FREQUENCY SYNTHESIZER
for the Drake R-4 receiver

this month

- 2304-MHz preamp
- audio filters
- RTTY monitor scope
- mobile touch-tone

AUGUST 1972
Savoy
High Accuracy Crystals
For over 30 years

Crystals shown are actual size.
Either type, for transmitter or receiver.

$3.75
Postpaid in U.S.A.

Specify crystal type, equipment make and model, desired frequency, transmit or receive.

For amateur two meter FM use in Regency, Varitronics, Standard Drake, Tempo, Swan, Galaxy, Trio, Sonar, Clegg, Linear SBE.
For GE, Motorola, RCA, or oven use $4.95. Gladding $7.95

Savoy Electronics, Inc.
P.O. Box 7127 - Fort Lauderdale, Florida - 3330
Tel: 305-566-8416 or 305-947-1191
Have you seen what’s new in amateur radio?

Every major amateur radio magazine is now giving coverage to slow-scan television.

Every day finds more and more amateur radio operators converting to SSTV. There’s been nothing like it since the advent of single-sideband equipment. Operators report that Slow Scan Television has renewed their enthusiasm and fascination with amateur radio as much, or more, as when they first got their ham ticket.

Hundreds of SSTV operators provide almost continuous activity on the SSTV frequencies.

And these include many overseas stations, from the Netherlands to Italy, from South Africa to New Zealand. The Second Annual World Wide SSTV DX Contest was recently sponsored by CQ Elettronica (an Italian ham magazine). Tune to any of the SSTV frequencies, any time, and you’ll hear for yourself how the SSTV activity is literally exploding.

Listen in on 14.230 mHz day or night and you’ll hear for yourself how the SSTV operators are having all the fun, and action!

If you’ve been thinking SSTV is still in the experimental state... think again. SSTV HAS ARRIVED!

Send for reprints of recent articles on SSTV, and Robot equipment.

We’ll also include material on SSTV operation that you’ll find interesting and informative, information on all our equipment, and the name of the Robot dealer near you where you can have a demonstration of Robot SSTV equipment. Then you’ll see what’s new in amateur radio.

ROBOT MODEL 70 MONITOR $495
ROBOT MODEL 80 CAMERA $465
25mm fl.9 LENS $ 30

ROBOT RESEARCH, INC.
7591 CONVOY COURT, SAN DIEGO, CA 92111
(714) 279-9430
Only an MC-4 can “top” a Drake TR-4

the optimum Sideband Transceiver

(Sometimes even the MC-4 ends up on the bottom . . .)

Adding an MC-4 Mobile Console, with its excellent wattmeter and built-in speaker, is the only way to improve a Drake TR-4.

BUILT-IN TR-4 FEATURES

- Full Frequency Coverage on all amateur bands 10 through 80 meters. No additional crystals required.
- 300 Watts PEP input on SSB.
- Shifted-Carrier CW 260 watts input
- Upper and Lower Sideband all bands.
- Controlled-Carrier Screen Modulator for AM VOX or PTT
- Sideband Transceiver

BUILT-IN MC-4 FEATURES

- Full Frequency Coverage on all amateur bands 10 through 80 meters.
- No additional crystals required.
- 300 Watts PEP input on SSB.
- Shifted-Carrier CW 260 watts input
- Upper and Lower Sideband all bands.
- Controlled-Carrier Screen Modulator for AM VOX or PTT
- Sideband Transceiver

TR-4 SPECIFICATIONS:
- Frequency Coverage: Full coverage on all amateur bands 10 thru 80 meters, in seven 600 kHz ranges: 3.5 to 4.1 MHz, 7.0 to 7.6 MHz, 13.9 to 14.5 MHz, 21 to 21.6 MHz, 28.6 to 28.8 MHz, 28.9 to 29.1 MHz, 29.1 to 29.7 MHz. Solid State VFO; has linear permeability tuning. Tunes 4.9 to 5.5 MHz for all ranges. Dial Calibration: 10 kHz divisions on main tuning dial and 1 kHz divisions on the tuning knob skirt.
- Frequency Stability: High stability solid state VFO tunes same range on all bands. Drift is less than 100 cycles after warm-up, and less than 100 cycles for plus or minus 10% line voltage change.
- Modes of Operation: SSB Upper and Lower Sideband, CW and AM. Misc: 20 tubes including voltage regulator; two transistors; 8 diodes; 100 kHz crystal calibrator built-in. Dimensions: 5 3/4” high, 10” wide, 14 1/2” deep. Weight: 16 lbs.
- TRANSMITTER: Single Sideband: 300 watts P.E.P. input VOX or PTT. Two special 9 MHz Crystal Filters provide upper or lower sideband selection on any band, without the necessity of shifting oscillators. CW: Power input 260 watts. Carrier is shifted approximately 1000 cycles into one sideband, and mixer and driver are keyed. Grid block keying is free from chirps and clicks. Automatic transmit/receive switching when key is operated. CW sidetone oscillator for monitoring. AM: Controlled carrier AM screen modulator is built-in. 260 watts P.E.P. input. Low carrier power increases 6 times to 50 watts output at maximum modulation. This system is compatible with SSB linear. VOX or PTT. Diode detector used for receiving on this mode. Product Detector can be used by switching manually.

MC-4 SPECIFICATIONS:
- Frequency Coverage: 1.8-54 MHz
- Line Impedance: 50 Ohm resistive
- Accuracy: ± 1/2 of reading +3 watts
- Power Capability: 300 watts forward or reflected
- Controls: Front panel 2-position switch selects forward or reflected power
- Speaker: 3” x 5” oval, 2.98 ounce ceramic mag.
contents

6 frequency synthesizer for the Drake R-4
Robert S. Stein, W6NBI

20 solid-state 2304-MHz preamplifier
Gandolph Vilardi, WA2VTR

24 inexpensive audio filters
William A. Wildenhein, W8YFB

30 n-way power dividers and 3-dB hybrids
Richard S. Taylor, WIDAX

36 phase-shift RTTY monitor scope
Elmer E. Mooring, W3CIX

42 crystal oscillator frequency adjustment
Calvin J. Sondgeroth, W9ZTK

48 direct-reading capacitance meter
R. W. Johnson, W6MUR

54 oscilloscope voltage calibrator
F. Everett Emerson, W6PBC

58 mobile operation with the touch-tone pad
William P. Lambing, W0LPQ

62 digital IC oscillators and dividers
Edward M. Noll, W3FOJ

68 comparing fm receiver performance
Vern Epp, VE7ABK

4 a second look
99 flea market

110 advertisers index
70 ham notebook

62 circuits and techniques
110 reader service

76 comments
The newest solid-state device to come down the electronics turnpike offers some interesting circuit possibilities with existing vacuum-tube equipment. Although the new Teledyne junction-fet Fetron is not a new device so much as it is a new application of old principles, it offers a simple solid-state plug-in replacement for many vacuum tubes.

At the present time there are only two types of Fetrons available, a triode, the TS12AT7, and a pentode, the TS6AK5. These Fetrons are designed to replace, respectively, the 12AT7 and 6AK5. Both of these tubes are members of large families of similar types, so the two available Fetrons are usable in many different circuits.

The secret to Fetron operation lies in the development of high-voltage junction fets which will operate without breaking down with the high-voltage power supplies found in most vacuum-tube equipment. Most Fetron circuits are built with two fets in a cascode arrangement to obtain high gain; the basic circuit was described earlier in *ham radio.* *

The Miller-effect capacitance is minimized in the Fetron by using an ultra-low-capacitance, high-gain transistor such as the 2N3823 in the input, with a high-voltage fet such as the 2N4881 at the output. The complete circuit goes into a metal can that has the same pin configuration as the tube it replaces.

Although the current cost of Fetrons is relatively high ($15.60 for the TS12AT7 and $12.50 for the TS6AK5), they make good sense as replacements for tubes in communications equipment because their characteristics don’t drift with use, making periodic adjustment and alignment unnecessary, and they have extremely long life. In fact, the estimated life for a Fetron has been calculated at 30 million hours — that is equivalent to running them 24 hours a day, 365 days a year, for over 3400 years!

In addition to higher amplification factors, Fetrons feature noise figures much lower than many equivalent tubes, and much lower heat dissipation; lower heat dissipation because the Fetron requires no filament supply. The lower heat characteristic should be particularly useful in reducing drift in your vfo.

Although most Fetrons are designed for the lower frequency ranges, Fetron pentodes have been operated as high as 500 MHz. Charlie Spitz, W4API, has been experimenting with Fetrons in amateur communications equipment, but he has been hampered somewhat by the limited number of different Fetrons. However, this will be solved in the near future.

Teledyne has already built Fetron equivalents of the 6JC6 and 6EW6, and these can be combined with derivatives of the TS12AT7 and TS6AK5 to provide plug-in replacements for a great variety of tubes.

Next on the list of Fetron replacements will be power pentodes such as the 6AQ5 and 6V6, as well as remote-cutoff pentodes such as the 6BA6. With high-volume production and simplified packaging, Fetrons could well become low-cost replacements for most vacuum tubes. Watch the pages of *ham radio magazine* for the latest developments with this interesting new device.

Jim Fisk, W1DTY

Is the FTdx 570's noise blanker reason enough to spend $550 for this new rig?

You bet it is. Here's a complete rig, including a noise blanker — on other rigs you pay about $100 extra for the blanker alone. On other rigs, you read the glowing specs and they sound fine. Of course, to get them on the air you pay extra for such essentials as a power supply.

Well, the FTdx 570 includes a built-in power supply and 25 and 100 KHz calibrator. And built-in VOX. Plus a special WWV receive band on 10 - 10.5 MHz. And a clarifier — a receiver-offset tuning feature that lets you move ±5 KHz from a preset transmitter frequency. There's even a built-in cooling fan and a built-in speaker.

Last but certainly not least is the power: 560 watts PEP SSB, 500 watts CW input power.

The whole transceiver is guaranteed for one year. No other rig, preassembled or kit, gives you anywhere near the value or performance you get in the FTdx 570.

We have a brochure on the 570 that really gets down to the nitty-gritty on the subject. Send for it. Better yet, send for the rig itself. Don't you owe yourself a bargain?

SPECTRONICS WEST
Dept. C, 1491 E. 28th, Signal Hill, Ca. 90606 / (213) 426-2593

SPECTRONICS EAST
Dept. C, Box 1457, Stow, Ohio 44224 / (216) 923-4567

□ Please send detailed information on all Yaesu products.

□ Enclosed find $__________________

Please send model(s)__________________

Name ______________________________

Address ____________________________

City ________________________________
State ________________ Zip __________

All prices F.O.B. Signal Hill, Ca. C-2

Master Charge and BankAmericard accepted.
frequency synthesizer
for the
Drake R-4 receiver

This frequency synthesizer converts the Drake R-4 series of amateur-band receivers to general coverage receivers that tune from 1.5 to 30 MHz.

The vast majority of receivers in use in ham shacks today cover the amateur bands only, with the possible addition of one of the WWV frequencies. While this may be entirely adequate for normal operation, there are times when a general-coverage receiver is a very useful adjunct. Being able to receive WWV on only one frequency is often unsatisfactory, since obviously the selection of the optimum receiving frequency depends on the time of day and the distance from Fort Collins.

There are many other uses to which a general-coverage receiver can be put. Tracking down harmonics and other spurious frequencies can be simplified if you have such a receiver. Calibration of some home-built test equipment may require a receiver which covers frequencies other than the ham bands. And it is often desirable to use a receiver as a tunable i-f with vhf converters whose output frequencies are not in one of the high-frequency amateur bands.

While reviewing some of the literature which has been published describing the newer integrated circuits, it occurred to me that a frequency synthesizer might be a practical method for converting my Drake R-4 to general coverage without a separate crystal for each 500-kHz range. Frequency synthesis techniques have
been around for some time, involving circuitry which has been complex and difficult. However, recent developments in integrated circuits have simplified the techniques to a point whereby the frequency synthesizer is a practical construction project for the relatively experienced amateur.

Before proceeding with the description of the frequency synthesizer which makes all-band coverage possible without modifying the receiver, a review of the receiver conversion process is in order. Although there are differences in the actual circuits of the Drake R-4, R-4A, and R-4B receivers, the conversion frequencies are identical; therefore, this discussion is applicable to any one of the three receivers.

If we disregard the pre-mixing arrangement used by Drake, the high-frequency oscillator requirements are simply that the oscillator be tuned 11.1 MHz above the low-frequency end of the desired 500-kHz tuning range. Since the high-frequency oscillator is crystal controlled and untuned, this requirement is translated to a crystal of the proper frequency. For example, the 3.5- to 4.0-MHz band requires a 14.6-MHz crystal (3.5 plus 11.1 MHz), which is supplied with the receiver. Drake specifies that the receiver will tune from 1.5 to 30 MHz with the proper crystal, excluding 5 to 6 MHz which bridges the 5645 kHz first intermediate frequency. (The apparent discrepancy between this i-f and the 11.1 MHz difference between the incoming and oscillator frequencies is taken care of in the pre-mixing scheme, and can be ignored for the purposes of this article.) Since the receiver covers this range in 500-kHz steps, because the vfo has a 500-kHz tuning range, it would require 58 crystals to cover the complete spectrum, starting with a 12.6-MHz crystal for the 1.5- to 2.0-MHz band, a 13.1-MHz crystal for the 2.0- to 2.5-MHz band, and finally ending with a 40.6-MHz crystal for the 29.5- to 30.0-MHz band.

A complete set of crystals would obviously be expensive. Furthermore, there would be the practical difficulty of using all the crystals at one time since the receiver has provisions for externally installing only ten crystals in addition to the five amateur-band crystals mounted internally.

However, if we can generate frequencies of 12.6, 13.1, 13.6, 14.1, etc. through 40.6 MHz, and substitute them for the crystal-controlled high-frequency oscillator, we can achieve all-band coverage within the specified range of the receiver. Thus, this becomes the requirement for the frequency synthesizer.

fig. 1. Basic phase-locked frequency synthesizer. The frequency divider is a variable-modulus, or programmable, counter.

basic phase-locked loop frequency synthesizer

The integrated circuits to which I briefly referred are designed for use in phase-locked loops, one application of which is frequency synthesis. Fig. 1 shows the basic phase-locked frequency synthesizer. A stable reference frequency is applied to one input of a phase comparator. The output of the phase comparator is a dc voltage, which passes through a low-pass filter and controls the frequency of a voltage-controlled oscillator (vco). This oscillator generates the desired frequency, which may be any multiple of the reference frequency. The vco output is also applied to a frequency divider whose function is to divide the vco output frequency to the same frequency as that of the reference oscillator.

Let's assume that the reference oscillator frequency is exactly 100 kHz and that an output frequency of 12,600 kHz is required. If we have a divider or programmable counter which will divide by 126, the signal input to the phase
comparator will also be 100 kHz when the vco output is exactly 12,600 kHz. This is accomplished by the phase comparator producing a d-c output which "tunes" the vco until it is exactly 12,600 kHz. The divided vco frequency is then exactly 100 kHz, the same as the reference frequency. Thereafter, the vco output will stay at 12,600 kHz; any variation from this frequency changes the signal input to the phase comparator, which in turn produces a dc output change and brings the vco back to 12,600 kHz. Thus, the output frequency is locked to the reference frequency, and has essentially the same stability as the reference oscillator.

By using a frequency divider which can be programmed, it is possible to obtain virtually any number of discrete frequencies which are integral multiples of the reference frequency, all of which are phase locked to the reference oscillator. The low-pass filter keeps the reference frequency from appearing at the vco and establishes the lock-up time of the loop. A rigorous analysis of the feedback loop and filter involves extensive mathematics and is beyond the scope of this article. For those of you interested in greater detail, references 1 through 3 provide a wealth of information and design data.

A block diagram of the R-4 high-frequency oscillator frequency synthesizer is shown in fig. 2. The loop reference is a 100-kHz crystal-controlled oscillator which uses a Signetics LU380A quad two-

fig. 2. Block diagram of the R-4 hf0 frequency synthesizer. The only tuning controls are the front-panel mounted tens, units and tenths rotary switches.

input NOR gate. The oscillator output is divided by ten (for reasons which will be discussed later) and the resultant 10-kHz signal is applied to the reference input of a Motorola MC4044P phase comparator. Because I used the 100-kHz calibrator crystal from the R-4 in the synthesizer, I provided a 100-kHz output jack on the synthesizer in order to introduce a calibration signal back into the receiver.

This is shown in fig. 2, and is covered in greater detail under the circuit description and interconnection portions of this article. It should be noted, however, that this technique will eliminate the 25-kHz calibration markers in the R-4B because the 100-kHz calibration signal is fed back into the receiver antenna input by way of the accessory socket on the receiver. If you wish to retain the 25-kHz markers, use a separate crystal in the synthesizer and delete the calibration circuit.
The low-pass filter, which appeared in fig. 1, is not shown separately in fig. 2 since part of it is integral to the MC4044P with the remainder made up of discrete components. The output of the phase comparator/filter is applied to a varactor diode which controls the frequency of the vco, a Fairchild SE3005 transistor.

The reference input to the phase comparator can be explained. If the frequency were 100 kHz, the divider would need only a divide range of 126 to 406 in order to divide the vco output of 12.6 to 40.6 MHz down to 100 kHz. However, at the upper frequency limit of 40.6 MHz, the propagation delays through three synchronous counters arranged in a ripple-through configuration would prevent proper operation of the circuit.

Therefore, the trigger generator output, which is at the vco frequency, is first divided by five in a quinary divider which consists of three of the four flip-flops in a Signetics 8290A high-speed decade counter. The remaining flip-flop is placed at the end of the divider chain, thereby dividing the vco output by a fixed factor of ten. Thus it can be seen that the reference signal must also be divided by ten if the reference and signal inputs to

Interior view showing construction of the synthesizer. The reference oscillator is at the top right of the board, the vco and trigger generator are at the upper center, and the frequency-divider ICs and steering diodes are to the left of the multi-section switch. Power supply components are mounted at the bottom of the board and on the chassis to the left of the board.

The vco output, 12.6 to 40.6 MHz in 500-kHz steps, is routed to the R-4 via a 2N709 emitter follower. The vco output also drives a trigger generator which uses a pair of 2N3478 transistors. The trigger generator is needed to convert the amplitude and waveform of the vco output to that required by the TTL integrated circuits in the frequency divider.

The frequency divider is a variable-modulus counter which can be programmed to divide by any factor between 1260 and 4060 in steps of 50. It is at this point that the reason for using a 10-kHz
the phase comparator are to be equal.

Although the trigger generator output could have been divided by ten before it was applied to the programmable counter, placing the binary divider at the end of the chain results in a square-wave output which is readily observable on oscilloscopes of limited frequency response and rise time.

Returning to the signal flow shown in fig. 2, let's assume that the desired vco output is to be 39.6 MHz, for a receiver tuning range of 28.5 to 29.0 MHz. The 39.6-MHz signal from the trigger generator is divided by five to a frequency of 7.92 MHz. To obtain a 10-kHz output from the divider chain, the dividers must be programmed to divide by 396. (Remember that there is a fixed divide-by-two at the end of the chain.) By programming the tenths divider to divide by six, the units divider to divide by nine, and the tens divider to divide by three, the output from the tens divider is 7.92 MHz divided by 396, or 20 kHz. This is divided by two in the binary section of the 8290A, resulting in a 10-kHz signal being applied to the phase comparator.

The designations tenths, units and tens used for the dividers refer to the panel markings of the rotary switches which are used to set the dividers. Each of the dividers is a decade counter which can be preset to count by any integer between one and nine. The tenths divider, being the first in the chain, determines the least significant figure in the total count. The units divider divides the output of the tenths divider; therefore its count (multiplied by 10) determines the middle figure in the three-digit count, while the count (multiplied by 100) of the tens divider determines the most significant figure in the total count.

In order to obtain divide ratios of 1260 to 4060 in steps of 50, the variable-modulus counter must have a range of 126 to 406 in steps of 5 (since there is a fixed division by ten), i.e., 126, 131, 136, 141…401, 406. Therefore, the first, or tenths, divider is arranged to divide by one or six, as controlled by its associated switch. The units divider can divide by any number from one to nine, and the tens divider can be preset to divide by one, two, three or four.

Those of you who have looked at the front-panel knobs with a sharp eye will note that despite the foregoing explanation, the tenths switch is calibrated 0.5 and 0.0, while the tens switch is calibrated 2, 1 and ——. This was done so that the switches would indicate the receiver tuning frequency, not the hfo injection frequency. Obtaining this convenience required a considerable increase in switching complexity.

Correctly marking the tenths switch involved only applying the proper designations to the switch. When the tenths divider divides by one, the receiver tuning range starts at an integral megahertz; therefore that switch position is marked 0.0. When the divider divides by six, the receiver tuning range starts at a half-megahertz; thus that position is designated 0.5.

