aluminum electric fence wire which is available from Sears (catalog no. 13K22065). This wire is very inexpensive at $8.70 for ¼ mile of wire and is extremely light weight and easy to work. It has good strength and should also be suitable for rhombics and other long-wire antennas.

Connections to the aluminum wire are made by winding no. 16 or no. 18 tinned copper wire around the aluminum wire for about one inch. The junction is then

fig. 1. Three-band log-periodic antenna for 20, 15 and 10 meters provides approximately 10 dB forward gain.
covered with plastic electricians tape to keep out the rain and minimize electrolysis between the two dissimilar metals.

All the center insulators used in my log periodic were made from Lucite or Plexiglass sheet, 1/8- to 1/4-inch thick. After cutting and drilling, the center insulators cost about 20 cents each. These insulators are also used as spacers and stringers for the open-wire feeder which runs down the center of the log periodic. For the three-band log-periodics shown in fig. 1 and 2 you will need 12 center insulators.

The end insulators are made from monofilament fishing line (40 to 50 lb. test). At the rear element, however, if you use two rear masts, isolantite antenna insulators should be used at the ends of the elements because the strain at this point is quite high, and may exceed the rating of the monofilament.

The monofilament apparently provides more than adequate insulation for 1000-watt transmitters. YV5DLT has advised that he has experienced no breakdown problems when using his SB-220 linear at full output. The monofilament I used is Sears Catalog number 6KV32232 (40 lb. test), which is priced at $1.88 for a 325-yard spool.

Installation

The log periodic is suspended from the center with 3/16-inch nylon line (A in fig. 4) and two side catenary lines (C in fig. 4). The 3/16-inch, 800 pound test nylon line used for the A line carries most of the load and strain of the antenna, including the open-wire feeder and the center insulators.

Before installing the antenna, string the center nylon line through the 3/4-inch hole at the top of each of the 12 center insulators. After the insulators are on the line, stretch the line between two posts about 60 or 110 feet apart (depending which log periodic you are building). The line should be at shoulder height so it's easy to work on.

The first center insulator will support the longest element as well as the rear end of the center feeder. A knot is tied in the A line just in front of the insulator to keep it from slipping forward on the line. Make sure the other 11 insulators are on the other side of the knot.

Wrap several layers of masking tape around the nylon line to the rear of the first insulator. Leave a little space between the tape and the insulator so it hangs freely from the nylon line.
Now, using a steel tape, measure the spacing to the second insulator. Secure this insulator in place with several layers of tape around the line on each side of the insulator. Be sure to leave enough space between the tape layers so the tape or plastic tape, which often loosens up. The masking tape hardens and keeps the insulators in their correct position.

After the center insulators have been installed, assemble the parallel open-wire feeder by threading the two stranded wires (7/24 or equivalent) through the two number-2 holes in the center insulators. The parallel feeder wires are secured to the insulators with a few turns of no. 18 wire as shown in fig. 5.

The spacing of the center feeder does not appear to be critical. I have used spacings from 3/4 to 2 inches on different log periodics. Some of the commercial vhf-tv log periodics have center spacing up to 5 inches. No doubt this spacing could be used on high-frequency log periodic antennas, but the larger spacing would require more Lucite for the center insulators, and this would increase both cost and weight.

When the center feeder is in place, cut

fig. 4. The log-period wire beams are supported by three nylon lines: the center A line and the two C catenary side lines.
the 12 elements from a length of aluminum electric-fence wire using the dimensions shown in the illustrations. Make the elements slightly longer, so there is several inches of wire for attaching the monofilament end insulators, and at least 8 inches for attaching the center insulators and connecting to the center feeder. Every other element is transposed as shown in figs. 1 and 2.

Attach the 12 elements to the center insulators, starting at one end of the antenna and working toward the other. Leave the ends at the center disconnected for the time being. After all the elements are attached to the center insulators, install the monofilament end insulators.

The two B lines are simply longitudinal spacers to keep the elements parallel during assembly and at right angles to the center feeder. These lines can be 1/8-inch or smaller since they carry no load (number 18 nylon twine, 165 lb. test, is satisfactory, and inexpensive at $1.85 for a 500-foot spool). Next, the elements are attached to the two C bridles or catenary lines which take most of the side load. For the C lines, 1/8-inch nylon (375 to 500 lb. test) is suggested. This can be purchased at marine or hardware stores for about 3 cents per foot.

The center A line and the two C catenaries should be stretched tight, about 6 feet off the ground. When the catenaries are stretched into place they will appear as a large V, with the apex aimed in the desired operating direction. The A line should pass through the center of the V, bisecting it equilaterally.

By suspending the complete antenna between the same supports that will be used in the final installation, but at six feet above the ground, it is easy to adjust the tension of the elements from the ground.

The distance from the shortest element to the apex of the V should be 17.2 feet (fig. 1) or 31.1 feet (fig. 2). Less than this will allow the front element to sag too much.

Attach each of the elements to the catenaries with nylon twine, working from the shortest element to the longest. Use temporary knots, because it may be necessary to adjust the tension after all the elements are installed. Note that the six front elements usually fill the space between the B and C lines where the B line is adjacent to the C line.

Starting at element number 7, the C lines will require more and more separation to provide sufficient tension on the longer rear elements.

At this point it may be necessary to adjust the spacing between the end insulators and the C lines so there is as little element sag as possible, but don’t put too much strain on the nylon support lines. There will also be some fore and aft sag of the center A line due to the weight of the feeder, insulators and wire elements, but the antenna should now be starting to take shape.

center feed

The center feedline to each of the elements of the log periodic must be transposed as shown in figs. 1 and 2. I have tried two methods of doing this. On the antennas shown here each feeder is transposed 180° between each of the elements. This is the system usually used in the schematic representations of the log periodic.

With this method of feeding power to the elements, insulated wire must be used for the feeder. With high power, you might have problems with insulation.
breakdown. Bare wire can be used for the feeders, but insulated transposition blocks are required between elements, adding both weight and cost.

The second center feed method uses an open wire parallel feeder with criss-crossing wires to each of the elements as shown in fig. 6. This feed system is easier to build, and presents a neater appearance.

feedline

Most of the rotatable vhf and uhf log-periodic antennas previously described in the amateur radio magazines have used 50- or 72-ohm coaxial feedlines. However, a coaxial feedline is not suitable for the high-frequency log periodics described here because the cable is much too heavy. For these antennas, a light-weight feeder is required.

Normally, the log periodic is fed from the front (short-element) end. The input impedance at this point is about 30 to 35 ohms, as measured with an Omega Antenna Noise Bridge. I checked several different log-periodics with the Noise Bridge, and all fell into the 30- to 35-ohm range.

However, if the open center feed is extended to the apex, the input impedance increases to approximately 100 to 300 ohms. The open center feed operates as an impedance transformer, and at a point that is an odd number of wavelengths from the active elements on 20, 15 and 10 (20 meters, element 2; 15 meters, element 5; 10 meters, element 8) the input impedance remains fairly constant over each of the amateur bands. This point is within several feet of the apex.

Since the input impedance of the antenna depends upon feed point location, several possible transmission lines may be used. Since the input impedance at the front element is quite low, one of the best methods of feeding the antenna is with tuned open-wire feeders, with an antenna tuning unit between the coaxial output of the transmitter and the open-wire feed-line.

Although a coaxial feedline adds a great deal of weight to the antenna, and results in a sagging log periodic, it can be connected directly, through a balun, to the front-element feed point. Tests here, with RG-8/U coaxial cable, indicate a fairly good match on 20, 15 and 10. The standing-wave ratio on the 14-MHz band ranges from 1.1:1 to 1.3:1 from one end of the band to the other. On 21-MHz, the swr varies from 1.3:1 to 1.7:1, and on 28 MHz, the swr is from 2.0:1 up to 2.5:1.

The swr on 10 meters is somewhat higher than that on the two lower bands, but it is still within tolerable limits, and on-the-air tests on 10 meters indicate very good performance.

At my station neither the tuned open-wire feeder nor the coaxial cable were suitable for a permanent installation. Since I use trees to support the antenna, the weight of the coax cable caused the antenna to sag too much, and valuable height was lost. Also, several of these antennas are several hundred feet from the station, so the cost of coaxial feedline is prohibitive.

The long length of the feedline makes open-wire feeder impractical because of the large number of spacers to be in-

*When using the Antenna Noise Bridge, the frequency dip normally exhibited by a sharply tuned antenna is completely absent with a log periodic because of its broad-band operation.
stalled, and the amount of work required to install the transmission line.

For these reasons I tried 72- and 300-ohm tv twin-lead. I tried the 72-ohm twin-lead first, connecting it to the transmitter through a short section of coaxial cable. For minimum swr (at the transmitter) I had to prune the length of the 72-ohm feeder — by removing short lengths (about 1/8-wave at 28 MHz), and making swr measurements, I arrived at a feeder length which provided fairly low swr on each of the three bands. A 1:1 balun between the twin-lead and the coax input didn’t appear to make any difference.

When I tried out the 300-ohm twin-lead, connected near the apex, I used a 4:1 balun transformer between the twin-lead and the coax to my transmitter. This system worked quite well, and provided good performance on all bands. Although tv-type twin-lead will not handle a kilowatt, it is adequate for the 250 watts which I use. For higher power installations, transmitting-type 300-ohm twin-lead is available.

With the 300-ohm twin-lead feedline, the swr on 14.0 MHz was measured at 1.7:1, dropping to 1.5:1 at 14.2 MHz and 1.3:1 at 14.35 MHz. On 21.0 MHz the swr was 2.2:1, increasing to 2.5:1 at both 21.2 and 21.45 MHz. On ten meters, the swr was 2.2:1 at 28.0 MHz, dropping to 1.9:1 at 28.5 MHz, increasing to 2.1:1 at 29.0 MHz, and dropping again to 1.9:1 at 29.5 MHz. When plotted on a graph, these swr figures result in pretty flat performance over each of the three amateur bands.

summary

Since the forward lobe of the log periodic is generally broader than that of a Yagi, it is quite suitable as a fixed, non-rotatable, gain antenna. When my antenna farm is completed, I will be able to cover the United States and several continents with six three-band log-periodic antennas. Six dpdt relays will be used to connect the desired 300-ohm feeder to a 4:1 balun which is connected to the coaxial transmission line to the transmitter.

These light-weight log periodics have been very durable. One has been up for a year, with absolutely no trouble. Three were up last winter and withstood two bad ice storms; they sagged a bit with the ice load, but as soon as the ice melted, they returned to their normal height. They have also withstood a couple of twisters which passed a block away, snapping a number of tall pines.

If you like to build and test antennas, or are looking for DX and consistent contacts in a certain direction, I highly recommend the light-weight log periodics described here. At the present time I am working on two side-by-side log periodics pointing in the same direction. This should increase the gain by about 3 dB, to 13 dB for the two-antenna system.

I want to thank all those who have been helpful in giving reports and running tests on the log periodics, especially the Central and South American operators, for their patience and accurate reports. Special thanks goes to YV5DLT in Caracas for the many tests over the past year, and the nearly daily schedules during the design and testing of these antennas.

references

RTTY distortion:

causes and cures

Anomalies peculiar to transmitted and received RTTY pulses are analyzed, with suggested improvements to reduce printout errors

Many amateurs who pursue RTTY go to great lengths with FSK demodulators, keyers, and related equipment to get near-perfect printouts. Nearly every innovation is discussed, tried, and eventually designed into RTTY stations. Pulse distortion, however, seems to be rarely appreciated and often turns out to be the culprit causing many unnecessary printout errors.

When transmitting, it is the responsibility of the RTTY amateur to send a clean signal with near-zero distortion. Frequency-shift circuits must be designed with regard to this requirement; and key-boards, TDs, and other transmitting devices require careful adjustment.

Distortion must also be considered in receiving circuits to minimize errors. This requirement applies not only to the demodulator but also to the dc loop circuit and the adjustment of the teletypewriter and reperforator. This article defines common distortion terminology and discusses some of its causes, remedies, and measurement techniques.

definitions

Pulse distortion occurs in two ways—by bias and end distortion. Each can have two polarities: mark and space. As shown in fig. 1, when a transmitted or received RTTY signal is compared with a perfect signal carrying the same information and referenced to the space-going

Herbert Drake, Jr., WB6MP, 16 Monte Cimas Avenue, Mill Valley, California 94941

September 1972
edge of the start pulse, the following is evident:

a. Bias affects the mark-going pulse edges.

b. End distortion affects the space-going pulse edges.

Each type of pulse distortion is measured in percent and defined over the range 0-100 (fig. 2). Note that the signal completely disappears as bias distortion approaches 100 percent.

Distortion, D, can be expressed as

\[D = 100B(\Delta T) \]

where B is the baud rate in units per second and \(\Delta T \) is the time error in seconds of the edge in question as measured from the correct edge location.

Sources of distortion

Any circuit condition that imparts a delay to RTTY pulses acting on one polarity more than another will generate bias distortion. End distortion, in pure form, is rare since its effect on a signal selectively leaves the start pulse intact and is thus usually accompanied by equal or greater parts of bias distortion. Here are some common examples.

Inadequate open-loop voltage. When a teleprinter loop includes a large series inductance such as a selector magnet, the current response, which is the parameter that relates to the force applied to the selector armature, is distorted (fig. 3). Since the time constant \(\Delta T \) is determined by dividing the inductance by the total loop resistance, the following approximate relationship exists:

\[D = 100B \frac{L}{R} = 100BLI/V \]

where \(R \) is total loop resistance (ohms), \(L \) is inductance (henries), \(I \) is closed-loop current (amperes), \(V \) is open-loop voltage (volts)

A typical selector magnet (\(L \) = 700 mH) will generate (a) less than 2 percent of spacing bias when a 120 Vdc battery is used in a 60-mA, 45-baud loop, and (b) nearly 15 percent of spacing bias when operated at 13.2 volts (the minimum amount capable of supplying the 60-mA current through a 110-ohm coil).

Keying relays. When properly adjusted, relays can be useful in controlling dc loop circuits. The inability to follow fast keying pulses instantaneously causes relays to introduce significant delay to RTTY pulses — but this delay need not generate bias distortion if applied equally to making and breaking events.

Polar relays meet this requirement, but their use should be limited to cases where adequate instrumentation is available to keep the relays adjusted properly. Reed and mercury-wetted relays are sufficiently stable to require no adjustments, but their selection must be accompanied by care in design since the make and break times of these relays almost always differ. Fig. 4 shows one way to compensate these devices. R1, C1 are selected to protect the contacts but may introduce some marking bias. CR1 protects the transistor from over-voltage when the relay coil is switched off. Increasing R2 will decrease marking bias, while increasing R3 will decrease spacing bias. This
latter operation may require a higher A+ voltage or lower coil voltage.

FSK keyers. Bypass capacitors are a requirement in the design of FSK keyers, but care must be taken to ensure that the dc time constants of the keying circuit are small compared with the signaling unit time (1/B). An FSK keyer that works fine at 60 wpm may present excessive bias distortion at 100 wpm.

Transmitting contacts. Some transmitting contacts, such as the Model 14TD and Model 32, have accurate, distortion-free distributors when properly operated. Model 28 keyboards and TDs require careful setting of a single adjustment screw to eliminate bias and normally generate only minute end distortion. Models 14, 15 and 19-series keyboards, however, can generate large amounts of bias and end distortion when any of the six contact springs are improperly adjusted, as shown in fig. 5.

Speed error. The start-stop signaling system used in RTTY will tolerate nominal speed error. One way to look at speed differential is as if it were distortion that gradually increases as the signal progresses toward the end of each character. A page printer, for example, will react to a perfect signal sent too slowly, as if that signal had a distribution of spacing bias and marking end distortion.

FSK demodulators. One of the most severe causes of distortion can be the FSK demodulator. In some cases some of this distortion can be traced to poor design or adjustment in input, channel, or low-pass filters. The designer, for example, may have paid too little attention to phase response and the filter will have excessive overshoot and ringing. These situations generally will produce bias distortion, along with lesser amounts of end distortion, that are due to time constants and settling times in excess of one unit time (1/B). Such distortion often varies widely, depending on the characters received.

receiving considerations

The most limiting form of received distortion is generated by noise, interference, and signal fading. Each dB of improvement in this area calls for increased complexity and refinement. However, an occasional error will occur even with the strongest signals. Since noise can occur at any point on the signal waveform, a high probability of all types of distortion can be expected. To perform best with this random type of distortion, the receiving teleprinter should sample each signaling unit as close as possible to its center. In practice, each receiving RTTY device must be adjusted for a maximum, but balanced, response to each of the four pure distortion types.

distortion test equipment

Common test equipment can be used for a few distortion measurements when specialized equipment isn't available. A Model 15 keyboard may be adjusted, for example, with an overdamped vom as follows.

Connect the vom across the keyboard in the low-ohms position to minimize the effect of the filter network. Adjust the ohms potentiometer for full-scale. Ob-
serve the 0 to 10-volt scale. Check that the meter reads 0 volts when the keyer contacts are open. Now turn on the motor and cause the clutch to engage steadily for repeated sending. Encode the BLANK symbol and adjust the stop spring for a reading of 1.92 volts. Now encode the characters E, LF, SPACE, CR and T, one at a time, while adjusting springs 1 through 5 for 3.26 volts.

The Model 28 signal generators may be adjusted similarly by repeat sending of the character R and adjusting for a reading of 4.62 volts.

A general-purpose oscilloscope with a triggered sweep may be used to analyze pure bias distortion; thus, it can be useful in adjusting relays, Model 28 contacts, and for resolving many other problems. A general-purpose scope is of little value, however, in the measurement of end distortion or bias in the presence of end distortion. This is because an ordinary scope won’t synchronize on only the start pulse unless the sweep rate is adjusted for one sweep per character, in which case the resolution is not sufficient to read distortion with meaningful accuracy.

special-purpose test gear

One of the best types of distortion test sets for RTTY received-signal analysis is the Western Electric 164C. This instrument has a special-purpose scope display calibrated linearly from 0 to 50 percent. The display is idle when no signal is present, and, after encountering a start pulse, a waveform generator causes seven horizontal linear transitions across the screen at the same rate in both directions (fig. 6).

The vertical deflection plates are fed from the input signal through an RC network that causes a mark-going bias edge to appear as a pip above the scope centerline and a space-going end-distortion edge to appear as a pip below the line. Marking and spacing distortion may be determined by the sweep direction at the time of the distorted edge, as shown by the shape of the pip. Typical sample signals are shown in fig. 7.

This type of instrument is ideal for setting up transmitting contacts, polar relays, and for optimizing demodulator design. Also, since it reads directly on any received message at either tape or keyboard speed, it may be used to analyze received RTTY signals during normal station operation.

test-message generator

Another useful instrument is the test-message generator. The best of these will generate a complex message consisting of all possible characters, with switched capability for accurate generation of the four types of distortion. Some units, like the Teletype DXD-100, combine the ability to generate a fox message with continuously variable distortion to 100 percent, with a stroboscopic display that may be used to adjust transmitting contacts. This instrument isn’t very useful for received signal analysis, however, unless the incoming message is at tape speed and exactly at the same speed as the test set.

These distortion-generating test sets allow optimization of receiving teleprinter equipment. The best procedure is
to print the test message while gradually decreasing distortion until perfect print is obtained for one or two lines. This procedure is repeated four times, once for each distortion type. The amount of tolerance to each distortion type should be logged, along with the position of the range finder on the teleprinter under test.

The procedure described is repeated for several different range positions until the best balance of distortion tolerance is obtained. That range setting is then locked into the machine and the worst-case distortion tolerance evaluated. Machines not able to tolerate, say, at least 35 percent of any type of distortion without errors at this final range setting may need adjustment or lubrication. Model 28 machines typically tolerate over 40 percent of any type distortion.

Many other types of distortion test sets are available. Some have peak-reading meter readouts; others have digital distortion displays. Each can be a useful addition to the RTTY station.

regenerative repeaters

The regenerative repeater, once a troublesome vacuum-tube device, can now be built easily with only a few integrated circuits. Regenerative repeaters receive the incoming signal from the demodulator and regenerate a perfect signal, which is fed to the teleprinter. Since the highspeed ICs can sample 50 percent of the time with great accuracy, generally no range adjustment is necessary. These circuits can often be used to increase the distortion tolerance of the printer, while easing the requirement for accurate range adjustment on the teleprinter.

Probably the most essential requirement of a regenerative repeater is an accurate time base, stable with temperature (preferably crystal controlled), and capable of jitter-free start-stop control. Where these conditions can be met, the regenerative repeater is well worth installing as part of the FSK demodulator.

conclusion

The need for measuring and eliminating the various forms of pulse distortion have been around for as long as people have been communicating with Morse code. Telephone companies have elaborate test stations to maintain landline telegraph systems. Many of the procedures developed over the years can help make a science out of a situation that may have meant nothing but unexplained and irritating errors to many RTTY amateurs.
This simple 10:1 prescaler will increase the frequency range of your counter to 300 MHz.

A ten-fold increase in the range of many frequency counters is possible with the use of the simple 10:1 prescaler of advanced design described here.

Frequency measuring systems, some simple, some highly sophisticated, have stirred the interest of hams for many years, but never more enthusiastically than in recent years when digital frequency counters have become available. The usefulness of such systems in the ham shack and workshop has made them exceptionally popular. Indeed, their popularity has become so widespread that frequency counters are even available in kit form.

Since becoming intrigued by frequency-measuring counters about two years ago, I searched through the ham literature for articles on counters and counter accessories. In addition, two Heathkit counters were closely observed and their frequency limits and sensitivity were carefully noted. K4EEU's divide-by-ten scaler, using four ICs, was constructed; when used ahead of the Heathkit counters, it permitted measurements up to 106-MHz. This appeared a worthwhile combination. In fact, it was a very happy combination which sufficed until Heathkit came out with its preassembled 80-MHz counters and a 175-MHz scaler kit.

Then, dissatisfaction with the 106-MHz setup quickly took hold. As an end result, a 9-digit counter was built which had an upper frequency limit that turned out to be 125-MHz. A search was then made for a better scaler to further extend this upper limit.

My attention was drawn to Fairchild's 9500 series high speed, emitter-coupled

*While Heathkit advertises a frequency limit of "over 15 MHz," both counters measured well above 15 MHz, one reaching 25 MHz, and one reaching 30 MHz.
logic (ECL) integrated circuits. Among them is their 95H90, a very high speed, temperature compensated, ECL circuit for frequency division. This is a divide-by-ten prescaler usable to about 300-MHz. For the owner of a counter whose upper frequency limit is on the order of 25 to 30 MHz, such a prescaler would permit measurements in every amateur band up to and including the 220-225 MHz band. The prescaler described here will do that and more. It should prove to be especially attractive to the vhf enthusiast.

circuit

Three prototype prescalers have been constructed using the Fairchild 95H90 for ten-to-one frequency division. As constructed (one hard-wired bread board and two one-sided foil circuit boards), their lower limits for sine-wave inputs were found to be between 6 and 9 MHz and their upper limits were between 220 and 272 MHz. These variations are apparently due to slightly different construction techniques, types of component capacitors used and possible variations in the ICs. All, however, were decidedly successful and exceedingly stable.

Since the output is a square wave, the output will be accepted by practically any counter. In this connection, it should be noted that the output is deliberately made through a dc-blocking capacitor, a must if the device is to be used ahead of the Heathkit counters whose inputs do not have one.