Explaining the tens switch is a bit more complicated. Remembering that the synthesizer output is always 11.1 MHz above the start of the receiver tuning range, we can see that the units divider will always divide by a factor of one greater than the units digit in the receiver tuning range. For example, if the receiver tuning is to start at 15.5 MHz, the units divider must divide by 6. This causes no problem except when the receiver tuning range starts at 9.0, 9.5, 19.0, 19.5, 29.0, or 29.5 MHz. The unit count of 9 means that the units divider must divide by 10, which is reserved for the tens divider. Therefore, the 9 position of the units divider switch actually causes the divider to divide by one and sets the tens divider to the next divide ratio.

The net result is that only three, not four, switch positions are needed for the tens divider. Even though the divider must divide by four (to obtain a division of 401 and 406 for 29.0 and 29.5 MHz respectively), setting the units switch to 9 sets the tens divider to the next count and eliminates the fourth switch position. The “——” position corresponds to a zero
CR1
varactor (Motorola MV1401)

L1
8 turns no. 28E, close wound on 5/32” diameter slug-tuned form

L2
5 turns no. 28E, close wound on 5/32” diameter slug-tuned form

L3
8 turns no. 28E, close wound on 7/32” diameter slug-tuned form

Q1
2N3391 or Motorola MPS6571

Q2
Fairchild SE3005, 2N918, 2N3563, or 2N5179

Q3
2N709, 2N918, or 2N3563

Q4, Q5
2N3478

U1
quad 2-input NOR gate (Signetics LU380A or SE380A)

U2
decade counter (Signetics N7490A, Texas Instruments SN7490N or Motorola MC7490P)

U3
phase-frequency detector (Motorola MC4044P or MC4344P)

fig. 3. Schematic of the reference oscillator, phase comparator, VCO and trigger generator circuits. Capacitors designated SM are silver micas and those with polarity indicated are electrolytic; all others are ceramic.
when the switches are set to a frequency of 9.5 MHz or lower.

circuit

Fig. 3 shows the frequency-generating circuits, the phase comparator and the trigger generator. The 100-kHz crystal oscillator uses two gate sections of U1, a quad two-input NOR gate; the remaining two sections are used as buffers. A logic diagram of the circuit is shown in fig. 4. Each of the two gates used in the oscillator is forced into linear operation by connecting a 9.1k resistor between the output and input; a 100-kHz signal is developed by connecting the crystal in series with the feedback loop from the output of the second gate to the input of the first. A 7-35 pF ceramic trimmer in series with the crystal permits adjustment of the crystal frequency. The remaining two gates buffer the output to the succeeding divide-by-ten stage and to the calibrate input of the R-4. The calibrate signal is disabled by grounding the output of the gate by means of the calibrate switch.

Returning to fig. 3, the 100-kHz signal is divided by ten in U2, and the resultant 10-kHz signal applied to pin 1 of phase comparator U3. This device consists of two separate functional parts, a phase detector and an amplifier, which must be connected externally. The outputs from the phase detector section appear at pins 5 and 10 and are applied to the loop filter consisting of two 2.7k resistors, a 5.6k resistor and a 0.47-pF capacitor. Transistor Q1 isolates the RC filter from the amplifier section of U3, the input of which is pin 9. The amplifier output from pin 8 is applied as the control voltage to varactor CR1. It was found necessary to add the 6.8 and 0.001 µF capacitors to reduce the amplitude of the 10-kHz reference signal which reached CR1. The supply voltage for the amplifier section of U3 is regulated at 7.5 volts by means of a zener diode and 330-ohm dropping resistor from the 12-volt supply.

The voltage-controlled oscillator consists of Q2, a high-frequency npn transistor, in a Colpitts circuit with varactor CR1 across the tank circuit. CR1 is a Motorola MV1401 and has a ratio of maximum-to-minimum capacitance of approximately ten, as compared to usual ratios of two to four for conventional varactors. (It also happens to be the most expensive single component in the entire synthesizer.) Despite the large capacitance ratio, the oscillator cannot cover the entire range of 12.6 to 40.6 MHz without switching. This is accomplished by diode switching, using a switch section ganged with the tens divider switch.

In the "—" position of the tens switch, the two 1N4009 diodes do not conduct, so coils L1 and L2 are each effectively in series with a 10-µH choke to ground. The high value of this inductance has only stray effect on the circuit; thus the oscillator frequency is determined by coil L3 and the tank-circuit capacitance. When the tens switch is set to position 1 or 2, one of the diodes is biased into forward conduction and brings the low end of the associated coil close to rf ground, shunting L3 and thereby lowering the tank-circuit inductance. The 100-ohm resistor in series with the switch arm limits diode current to a safe value.

The oscillator output is taken from the emitter of Q2 and coupled to the base of emitter follower Q3, which isolates the vco from the loading effects of the receiver and connecting cable.

Oscillator output is also taken from
fig. 5. Schematic of the frequency divider. All diodes are general-purpose germanium, all resistors are 910 or 1000 ohms, and all capacitors are ceramic. Switches are non-shorting rotary types.

the base of Q2 and coupled to the base of Q4, which with Q5, forms a Schmitt trigger. This circuit, when driven by the approximate sinusoidal output of the vco, generates a rectangular wave of several volts peak-to-peak amplitude with fast rise and decay times, which are required to toggle the TTL logic of the frequency divider. Since the Schmitt trigger is not common in amateur equipment, a brief explanation of its operation is in order.

In the absence of an input signal to the base of Q4, that transistor is normally cut off by the combination of base bias at the
junction of R1 and R2 plus the reverse bias at its emitter resulting from the collector current of Q5 flowing through R6. The resultant high positive voltage at the collector of Q4 forward biases Q5 to saturation. When an incoming signal of sufficient amplitude is applied to the base of Q4, the positive excursion drives the voltage at the collector of Q5 drops. Thus a rectangular output pulse is generated from a sinusoidal input, having rise and decay times sufficiently short to trigger the TTL decade counter which follows the Schmitt trigger.

As shown in fig. 5, the output of Q5 is applied to pin 6 of U4, which is the clock base into conduction and causes collector current to flow. The drop in collector voltage is coupled via R4 and C1 to the base of Q5, reducing the base current and the collector current of Q5. The decrease in current lowers the voltage drop across R6, which results in increased collector current in Q4. This regenerative action causes Q4 to saturate quickly and cuts off Q5, producing an extremely fast rise time as the collector voltage of Q5 reaches the supply voltage level.

When the input signal becomes negative, the circuit operation reverses, cutting off Q4 and driving Q5 back into saturation. The regenerative action likewise results in a short decay time as the input for the quinary divider section of that decade divider. The output from pin 12 is applied to pin 5 of U5; U5, U6 and U7 are programmable decade counters set up as a ripple-through or variable-modulus counter. The count or divide ratio is determined by setting pins 1, 9, 10 and 13 of each IC high or low. This is accomplished by the rotary switches described previously; steering diodes are used to reduce the number of switch sections which would otherwise be required. The two extra sections of the units switch are needed to advance the count of the tens divider when the units switch is in position 9.

The output of the variable-modulus

fig. 6. Schematic of the power supply. Power transistor Q6 is a 2N3054 or equal. U8 is a Signetics NE550A. See text for details of the power transformer and the meaning of point X.
counter is applied to pin 8 of U4, the
clock input of the binary section of that
device. This flip-flop generates a 10-kHz
square wave from the 20-kHz input from
the counters; the square wave is the signal
input which is applied to pin 3 of U3 for
phase comparison with the 10-kHz refer-
ence signal.

power supply

The power requirements of the fre-
quency synthesizer are +12 volts at 65
mA and +5 volts (nominal) at 360 mA.
The 12-volt supply must be well filtered
to prevent frequency modulation of the
vco. The schematic appears in fig. 6.

A full-wave bridge rectifier is supplied
from a 17-volt, 1-ampere transformer.
The positive output from the rectifier is
fed to the input (pin 12) of voltage
regulator U8. Since the current drain
exceeds the current limitation of the
regulator, power transistor Q6 is incor-
porated as a series-pass device. The out-
put of the regulator is set to 12 volts by
means of the 15k and 2.4k resistors
connected to pins 3 and 4 of U8. The
5.1-volt supply for the logic elements is
developed across a 1N4733A zener
diode. Current limiting and overload or short-
circuit protection is provided by moni-
toring the voltage drop across the
1.2-ohm resistor in series with the emitter
of Q6.

As previously noted, the 100-kHz cali-
brator crystal from the R-4 was removed
from the receiver and used as the refer-
ence oscillator, with provisions incor-
porated to reintroduce the 100-kHz signal
back into the receiver. In order to enable
the reference oscillator in the synthesizer
for this calibrate signal when the synthe-
sizer is not in use, an auxiliary power
supply is included which keeps the refer-
ence oscillator energized whenever the
receiver is on, whether or not the synthe-
sizer is being used.

A 4-pole, double-throw slide switch is
used as a power switch. In the on
position, 117 volts ac is applied to the
transformer, and all circuits in the synthe-
sizer are energized. When the power
switch is in the off position, a separate
half-wave rectifier and filter are con-

ected through a cable to the 6.3-volt pin
of the accessory power receptacle on the
rear of the R-4. When the receiver is on,
this voltage is rectified and filtered, and
applied to the same zener diode used in
the main power supply of the synthesizer.
However, only the reference oscillator
circuit is powered from the auxiliary
power supply.

If a separate crystal is used in the
synthesizer and the calibrator crystal is
left in the receiver, the auxiliary power
supply and its switching circuit can be
eliminated. This is accomplished by delet-
ing all of the circuit below the dashed line
in fig. 6 and connecting the 1N4773A
zener diode between point X and ground.
The 5.1-volt supply is obtained from
point X. Pin 8 of U1 (see fig. 3) should be
connected directly to the 5.1-volt supply.

construction

Construction of the frequency synthe-
sizer is shown in the various photographs.
An 8 x 10 x 2½ inch aluminum chassis is
inverted and used as a base. Four rubber
bumper feet mounted on the bottom
prevent scratches from the screws and
nuts which fasten the parts to the chassis.

The three rotary switches, the power
and calibrate slide switches and the NE-2
pilot lamp are mounted on the front
apron. On the rear apron are the coax
output connector and a three-pin mini-
ture connector used for the 6.3-volt and
100-kHz calibrate signal connections
between the synthesizer and the receiver.
The power transformer and the filter
capacitor for the auxiliary power supply
are mounted directly on the chassis. All
other parts are mounted on a piece of
perforated Vector board, copper-clad on
one side. The board measures 4½ x 6½
inches overall and the hole spacing is 0.1
inch. This spacing is important, since it
matches the pin spacing on DIP inte-
grated circuits. The use of copper-clad
board provides a ground plane for the rf
and high-speed logic circuits.

The ungrounded leads of the various
components are soldered to insulated pads cut into the board by means of a Vector P-138C pad-cutting tool, and then connected by conventional wiring. The usual precautions of short, direct leads should be observed; although the highest radio frequency involved is only 40.6 MHz, vhf techniques should be followed because of the high-speed logic pulses. The integrated circuits may be soldered directly to the board, or sockets or Molex pins may be used. My personal preference is the latter, since they are inexpensive and eliminate the very difficult job of unsoldering an IC should it be necessary.

The power supply series-pass transistor is mounted in a Thermalloy 6166-B heat sink, which is then mounted on the perf board. Although the heat sink is quite small, it is adequate for the power dissipated in the transistor and holds the case temperature to about 60° C, well within the temperature-power dissipation curve limits.

All connecting leads to and from the board should be soldered in place on the board before connecting the other ends. Leave plenty of wire on each lead to make the connections to the parts which are not on the board so that if any troubleshooting must be done it will not be necessary to unsolder the wires. Wiring for the output and calibrate signals is made with RG-174/U coax and should be kept reasonably short. All other wiring carries dc only, making lead length un-critical. The board is mounted on four metal standoff posts, which ground the copper side to the chassis.

The power transformer should supply 16 to 17 volts ac at approximately 0.5 ampere. Any higher voltage only results in greater heat dissipation in the series-pass transistor. The simplest way to obtain a transformer is to modify one of the inexpensive 24-volt, 1-ampere transformers which are readily available. First connect the primary of the unmodified transformer and measure the secondary voltage. Then disconnect the transformer and carefully cut through the outer paper insulation to expose the outer winding layer of the secondary. Remove ten turns from this winding and remeasure the secondary voltage. The difference between the new lower voltage and the original secondary voltage, divided by ten, is the volts per turn of the secondary. From this figure calculate the number of turns required for a voltage equal to the difference between the original secondary voltage and the desired 17 volts, and remove this number of turns from the secondary. After checking the new secondary voltage, wrap the transformer windings with insulating tape.

There is a short-cut to this procedure if you can see and count the number of layers comprising the secondary. This is generally possible by closely examining and probing the open ends of the windings. Assume that you have determined that the secondary has eight layers, which means that each layer develops approximately 3 volts (24 divided by 8). Removing two and a half layers should result in a secondary voltage of 16.5 volts, which is just about right.

A cover for the chassis was made from aluminum cane-metal stock, which provides adequate ventilation for dissipating the heat generated. The numbered positions on the rotary switch knobs were made by using white number transfers on the black skirts of the knobs. Several heavy coats of Krylon fixative were sprayed on to keep the numbers from peeling off.

alignment and test

After all wiring and connections have been checked and rechecked, the synthesizer is ready for the few adjustments necessary to set the vco on frequency. The only test equipment absolutely necessary is a voltmeter, although a grid-dip oscillator and oscilloscope can be helpful.

Apply power to the synthesizer and check the supply voltages to make sure that they are within five percent of the nominal values. Then make sure the reference oscillator is working by bringing a lead from the receiver antenna jack close to the crystal. Harmonics of the 100-kHz oscillator should be heard in the
receiver. The oscillator may also be checked with a scope; 100-kHz square waves should be observed at pin 3 of U1, and 10-kHz square waves should be present at pin 12 of U2. If the oscillator is not working, adjust the trimmer capacitor; it is not necessary for the crystal to be oscillating at exactly 100 kHz at this time.

Connect a voltmeter between pin 8 of U3 and ground. Set the rotary switches for a frequency of 9.5 MHz and move the tuning slug of L3 into the coil until a maximum positive voltage is obtained. This should be 7.5 volts, the same as the zener-regulated voltage applied to U3 and Q1. Slowly tune the slug out of L3 until the meter reading drops to 7.1 volts, or about 0.4 volt less than maximum.

Rotate the units switch toward zero, noting that the voltmeter reading drops with each switch position until position 1 outside the receiver preselector tuning range. If you have a grid dipper available, couple it to L3. It should indicate 12.6 MHz in position 1 of the units switch, and 20.6 MHz in position 9.

Next, set the rotary switches for a frequency of 19.5 MHz, and adjust the slug in L1 for a voltmeter reading of approximately 6.5 volts. Do not touch the slug in L3. Again turn the units switch toward zero and note that the voltage drops with each switch position, including position 0 this time. Turn the tenths switch to its 0.0 position and make sure that the voltage also decreases at this step. A grid dipper coupled to L1 should...
indicate 21.1 and 30.6 MHz for the minimum and maximum units and tenths switch settings.

Finally, set the rotary switches for a frequency of 29.5 MHz and repeat the preceding adjustment for L2. The frequency range of the vco with the tens switch in position 2 is 31.1 to 40.6 MHz.

As a further check, a scope can be connected to pin 3 of U3. If the scope has a triggered sweep, the signal at pin 12 of U2 should be connected to the external trigger input of the scope. A 10-kHz square wave should be displayed on the scope for each and every position of the frequency selection switches on the synthesizer. This completes the entire alignment procedure, except for setting the crystal to exactly 100-kHz after the synthesizer has been connected to the receiver.

operation

The vco output from the synthesizer is fed into one of the auxiliary crystal sockets on the rear of the receiver, so that no modification of the receiver is required. The auxiliary crystal sockets are arranged in two rows of five each, one above the other. The socket holes in these two rows which are adjacent to each other (the bottom holes in the top row of sockets and the top holes in the bottom row of sockets) will be referred to as the inside holes.

If the synthesizer is to be used with a Drake R-4, build a cable as shown in fig. 7A, and insert the crystal-base end into one of the auxiliary crystal sockets so that the pin connected to the coax shield is in the inside hole of the crystal socket. The 150-ohm resistor keeps the receiver hfo from oscillating on its own.

If the synthesizer is to be used with the Drake R-4A or R-4B, use the cable shown in fig. 7B. The pin on the center conductor goes to the inside hole of one of the auxiliary crystal sockets, while the coax shield is grounded to the receiver chassis. The ground stud on the receiver is a convenient terminal for the shield.

Fig. 7C shows the cable to be used when the auxiliary power supply and 100-kHz calibrate circuit have been included in the synthesizer. The lead lengths are not critical, but there is little point in having the cable appreciably longer than the output cable.

After the receiver and synthesizer have been interconnected, turn on both and set the synthesizer switches to one of the WWV frequencies suitable for good reception. Set the receiver xtals switch to the position which corresponds to the crystal position now occupied by the synthesizer output cable. Refer to the preselector tuning chart in the receiver manual and set the receiver band switch and preselector tuning to the settings specified for the frequency selected. WWV should be heard when the receiver vfo is tuned to zero. Then allow the synthesizer and receiver to warm up for about a half-hour.

If you have incorporated the calibrate function in the synthesizer, turn on the calibrate switch and carefully adjust the 100-kHz crystal trimmer capacitor in the synthesizer to zero-beat the calibrate signal with WWV. It may be necessary to retune the receiver slightly when doing this because changing the frequency of the crystal changes the synthesizer output frequency which is now the receiver hfo frequency.
On the other hand, if you have retained the calibration function in the receiver, it will be necessary to bring a lead from the receiver antenna (which is available from the accessory socket on the rear apron of the receiver chassis) close to the 100-kHz reference oscillator in the synthesizer. Then adjust the crystal trimmer as described in the preceding paragraph.

That completes the installation and you now have a general-coverage receiver. Simply set the synthesizer switches to the frequency you want, set the receiver band switch and preselector control to the appropriate positions, and tune. As a final touch, add a new preselector scale so that you don't have to consult or memorize the preselector chart in the manual. Fig. 8 is a full-scale reproduction of the new preselector scale, and may be cut out or photocopied if you prefer not to mutilate the magazine.

Use a standard \(\frac{1}{8} \) inch paper punch to cut a hole for the preselector shaft. Remove the preselector knob and attach the scale to the front panel of the receiver, using either a spot of rubber cement or a small piece of double-sided sticky-back tape in each corner. The scale shows the approximate setting of the preselector control; the large number at the end of each scale segment indicates the band switch position to be used.

When used with the R-4, the synthesizer may be left on whether it or one of the receiver crystals is generating the hf0 frequency. When the synthesizer is used with the R-4A or R-4B, it must be turned off if the receiver xtals switch is not in the synthesizer position. The synthesizer and a crystal are both connected to the hf0 in this case, so that possible spurious frequencies may result if the synthesizer is left on.

Conclusion

This frequency synthesizer has been in operation for several months and fulfills the requirement of converting my R-4 receiver to general coverage. It is, however, a first attempt at synthesis techniques and can undoubtedly be improved. Despite considerable experimenting with the loop filter, there remains some frequency modulation of the vco at the reference oscillator frequency. This manifests itself as a weak spurious signal 10-kHz either side of true frequency, but is generally not noticeable since it appears to be 50 to 60 dB down. It is entirely possible that this modulation is enhanced by stray coupling, since all circuits are located on one board without any shielding whatsoever. Enclosing the vco in a shielded compartment might further attenuate the 10-kHz signal reaching it.

Digital circuitry is becoming more and more a fact of life for the amateur experimenter. A project such as this, involving digital and rf circuits, provides a welcome change from the usual, and yet is not completely alien to those without digital experience. It is offered, not so much as a “how to” project, but as a challenge to improve on it or adapt some of the ideas to other purposes.

References

solid-state
2304-MHz preamplifier

High-performance preamplifier for 2304 MHz provides 8 dB gain and 5.7 dB noise figure.

Receivers and converters for the uhf range have traditionally used mixer-type front ends because of the unavailability of devices which could provide useful amplification and sufficiently low noise figure. The noise figures provided by uhf mixers are limited not only by the devices available, but to a very large extent by the circuit in which they are used. For simplicity, amateurs usually use single-ended diode circuits. Until recently, if uhf signal amplification was essential, parametric amplifiers were about the only way to obtain a...
substantial improvement in performance. However, several years ago transistors became available which had useful gain and reasonable noise figures on 1296 MHz. The cost of these early uhf transistors was high, but they eventually amateurs, and it had to offer improved performance over the straight diode mixer front end. With this in mind, I first tried to modify the pi-network circuit used in the 1296-MHz preamplifier. However, all attempts to develop a 2304-MHz

found their way into many high-performance 1296-MHz converters. Now the price of these devices is substantially lower, and the day of the parametric amplifier on 1296 and 2304 MHz, with its attendant isolators and circulators, is gone.