The Fairchild 95H90 is a high speed ECL MSI device, designed specifically for the communication and instrumentation industries. All of the high-speed logic manipulations are “on chip.” In this single, 16-pin, dual-in-line IC package, frequency division by ten may be quite simply accomplished and at a lower over-

fig. 1. Logic symbol and connections to the Fairchild 95H90 IC used in the 300-MHz prescaler.

fig. 2. Complete schematic of the 10:1 prescaler. Circuit in (A) is for positive ground. Circuit in (B) is for negative ground. For 50-ohm input, R1 = 68 ohms and R2 = 200 ohms.
fig. 3. Circuit-board layout for the prescaler is extremely simple. Layout in (A) is for positive ground; (B) is for negative ground.

all cost than scalers using a multiplicity of ICs which divide by two, and then, by five. Although the 95H90 may be so connected to divide by eleven, and with other control logic a divide-by-N counter can be constructed, these uses are not of concern here; only the divide-by-ten connection will be considered.

The 95H90 prescaler logic symbol and its necessary external components are shown in fig. 1. A well-filtered and regulated 5-volt power supply is required. Resistors R1 and R2 set the input bias and are in the ratio of R2 equaling approximately three times R1. These resistors also partially determine the IC's input impedance, and are specified as R1 = 1.34Z, and R2 = 3.94Z. Thus, for a 50-ohm input, R1 = 67 ohms and R2 = 197 ohms. For practical usage, R1 may be 68 ohms and R2 may be 200 ohms for an input impedance of 51 ohms.

The schematic of the 10:1 prescaler is shown in fig. 2. Fig. 2A is for use where the positive supply voltage is connected to the circuit board foil (positive ground), while fig. 2B shows the connections where the supply negative is connected to the board foil (negative ground). Fairchild specifies the positive ground; however, each connection (positive or negative) has been tried on separate prototype boards with no discernable ill effects on the device's frequency limits. The negative ground seems to be preferred by amateurs. Note that fig. 2 shows top views of the 95H90, in accordance with the practice of the IC industry.

construction

Circuit-board layout, showing bottom views (foil side), are shown in fig. 3. The simplicity of these layouts should be readily apparent. For those who can make them, etched boards are ideal. Because of the circuit simplicity, however, the prototype boards were made by first drawing enclosing lines on the boards with a marking pen and then gouging away the lines with a hand-held

fig. 4. Power supply for the prescaler provides 5.2 Vdc output.
hobby-type burr drill, a process which took about five minutes. For a neater job, lines may be readily removed on a drill press.

In any event, the prototype method proved so acceptable that one of the original boards is now in permanent use. Fig. 3A shows the positive ground, while fig. 3B shows the negative ground.

Half-watt resistors were used because of their ready availability. Quarter-watt resistors would permit an even smaller layout. Capacitors should be of the best quality. The .01-µF capacitors should be ceramic discs because these types offer lower impedances than other types. The large bypass capacitor (2 to 20 µF) should be a tantalum type. If a tantalum capacitor is not available, use a physically small electrolytic.

In one prototype a 10-µF, foreign-make, electrolytic was used, along with Mylar-type .01-µF capacitors, without deterioration of more than a few MHz in the upper frequency limit.

Note the protective diodes at the prescaler input; use the fastest diodes you can obtain. They are a cheap way to save a moderately-expensive 95H90.*

A suitable power supply is shown in fig. 4. Ready availability of parts determined its capacity, not the need for large currents. The prescaler draws less than 200 mA. Fairchild's 95H90 data sheet specifies a 5.2-volt supply. The power supply voltage tolerance should be held within plus or minus 5% of 5 volts.

One prototype prescaler optimized at 5.2 volts and another at 4.8 volts; however, the standard supply is 5.2 volts and will service numerous ICs. Remember that the output voltage will equal the zener voltage minus the drop in the two transistors. Thus, with a 6.2-volt zener, the output will be 5.2 volts.

sensitivity

The sensitivity of the prescaler prototypes varied from approximately 130 millivolts at 100 MHz to 240 millivolts at 260 MHz. This is adequate for many uses. For greater sensitivity, however, a single transistor preamplifier may be added. A schematic of a wideband amplifier, using a 2N5179 transistor, which is suitable for use with this prescaler, is shown in fig. 5.

Normal vhf construction practices, such as the shortest possible leads and ade-

*When ordering the 95H90 IC, specify the Fairchild U6895H9059x. Circuit Specialists, Box 3047, Scottsdale, Arizona 85257 has all the semiconductors for this unit in stock. The 95H90 is $16.00, the 2N5179 is 50 cents, the HEP 704 (2N3055) is $2.50 and the HEP 175 is $1.35. Please add 35 cents for shipping.
quate decoupling, are needed.

If this preamplifier is used with the prescaler, R_1 in fig. 2B should be changed to 4700 ohms, and R_2 should be changed to 1500 ohms. Preamplifier sensitivity will range from about 15 millivolts at 100 MHz to about 100 millivolts at 220 MHz. All in all, a worthwhile addition.

If your present counter is deficient in sensitivity, a simple single transistor post-amplifier may be added to the prescaler. Its schematic, using a 2N5771, is shown in fig. 6 for a negative-ground supply. However, a counter which would not respond to this prescaler is yet to be found. If, by chance, yours does not, it's high time to find out what is wrong with your counter. The amplifier shown in fig. 6 makes an excellent interface if such is desired for connection to a following TTL device.

This article could not be considered complete without expressing sincere appreciation for the valuable assistance and checking of the devices by Robert Melvin, W6VSV. I am deeply grateful for his help and his enthusiastic support.

references
3. Factory-built Heathkit 80-MHz counters include the model SM-104A ($540) and the model SM-105A ($375). The Heathkit 175-MHz scaler kit, model IB-102, sells for $112.95.

The result of over 25 years of two-way radio experience. Gives you...
- 3 db + gain over 1/4 wave whip
- 6 db + gain for complete system communications
- V.S.W.R. less than 1.3 to 1
- Low, low silhouette for better appearance

The fastest growing antenna in the commercial 2-way field is now available to Amateurs. It's the antenna that lets you HEAR THE DIFFERENCE. Easily and quickly adjusted to any frequency. Hi-impact epoxy base construction for rugged long life. Silver plated whip radiates better. Handles full 100 watts continuous. Models to fit any standard mount. Available as antenna only or complete with all hardware and coax.

Get the full facts on this amazing antenna that brings signals up out of the noise... provides better fringe area talk power. Write today for fact sheet and prices.

Sold with a full money back guarantee. You hear better or it costs nothing!

also available...
5 db Gain Antenna for 420-440 MHz and 440-460 MHz

Phased Collinear with same rugged construction as Larsen 2 meter antennas and 5 db gain over reference 1/4 wave whip. Models to fit all mounts. Comes with instructions. Write today for full fact sheet and price.

Larsen Antennas
11611 N.E. 50th Ave. ▲ Vancouver, WA. 98665
Phone 206/695-5383
repeater control

with

simple timers

All-electronic timers provide reliable, simple and inexpensive repeater control

Repeater activity is increasing daily, and it seems that there is always need for one more repeater in town. Unfortunately, installing a repeater usually turns out to be quite a difficult project, and for every operational repeater on the air there are probably ten more that will never make it. The unfinished repeaters usually run into many roadblocks, one of which is the problem of designing and installing the necessary controls such as delay timers, three minute timers and repeater ID timers.

From our experience, it appears that a lot of the repeaters today are using mechanical timers with their inherent disadvantages of high cost, inadequate reliability, large size and susceptibility to adverse environmental conditions. The timers described in this article were designed to provide a means for eliminating the roadblocks caused by using the con-

Printed circuit boards for the repeater control unit are available from Alton Industries, 7471 Thunderbird Road, Liverpool, New York 13088. Drilled boards are $4.50, undrilled boards are $3.50. Included with the boards is a detailed schematic and board layout. Wired and tested units are available from the same source for $33.50.
ventional approaches to timers. These timers are highly reliable, simple to build, very inexpensive and can be connected together to provide repeater control without need for mechanical contacts. This article also shows the complete interconnection of these timers to form a repeater control unit.

The two timers shown are based on the same principles; however, there is one basic difference. The timer in fig. 1 will deliver one output pulse after a given time interval, while the timer in fig. 2 will deliver the output pulse before the time interval. In both cases, only one output pulse can occur for each time interval regardless of the number of input pulses. In both cases, the timing cycle will not repeat unless an input pulse is received.

timer operation

When power is first applied, C1 begins to charge through R1 until the emitter of Q2 reaches approximately 6 V. At that time the 2N2646 unijunction fires, resulting in a positive pulse across the 33-ohm resistor. This pulse is inverted to a negative going pulse by Q3. With the constants shown, the approximate timing cycle is two minutes and ten seconds. A 2N2647 is a more desirable unijunction, but the 2N2646s were on hand and gave satisfactory performance.

In the circuit of fig. 1, the output pulse triggers a set-reset flip-flop which turns the timer off. The timer will be started again by grounding the reset line of the S-R flip-flop. The timer reset is used to set the timer to its initial state. It will do this even if the carrier-operated relay is closed. Its main function is to reset the timer if it is not desired to complete the timing cycle.

In the circuit of fig. 2, the output pulse sets the S-R flip-flop which then results in a +5 V level at pin 5 of the NAND gate U1B. In order to get an output from this timer, a zero volt output is required at pin 6 – this output can be obtained only when both inputs are at a
fig. 2. Basic timer to give one pulse before a given time interval. Other notes are the same as in fig. 1.

+5 V level. As connected, U1A is an inverter which has a zero volt output when the input is open and a +5 V output when the input is grounded. Therefore, when the input is grounded, both inputs to U1B are +5 V, the output goes to zero and the flip-flop resets. The resultant output is a pulse at the beginning of the timing interval. With this timer, an output can occur only when the COR contacts are closed. Thus, if this timer is used for an identifier, the ID will trigger only when the repeater is active.

timer applications

The timer in fig. 1 can be used as the...
three-minute timer for a repeater by selection of the proper value of C1. The input can be the contact closing of a carrier-operated relay, while the output pulse can trigger a simple S-R flip-flop which will disable the transmitter. Thus, if the COR is on for longer than the specified interval, the transmitter will be timed out. This timer can also be used to provide a drop-out delay for the transmitter. In this case, the absence of carrier will trigger the timer and the resultant delayed pulse will cause the carrier to drop out.

The timer in fig. 2 can be used to trigger a repeater identifier. In this mode of operation, the ID will only go on at the beginning of a timing cycle. If the repeater has been inactive for longer than the timing interval, the ID will be keyed up when the COR is keyed, and the ID will be keyed every two minutes and ten seconds as long as the COR is keyed. The ID cannot be keyed unless the COR is keyed, thus eliminating the problem of the ID keying up the repeater when there is no activity.

repeater control unit

The interconnection of the timers to provide a complete repeater control with a three minute timer, a drop out delay timer and a repeater identifier timer is shown in fig. 3. The entire circuit as shown was used at the WA2ZVZ repeater until it was replaced recently by a commercial unit with telephone-line remote-control capabilities. The ID timer portion, however, is still in use. There have been no failures of this timer with temperatures ranging from sub-zero to 80 degrees. The only phenomenon noticed was a decrease in the timing cycle amounting to about five or ten percent during extremely cold weather.

The circuits presented in this article are reliable, simple to build and inexpensive. It is hoped that these circuits will help many repeaters become operational by overcoming some of the problems relating to timers and repeater control.
solid-state
hang agc circuit

for ssb and cw

In the rather distant past, when amateur radio operators depended upon a-m for communications, automatic gain control in the receiver was a simple matter. The negative dc voltage necessary for agc was easily derived by sampling the output of the diode a-m demodulator. This negative voltage was fed to the grids of the rf and i-f amplifier tubes to maintain a constant detected audio level which varied only slightly as the signal faded or as various stations were tuned in, and was also used to control the S-meter. Due to the presence of a carrier, agc circuits for a-m were relatively simple. Subtle factors such as attack and decay time could be comfortably ignored. The CW gang, purists that they were, happily rode the manual rf gain control while they pounded brass.

Single sideband brought an end to these happy days, and in the few cases where the local bfo signal did not pin the S-meter, the absence of a carrier during periods of no modulation caused S-meters to flop erratically. With the introduction of product detectors, which kept the bfo signal away from the agc detector, gain-control circuits were used which permitted fast rise and slow decay of the dc output. However, to hold the agc level and receiver gain reasonably constant between voice syllables or code characters, the decay-time constant had to be so long that receiver gain did not respond quickly enough to signal-level changes experienced with fading signals or round-tables.

A nearly ideal ssb and CW agc circuit...
was introduced by W1DX in 1957. This circuit separated the agc line from the "clock" which controlled the hold time. This development, dubbed hang agc, allows the agc line to remain at a steady negative voltage following a voice syllable or code character; the "clock" counts off a predetermined time, after which it triggers a discharge circuit which rapidly restores the receiver gain to maximum in the absence of a signal.

The W1DX circuit requires three diodes, one triode and a voltage step-up transformer along with some resistors and capacitors, and its power and space requirements are substantial. Nonetheless, it has been used to supply audio-derived performance has easily justified the extra parts. Since a high-impedance agc line is necessary for the hang circuit, it does not interface well with bipolar transistorized receivers unless a buffer amplifier is used.

The recent popularity of field-effect rf and i-f amplifiers, particularly those using dual gate mosfets, has revived the high-impedance agc line. The circuit described here is an all solid-state version of W1DX's hang agc system which is small, inexpensive, requires no external power and can be used with either tube or fet rf amplifiers. It operates directly from the i-f strip, avoiding the minor difficulties which occur in many audio-derived agc systems.

Table 1. Hang and discharge times for the circuit of fig. 1. Times are in seconds for resistance in megohms and capacitance in microfarads. Vp is the pinchoff voltage of Q1.

<table>
<thead>
<tr>
<th>V_A</th>
<th>hang time $(T5-T4)$</th>
<th>discharge time $(T6-T5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.29 R1C1</td>
<td>0.41 R1C1</td>
</tr>
<tr>
<td>1.0</td>
<td>0.69 R1C1</td>
<td>0.69 R1C1</td>
</tr>
<tr>
<td>2.0</td>
<td>0.98 R1C1</td>
<td>1.1 R1C1</td>
</tr>
<tr>
<td>4.0</td>
<td>1.16 R1C1</td>
<td>1.61 R1C1</td>
</tr>
<tr>
<td>10.0</td>
<td>1.29 R1C1</td>
<td>2.40 R1C1</td>
</tr>
<tr>
<td>20.0</td>
<td>1.34 R1C1</td>
<td>3.05 R1C1</td>
</tr>
<tr>
<td>40.0</td>
<td>1.36 R1C1</td>
<td>3.71 R1C1</td>
</tr>
</tbody>
</table>

Fig. 1 shows the basic circuit and the dc voltages at various stages of its operating cycle. When a signal appears at the i-f output at time T_1, it is rectified by CR1, filtered by R2C2, and gated as a negative voltage onto the agc hold capacitor C4, and the agc line. Simultaneously, a negative voltage four times greater than the agc level is developed across C1 which prevents Q1 from conducting. When the signal is removed at time T_2, voltage V_A rapidly drops to zero. However, the agc line voltage, V_C, does not drop because Q1 is off, CR2 is reverse biased and the agc line has no dc return to ground (resistance to ground should be greater than 100 megohms for the circuit to work properly). Capacitor C1 begins to discharge through resistor R1, causing the gate voltage of Q1 to drop. Before Q1 can conduct, however, the signal reappears at time T_3, recharging C1, C2 and C4.

Following the disappearance of the signal at time T_4, V_A drops to zero and V_C, the agc level, remains constant while V_B decays with the time constant $R1C1$. At time T_5, the negative gate-source
voltage of Q1, $V_C - V_B$, has reached the pinch-off voltage of the fet, V_p or $V_{GS(\text{off})}$, and Q1 conducts, discharging the agc hold capacitor. The agc line goes to zero volts in the time interval T5 to T6.

Reviewing the operation of the circuit, CR1, R2 and C2 maintain a negative dc voltage, V_A, which instantaneously follows the envelope of the i-f signal. The agc gate, CR2, allows the hold capacitor, C4, to charge up to the peak value developed across C2 and to hang at that value after the signal decreases in amplitude. The voltage quadrupler maintains a voltage V_B, approximately four times V_A, which biases Q1 into cutoff. Voltage V_B rises very fast when a signal appears, but decays quite slowly after the signal disappears. This slow decay, with time constant $R1C1$, is the "clock" that controls the hang time (the interval T5-T4 in fig. 1). After the prescribed amount of "clock" time has elapsed, the agc line is discharged if there is no signal, and the receiver returns to maximum gain.

By properly choosing the RC time constants in the circuit, receiver gain is quickly reduced as a signal appears (no unpleasant thumps caused by slow attack time constants). The gain then stays absolutely constant between voice syllables or code characters (the S-meter doesn't even wiggle), but recovers rapidly enough after the hang time to follow fading signals or weak stations in a roundtable.

The circuit has an intrinsic threshold, below which weak signals and noise will not activate the agc. The threshold level is approximately one volt, and is equal to the forward drop of CR1 (0.7 volt) plus $V_p/4$, (V_p is the pinch-off voltage of Q1). Although the hang and discharge times of the circuit depend slightly on signal level, the variations are scarcely noticed during operation. Exact values are given in table 1.

practical circuit

A working hang agc circuit with a total parts cost less than $4.00 is shown in fig. 2. Diode CR1 is the agc detector whose attack time is controlled by C1 and the source impedance of the last i-f transformer. For reasonable source impedances of 10k or less, the attack time is shorter than 10 μs. The decay time of the detected signal is also very fast, set by C1, C5 and R1 to 250 μs.

The detected signal is gated onto the agc hold capacitor, C6, through R4 and CR5 with an attack time, $R4C6$, of 5

<table>
<thead>
<tr>
<th>Test point</th>
<th>DC voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>-30 Vdc</td>
</tr>
<tr>
<td>V2</td>
<td>+4.3 Vdc</td>
</tr>
<tr>
<td>V3</td>
<td>+3.3 Vdc</td>
</tr>
<tr>
<td>V4</td>
<td>+12 Vdc</td>
</tr>
<tr>
<td>V5</td>
<td>+1.0 Vdc</td>
</tr>
<tr>
<td>V6</td>
<td>+30 Vdc</td>
</tr>
</tbody>
</table>

table 2. Dc voltages for the circuit of fig. 3.
msec. This keeps C6 from being charged up by large, short-duration noise spikes. A negative voltage is developed by the voltage quadrupler, CR1-CR4, C1, C2, C3 and R1; this negative voltage is applied to the agc discharge fet, Q1. Resistor R1 causes the dc voltages across C1, C2 and C3 to decay with a 200-μsec time cons-

stant, allowing the quadrupler to recover quickly after removal of a signal. Hang time for ssb/CW operation is set at 0.7 second by R2 and C4, and can be reduced to 9 msec for a-m operation by placing R3 in the circuit. Agc is removed by shorting C4, which keeps Q1 in con-
duction at all times by grounding its gate.

All diodes in the circuit must be fast recovery types. In addition, they should have low reverse leakage currents. Diodes CR4 and CR5 are particularly critical in regard to high back resistance. Most silicon computer diodes will work well, but conventional silicon detector diodes, silicon rectifiers or germanium diodes should not be used. The 1N914 types called for in fig. 2 are available at very reasonable prices.*

The choice of an n-channel fet for Q1 is considerably narrowed by the need for a device having a low pinch-off voltage. Most commercially available devices have rather large pinch-off voltages in the 3- to 10-volt range. However, the Motorola 2N5716, which is available from

*1N914 diodes are priced at 16 for $1.00 from M. Weinschenker, Box 353, Irwin, Pennsylvania 15642.
Motorola distributors for $.80, has a pinch-off range of 0.2 to 3 volts. In addition, the 2N5716 is rated for up to -40 volts on either the gate or the source with the drain grounded. Many other fets are breakdown rated at about half of this value, prohibiting their use in tube-type receivers where the agc voltage can easily go -10 volts during normal operation, or where the output of the voltage quadrupler applies -40 volts to the gate of Q1.

expanded circuit

Fig. 3 shows the basic circuit of fig. 2 plus a number of features which add to the versatility of the hang agc circuit. Table 2 lists the dc voltages which should be observed at the identified points. The cold ends of R2, R3, C4, C5 and C6 have been lifted from ground and connected to the wiper arm of R5 which feeds a negative bias to the gate of Q1, and, through R7 and CR5, to the agc line. A drain current of less than one microampere, flowing through R7, keeps Q1 near cut-off. Resistor R6 should be selected to give -30 Vdc at point V1.

This manual gain-control circuit is most useful since, along with reducing the gain of the receiver, it provides an agc threshold. If the S-meter reads the agc bias in the normal manner, then its reading will increase as bias is manually introduced, and the threshold prevents stations weaker than the level indicated on the S-meter from operating the agc circuit.

The entire agc line is put on standby during transmit with S1. Switch S1 removes the ground from R5 and, since R5 and R6 no longer act as a voltage divider, the full voltage, \(-V_B\), is applied to the agc line. Since \(V_B\) may be in excess of 40 volts, the breakdown rating of Q1, its drain is also biased to \(-V_B\) during standby to prevent damage to the fet. Switching action may also be achieved by connecting a set of transmit-receive relay contacts in parallel with S1.

Diode CR6 is the a-m detector and its output is filtered by C9, C10 and R11. The action of agc rectifiers CR1-CR4 would severely distort the detected a-m signal if they were connected directly to the i-f transformer secondary, thus the source follower Q2 is used to isolate the agc circuit.

A product detector, consisting of Q3 and its associated components, is used for ssb and CW. The dual-gate mosfet isolates the bfo signal from the agc detector, preventing agc action in the absence of any signal. The capacitive divider, C13 and C14, reduces the ssb/CW output to a level compatible with the output of the a-m detector.

Zener diode CR7 reduces the supply voltage, \(V_A\), to a level suitable for Q2 and Q3. Resistor R17 should be chosen so that about 3-5 mA is drawn from point \(V_A\). If a 30 ± 5 volt supply is already available, it may be connected directly to the junction of R8 and R13. Then CR7 and R17 are not required.

installation

Wiring of the circuit is non-critical except for the usual observance of reasonably short leads in the portions of the circuit which carry rf. Various methods of feeding agc voltage are illustrated in fig. 4. Existing receivers probably will require little or no modification to use these systems. The only precautions necessary are to keep the RC time constants small, being careful to use R and C values no greater than those shown, to preserve the rapid attack time of the agc circuit. In all cases the S-meter amplifier should have dc gate or grid characteristics similar to the devices used for rf and i-f amplification.

It is important to keep leakage resistance from the agc line to ground greater than 100 megohms. Smaller values will discharge the line more rapidly than intended. The input impedance of most voltmeters is too low to measure the agc voltage. The S-meter should be calibrated as a voltmeter if you want to measure the agc voltage.

The circuit shown will not operate with low-impedance bipolar-transistor agc lines. Buffer dc amplifiers must be used in such cases or in situations where the agc line must have a finite resistance to
ground. The design of such amplifiers is beyond the scope of this article, since each one must be uniquely related to the quiescent bias levels of the receiver it is used in.

The circuit of fig. 2 is presently in use in my NC-125 receiver, while the system of fig. 3 is functioning in my KWM-1. Reception of SSB or CW is excellent, with smooth AGC attack and beautiful hang, followed by rapid recovery. It is impressive to watch an S-meter hold rock steady in the presence of a signal, yet quickly follow fading or the strengths of different signals while scanning the band. The hang AGC system requires minimal space and power, and is inexpensive to build. Its use is highly recommended in new construction as well as in upgrading existing equipment.

fig. 4. Typical AGC distribution systems for dual-gate mosfets (A), jfets (B) and vacuum-tubes (C).

references

ham radio
SWAN ELECTRONICS
350 Airport Road Oceanside, CA 92054

Revolving Credit Account No. 7388

To: Joe Ham
Address: 599 QSO Lane, Anywhere, USA

Mail Order and Inquiries from our Centrally Located Modern Facilities

AMATEUR ELECTRONIC SUPPLY
is the Best Place to purchase your new
SWAN gear for the following reasons

- TOP TRADES for your good clean equipment
- STAY-ON-THE-AIR PLAN - Enables you to keep your trade-ins until your new gear arrives - Lose no operating time!
- PERSONAL SERVICE from fellow hams who understand your problems.
- SAME DAY SERVICE on most Orders and Inquiries from our Centrally Located Modern Facilities
- Top Notch Service Department
- LARGE COMPLETE STOCK means Fast Deliveries. United Parcel Service available to most parts of the country. - UPS Blue label (AIR) to the West Coast.
- LOW LOW 1% Monthly Service Charge (ONLY 12% per annum) on GECC Revolving Charge Plan. Only 10% Down Plus LOW Monthly Payments - For Example: $10 a month finances up to $300, $20 up to $60. Write for complete information

Now you can use your SWAN CREDIT CARD
at AMATEUR ELECTRONIC SUPPLY
to purchase any new Swan equipment

OTHER E-Z WAYS TO PURCHASE
1. CASH
2. C.O.D. (20% DEPOSIT)
3. MASTER CHARGE
4. BANK AMERICAN
5. AMERICAN EXPRESS
6. GECC REVOLVING CHARGE

Wanted
A. Special Projects
B. YOU name it

Formerly located at: 53216 Milwaukee.

To: AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Ave., Milwaukee, Wis. 53216

I am interested in the following new equipment:

- I have the following to trade: (what's your deal?)

Ship me:

I Enclose $________________________ I will pay balance (if any):

☐ COD ☐ Swan Credit Card ☐ GECC Revolving Charge Plan
☐ Master Charge ☐ Bank Americard ☐ American Express

Account Number: __________________________
Expiration: __________________________
Date: __________________________

Name: __________________________
Address: __________________________
City & State: __________________________

☐ Send used gear list

Ray Lutner, K9KHW
Mgr. Mail Order Sales

AMATEUR ELECTRONIC SUPPLY
4828 West Fond du Lac Ave. Milwaukee, Wis. 53216
Phone (414) 442-4200

HOURS: Mon & Fri 9-9; Tues. Wed & Thurs 9-5:30; Sat 9-3

CLEVELAND Area Hams may wish to visit our Branch store located at: 1797 Euclid Ave., Cleveland, Ohio. Ph. 486-7330, Pete Smith. Mgr. All Mail Orders and Inquiries should be sent to our Milwaukee store.

More Details? CHECK-OFF Page 110

september 1972
If you have been an active amateur for any length of time, chances are you've accumulated several transmitting tubes. Such tubes may be triodes or tetrodes of various lineage—generally they have large envelopes, husky filaments, and are capable of withstanding quite high plate voltage. A challenging question is, how do you use these tubes in today’s ssb linear amplifiers? Essential information is difficult to obtain for operating older tubes in linears.* This article offers some suggestions on using older transmitting tubes in a clean-sounding linear amplifier even if you don’t have manufacturers’ data on the operating characteristics of such tubes.

operating considerations

The specifications for modern triode linears indicate that only very high-mu tubes, preferably those that operate with zero bias, will be satisfactory. There is no doubt that such tubes are somewhat easier to put into service, but tubes with just about any range of amplification factor can be made to perform acceptably. In fact, at one time tubes with very low mu were considered best for linear amplifiers because they would take a wider swing of grid voltage before drawing grid current.

Present-day practice, which centers about the grounded-grid circuit, largely ignores such fine points. The very heavy negative feedback inherent in the grounded-grid configuration tends to iron out distortion products resulting from the

*The ARRL handbook lists ratings for most transmitting tubes. Some of the older editions contain data on special “one of a kind” tubes from WW II. editor.
sudden transition from no grid current to full grid current. Also, the fact that the rf excitation fed through the amplifier tube tends to keep a swamping load on the driver stage further lessens the transition effect. So don’t be concerned if that oddball transmitting tube in your junk-box has low or medium mu.

You can do quite well without knowing the mu. All you really need to find out is what bias, at the plate voltage you intend to operate, is required to hold the plate dissipation to an acceptable amount. But remember that most tubes found on surplus will take a very impressive voltage and will approach linear operation more readily when the plate voltage is near the upper limit. You can determine this parameter if you have (or can borrow) a variable-voltage power supply that provides several hundred volts. In addition, you’ll need a voltmeter of similar range.

determining operating parameters

Let’s assume you’ve built your amplifier to the point where you’re ready to start testing with the intent of arriving at operating parameters. Initially, you set the grid bias at the highest negative potential available, then you turn on the plate voltage. If all goes well no plate current will flow: so you gradually reduce the grid bias, keeping an eye on the tube plate. Plate current will start to flow as the grid bias moves out of the cutoff region. As plate current goes higher the tube plate will start showing color. Here is where you’ll have to use judgment. If the tube has a carbon plate, a dull red at the plate center is the stopping point. If the tube has a tungsten plate, a bit deeper red around the center of the plate is permissible. If the tube has a tantalum plate, the red glow can be permitted to spread over most of the plate.

When the reduced grid bias (and the resultant plate current) has caused the plate color you’ve decided to accept, quickly turn off the plate voltage. Turn it on again for just a moment, and note the grid voltage. Again turn on the plate voltage just long enough to note the plate current. From the plate current and the plate voltage, compute the plate power input. If it’s not over one-half the amount of the tube’s rated plate dissipation, you’re at a good starting point.

power supply

Your next move is to construct a regulated power supply to provide the grid bias voltage you jotted down. A zener diode is highly recommended. Any number of zeners can be connected in series to provide the desired voltage. If you’re planning to use two or more tubes in parallel, the grid current will increase in proportion, as will the plate current. After installing the zener-regulated bias supply, recheck to assure that the tube resting plate dissipation is still at the value you’ve elected to accept.

designing the amplifier

With your odd-ball tube you’ll be on your own much more than if you follow some standardized design. Consider tube sockets for example. Many odd-ball tubes require sockets that won’t be found in most supply houses. You may have to make your own, which I did for the Eimac 3A200A3 tubes in my amplifier. This job isn’t too hard. Sometimes you can find a banana-plug socket that will fit tube prongs. I once used such components to make a socket for a Western Electric 212-E tube. Keep in mind that filament contacts must carry high current; therefore, the contact surface must be amply large and must make a firm connection.

tune up

For initial tune-up tests, it’s best to use a dummy antenna. Only the final part of the test requires the radiation of a signal.

You’ve determined and set the values of plate voltage and grid-bias voltage. Now you must determine the proper excitation (as indicated by the grid-current meter) and the optimum plate-current loading.

Provide moderate grid excitation—just enough to resonate the plate circuit.
Now increase excitation and try loading the plate circuit. Remember to keep grid excitation to a moderate level. If you know the class-C grid current rating for the tube, keep the current below half this value. Adjust the plate circuit in small increments. Turn on the power and make quick adjustments, then turn off the power. Continue increasing excitation (but don’t exceed the limit previously mentioned). Increase plate loading until the plate current dip becomes quite small. A better means of ascertaining the desired loading is with some device for measuring either the rf power output or voltage. When using this method, continue loading the amplifier until the rate of increase of output power (or voltage) approaches zero. Then back off the excitation about 10 percent.

You may wonder about a procedure that requires adjustments to be made quickly. The procedure is valid. You’re adjusting for a maximum (peak) power, which will be reached only by random voice peaks. The duty cycle of such peaks is very small; therefore, they will not overload the tube. Your amplifier must handle these peaks without appreciable distortion else splatter will occur on either side of your desired signal.

on-the-air checks

For this test it’s best to seek the cooperation of a station some distance away to avoid cross-modulation and intermodulation distortion in the receiver. Select a time and frequency when interference will be minimized. Also, try to have the cooperating station operated by someone who knows the difference between a clean ssb signal and one that is badly distorted. Do not depend upon a station having an oscilloscope attached to its receiver. Engineers who work with commercial ssb equipment have been quoted as saying, “Any distortion that can be detected on an oscilloscope already has gone far beyond the limit of tolerance.” The instantaneous splatter that results from intermodulation products on the high-amplitude peaks of voice modulation can be detected only by listening on adjacent frequencies or by the use of an extremely expensive real-time spectrum analyzer.

An honest and well-qualified listener, equipped with a conventional a-m receiver with a front end reasonably free of cross-modulation and intermodulation and operated with the agc disabled, af gain high, and the rf gain set to give a moderate signal, can provide meaningful information if he tunes slightly to either side of your signal as you talk normally. Ask the operator to listen for the buck-shot effect that results from nonlinear operation of an amplifier. If such distortion shows up only on voice peaks, you’re probably overdriving the amplifier. Hold the amplifier excitation low enough to pass the test. Your signal may not kick S meters as high, but you’ll have better relations with other amateurs and the FCC.

Linearity is not something that’s built into a tube. In addition to the tube characteristics, linearity depends upon external factors such as grid bias, grid excitation, plate voltage, and plate loading. These factors are mutually dependent, so it is not remarkable that true linearity is difficult to approach. Note that you can approach it but never achieve it.

Don’t hesitate to juggle grid excitation and plate loading to obtain the best possible signal. Usually the plate loading must be very heavy. As a last resort, try a different value of grid bias remembering that this bias always must come from a source of low internal resistance (strapped-down supply). Also bear in mind that linearity is more nearly approached when the tube bias point is such that the tube’s rated plate dissipation is not exceeded.

*However, consider the article by Marv Gonsior, W6VFR, in the March, 1972, issue of ham radio. Marv shows how ssb signals can be evaluated with a monitor scope connected to a receiver when the receiver bandwidth is appropriately modified to pass essential information, editor.

60 september 1972
CAPACITORS

ALL NEW FULL AXIAL LEADS

<table>
<thead>
<tr>
<th>MFD</th>
<th>Volts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>$1.00</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>$1.00</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>$1.00</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>$1.00</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>$1.00</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>$1.00</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>$1.00</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>$1.00</td>
</tr>
<tr>
<td>250</td>
<td>30</td>
<td>$1.00</td>
</tr>
<tr>
<td>500</td>
<td>35</td>
<td>$1.00</td>
</tr>
<tr>
<td>800</td>
<td>50</td>
<td>$1.00</td>
</tr>
<tr>
<td>1000</td>
<td>75</td>
<td>$1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disc Ceramic Capacitors. Very Small - Approximately .22 MFD, 50 MFD, 250 MFD. 30 MFD, 3 MFD, 5 MFD.

IN914 115 Volt PIV Small Size - For 30 Volt Capacitors. Approximately .22 MFD, 100 MFD, 1000 MFD. Your Choice! 20 for $1.00 ea. ppd.

3000 MFD @ 30 VOLT CAPACITORS

Size 1/2" Diameter x 3/4" Long. 75¢ each or 3 for $2.00 ppd.

1 AMP MOLDED BRIDGE RECTIFIER

200 Volt PIV Small Size - Manufactured by General Instrument. Ideal for P.C. Board. 50¢ each, 3 for $1.25 ppd.

ILLUMINATEDROCKER SWITCH

American made UL approved. 125 Volt 3 A ac illuminated S.P.D.T. rocker switch. Separate built-in S.P.D.T. switch operates built-in 115 VAC lamp. 75¢ ea. 3 for $2.00.

Disc Ceramic Capacitors. Very Small - About 1/2" Diameter. All Full Leads. .01 MFD @ 500 Volts .001 MFD @ 500 Volts .015 MFD @ 500 Volts Your Choice! 20 for $1.00 ppd.

NEW Dipped Mylar Capacitors.

.1 MFD @ 100 Volts .15 MFD @ 100 Volts .22 MFD @ 100 Volts Your Choice! 16 for $1.00 ppd.

1 AMP BRIDGE RECTIFIER

SEMTECH # SSCR 1

. Very nice. 7/8" d. 100 Volt PIV 59¢ ea. ppd.

P. C. BOARD CAPACITORS

50 MFD @ 15 VOLTS or 100 MFD @ 25 VOLTS Your Choice! 5 for $1.00 ppd.

BATTERY CLIPS

4" Color Coded Leads Fits Standard 9 Volt Battery 10¢ ea. ppd.

CDE TYPE WMF MYLAR CAPACITORS

ALL 100 VOLTS

<table>
<thead>
<tr>
<th>MFD</th>
<th>Volts</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>.033</td>
<td>100</td>
<td>$1.00</td>
</tr>
<tr>
<td>.062</td>
<td>100</td>
<td>$1.00</td>
</tr>
<tr>
<td>.100</td>
<td>100</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

DIODES

TOP-HAT EPOXY EPOXY MOUNT

<table>
<thead>
<tr>
<th>PIV</th>
<th>1.5 AMP</th>
<th>1.5 AMP</th>
<th>3 AMP</th>
<th>6 AMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>.04</td>
<td>.06</td>
<td>.12</td>
<td>.15</td>
</tr>
<tr>
<td>100</td>
<td>.06</td>
<td>.08</td>
<td>.14</td>
<td>.20</td>
</tr>
<tr>
<td>200</td>
<td>.08</td>
<td>.10</td>
<td>.16</td>
<td>.20</td>
</tr>
<tr>
<td>400</td>
<td>.12</td>
<td>.14</td>
<td>.28</td>
<td>.50</td>
</tr>
<tr>
<td>600</td>
<td>.14</td>
<td>.16</td>
<td>.32</td>
<td>.58</td>
</tr>
<tr>
<td>800</td>
<td>.16</td>
<td>.18</td>
<td>.36</td>
<td>.65</td>
</tr>
<tr>
<td>1000</td>
<td>.24</td>
<td>.28</td>
<td>.44</td>
<td>.75</td>
</tr>
</tbody>
</table>

ZENERS

All Units Tested And Guaranteed

400 MILLIAMP UNITS — 3, 3.3, 3.6, 3.9, 4.3, 4.7, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1, 11, 13, 15, 16, 18, 20, 22, 27, 30, 33, 39, 43, 47, 51, 56, 62, 68, 75, 82, 90, 100, 110, 120, 135, 150, 160, 180, 200, 250, 300, 350, 400, 450, 500 Volts. 1 WATT UNITS — 10, 11, 12, 13, 15, 16, 18, 20, 22, 27, 30, 33, 39, 43, 47, 51, 56, 62, 68, 75, 82, 90, 100, 110, 120, 135, 150, 160, 180, 200, 250, 300, 350, 400, 450, 500 Volts. ALL UNITS 10% — 4 for $1.00 ppd. 5% — 3 for $1.00 ppd.

HIGHEST QUALITY, AMERICAN MADE POWER CORD

6 Foot Gray Cord. Good For At Least 7 Amps. Plugs Into Auto Cigarette Lighter. A Hard To Find Item. 75¢ Each or 3 For $2.00 ppd.

Black, Aluminum, Anodized, Heat Sink. Size Approximately 4 1/4" x 1 1/4" x 1 1/2" w. Pre-drilled For TO-3 Transistors. Delco Part #727751. Factory New. 75¢ Each or 3 For $2.00 ppd.

Rectangular 0 to 1 Millimeter. Panel Size Approximately 1 1/4" x 1/4" x 1 1/4" Deep. Basic Movement 0-1 ma. Easily Adjusted For 0 Center With Instructions supplied. ideal meter For RTTY Use, Etc. American Made. Price: $1.00 Each ppd.

High quality, American Made Transformer. 115 Volt Primary. Secondary 17 Volt @ 150 ma. Tap At 6.3 Volt For Pilot Light. Ideal For Transistor Pre-Amps, VFO's, etc. Fully Shielded. Price: $1.50 Each ppd.

Power Transformer. 115 Volt AC Primary. Secondary #1: 2:1-2:3 3 Volt @ 1 Amp. Secondary #2: 6.3 Volts. Low Current For Pilot Lights. Size 2 1/2" x 2 1/2" x 3.

Price: $2.50 Each ppd.

6.3 Volt 1 Amp Transformer. Fully Shielded. $1.60 Each ppd.

Image: Page from a catalog listing various electronic components with prices and descriptions.
emitter-coupled logic

I introduced the basic types of digital IC circuits in an earlier column. One of these types was the emitter-coupled logic (ECL). These are often referred to as MECL types which is a Motorola terminology. There are several categories of MECL types according to speed of operation. The family identifiers are MECL-I, MECL-II, MECL-III and MECL-10,000.

The identifiers have to do mainly with the two electrical characteristics of toggle rate and gate propagation delay. The toggle rate is the frequency with which the logic activity can be made to changeover in one second. For example, if the family has a toggle rate of 30 MHz, a multivibrator of that class could produce 30 million output pulses per second.

A digital circuit requires a certain amount of time to changeover from one logic to another. Consequently there is a certain delay between the time of the input signal and the change of logic at the output. Such delay is defined as a propagation delay and is, in effect, a measure of the speed with which a digital IC circuit can be made to function. Propagation delay is usually measured in nanoseconds (a nanosecond is 10^{-9} second).

The MECL families are classified as follows:

MECL-I – 30 MHz toggle rate and 8 nsec propagation delay.

fig. 1. MECL III oscillator using an MC1692.
MECL-II — 70 MHz toggle rate and 4 nsec delay.
MECL-III — toggle rate above 200 MHz and 1 nsec delay.

The MECL 10,000 is a variation of the MECL-III type that fits into large systems and popular circuit wiring methods with greater ease. Propagation delay is 2 nsec associated with an edge speed of 3.5 nsec. Edge speed has to do with the rise and fall times of the pulses. If full benefit is to be derived from high-speed digital circuits, their associated signal input edges must also have a fast time. The maintenance of adequate edges, free of ringing and distortion, imposes strict requirements on interwiring. These requirements are relaxed by the MECL 10,000 designs.

Although the above figures are basic to the various types, it must be pointed out that in each family there are modifications and “improved-upon devices” that are better than the stated figures. For example, MECL-II types are now available with toggle rates of 120 MHz or 180 MHz.

The high-speed ECL types are becoming more prevalent in amateur test gear. Presently they cost more than the popular TTL types but operate at higher frequencies and higher speeds. Often their application as associated with TTL types bear the responsibility for the high speed activities in a given system. In a scaler, for example, an MECL might count down a very high frequency signal to a lower fre-

![fig. 3. Basic pin-out circuit of a double-balanced modulator using an SL614C.](image)

quency one that can be handled by TTL circuitry. Typical toggle rates for the 7400 TTL series are in the 15- to 30-MHz class. ECL devices are available that can act as a bridge between ECL and TTL types.

high-frequency oscillator circuits

A typical MECL-III crystal oscillator circuit is shown in fig. 1. Its toggle rate is so high that it will operate in oscillator circuits beyond the highest practical crystal frequency. Your high-frequency limitation, in this case, is not the device but the crystal itself. Remember that the output is a square wave, and if not lost in the output coupling system, strong harmonics are present in the uhf and low-frequency microwave spectra.

The circuit of fig. 2 uses an MECL-10,000 type and will operate up into the uhf spectrum. Circuit plan is such that either MECL or TTL outputs are available. The TTL output is such that it can drive a TTL input device or counter. It is said to provide the proper interface between MECL and TTL.

frequency multiplication and division

To some extent the doubly-balanced modulator linear IC has been overlooked by the radio amateur as a means of
frequency multiplication and division. An especially mind-jogging article appeared in the January, 1972, issue of *Electronic Equipment News* (British) stressing the fact that these devices can be used in circuit arrangements that provide more than integral multiplication and division.\(^3\) The device type used was the Plessey SL640 and SL641. The SL640 and SL641 can be made to multiply and divide over a frequency range of 100 Hz to 100 MHz. No doubt similar results can be obtained from the RCA CA3050, Signetics and Motorola MC 1596, and other types made in the United States.

The basic circuit of the device, fig. 3, shows signal and carrier inputs and a tuned output. The tuned output, of course, minimizes the generation of fundamental and other undesired components. In the usual application of a double balanced modulator there are signal and carrier input signals. In the device these two components cancel but mix and produce either a sum or difference frequency (fig. 4A) at the output (\(F_1 + F_2\) or \(F_1 - F_2\)). When the double balanced modulator is used as a multiplier or divider, only one input signal is necessary, figs. 4A and 4B. Either the input signal is applied to both device inputs or the second input is derived from the output.

The B circuit operates as a doubler; the C circuit, a 2-to-1 divider. The sum component at the output of circuit A is of course \((F + F)\) or \(2F\). In B circuit the signal input is \(F_i\) and the carrier input is \(F_o\). The output is tuned to the difference frequency, therefore:

\[
F_o = F_i - F_o \\
2F_o = F_i \\
F_o = F_i/2
\]

Two doublers can be connected in cascade to obtain a multiplication of 4, fig. 5A. Output of first modulator is \(2F\) or \((F + F)\). Output of the second multiplier is \(4F\) or \((2F + 2F)\).

If the input signal is also made the carrier input signal of the second modulator, the balanced modulator pair operates as a tripler, fig. 5B. Output of the first modulator is again \(2F\) while the output of the second modulator is \(3F\) or \((2F + F)\).

A division by four can be obtained by cascading two 2-to-1 dividers, fig. 6A. Odd division using balanced modulators requires feedback paths like the odd-

Figures:

- **A:** Balanced modulator inputs and outputs. A is the basic circuit, B is the basic doubler and C is the two-to-one divider.

- **B:** A frequency quadrupler and tripler.

- **C:** A frequency tripler.
divider designs of digital integrated circuits. In the case of the balanced modulator, the desired 1/3 output is removed between stages, fig. 6B. Additionally a

2F/3 component is available at the output of the second stage.

Three, four or five stages can be used to establish various integral and fractional multiplications and divisions. One can anticipate the use of both linear and digital multipliers and dividers in various types of amateur gear including transmitters. Much frequency processing and even modulation can be expected to occur at the low power levels of these circuits. Pulse waveforms often facilitate processing and it is no great problem to convert square waves to sinusoids. This is demonstrated in an earlier experiment where a 7-MHz crystal was used to generate a 3.5-MHz sine wave using a digital two-to-one divider. I am experimenting with these devices and I hope to bring you some practical circuits before the end of the year.

waveform generation

Additional function generators in the form of monolithic chips are being made available. A very appealing one has been developed by Exar Integrated Systems, Inc. In a recent article by Allan E. Grebene, the unusual versatility of such a device was stressed. This 16-pin in-line device can generate sinusoidal, triangular, square, sawtooth, ramp and pulse waveforms. These various waveforms can be amplitude modulated (double-sideband or suppressed carrier), frequency modulated or a combination a-m and fm modulation. The unit can be used to generate a sweep waveform or a tone-burst signal. Regular CW on-off keying is possible as well as FSK or PSK keying. Groups of these waveforms can be made available simultaneously. Here is a possibility for a transmitter design that also includes the generation of its own test and measurement waveforms as well.

The Exar-205 waveform generator consists of three major sections as shown in fig. 7. These are voltage-controlled oscillator, modulator and buffer amplifier. The oscillator makes available linear and ramp waveforms at its output. Frequency range of sine and square-wave generation is 0.1 Hz to 5 MHz. Triangle and ramp waveforms have a range between 0.1 Hz and 500 kHz. The oscillator frequency can be adjusted with a variable d-c voltage applied to pin 13. An audio or other modulating wave applied to the same pin will produce frequency modulation of the oscillator output.

When a sinusoidal or triangular wave output is desired, the output of the oscillator is applied to the input of the modulator. This wave can be amplitude
modulated by applying an appropriate signal to the second input of the modulator. The modulated or unmodulated sine wave or triangular wave can be taken off at the output of the modulator.