The success of the Nippon Electronics 766A as an 1296-MHz rf amplifier, and its published performance specifications for 2000 MHz made it an interesting candidate for 2304 MHz. The proposed 2304-MHz preamplifier had to be easy to build, so it could be duplicated by other preamplifier using this concept were unsuccessful, primarily because of problems with self oscillation.

About this time, my attention was called to a capacitor being marketed by the Johanson Corporation which was designed specifically for uhf impedance-matching purposes. This capacitor, the Johanson model 4991, is a miniature dual-variable capacitor with two 0.8- to 10-pF sections.

After conversations with Mr. Harvey Bruning of the Johanson Corporation

fig. 1. Layout of the 2304-MHz preamp. This drawing is twice actual size. Feed-through capacitors C5 and C6 consist of Teflon-covered wire, fit snugly into hole in 1/8" chassis partition.
regarding a T-network arrangement using the new dual capacitors, he suggested a new device marketed by their company called the Gigatrim. These are very small concentric air-type capacitors which lend themselves to the circuit I wanted to use for the 2304-MHz preamplifier.

Mr. Bruning sent along some Gigatrims for experimental use, and with a layout suggested by him, the preamplifier seemed to work quite well. With the Gigatrims I was able to keep the overall size small enough so lead inductance did not become a limiting factor. Tuning the preamplifier is quite easy, and when built as described in this article, it shows absolutely no signs of instability.

Construction of the preamplifier should be obvious from the drawings and photographs, and should present no difficulties to the experienced uhf worker. Although Johanson states that the solder used in their products will withstand relatively high temperatures, I used TIX high-conductivity, low-temperature solder which melts at 250° and flows easily.* When using this type of solder, which contains indium, you must be careful because the liquid solder flows readily, and can get into the threads of the capacitor where it doesn’t belong. According to Mr. Bruning, regular 60/40 solder should work well.

When you are building the 2304-MHz preamplifier, it is important that you follow directions closely, particularly in regard to the dimensions of the holes in the center partition which make up the feedthrough capacitors (C5 and C6). Close fit is essential for these capacitors to work as required.

Almost any miniature potentiometer may be used for R1. The Cubic potentiometer shown in the photographs is very compact and is easily mounted with a drop of epoxy. For the fixed resistors, use the smallest size that is available, 1/8 watt if possible.

tuning

The preamplifier is initially tuned up by injecting a 2304-MHz signal through a suitable attenuator and filter, and tuning all capacitors and adjusting the bias control (R1) for maximum gain. This technique is adequate because the noise figure

* TIX low-temperature solder is available from the Brookstone Company, 5 Brookstone Building, Peterborough, New Hampshire 03458.
of the converter with which it will be used is probably higher than the gain of this single-stage preamplifier.

A simple, low-level signal source suitable for tuning up the 2304-MHz preamplifier is shown in fig. 5. This unit is quite similar to the design used with the 1296-MHz preamplifier, except that a 96-MHz overtone crystal is used in the oscillator. Also, it's desirable to feed the output of the multiplier through another resonant trough which serves as a signal filter. This is shown in fig. 5.

Final tuning should be accomplished with the preamplifier in the system, with the antenna connected. The low-level 2304-MHz signal is then fed in through the antenna.

I obtained a noise figure of 5.7 dB with this circuit, but there is little doubt that a selected transistor can improve this by at least 1 dB. Gain of 7 to 8 dB is about all that can be expected from this transistor at 2304 MHz.

However, Nippon Electronics supplied a type V578A. This device offers a tremendous improvement at 2304 MHz in the same preamplifier. Noise figure measured at 3.8 dB with the V578A, as opposed to 5.7 dB with the V766A — all with no changes except tweaking. At 1296 MHz, the noise figure was 2.3 dB for the V578A vs 2.8 dB for the V766A.

Soon after the preamplifier was built, I wrote to Fairchild and asked if they would be interested in supplying an MT4578 transistor which, from the published specifications, looked like it would give improved performance. After waiting some time, I have not heard anything from Fairchild, so I haven't made any experiments with the MT4578.

I wish to express my appreciation to the Johanson Corporation and Nippon Electronics for their cooperation, and particularly to Mr. Harvey Bruning of Johanson whose suggestions were quite helpful.

references

This photo shows the thickness of the partition which is important because it determines the capacitance of the feed-through capacitors, C5 and C6.
inexpensive audio filters

Ed Noll's excellent summary of direct conversion receivers in the November, 1971 *Ham Radio*, correctly points out the common failing of inadequate audio selectivity.* In the course of developing some simple, inexpensive equipment for novices, I have found it possible to obtain really excellent selectivity without resorting to rigorous filter design and without careful selection and matching of parts. A sufficient number of these filters, and variations of them, have been made to insure reproducibility.

basic circuit

Fig. 1 shows the basic circuit — just three constant-K pi sections in cascade. For those who are not familiar with filters, this filter is a low pass filter — it

Fig. 1. The basic circuit of a three section, constant-K pi-section low-pass filter. Some typical practical values for filters like this are given in Table 1.
passes all frequencies from zero to some desired cutoff frequency. The impedance into and out of the filter is fixed by the chosen values of inductances and capacitances, and in this case the impedance in and out is the same value. Table 1 was made up to allow choice of easily available capacitors. In all cases the inductors are surplus 88-mH toroidal units. Fig. 2 shows how the leads are connected for use. As supplied, all four leads are usually brought out individually.

The curves in figs. 5 and 6 are indicative of the results to be expected with off-the-shelf components. Some filters were built with used tubular paper capacitors pulled from scrap TV sets. Others used new components. If you purchase new components, the Cornell-Dubilier 100 V Mylar capacitors in their inexpensive WMF series are compact and reliable. In no case should you use electrolytics.

Fig. 3 shows a variation that has been successfully duplicated by several fellows.

table 1. Component values for low pass filters with different cutoff frequencies. Component values have been rounded off, but are accurate enough to produce excellent results in the circuit of fig. 1.

<table>
<thead>
<tr>
<th>Cutoff freq. Hz</th>
<th>R ohms</th>
<th>C μF</th>
<th>C/2 μF</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>150</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>800</td>
<td>200</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1000</td>
<td>300</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2300</td>
<td>650</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>2750</td>
<td>750</td>
<td>0.15</td>
<td>0.075</td>
</tr>
</tbody>
</table>

This filter allows a higher cutoff frequency for phone reception and a low frequency for CW work. A double-pole single-throw slide switch is adequate for this application. The interstage transformer is a low cost import from Radio Shack. The detectors used either a Motorola MC1550 or RCA CA3028 integrated circuit. The 500-ohm volume control terminated the output of the filter and feeds a solid-state amplifier described in *ham radio*, March 1970.²

construction

Fig. 4 shows a compact suggested layout. For those who have no etching facilities, use Instant etch. No chemicals, no mess. Draw the layout on the copper, and score the copper with a sharp hobby knife. Carefully lift a corner of the
undesired copper with a knife edge, and then peel it off with a pair of long-nose pliers. If you wind the copper up as if opening a sardine can, the work goes easier. You can also use thin, unplated board material and substitute pieces of number 22 tinned solid wire for the various busses. When mounting the toroids, it is best to use flexible washers. These can be cut from inner tube rubber, Teflon or soft vinyl plastic. The mounting screw should be covered to prevent

fig. 5. Performance curve of the low-pass filter shown in 5C. Curve A is of a filter similar to 5C, but with all 0.1-mF capacitors increased to 1.0 mF, and all 0.2-mF capacitors increased to 2.0 mF.

fig. 6. Example of a filter using off-the-shelf components. Also shown is the filter performance degradation due to improper grounding.
damage to the windings. A piece of insulating tubing or a wrap of plastic tape is sufficient. The 2-mF capacitors should connect to the switch with not much more than their lead lengths. The ground return from the switch should not go to the nearest chassis ground, but should return to the board, as illustrated. The interstage transformer and 500-ohm pot can be located at some distance from the board. In such a situation, it is best to use a shielded single-conductor cable with an outer jacket to prevent the shield from touching ground at any point except those selected. Miniature coax such as RG-174/U is excellent for this purpose.

ground loops

The foregoing precautions will help to prevent ground loops which can form paths around the filter. As a matter of fact, if your filter fails to do its job, it might be well to investigate this possibility before condemning the filter. Fig. 6 is an excellent example of what can happen. I plotted curve C using a good lab setup. I installed the filter in an experimental receiver and it performed horribly. Curve D showed that so much signal was being fed around the filter that it was very ineffective. The culprit in this case was the low-side lead from the power supply. The point where it connected into the receiver was such that it formed a beautiful ground loop.

Fig. 7 illustrates a common trouble. The resistance marked R in that figure represents power supply impedance. For these receivers an adequate power supply can be the capacity multiplier job described by W6GXN in the February, 1970 ham radio. A poorly regulated supply with an inadequate output filter capacitor may have an impedance measured in ohms. If connected to the receiver with a few long number 22 wires, the lead resistance will contribute significantly to power supply impedance. From fig. 7 you can see that this power supply impedance is a common series element for both the detector and an audio amplifier. A small portion of the audio signal from the detector is fed around the filter by this route, thus degrading filter performance.

How much can be tolerated? If a weak signal reaching the first audio stage is 0.1 mV (not an impossible situation) filter degradation will begin to be felt with an unfiltered signal 80 dB below this level – or 0.01 µV. In all probability, you won't notice any appreciable degradation at this level, but it is starting. A one microvolt sneak signal will produce a fair amount of degradation.

Fig. 8 shows another common mis-

fig. 7. Example of audio filter performance degradation as a signal bypasses the filter by flowing through the common impedance of the power supply.

fig. 8. Filter performance is degraded by unexpected chassis resistances providing a signal path around a filter.

fig. 9. High-pass filter section that can be built from 88-mH toroids.
FREQUENCY (Hz)

fig. 10. Extrapolated curve to approximate performance to be expected from a high-pass section at each end of a three-section low-pass filter. A typical filter of this type is shown in 10B.

Don’t throw away that aluminum chassis, though! It will still do its job well if you follow a few simple rules. Try to make a straight-line layout of the stages. Avoid a U-shaped layout if possible, because that often brings high- and low-level ground points close together and leads to instability. In this case it can ruin filter performance. In a tiny 80- to 10-meter direct conversion receiver I built, it was necessary to locate the filter at one remote point and the volume control at another in order to cram the thing together. In a case like this, at audio frequency, it is possible to carry the ground through by using RG-174/U miniature coax. Both the hot and the ground leads were carried to the detector. No ground was allowed below decks on the filter board. The output went by coax to the volume control. Again, the ground side of the control was not physically grounded there. The coax led from the control back upstairs to the audio board. That is where the braid of the coax was allowed to go to ground. The result was a receiver with remarkable selectivity on CW. No filter degradation has been noticed. The last suggestion on grounding is to group the ground points associated with each stage at one point or close together. Don’t include grounds for another stage at this point.
same point, if possible.

high-pass filter

The last item is fig. 9 which shows a high-pass filter section that can be built from the same 88-mH toroids. This section passes all frequencies higher than some selected cutoff frequency and can be used with the foregoing filters to suppress frequencies below about 250 Hz. Fig. 10 is not a measured curve, but is extrapolated from other measured curves to give a rough idea of what might be expected from a high-pass section at each end of a three section low-pass filter with the capacitor values indicated. A fairly substantial degree of mismatch has been deliberately introduced in the experimental filters here without much loss in usefulness.

If you want to try out a filter on an existing receiver having a headphone jack fed from a 4-ohm speaker line you could get a fallacious picture of expected performance. In such a case, since you would have audio power to spare, I would suggest connecting an appropriate terminating resistor in series with the hot side of the filter input to the hot side of the receiver phone jack. Similarly, if you are using high impedance phones, I would connect a resistor across the output of the filter to properly terminate it there, and then connect the headphones across that resistor so the parallel combination of the phones and resistor terminate the filter in a value roughly similar to that to be used in the final application. This sort of check will give a fair approximation of what to expect if it is built into something, and can serve as a method of determining if a bad feedthrough situation occurs in the finished project.

references
n-way power dividers

and

3-dB hybrids

This article describes n-way power dividers and 3-dB hybrids, and shows you how to design them for hf and vhf.

Although amateurs who operate on the microwave frequencies are familiar with 3-dB hybrids and n-way power dividers, these devices are strangers to amateurs who operate on the lower bands. However, 3-dB hybrids have recently become available for use on vhf and uhf.

A 3-dB hybrid splits the input power equally between two outputs and provides more than 20 dB isolation between the output ports. An n-way divider splits the power n-ways (up to about 10 ways practically, I imagine) with similar isolation between output ports. The outputs of the n-way are in phase, while the outputs of the 3-dB hybrid are 90° out of phase.

Such devices are very useful in paralleling transistor rf amplifiers, for example, or in ssb systems where 90° phase shifts are necessary between two rf signals. By using lumped constant equivalents to the microwave transmission-line circuits, it is possible to design these devices for any amateur hf or vhf band. Circuit bandwidths are typically 10%. One circuit will, therefore, be useful over the full amateur band for which it was designed.

n-way divider

This is the most straightforward of the two devices (fig. 1). Power coming into the input port is divided equally between...
the n output ports. Power coming in at an output port is dissipated in the resistors connected to the common node rather than being reflected into the other outputs. This is the isolation mechanism that makes the circuit so attractive.

The design is accomplished with lumped-constant quarterwave transmission lines (fig. 2). L and C values are determined by the characteristic impedance of the line \(Z_0 \) which, in turn, is determined by the number of output ports. That is,

\[
Z_0 = \sqrt{NR_0}
\]

where \(R_0 \) = characteristic impedance of input and output lines and \(N \) = number of output ports.

![fig. 1. N-way power divider and combiner.](image)

Fig. 3 shows a three-way divider for the 40-meter band (50-ohm transmission line). In this case,

\[
Z_0 = \sqrt{3 \times 50} = 86.5 \text{ ohms}
\]

Therefore, in fig. 2, \(L = j86.5 \) and \(C = -j86.5 \) ohms. At 7.2 MHz, \(L = 1.6 \mu\text{H} \) and \(C = 250 \text{ pF} \). Use a reactance slide rule to determine these values (such as the ARRL R/L/C Calculator) or use the two reactance formulas:

\[
L = \frac{2\pi f X_L}{\omega}
\]

\[
C = \frac{1}{\frac{2\pi f X_C}{\omega}}
\]

The closer you get to the calculated values, the more accurate the power division and the better the isolation. To obtain 30-dB isolation between output ports, you will have to be within 1% of the calculated values. Five percent component tolerances are probably the highest that can be tolerated without completely ruining output port isolation. Matching components between the paths is more important than obtaining precise values, so if you are unsure of your component tolerances, choose identical, if slightly inaccurate, values and sacrifice input impedance matching for improved isolation.

Turned around, an identical divider would be used to combine amplifier outputs. All the same isolation advantages apply. Total insertion loss through each divider (or combiner) is about 0.3 dB. Advantages of the n-way divider include equal power division from a straightforward circuit and good isolation between parallel amplifiers. Isolation at the signal frequency means fewer sneak paths to cause oscillation. Also, you can lose one paralleled amplifier without losing all output power.

Hybrid

The 3-dB hybrid is more complex than the n-way power divider, but it is also more interesting and versatile. It may be used as a divide-by-two power divider in lieu of an n-way system and will provide similar isolation between the output ports. More interestingly, however, it can be used as a wideband phase shifter in systems requiring quadrature signals over a wide fre-
frequency range. In a hybrid, the two output signals maintain a 90° phase relationship over a range of frequencies much wider than the useful 10% bandwidth which is determined from power match-3

ing considerations. Further properties will become apparent as we discuss the hybrid circuit.

Fig. 4 defines the basic hybrid properties. Power applied to input port 1 divides equally between ports 3 and 4. No power appears at port 2 (which must be terminated by a resistor equal to the characteristic line impedance). The signal at port 3 is delayed by 135°, the signal at port 4, by 45°, resulting in a 90° phase difference between the outputs.

This four-port network is completely symmetrical. Therefore, power applied to port 2 divides between ports 3 and 4 equally, with 135° delay to port 4 and 45° delay to port 3. Power applied to

port 3 divides between ports 1 and 2 with no output at port 4, and so on.

If equal power is applied to ports 1 and 2, then equal power appears at ports 3 and 4 with 90° delay through the circuit. However, if the two equal input signals are 90° out of phase, then all the input power appears at either port 3 or 4 depending on whether the input to port 2 leads or lags the input to port 1.

For power division and combining, a pair of hybrids is necessary (one at the input and one at the output) to maintain the proper phase relationships (fig. 5). Approximately the same signal frequency isolation between power amplifiers is obtained from the hybrid as from an n-way divider. All the power reflected back from amplifier 1 (due, say, to a mismatch) appears at ports 1 and 2 and

fig. 3. Three-way divider for operation at 72 MHz with 50-ohm transmission lines.

fig. 4. Basic circuit of the 3-dB hybrid.

fig. 5. Using 3-dB hybrids as power dividers and combiners.
not at port 4 where it could feed amplifier 2. Similarly, on the output side none of amplifier 1's output appears at port 2 of the output hybrid, all of it drives the load. The insertion loss through each hybrid is 0.3 dB or about the same as the n-way divider.

hybrid design

Hybrid design proceeds much the same as for the n-way divider. Fig. 6 shows the circuit and gives component values in terms of the characteristic impedance of the transmission lines with which it is used.

As a design example, a 3 dB hybrid for 50-ohm transmission lines will be developed for a center frequency of 14.25 MHz. I used this hybrid in a direct-conversion receiver so a good amount of test data is already available.

From fig. 6 you can see that all reactances will be either Z_0 or $2Z_0$ (50 and 100 ohms in this case). These values are included in the circuit drawing in fig. 7. The component tolerances seem to be somewhat less critical here than in the n-way divider but you must still strive to obtain values as close as possible to those calculated. Component matching plays an important part in determining the ultimate isolation possible, so try to match components even if precise values are not available.

The hybrid for the ssb receiver was built with 10% inductors and 5% capacitors. The true center frequency was measured to be 14.45 MHz. At 14.25 MHz, the two output amplitudes were within 1 dB. Amplitude variation between the outputs around the true center frequency was 0.5 dB over ±0.3 MHz, which was acceptable. Over 10.3 MHz, the change in the 90° output phase relationship was not measurable. To provide for precise phase adjustment in the receiver, C_u (fig. 7) was replaced by 150 pF in parallel with the 100 pF trimmer. Amplitude compensation between the outputs was achieved elsewhere in the receiver. Power dividing and combining applications are not as critical as phase shifting and the trimmer might be omitted.

An interesting variation to the 3-dB coupler allows its use in swr measurements. By changing component values, it...
is possible to change the coupling from 3 dB to 20 dB. With P_{in} applied to port 1 of this device, 99% is transferred through to port 3, and 1% to port 4. Since ports 3 and 4 are decoupled, the power at port 4 is only 1% of the forward power. Reflected power applied to port 3 is treated in the same fashion. Port 2 output is 1% of the reflected power only. These characteristics describe a directional coupler.

Fig. 8 shows the circuit values required for a 20-dB hybrid, and fig. 9 shows the directional coupler application. Actual component values are determined from the circuit values as for the 3-dB hybrid.

Fig. 8. Reactance values for a 20-dB hybrid. These reactances can be converted into component values for any frequency of interest.

Fig. 9. Using the 20-dB hybrid as a directional coupler for measuring SWR.

comments

Construct all of these devices symmetrically to minimize stray impedance differences between the paths. In fact, it is best to arrange them like the circuit diagrams. When paralleling power amplifiers, it is well to remember that these dividers provide isolation at the signal frequency only, and additional low-frequency isolation may be required in the power and signal leads to prevent destructive low-frequency oscillation.

Since all ports of these dividers are at transmission-line impedances, it is necessary to include matching networks in each amplifier. This is, in fact, an advantage since each individual amplifier can be tuned up in a 50- or 75-ohm system before you connect them in parallel. When they are paralleled, it will be necessary to retune each of them slightly to match phase shifts throughout the system. Choose one path as a reference and adjust the others to match it.

I have used n-way couplers in vhf solid-state transmitters to achieve output powers of 750 watts at 75 MHz and 650 watts at 225 MHz, the latter in a varactor tripler. Three-dB hybrids have been used in similar transmitter designs to achieve 1,000 watts at 100 MHz and also as quadrature phasing elements in ssb systems.

A computer program was the source of the hybrid component values. It was written by E. A. Johnston, K1YEY, and Bill Higgins of the staff of the MIT Center for Space Research in Cambridge, Massachusetts.

reference

new digital instruments

see them all in your FREE Heathkit catalog

See all the gear in the world's leading ham equipment line plus all the instruments you need to make your hobby complete. Over 350 kits are shown including the famous Heathkit color TV, stereo, marine, automotive, shortwave, music amps., home appliances, R/C, portables, and more. Send for your FREE copy today.