A buffer amplifier is also included in the chip. The signal at pins 1, 2, 12 or 14 can be applied to the buffer, and the amplified output can be removed at pin 11.

A practical circuit arrangement is shown in fig. 8. Ramp voltage is removed from the oscillator between pins 14 and 15. Capacitor C1 sets the oscillator frequency. Oscillator signal is applied to the modulator by way of pins 5 and 6 with a sine or triangle wave output present across pins 1 and 2. The wave-shape of the output is determined by the setting of the potentiometer connected between pins 7 and 8.

Amplitude modulation results when the appropriate modulating wave is applied to pin 3. Potentiometer R2 sets the dc bias voltage at pin 4, regulating the magnitude of the output signal.

six meter QRPP

The Siliconix 2N5912 dual-differential amplifiers perform well in push-pull oscillator circuits because of their uniformity. The device will operate as an oscillator to 100 MHz and above. Total device dissipation is about 500 milliwatts and, therefore, it is no great problem to obtain over a 100 milliwatts output on six meters. The circuit of fig. 9 performs well with the inexpensive EX overtone crystals made available by International Crystal Manufacturing Company. The output capacitor is an 8-pF butterfly connected across a coil made from B&W 3011 stock. The coil is seven turns, center tapped. The output winding is two turns of hook-up wire wound around the center of the primary. It will load the usual 50- to 70-ohm six-meter antenna without the use of an output tuning capacitor. More critical loading to other antenna types can be obtained by adjusting the secondary turns or inserting a series tuning capacitor as shown. The transmitter will operate on other bands with the use of appropriate crystals and balanced output resonant circuits.

references
The most powerful signals under the sun!

400 ROTO-BRAKE

Up to 10 Times the mechanical and braking capability of any rotator on the market!

- Handles large beams and stacked arrays with ease
- Delivers over 4,000 IN/LBS of starting and rotating torque
- Gear train protected by husky cast aluminum housing
- Solenoid operator brake adjusted to slip at 5,000 IN/LBS to prevent damage
- Extra heavy duty machined steel gears for maximum strength
- Handsome control unit features sweep pointer over choice of three great circle maps or compass rose
- Select desired position and rotator's logic circuit brings into desired position
- Capacitor start for high torque
- Operates off 110VAC 60 cycle power source
- No blind spots—moves 360°
- Antenna automatically moves to position when control is activated
- Heavy duty mast clamp takes up to 3" O.D. mast
- Mounts to standard tower plate with min. of 10" tower leg spacing
- Mounting kits available for poles or small towers
- Universal tower mount available
- Temperature range—30° F to 120° F
- Permanently lubricated
- Requires one 5 wire cable
- Cable available from Hy-Gain 412

Buy a 400 ROTO-BRAKE from the best distributor under the sun—the one who stocks Hy-Gain!

Model No. 400
Suggested retail price $189.95

HY-GAIN ELECTRONICS CORPORATION

P. O. Box 5407-WI, Lincoln, Nebraska 68505
Having built an electronic keyer, I needed a paddle to operate it. Because of cost, poor feel, or my desire not to sacrifice either my straight key or my bug, I decided to build my own paddle. The final model of my paddle cost me nothing, and although it sacrifices a little adjustability, it fits my requirements well and can easily be enclosed in the same box as a keyer, as the paddle only measures 1 5/8 x 1 x 1-inch.

Fig. 1 illustrates the keyer paddle and gives enough data to duplicate my unit; however, a few comments may clear up some questions. The rubber band allows a one-shot tension adjustment but, by changing the number of loops or by changing the thickness of the band or by varying its position, you can get any tension you want. I was going to use a non-conducting plastic spring but it was expedient at the time to use a rubber band. It worked so well I left it in. You'll probably have to replace the rubber band every so often but its no trouble and it gives you another chance to admire your handiwork. My first one lasted over a year and the second has been going for longer than two years now. It seems to me that when I was a kid we used glycerine on the model airplace rubber bands to extend their life so you might try that. I used one of those small office rubber bands about one inch long and a sixteenth of an inch thick. I send code practice three times weekly in addition to my normal cw operating, so the paddle gets a generous workout.

I used a 6-32 steel machine screw and four nuts for the shaft and bearings. The philosophy here is to get plenty of bearing surface; so large diameter and fine threads are best. However don't go overboard because you might have trouble with foil separation when soldering large nuts to the circuit board. The nuts are ground on one side to allow clearance. A bench grinder, belt sander or such will work here – even a file.

The slots cut in the brass angle stock determine the paddle throw, so be careful not to make them too large. The paddle throw could be made variable in different ways, but generally once throw is set the way you want it, it never is touched again. If you need adjustment, the machine screw can be set a variable distance from the brass angle.
This keying paddle works fine with either a standard or squeeze keyer. My paddle is housed in a 4 x 4 x 2-inch black crackle utility box together with batteries, keyer, sidetone generator and 3-inch speaker. It was built as a present for my wife, but you know how that is.

Kenneth R. Klopf, KL7EVD

frequency standard

A stable and highly accurate signal for calibrating counters, meters, or frequency sources can be found in every color television receiver. The local color subcarrier oscillator, at 3.579545 MHz, is crystal controlled and phase locked to the transmitted “color burst” signal from the television station. If the program is of local origin or a delayed tape presentation, this frequency is stable to about one part in 10^8 short term — or one cycle in three seconds. This is more than sufficient for most amateur work and exceeds the capabilities of many inexpensive counters.

If the local station is transmitting a live program from New York such as a national news special, some sports events or some daytime game shows, the color-burst signal will be phase locked to the network rubidium standard and the color TV set’s 3.579545 MHz oscillator will be essentially as stable as the standard — typically one part in 10^{12} per day. This resolution is beyond the needs of any but the most advanced or fanatical workers.

Aarne T. Haas, WA7JIK

fig. 1. Construction details of the simple keyer paddle.
scanning receiver interference

With the increasing popularity of police-band vhf-fm scanning receivers, a number of amateurs operating on 2-meter fm have had very disconcerting engagements with a new form of interference - scanning receiver interference. SRI appears as an interruption of normal scanning reception of the police band by quite clear and intelligible reception of a local 2-meter amateur.

The cause of the interference is quite simple to understand and, like most interference problems, it is caused by the design shortcomings in the receiver circuitry. These scanner receivers utilize a frontend which uses gated conversion local oscillators capable of scanning some 6 to 8 MHz of the vhf-fm public-service band. Obviously, the rf amplifier preceding the converter stage in such a radio would have to have a broad response. Unfortunately, some of these are a little too broad and are easily overloaded when operated in a high-strength rf field produced by a 2-meter fm transmitter. This overload in the receiver frontend generates products which look like signals to the rest of the receiver, and the receiver stops scanning and presents beautiful, cleanly-detected 2-meter fm audio - generally to the receiver owner's dismay.

The owner's first reaction is usually to find out "who is interfering with the police and fire broadcasts," and inform him of this fact. This can be an unnerving and embarrassing experience for the unknowing amateur. The correct action to take, though, is the same as for a television-interference problem.

First make sure you are clean. Successful operation of a good-quality police-band receiver while your transmitter is in operation should establish this. The owner of the automatic eavesdropper should then be told politely that the problem is one of receiver design. He should be requested to write to the manufacturer to explain his problem and request assistance.

Not all scanning receivers are plagued with SRI. The Digi-Scan, manufactured by Unimetrics, appears to be much less susceptible to this problem than some of the more common scanners such as the Bearcat and the Courier. Of course, good-quality, non-scanning receivers with narrow front-ends are the best choice to prevent SRI. (Adapted, with permission, from The RaRa Rag, published by the Rochester Amateur Radio Association.)

Joseph Hood, K2YAH

uhf coax connectors

If you dread installing uhf coax connectors because you have a tough time threading the outer jacket of the coax into the connector, try this. Trim the end of the coax in the usual manner per the ARRL Handbook. Daub a drop of silicone grease, about the size of a match head, on the black jacket just back of the exposed braid. As the connector is threaded on, it will pick up the silicone grease and turn on like a nut.

Floyd R. Patten, WØLCP

cold galvanizing compound

After designing and building that antenna to end all antennas, the finishing touch should provide long life. Cold Galvanizing Compound, manufactured by Crown Industrial Products Company*, can do the job. This spray-can product is light gray in color and easy to apply. It provides a zinc-rich coating which protects metallic materials from rust and corrosion.

The Cold Galvanizing Compound provides protection in two ways. First, as a long-lived coating of practically pure zinc; and second, through galvanic action. This becomes effective when the surface is scratched or broken — with the presence of moisture galvanic action takes place, but the corrosion of the zinc coating will protect the metal it covers.

Hilary McDonald, W5UNF

Clegg

WANTS TO PUT YOU ON

2 METER FM

THE RIGHT WAY ... FIRST

FM 27 A

$479.95 Complete with Noise Cancelling Microphone and Antitheft Mobile Mount.

2 METER TRANSCEIVER WITH CRYSTIPLEXER FREQUENCY CONTROL

Only the FM-27A offers the 2 Meter FM'er the complete freedom of frequency—receive and transmit—with accuracy and stability comparable with conventional crystal control.

In addition—the FM-27A provides the hottest performing receiver and most conservatively rated 25 watt transmitter on the market.

See your Clegg Dealer today or write or phone our factory for detailed data sheet on the fabulous FM-27A. QUALIFIED REPRESENTATION WANTED.
new products

ssb and CW transceiver

Hallicrafters introduced a new, low priced, completely self contained ssb and CW transceiver, the FPM-300. It is compactly designed with modular construction techniques for fixed, portable and mobile use for amateur, CD, CAP, MARS, RACES and other utility hf communications services.

The new transceiver provides the user with an extended range vfo (600 kHz) for full-frequency coverage of 80 through 10 meters.

Priced at $595, amateur net, the transceiver features low power drain, conservatively rated 250 W PEP input on ssb and 180 W on CW. The unit is all-American made with American components. It uses glass-epoxy pc boards and over 70 active electronic devices.

Other features of the unit include a large, easy-to-read frequency display which can be interpolated to 1 kHz, combination S/tune meter, built-in vox and semi break-in CW, an IC speech compressor, aalc, 100/50/25-kHz crystal calibrator and a universal power supply for 117/234 Vac, 50/60 Hz and 12 Vdc.

For additional data on the FPM-300, write to the Hallicrafters Company, Amateur Radio-Department PR, 600 Hicks Road, Rolling Meadows, Illinois 60008 or use check-off on page 110.

semiconductor lasers

Both Ralph W. Campbell, W4KA, and Forrest M. Mims have written articles and letters in ham radio magazine about laser experimentation. These two men have now come out with a new book on the subject entitled "Semiconductor Diode Lasers." The new book is written in a comprehensive but easy to read style and introduces experimenters and design engineers to the injection laser — one of the most unique and challenging semiconductor devices in electronics today.

The first chapter discusses the history and development of the laser. It explains light-emitting diodes, the injection-laser theory and such lasers as the solid, liquid, gas, plastic, gelatin and space.

Chapters two and three describe the fabrication and the electrical properties of the injection laser. Also explained is coherence, a very significant aspect of laser light.

The remaining chapters deal mainly with circuitry and practical applications. Circuitry encompasses pulse generators, modulators, power supplies, detectors and receivers. Optical systems and viewing devices are also mentioned.
Now—unexcelled picture performance with exclusive-feature equipment of highest quality in which the most advanced SSTV techniques are expertly applied—SBE Scanvision. Here, carefully considered design has simplified operation to the point where the non-engineer radio amateur can have his SBE Scanvision monitor connected and start enjoying slow scan in just a matter of minutes.

Most of the many hundreds of SS TV'ers now active on the air agree that the full excitement and enjoyment of SSTV can best be realized only when a tape recorder is part of the system. Incoming pictures are taped for future viewing on SS monitor—pre-taped pictures, scenes, I-D—can be transmitted. So—exclusive!—every SBE Scanvision monitor has a cassette-type tape recorder built-in—wired—ready to go and selectable with panel switch. Here is the ultimate in convenience.

SBE Scanvision is conservative—reliable, with picture-proved circuitry and is all solid-state except for the scope tube in the monitor and the videocon picture pickup tube, heart of the SB-1CTV camera. Both tubes are standard types with predictable characteristics—not surplus.

High quality is everywhere evident—throughout, the to-be-expected SBE approach—fastidious—professional. The SBE Scanvision, SB-1MTV Monitor, complete with cassette recorder and SB-1CTV Camera with f/1.9, 25mm lens, connect with patch cable to comprise a system. Units are also separately available.

SEE SCANVISION AT YOUR SBE DEALER
The final chapter covers several of the many applications which are realities and suggests others to come.

This first edition book also contains appendices on laser safety, range equations and addresses of manufacturers. Finally, the book is rounded out by a wide variety of conventional and infrared photographs.

With large-scale, practical light-beam communications still years in the future, this book on laser injection provides valuable research material and is a most interesting book for the experimenter searching for an area in which he can possibly add to man's knowledge.

The book is 192 pages, softbound, and is available for $5.95 from Comtec Books, Greenville, New Hampshire 03048. This new book is published by Howard Sams.

fm monitor receiver

E. F. Johnson has introduced a new non-scanning fm monitor receiver featuring one-at-a-time coverage of five channels. Intended for mobile use in the 150-174 MHz band, the all solid-state unit can be powered directly by a 12-Vdc power source or from an optional ac power supply or field battery pack. The receiver features a dual-conversion circuit with a crystal filter, 5-watts audio output, built-in speaker, true noise-operated squelch, external speaker jack and SO-239 antenna connector. The receiver sells for $119.95.

More information can be obtained from any Johnson dealer, direct from E. F. Johnson, Waseca, Minnesota 56093, or by using check-off on page 110.

pulse tone circuit

A miniature thick film hybrid pulse circuit chip is now available from Alpha Electronic Services. The PT-100 pulse chip, when added to an Alpha ST-85 encoder, creates the necessary time delay pulse utilized for pulse or burst tone CTS systems, telemetry, radio controls and selective signalling systems.

The Alpha ST-85J encoder is contained in one thick film chip, the frequency determining network is one thick film chip and the entire unit when combined with the PT-100 chip makes a very small package (7/8" x 1-1/4" x 1/2"). Because of the miniature size, it is especially useful in handheld radio units or mobile units where space is at a premium.

The thick film hybrid technique is especially desirable where exceptional long term reliability is required or where the high failure rate of reeds is a problem.

As a complete pulse tone encoder the ST-85J, PT-100 is available in any frequency from 20 to 3000 Hz. Temperature range is from -40°C to +100°C. Current requirement is 4 mA at 12.6 volts, but it will perform within a voltage input range of 6 to 24 Vdc.

Application engineering assistance is available. Contact Alpha Electronic Services Inc., 8431 Monroe Avenue, Stanton, California 90680, or use check-off on page 110.

transistor tester

The model 85 transistor tester saves considerable time in locating faulty transistors. In-circuit tests can be made by placing the contacts of the tester against the printed-circuit board. A tone is heard if the transistor is a functioning unit. The absence of a tone indicates a shorted or open transistor. The unit comes with an input extender cable for adapting to various lead configurations. The battery-powered unit costs $17.95. More information is available from Production Devices, 7857 Raytheon Road, San Diego, California 92111 or by using check-off on page 110.
The CRICKET is here — and it has the jump on all the others in its field!

This low cost keyer has more features for your dollar than all others in its price range. Even some in a higher price range! Go ahead — look around — compare the rest! Then buy the BEST — Data Engineering's new CRICKET I.

- Jam-proof spacing
- Self-completing dots and dashes
- Sidetone osc. and speaker
- Built-in key
- Relay keys 300 V at 1 amp
- Keyed time base. Instant start
- 3.5 to 50 w.p.m.

- "Full-control" weight ratio
- Speed, volume and tone controls
- Transmitter tune switch
- Auto/semi-auto. switch
- AC powered. Can also operate from 12V battery.

$49.95

Why don't you get the jump on all the others — too?

AT LAST —

A FREQUENCY STANDARD DESIGNED SPECIFICALLY FOR THE FM'ER!

Now, for the first time, you can be exact with your channel spacing and deviation.

This deluxe marker allows you to check your receive and transmit spacing for channels in the 10, 6, 2, and 1½ meter FM bands. Markers are at 5, 10, 15, 20, 30, 40, 60 and 120 KHz. Precision 12 MHz crystal. Osc. and output buffered. No unwanted markers. Rich harmonics beyond 220 MHz.

$44.50 (Less batteries)

MEMORY-MATIC 500 KEYER

$198.50

SPACE-MATIC 21 KEYER

$89.50

FREQUENCY MARKER STANDARD

Markers at 5, 10, 25, 50, 100, 200 and 400 kHz. 400 kHz crystal. No unwanted markers. Latest low power ICs. Buffered osc. and output.

$32.95 (Less Batteries)

ELECTRONIC FEATHER TOUCH KEY

The solid-state design detects the mere touch of your finger and eliminates such problems as contact bounce, proper adjustments and dirty contacts. Operates with all keyers. Weighted.

$22.95, $25.95 (with SPDT Switch Option)

5-year guarantees • PPD USA • Send for brochures

DATA ENGINEERING INC.
Box 1245 - Springfield, Va. 22151
three-band scanner

A programmable, three-band scanning monitor receiver covering 25 to 50 MHz, 140 to 174 MHz, and 450 to 470 MHz simultaneously, is now available from the Pace Communications division of Pathcom Inc.

The receiver can be programmed easily for monitoring any combination of eight channels in the high band vhf, low band vhf or uhf frequencies. The unit, designated the SCAN 308, holds up to 16 different channels. With simple switch controls the unit can give visual readout for up to eight channels at one time. It was designed to meet the growing need for multiple channel monitoring by amateur and public safety personnel.

Pace’s new SCAN 308 has a wide frontend design so that one model, tuned at the factory, can be easily retuned for extreme field conditions. Technical features of the new model include a unique IC and fet transistor complement to provide versatility of broad band adjustments while still maintaining good selectivity and sensitivity. Rear panel programming switches select the desired combination from 16 internal crystal sockets. No internal wiring need be changed. Front panel control lights, with lock out controls indicate which channel is being monitored.

Built for both 12 Vdc mobile operation and 110 Vac home use, the SCAN 308 is provided with ac and dc power cords, a locking mobile mount, non-slip desk mount, telescoping antenna and built-in speaker. There are provisions for external remote speaker as well as external antenna connections. The wood grain styled metal case makes an attractive desk console.

This unique three band simultaneous scanning monitor sells for $189.95. This model is manufactured in the United States and carries a complete two year service warranty on parts and labor.

For more information consult your local Pace registered sales outlet, write directly to PACE, Box 306, Harbor City, California 90710 or use check-off on page 110.

fm frequency standard

Data Engineering is offering a ready-built frequency standard designed specifically for the fm enthusiast. The unit puts out markers at 5, 10, 20, 30, 40, 60 and 120 kHz throughout the 10-, 6-, 2- and 1¾-meter bands.

The unit can be easily calibrated against WWV with an adjustment through the front panel. Completely self-contained, the unit is designed for precise frequency output, cancellation of unwanted markers and usable output above 220 MHz.

Calibrated against WWV and with a built in battery holder for four C cells, the unit sells for $44.50 and carries Data Engineering’s five year guarantee. For more information write to Data Engineering Inc., Box 1245, Springfield, Virginia 22151 or use check-off on page 110.
One-Stop “Shopping” for Everything You Want in a TRI-BANDER QUAD

Why shop around for, and put together, bits and pieces of a tri-band, two-element quad at greater cost particularly when—after all is said and done—Hy-Gain’s complete Hy-Quad delivers superior performance?

Yes, Hy-Quad is the only quad that is complete; and here are some of its features:

- Aluminum construction that is made to stay up.
- Spreaders broken up at strategic electrical points with cycolac insulators.
- Individually resonated elements with no inter-action.
- Only one feed line required for all three bands.
- Individually tuned gamma matches on each band with Hy-Gain exclusive vertex feed.
- Full wave element loops require no tuning stubs, traps, loading coils or baluns.
- Heavy duty mechanical construction of swaged aluminum tubing and die-formed spreader to boom clamps.
- Extra-heavy duty universal boom-to-mast clamp that tilts and mounts on any mast 1½" to 2½" in diameter.

If you really want a big signal, buy one at the best distributor under the sun. He’s the one that stocks Hy-Gain.

SPECIFICATIONS

- Overall length of spreaders: 305"
- Turning radius: 13' 6"
- Weight: 42 lbs.
- Boom diameter: 2"
- Boom length: 8'
- Mast diameter: 1½" to 2½"
- Wind survival: 100 MPH
- Forward gain: 8.5 db
- Input impedance: 52 ohms
- VSWR: 1.2:1 or better at resonance on all bands.
- Maximum legal
- Power: 25-35 db depending upon electrical height.

Order Number 244

Ham Net $129.95

THE HY-QUAD from HY-GAIN
HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407-WI, Lincoln, Nebraska 68505

More Details? CHECK-OFF Page 110

september 1972 77
solid-state electronics

Today, the technician is expected to assume technical responsibilities that formerly were controlled by engineers. As a consequence, the valuable electronics technician, often called an Associate Engineer, must have more than a superficial knowledge of the popular solid-state components now in use. The main objective of "Solid-State Electronics," is to help technicians meet this challenge. George Rutkowski, the author of this new book, not only discusses the fundamentals, but also develops the student's ability to select proper design components for solid-state electronic circuits.

The book begins by explaining common semiconductor materials. Other chapters discuss Zener diodes, junction transistors, SCRs, FETs and ICs.

A modified programmed style is used throughout the book. Each point discussed is followed by at least one worked example. The student is encouraged to work each sample problem before referring to its solution. The answers to the odd-numbered, end-of-chapter problems are provided at the end of the book. These problems, with the examples, make this book a highly-recommended source for either self-study or classroom use.

"Solid-State Electronics Laboratory Manual" has been written by Jerome E. Olesky to accompany "Solid-State Electronics" to enhance its value as a study course.

"Solid-State Electronics" is 616 pages, hardbound and costs $15.50. "Solid-State Electronics Laboratory Manual" is 144 pages, softbound and costs $4.50. Both are published by Howard W. Sams and are available from Comtec Books, Greenville, New Hampshire 03048.

theory course

Ameco Publishing Corporation has come out with a profusely illustrated, 448-page course for the first and second class FCC commercial licenses. Broken into 21 lessons, the book is logically arranged so you can study for the second class license and then use the same book to progress towards the first class. The book is quite comprehensive, includes practice tests and deals with over 600 FCC type questions.

The softbound book, catalog number 15-01, is available for $5.95 from Comtec Books, Greenville, New Hampshire 03048.

counter and display modules

A new series of counter and display modules is available from Display Electronics. The CM series modules include a decade counter, latch, decoder-driver and readout for each digit. Standard modules are available with from two to six digits.

All ICs are 7400 series TTL with a typical minimum counting rate of 18 MHz. The modules operate over a temperature range of 0° to 70°C. Lamp test and zero blanking functions are provided. A single 5-Vdc power supply is required for logic and readout. The readout tube is a seven-segment incandescent type with a character nearly one half-inch high. A piece of non-glare polarizing filter material is furnished with each module. Components are assembled on a G10 fiberglass PC board. A rhodium plated edge connector is provided in addition to solder terminals.

The price of a typical four-digit module is $79.00 in single quantity. Custom designed modules are available on special order. Further information is available from Display Electronics, P. O. Box 1044, Littleton, Colorado 80120 or by using check-off on page 110.
When the overload is removed

FEATURES

1. Instant band change without tuneup.
2. Instantaneous digital frequency readout.
3. IF shift control.
5. All popular modes of operation.
6. Transceiver-plus-receiver operation.
7. Hang AGC levels out wide swings in signal strength.
8. All ham bands from 160 through 10 meters.
9. RF envelope clipping provides matchless talk power.
10. Metering of all critical functions.