NEW Heathkit 8-Digit Calculator — $129.95*

Adds, subtracts, multiplies, divides, chain or mixed functions, and constant. Floating or selectable 7 position decimal point. Has plus, minus, and overflow indicators. Overflow protection of most significant 8 digits. Clear-display key erases last entry without losing problem. "Standard" keyboard configuration. American made LSI circuitry. Bright glass circuit boards. 120 or 240 VAC operated. Desk-top black & white case, 3 1/2" x 6" x 10 1/4" d.

Kit IC-2008, 5 lbs., mailable...................... $129.95*

NEW Heathkit 8-Digit

120 MHz Counter — $349.95*

Measures from 1 Hz to over 120 MHz with 8-digit readout plus overrange, gate and two range indicators. Pre-assembled TCXO time base. 1 megohm FET input. Automatic triggering level. Sensitivity 50 mV or less to 100 MHz, 125 mV to 120 MHz. Uses latest ECL (emitter coupled logic). Assembles in 15 hours. All IC's mounted on plug-in connectors. Plug-in fiber-glass circuit boards. 120/240 VAC.

Kit IB-1102, 12 lbs., mailable..................... $349.95*

NEW Heathkit Digital Multimeter — $229.95*

3 1/2 digit readout, quality digital components and easy calibration give lab-grade accuracy. Measures 100 uV to 1000 VDC in 5 ranges; 100 uV to 500 VAC, 5 ranges; 10 current ranges, 100 nanoamps. to 2 amps, AC & DC; 6 resistance ranges, 0.1 ohm to 20 megohms. 1000 megohm input on 2 V range, 10 mgs on others. Overload protection. Automatic decimal. Overrange indicator. Calibrator included.

Kit IM-102, 9 lbs., mailable......................... $229.95*

NEW Heathkit Solid-State FET VOM — $79.95*

Dual FET portable multimeter with lab grade accuracy, 10 megohm input and the ranges you really need. 9 DCV & ACV ranges, 0.1 to 1000 V, ±2% accuracy. 6 DC & AC current ranges, 10 microamps. to 1 amp. 7 resistance ranges, x1 (10 ohm center) to x1 Megohm. 9 dB ranges, -40 to +62. 1% precision dividers. 4 1/2", 100uA, ruggedized taut-band meter, diode & fuse protected. Battery check switch.

Kit IM-104, less batteries, 4 lbs., mailable..................... $79.95*
phase-shift
RTTY monitor scope

By complete analysis of received signals, this unit can be the answer to RTTY tuning in heavy interference

A tuning indicator is almost a necessity to properly tune an RTTY signal. A cross-pattern scope\(^1\) or the ST-5 and ST-6 type tuning meter\(^2,3\) is fine for normal signals; however, with heavy interference, a phase-shift type scope\(^4,5\) is preferable to help sort out the proper mark-space frequencies. The cross-pattern scope or tuning meter uses heavily-filtered discriminator signals from the demodulator for indication, thus filtering out much information about the received signals.

This phase shift monitor scope uses signals directly from the receiver output (or TU input) and displays a rotating line on the face of the CRT. The angle of rotation is a measure of frequency, while the length of trace indicates amplitude; thus, most of the CRT face area contains useful spectrum information. At a glance, you can determine approximate frequency shift of either the received or transmitted frequency, can tune the signal rapidly to correspond to the TU filters and can determine frequency separation of interfering signals. With a little practice, the scope pattern will aid in making the proper adjustment to produce usable copy from marginal signals.

theory

The heart of the phase-shift indicator is the simple RLC network shown in fig.
1. The series LC circuit is resonant near the mid frequency of interest. Near resonance, the impedance of the LC circuit is minimum; thus, E_T approaches zero while E_L is large and exhibits rapidly changing phase about the resonant frequency. Recalling oscilloscope display theory, two sine waves applied to the deflection plates of a CRT produce a pattern dependent upon the phase and amplitude relationship between these sine waves. With the two sine waves either in phase or 180° out of phase, a straight line appears whose angle on the CRT face depends upon the relative amplitudes of the two signals. With 90° phase shift between the two deflection plates, an ellipse appears with an eccentricity dependent upon the relative amplitudes between the two signals.

Referring to fig. 1, the LC circuit is resonant near the center of the frequency range of interest (2550 Hz). For a high-Q circuit, the phase angle varies from near 180° to 0° over a narrow frequency range, which yields straight lines on the oscilloscope tube. Around resonance, an ellipse appears since the signals are around 90° out of phase; however, the width of the ellipse is collapsed to zero since the amplitude of the series voltage (E_T) decreases to zero as the phase approaches 90°. Thus a straight line will appear on the CRT for all frequencies of interest and will rotate about the center of the tube face as the frequency varies.

![fig. 1. The basic RLC phase-shift network.](image)

Typical patterns for a complete phase-shift monitor scope receiving RTTY signals appear in fig. 2. Most people prefer a vertical line at mid-frequency and clockwise rotation with increasing frequency. The CRT can be rotated in the mount to yield a horizontal or vertical pattern, and connections to one pair of deflection plates can be reversed to yield the desired direction of rotation.

circuit description

The complete schematic appears in fig. 3. The design is straightforward. The input stage (Q1) yields a gain of about 20 (approximately the ratio R_4/R_5). R_2 and R_3 are bias resistors. Q_2 is an isolation emitter follower which reduces Q_1 collector loading and offers the current drive necessary for the LC phase-shift network.

The series compensating network (C_2, L_1 and R_8) could be eliminated; however, it offers two advantages. C_2-L_1 resonate at approximately 2 kHz to yield an increasing impedance over the 2 to 3 kHz indication range which compensates for the increasing voltage across the phase-shift inductor (L_2) with increasing frequency. This maintains the same scope trace length at 2125 Hz and 2975 Hz. Another advantage of C_2-L_1 is that signals far above and below the 2-3 kHz range do not produce a trace on the CRT, thus limiting the pattern to the desired range of frequencies.

R_9, C_3 and L_2 comprise the phase-shift network described in fig. 1. C_3-L_2 resonate at 2550 Hz. Q_3 serves as an isolating emitter follower to offer a high impedance across the phase-shift inductor (L_2) with increasing frequency. This maintains the same scope trace length at 2125 Hz and 2975 Hz. Another advantage of C_2-L_1 is that signals far above and below the 2-3 kHz range do not produce a trace on the CRT, thus limiting the pattern to the desired range of frequencies.
emitter resistor). Resistors R14/R16 and R18/R19 furnish bias for the transistors.

Construction

Parts layout is not critical. In the several prototype units built, I tried various construction techniques, all with equal success (point-to-point wiring, Vector board with push-in terminals, and construction). Of the several prototype units I built, no trace hum was experienced with the exception of an early prototype in which the power transformer touched the CRT socket. This hum was eliminated with a cut-down CRT neck shield (Heathkit 206-180).

You can use a standard CRT bezel to dress up the front panel and for mounting the CRT. The unit shown uses an old meter case with the movement and glass removed and the opening filed round. A rubber O-ring slipped into the modified meter case provides a shock mount for the CRT face. The tube neck is supported with an aluminum clamp and spacers. Save space and money by omitting a special tube socket for the CRT. Push pins from a standard old tube socket, solder them directly to the leads and push spaghetti over the pins for insulation (octal socket pins fit the 2BP1, larger pins are required for the 3AP1).

Circuit components are not critical, so feel free to use the junk box; however, C2 and C3 should be high quality (e.g. Sprague Orange Drop) to yield high Q and to minimize calibration drift. Of course, it is an unusual junk box that contains 400 V breakdown transistors. C6...
and C7 should have low dc leakage so as to not affect CRT centering. Although not necessary, the gain and Q can be optimized by selecting high gain \((h_{FE}) \) transistors for Q2 and Q3. The circuit in fig. 4 can be used to select the two highest gain transistors from a batch for those persons using the same type throughout. The lower the measured (negative) voltage at the transistor base, the higher the gain. You can use a 20-kilohm-per-volt (or greater) vom in place of the vtvm for selection; however, the \(h_{FE} \) values listed in fig. 4 will be inaccurate (lower voltage reading for equivalent \(h_{FE} \)). For Q2 and Q3, just choose the units with the lowest measured base voltage.

Minimal power is required and voltages are not critical, thus power for the unit can be taken from other station equipment. The 300-volt load 6 mA and the -150 volt load draw 12 to 14 mA (including CRT). For a built in supply, I used the smallest transformer on hand, a 250 V ct unit and the circuit shown in fig. 5.

Almost any small CRT can be used, such as the 2BP1, 2AP1, 3BP1, 3AP1 or 3RP1. This power supply and circuit has adequate output swing to drive any of them, since the CRT deflection factor is greater with reduced accelerating potential (usually 1000 to 1500 volts). All are sufficiently bright for a well lighted room.

Be certain to check pin connections and heater requirements for your tube (3AP1 requires 2.5 volts). Don’t worry about the spot that finally burns on the center of the tube face during undeflected periods; no useful information is contained in the center of the tube anyway. Centering controls are dispensed with for simplicity. Most CRTs are fairly well centered as is; however, a small magnet can be glued to the CRT neck for centering if desired. A small chip from a dime store magnet is adequate, just slide it around the tube neck until the play is centered on the face. The spot of epoxy or Q-dope will hold it. Flexible black-board magnets are ideal for this purpose.

The phase-shift circuit can be used with a standard test oscilloscope for RTTY monitoring; however, connect the output directly to the deflection plates and not through the scope amplifiers. The additional amplifier phase shift would distort the straight-line pattern.

Initial Adjustment

At first turn-on, defocus the spot until after the centering magnet is glued on. With power applied and the input sensitivity control (R1) turned down, the following dc voltages should exist:

- **Q1 collector** = approximately one half of the negative supply voltage
- **Q2 emitter** = within 1 volt of Q1 collector
- **Q3 emitter** = -0.5 to -1.0 volts
- **Q4 collector** = approximately one-half the positive supply voltage
- **Q5 collector** = the positive supply voltage

If the readings are off more than 20%, adjust the operating points by changing the value of R2, R14 and R18. Increasing R2 reduces the negative voltage at Q1 collector and Q2 emitter. Increasing R14 increases Q4 collector voltage, increasing R18 increases Q5 collector voltage.

Apply a 2 to 3 kHz sine wave at the input. A straight line should appear on the scope; adjust the amplitude for three-quarter screen deflection. Focus the spot

Figure 4. Test circuit for selecting high-gain transistors for Q2 and Q3. The lower the negative base voltage, the higher the Q.
with R24. As the frequency is varied, the line should rotate about the center. If you prefer rotation in the other direction, reverse the deflection plate connections (pins 6 and 7) at the CRT (or the equivalent pins for your CRT). The line should rotate smoothly from 2 to 3 kHz, with reduced angular rotation and shrinking in size below 1 kHz and above 4 kHz.

Calibration marks are placed on the face of the tube by stretching fine black threads across the tube face (behind the bezel) and adjusting these over the trace at desired frequencies (2125, 2295, 2975 Hz). A spot of Q-dope out of sight at the tube edge will hold the threads in place. If available, a calibrated oscillator or an oscillator and counter may be used for calibration.

For those using the ST-5 or ST-6 demodulator, the calibration threads can be easily placed right on the filter frequencies. Just connect the monitor scope to the receiver output, turn on the calibrator and bfo and tune for a tone. Tune the bfo for maximum on the TU tuning meter (or maximum measured discriminator test point voltage), and repeat for mark and space on the narrow and wide shift positions of the TU. Adjust the calibration threads over the scope pattern when you obtain the peak discriminator output.

parts

The junkbox should supply most resistors and capacitors, but few will have CRTs and 400-volt breakdown transistors.

The power transformer can be a Stancor PA-8416, $4.66 from Lafayette or the Thordarson 22R39, $4.37 from Newark. These transformers have a 6.3-volt heater supply which is suitable.
for the 2BP1 and other CRTs. For the 3AP1, you will need a 2.5-volt heater supply. Van’s (W2DLT) 302 Passaic Avenue, Stirling, New Jersey 07980, offers unused 3AP1 CRTs in original boxes for $4.50, first-class postpaid anywhere in the United States. Van also has 88-mH toroids at five for $2.00. 2N3439 transistors are available for $1.19 each from General Radio Supply Company, 600 Penn Street, Camden, New Jersey 08102. M. Weinschenker, K3DPJ, Box 353 Irwin, Pennsylvania 15642 offers .22 µF 100-volt mylar capacitors at 16 for $1, and .02 µF 200-volt dipped capacitors at 20 for $1, postpaid.

![fig. 5. Suitable power supply for the monitor scope.](image)

I wish to thank Bruce Meyer, WOHZR, for his original vacuum-tube phase-shift scope design which served as the foundation for this design. I also want to thank Don, WA6PIR, for urging me to write this article to share the design with other RTTY enthusiasts.

references

INCREASE YOUR TALK POWER!

PROVEN ON-THE-AIR PERFORMANCE

MODEL ACA-1

$49.95 KIT

ASSEMBLED

$69.95

MODEL ACA-1 AUDIO COMPRESSOR features 45 DB compression range • Flat 20-20,000 Hz response • Extremely low distortion • Front panel compression meter and in/out switch • Accepts both high and low-impedance mikes • Easily installed in mike line • 110-volt a.c. or 12-volt d.c. operation • Only 5" W x 2 1/2" H x 4 1/2" D.

MODEL ACP-1

$24.95 KIT

ASSEMBLED

$34.95

MODEL ACP-1 COMPRESSOR-PREAMP has 30 DB compression range • Flat 20-20,000 Hz response and low distortion • Designed for high-impedance mikes • Easily installed in mike line • 9-volt battery operation • Only 4" W x 2 1/2" H x 3 1/2" D.

3-CHANNEL WWV RECEIVER

(5, 10, and 15 MHz)

$74.95 KIT

ASSEMBLED

$99.95

0.25 microvolt sensitivity • Crystal controlled • 110-volt a.c. or 12-volt d.c. operation • Compact size only 4 1/2" W x 2 1/2" H x 5 1/2" D.

Send check or money order, plus $1.50 for shipping anywhere in U.S.A. California residents add 5% sales tax.

DEALER INQUIRIES INVITED

CARINIGELLA ELECTRONICS, INC.
P.O. Box 327 □ Upland, California 91786
Phone 714-985-1540

ham radio
crystal oscillator

frequency adjustment

The frequency of crystal oscillators is often adjusted with a trimmer capacitor — this article explains how much adjustment can be expected.

Because of its inherent stability in oscillator circuits as a frequency-control component, the quartz crystal finds much use in circuits where frequency tolerance and stability are important to proper circuit operation. Present transmitter and receiver design trends make good use of this fine frequency-control element.

Much has been said about the necessity for operating the crystal in a circuit suitable to produce the required nominal operating frequency. Although the crystal has an extremely high Q factor and good stability with temperature changes, the circuit in which it is used can, and does, have some measure of control of the final frequency of the overall oscillator circuit. This is because of the ultimate load capacitance across the crystal terminals in the circuit it is plugged into. For this reason, crystal manufacturers specify this operating load capacitance to ensure that the crystal will control an oscillator within their manufacturing tolerances and specifications.

Of course, good use can be made of the small effect load capacitance has on the operating frequency. You can make slight frequency adjustments by changing the load capacitance with a small trimmer capacitor somewhere in the oscillator circuit. Receivers and transmitters can be set on frequency in this manner. Another use of this frequency change is in RTTY applications where the oscillator frequency is changed for frequency-shift keying.

While these frequency adjustments are often used, not much is usually known in advance as to what magnitude of frequency change can be expected for a given change in load capacitance. All too little has been published in this area, and manufacturers often do not specify this sort of data for their crystals. There are, however, some rather simple relations that apply to most crystals common to amateur use that can be used to get at least a better idea of the frequency changes involved. This is good information to have available, as it allows the selection of a crystal which will produce the desired nominal frequency as well as the necessary adjustment range for final frequency calibration. Also, it allows a lesser tolerance crystal to be selected; variations are compensated for by trim-
ning the frequency. A lower tolerance crystal is usually much less costly than one with tighter specifications.

crystal equivalent circuit

In the course of developing crystals and associated oscillator circuits, early researchers came up with an equivalent circuit for the crystal. This familiar circuit and its impedance vs frequency curve is shown in fig. 1. The circuit consists of an inductance, capacitance and resistance in series with the entire combination shunted by another capacitance, \(\text{C}_0 \). \(\text{L}_m \) in fig. 1 is the equivalent inductance of the crystal, \(\text{C}_m \) is the equivalent capacitance, and \(\text{R}_m \) is the effective series resistance. \(\text{C}_0 \) is a static capacitor formed by the crystal electrodes and the stray capacitance of the holder leads and terminals.

fig. 1. Crystal equivalent circuit and impedance vs frequency curve.

The thing that makes the crystal so stable in an oscillator circuit is that the motional inductance, \(\text{L}_m \), is measured in terms of hundreds of millihenries and has an equivalent Q of 20,000 to 200,000. The coil in an ordinary tuned circuit might have an inductance measured in microhenries with a Q of only 100 or less at the same frequency.

The motional capacitance, \(\text{C}_m \), has an extremely small equivalent capacitance in order to be resonant with \(\text{L}_m \) at the crystal frequency. These parameters are termed *motional* inductance and capacitance because they are equivalent values associated with the actual molecular vibrations in the quartz.

Inspection of the circuit in fig. 1 indicates that the crystal has two points of resonance, one of which is the frequency of \(\text{L}_m \) and \(\text{C}_m \) in series. (This is an approximation, close enough for amateur purposes.) At this series-resonant frequency, indicated as \(f_s \) on the impedance curve, the crystal looks like a small equivalent resistance, \(\text{R}_m \), which is determined by the mounting and preparation of the crystal in its holder.

As the frequency is increased above \(f_s \), the overall series arm of the circuit takes on the character of an inductance; at some slightly higher frequency the overall circuit, consisting of the equivalent inductive reactance of the series arm and the electrode/holder capacitance, \(\text{C}_0 \), in parallel, becomes resonant. At this point, the crystal looks like a parallel tuned circuit with a very high Q and resistive impedance. This frequency is called the parallel or anti-resonant frequency and is indicated by \(f_p \) in fig. 1.

A few oscillator circuits use the series-resonant frequency for operation, but they are usually confined to applications at extremely high or low frequencies. Most of the oscillator circuits found in amateur equipment, Pierce, Colpitts, etc., use the crystal in a parallel-resonant fashion. Since there is some load capacitance offered by the oscillator circuit, the actual operating frequency, \(f_o \), comes out at a point that is between the two natural crystal frequencies, \(f_s \) and \(f_p \).

The following discussion deals with relations that can be used to determine what this operating point will be in terms of approximate crystal parameters and added oscillator load capacitance.

capacitance ratio

An important crystal parameter that is not often mentioned or specified by the manufacturer is one called the *ratio of capacitances*. This is simply the ratio of the crystal holder static capacitance, \(\text{C}_0 \),
to the crystal motional capacitance, \(C_m \). Since the motional capacitance is very, very small in terms of "real" capacitors, its value for most high-frequency AT-cut crystals does not change much over a fairly wide frequency range. At least its change is very small with respect to the rather large (in comparison) value of \(C_o \).

The holder capacitance is usually 5 pF or so, while the motional capacitance is often measured in thousandths of a pico-farad. Thus, the ratio of capacitances is relatively constant over a wide range of frequencies, and is primarily a function of the type of crystal cut. It would be well to repeat that this discussion applies only to fundamental-mode AT-cut crystals. This is the type most common in high-frequency amateur equipment.

The capacitance ratio, as it is often called, turns out to have a value between two and three hundred. For experimental purposes, you might consider it to be 250. There is a very simple relationship between this capacitance ratio and the natural bandwidth of the crystal. This bandwidth is defined as the frequency spread between the series and parallel resonant frequencies. It is equal to \(f_p - f_s \), and can be expressed as:

\[
f_p - f_s = \frac{f_p}{2r_c}
\] \hspace{1cm} (1)

If you take the capacitance ratio, \(r_c \), to be 250, equation 1 shows that to find the natural bandwidth for a crystal you divide the crystal frequency by \(2r_c \) or 500. It should be noted that this relationship indicates that, for any crystal, the relative bandwidth in terms of percentage of the nominal frequency is the same. For a capacitance ratio of 250, you can expect a bandwidth of the order of 2000 parts per million for any frequency. As you already know, the higher you go in frequency, the more you can trim your oscillators. Equation 1 gives an indication of why this is true.