IN VectER/CONVERTER:
Model 612 is a special purpose unit to provide 12 VDC negative ground power in automobiles with either 6 volt negative ground or 12 volt positive ground. 10 amp surge, 3 amp continuous.

HONEYWELL
0-25 VDC Voltmeter
new, $3.95

MISC.
COLLINS 30L-1
xint (Round Decal), $350.00
AUTRONIC KEYER new, $79.95
SBE SB-36 TRANSCEIVER new, $895.00
GPR-90 RECEIVER new, $275.00
HEATH SB-300 RECEIVER new, $150.00
JOHNSON KW MATCHBOX* mint, $105.00
JOHNSON 250W MATCHBOX mint, $90.00
GLADDING 25 new, $249.95
GLADDING POWER SUPPLY new, $69.95
GLADDING 25 with PS new, $299.00

*without power supply

ANTENNAS
2M MAGNETIC MOUNT w/RG58 & PL-259
new, $9.95

DX ENGINEERING
SPEECH COMPRESSORS
DIRECT PLUG-IN FOR COLLINS 32S $79.50
DIRECT PLUG-IN FOR KW — 2 $79.50
DIRECT PLUG-IN FOR DRAKE TR-4 OR DRAKE TR-4

InK
HEATH HW-101 w/AC & DC P. S. all MINT
all @ $350.00

C.D. HAM "M" ROTATORS, new, complete $99.95
HAMB "M" CABLE 12c/ft.
RG-8A/U — 65 feet with PL-259
CONNECTOR for EACH END $9.50
C.D. TR-44 ROTATORS, new, complete $63.95
CABLE FOR TR-44 6c/ft.

CASH PAID . . . FAST! For your unused TUBES, Semiconductors, RECEIVERS, VAC. VARIABLES, Test Equipment, etc. Write or call Now! Barry, W2LN1. We Buy!
We ship all over the World. DX Hams only. See Barry for the new Alpha 77.

BARRY ELECTRONICS CORP.
DEPT. H-9 — PHONE A/C 212-925-7000
512 BROADWAY, NEW YORK, N.Y. 10012
RIGHT NOW!

Delivery from stock... no waiting FACTORY TO YOU
Prepaid delivery by UPS ... no waiting ... no expense
ORDER DIRECT: ONLY $239.95
- 12 Channels
 You don't need 12 channels yet? You will! You will!
- Tweak BOTH xmtr & rcvr
 Big deal! You’ll know it is if you get a set where you can’t zero the receiver.
- Front speaker
 Most sets have the speaker aimed up under the dash or at your feet with the result that you can’t hear diddely beans. The front speaker can be heard, even when you are driving.
- 10 watts.
 Also 0.1 and 1 watts, switchable. Big deal? Have you thought how easy it is to make this little set into a shoulder unit with a small battery pack? The low power position is excellent for this.
- Very, very small.
 Tiny, in fact. Mounts anywhere.
- Minimum adjacent channel interference.
 The ceramic filter eliminates most adjacent channel spillover. You may not appreciate this unless you’ve tried a couple of other sets and found them unusable anywhere near a strong signal.
- S-meter.
 Big deal? How many sets in this price bracket have an S-meter and power output indicator meter? The S-meter is very handy.
- Includes.
 Matching mike, mounting bracket, etc.
- Available with tone burst encoder.
 Built in and tested. Ross & White also makes these tone burst units and sells them. Send for prices and info.
- Can you do without this terrific FM unit one more week?
 Don’t miss any more of the fun on 2m. Instant delivery, prepaid!

ORDER RIGHT NOW!
Also available with built in tone burst encoder: $279.95.
We accept BankAmericard.

shortwave preselector

The first in a series of specialized products for the forgotten short wave listener has been introduced by Gilfer Associates, Inc. This product is a pre-selector to enhance weak-signal reception, improve the signal-to-noise ratio in many short wave receivers and virtually eliminate images in single-conversion short wave receivers.

The Model A-20 PreSelector tunes the single range 3.9 to 22.5 MHz. Connected between the receiving antenna and short wave receiver, the A-20 has a noise figure under 2.0 dB and a gain of not less than 18 dB. The gain is variable with a front panel control from near signal cutoff (-40 dB) to the maximum. A slow motion calibrated dial permits setting the A-20 to the peak of its passband (not less than 200-kHz wide at the -3.0 dB points). The A-20 is powered by 117 Vac with transformer isolation for safety. To ensure maximum flexibility, toggle switches are provided for antenna selection and pre-selector in/out option.

The attractive, compact unit sells for $49.95. More information is available from Gilfer Associates, Inc., Box 239, Park Ridge, New Jersey 07656 or by using check-off on page 110.

fm receiver kit

Hamtronics has come out with a new fm receiver kit for the 6 or 2 meter amateur bands or the adjacent commercial frequencies. The kits feature a small size circuit board, low-noise protected mosfet frontend, IC limiter/detector, one-watt audio output stage, narrow-band ceramic ladder filter, posi-
tive acting noise squelch and built-in test features.

The unit is powered by 13.6 Vdc. An optional adapter turns the standard one-channel unit into a six-channel receiver. The builder supplies his own case, controls and speaker and must drill the board himself. This allows custom installation of the board in home-built transceivers and keeps the cost of the kit down.

The receiver board kit is $54.95. The six-channel adapter is $9.95. Discounts are available to clubs and dealers. More information is available upon receipt of a self-addressed stamped envelope to Hamtronics, Inc., 182 Belmont Road, Rochester, New York 14612 or by using checkoff on page 110.

transistor substitution handbook

The engineering staff at Howard W. Sams has produced the twelfth edition of their popular "Transistor Substitution Handbook." This latest edition is an up-to-date guide providing the reader with over 100,000 transistor substitutions. To guarantee the most accurate substitutions possible, the electrical and physical parameters as described in the manufacturers' published specifications for each bipolar transistor were fed into a computer; then each transistor was compared with all the others. Consequently, transistors which matched within prescribed limits are listed as substitutes.

Section 1 contains substitutions for both American and foreign transistors which are arranged in numerical and alphabetical order. Types recommended by the manufacturers of general-purpose replacement transistors are included at the end of each list of substitutes. Additional data on these general-purpose replacement types - the manufacturer, the polarity, the material (germanium or silicon) and the recommended applications - are reviewed in Section 2.

This handy and comprehensive book is 176 pages, softbound and sells for $2.25. It is available from Comtec Books, Greenville, New Hampshire 03048.
When you want an authoritative, up to date, complete reference *It's the CALLBOOK and you know it*

The U.S. and DX Editions lists licensed radio amateurs throughout the world plus many other valuable features including maps, charts & tables all designed to make your operating more efficient and more fun.

PLUS
New this year!
A special subscription service of one basic CALLBOOK plus three service editions, one issued every three months to keep you completely up-to-date for less than half of the cost of purchasing four complete CALLBOOKS as before. You save money — you stay better informed.

Over 285,000 QTH's in the U.S. edition
Complete for 1972 U.S. CALLBOOK subscription
just $14.95

U.S. CALLBOOK for 1972 (less service editions)
$8.95

Over 180,000 QTH's in the DX edition
Complete for 1972 DX CALLBOOK subscription
just $11.45

DX CALLBOOK for 1972 (less service editions)
$6.95

See your favorite dealer or Send today to
(Mail orders add 25¢ per CALLBOOK for postage and handling)

WARNING!

HAM RADIO SUBSCRIPTION RATES ARE GOING UP.

SUBSCRIBE OR EXTEND NOW AT TODAY'S LOW RATES

<table>
<thead>
<tr>
<th>Years</th>
<th>1 YEAR</th>
<th>3 YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offer</td>
<td>$6.00</td>
<td>$12.00</td>
</tr>
</tbody>
</table>

Offer good only until October 15, 1972 (December 31, 1972 foreign)

HAM RADIO MAGAZINE
GREENVILLE, N. H. 03048
FANS and BLOWERS — NOISELESS
All motors, 115/230V 50/60 cycle.

100 CFM Rotron Muffin fan. Motor 14w., 2” dia. 1 1/2” deep; 4 thin plastic mounting strips, 2” long. 5/8” mounting centers. Metal shroud removed, no housing. 2 LBS. UNUSED, tested, operative. 4/$18.50; each $5.00

50 CFM fans. HOWARD 4 shaded pole, PM, brushless motor. 12W. 2 1/2” x 2 3/4” x 2 1/4” including blades. 4 nylon blades. 4.4 Dia. 2 LBS. 4/$8.50; each $2.25

50 CFM blower. Motor as above but 16W. 2 3/4” x 3 1/2” x 4” for impeller. Housing 3 1/2” dia. input hole 1 1/2” dia.; output 1 1/2” x 1 1/2”. 3 LBS. USED, tested, operable. 4/$13.25; each $3.50

Mercury Wettled Relay. CLARE #H G2A1008. Coil 9v DC nominal; operate from 6 to 14v DC. DPST. 1 1/2” dia. 3 1/4” h. + 3/8” octal plug-in. 1 1/2” NEW. 4/$16.50; each $4.50

COMPUTER CIRCUIT BOARDS
Made in late 1968, with test and acceptance stamps, NEW. Epoxy glass, 4 3/4” x 7 1/2” x 1 1/2” for gold solder-in connections. 1 1/2 LB.

#1) HAS 276.480 KC CRYSTAL; 2 #6818, 1 #6504 & 1 #67424A Tl ICs; 6 #2N3053 transistors; 11 other transistors; + asst’d diodes, resistors, capacitors. 4/$13.25; each $3.50

#2) 1 #2N3055 POWER TRANSISTOR, on heat sink; 6 #6746A transistors, in heat sink; 9 other transistors; 1 transformer; 4 Helitrim miniature trim pots; + diodes, resistors, capacitors, etc.

#3) 10 TRANSISTORS; 4 Helitrim; + diodes, resistors, capacitors, etc. 4/$7.50; each $2.75

All prices are NET, FOB store, Chicago. PLEASE include sufficient to cover postage. Any excess remitted, returned with order. Illinois deliveries, add 5% sales tax.

R 50B/ARCO12 (R19 Converted to automatic squelch): 115-148 MHz a.m. command receiver. Very excellent used, as removed from form aircraft. Internally complete with 9 tubes — 3/9003; 1/9003; 1/14A4; 2/14R7; 1/14F7 & 1/12A6; 3-15MHz IF, etc. 10 lbs. $8.50

DY-10A, 24 v. dynamotor, for above, $3.00; with purchase of receiver $2.50. Schematic diagram; and wiring diagram with parts identification list 50c; with purchase of receiver 30c.

NO OTHER ACCESSORIES AVAILABLE

BC ELECTRONICS — c/o BEN COHN
MAILING ADDRESS
1249 W. Rosedale Ave., Chicago, Illinois 60660
Store address: 5696 N. Ridge Ave., Chicago, Ill. 60660. Hours: Wed. 11 a.m. to 2:30 p.m.; Sat. 10:00 a.m. to 2:30 p.m. Other times by appointment.

312-784-4426 & 334-4463

WORLDS ONLY WEEKLY DX MAGAZINE
DX NEWS IS OUR BUSINESS

THE DX’ERS MAGAZINE
(Gus M. Browning, W4BPD)
Drawer “DX”
CORDOVA, S. C. 29039

WE ALSO PRINT QSL CARDS - FREE SAMPLES & PRICE LIST UPON REQUEST. WE PRINT ALMOST ANYTHING ELSE YOU NEED TOO - PRICES RIGHT

TYMETER Since 1935
Time At A Glance
DIGITAL CLOCKS

24 HOURS CLOCK
#100-24H
$16
Made in U.S.A.

At Your Dealer, or DIRECT FROM

PENNWOOD NUMECHRON CO.
DIVISION OF LCA CORPORATION
7249 FRANKSTOWN AVE
PITTSBURGH, PA 15208

UTC CG-305 TRANSFORMER, 105, 110/210, 220 Primary and 4800/3500 VCT Secondary @ 300 MA CCS, Surplus $45.00 TRANSFORMER, 4800 Volts Center Tappe’d 110/220 Primary rated at 500 MA CCS in FWCT circuit. New $95.00 CHOKE, 10 Henry 500 MA CCS $34.00 CAPACITOR, 14 MFD 2500 Volts, surplus tested $6.00

All items not specified as surplus are brand new items manufactured to our specifications. The above items can be used in a 2 KV 500 MA CCS supply for repeater use. Shipping will be cheapest way collect unless specified.

GARLEN COMMUNICATIONS, P.O. Box 312, Katonah, N.Y. 10536

Many thousands of you have become very familiar with the various Radio Society of Great Britain books and handbooks, but very few of you are familiar with their excellent magazine, Radio Communication.

It includes numerous technical and construction articles in addition to a complete rundown on the month’s events in amateur radio. Surely a most interesting addition to your amateur radio activities.

We can now offer this fine magazine to you along with the other advantages of membership in the RSGB (such as use of their outgoing QSL Bureau) for $9.95 a year.

comtec
Greenville, New Hampshire 03048
FM TRANSCEIVER under $100.00

Easily assembled solid state modules for VHF-FM construction. Kits include predrilled and etched G 10 circuit boards. The four receiver modules measure 1 1/2 x 4 inches, transmitter module 2 x 6 inches.

- RF-144, RF-220
 A high gain low noise front end using dual gate zener protected mosfets. Sensitivity better than .5 microvolts. Over 40 db gain with 55 db image rejection. (Slightly less at 220). Makes an excellent converter with the addition of an output coil.

- IF-10.7
 A 10.7 MHz IF amplifier and 455 kHz converter using two IC's. Double tuned 10.7 IF cans, insure excellent image rejection. Over all gain is better than 50 db. Second oscillator crystal controlled. (Crystal supplied).

- FM-455
 A 455 kHz IF amplifier, limiter, FM detector, and audio preamplifier using two IC's. Double IF cans insure a sharp IF response. Limiting starts at 20 microvolts and a 5 kHz deviation signal will provide over one volt output.

- AS-1
 An audio amplifier and squelch using two IC's. An input of .1 volt will drive a 4-8 ohm speaker to one watt. The noise operative squelch circuit provides a gating voltage for the FM-455 board.

- TX-144 or 220
 A 144 or 220 MHz transmitter with better than one watt output on 12.6 volts. Audio limiting, active filter, and adjustable deviation to 10 kHz. Contains one IC and four transistors, seven tuned circuits for clean output.

Complete receiver parts kit including drilled and etched circuit board $59.95. Complete transmitter kit $39.95. Ten watt power amplifier kit $29.95. Prices do not include crystals, 146.34, 146.52, 146.94, 220.98, or 224.98 receive or transmit crystals $4.00 each.

Kits shipped within twenty-four hours. Wired and tested units allow two to three weeks delivery.

VHF ENGINEERING — W2EDN
1017 CHENANGO STREET
BINGHAMTON, NEW YORK 13901
G & G Catalog
MILITARY ELECTRONICS

24 PAGES, crammed with Gov't Surplus Electronic Gear - the Biggest Bargain Buy in America! It will pay you to SEND 25c for your copy - Refund with your first order.

ARC-5 VHF RECEIVER, TRANSMITTER, MODULATOR 100-156 Mhz R-28 RECEIVER with tubes and crystal. Excellent Used......... $19.50 1-23 TRANSMITTER with tubes and crystals. Brand New in Original Carton....... $23.50 MD-7 MODULATOR with tubes, Excellent Used.............. $10.50 Set of Plugs for MD-7........... $ 8.50

BRAND NEW BC-645 TRANSCEIVER
EASILY CONVERTED FOR 420 MC. OPERATION

FOR BRAND NEW, complete with 15 tubes, less dynamotor and accessories, use in original factory carton $16.95

FREQUENCY RANGE: About 435 to 500 Mc.
TRANSMITTER has 4 tubes: WE-316A, 2-66E, 7F7
RECEIVER has 11 tubes: 2-955, 4-717, 2-776, 3-777
RECEIVER I.F.: 40 Mc.
SIZE: 10 1/2" x 13 1/2" x 4 1/2", Shqg Wt 25 lbs.

Superb quality components and circuitry, ideal for the technician experimenter. Many fabulous experiments, for example: you can construct a Yagi antenna for the 420 Mc. band that will produce a gain of 10 db and yet fit on your operating desk!

ACCESSORIES FOR BC-645

MOUNTING for BC-645 Transceiver $1.50
PE-101C DYNAMOTOR, 12-24 Volts. (easily converted to 6 volts).................. 7.95
MOUNTING for PE-101C Dynamotor.................. 1.00
UNF ANTENNA ASSEMBLY(set of 2), per set 2.95
COMPLETE SET OF 11 CONNECTORS.................. 5.95
CONTROL BOX BC-645.............................. 2.95
MOUNTING for BC-645 Control Box........... 1.00

SPECIAL "PACKAGE" OFFER: BC-645 Transceiver, Dynamotor and all accessories above, COMPLETE, BRAND NEW, While Stocks Last.......

HEADSET Low impedance. With large channel ear cushions. 4-ft cord and plug. Reg. $12.50. Our Special Price $2.95

High impedance adapter for above $.69

SCR-274-N, ARC-5 COMMAND SET HQ!
FREQ. Type Complete New
RECEIVERS with Tubes
190-350 Mc. BC-455 $16.95 $23.50
6-51 Mc. BC-455 $18.50 $22.50
TRANSMITTERS Complete with Tubes
4-51 Mc. BC-457 $8.95 $11.95
5.37 Mc. BC-919 $11.95
7.91 Mc. BC-459 $22.50 $24.50

APN-1 FM TRANSCEIVER 400-450 Mc. Freq. modulated by moving coil transducer. Easily converted for radio control or 70 cms. Complete with 14 tubes, dyn. BRAND NEW $9.95

AN/APR-4Y FM & AM RECEIVER "FFB" for Satellite Tracking! High precision lab instrument, for monitoring and measuring frequency and relative signal strength, 38 to 4000 Mc. In tuning ranges. For 110v 60 cycle AC. Built-in power supply. Original circuit diagram included. Checked out, Perfect. LIKE NEW $88.50 All tuning units available for a bove. Price upon request.

TG-34A CODE KEYER, self-contained, automatic, reproduces code practice signals from paper tape. 5 to 12 WPM Built-in speaker. Brand new with tech manual. 5 words and AC line attached........... $24.50

Code practice tapes for above P.U.K. $19.50

Set of 10 tubes for BC-603 Receivers........ $5.95

BC-604 FM TRANSMITTER 20 to 27.9 Mc. Output approx. 30 watts. 10 crystal controlled channels. Complete with tubes, NEW........... $12.50

ARC-111A Modern Q-5 Receiver 190 - 550 KHz.......................... $10.95
ARC-212 540 - 1600 KHz Receiver with tuning graph........ $15.95 F-A/RK-2 Receiver 234-258 Mc, 11 tubes, NEW........ $8.95

BC-605 INTERPHONE AMPLIFIER, NEW........ $3.45 EXC. USED........ $1.95 TELEPHONE HANDSET, W.E. type................. LIKE NEW $2.95 SCR-022 TRANSMITTER-RECEIVER, with 18 tubes, LIKE NEW $32.50

HANDMIEK Rugged, heavy-duty carbon hand mike with press-to-talk switch. Equipped with 4-ft cord & phone plug. SPECIAL NEW, boxed........ Each $1.88 2 for $3.25

LM FREQUENCY METER Fine general purpose Navy unit 125 to 20,000 Hz. Operates on 12 or 24 VDC. Complete with tubes, crystal, calibration book. Checked out, Excellent Used $29.50 As above, less book........... $22.50

Remote control commercial type navigational receiver

ACCESSORIES FOR ABOVE AVAILABLE FROM STOCK.

CATHODE RAY TUBES All New in Original Carton
3AP1*1.95 ea. 5AP1*3.75 ea.
3FP7*8.95 ea. 5MP1*2.75 ea.
*Sold in Lots of 3 only

TERAS: F.O.B. NYC. 25% deposit with order, balance COD or remittance in full. MINIMUM ORDER $5.00. Subject to prior sale and price change.

G & G RADIO ELECTRONICS COMPANY
45-47 Warren St. (2nd Fl) New York, N.Y. 10007 Ph. 212-267-4605

September 1972
NEW CT-1 From

Will allow you to Dynamically test all types of capacitors.

The Model CT-1 features a built-in electronic power supply providing BOTH AC and DC Test Voltages in a special circuit with highly sensitive NEON type leakage indicator. Only $16.95 postpaid

Capacitor Range: .00025 — 1000 mfd.
Sensitivity: Over 200 MEGOHMS

30 DAY MONEY-BACK GUARANTEE

LEE ELECTRONIC LABS, INC.
88 Evans St., Watertown, MA 02172
Dealer inquiries invited.
100 WATTS FROM A TR-22 ???

WITH NEW DYCOMM MODEL

YES....

1 - 10 - 0 BOOSTER

1 — 2 WATTS IN GIVES YOU 90 — 100 WATTS OUT

THE ULTIMATE IN MOBILE POWER USING YOUR PERSONAL PORTABLE $220

UHF MODELS NOW AVAILABLE:

MODEL 470 - 25 3 - 7 WATTS IN 15 — 30 OUT $197.00
MODEL 470 - 30 1 - 2 WATTS IN 20 — 30 OUT $227.00

PLUS THE OLD RELIABLES:

10-0 10 W input 100 W output $195.00
D 10 W input 40 W output 99.95
ES 1 W input 40 W output 99.95

ECHO II RACK MOUNTED REPEATER 600.00

WRITE FOR DATA SHEETS ON ALL MODELS

948 AVE. E. P.O. BOX 10116
RIVIERA BEACH, FLA. 33404

SAROC

HELD ANNUALLY IN LAS VEGAS, NEVADA

HE SIGNED HIS TAB WP7PBV - IS HE SOME KIND OF A NUT?

THEY ALL ARE, HONEY!

SEE YOUR FAVORITE AMATEUR MAGAZINE FOR FURTHER DETAILS OR WRITE
SOUTHERN NEVADA AMATEUR RADIO CLUB, INC.
P.O. BOX 73, BOULDER CITY, NEVADA 89005

TWO — TIMER

Now you can have your cake and eat it too:

Both Greenwich Mean Time and local time in ONE DIGITAL CLOCK. The K2 Clock provides a bright red easy to read display of both.

GMT is displayed in six digits and at the flip of a switch, local time on a twelve hour basis with A.M. and P.M. indicator. We even give you a ten minute identifier which warns you before the ten minutes are up so that you can identify your station within the legal time limits.

Attractively packaged in a simulated walnut grained wooden case, the K2 CLOCK makes a handsome addition to your operating position.

price $125.00

ALSO AVAILABLE:
K2 - KEYER
K2 AGC AMPLIFIER

WOERNER ENTERPRISES, INC.
170 Chestnut Street

Ridgewood, N. J.

More Details? CHECK—OFF Page 110
R-4B RECEIVER

- Linear permeability tuned VFO with 1 kc dial divisions.
- VFO and crystal frequencies pre-mixed for all-band stability
- Covers ham bands 80, 40, 20, 15 meters completely and 28.5 to 29.0 Mc of 10 meters with crystals furnished.
- Any ten 500 kc ranges between 1.5 and 30 Mc can be covered with accessory crystals for 160 meters, MARS, etc.
- (5.0-6.0 Mc not recommended)
- Four bandwidths of selectivity: 0.4 kc, 1.2 kc, 2.4 kc and 4.8 kc
- Passband tuning gives sideband selection, without retuning.
- Does not blanker, works on CW, SSB, and AM is built-in.
- Notch filter and 25 Kc crystal calibrator are built-in.
- Product detector for SSB/CW, diode detector for AM.
- Crystal Lattice Filter gives superior cross modulation and overload characteristics.
- Crystal Tuned VFO with 1 kc divisions.
- 10 tubes, 10 transistors, 17 diodes, and 2 integrated circuits.