As an example, you might have an eighty-meter, fundamental AT-cut crystal at 3.600 MHz. Using equation 1 you find that its natural bandwidth comes out to be 3,600,000 divided by 500 or about 7200 Hz. This gives a rough idea of the frequency adjustment possible with this crystal, although, as you shall see, the actual amount of adjustment becomes quite a bit less as oscillator load capacitance is added to the crystal.

effects of load capacitance

In an oscillator circuit of practical design, the crystal becomes loaded with additional capacitance which appears in shunt with the holder capacitance, \(C_o \). If this additional capacitance is designated \(C_x \), the following expression gives the amount of frequency spread between the crystal's series resonant frequency, \(f_s \), and the new parallel resonant frequency of the oscillator, \(f_o \).

\[
f_o - f_s = \frac{f_o}{2r_c} \cdot \frac{1}{1 + \frac{C_x}{C_o}}
\] \hspace{1cm} (2)

From equation 2 you can see that the amount the oscillator frequency is above the series resonant frequency is some fraction of the total crystal bandwidth given by equation 1. The fractional multiplier is a function of the ratio of the added load capacitance to the holder capacitance, \(C_o \). This relationship indicates why the actual amount of frequency adjustment when load capacitance has been added is considerably less than the overall bandwidth of the crystal.

To build a practical oscillator circuit, it is necessary to add considerable load capacitance, \(C_o \), and the manufacturer's specifications often require on the order of 32 pF for nominal frequency tolerance to apply.

Since the holder capacitance is about 4 or 5 pF, the difference between the series resonant frequency and the operating frequency of the oscillator is somewhere around 1/6 to 1/8 the total crystal bandwidth. For the 3.6-MHz example above, the oscillator might be operating as little as 1000 Hz above the series-resonant frequency. Further investigation of equation 2 indicates that even though you might add considerable capacitance above 32 pF, the actual frequency change will be quite small.
To use equation 2 it is convenient to set up the load capacitance values as integral multiples of C_0. For HC6/U crystals, the holder capacitance is usually quite close to the 5 pF figure mentioned. This is due to the fact that the electrodes are electro-deposited on the quartz blank and are very close to the same size for any frequency. Likewise, thickness dimensions do not vary too greatly.

For HC6/U crystals, the holder capacitance is usually quite close to the 5 pF figure mentioned. This is due to the fact that the electrodes are electro-deposited on the quartz blank and are very close to the same size for any frequency. Likewise, thickness dimensions do not vary too greatly.

practical values

A graph plotted for equation 2 is shown in fig. 2. The frequency changes on the vertical axis are for the 3.6-MHz crystal used as an example above, and values of load capacitance are plotted along the horizontal axis. The portion of the curve below 10 pF is dotted. This area is normally unusable in practical oscillator circuits since a minimum load must be presented to the crystal to establish the circuit parameters suitable for oscillation. This is why the oscillator frequently quits when you try to turn the trimmer too far out in an attempt to get it on frequency.

There is, of course, some limit to the maximum capacitance that is suitable, but by the time this value is reached, the effects of capacitance change on frequency are practically nil. In fact, by the time you get the circuit oscillating with 10 pF across the crystal, you are down in frequency from f_0 by roughly 2/3 the crystal’s natural bandwidth. Further increases in load produce less and less change in frequency.

This is one of the reasons why 32 pF has become somewhat of a standard for crystal calibration. This amount of load minimizes changes in frequency that might occur with unwanted capacitance changes vs temperature, shock and the like. Nevertheless, a 32-pF load allows a nominal range of adjustment for final frequency calibration.

For FT-243 pressure-mounted crystals, the static holder capacitance can be estimated by calculating it from the blank dimensions since the crystal is easily disassembled. The dielectric constant for quartz is about 4.3 and these crystals usually have somewhat higher holder capacitance — on the order of 8 or 9 pF. Thus, it can be seen that they are more difficult to shift in frequency than their wire-mounted plated-blank counterparts. (Their shunt capacitance, and thus, capacitance ratio, is higher.)

For FT-243 pressure-mounted crystals, the static holder capacitance can be estimated by calculating it from the blank dimensions since the crystal is easily disassembled. The dielectric constant for quartz is about 4.3 and these crystals usually have somewhat higher holder capacitance — on the order of 8 or 9 pF. Thus, it can be seen that they are more difficult to shift in frequency than their wire-mounted plated-blank counterparts. (Their shunt capacitance, and thus, capacitance ratio, is higher.)
produce a change of some 1320 Hz. This indicates quite clearly what amateurs have frequently taken advantage of — it's easier to move a crystal up in frequency with the trimmer than down.

For some circuits, it might be well to obtain crystals which are a bit low (specified at 32 pF) and depend on the trimmer to move them up on frequency. The equations and fig. 2 can be used to get a fair idea of where the nominal frequency should be specified.

Bear in mind however, that the data presented here is based on a couple of approximations; i.e., assumed values for the capacitance ratio and holder capacitance. The latter can usually be calculated or measured to within rather close limits. And for "worst case" calculations, a value of 300 for the capacitance ratio might be a better value to use. This would ensure that adequate frequency adjustment range would be available for a given crystal.

actual measurements

As a rough check on some of the relations presented here, I set up the oscillator circuit shown in fig. 3. The equivalent load capacitance offered to the crystal is about 20 to 35 pF as the 30-pF trimmer is adjusted through its range. To simulate the 3.6 MHz example calculations above, three HC6/U crystals in the 80-meter band (3.5 to 3.6 MHz) were tested. For a capacitance change of 20 to 35 pF, the measured frequency changes were 360, 455 and 510 Hz, indicating a fairly wide spread among different crystals at the same approximate frequency. Equation 2 shows that slightly more (about 550 Hz) adjustment should be possible, indicating that a value of 300 for the capacitance ratio would probably be a better choice. In addition, it would be well to try to obtain a value for the holder capacitance — either from the manufacturer or by actual measurement. These crystals measured very close to 5 pF C_0.

conclusions

Because of its large value of motional inductance and extremely high Q factor, the crystal is a good component to use as a frequency-control element in oscillators. It is interesting to note that the impedance vs frequency curve in fig. 1 is drawn out of scale. Below the series resonant frequency of the crystal the capacitive reactance (of the holder capacitance) is much smaller than the reactance values between series resonance and the parallel-resonant frequency.

Likewise, the frequency scale is expanded a great deal around the crystal frequency to indicate the crystal's bandwidth. If the reactance axis were drawn to scale, the inductive reactance approaching parallel resonance would go off the paper. It is this rapid change in reactance with minute frequency changes that gives the crystal its ability as an excellent frequency controller.

Although the crystal is extremely stable, small changes in load capacitance in the oscillator circuits can provide for slight adjustment of the oscillator frequency. Equations 1 and 2 show the amount of adjustment that can be obtained once some crystal parameters have been either measured or estimated.

While these calculations are not exact, they give good approximations for the amounts involved for a given frequency of operation. The accuracy, of course, is limited by the inability to establish true values for these parameters. With exact values, the relations in equations 1 and 2 are exact.
CONSIDERABLY SPECIAL CONSIDERING THE SPECS

2 METER FM TRANSCEIVER

Model SRC-146A

Frequency 143-149 MHz
(2MHz spread)
Number of channels 5
Supplied with 146.94 simplex,
146.34/.94 (same plug in
 crystals as SR-C826M)
R.F. output 2 watt minimum
Sensitivity better than 0.4
uv/20 DB Q.S.
Audio output 500 mw
Meter monitors battery voltage on
Tx, S Meter on Rx
Current drain 620 ma Tx,
15 ma Rx standby
Size . . . 8¾” high x 3” wide x 1½” deep
Weight 24 oz., less batteries

Options: Private channel (CTCSS), external mic, or mic-speaker,
stubby flexible antenna, desk top charger, leather case.

$289 00
Suggested Amateur
Net Price

NEW 2 METER REPEATER

SCA-RPT-1

All solid state, 2M, 10W, FM
REPEATER. Built-in C.O.R., adjustable
carrier delay and time out timer.

Write for complete specifications and cost.

Standard
COMMUNICATIONS CORP.

213 / 775-6284 · 639 North Marine Avenue, Wilmington, California 90744

More Details? CHECK—OFF Page 110
A direct-reading capacitance meter is a particularly useful test instrument. With it you can check capacitors whose markings have worn off or whose tolerance is unknown. Many ceramic capacitors, for example, are GMV (guaranteed minimum value), and their actual value may be as much as ten times the value marked. A direct-reading capacitance meter is also more convenient to use than a bridge when determining capacitance changes with temperature.

The instrument described can measure capacitance in five decades, from 100 pF through 10 µF, to an accuracy determined mainly by the calibration standard used and the accuracy of the meter movement. Five percent accuracy is easily attainable. The parts cost is under $20. The instrument will operate from any unregulated power supply reasonably free of ripple and capable of delivering 28 volts at 50 mA.

block diagram

A reference sawtooth oscillator (fig. 1) determines the over-all period of a pulse whose width is linearly proportional to the unknown capacitance, C_X. A sawtooth oscillator was chosen because of

the simplicity of switching ranges using only one RC time constant. Through an emitter follower (to avoid loading the reference capacitor, \(C_R \)), the sawtooth operates a Schmitt trigger, which changes state at a fixed and repeatable voltage level part way up on the sawtooth as the reference capacitor charges. A shaper-driver operates a discharge transistor to discharge the unknown capacitor, \(C_X \), or the other of the two inputs is positive and no gate output occurs. As soon as the second Schmitt trigger, \(ST_2 \), fires part way up on the charging waveform for \(C_X \), the NAND gate output again returns to zero.

Thus the time between leading edges of the NAND gate output is the same as the period of the reference oscillator, and the width of the NAND gate output is

![Block diagram and waveform timing.](image)

and also furnishes one input of a NAND gate. The charging voltage across \(C_X \) is applied through an emitter follower to another Schmitt trigger, whose output is the second input of the NAND gate.

\(C_R \) is the reference capacitor of the sawtooth oscillator. When the first Schmitt trigger, \(ST_1 \), resets at the end of the reference period, the unknown capacitor is discharged and clamped by the discharge circuit at almost zero volts until \(ST_1 \) triggers again part way up on the reference sawtooth (see timing diagram). At this time the unknown capacitor, \(C_X \), charges through a precision resistor of value switched by a range switch. During this \(C_X \) charging period (only) an output from the NAND gate occurs since both of its inputs are negative. At other times one linearly proportional to capacitance \(C_X \). If this pulse is applied to an average-reading meter, the meter will read a current linearly proportional to the unknown capacitor, \(C_X \). No special scale is required on the meter.

Design Considerations

The main reason for using the NAND gate over other possibilities was to make the meter read zero when \(C_X \) is disconnected; the \(ST_2 \) circuit is triggered for this condition.

Fig. 2 is the schematic for the capacitance meter. While this circuit seems to have a lot of transistors, it should be remembered that the RCA CA3046 IC array is used, which has five transistors in a single 14-pin dual in-line package. So
fig. 2. Circuit schematic. RCA type CA3046 IC arrays are used for Q4, Q5, resulting in compact packaging. Resistors R1 through R10 are 1% tolerance. R26 is 3.3k nominal (may be 2.7k or 3.9k). Sometimes it is necessary to change R19 to 12k to make the first Schmitt trigger work. Also, due to variations in the components used, changing R7 to 9720 ohms and R8 to 4875 ohms will probably improve accuracy on ranges 3 and 4. R19 and R31 may need to be increased because of CA3046 gain.
ten of the transistors are simply two CA3046s, labeled Q4 and Q5 in fig. 2.

One of the more troublesome problems in developing this capacitance meter was getting a good unijunction sawtooth oscillator without having to resort to expensive UJTs such as the 2N494. In the ordinary UJT sawtooth oscillator circuit, the range of resistance values that can be used is limited. The charging resistor value can't be too low or the UJT will sustain conduction at the valley current after it has fired once and won't oscillate. The charging-resistor value can't be too high or leakage will cause calibration nonlinearity and, in the extreme case, oscillations will cease because the voltage across the capacitor won't build up to the UJT peak point. In the present case it's desirable to use fairly large values for the charging capacitor to eliminate other problems, and at the same time fairly high frequencies are required; thus a low value of charging resistor is necessary, and the ordinary circuit simply will not operate.

This problem was solved by adding an inexpensive high-current transistor to help discharge the reference capacitor. In fig. 2 the UJT is Q2, and Q1 has been added to furnish a more rapid and complete discharge of C1 or C2. The firing point of Q2 determines the period of the oscillation for a given RC time constant and fixed supply voltage. As soon as Q2 triggers it furnishes base drive to Q1, which then discharges C1 or C2 with a peak discharge current of around 400 mA. Either capacitor is discharged in a few microseconds to a voltage below the valley voltage of Q2, so Q2 is forced to cease conducting despite the low value of charging resistance.

The effect of leakage is also reduced in the oscillator circuit by returning Base 2 of Q2 to a regulated voltage less than the charging voltage. This lowers the UJT peak point; and while the output amplitude is reduced and the waveform has a dc level above ground, the sawtooth waveform is much more linear. Hence the effects of leakage shunting C1 or C2 are greatly reduced.

Circuit analysis

The sawtooth generator output appears across the emitter load of emitter follower Q4-3. Voltage divider R13, R14 sets the firing point in the reference sawtooth waveform at which Schmitt trigger Q4-1, Q4-2 changes state. When the voltage at pin 2 of Q4 (junction between R13 and R14) is low Q4-2 conducts, Q4-4 is cut off, and Q3, the discharge transistor for Cx, conducts. The voltage across Cx is thus clamped during this time to the \(V_{ce(sat)} \) of Q3. Part way up on the reference sawtooth, the voltage at pin 2 of Q4 rises to the trigger point, whereupon Q4-2 swings to cutoff, Q4-4 conducts, and Q3 is cut off. Cx begins to charge at this instant since it is no longer clamped by Q3.

fig. 3. The capacitance meter power supply.
As \(C_X \) charges toward the regulated power supply voltage through a resistance determined by the range switch, a point is reached where the voltage of \(C_X \) is high enough to trigger the second Schmitt trigger, Q5-1,Q5-2. At this instant Q5-2 cuts off, the voltage applied to the NAND gate again becomes positive, and Q5-5 saturates. Since Q5-5 and Q4-5 share the same collector resistor, R34, it is apparent that both these transistors must be simultaneously cut off (base negative) for any voltage to appear at the common collector junction with R34. So only during the time when \(C_X \) is charging and Schmitt trigger Q5-1,Q5-2 has not triggered, is this condition met. Hence the positive pulse that appears at the common collectors of Q5-5 and Q4-5 has a width exactly proportional to the value of \(C_X \). This voltage, the gate output, energizes the meter through emitter follower Q5-4. Capacitor C6 provides additional averaging and was chosen for the lowest frequency range (highest capacitance of \(C_X \)) to prevent meter flutter.

calibration

Potentiometer R40 is the calibration control, which is set so that the meter reads a value corresponding to a known capacitance applied to the \(C_X \) terminals. The calibration circuit is R10,C3, which may be switched in at position 6 of the range selector. C3 was chosen to give a mid-scale reading on the 0-0.01 \(\mu F \) range (range 2). The unit must be calibrated with no capacitance connected across the \(C_X \) terminals. C3 is a 5-percent capacitor; but if a 1-percent capacitor is used, or one whose value has been determined by an accurate bridge, the over-all accuracy of the meter will be improved.

range switching

The range switch uses resistors rather than capacitors, except for the lowest range, because 1-percent resistors are less expensive than 1-percent capacitors. C1 and C2 are the only capacitors switched in the ranging circuit. Their exact value isn’t important (e.g., their tolerance can be 10 or 20 percent; but C1,C2 must be reasonably stable with temperature and time and have low leakage). Their ratio should be 10:1. Since C1,C2 will not, in general, have this ratio, it’s necessary to trim R1 with an additional series or shunt...
resistor so that a known 0.001-μF capacitor, say, when set to read 0.1 mA on M1 when on range 2 will read 1.0 mA when on range 1. In the constructed unit, R1 was trimmed by shunting a 12k ½ watt 10 percent resistor across it.

leaky capacitors

These components will show a higher apparent capacitance than their true value. However, the leakage has to be pretty bad for this to occur because the maximum charging resistance in the C_X circuit was kept deliberately low—a maximum of 20k on the lowest capacitance range to 1k on the highest range. If the capacitor to be measured shows less than about 10 times the charging resistance for the range in use, when measured with a good ohmmeter, some error will occur in the capacitance measurement. This much leakage would be unacceptable in most circuits anyway, so the capacitor should be discarded.

The five ranges are (in μF):

<table>
<thead>
<tr>
<th>Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-0.001</td>
</tr>
<tr>
<td>2</td>
<td>0-0.01</td>
</tr>
<tr>
<td>3</td>
<td>0-0.1</td>
</tr>
<tr>
<td>4</td>
<td>0-1.0</td>
</tr>
<tr>
<td>5</td>
<td>0-10.0</td>
</tr>
</tbody>
</table>

In Range 1 the lowest value of capacitance that can be accurately measured is about 100 pF, or about 10 percent of full scale on the meter. Stray capacitance in the leads to the selector switch, etc., will cause the meter to indicate slightly on Range 1 with no capacitance connected to the C_X terminals. Also on this range, the reference frequency sawtooth is fairly high; and even though the discharge time of C1 is only a few microseconds, it is not an altogether negligible percentage of the sawtooth period. This, together with other effects such as finite rise and fall times in the waveforms, limits the minimum capacitance that can be accurately measured.

power supply

The power supply schematic shown is used in the unit pictured, but it can be any unregulated 28-volt supply delivering 50 mA with reasonably low ripple. Zener diodes CR1-CR3, inclusive, compensate for line voltage variations to which the instrument would otherwise be sensitive.

construction

The direct-reading capacitor meter is mounted in a Bud C1585HG sloping panel cabinet. The unknown-capacitance terminals are a pair of binding posts on top. The main circuit is on a 4½ x 6 inch, G-10 epoxy etched circuit, with two-sided etching and plate-through holes.* The power supply is mounted on a piece of printed circuit material the same size as the main circuit, and bolted to it by spacers. The assembly is then secured inside the Bud case by right-angle brackets.

conclusion

This instrument has been useful in checking unknown capacitors from the junk box and from surplus equipment. A surplus audio filter tuned to 1050 Hz, for example, contained many unmarked capacitors that had to be measured to decrease the filter frequency to around 400 Hz for more comfortable cw listening. Dried-up electrolytics, supposedly 10 or 8 μF, were found to be less than 1 μF when measured. Some ceramics read as much as ten times their GMV value. It was also interesting to study the temperature drift of various capacitor types by watching the meter move as a soldering iron was held near one lead of the capacitor or as cold chemical spray was applied.

Finally, if you need a more precise measurement than is possible with the Simpson 524 (i.e., when matching two capacitors for an equal value or a given ratio), an oscilloscope can be used to measure the duration of the NAND gate pulse appearing across R39 in the circuit. If you have a burning desire for a digital readout, the NAND gate pulse width can be read with a time-interval meter and Nixie or LED displays.

*Those interested may obtain the printed circuit with or without all semiconductors installed. Write the author for details.
oscilloscope
voltage calibrator

As anybody who regularly uses one will agree, the oscilloscope is one of the most versatile electronic instruments available and in many situations is indispensable. A scope may be a relatively simple general-purpose device or a greatly refined and complicated, high-precision, laboratory instrument. Its cost may run from considerably less than one hundred dollars to many hundreds of dollars. Its most important use, of course, lies in the study of alternating-current waveshapes; whether such waveshapes are regular in form, as in shine, sawtooth, square, trapezoid or pulse-train shapes; or irregular, as in speech, clipping, video, integrated sync pulses, transients or other distorted-type forms.

In addition to actual waveshape observation, a very useful application of the scope is the measurement of the voltages of waveshapes for which averaging-type meters, such as multimeters and vtvms, are unsuitable. This usage requires that the scope be calibrated as a voltmeter; this article describes an accessory which will make less-expensive scopes more useful in this respect.

There are many thousands of general-purpose scopes in use. Most of them do not have a voltage calibrator as an integral part of the instrument. If a calibrator is included it consists of a single calibration.
voltage of doubtful accuracy. By the use of the simple accessory described here, the utility and voltage measuring accuracy of these scopes may be greatly enhanced. An accurate square wave is ideal for calibration usage. This accessory develops such a waveform.

circuit

The schematic, fig. 1, is straightforward. Parts are easily obtainable and no tricky circuitry is involved. It works beautifully and can be assembled in one evening’s time. Parts placement is in no way critical. A shielded box, such as a small LMB box, not only makes a nice package, it will also prevent noise pickup from reaching the scope. The switched outputs give square-wave voltages of 1, 2, 3, 4 and 5 volts peak-to-peak.

The rectifier diode CR1 is specified at 1 amp so that it will handle the charging current for the electrolytic capacitor. The zener diode assures a constant and stable dc reference voltage for fluctuating line voltages. Nearly any silicon diodes may be used for CR2, CR3 and CR4 but all three should be the same type. The circuit current is normally less than one mA.

Resistors R1, R2 and R3 may be 10% values (silver band). Resistors R5, R6, R7, R8 and R9 do not have to be precision resistors. Ordinary, good quality ½- or ¼-watt carbon composition resistors, 5% tolerance (gold band), will do very nicely for the voltage divider. The potentiometer, R4, should preferably have a linear taper although an audio taper is usable.

Because a stable dc reference is used, this potentiometer may be mounted inside the box since once it is set it should require no further attention. The switch should be a non-shorting type. Suit your personal preference regarding the output jack, but since the lead from the calibrator to the scope should be shielded, a BNC or good phono type should be used. The use of shielded lead (preferably coax) will prevent hum modulation of the calibrator’s square-wave output.

calibration

The test point TP is used when adjusting the calibrator output voltages. Use a good vtm on its 3- or 5-volt dc range (positive to chassis, negative to TP). Adjust R4 to give -2.65 volts dc, as accurately as you can, at the test point. Your calibrator will then be calibrated for a 5-volt peak-to-peak square wave. Switch positions will provide one-volt steps; thus, peak-to-peak outputs will be 1.0, 2.0, 3.0, 4.0 and 5.0 volts.

On dc-coupled scopes there will be a perfectly flat top and bottom to the wave. On ac-coupled scopes you will notice a very slight slant to this line; on such scopes a reduction of the horizontal gain will reduce its effect on the visual accuracy with which you can read the calibrated lines on the scope.

With the usual X1, X10 and X100 step attenuator positions on most scopes, your scope gain control will permit you to set a wide range of accurately known voltage values for any scope division you may wish; such as 1.0 volt, 0.1 volt or 0.01 volt, or perhaps 4.0 volts, 0.4 volt or 0.04 volt per centimeter or per inch or per any other division marking you may desire.

fig. 1. Oscilloscope voltage calibrator provides outputs of 1, 2, 3, 4 and 5 volts peak-topeak. Resistors R5, R6, R7, R8 and R9 should have 5% tolerance. Diode CR1 is 100 PIV, 1 A. Diodes CR2, CR3, and CR4 are silicon diodes with 1-mA rating (1N4005, 1N914, etc.).
TOP TRADES for your good clean equipment.

STAY-ON-THE-AIR PLAN Enables you to keep your trade-ins until your new gear arrives — Lose no operating time!

PERSONAL SERVICE from fellow hams who understand your problems.

SAME DAY SERVICE on most Orders and Inquiries from our Centrally Located Modern Facilities.

Top Notch Service Department.

LARGE COMPLETE STOCK means Fast Deliveries. United Parcel Service available to most parts of the country. — UPS Blue label (AIR) to the West Coast.

LOW LOW 1% Monthly Service Charge (ONLY 12% per annum) on GECC Revolving Charge Plan. Only 10% Down Plus LOW Monthly Payments. For Example: $150.00 a month finances up to $300.00, $50.00 up to $600.00. Write for complete information and credit application.

If you purchase any of the new Merchantise listed below at the Regular Price and Without a Trade-In, you may take the "Bonus" Credit indicated below toward the purchase of other merchandise (such as power supplies, antennas, towers, microphones, crystals,linear, antennas, etc.).

2NT Transmitter $10 Bonus
2C Receiver $20 Bonus
2m Power Cord $15 Bonus
SPR-4 Receiver $20 Bonus
4628 W. Fond du Lac Ave.
Milwaukee, Wis. 53216

ORDER TODAYDIRECT FROM THIS AD

I am interested in the following new equipment:

I have the following to trade: (what's your deal)

I have the trade-in: (what's your deal)

I enclose $ I will pay balance (if any):

COD (20% Deposit) GECC Revolving Charge Plan
Master Charge* Bank Americard American Express

Account Number:__________________________
Expiration ______________________ Interbank number (4 digits)

Name:__________________________

Address:__________________________

City & State:__________________________

Send used gear list Send Drake literature

AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Ave. Milwaukee, Wis. 53216
Phone: (414) 442-4200

HOURS: Mon & Fri 9-9; Tues, Wed & Thurs 9-5:30; Sat 9-3

Cleveland Area Hams may wish to visit our Branch store located at:
1729 Euclid Ave., Cleveland, Ohio. Ph. 486-7330. Pete Smith, Mgr.

More Details? CHECK-OFF Page 110
mobile operation

with the
touch-tone pad

Numerous articles have been written concerning the utilization of Touch-Tone for control functions on VHF and UHF repeater systems, even going so far as to include partial control of an existing HF system via the UHF radio link. However, articles that deal with actual construction and operation of these Touch-Tone pads are few.1,2 This article hopes to fill the void, and help some enterprising amateurs build operational Touch-Tone systems.

The Touch-Tone pad enclosure shown in Fig. 1 has been in use for over a year with great success and much satisfaction. My unit is being used with the Regency HR-2. Both the HR-2 and the HR-2A are quite popular in this area, and to date, no one has experienced any difficulty with this circuit. Over the last year there have been some basic design changes, most of which are incorporated in this article.

the pad

The Touch-Tone pad I used is the Western Electric Model 35A3. I understand the Model 35Y3 is basically the same, only a newer model. The schematic diagram shows color coding of each wire on the 35A3 and to what point each wire...
goes. Note that the red lead is not used, and is taped or clipped off. The green lead is the power and audio take-off point. There are two leads left that are rather unusual. They are the white and blue leads. Both leads terminate in the pad at a switch contact which is shunted by a 5.1k resistance. When any button on the pad is depressed, the switch contacts open giving this 5.1k dc resistance. Both leads are free from any other contact or connection within the pad, leaving them free for control of an external circuit, which, in our case, will be push-to-talk keying of the vhf transceiver.

operation

The keying circuit: The two leads (white and white and blue) from the pad are fed to a transistor switch. One lead (white) is grounded, and the other (white and blue) is tied to the base of Q1 (2N2222A, 2N718A or other npn). With the pad in an idle condition, the base of Q1 is grounded and is cut off. When any button on the pad is depressed, the base is returned to ground through the 5.1k resistance in the pad. This resistance plus the external 2.2k resistor form a voltage divider, forward biasing the transistor switch, Q1.

The relay: The relay is a subminiature dpdt type with a holding current of about 30 mA. Both sets of contacts are used, one for push-to-talk keying of the vhf transceiver, and the other to toggle the microphone audio of the transceiver between the microphone and the output of the Touch-Tone pad. Breaking the microphone connection insures that no background audio can reach the transceiver microphone input causing distortion of the Touch-Tone tones.

Across the relay coil is a series combination of R1 and C1 and parallel diode CR1. The capacitor C1 sets a delay (relay dropout) time of about 1.5 seconds, allowing the user time to complete a dial sequence without the transceiver dropping out of key. This feature prevents excessive wear of the transceiver relay contacts. It also allows completion without the chance of missing any tones, in case you are a fast dialer.

Dc power source: If you plan to utilize this unit with an existing base station supply, then no problems should be encountered. But, if you are going mobile, the combination of zener diode CR2 and the 33-ohm resistor should be included. This unit likes a stiff dc source.

If your particular installation is noisy, it may be wise to include more than 1500 mF of filtering across the zener. I have just purchased a very noisy car. I had to add an additional 1500 mF of filtering, which has apparently cleaned up the system. Installation of a coaxial bypass capacitor at the firewall helps the filtering. All cables should be shielded, even from the battery to the firewall bypass capacitor. You can even add an inductor in series with the coaxial bypass, with as much as 2000 mF to ground for that extra measure of protection. It has been found that it is hard to have too much filtering in the automotive system.

Pad impedance and levels: The Touch-Tone pad is a low-impedance unit. Variable resistor R2 should be not more than 1k. The specified value of 500 ohms is preferable, otherwise you will have to be almost at the bottom of the pot to keep the tones from distorting. The electrolytic capacitors (1 mF and 2 mF) feeding the audio output line are there to preserve the low-frequency characteristics of the Touch-Tone pad. The 100k resistor, R3, is included to isolate the microphone input from the pad, and to present a high impedance for the microphone input of the transceiver.

Note that there is also included a 1M resistor from the output of the tone burst generator. This value may require some experimentation by the user to obtain the required deviation of the transceiver. If your tone burst generator is one of the types with a very high output level, this resistor may be a value of several megohms. If your transceiver is equipped with any kind of clipping, then pot R2 should be set for a level that is below clipping. If it is not, then the receiver Touch-Tone decoder will not recognize
any of the tones, as they will not be true sine waves. These values (1M) work well with the Regency HR-2. If your radio is a different brand, you may need to juggle them to achieve the desired results. But, the box. However, phono connectors would make it easier to connect and disconnect cables if you ever wanted to work on or modify your pad.

Cutting holes for the pad is a matter of personal choice. You can either make one large hole to show all of the buttons, or get more ambitious and cut individual holes for each button. If your choice is the latter, then using an existing Touch-Tone instrument (assuming you have Touch-Tone in your home) for exact placement of the holes, will leave you with a very neat enclosure. A nibbling tool is very handy for this, but do it from the inside of the box, or your end result will be a disaster area for a front panel.

In the photograph of my unit, I have used individual toggle switches for the tone burst frequency selection. A rotary switch could have been used, but a suitable subminiature type was not available. The center toggle switch which is labeled BURST-DC-PAD, selects dc power

construction

My chassis box is 4 x 6 x 2 inches. The pad is mounted on the right side of the box, and is held in place by two 6-32 screws. One screw mounts on the right hand wall of the box, and the other mounts via an angle bracket secured to the bottom of the box. The tone burst generator is a small pc board (1½ x 2½ inches) mounted on the left wall of the box. I have used a matching microphone jack, which accepts the HR-2 microphone. Shielded Teflon cable runs to the HR-2. In my case, the Teflon cables are soldered directly into the enclosure, and routed out via a small hole in the back of

fig. 1. Schematic of the Touch-Tone pad installation. K1 is a 12 Vdc, Subminiature unit, CR2 and the 33 ohm resistor are optional, but recommended for mobile operation.
for either the tone burst generator or Touch-Tone pad. My feeling is that I will never require power to both at the same time, so why not toggle the power between them? Also, why have a beep on neighborhood ham population, take a little patience, and do it right the first time. You may need to add some more filtering, but really, isn't it worth it? If you are plagued by stray rf floating around your mobile, then add a couple of 0.001-mF capacitors across the microphone audio and push-to-talk lines inside the pad enclosure.

Special thanks are due to Tom Yocom, WAOZHT, whose digital mind dreamed up the repeater with which this pad is used. Also, thanks are due to Jerry Buck, KØYBM, who designed the tone burst generator used in this system and who also did the photograph for this article.

references
digital IC oscillators and dividers

Modern counters and calibrators feature crystal-controlled multivibrators using NAND and NOR gates plus digital IC divider chains. A popular low cost unit is the 7490 decade divider. In its in-line case it houses separate 5-to-1 and 2-to-1 counters, fig. 1. The 5-to-1 counter is actually an inhibited group of three individual 2-to-1 units as described in detail in last month’s column. The 5-to-1 and 2-to-1 combinations have separate input and outputs. The output of one is wired externally to the input of the other to obtain an overall count of 10-to-1. This wiring can be done in two ways; the output of the 2-to-1 fed to the input of the 5-to-1, or, depending upon the desired intermediate count, the output of the 5-to-1 applied to the input of the 2-to-1. The device has great versatility in terms of the selection of preferred counts.

Let’s consider these possibilities in terms of calibration frequencies, assuming a 100-kHz drive signal and two decade dividers. Note in fig. 2A that calibration points would be made available at 100, 20, 10, 2 and 1 kHz. If you take the first decade counter and connect the 2 to the 5 rather than the 5 to the 2, a different combination is set up consisting of 100-, 50-, 25- and 2.5-kHz points.

Additional combinations are shown in figs. 2C and 2D. There are other possibilities, too, that can be established using interwiring combinations as shown in fig. 3.

fig. 1. Basic plan of the 7490 decade divider.
All of the above is quite understandable. However, to the uninitiated, the wiring of an integrated circuit appears to be a very complicated thing. Actually it is simple and the major complication is usually the printed-circuit board. However, this can be avoided by using straight wiring techniques as suggested in the first experimental procedures in the June column. If you use binding posts and jumpers it is also possible to change the count sequences between the combinations shown in figs. 2 and 3.

The pin-out wiring diagrams for the 7490 are given in figs. 4 and 5. Note how very simple it is. There are a number of terminals to which no connection is made and another group which are all tied to common. Of course, there are supply voltage as well as input and output connections to be made. The diagrams of fig. 4 are for using the 2-to-1 and 5-to-1 counters separately. Both the connections of fig. 5 provide the 10-to-1 count.

However, in the first example, the first count is 5-to-1; the second, 2-to-1. The second example is the converse, using the initial 2-to-1 count and then the 5-to-1.

digital IC oscillators

Digital ICs of suitable design can also be used as high-frequency crystal-controlled square-wave generators. The 7400 NAND gate used initially in this series can be operated as a high-frequency oscillator. Two of the four gates are wired as a multivibrator while a third one is used as a buffer output. Doug Blakeslee, W1KLK, has used this common IC successfully with the circuit of fig. 6A. Its output is followed by two 7490 decade dividers.

Ted Bensinger, W5PCX, uses the 7400 in the 3-MHz IC oscillator arrangement of fig. 6B. Two of the NAND gates again serve as the multivibrator while the two other sections are pressed into service as buffer and calibrate outputs. Two decade dividers provide the countdown to 30 kHz. W1KLK operates his circuit at 3 MHz to get the same 30-kHz output. However, he employs a high-frequency 74H00 NAND gate. Theoretically this IC should provide steeper sides and higher harmonic output levels.
frequency is wise because a division of 100 results in a 30-kHz output which is the standard channel separation on the two-meter fm band. The 3-MHz crystal frequency can be adjusted and set on its fifth harmonic which falls on the 15-MHz WWV frequency.

An elaboration of the W1KLK calibrator could include a 3-to-1 counter providing a 1-MHz output, fig. 7. In so doing, a calibration point would be available on other WWV frequencies, if and when the 15-MHz signal is not receivable in a given area. Furthermore, the 1-MHz output could also be switched into the divider chain to obtain the same sequence of output frequencies made available from a 1-MHz crystal source.

The dual binary 7473 J-K flip-flop used in last month’s experiments can be wired as a 3-to-1 counter as shown in fig. 8. Typical waveforms are shown in fig. 9. Another 1-MHz circuit using an MRTL NOR gate is shown in fig. 10.3

higher-frequency operation

High-speed digital ICs permit crystal-controlled square-wave generation at even higher frequencies. The advantage of an output square wave, of course, is in its high harmonic content. A 5-MHz oscillator of this type produces strong discernible calibration points on the amateur vhf and uhf bands. Typical circuits for an MECL type are given in fig. 11.4

Circuit A is for fundamental crystals over a frequency range from approximately 1 MHz to 20 MHz. Circuit B has a broadly resonant output circuit and works with overtone crystals. I have used this latter circuit successfully with overtone crystals in the 50- to 75-MHz range to produce marks on the 6-, 2-, 1½- and 3/4-meter bands. Using a uhf television receiver, calibration points have been checked all the way through the uhf band.

The vhf oscillator can be checked out by using a double calibration technique. I calibrate a 5-MHz crystal oscillator on the highest receivable WWV frequency at the moment. I then tune in its tenth harmonic at 50 MHz on my six-meter receiver. A 50-MHz overtone crystal in the circuit can then be zero-beat with this tenth harmonic of the 5-MHz crystal. Numerous other possibilities exist.

meteor scatter

I have written before of R.A. Ham and his studies of vhf propagation. Mr. Ham is an amateur radio astronomer. Although I have never met or corresponded with him, I have an exceptional respect for his work because of his skill and his individual interest in basic research. He is interested in a phenomenon because it is presently relevant or practical. Our sentry relevant or practical. Our very obsession with “now” relevance and our “so-what” attitudes have become
self-destructive to us as individuals and as a society. One must realize that those things which are non-relevant today might well be of dire relevancy a century from now or even a decade from now; and, furthermore, what we consider relevant today might be most insignificant tomorrow.

Again the following meteor observations of Mr. Ham demonstrate how important radiobeacons can be in basic propagation research. The following is a quote from his coverage in Electronics Weekly (British):5

"The earth, during its annual orbit of the sun, periodically encounters large swarms of meteor particles which are known to astronomers as meteor showers. Reference to the annual handbook of the British Astronomical Association will show that the major meteor showers are the Quadrantids in January, the Lyrids in April, the Perseids in August, the Leonids in November and the Geminids in December.

"The name given to each meteor shower is derived from the constellation of stars from which direction the radiant of the meteors appears to come. For example, one would look toward the constellation of Perseus for the radiants of the Perseid meteors, and toward Leo for the Leonids.

"The visual astronomer hopes for clear skies to enable him to make meteor observations and estimate the number of meteors within the area of the sky which he can see. It is common practice for groups of observers to combine their efforts during a meteor shower to gain as much information as possible. Their reports describe the color, direction and duration of the meteors which they have seen.

"Unfortunately, the visual astronomer has two enemies to contend with; the moonlight, which can make the sky too bright for satisfactory observation, and the weather, which can cloud over the sky at the vital time and prevent any observation at all.

"The amateur radio astronomer can assist his visual colleagues without being hampered by moonlight or overcast skies. The dying ionized trail left by a meteor provides a short-lived passive reflector which can bounce radio signals over a

5fig. 7. Calibration plan with both 1- and 3-MHz facility.

6fig. 6. Using the 7400 as a high-frequency oscillator. Use a 7400 with a 1-MHz crystal and a 74H00 with a 3-MHz crystal. Both the 7400 and the 74H00 are quadruple NAND gates, but only three of the gates are used in these oscillators.

6fig. 5. Basic circuit diagram of the radiobeacon.
A radio receiving station can tune to the frequency of a distant transmitter and record the number of times that its radio signal is deflected by ionized meteor trails.

"During the life of a meteor shower, there can be a large amount of temporary ionization within the earth's atmosphere, and several United Kingdom radio amateurs have taken advantage of this and established communication, on the vhf bands, over large distances. This means of communication is known as the meteor scatter technique.

"Many amateur radio operators within the past two decades have established two-way meteor-trail communication with fellow amateur stations a thousand miles away. These complicated contacts are confirmed by the exchange of QSL cards between the two stations concerned.

"Attempts to communicate via meteor scatter are usually at pre-arranged times and are conducted during a meteor shower when there is a high chance of success.

"Bearing in mind that each meteor trail may only survive for a few seconds, each operator involved in the contact must repeat his call sign and message in high-speed Morse code many times. This intermittent repetition enables the receiving end to piece together tiny bits of the transmitted signal.

"Both operators may have to repeat this procedure at regular intervals for over an hour before a two-way contact can be confirmed.

"Using their CW skill and extreme patience, several United Kingdom amateurs have confirmed meteor-trail contact with amateur stations in some twenty countries. The majority of this work is with continental amateurs and carried out at the CW end of the two-meter amateur band (144.0 to 144.1 MHz).

"Should a reader hear an amateur during a meteor shower, repeating his own call sign at high speed, take a listen on his frequency when he has finished transmitting and minute parts of the replay may be heard.

"Using meteor trail reflection for communication is a chancy business, but
personally think that it is a sporting method and a great achievement.

"During the 1968 Geminids, the author (at his Sussex home) conducted an experiment using the RSGB beacon at Thurso in Scotland as the transmitting end. The object of the experiment was to produce 'GB3' and over 100 minutes later at 2205, another large trail enabled '3GM' to be recorded. The radio signal from a beacon is a continuous tone, which is frequently interrupted with the beacons identification sent in Morse code."

![fig. 11. Logic and pin-out schematics of the hf and vhf oscillators.](image)

evaluate the possibility of recording the beacon's identification (GB3GM) by the meteor-scatter technique.

"On December 13, 1968 at 2000 GMT, the author directed his four meter beam toward the north, carefully tuned his receiver to the beacon frequency (70.305 MHz), and accompanied by an interested witness, monitored this frequency until 2300 GMT.

"Throughout the three-hour period, 'pings' of the beacon's tone could be heard bouncing off tiny meteor trails. At 2049 a deflection from a larger trail

references

comparison of fm receiver performance

FM equipment manufacturers use two different methods of describing receiver performance — this article discusses the differences between these two systems.

Many radio amateurs are confused when they compare the FM sensitivity and performance claims of the various manufacturers. And they have every right to be confused because the methods of measurement are quite different.

Some manufacturers use the 20-dB quieting method, while others use the 12-dB SINAD technique. A comparison of these two very different measurements can be best illustrated with the graph in fig. 1. In this graph the zero dB receiver output reference is the output of an unsquelched receiver without an input signal after the volume control has been adjusted so the receiver delivers rated audio output with an FM generator deviating 0.67 at 1000 Hz.