R-4B Price: $475.00

T-4XB TRANSMITTER

- Covers ham bands 80, 40, 20, 15 meters completely and 28.5 to 29.0 Mc of 10 meters with crystals furnished; MARS and other frequencies with accessory crystals, except 2.3-3.5, 10.5-12 Mc.
- Upper and Lower Sideband on all frequencies
- Automatic Transmit Receive Switching on CW (semi break-in)
- Controlled Carrier Modulation for AM completely compatible with SSB linear amplifiers.
- VOX or PTT on SSB and AM built-in.
- Adjustable PL-Net output.
- Two 8-pole Crystal-Lattice Filters for sideband selection, 2.4 kc bandwidth.
- Transmitting AGC prevents flat topping.
- Shaped Grid Block Keying with side tone output.
- 200 Watts PEP Input on SSB—200 watts input CW.
- Meter indicates plate current and relative output.
- Compact size; rugged construction.
- Solid State Permeability Tuned VFO.
- Solid State HF Crystal Oscillator.
- 11 Tubes, 3 Transistors and 12 diodes.

T-4XB Price: $495.00

NEW DIAL TELEPHONES

Wall mount, color light gray, bell compatible, model SSB2901, Bell made. Prepaid U.S.A. $20.00 each.
- H. P. 200 AB, audio oscillator, 20 Hz to 40kHz, like new.
- Prepaid U.S.A. $200.00 each.
- New Mobile Communications Mike, low impedance Dynamic type push-to-talk switch, curly cord, no hanger. English made. Prepaid U.S.A. 2 for $6.00.
- LEEDS RADIO CO. 57H Warren St., New York, N.Y. 10007. Tel: (212)-267-3440

Just Printed!

Application Rules for TTL Integrated Circuits Including Operating Instructions for All Popular Models

MINITRON 7-SEGMENT READOUT $3.70

SEND 25¢ FOR CATALOG

PO BOX 112

Arizona Semiconductor

- Modification Kit #2 2 0.05-400V cap, solderless crimp Terminals, Hardware etc. $11.00 ARG R19 (8508) 118-148MHz w/schematic $14.95. Catalogue 10.

FOLLOW THE LEADERS IN FM

Here's your chance to get 26 issues of the magazine devoted to VHF and UHF FM operation. It has construction, conversion, FCC and general news articles, written by the best known FM'ers in the country. 26 issues for the price of 12 issues of the other Ham magazines. Just send your address and $6.00 to: RPT Magazine, P.O. Box 130 St. Clair, Michigan 48079

More Details? CHECK-OFF Page 110
LOWEST PRICES: ON BRAND NEW FULLY TESTED & GUARANTEED IC'S
BEST SERVICE: 10% DISCOUNT ON ALL ITEMS NOT SHIPPED IN 24 HOURS
MOST CONVENIENT: ORDER DESK 1-800-325-2595 (TOLL FREE)

PLEASE NOTE: To qualify for prices in the last three columns, you must order in EXACT
Multiples of 10 per item for all IC items on your order.

<table>
<thead>
<tr>
<th>Any Quantity</th>
<th>Multiples of 10</th>
<th>Any Quantity</th>
<th>Multiples of 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog</td>
<td>Number</td>
<td>Catalog</td>
<td>Number</td>
</tr>
<tr>
<td>1,000-1,000</td>
<td>999 999 up</td>
<td>1,000-1,000</td>
<td>999 999 up</td>
</tr>
<tr>
<td>1,000-10,000</td>
<td>999 9990 up</td>
<td>1,000-10,000</td>
<td>999 9990 up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7400</td>
<td>0.39-0.53</td>
<td>7461</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7401</td>
<td>0.39-0.53</td>
<td>7462</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7402</td>
<td>0.39-0.53</td>
<td>7463</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7403</td>
<td>0.39-0.53</td>
<td>7464</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7404</td>
<td>0.39-0.53</td>
<td>7465</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7405</td>
<td>0.39-0.53</td>
<td>7466</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7406</td>
<td>0.39-0.53</td>
<td>7467</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7407</td>
<td>0.39-0.53</td>
<td>7468</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7408</td>
<td>0.39-0.53</td>
<td>7469</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7409</td>
<td>0.39-0.53</td>
<td>7470</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7410</td>
<td>0.39-0.53</td>
<td>7471</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7411</td>
<td>0.39-0.53</td>
<td>7472</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7412</td>
<td>0.39-0.53</td>
<td>7473</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7413</td>
<td>0.39-0.53</td>
<td>7474</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7414</td>
<td>0.39-0.53</td>
<td>7475</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7415</td>
<td>0.39-0.53</td>
<td>7476</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7416</td>
<td>0.39-0.53</td>
<td>7477</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7417</td>
<td>0.39-0.53</td>
<td>7478</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7418</td>
<td>0.39-0.53</td>
<td>7479</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7419</td>
<td>0.39-0.53</td>
<td>7480</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7420</td>
<td>0.39-0.53</td>
<td>7481</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7421</td>
<td>0.39-0.53</td>
<td>7482</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7422</td>
<td>0.39-0.53</td>
<td>7483</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7423</td>
<td>0.39-0.53</td>
<td>7484</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7424</td>
<td>0.39-0.53</td>
<td>7485</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7425</td>
<td>0.39-0.53</td>
<td>7486</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7426</td>
<td>0.39-0.53</td>
<td>7487</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7427</td>
<td>0.39-0.53</td>
<td>7488</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7428</td>
<td>0.39-0.53</td>
<td>7489</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7429</td>
<td>0.39-0.53</td>
<td>7490</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7430</td>
<td>0.39-0.53</td>
<td>7491</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7431</td>
<td>0.39-0.53</td>
<td>7492</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7432</td>
<td>0.39-0.53</td>
<td>7493</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7433</td>
<td>0.39-0.53</td>
<td>7494</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7434</td>
<td>0.39-0.53</td>
<td>7495</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7435</td>
<td>0.39-0.53</td>
<td>7496</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7436</td>
<td>0.39-0.53</td>
<td>7497</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7437</td>
<td>0.39-0.53</td>
<td>7498</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7438</td>
<td>0.39-0.53</td>
<td>7499</td>
<td>0.50-0.64</td>
</tr>
<tr>
<td>7439</td>
<td>0.39-0.53</td>
<td>7500</td>
<td>0.50-0.64</td>
</tr>
</tbody>
</table>

TRADEMARKS AND TRADE NAMES

SOLID STATE SYSTEMS, INC.
P.O. Box 773 Phone 314-443-3673
Mo. 65201 TWX 910-760-1453

MISSOURI RESIDENTS: Please add 4% Sales Tax.
Used Test Equipment

- **Borg 1526B-Freq stand**: $1.80 per day
- **HP100D-Freq stand**: $50,000 (with KB)
- **HP1150A-10MHz Scope with 125B**: $595
- **HP115B(USM105)-14MHz dual trace scope**: $385
- **HP175A-50MHz scope with dual trace**: $595
- **HP185B-DC-1GHz scope**: $495
- **HP202B-Audio Gen-50Hz-1.10V**: $10
- **HP212A-Pulse Gen. var. width and rate**: $175
- **HP522B-Freq. Counter-10Hz-120KHz-digital**: $165
- **HP540-B-Trans. Osc. for counter-to-12GHz**: $225
- **HP610B-Sig.Gen-450-1200MHz, calib. attn.**: $365
- **HP686A-Sweep Gen-8.2-12.4GHz**: $795
- **HP803A-VHF Imp. bridge 50-500MHz**: $195
- **HP2590B-Precision Trans. osc-synchronizer**: $975
- **Kintel 301-DC standard-null volt-meter**: $220
- **Meas. 80 - Standard Sig. Gen. 2400MHz**: $325
- **NE 14-20C-Freq-counter**: $209
- **Nems Clark 1671-FM recr. 175-260MHz**: $210
- **Polarad TAR-spectrum analyzer 10MHz-44GHz**: $325
- **Polarad SA84W-spectrum analyzer, band switching 10MHz-41GHz**: $965
- **Rollin 30-Stand.sig.gen.40-400MHz-hi-pwr.**: $895
- **Stoddart NM52A-RFT mtr. 375-1GHz, w/acc.**: $985
- **Tek RM15-DC-15MHz GP scope**: $295
- **ME260/U-(HP410B) VTRM-to 700MHz**: $85
- **PRM-10 Grid-dip Osc. 2400MHz**: $65
- **SG24/TRM3 Sweep Gen. 15-400 MHz, CW, AM, FM Xtal markers, scope-Dev. to 20%**: $93
- **TS-403A-Sig. Gen. (HP361E) 1.8-4GHz**: $385
- **URM-26 Stand. Sig.Gen. 3-400MHz**: $225
- **USM-16-Stand. Gen.10-440MHz AM-CW-PM**: $625

Gray Electronics

P. O. Box 941, Monroe, MI 48161

Specializing in used test equipment

Other Advertisements

- **Van's W2DLT Electronics**
 - 302H Passaic Ave., STIRLING, N.J. 07980
 - Phone: 201-647-3639
 - Div. of Teleprinter Communication Specialists

- **Radio Amateurs Reference Library of Maps and Atlas**

- **World Prefix Map**
 - Full color, 10" x 28", shows prefixes in each country - DX zones, cities, zones, countries, cross referenced tables.
 - Postpaid $1.25

- **Radio Amateurs Great Circle Chart of the World**
 - From the center of the United States! Full color, 30" x 25".
 - Postpaid $1.25

- **Radio Amateurs Map of North America**
 - Full color, 30" x 25" - includes Central America and the Caribbean, to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus informative information on each of the 50 United States and other Countries.
 - Postpaid $1.25

- **World Atlas**
 - Only atlas compiled for radio amateurs. Packed with world-wide information - includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica - a complete set of maps of the world. 20 pages, size 8 1/4" x 12"
 - Compl. $200
 - Complete reference library of maps - set of 4 as listed above.
 - Postpaid $3.50

See your favorite dealer or order direct.

Radio Amateur Callbook Inc.

Dept. E - 925 Sherwood Drive
Lake Bluff, Ill. 60044

Gray Electronics

P. O. Box 941, Monroe, MI 48161

Specializing in used test equipment
These days, in advertising lingo, it seems everyone is claiming they “put it all together” in their product.

Well, when we say put it all together in signal/one’s CX7A, we really mean it. And we can prove it. Because here’s a rig that combines a room full of gear in one compact desk-top unit.

To duplicate the CX7A with conventional equipment, you’d need an extra receiver, an RF clipper, a built-in power supply, a linear amplifier, an electronic keyer and much more.

Not to mention a transmitter and receiver.

But in the CX7A, it’s... all together. Affording you your finest hour as an amateur. And most any serious amateur can afford that when he wants the best... and wants to be the best.

The CX7A is yours to see at your signal/one dealer’s. Or write us today for a detailed brochure. Then get your room full of gear. That fits on a desk.

A room full of gear...right here.
Instant access to 144 frequency pairings with 20 watts out on the new HR-212 twelve channel 2 Meter FM Transceiver by Regency

Specifications
Power Output: 20 watts (nom.) at 13.8 V DC
Frequency Range: 144-148 MHz
Channels: 12; crystal controlled
Sensitivity: 0.4 uv, 20 DB quieting
Spurious Rejection: 60 DB

Model HR-212
Includes microphone, mounting bracket and factory installed transmit and receive crystals for 146.94 MHz.

$259 Amateur Net

for all your 2 Meter FM needs

Model HR-2MS 8 channel Transcan™ with signal search reception and 15 watts minimum output. $319.00 Amateur Net
Model HR-2A 6 channel transmit, 12 receive 2 Meter FM Transceiver with 15 watts minimum output. $229.00 Amateur Net
Model AR-2 Amplifier boosts 2 Meter FM output power 300%. $119.00 Amateur Net

This monthly technical magazine fills a "communication gap" within the electronic communication and navigation equipment industry. Its function is to provide comprehensive and authentic information not available in any other single publication. The types of feature articles include the following:

SYSTEM DESIGN
The planning of radio communication and electronic navigation systems, as well as CCTV and electronic security systems.

EQUIPMENT DESIGN
State-of-the-art design techniques—analysis of newly developed equipment.

TECHNOLOGY
Reports on technical developments—looking into the future—measurement techniques.

FCC REPORTS
Comprehensive reports on FCC petitions, proposed rulemaking and newly adopted rules changes—long before they are published in FCC Rules and Regulations.

SERVICING
The latest techniques for maintaining equipment—troubleshooting—analysis and use of test equipment.

INSTALLATION
Solutions to unique installation problems—local and national codes—interference and interface problems.

APPLICATIONS
Utilization of system components—scope of equipment applications—interface requirements.

CASE HISTORIES
Economic and operational aspects of unique systems—examples of how problems were solved.

Subscription rate $12 per year, $20 for two years. When Check or Money Order accompanies subscription request, special rate is $10 for one year or $16 for two years. Advertising rate card sent on request.

COMMUNICATION AND NAVIGATION, INC.
250 PARK AVE., NEW YORK, NY 10017
TRANSFORMERS

Pri 117 V 60 Hz
Sec 840 V CT @ 220 ma
3 1/2 x 3 1/2 x 4 inches
Shpg. wt 9 lb.
$2.95 ea.

Pri 115 V 60 Hz
Sec 600 V CT @ 310 ma
6.3 V @ 6 A
4 1/2 x 4 x 6 inches
Shpg. wt 17 lb.
$3.50 ea.

Pri 120 V 60 Hz
Sec 600 V CT @ 310 ma
6.3 V @ 2 A, 6.3 V @ 1 A
4 3/4 x 5 1/4 inches
Shpg. wt 10 lb.
$2.95 ea.

Pri 105-125 V 60 Hz
Sec 5 V @ 3 A
2 x 2 1/4 x 2 1/4 inches
Shpg. wt 3 lb.
$1.95 ea.

PARTS

Capacitor — axial lead —
4000 mfd @ 15 V 75C ea. 10/6.00

IRC trimpots Style No. RT22C2
Values 1k, 5k, 10k, or 20k
35C ea. or 3/$1.00

1000 PIV Diodes 1 A epoxy 10/$2.95

Precision Resistors 100 asst. $1.98

Miniature potentiometers 1/4" shaft
Value 5k 35C ea. 3/$1.00

Miniature knobs for 1/4" shaft
Brass insert w/line indicator 5/$1.00

Nixie Tubes NL 1220S $2.95 ea.
same as NL940S, 0-9 w/2 dec. pt.
10/$27.50

Ni-Cad Batteries 1.2 Volts
(pull-outs exc. cond.)
800 ma/hr rating 1 1/2" lg x 3/4" Dia
10/$8.50

STYLISH GRAND
PRIX CABINETS
BUD Cabinet #MD-3-SG
Two-tone smooth gray finish
4 3/16" x 12 1/2" x 8 3/4"
$4.95 ea.

88 MH TOROIDS POTTED 10/3.00

R & R ELECTRONICS
311 EAST SOUTH ST.
INDIANAPOLIS, IND.
46225

$5.00 minimum order.
Please add sufficient postage.

Wired and zeroed to W W V $15.95

$12.95 KIT
with
100 KC CRYSTAL

100 - 50 - 25 KC MARKERS
ZERO BEAT TO W W V
USES NEW 100 KC CRYSTALS
(included in all units)
GLASS EPOXY BOARDS
VERY COMPACT
2" x 3" x 1/2"
3.5 V. OPERATION

Transistors Mfg Ti #GC4213 Germanium Med Pwr Transistor 15 watts @ 60 V NPN type equiv. to 2N2552 60C ea. or 2/$1.00

COOLING FAN BLOWER 4 pole 110V 60 cyc motor with 4 bladed nylon fan. Very quiet, about 50 CFM 2 1/4"W x 3"H x 2 1/4"D. Sh. wt 3 lbs.
$2.25 ea.

3 wire Jack Panel for std shaft 10 jacks in a line
95C ea.

Western Union Deskfax model Transceiver 115 V 60 Hz
$19.95
Put on the air — or — back to back (Inst incl.)

Teleletios paper for above Box of 1000 shts
$12.95

Radio Receiver R-257/U 25-50 MC with schematic less pwr supply
$9.95

Teletype Printer model 14
$29.95

More Details? CHECK-OFF Page 110

september 1972 93
send perfect code
get automatic CW
with continuously variable speed
from 5 to 55 WPM.

- All solid-state.
- Fully assembled and ready to plug-in and operate.
- Features built-in audio-oscillator/amplifier, monitor, and audio output jack.
- Regulated A.C. power supply suits both 115 and 220-240 Volt operation.

- Deal direct with the manufacturer and save.
- Phone or write for our free illustrated brochure.
- Send your check or money order for $198.00 (plus Sales Tax for California residents) and we pay freight or order C.O.D. freight collect.

MARTRONICS
Post Office Box 4646
Anaheim, California 92803
Telephone (714) 628-7571

ENJOY CW!
USE A MATRIC KEYER & PADDLE
- SELF COMPLETING
- BATTERY OPERATED
- RELAY OUTPUT

MODEL 10
CIRCUIT BOARD KIT (LESS CASE) $12.95
KIT (LESS BATT) $21.90
WIRED (LESS BATT) $38.50
SIDETONE KIT $4.95 • WIRED $6.95

PADDLE
MODEL 11
★ ADJUSTABLE TRAVEL
★ NON-SKID WEIGHTED BASE
★ FULLY ASSEMBLED

SEE YOUR DEALER
OR ORDER DIRECT. PRICES F.O.B. SENECA, PA.

NEW from RP
TONE BURST ENCODERS
- UP to 5 fixed tones (factory set)
- ADJUSTABLE:
 - Duration
 - Output
- NO BATTERIES needed.
- FULLY ADAPTABLE
- EASY INSTALLATION
- CONTINUOUS TONE POSSIBLE
- FULL 1 YEAR RP Warranty

PRICES:

- TB-5 5 tone std. encoder $37.50
 (1800, 1950, 2100, 2250, 2400 Hz.)
- ST-2 Single tone decoder $37.50
 (Specify 1800, 1950, 2100, 2250, or 2400 Hz.)

Special tones — Inquire
Add $1.80/unit for shipping (Ill. residents add 5% tax)
FREE SPEC SHEETS NOW AVAILABLE
ORDER DIRECT OR FROM AUTHORIZED DEALERS

RP Electronics
BOX 1201H
CHAMPAIGN, ILL. 61820
New

3 Digit Counter

The model fm-36 3-digit frequency meter has the same features that has made the 2 digit model so popular with Hams — low price, small size (smaller than a QSL card), 35 MHz top frequency, simple connection to your transmitter, +0.01 KHz readout — PLUS the added convenience of a third digit to provide a 6 digit capability. Kit or Assembled.

Example: 28,649,800 Hz reads 28.6 MHz or 49.8 KHz. (Add the 10 Hz module to read 9.80.)

FM-36 KIT $134.50

NEW

300 MHz PRESCALER only $45.00

with fm-36 order

Micro-Z Co.

Box 2426 Rolling Hills, Calif. 90274

2 METER AMATEUR REPEATER — ONLY $600.00

PROVEN STATE OF THE ART DESIGN
INSTALLATIONS WORKING GREAT IN U.S., EUROPE AND ASIA
STOCK FREQS DELIVERED IMMEDIATELY, OTHERS 3-4 WEEKS
WRITE FOR FREE DATA SHEET — FULL MANUAL $5.00

DYCOMM

948 AVENUE E P.O. BOX 10116
RIVIERA BEACH, FLA. 33404

2 METER FM TALK POWER!

TEMPO POWER AMPS

up to 135 W OUT with 1 to 25 w drive from mobile, base or HT...

Solid State Micro-Strip Circuit
Ready-to-go, Cables supplied all U. S. made

Send QSL or circle number for detailed brochure

ERICKSON COMMUNICATIONS

4659 North Ravenswood Avenue
Chicago, Ill. 60640 (312) 334-3200

More Details? CHECK-OFF Page 110

september 1972
CRYSTAL FILTERS and DISCRIMINATORS

1 27/64" x 1 3/64" x 3/4"

9.0 MHz FILTERS

- XF9-A: 2.5 kHz, SSB TX - $25.40
- XF9-B: 2.4 kHz, SSB RX - $36.15
- XF9-C: 3.75 kHz, AM - $38.95
- XF9-D: 5.0 kHz, AM - $38.95
- XF9-E: 12.0 kHz, NBFM - $38.95
- XF9-M: 0.5 kHz, CW - $27.30
- XL10-M: 0.5 kHz, CW - $69.50

9.0 MHz DISCRIMINATORS

- XD9-01: ± 5 kHz, RTTY - $19.20
- XD9-02: ± 10 kHz, NBFM - $19.95
- XD9-03: ± 12 kHz, NBFM - $19.20

9 MHz CRYSTALS (Hc25/u)

- XF900: 9000.0 kHz, Carrier - $3.05
- XF901: 8998.5 kHz, USB - $3.05
- XF902: 9001.5 kHz, LSB - $3.05
- XF903: 8999.0 kHz, BFO - $3.05
- F05: Hc25/u, Socket - $0.50

VHF CONVERTERS

- MM 50: RF Freq. - 50-52 MHz, N.F. - 2.5dB, Nom. Gain - 2.5dB, $49.95
- MM 144: RF Freq. - 144-146 MHz, N.F. - 2.8dB, Nom. Gain - 3dB, $49.95
- MM 220: RF Freq. - 220-222 MHz, N.F. - 3.4dB, Nom. Gain - 3dB, $54.95
- MM 432: RF Freq. - 432-434 MHz, N.F. - 3.8dB, Nom. Gain - 3dB, $59.95
- MM 1296: RF Freq. - 1.296 MHz

SPECTRUM INTERNATIONAL
BOX 1084 CONCORD
MASSACHUSETTS 01742

WE PAY HIGHEST PRICES FOR ELECTRON TUBES AND SEMICONDUCTORS

H & L ASSOCIATES
ELIZABETHPORT INDUSTRIAL PARK
ELIZABETH, NEW JERSEY 07206
(201) 351-4200

FM CHANNEL SCANNERS

4 CHANNEL as described Aug. 71 Ham Radio
Wired & Tested Units - $29.00 pp
Kits - $15.95 pp
Undrilled Boards - $3.95 pp

8 CHANNEL multi-chan osc boards
For 5 to 18 MHz Crystals Undrilled - $3.95 pp

ALTON INDUSTRIES
7471 Thunderbird Rd., Liverpool, N. Y. 13088
All Boards - G10 Glass - All Prices - Post Paid IN STOCK
Standard, Regency, others — Send For Flyer
The best antenna of its type on the market. Four wide spaced elements (the longest 36’ 6”) on a 26’ boom along with Hy-Gain’s exclusive Beta Match produce a high performance DX beam for phone or CW across the entire 20 meter band.

- 10 db forward gain
- 28 db F/B ratio
- Less than 1.05:1 SWR at resonance
- Feeds with 52 ohm coax
- Maximum power input 1 kw AM; 4 kw PEP
- Wind load 99.8 lbs. at 80 MPH
- Surface area 3.9 sq. ft.

The 204BA Monobander is ruggedly built to insure mechanical as well as electrical reliability, yet light enough to mount on a lightweight tower. (Recommended rotator: Hy-Gain’s new Roto-Brake 400.) Construction features include taper swaged slotted tubing with full circumference clamps; tiltable cast aluminum boom-to-mast clamp; heavy gauge machine formed element-to-boom brackets; boom 2” OD; mast diameters from 1½” to 2½”; wind survival up to 100 MPH. Shipping weight 51 pounds.