Curve 1 shows noise quieting, and it is plotted by varying the output of an unmodulated RF generator and measuring receiver output. The 20-dB quieting point occurs at approximately 0.45 μV. This is the most simple sensitivity test which can be performed.

In the SINAD test a modulated RF signal generator is used. In this test, receiver output initially increases with increasing signal level (curve 2). The limiters become saturated at approximately 0.5 μV and receiver output levels out at +4.5 dB. The actual audio in the output signal is signal plus noise plus distortion (S + N + D).

Now curve 3 must be plotted, using an RF signal generator which is modulated with 1000 Hz. A distortion analyzer is connected to the output of the receiver and nulled to reject the 1000-Hz signal. Then the remaining noise and distortion can be measured.

Noise and distortion declines quite rapidly as input signal increases. When the input signal is large, the noise component is practically nil, so curve 3 levels out at the inherent distortion level of the receiver.

The difference between curve 3 and curve 2 is the SINAD ratio. The 12-dB SINAD sensitivity is at approximately 0.25 μV input as shown in fig. 1. The SINAD ratio is computed from the following formula:

\[
\text{SINAD ratio} = (S + N + D) - (N + D)
\]
I will not discuss the pros and cons of each of these systems, but both have their place in determining the actual performance of an fm receiver. I can only hope that the individual manufacturers will quote both results so amateurs can make realistic comparisons.

Most amateurs talk about receiver sensitivity in terms of microvolts. The graph in fig. 1 is also calibrated in dB relative to 1 watt, or dBW. In a 50-ohm system, a 0.5 μV signal is equivalent to 143 dBW. (When doubling the rf input signal, remember that you must increase dB by six.) Another term which is used occasionally is dBm, power in dB relative to 1 milliwatt; dBW can be converted to dBm by subtracting 30 dB. For example, 143 dBW = 113 dBm. A complete nomograph of power, impedance and dBm is given in reference 1.

reference
solid-state vibrator replacement

With the flood of solid state vhf rigs on the market, the price of the vibrator powered units has dropped to a level where almost anyone can afford to go vhf mobile. This solid-state switch fits in a small minibox and has only two wires that connect to the vibrator socket (not counting the chassis ground). The only transients on their edges. These transients are bypassed by an RC combination called a buffer circuit. This is a resistor and capacitor series combination in parallel with the secondary high-voltage winding.

The schematic in fig. 2 shows the oscillator. This unit duplicates the electrical function of the vibrator and thus could be likened to a solid-state switch. With power applied, the circuit first grounds terminal A then terminal B. A brief description would indicate the toroid (similar in dimensions to an 88-mH toroid) is the heart of the circuit. Its function is to feed back current to the bases, alternately saturating Q1 and Q2. CR1 and CR2 are zeners suggested by the transformer company to protect the power transistors from transients. They could be left out but they are inexpensive insurance. The R1, R2 and R3, R4 combinations are resistive current dividers, limiting the base current to a saturated but safe level.

Construction is not critical. The tran-
sistors should be heat sunked as they do run warm under transmit condition. Other components should be mounted with care keeping vibration in mind. A short barrier strip mounted on the outside of the box would permit quick connection and testing without connection to the rig. The switch can be tested without connection to the rig by applying plus 12 Vdc to pin four of the toroid and providing a ground return. The determined from the schematic of your rig. Run two heavy leads from terminals A and B to the pins that correspond to the ends of the primary. A spst switch should now be mounted on the power-supply chassis, accessible from the top side of the chassis. This switch is wired in series with the buffer circuit. Be sure to label this switch as buffer in in the on position and buffer out in the off position. The buffer out position is used with

switch will oscillate at a low frequency (you’ll hear a buzz from the toroid); however, when a load is connected, the operating frequency of the switch is near 1000 Hz. If the load becomes too great, the circuit will stop oscillating and save the transistors from thermal runaway.

Since the switch has only two connections to the rig plus the chassis ground, the hookup time is minimal. The vibrator is removed from its socket. The base of an old vibrator could be used as a quick connector to the vibrator socket. The two pins to be used should be

fig. 2. Transistor switch is the heart of the solidstate vibrator replacement. T1 is an Osborne 2709, available from Osborne Transformer Company, 2823 Mitchell Avenue, Detroit, Michigan 48207.

the solid-state switch as the reactance of the buffer at the new operation frequency (1000 Hz) is much too low and the power it would pass would burn out the resistor in short order. The rig now is ready to operate with the option of returning to vibrator with the flick of the switch to the buffer in position and reinstalling a vibrator.

This same basic circuit appeared in the 1970 edition of The Radio Amateur’s Handbook, page 336, as an integral part of a more complex mobile power supply. Ray Kashubosky, K8RAY
aligning audio filters

The bandpass characteristics of an audio filter may be best displayed and adjusted through the utilization of an audio sweep system with an oscilloscope. However, such systems are expensive and appear only in the best-equipped laboratories. Consequently, filters are sometimes assembled with complete reliance for their tuning entrusted in the labeled values and tolerances stated on the components.

After constructing the excellent 200-Hz filter described by K7UDL in the September, 1967 issue of 73, I questioned whether the four 88-mH toroidal coils were accurately labeled. My suspicions were confirmed when five coils were compared and found to exhibit five different values of inductance.

I found a simple method for precisely matching capacitors, inductors and L-C tank tuning which should be helpful in similar applications. I built the two-terminal inductor oscillator shown in fig. 3 and used a high-impedance earphone to monitor the output tone.

Before assembling a filter, all identical L-C tanks are switched in individually, to form the frequency-determining elements of the oscillator. If the audio tones produced by all tanks are not identical in frequency, tank adjustments are necessary. Select matched inductances by switching the coils across one capacitor until you find coils producing the same tone.

Unpotted coils are convenient, and permit easy adjustment, by removing or adding turns. Match capacitors by switching various capacitor combinations across one toroidal coil until each combination produces exactly the same tone in the earphone. Note that the tone monitored in the earphone does not represent the operating frequency of the assembled filter. The test oscillator serves purely as a comparison device.

In simple one-section filters, tuning may be accomplished by adjustment of either inductance or capacitance. However, in a symmetrical multi-section filter, the Q of equivalent sections should be equal. This requires that both inductance and capacitance in those sections be matched.

With components known to be matched, filters accurately aligned to design frequencies may be assembled with confidence that optimum performance will be enjoyed.

Gene Brizendine, W4ATE

overtone crystals

Do not overtone crystals below 10 MHz unless you have a frequency meter. The frequency will not be three, five, seven or nine times the fundamental. In fact, the frequency can be as much as three percent low. This is shown in fig. 4, a graph of the expected amount of error of low-frequency crystals working on their common overtones. The graph shows average figures taken from tests on many different crystals.

In general, smaller crystals, like the HC-18/U, have bigger errors than larger types, like the HC-6/U or FT-243. However, the older air-mounted types with flat plates (like the 10X) will always be exact multiples.

You can use overtone crystals at their fundamental frequency and at other overtone frequencies. Here is how: Crystal manufacturers can generally make fundamental crystals up to 20 MHz, and they make them for overtones above this. You can easily find out what overtone a crystal works at by dividing the fre-
CW or RTTY, whichever way you go,
HAL HAS TOP QUALITY
YOU CAN AFFORD!

TOP QUALITY RTTY...WITH THE HAL
MAINLINE ST-5 TU. Only 7 HAL circuit boards
(drilled G10 glass) for all features, plug-in IC sockets, and
custom Thordarson transformer for both supplies, 115/230 V, 50-60 Hz. Kit without cabinet, only $135.00; screened,
punched cabinet with pre-drilled connector rails, $35.00;
boards and complete manual, $19.50; wired and tested
units, only $280.00 (with AK-1, $320.00).

OTHER HAL PRODUCTS INCLUDE:
ID-1 Repeater Identifier (wired circuit board) ... $75.00*
ID-1 (completely assembled in 1½” rack
 cabinet) ... $115.00*
HAL ARRRL FM Transmitter Kit $50.00*
W3FFG SSTV Converter Kit $55.00*
Mainline ST-5 TU Kit $50.00*
Mainline AK-1 AFSK Kit $27.50*
HAL RT-1 TU/AFSK Kit $51.50*

NEW FROM HAL—TOP QUALITY
RVD-1002 RTTY VIDEO DISPLAY
UNIT. Revolutionary approach to amateur
RTTY...provides visual display of received
RTTY signal from any TU, at four speeds (60, 66,
75, and 100 WPM), using a TV receiver modified
for video monitoring. Panasonic solid-state TV
receiver/monitor, or monitor only, available.
Complete, $525.00; Panasonic TV receiver/
monitor, $160.00; monitor only, $140.00.*

HAL provides a complete line of components, semi-conductors, and IC’s to fill practically any con-
struction need. Send 24¢ to cover postage for catalog with info and photos on all HAL products
available.

*Above prices do not include shipping costs. Please add 75¢ on parts orders, $2.00 on larger kits.
Shipping via UPS whenever possible; therefore, street address required.

TOP QUALITY...WITH THE HAL MKB-1
MORSE KEYBOARD. As easy as typing a letter—you get
automatic CW with variable speed and
weight, internal audio oscillator
with volume and tone controls, in-
ternal speaker, and audio output jack.
Smooth operation; completely solid-
state, TTL circuitry using G10 glass
boards, regulated power supplies,
and high voltage transistor switch.
Optional automatic ID available. As-
sembled MKB-1, $275.00; in kit form,
$175.00.*

TOP QUALITY...WITH THE HAL RKB-1
RTTY KEYBOARD. Gives you typewriter-easy op-
eration with automatic letter/number shift at four
speeds (60, 66, 75, and 100 WPM). Use with RVD-1002
video display system, or insert in loop of any tele-
printer, for fast and easy RTTY. Completely solid state,
TTL circuitry using G10 glass boards, regulated power
supplies, and transistor loop switch. Optional auto-
matic ID available. RKB-1 assembled, only $275.00; in
tool kit form, only $175.00.*
quency by odd integers (3, 5, 7, 9) until you get the highest frequency below 20 MHz. For example, a 75-MHz crystal cannot be a third overtone because 75 MHz divided by three is 25 MHz. This is too high, being above 20 MHz. It is a fifth-overtone crystal, as 75 MHz divided by five is 15 MHz. This same crystal can be operated at its third overtone to produce 45 MHz, or on its fundamental to get 15 MHz.

If a particular crystal will overtone at all (some very old ones will not), the Butler circuit will do it. Also use the Butler if you want a high overtone like the ninth. Otherwise the Pierce circuit is fine for good crystals at low overtones.

Martin Mann, G8ABR

key and vox clicks

A casual review of Official Observer logs suggests that there are about four times as many transmitters with key clicks on the make of the contacts, than on the break. Often, the amount is not large, but it can be heard several kilohertz to each side of the signal causing unnecessary interference. It may not be noticed by a station tuned to receive the signal because the beat note may obscure it.

Recently, a local amateur telephoned about his signal, so we worked the matter out. He uses a Swan 500C with the keying circuit shown in fig. 5 (except for the plug and key). You will see that capacitor C1507 charges when the key is opened, the rate of charge being limited by R1608. However, when the key is closed, the capacitor discharges abruptly, possibly through contact-bounce in the key. This would tend to make the click mushier.

We connected a resistor decade box in series with the key. When it was set at about 10 kilohms, the scope pattern showed a very nice sloping rise which was very similar to the sloping fall at the other end of dots and dashes. The click was entirely gone.

There is no modification to the transceiver. The resistor can be mounted on the key or, in many cases, inside of the key plug.

It is probable that this same approach will apply to other exciters, many of which have a filter that is adjustable on one end of dots and dashes, but not at the other end.

Some stations have a make click that occurs only after a pause, such as in the first character of a word. Many of these are the result of using a fast vox adjust-

![fig. 4. Graph of the projected frequency error when overtoning crystals below 10 MHz.](image)

![fig. 5. Simple addition of a 10k resistor in series with the key eliminated clicks in this circuit.](image)
Chew the rag all day or win the contests...

the CX7A makes them both easier.

There are a couple of different ways to look at signal/one's CX7A. You might compare it to a car. For the rag-chewer's convenience and ease of operation, it's strictly in the Rolls-Royce category.

For the competitive-minded amateur, it's like driving a Ferrari.

That's because the CX7A was designed with uncompromising quality. With more features than you can imagine. The rig equals a room full of gear, all neatly enclosed in a compact, desk-top unit.

It lets you do things no other rig lets you do. And do all of them better. Sitting at the console of the CX7A you're in command of the amateur radio universe.

Whether you're a Rolls-Royce type or a Ferrari-minded guy.

See the remarkable CX7A at your signal/one dealer's. Or write for a detailed brochure. For $2,195, you'll be the coolest rag-chewer in town. Or the hottest competitor.

signal/one

a subsidiary of
Computer Measurements, Inc.
1645 West 135th Street
Gardena, California 90249
Phone: (213) 532-9754
RTTY for the blind

Dear HR:

I recently constructed about a dozen TTL SELCAL units for amateur RTTY. During the course of this activity it has become evident that it would not be too difficult to use similar techniques to build a unit that would make it possible for blind people to read a teletype signal right off the air. If it could be arranged it would open up a new field of interest for our blind friends.

Circuitry can readily be arranged which will recognize any teletype character or letter and, with suitable processing, turn on a light, energize a relay, or as in our case, operate a solenoid. The idea we are presenting is to arrange ten such small solenoids (for use in the case of 5 level teletype) so that 5 of them would be continuously operated by the incoming characters in the LTRS mode of operation while the other five would be operated by the FIGS. The receiving operator could place his left fingers over one of these sets and his right fingers over the other.

It should not take too much practice for the receiving operator to be able to recognize the characters as they came in from the various "highs" and "lows" in each character. Initial practicing could be done at any slow speed such as five or ten words per minute by the simple expedient of having a helper punch occasional letters on a keyboard connected to the "reader." Possibly punched tapes could be played back at any speed the operator chose through the use of a dc speed-controlled motor belted to the standard tape reader motor. With a few month's practice some operators should be able to copy at the full rate of sixty words per minute because each character would be available both to feel and hear instantly. Any necessary combination of characters and blank spaces could be utilized to assist slower operators.

There is a possibility that a whole new area of interest might develop from these suggestions. Blind people could write back and forth to each other on punched tapes. Articles and even whole books could be made available on punched tape. In some cases ordinary magnetic tape could be used to record the familiar audio tones of the RTTY signals and the receiving operator (with a demodulator, modified SELCAL, and our suggested solenoid combination) could "read" the tape. The most useful purpose we are thinking of for the moment, though, is that blind hams with the proper equipment could communicate with any other ham using teletype.

The diagrams will show briefly the techniques we are suggesting. Possibly other ideas from interested parties would help to realize a satisfactory arrangement. While thinking on this subject, it might be kept in mind that people who are deaf could communicate with each other or with blind persons or with anyone else through RTTY circuits. Anyone working on these ideas would be wise to consider the whole concept.

Larry Walrod, VE7BRK
Kelowna, B. C., Canada
diode surge protection

Dear HR:

In the article "Diode Surge Protection" by John Lapham, WA7LUJ, which appeared on page 65 of the March, 1972 issue of *ham radio*, the author is correct when he is talking about high-voltage power supplies using modern diodes — the transformer's secondary dc resistance is usually sufficient to protect the bridge diodes against surge current. However, in low-voltage supplies it is a critical problem which should not be overlooked.

An example is a power supply I was designing for my workbench. I had a 10 V transformer rated at 4 A. It had a secondary dc resistance of 0.33 ohms. With the other components on hand — an epoxy bridge rectifier and a 2000 mF capacitor — I had a 50 A surge current for one duty cycle and I needed 0.6 ohms of surge resistance to limit the surge current. Without the addition of an external resistor, I would be keeping the diode manufacturers in business.

It only takes a few seconds to make the surge calculations which could save lots of headaches and pennies later. I recommend it for any design, but especially in low-voltage designs.

Mr. Lapham stated, "Surge protection is a needless feature in power supplies." This is simply not so in low-voltage designs, and I think this distinction should be made clear.

Joseph P. Bremmer, WB6KXF
Pomona, California

Canadian promotion

Dear HR:

Congratulations on your promotion to make Canadian amateurs aware of *ham radio*! Glad to say I am one of the "in crowd" already being a subscriber for several years. Good Luck!

Dud Hatcher, VE7FD
South Burnaby, British Columbia
NEW

2 Meter Fixed Station

Designed for the man who demands professional standards in 2 meter equipment. **REPEATER LINE** fixed station antennas are the 2 meter HAM's dream come true. With everything you need for top fixed station performance...toughness, efficiency and the gain to gain access to distant repeaters with ease. Work many stations, fixed or mobile, without access to a repeater.

The right antennas for the new FM transceivers...or any 2 meter fixed station.

REPEATER LINE Fixed Station Antennas

Tough, high efficiency antennas with a long, low radiation. For the top signal and reception you want...and the top performance your transceiver's ready to deliver.

267 Standard 1/4 wave ground plane. May be precision tuned to any discrete frequency between 108 and 450 MHz. Takes maximum legal power. Accepts PL-259. Constructed of heavy gauge seamless aluminum tubing.

268 For repeater use. Special stacked 4 dipole configuration. 9.5 db offset gain. 6.1 db omnidirectional gain. Heavy wall commercial type construction. 144 thru 174 MHz. 1.5:1 VSWR over 15 MHz bandwidth eliminates field tuning. Extreme bandwidth great for repeater use. Center fed for best low angle radiation. DC ground. Complete with plated steel mounting clamps.

338 Colinear ground plane. 3.4 db gain omnidirectionally. Vertically polarized. 52 ohm match. Radiator of seamless aluminum tubing; radials of solid aluminum rod. VSWR less than 1.5:1. All steel parts iridite treated. Accepts PL-259.

362 SJ2S4 high performance all-driven stacked array. 4 vertically polarized dipoles. 6.2 omnidirectional gain. 52 ohm. May be mounted on mast or roof saddle. Unique phasing and matching harness for perfect parallel phase relationship. Center fed. Broad band response. DC ground.

Antennas with real PUNCH!

WRITE FOR DETAILS
For top fixed station performance on 2 meters...
THE REPEATER LINE
From
HY-GAIN ELECTRONICS CORPORATION
BOX 5407-WH LINCOLN, NEBRASKA 68505

More Details? CHECK-OFF Page 110
For the most powerful antennas under the sun

Go all the way into

the REPEATER

There's nothing half-way about the new Hy-Gain REPEATER LINE. Designed for the man who demands professional standards in 2 meter mobile equipment, the REPEATER LINE is the 2 meter HAM's dream come true. It's got everything you need for top performance... toughness, efficiency and the muscle to gain access to distant repeaters with ease. Reaches more stations, fixed or mobile, direct, without a repeater.

The right antennas for the new FM transceivers... or any 2 meter mobile rig.

Rugged, high riding mobiles. Ready to go where you go, take what you dish out... and deliver every bit of performance your rig is capable of.

261 Commercial duty 1/4 wave, claw mounted roof top whip. Precision tunable to any discrete frequency 108 thru 470 MHz. Complete with 18' of coax and connector. 17-7 ph stainless steel whip.

260 Same as above. Furnished without coax.

262 Rugged, magnetic mount whip. 108 thru 470 MHz. Great for temporary or semi-permanent no-hole installation. Holds secure to 100 mph. Complete with coax and connector. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip.

263 Special no-hole trunk lip mount. 3 db gain. 130 thru 174 MHz. 5/8 wave. Complete with 16' coax. Operates at DC ground. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip.

264 High efficiency, vertically polarized omnidirectional roof top whip. 3 db gain. Perfect 52 ohm match provided by base matching coil with DC ground. Coax and connector furnished.

265 Special magnetic mount. 3 db gain. Performance equal to permanent mounts. Holds at 90 mph plus. 12' of coax and connector. Base matching coil for 52 ohm match. 17-7 ph stainless steel whip. DC ground.

269 Rugged, durable, continuously loaded flexible VHF antenna for portables and walkie talkies. Completely insulated with special vinyl coating. Bends at all angles without breaking or cracking finish. Cannot be accidentally shorted out. Furnished with 5/16-32 base. Fits Motorola HT; Johnson; RCA Personalfone; Federal Sign & Signal; and certain KAAR, Aerotron, Comco and Repco units.
2 meter mobile! with

Top performance for 2 meter mobiles
THE REPEATER LINE
from
HY-GAIN ELECTRONICS CORPORATION
BOX 5407-WH LINCOLN, NEBRASKA 68505
WRITE FOR DETAILS

More Details? CHECK-OFF Page 110
CRYSTAL FILTERS and DISCRIMINATORS

1 27/64" x 1 3/64" x 3/4"

by K.V.G.