See the best distributor under the sun...the one who handles the Hy-Gain 204BA Monobander.

Model 204BA (4-element, 20 meters)........................... $149.95
Model 203BA (3-element, 20 meters)........................... $139.95
Model 153BA (3-element, 15 meters)........................... $ 69.95
Model 103BA (3-element, 10 meters)........................... $ 54.95

FERRITE BALUN MODEL BN-86
Improves transfer of energy to the antenna; eliminates stray RF; improves pattern and F/B ratio. $14.95

HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407-WI, Lincoln, Nebraska 68505

HY-GAIN 204BA MONOBANDER
...a tiger on 20 meters

for the most advanced antennas under the sun!
At a price everyone $3.20 can afford
- Operates from 5 VDC
- Same as TTL and DTL
- Will last 250,000 hours.

The MiNiTRON readout is a miniature direct viewed incandescent filament (7-Segment) display in a 16-pin DIP with hermetically sealed front lens. Size, and appearance are very similar to LED readouts. The big difference is in the price. Any color filter can be used.

At a price everyone $3.20 can afford. Operates from 5 VDC. Same as TTL and DTL. Will last 250,000 hours.

DIGITAL READOUT

SPECIAL OFFER

PLESSEY SL403D
- 3.5 W AUDIO AMP IC
- HI-FI QUALITY
- Only $8.20 with 12 pages of construction data

PLESSEY
- SL403D Digital readout
- BCD to 7 — Segment Decoder/driver
- 7490 Decade Counter
- 7475 Latch
- Only $8.20

NATIONAL DEVICES
- LM370 AGC/Squelch amp
- LM373 AM/FM/SSB IF strip/Det
- LM309K 5V 1A regulator
- LM370 AGC/Squelch amp
- LM373 AM/FM/SSB IF strip/Det
- LM309K 5V 1A regulator

SEPTEMBER FLEA MARKET
Build a 50-W booster for 2 meter FM — See May of 72 QST.
- 2N6084 Motorola 50-W RF power $18.00
- 2N3904 Motorola 300 MHz, NPN plastic small signal transistor 5 for $1.00
- NE5111A Signetics FM Det $1.60
- NE559 Signetics Timer $1.10
- 1N914 Silicon diodes 16 for $1.00
- 1N270 Germanium diode 6 for $1.00
- MBD101 Motorola Hot Carrier diode $1.00
- 2N3866 $1.00

MORE RCA IC's
- CA3088E AM rcvr subsystem
- CA3089E FM IF system with circuits for IF amp., Det., AF preamp., AFC, Squelch, & tuning meter &
- CA3018 Transistor array

NEW FAIRCHILD ECL
HIGH SPEED DIGITAL IC's
9528 Dual "D" FF toggles beyond 160MHz $4.65
9582 Multi-function gate & amplifier $3.15
95H90 300 MHz decade counter $16.00
A 95H90 & 9582 makes an excellent prescaler to extend low frequency counters to VHF — or use two 9528s for a 160 MHz prescaler.

FET's
- MPF102 JFET $0.60
- MPF105/2N5459 JFET $0.96
- MPF107/2N5486 JFET VHF/UHF $1.26
- MPF121 Low-cost dual gate VHF RF $0.98
- MFD3007 Dual-gate $1.75
- 3N140 Dual-gate $1.95
- 3N141 Dual-gate $1.86

MOTOROLA DIGITAL
- MC724 Quad 2-input RTL Gate $1.00
- MC788P Dual Buffer RTL $1.00
- MC789P Hex Inverter RTL $1.00
- MC790P Dual J-K Flip-flop $2.00
- MC799P Dual Buffer RTL $1.00
- MC780/880 RTL decade counter $3.00
- MC1013P 85 MHz Flip-flop MECL $3.25

SEPTMBER FLEA MARKET
Build a 50-W booster for 2 meter FM — May of 72 QST.
- 2N6084 Motorola 50-W RF power $18.00
- 2N3904 Motorola 300 MHz, NPN plastic small signal transistor 5 for $1.00
- NE5111A Signetics FM Det $1.60
- NE559 Signetics Timer $1.10
- 1N914 Silicon diodes 16 for $1.00
- 1N270 Germanium diode 6 for $1.00
- MBD101 Motorola Hot Carrier diode $1.00
- 2N3866 $1.00

MORE RCA IC's
- CA3088E AM rcvr subsystem $2.50
- CA3089E FM IF system with circuits for IF amp., Det., AF preamp., AFC, Squelch, &
- CA3018 Transistor array $1.55

NEW FAIRCHILD ECL
HIGH SPEED DIGITAL IC's
9528 Dual "D" FF toggles beyond 160MHz $4.65
9582 Multi-function gate & amplifier $3.15
95H90 300 MHz decade counter $16.00
A 95H90 & 9582 makes an excellent prescaler to extend low frequency counters to VHF — or use two 9528s for a 160 MHz prescaler.

FET's
- MPF102 JFET $0.60
- MPF105/2N5459 JFET $0.96
- MPF107/2N5486 JFET VHF/UHF $1.26
- MPF121 Low-cost dual gate VHF RF $0.98
- MFD3007 Dual-gate $1.75
- 3N140 Dual-gate $1.95
- 3N141 Dual-gate $1.86

MOTOROLA DIGITAL
- MC724 Quad 2-input RTL Gate $1.00
- MC788P Dual Buffer RTL $1.00
- MC789P Hex Inverter RTL $1.00
- MC790P Dual J-K Flip-flop $2.00
- MC799P Dual Buffer RTL $1.00
- MC780/880 RTL decade counter $3.00
- MC1013P 85 MHz Flip-flop MECL $3.25
TONE ENCODERS AND DECODERS — New line of solid state encoders and decoders compatible with any standard 15 kHz carrier and 3 kHz subcarrier continuous tone system. Small size, usable from 67-250 Hz, $8.95 to $14.95. Send for literature. Communications Specialists, Box 153, Brea, Calif. 92621.

CANADIANS interested in RTTY. We have the ST5 & ST6 RTTY interface in stock either wired or in kit form. Canadian parts and material used where applicable SASE for more information to J. A. Mills Box 851, Stn. A. Scarboro, Ontario.

MORSERTER READS HAND-SENT MORSE CODE 10-30 w.p.m. CUTOUT adjustment translates c.w. to Teletype code including LTRS, FIGS, CR, LF. Computer circuit uses 63 IC's on one 8 x 10 inch board. Kit of four read-only memories, circuit board, 55-page technical manual $18.95. Write for details. Petit Logic Systems, 908 Washington, Wenatchee, WA 98801.

TONE BURST . . . Inoue Regency owners, now available, internal mounted tone burst oscillator . . . $29.50. NHE Communications, 15112 S.E. 4th, Bellevue, WA 98006. Phone 206 747-8421.

TV & RADIO TUBES 36q. FREE CATALOG. Cornwell, 4219 N. University, San Diego, California 92105.

RESISTORS: Carbon Composition brand new. All standard values stocked: 1% watt 10% 5%/$1.00; 1/4 watt 10% 40/$1.00. 10 resistors per value please. Minimum order $5.00. Post paid. Pace Electronic Products, Box 161-H, Ontario Center, New York 14520.

DIGITAL FREQUENCY COUNTER. Monitor your received and transmitted frequency to the nearest hertz on 6 nixies. Will work on almost any rig. For further information write: Northwest Custom Electronics; P.O. Box 22413; Milwaukee, Oregon 97222.

WE BUY ELECTRONIC TUBES, diodes, transistors, integrated circuits, semiconductor. ASTRAL ELECTRONICS. 140 Miller Street, Elizabeth, N. J. 07207. (201) 354-2420.

COPY MORSE CODE automatically. (Ham Radio November 1971) detailed construction plans $14.95. VMG Electronics, 2138 West Sunnyside, Phoenix, Arizona 85029.

WANTED: tubes, transistors, equipment what have you? Bernard Goldstein, WZBNE, Box 257, Canal Station, New York, N. Y. 10013.

WORLD QSL — See ad page 106.

DX'ERS — Dig then out of the Mud. New low noise Dual Gate Mosfet Preampifier. Nominal 20 db gain. 10-30 Mhz. Complete in cabinet. $29.50. Dynaconn, 1183 Wall Street, Webster, N.Y. 14580.

4-LAND QSO PARTY, Sept. 9th 1800Z. Sept. 11th 0200Z, logs to fourth district area, R7, Box 187, Greenville, N. C. 27834.

TELL YOUR FRIENDS about Ham Radio Magazine.
"DON AND BOB" GUARANTEED BUYS: SBE144 (249.00 List) 209.95; SBE450 (399.95 L) 339.00; Gladding 25 212.50, with AC 250.00; Standard SRR26M 299.95; Motorola HEPI70 epoxy diode 2.5A/1000VPI 39¢; Ham-M 99.00; TR44 59.95; Belden 8448 rotor cable 10/ft.; Mosley CL3 124.00; CL36 149.00; Hygain Hyquad 99.00; 400 rotor 149.00; 204BA 129.00; Air-dux 24047 coil 5.00; Belden 8237RG8 15/ft.; 8214RG8 foam 16.00; Collins 75A 34.00; LX15 250.00; Triex MW50 229.00; MW65 305.00; Cetron 572B/T160L 13.95; KY65 code id 5.95; Sangamo 600MF/450V 4.95; Mot MC1709CG Op Amp 50¢; write quote note. Prices collect. Mastercharge.

FILTERS - Panasonic Ceramic ladder type 455 kHz, bandwidth 15 kHz @ 6 db. $5.00 each. Post paid. Pace Electronics, Box 161, Ontario Center, New York 14520.

LINEAR BUILDERS — Motorola HEP170 diodes 2.5A/1000VPI 30¢ each; Plate Choke 90UH, 5K/2A $6.45; Shielded 30A Dual Filament Choke $6.95; 12,000V/2.5A Diode board with RC transient suppressors $9.95; Diode board unfilled $2.50. All Postpaid. K.E. Electronics, Box 1279, Tustin, Cal. 92680.

WANTED — M15 and M32 TELEPRINTERS in any quantity in good condition for use by deaf people... will accept donations or for fair prices... can be picked up anywhere... write Lee Brody, 15-06 Radburn Rd., Fair Lawn, New Jersey 07410 or call 201-796-5414 evenings.

FIGHT TV! with the RSO Low Pass Filter — p115 March 73 write for brochure — Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada.

WRL HAS GALAXY, Drake, Tempo, Hy-Gain, Mosley, Cush-Craft and most other leading new gear. Bank-Americard and MasterCharge terms available. Free 72 catalog, World Radio, Box 919, Council Bluffs, Iowa 51501.

GOLDEN JUBILEE HAMFEST beginning Sept. 15 at Silver Slipper Saloon, Kluane Days Exhibition. Full details Box 9586, Station L, Edmonton, Alberta, Canada.

THE EIGHTEENTH (18th) ANNUAL V. H. F. CONFERENCE at Western Michigan University, Kalamazoo, Michigan, will be held October 21, 1972 (Saturday), Flea market, speaker from Amats, etc. For full details write: V. H. F. Conference, Post Office Box 934, Battle Creek, Michigan 49016.

COMPUTER KEYBOARDS W/ENCODER $35 Another shipment just received. Alpha-numeric keyboard-excellent condition. Once again we expect an early sellout. Price of $35 includes prepaid shipment in the US and shipment made within 24 hours of receipt of order.

COMPUTER KEYSWITCHES Another fantastic bargain for the builder. We have brand new bounce-less micro switch keys, spares from the above units, less key-tops. Make up, your own keyboards. Made for 30 pin. Package of 48 brand new switches only $12.00 prepaid.

We still have a few Panoramic Adapters BC 1031 excellent condition, "IF" 450-470 Kc, operate from standard 115 volt 60 cycle. $45 each complete with schematic, FOB, Lynn, Mass. (60 lbs.)

POWER TUNEABLE VARACTOR $5.00 Similar to MA-4060, used in doublers, triplers, amplifiers, etc. Fully guaranteed, with specs and some circuits. $5 each or 6 for $25 pp.

DIGITAL READOUTS

GE Y 4075 25V Miniature $1.75 ea.
GE Y 1938 24V Standard $1.75 ea.
RAY CK 1905 Standard $1.75 ea.
MAN-1 7V Miniature LED $3.50 ea. 10/$30
GIANT ALPHA NUMERIC

MAGNO STRICTIVE MEMORY Good for 7116.5 Bits Storage Like New $10

LASER DIODE 3 WATT RCA TA-2628 w/speers. $5

ROPE MEMORY MODULE From APOLLO project $10

All material f.o.b. Lynn, Mass. Send self-addressed envelope for complete list.

JOHN MESHNA JR. ELECTRONICS P.O. Box 62 E. Lynn, Mass. 01904

More Details? CHECK-OFF Page 110
Just About EVERYONE WILL BE THERE!

* 1972 ARRL Hudson Division Convention

October 21-22

The Hudson Amateur Radio Council cordially invites you to enjoy two full days of exciting events that feature virtually every interest and specialty in amateur radio. Special program for YLs and XYLs, too.

Exhibits, lectures, demonstrations, contests, prizes, banquet, New York sightseeing, fun. All at the Hilton Motor Inn, Tarrytown, N. Y., located on the scenic and historic Hudson River.

- ARRL Hq. Speakers
- MARS – DX – VHF Sessions
- Wolf Hong – SWOOP - Initiations
- Spectacular Banquet – Prominent Speaker
- Contests and Prize Drawings
- 2 Meter FM – RTTY
- Many Other Special Events

Advance registration: Checks or money orders to Dave Popham, WA2CCF
303 Tenally Road, Englewood, N. J. 07631
Advance registration includes Free Gift.
Registration $3.00; – Banquet, Advance, $10.00;
$12.00 at the door.

Make room reservations direct to the Hilton Inn,
455 South Broadway, Tarrytown, N. Y. 10591.

* Plenty of Free Parking *

FREE CATALOG
HARD-TO-FIND PRECISION TOOLS
Lists more than 1700 Items—pliers, tweezers, wire strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Also includes four pages of useful "Tool Tips" to aid in tool selection.

FREE CATALOG
HUMAN CATALOG
H.F.
S.S.B.
F.M.
ACCESSORIES

WORLD RADIO
3415 West Broadway
Council Bluffs, Iowa 51501

Name_________________________Call______________________________
Address__________________________
City_________________________State_________Zip________________

FM Schematic Digest
A COLLECTION OF MOTOROLA SCHEMATICS
Alignment, Crystal, and Technical Notes covering 1947-1960
136 pages 11½" x 17" ppd $6.50

S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173

SPACE-AGE TV CAMERA KITS & PLANS
BE A PIONEER IN HOME TELECASTING! Build your own TV CAMERA. Modest 17½¢, Average 58½¢, High Quality Sets. Step-by-step construction manual. High quality, components and complete schematics. Ideal for hobbyists, experimenters, educators, industry, etc.

FREE CATALOG
DEAL 3306-3307277

102 september 1972

More Details? CHECK—OFF Page 110
QSLs. Second to none. Same day service. Samples 25¢. Ray, K7HJR, Box 331, Clearfield, Utah 84015.

INSULATED STANDOFF TERMINALS. Teflon, 15 @ $1.00; Ceramic, 20 @ $1.00; Assorted phenolic, 25 @ $1.00. All are 4-40 or 6-32 screw or nut mount types. ppd. CPO Surplus, Box 189, Braintree, Mass. 02184.

SMALL SIGNAL DIODES New assorted 30 - $1.00; 75 - 2.00; 200 - 5.00; 500 - 10. B. C. Cond. 3 - 1.00. Electronics Unlimited 204 West St., West Warwick, R.I.

CINCY STAG HAMFEST: The 35th Annual STAG Hamfest will be held on Sunday, September 24, 1972 at the ALL NEW Stricker's Grove, on State Route 128; one mile west of Ross (Vincen), Ohio. Check local area map for new location. Door prizes each hour. Raffle, lots of food, flea market, model aircraft flying, and contests. Identify Mr. Hamfest and win prizes. $5.00 cost covers everything. Contact: John Brung, WD5DR, 6307 Fairhurst Avenue, Cincinnati, Ohio 45213.

$3,000.00 in FREE PRIZES! On October 7 & 8, 1972, SWAN ELECTRONICS will host its second Annual Open House. Enjoy refreshments, plant tours, technical talks, movies, etc. Free prize drawings for licensed amateur radio operators . . . also, ladies and kids. Located next to Oceanside Airport, over-night trailer and camper facilities will be available. Join the "Talk-In" on 7260 kHz and 146.94 MHz. Don't miss this family affair — include this visit to SWAN in your vacation plans. Any questions? Call: (714) 757-7525. SWAN ELECTRONICS — 305 Airport Road, Oceanside, California 92054.

AUDIO FILTERS: Knock down that background noise. KOJO SBG, AM and CW filters do the job. Write for free brochure and see how serious DX boys hear them. KOJO, Box 7774, 741 E. Highland Ave., Phoenix, Arizona 85011.

NEW ELECTRONIC PARTS. Buy-Sell. Large catalog $1.00 deposit. Bigelow Electronics, Dept. HR, Bluffton, Ohio 45817.

RECIPIROCATING DETECTOR PARTS KIT. Write Peter Meacham Associates, 19 Loretta Road, Waltham, Mass. 02154.

ENCODERS 2805 Hz. or other single frequency. 9VDC, high output, rock stable, 1 3/16" x 1 5/16" x 1/8". $5.00 postpaid. Richard Puckett, WB4SWW, 707 Settiff Place, Nashville, Tennessee 37206.

AMATEUR SALES & SERVICE. Start with discount prices and get service after the sale. We stock such leading names as Clegg, Drake, Kenwood, Regency, SBE, Signal/One, Tempo One. Antennas by Cush Craft and Mosley. Towers by Rohn. Write or call today Amateur Sales and Service, 111 Rand Mill Road, Garner, North Carolina 27529. Tel. 1-919-772-6044.

VHF NOISE BLANKER — See Westcom ad in Dec. '70 and Mar. '71 Ham Radio.

INCREASE YOUR TALK POWER!

PROVEN ON-THE-AIR PERFORMANCE

MODEL ACA-1
$49.95 KIT
ASSEMBLED
$69.95

MODEL ACA-1 AUDIO COMPRESSOR features 45 DB compression range □ Flat 20-20,000 Hz response □ Extremely low distortion □ Front panel compression meter and in/out switch. □ Accepts both high and low-impedance mikes □ Easily installed in mike line □ 110-volt.a.c. or 12-volt d.c. operation □ Only 5 1/4" W x 2 1/4" H x 3 1/4" D.

MODEL ACP-1
$24.95 KIT
ASSEMBLED
$34.95

MODEL ACP-1 COMPRESSOR-PREAMP has 30 DB compression range □ Flat 20-20,000 Hz response and low distortion □ Designed for high-impedance mikes □ Easily installed in mike line □ 9-volt battery operation □ Only 4" W x 2 1/2" H x 3 1/2" D.

IDEAL FOR TAPE RECORDERS!

Try one of these compressors as an automatic recording-level control. Used by recording studios, schools, and radio-tv stations. Great for p.a. systems, too!

3-CHANNEL WWV RECEIVER
(5, 10, and 15 MHz)
$74.95 KIT
ASSEMBLED
$99.95

0.25 microvolt sensitivity □ Crystal controlled □ 110-volt a.c. or 12-volt d.c. operation □ Compact size only 4 3/4" W x 2 1/2" H x 5 1/4" D.

Send check or money order, plus $1.50 for shipping anywhere in U.S.A. California residents add 5% sales tax.

DEALER INQUIRIES INVITED

CARINGELLA ELECTRONICS, INC.
P.O. Box 327 D Upland, California 91786
Phone 714-985-1540

More Details? CHECK-OFF Page 110

September 1972 HP 103
Versatility plus! ... in a 2 Meter FM Transceiver

Complete with: Dynamic Mike, O-T-S Carrying Case, 120 VAC and 12 VDC Cords, Speaker/Headphone Plug and 10 Ni-Cad Batteries.

$199.95 Amateur Net

AA-22 Amplifier $149.95
MMK-22 Mobile Mount $9.95
BBLT-144D Hustler Ant. $27.95

R. L. DRAKE COMPANY

PRE-AMP

HIGH GAIN • LOW NOISE

35dB power gain, 2.5-3.0 dB N.F. at 150 MHz, 2 stage, R.F. protected, dual-gate MOSFETs. Manual gain control and provision for AGC. 4⅝" x 1⅜" x 1⅜" aluminum case with power switch and choice of BNC or RCA phono connectors (be sure to specify). Available factory tuned to the frequency of your choice from 5 MHz to 350 MHz with approximately 3½ bandwidth. Up to 10% B.W. available on special order.

Model 201 price: 5-200 MHz $21.95
201-350 MHz $24.95

Vanguard Labs
196-23 JAMAICA AVE.
HOLLIS, N.Y. 11423

GATEWAY ELECTRONICS
8123 PAGE AVENUE
ST. LOUIS, MISSOURI 63130
314-427-6116

6 V. 1.5 A — Ship wt. 2 LBS. $1.75
12 V.C.T. 1.5 A — Ship wt. 2 LBS. $2.00
24 V. C. T. 1 A — Ship wt. 2 LBS. $2.50
30 V.C.T. 30 A — Ship wt. 14 LBS. $10.00
30 V. C. T. 10 A — 9 LBS. $5.00
32 V 1 A, 10 V 2 A — Ship wt. 3 LBS. $3.00
1/2 WATT TRANSISTOR AMPLIFIER — 6 volt power Hi Z input speaker — Ship wt. ½ lb. $1.50

GENERAL ELECTRIC "MESSAGE MATE" PAGING RECEIVER with NiCAD battery, charger, case less tone reeds. Good working order on 150 MHz — Ship wt. 4 lbs. $60.00
10 MHz CRYSTAL TYPE CR6/U — Ship wt. ½ lb. $2.00

KEY OPERATED SWITCH FOR ALARMS, etc. — Ship wt. ½ lb. $2.50

PARABOLIC DISH ANTENNA. Antenna breaks into 18 sections for easy handling, light aluminum construction, reflector only, no feed or mount approx. 8 feet by 6 feet — Ship wt. 60 lbs. $125.00
2¼x2¼ SQUARE 0-20 V.D.C. METER — Ship wt. ½ lb. $1.95
3 INCH ROUND METER 40-0-40 MICRO AMP — Ship wt. ½ lb. $1.50

$5.00 Minimum Order
Visit us when in St. Louis
NEW MEXICO HAMVENTION on September 15, 16, & 17th. Technical sessions will inc
tral traffic, QSOs, ARPS/AREC/RADECS, FOR-
siion, joint Air Force, Navy and Army Mars, and an ARRL forum. Saturday afternoon there will be a fashion show and luncheon for the ladies. Displays, Sunday swap fest and ladies may have a swap fest of their own, bringing all sorts of knack knacks. Talk-in frequencies on 146.34/146.11, 146.76 MHz, 7.255 MHz, and 3.940 MHz. The affair will be held at the Albuquerque Hilton Inn at the intersection of Interstates I-25 and I-40. Advance registration is $8.50 and registration at the door will be $12.00. For more information, contact The New Mexico Hamvention, P. O. Box 14381, Albu-
querque, New Mexico 87111.

SSTV, RTTY, CW, WWV, CHU tone to logic decoder projects. Chassis, plans, hardware, eight 2½" x 3½" epoxy cards, $6. Hornung, 1630 Bowling Lane, San Jose, Calif. 95118.

$3,000.00 in FREE PRIZES! On October 7 & 8, 1972, SWAN ELECTRONICS will host its second Annual Open House. Enjoy refreshments, plant tours, technical talks, movies, etc. Free prize drawings for licensed amateur radio operators, also, ladies and kids. Located next to Oceanside Airport, over

HEATH DX-100 transmitter, operating condition, built in 1960. Manual included. Perfect for novice of CW operation. $50 or best offer. W. Shockley, 17 Hyacinth Drive, Fords, New Jersey 08863.

PHILADELPHIA, PA. First annual Pack Rat Ham-
arama, Sunday October 1, 1972, at the Warwick Fire Co., Jamison, Pa., located on Rt. 263 above Willow Grove, Pa. Activities include dealer's market, auction, and an amateur TV demonstration by the leading local ATV's. Festivities begin at 10 A.M. Food concession on premises. Registration is $1.00, flea market tables or tents, $2.00. Talk-in on 146.94 and 52.525. For further infor-
mation contact W3ZD at 520 Centennial Rd., War-
minster, Pa. 18974.

NOSTALGIA. A handsome series of books to bring
time autos, toys, and ladies fashions. Write today
for full details. Comtec, Greenville, NH 03048.

F. C. C. TYPE exams guaranteed to prepare you for
F.C.C. 3rd. ($7.00), 2nd. ($12.00), and 1st. ($16.00)
phone exams; complete package, $25.00. Research
Company, Rt. 2, Box 448, Calera, Alabama 35040.

HAMFEST IN MEMPHIS, September 17. State Tech-
nical Institute, Interstate 40, east of city. Prizes,
flea market, tech talks, MARS meeting, XYL activ-
ities, food. 8:00 a.m. to 5:00 p.m. Talk-in on 2M 34-
94, 22-76, 75M, 3.980. Write Evin, WB4VDH, 239
Kenilworth, Memphis, Tennessee 38112.

BE SURE to take advantage of Ham Radio's
Summer Sale. Details were sent to you, but if you
want another copy of this offer write: Summer Sale,
Ham Radio, Greenville, NH 03048.

SJRA HAMFEST on Sunday, Sept. 10, 1972, at
Mollie Farm, Malaga, N. J., rain or shine. Greatly
expanded Swap Shop. Protected pavilion contain-
ing tables for Swap Shop and special parking will
be provided at the Hamfest for hundreds of cars
for those who prefer to display in the back of
their cars. A variety of contests, games, and displays, plus prizes. Picnic and protected swimming
facilities will also be provided to help make a gala
even for the whole family. Advance regis-
tration at $2.00 per family ($3.00 at the gate).
Write Fred Holler, W2EBK, 346 Bortons Mill Rd.,
Chester Hill, N. J. 08080. Mollie Farm is located
just off Route 47 at Malaga Lake, Malaga, N. J.

YOUR AD belongs here too. Commercial ads 25¢
per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.
the Incomparable CX7A by signal/one

Features:
- RELIABILITY IS NOW standard equipment. Every CX7A "burnt-in" and cycled more than 96 hours.
- QUALITY-PLUS. Every component is instrument grade, American-made, and individually tested.
- ALL MODES 10 thru 160 meters in full 1 MHz bands with overlaps.
- BROAD-BAND TUNING. Instant band changes without tuning.
- TRUE BREAK-IN CW with T/R switching.
- IF SHIFT — deluxe QRM slicer.
- PRE-IF NOISE-BLANKER that really works.
- RF ENVELOPE CLIPPING — sounds like a Kw.
- TWO VFO'S. Transceiver Plus receiver.
- BUILT-IN: Spotter, FSK shift, transmit offset, wattmeter, SWR meter, electronic CW Keyer.

It's Perfection for $2395

If you want to move up to the BEST, give DON PAYNE, K4ID, a call for personalized service, a brochure, and a KING-SIZE trade-in on any gear you have — one piece — or the whole station.

PAYNE RADIO
Box 525
Springfield, Tenn. 37172
Six Days
(615) 384-5573
Nites - Sundays
(615) 384-5643

WORLD QSL BUREAU
THE ONLY QSL BUREAU to handle all of your QSLs to anywhere; next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 5¢ each.

5200 Panama Ave., Richmond, CA USA 94804

ULTRA-BAL 2000
Advanced design
• No radiation from coax or power to antenna BALUN
• Automatic tuning
• High 250W — 316.30 MHz, 11 or 14 ratios.
• Encapsulated, ultraweather-proof
• Multiple 24V Teflon insulation over silver plated wire for ultra low loss

Specify ratio desired $8.95 ppd.

K.E. Electronics
Box 1279, Tustin Calif. 92680

IDENTIFIER FOR FM REPEATERS
ID-403
• AUTOMATIC TIMING
• PLUG-IN MEMORY
• ALL SOLID STATE
• 17/20 POWER SUPPLY
• TONE BURST ENTRY OPTION

CURTIS ELECTRO DEVICES
BOX 40900 • MOUNTAIN VIEW, CALIF. 94040 • TEL. (415) 944-7136

INOUE 2 mtr FM
12 chan. IC-20 mob. unit/10 crystals $269.50
24 channel IC-21, built-in AC supply, RIT, DISC mtr SWR ind. with 10 crystals $359.50
Extra crystals, w/purchase $3.50, without $4.00
90 day warranty
Send Cashier's Check or Postal M/O to:
Woody W7RC — RC ENGINEERING
15051 SE 128 St, Renton, Washington 98055
Area code 206 AL 8-9895

VHF
UHF

Crystal Controlled CONVERTERS for DX, FM, ATV, Space and other uses. Extremely Sensitive and free from spurious responses. With AC power supply. Choice of i-f, many in stock. Upgrade your station to JANEL.

50 MHz
2.0db NF $74.95
144 MHz
2.5db NF $74.95
220 MHz
3.0db NF $79.95
432 MHz
5.0db NF $74.95
All postpaid. Write for full details. Also preamps. Ask about our OSCAR special 435 MHz converters.

JANEL LABORATORIES
P.O. BOX 112
SUCCASUNNA, N. J. 07876
201-584-6521

COMMUNICATIONS SPECIALISTS
P. O. Box 153, Brea, CA 92621

COMMUNICATIONS SPECIALISTS
P. O. Box 153, Brea, CA 92621

More Details? CHECK—OFF Page 110
12-24 HR DIGITAL CLOCK

- LED Display
- 12-24 Hr Switch Selectable
- Easily Set
- Compact Size

The Model 8800 Digital Clock has versatility unmatched by similar units at more than twice the price. Ideal for electronics enthusiasts, hams, radio and television studios and event timing. Solid State LED displays end display replacement problems. Foolproof presetting controls combined in a conservative reliable design assure long term accuracy. The 8800 may be used with its own internal time standard or external standards can be used. BCD outputs are available. The unit is shipped fully assembled and calibrated.

8800 Digital Clock $94.95

KEYBOARDS

At last! A low cost keyboard with touch-tone coding built into the switches. Great for repeater and relay applications. The KB-3 will interface directly with all popular logic types and can program the 566 VOC for the standard frequencies. The KB-3 measures 3" x 2½" and has a total depth of ¾". Keyboard legends will not chip or wear off. Contacts rated at 25 V and 40 mA. Bought straight from the manufacturer.

KB-3 Touch-Tone Keyboard $7.95

Get your 48-page, 1972 catalog immediately! Send 30¢ for First Class, 40¢ for Air Mail delivery.
The World At Your Fingertips

It's Portable — BARLOW-WADLEY XCR30
CRYSTAL CONTROLLED RECEIVER
$235.00

A COMPLETELY NEW CONCEPT IN PORTABLE RADIO DESIGN
1. 0.5 TO 30 MHz CONTINUOUS COVERAGE - DIRECT READOUT
2. ANTENNA TUNING FOR MAXIMUM SENSITIVITY
3. AM CW SSB. (SELECTABLE USB AND LSB)
4. SELF POWERED BY SIX UM-1 DRY CELLS
5. POWER JACK FOR EXTERNAL 6-12v. DC SUPPLY
6. HEADPHONE JACK
7. DRIFT FREE RECEPTION

For Further Information Write
NOONAN ASSOCIATES
2056 ALAMEDA WAY
SAN JOSE, CALIF. 95126

The ALPHA SEVENTY
Power Amplifier Of The Seventies
Model PA-77

- New 8877 Air-cooled final
- 1500 watts plate dissipation
- 4000 volts on plate
- 25 mfd oil-filled capacitor
- vacuum variable tuning capacitor
- vacuum relays for T/R switching
- 6000 volt - 20 Amp. Bandswitch
- 3000 watts PEP continuous duty
- 1500 watt continuous duty transformer
- 9½x17x18 — 70 lbs.

It's Perfection for $1795.

FM YOUR GONSET COMMUNICATOR

- New! Plug-in modulator puts the Communicator transmitter on FM.
- No modification or rewiring on your Communicator. Just plug into mike jack and crystal socket.
- Compact self-contained modulator measures 4" x 3½ x 1½".
- Works with Communicator I, II, III, IV and GC-105.
- FM at a tenth the cost of a new rig.
- Frequency adjust for netting built-in.
- Built-in tone burst available. Keyed by push-to-talk switch.
- $34.50 postpaid U.S.A. Built-in tone burst $10.00. Specify Communicator model and tone-burst frequency. California residents add 5% sales tax. (HC-6/U crystal and 9 volt transistor battery not supplied.)
- Send for free descriptive brochure.

PALOMAR ENGINEERS
BOX 455, ESCONDIDO, CA 92025

If you want to move up to the BEST, give DON PAYNE, K41D, a call for personalized service, a brochure, and a KING-SIZE trade-in on any gear you have — one piece — or the whole station.

PAYNE RADIO
Box 525 — Springfield, Tenn. 37172
Six Days (615) 384-5573 Nites - Sundays (615) 384-5643

More Details? CHECK—OFF Page 110
GENERAL
- Freq. coverage: 144-148 MHz; 12 channels supplied.
- Push-to-talk.
- AC drain: Rcv, 6W; Xmit, 50 W; DC drain: Rcv, 0.5A; Xmit, 4A.
- Built-in power supply: AC, 117V 60Hz; DC, 13.5V ±10%.
- Size: 7-7/8” x 2-3/4” x 10-1/4”, 8-1/4 lbs.

TRANSMITTER:
- Transistorized with 6360 output tube.
- RF Output: over 10 W.
- Freq. Dev.: Adj. to 15 kHz max.
- Freq. Stability: ±0.001% or less.
- Output Imped: 50 ohms.

RECEIVER:
- Completely transistorized, crystal-controlled superhet.
- Intermed. Freq: 1st 10.7 MHz, 2nd 455 kHz.
- Input Imped: 50 to 75 ohms.
- Sensitivity: 0.5pV or less.
- Quieting: 1pV or less.
- S+N/N at 10 kHz dev., 1 kHz mod.
- Audio Output, 0.5 W.
- Spurious Sens., >-60 dB.

Including transceiver, 3 channels supplied, mobile mount, dynamic mike and built-in AC-DC power supply.

$299.95 Amateur Net

Accessory BBLT-1440 Antenna: Hustler 3.4 dB gain $27.95

R. L. DRAKE COMPANY

2 METER PREAMP
More Gain, Less Noise For The Money!
20 DB GAIN
NOISE FIGURE 2.5
12 VDC OPERATION
Small Size: 1 1/4 x 2 1/4 x 1/2 - Only $12.50
Kit $9.50
Option for 150-250 VDC Operation - $1.00

CLEARANCE SALE
30% OFF ON ALL
USED EQUIPMENT IN STOCK
Large Selection —
Send For Free List:
FRECK RADIO & SUPPLY CO. INC.
38 BILTMORE AVENUE
ASHEVILLE, N. C. 28801
704-254-9551

EXCLUSIVE 66 FOOT 75 THRU 10 METER DIPOLE
NOW IS BACK

NO TRAPS — NO COILS — NO STUBS — NO CAPACITORS
Fully Air Tested — Thousands Already in Use

#16 40% Copper Weld wire annealed so it handles like soft Copper wire—Rated for better than full legal power AM/CW or SSB-Coaxial or Balanced 50 to 75 ohm feed line—VSWR under 1.5 to 1 at most heights—Stainless Steel hardware—Drop Proof Insulators—Terrific Performance—No coils or traps to break down or change under weather conditions—Completely Assembled ready to put up—Guaranteed 1 year—ONE DESIGN DOES IT ALL; 75-10HD—ONLY $12.00 A BAND!

Model 75-10HD $45.00 66 Ft 75 Thru 10 Meters
Model 75-20HD $60.00 66 Ft 75 Thru 20 Meters
Model 75-40HD $120.00 66 Ft 75 Thru 40 Meters
Model 80-10HD $40.00 66 Ft 80 Thru 10 Meters
Model 80-20HD $60.00 66 Ft 80 Thru 20 Meters
Model 80-40HD $120.00 66 Ft 80 Thru 40 Meters

ORDER DIRECT OR WRITE FOR FULL INFORMATION

300H Shawnee
Leavenworth, Kansas 66048
Limit 15 inquiries per request.

September 1972
Please use before October 31, 1972

Tear off and mail to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME ... CALL ...
STREET ..
CITY ..
STATE .. ZIP

INDEX
--- Alpha KE
----- Alton KW
----- Apollo L. A.
----- Arizona Larsen
----- B C Lee
----- Barker-Williamson Leeds
----- Barry Linear
----- CNA Martronics
----- Caringella Matrix
----- Circuit Specialists MSHlna
----- Clegg Micro-Z
----- Communications Specialists Mor-Gain
----- Specialists Noonan
----- Comtec Pace
----- Curtis Palomar
----- DX Magazine Payne
----- Data Phoenix
----- Display Polypaks
----- Drake Production
----- Dycomm RC
----- ES RPT
----- Eastron R & R
----- Emlo Radiation
----- Erickson Callbook
----- Frank Regency
----- Freck Ross & White
----- Gateway Savoy
----- Giffier Tri-Ex
----- Gray Signal/One
----- H & L Solid State
----- HAL Spectronics
----- Hamtronics Spectrum
----- Henry Tri-Ex
----- Hobby VHF
----- Hudson Division Van's
----- International Crystal Vanguard
----- Jan Weinschenker
----- Janew Weights
----- Jeff-Tronics Wolf
----- Jensen World QSL
----- Johnson World Radio
----- KA

Adventurers Index

ATV Research ... 102
Alton Industries .. 96
Amateur Electronic Supply 55, 57
Apollo Products .. 56
Arizona Semi-Conductor 88
B C Electronics .. 83
Barker-Williamson, Inc. 1
Barry ... 79
CNE Magazine ... 92
Caringella Electronics 103
Circuit Specialists Co. 78
Clegg Division of ISC 71
Communications Specialists 106
Comtec .. 83
Curtis Electro Devices 84, 106
DXer Magazine .. 83
Data Engineering, Inc. 75, 106
Display Electronics 84
Drake Co., R. L. .. 88, 104, 109
Drycomm ... 87, 95
E & S Electronic Labs 81
Easton Corporation 86
Eimac, Div. of Varian Assoc. Cover IV
Erickson Communications 95
Frank Electronics .. 88
Freck Radio & Supply Co. 109
G & L Radio Supply Co. 109
Garlen Communications 83
Gateway Electronics 104
Goodheart Co., Inc., R. E. 61
Gray Electronics ... 90
H & L Associates ... 96
HAL Communications Corp. 73
Ham Radio Magazine 82
Henry Radio Stores Cover III
Hobby Jewelry .. 84
Hudson Division Convention 102
Hy-Gain Electronics Corp. 2, 67, 77, 97
International Crystal Mfg. Co. 112
Jan Crystals ... 102
Janel Labs ... 106
Jeff-Tronics ... 84
Jensen Tools and Alloys 102
KA Sales .. 86
KE Electronics ... 106
KW Electronics ... 105
L. A. Electronic Sales 111
Larsen Electronics, Inc. 45
Lee Electronics ... 86
Leeds Radio Co. .. 88
Linear Systems, Inc. 73
Martronics .. 94
Matrix ... 94
Meshna, John, Jr. .. 101
Micro-Z Co. .. 95
Mor-Gain, Inc. ... 109
Noonan Associates 108
Palomar Engineers 108
Payne Radio .. 106
Pennwood Numenchon Co. 83
Poly Paks ... 100
RC Engineering .. 94
RP Electronics ... 94
RPT Publishing Co. 88
R & R Electronics 93
Radio Design Co. .. 86
Radio Amateur Callbook, Inc. 82, 90
Radio Constructor ... 82
Reignery Electronics, Inc. 92
Ross & White Co. ... 80
SAROC .. 87
Savoy Electronics ... Cover II
Signal/One Corporation 91
Solid State Systems, Inc. 89
Spectronics, Inc. ... 5
Spectrum International 96
Tri-Ex Tower Corp. 49
VHF Engineering ... 44
Van's, W2DL .. 90
Vanguard Labs ... 104
Weinschenker .. 61
Wheatland Electronics 86
Woerner Enterprises, Inc. 87
Wolf, S. .. 102
World QSL Bureau ... 102
World Radio Laboratories 102
MODEL LA 150

Gain (2 Meters) 3db
Gain (6 Meters) Unity
Nominal Impedance 55 ohms
Overall Length 55 in.

LIMITED SPECIAL $24.95
$55.00 VALUE

CLEAN DRAKE GEAR

REWARD FOR NEW PRICE
$195.00 2B or 2C R4B $475.00
$220.00 R4 R4B $475.00
$275.00 R4A R4B $475.00
$200.00 T4 T4XB $495.00
$125.00 2NT T4XB $495.00
$285.00 T4X T4XB $495.00
$60.00 AC3 AC4 $99.95
$70.00 DC3 DC4 $125.00
$270.00 TR3 TR4 $599.00

STOP THAT T. V. I.

REWARD FOR NEW PRICE
$195.00 2B or 2C R4B $475.00
$220.00 R4 R4B $475.00
$275.00 R4A R4B $475.00
$200.00 T4 T4XB $495.00
$125.00 2NT T4XB $495.00
$285.00 T4X T4XB $495.00
$60.00 AC3 AC4 $99.95
$70.00 DC3 DC4 $125.00
$270.00 TR3 TR4 $599.00

Electronix Sales
23044 S. CRENSHAW BLVD., TORRANCE, CALIF. 90505
Phone: (213) 534-4456 or (213) 534-4402
CLOSED SUNDAY & MONDAY
See us at our booth at the Southwestern Division Convention
Santa Maria, Calif., October 21 & 22.
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR
RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
RF AMP
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
RF POWER AMP
A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw. depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3.000 to 30,000 KHz $3.95

4. BAX-1 BROADBAND
AMP
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 8 to 30 db gain. Ideal for SWL, Experimenter or Amateur $3.75

5. OX OSCILLATOR
Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
Available from 3,000 to 60,000 KHz. Supplied only in HC holder. Calibration is ± .02% when operated in International OX circuit or its equivalent. (Specify frequency) $3.95

for the COMMERCIAL user...

INTERNATIONAL
PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3098E.

CRYSTAL TYPES:
(GP)	for “General Purpose” applications
(CS)	for “Commercial Standard”
(HA)	for “High Accuracy” temperature tolerance requirements

write for CATALOG

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLA. CITY, OKLA. 73102

112 september 1972

More Details? CHECK-OFF Page 110
TEMPO...a quality name...a growing family

TEMPO
"ONE"
SSB TRANSCEIVER

represents the culminating achievement of many years of experience in the amateur radio field. Modern design, superb performance, high styling, sturdy construction, outstanding reliability, exceptional value.

TEMPO "ONE"
SSB TRANSCEIVER

Tempo "ONE" Transceiver $319.00
AC/ONE Power Supply (117/230 Volt 50/60 cycle) $99.00
DC/1-A Power supply (12 volts DC) $110.00

powerful performers...reasonably priced...high power fm amplifiers by Tempo

A superior quality VHF FM two meter power amplifier. Only 6½" x 3½" x 3", yet contains all the features of the TPL1002-3 and provides a minimum of 45W output and typically 50W. Price $99.00

THE MOST COMPLETE LINE OF SOLID STATE AMPLIFIERS AVAILABLE

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>POWER INPUT</th>
<th>POWER OUTPUT (min)</th>
<th>BAND</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPL1002-3</td>
<td>5 to 25W</td>
<td>100-135W</td>
<td>2M</td>
<td>$220.00</td>
</tr>
<tr>
<td>TPL1002-3B</td>
<td>1-3W</td>
<td>60W</td>
<td>2M</td>
<td>$235.00</td>
</tr>
<tr>
<td>TPL802</td>
<td>5W</td>
<td>80W</td>
<td>2M</td>
<td>$180.00</td>
</tr>
<tr>
<td>TPL802B</td>
<td>1 to 3W</td>
<td>80W</td>
<td>2M</td>
<td>$195.00</td>
</tr>
<tr>
<td>TPL502</td>
<td>5 to 15W</td>
<td>35-65W</td>
<td>2M</td>
<td>$105.00</td>
</tr>
<tr>
<td>TPL502B</td>
<td>1 to 3W</td>
<td>45W</td>
<td>2M</td>
<td>$130.00</td>
</tr>
<tr>
<td>TPL252-A2</td>
<td>1W</td>
<td>25W</td>
<td>2M</td>
<td>$85.00</td>
</tr>
<tr>
<td>TPL445-10</td>
<td>1 to 25W</td>
<td>12W</td>
<td>440MHz</td>
<td>$125.00</td>
</tr>
<tr>
<td>TPL445-30</td>
<td>4W</td>
<td>30W</td>
<td>440MHz</td>
<td>$215.00</td>
</tr>
<tr>
<td>TPL445-30B</td>
<td>1W</td>
<td>30W</td>
<td>440MHz</td>
<td>$235.00</td>
</tr>
</tbody>
</table>

TEMPO FMP

Truly mobile, the Tempo fmp-3 watt portable gives amateurs 3 watts, or a battery saving ½ watt, FM talk power anywhere at anytime. With a leather carrying case included, this little transceiver will operate in the field, in a car, or at home with an accessory AC power supply. The battery pack is of course included. Price: $225.00.

Other Tempo products:
FMV450 - 10 watt UHF transceiver
FMV - 10 watt 2 meter transceiver
RBF-1 Wattmeter & SWR Bridge
VHF & UHF Solid State Amplifiers

Henry Radio

11240 W. Olympic Blvd., Los Angeles, Calif. 90064
714/772-9200
816/679-3127

11240 W. Olympic Blvd., Los Angeles, Calif. 90064
213/477-6701
931 N. Euclid, Anaheim, Calif. 92801
237 W. Euclid, Butler, Missouri 64730
Plug more life into your system with EIMAC planar triodes.

To make a long story short, after 18,000 hours of life test EIMAC improved 7211's were still delivering over 35 watts CW at 705 MHz in the r-f cavities for the Army's GRC-103 Radio Set. And that's no fluke.

Several design improvements give the 7211 life comparable to solid state devices. These improvements have been designed into all EIMAC planar triodes. The result is longer life. Higher power and efficiency. Higher frequency operation. And better linearity. In many cases the improved tubes are direct, plug-in replacements for earlier models in existing equipment, resulting in lower cost per operating hour to the user.

Right now EIMAC has more than 70 planar triode types in three families ranging from the 2C39A types through the latest miniature planar triodes. In CW, EIMAC frequency capability goes up to 5 GHz and powers to 450 watts. For pulse applications, EIMAC has models capable of delivering up to 1 kilowatt peak at 6 GHz.

When it comes to planar triodes for retrofit or new equipment, only EIMAC has full capability. For a copy of our planar triodes applications manual, get in touch with EIMAC, 1678 Pioneer Road, Salt Lake City, Utah 84104. Or your local Varian/EIMAC Electron Tube and Device Group Sales Office.