10.7 MHz FILTERS
XF107-A 14KHz WBFM $30.25
XF107-B 16KHz WBFM $30.25
XF107-C 32KHz WBFM $30.25
XF107-D 38KHz WBFM $30.25
XF107-S04 14KHz WBFM (4 pole, in HC6/U crystal can) $15.95

10.7 MHz DISCRIMINATORS
XD107-01 30KHz WBFM $15.95
XD107-02 50KHz WBFM $15.95

VHF CONVERTERS

<table>
<thead>
<tr>
<th>RF Freq. (MHz)</th>
<th>MM 50</th>
<th>MM 144</th>
<th>MM 220</th>
<th>MM 432</th>
<th>MM 1296</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.F. (typical)</td>
<td>2.5dB</td>
<td>2.8dB</td>
<td>3.4dB</td>
<td>3.8dB</td>
<td>COMING</td>
</tr>
<tr>
<td>Nom. Gain</td>
<td>30dB</td>
<td>30dB</td>
<td>30dB</td>
<td>30dB</td>
<td>SOON</td>
</tr>
<tr>
<td></td>
<td>$49.95</td>
<td>$49.95</td>
<td>$54.95</td>
<td>$59.95</td>
<td></td>
</tr>
</tbody>
</table>

Standard I.F. 28-30MHz + Power 12v DC
1 1/4" x 2 3/4" x 4 7/8" + connectors.
* Other ranges available on request

SPECTRUM INTERNATIONAL
BOX 1084 CONCORD MASSACHUSETTS 01742

ALL SOLID-STATE SSB TRANSCIEVER

SSB-3 $195.50

- Complete single-band SSB transceiver 4 to 5 watts PEP output 15, 20, 40 or 75 meters.
- VFO tuning 3750 to 4000 on 75, full coverage on 40, 20 and 15 meter amateur bands.
- Suitable for dry battery operation.
- Light weight, small size, makes excellent portable — boat, aircraft, field or mobile.
- Contains 15 transistors, 1 mosfet, 2 Darlington amps, 1 I.C. and 17 diodes. Four-pole filter.
- Available accessories, AC power supply, MIC, headsets, lightweight dipole and 40 watt PEP linear amplifier.
- Xtal controlled emergency and net transceiver available. Write for full information on transceivers and accessories.

JUSTIN INC.
2663 LEE STREET
SOUTH EL MONTE, CALIF. 91733

KOJO AUDIO FILTERS FOR SSB AND CW

The KOJO audio filters can greatly improve reception on all receivers, even the most sophisticated receivers. Large amounts of high-frequency hiss, background noise and sideband buckshot can be removed.

The SSB filter is of a low pass configuration, designed with a sharp cutoff to provide a rejection of better than 30 decibels at all ham band frequencies above approximately 3500 Hz. The filter is specifically designed to be placed in a low-impedance line for earphones or speaker.

The CW filter has a spot frequency of 780 Hz and a passband of 1100 Hz with a reference level, 40 decibels below the signal level at the design frequency. The peak of the passband is 100 Hz wide at the -3 decibel reference points. The CW filter is specifically designed for low-impedance input and high-impedance output. High-impedance crystal earphones are recommended. However, with low impedance earphones a small auxiliary amplifier or impedance matching transformer may be used. KOJO filters are made up of top grade coils and components and are available in easy to assemble kit form with simplified instructions, or in a deluxe model. The deluxe model is completely built up and ready for use and is enclosed in a Gray cabinet® with convenient IN-OUT switch.

Try a KOJO and see what you can hear now and could not clearly hear before.

Deluxe SSB Filter Kit $8.95 Deluxe CW Filter Kit $18.95
Deluxe SSB Filter Kit $12.95 Deluxe CW Filter Kit $21.95

All filters shipped postpaid. Arizona residents add 4% sales tax.

THE J. LYNCH CO.
P. O. Box 7774, Phoenix, Arizona 85011

More Details? CHECK-OFF Page 110
The CRICKET is here —
and it has the jump on all the others in its field!

This low cost keyer has more features for your dollar than all others in its price range. Even some in a higher price range! Go ahead — look around — compare the rest! Then buy the BEST — Data Engineering’s new CRICKET I.

- Jam-proof spacing
- Self-completing dots and dashes
- Sidetone osc. and speaker
- Built-in key
- Relay keys 300 V at 1 amp
- Keyed time base. Instant start
- 3.5 to 50 w.p.m.
- "Full-control" weight ratio
- Speed, volume and tone controls
- Transmitter tune switch
- Auto/semi-auto. switch
- AC powered. Can also operate from 12V battery.

$49.95

Why don’t you get the jump on all the others — too?

AT LAST —
A FREQUENCY STANDARD DESIGNED SPECIFICALLY FOR THE FM’ER!

Now, for the first time, you can be exact with your channel spacing and deviation.

This deluxe marker allows you to check your receive and transmit spacing for channels in the 10, 6, 2, and 1½ meter FM bands. Markers are at 5, 10, 15, 20, 30, 40, 60 and 120 KHz. Precision 12 MHz crystal. Osc. and output buffered. No unwanted markers. Rich harmonics beyond 220 MHz.

$44.50 (Less batteries)

MEMORY-MATIC 500 KEYER
Today’s newest and most advanced keyer. 500 bit/40 character Read-Write memory. Stores any message instantly. Near-Full and overload alarms. Includes all Space-Matic 21 features.

$198.50

FREQUENCY MARKER STANDARD
Markers at 5, 10, 25, 50, 100, 200 and 400 kHz. 400 kHz crystal. No unwanted markers. Latest low power ICs. Buffered osc. and output.

$32.95 (Less Batteries)

SPACE-MATIC 21 KEYER

$89.50

ELECTRONIC FEATHER TOUCH KEY
The solid-state design detects the mere touch of your finger and eliminates such problems as contact bounce, proper adjustments and dirty contacts. Operates with all keys. Weighted.

$22.95, $25.95 (with SPDT Switch Option)

5-year guarantees · PPD USA · Send for brochures

DATA ENGINEERING INC.
Box 1245 · Springfield, Va. 22151

More Details? CHECK—OFF Page 110
KW107 SuperMatch

- **E-Z Match Tuner**
- **SWR Meter**
- **Power Meter**
- **Dummy Load**
- **Antenna Switch**
- **350 watts PEP**

Clean up the unsightly tangle of wires around the shack and your wife will think it’s beautiful.

KW Electronics

Send for FREE Literature

FREQUENCY STANDARD

Only $32.50

- **Precision crystal**
- **Fully guaranteed**

- Markers at 100, 50, 25, 10 or 5 kHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Send for free brochure.

PALOMAR ENGINEERS

BOX 455, ESCONDIDO, CA 92025

Radio Amateurs Reference Library of Maps and Atlas

- **WORLD PREFIX MAP** — Full color, 40" x 28", shows prefixes on each country, DX zones, time zones, cities, cross referenced tables. Postpaid $1.25
- **RADIO AMATEURS MAP OF NORTH AMERICA**! Full color, 30" x 25" includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones. FCC frequency chart, plus informative information on each of the 50 United States and other Countries. Postpaid $1.25
- **WORLD ATLAS** — Only atlas compiled for radio amateurs. Packed with worldwide information — includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica — a complete set of maps of the world. 20 pages, size 8¾" x 12" Postpaid $2.00

Complete reference library of maps — set of 4 as listed above Postpaid $3.50

See your favorite dealer or order direct.

More Details? CHECK-OFF Page 110
Digital Readout

At a price everyone can afford.
- Operates from 5 VDC.
- Same as TTL and DTL.
- Will last 250,000 hours.

<table>
<thead>
<tr>
<th>Minimtron Readout</th>
<th>Digital readout</th>
<th>BCD to 7 — Segment Decoder/driver</th>
<th>7490 Decade Counter</th>
<th>7475 Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Only $8.20</td>
<td></td>
</tr>
</tbody>
</table>

Plessey SL403D

- 3.5 W Audio Amp IC
- Hi-Fi Quality
- $3.95

with 12 pages of construction data.

National Devices

- LM370 AGC/Squelch amp $4.85
- LM373 AM/FM/SSB IF strip/Det $4.85
- LM309K 5V 1A regulator. If you are using TTL you need this one. $3.00

Motorola Tuning Diodes

Silicon voltage variable capacitance diodes in TO-92 plastic case like plastic transistors. Both standard Motorola and HEP numbers are listed devices are same. Capacitance value is typical at —4Vdc. Tuning ratio is approx. 3:1.

- MV2101/R2500 6.8 pF $1.10
- MV2103/R2501 10 pF $1.10
- MV2105/R2502 15 pF $1.10
- MV2109/R2503 33 pF $1.10
- MV2112/R2504 56 pF $1.10
- MV2115/R2505 100 pF $1.10

Fets

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPF102</td>
<td>$0.60</td>
</tr>
<tr>
<td>MPF105/2N459</td>
<td>$0.96</td>
</tr>
<tr>
<td>MPF107/2N486</td>
<td>$1.26</td>
</tr>
<tr>
<td>MPF121</td>
<td>$1.85</td>
</tr>
<tr>
<td>MFE3007</td>
<td>$1.98</td>
</tr>
<tr>
<td>4067T</td>
<td>$1.75</td>
</tr>
<tr>
<td>3N140</td>
<td>$1.95</td>
</tr>
<tr>
<td>3N141</td>
<td>$1.86</td>
</tr>
</tbody>
</table>

New Fairchild Ecl

High Speed Digital IC's

- 9528 Dual "D", FF toggles beyond 160MHz $4.65
- 9582 Multi-function gate & amplifier $3.15
- 95H90 300 MHz decade counter $16.00

A 95H90 & 9582 makes an excellent prescaler to extend low frequency counters to VH — or use two 9528s for a 160 MHz prescaler.

Signetics Phase Locked Loop

<table>
<thead>
<tr>
<th>Device</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE561B</td>
<td>$4.75</td>
</tr>
<tr>
<td>NE562B</td>
<td>$4.75</td>
</tr>
<tr>
<td>NE566V</td>
<td>$4.75</td>
</tr>
<tr>
<td>NE567V</td>
<td>$4.75</td>
</tr>
<tr>
<td>N5111A</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Circuit Specialists Co.

Box 3047, Scottsdale, AZ 85257

FACTORY AUTHORIZED

HEP-CIRCUIT-STIK

Distributor

Please add $35 for shipping.
Regency 2 Meter FM—American made at import prices

Get the American Made Regency HR-2A
2 Meter Mobile FM Transceiver.
15 watts minimum output. Only $229.00

Specifications
Power Output: 15 watts at 13.6 V DC
Frequency Range: 144-148 MHz
Channels: 6 transmit;
12 receive capability
Sensitivity: 0.35 μV (nom.)
20 DB quieting
Spurious Rejection: 60 DB
Size: 2½” x 5½” x 7½”

Model HR-2A
Mobile Unit. Includes microphone, mounting bracket, tx and rx crystals for 146.94 MHz

for all your 2 Meter FM needs

Model HR-2MS 8 channel Transcan™ with signal search reception and 15 watts minimum output.$319.00 Amateur Net.

New! Model HR-212
12 channel 2 Meter FM Transceiver. 20 watts output power.$259.00 Amateur Net.

Model AR-2 Amplifier boosts 2 Meter FM output power 300%. $119.00 Amateur Net.

Regency Electronics, Inc.
7900 Pendleton Pike • Indianapolis, Indiana 46226

Regency 2 Meter FM—American made at import prices

New
3 Digit Counter

* The model fm-36 3-digit frequency meter has the same features that has made the 2 digit model so popular with Hams — low price, small size (smaller than a QSL card), 35 MHz top frequency, simple connection to your transmitter, +0 .0.1 KHz readout — PLUS the added convenience of a third digit to provide a 6 digit capability. Kit or Assembled.
Example: 28,649.800 Hz reads 28.6 MHz or 49.8 KHz. (Add the 10 Hz module to read 9.80.)

FM-36 KIT $134.50

NEW
300 MHz PRESCALER only $45.00
with fm-36 order

Micro-Z Co.
Box 2426 Rolling Hills, Calif. 90274

SAROC
HELD ANNUALLY IN LAS VEGAS, NEVADA

HE SIGNED HIS TAB. W7PBV IS HE SOME KIND OF A NUT?

THEY ALL ARE, HONEY.

SEE YOUR FAVORITE AMATEUR MAGAZINE FOR FURTHER DETAILS OR WRITE
SOUTHERN NEVADA AMATEUR RADIO CLUB, INC.
P.O. BOX 73, BOULDER CITY, NEVADA 89005

August 1972

More Details? CHECK-OFF Page 110
2 Meter magnetic mounted TH-2Mk3 Lafayette Sorenson Nobatron power Electro-Measurements Comparison Bridge.

More Details? CHECK-OFF Page 110

Optional Tektronix 545 Scope with 53/54 plug in, good current is 25 amp 275.00

Tektronix 105 square wave generator

AN/SRA-15, 6-18Mhz antenna coupler 99.95

Dycomm 100-0 FM Amp, 100 watt output 195.00

Gold-Line RF Wattmeter - 1 KW 39.95

Boonton 202B AM/FM signal generator with built in calibrated attenuator, covers 54 to 2100 kHz, excellent condition 275.00

Digipet 60-60 MHz Frequency Counter, 5 Nixie tubes with KHz-MHz switch. Reads out to cycle. Sensitivity .05 volt. Input impedance 1 megohm or 50 ohms, new 299.00

TS-3828/BU audio oscillator, 200Hz-200kHz with 60/400 Hz frequency meter (like new) 75.00

Tektronix 545 Scope with 53/54 plug in, good condition 775.00

Remote control box for FM transmitter 3.95

Optional Handset for above 5.95

PRD Broadband Microwave Oscillator, 7" rack mount, less tube and PS, 3.5-7.5GHz 19.95

Probescope MD-500 spectrum analyzer main unit, good condition 150.00

Sorenson Nobatron power supply model MR-3551, 5-36 VDC at 0-30 Amps regulated output, input 117 VAC at 60Hz 10 325.00

Behlman Inverter power supply, 30400Hz output at 0-1200VAC. Frequency, Phase and Voltage are regulated. 250 VA max. out. Input is 117VAC 60Hz 10 325.00

Electro-Measurements Comparison Bridge, useful to full test inductors, resistors and capacitors at 1 kHz. Oscillator is built in and the readout sensitivity is .01% for both phase and magnitude 95.00

TH-3Mk3 tribander, 3 element 144.95

TH-2 tribander, 2 element 99.95

Lafayette Stereo 860 tape recorder, four track unit previously in use for SSTV 95.00

2 Meter magnetic mounted ground plane for mobile use, w/coax & PL-259 9.95

Collins 75A2; Serial No. 2032 w/book 175.00

Dare SW4A, xint 225.00

Dare 2C xint 175.00

Hammarlund HQ-215, good condition 295.00

(HQ-215 includes original speaker)

Hammarlund HQ-170/clock, fair 145.00

Digipet 160 MHz Frequency Counter, 130-160 MHz. Sensitivity 2 volts RMS. Input impedance 50 ohms. New 50.00

Hallcrafters FFM-300 transceiver with built in universal 110/220 AC and 12 DC power supply. Covers 80-10 meters. 250W PEP 595.00

Dare WW-4 VHF Wattmeter

Write Lafayette HA-460 6 meter transceiver 95.00

Lafayette HA-750 6 meter mobile unit 85.00

Ten-Tec PM2B, 80-40-20 CW 65.95

Ten-Tec PM3A, 40-20 CW, 5 Watts 79.95

Ten-Tec KR40 deluxe squeeze keyer 89.95

Ten-Tec KR20 paddle type keyer 59.95

Ten-Tec KR5 basic paddle keyer 34.95

Ten-Tec RX10 receiver, 80-15M 59.95

Ten-Tec TX100 transmitter, 80-40-15M 109.95

We carry most of the other Ten-Tec units.

Dare TR-22, new 199.95

Dare ML-2, new 299.95

Hallcrafters HT-44/PS150-120 250.00

Pearce-Simpson Gladding-25, new 249.95

DC Voltmeter, 0-25 Volt 3.95

Icom IC-21 24 channel FM transceiver 389.95

Kaar CH-25 commercial 6 channel SSB/AM transceiver, FCC type accepted 295.00

Inet power supply model RR 120-25, 32-120 volt dc output. Input 208 30, max. output current is 25 amps 275.00

Collins 755-3/C, unused 850.00

Collins 305-1, excellent 1400.00

A50-3, 6 meter 3 element beam 18.50

A26-9, 6 & 2 meter beam 29.95

A144-7, 2 meter 7 element beam 13.95

A144-11, 2 meter 11 element beam 17.95

AR-2, % wave 2 meter vertical 13.50

14AVQ/WB, 40-10 meter vertical 39.95

18AVT/WB, 80-10 meter vertical 59.95

HAM-M rotator 99.95

TR-44 rotator 63.95

We carry a large inventory of Airdux and James Millen parts.

Come in and look around! Our hours are 9:00 till 7:30 weekdays and 10:00 till 3:00 on Saturday. We stock very large quantities of tubes. Write for a quote or else call us at (212) 925-7000. We are distributors for Eimac, Amperex, Cetron, Westinghouse, etc.

BARRY 512 Broadway NY, NY 10012
212-WA-5-7000 ELECTRONICS

More Details? CHECK-OFF Page 110
send perfect code
get automatic CW
with continuously variable speed
from 5 to 55 WPM.

$198.

- All solid-state.
- Fully assembled and ready to plug-in and operate.
- Features built-in audio-oscillator/amplifier, monitor, and audio output jack.
- Regulated A.C. power supply suits both 115 and 220-240 Volt operation.
- Deal direct with the manufacturer and save.
- Phone or write for our free illustrated brochure.
- Send your check or money order for $198.00 (plus Sales Tax for California residents) and we pay freight or order C.O.D. freight collect.

MARTRONICS
Post Office Box 4646
Anthem, California 92803
Telephone (714) 628-7571

CRYSTAL BARGAINS

We supply crystals from 16 KHz to 100 MHz in many types of holders. Over 6 million crystals in stock. We manufacture crystals for almost all model SCANNERS, MONITORS, 2-WAY RADIO, REPEATERS, etc. Inquire about special quantity prices. Order direct with check or money order.

For first class mail add 15c per crystal...for airmail add 20c ea.

Send 10c for new catalog with oscillator circuits and lists of thousands of frequencies in stock.

SPECIALS! CRYSTALS FOR:

- Frequency Standards 100 KHz: (HC13/U) $4.50
 1000 KHz: (HC8/U) 4.50
 Almost All CB Sets: Trans or Rec. (CB Synthesizer Crystal on request) 2.50
- Any Amateur Band in FT-243 1.50
- Except 80 meters 4 for 5.00
- 80 Meter Range in FT-243 2.50
- Color TV 3579.545 KHz: (wire leads) 1.60
- 4 for 5.00

Depend on...

We supply crystals from 16 KHz to 100 MHz in many types of holders. Over 6 million crystals in stock. We manufacture crystals for almost all model SCANNERS, MONITORS, 2-WAY RADIO, REPEATERS, etc. Inquire about special quantity prices. Order direct with check or money order.

For first class mail add 15c per crystal...for airmail add 20c ea.

Send 10c for new catalog with oscillator circuits and lists of thousands of frequencies in stock.

SPECIALS! CRYSTALS FOR:

- Frequency Standards 100 KHz: (HC13/U) $4.50
 1000 KHz: (HC8/U) 4.50
 Almost All CB Sets: Trans or Rec. (CB Synthesizer Crystal on request) 2.50
- Any Amateur Band in FT-243 1.50
- Except 80 meters 4 for 5.00
- 80 Meter Range in FT-243 2.50
- Color TV 3579.545 KHz: (wire leads) 1.60
- 4 for 5.00

AT LAST--
A SPEECH COMPRESSOR THAT REALLY WORKS!

- LOW DISTORTION CIRCUIT
- FULLY WIRED & TESTED NOT A KIT
- WORKS WITH PHONE PATCH
- INTERNAL UNITS & MODULES WORK MOBILE
- FULL WARRANTY—ONE YEAR
- INTRODUCTORY LOW PRICES (Illinois residents add 5% Sales Tax)

Write for specifications and information sheets (free)
Demonstration Tape (cassette) available ($2.00 deposit)

RPC-3M MODULE (ONLY $22.50)

RPC-3C CABINET MODEL ($34.95)

RPC-3.3U INTERNAL UNIT ($24.95)

$ Electronics
BOX 1201H
CHAMPAIGN, ILL.
61820

88 august 1972
ADD A LINEAR* TO MY 2M FM RIG? WHY NOT?
YOU DID IT ON 80-40-20-15-& 10!
And you did it for a good reason!

You wanted to put out a signal that others could hear — without noise, fade, fatigue, or interference.

A DYCOMM BOOSTER* can do for you what it has for over 3,000 amateurs:
- Provide up to 50 times increase in power.
- Reduce the cost over a higher power rig.
- Is fully transistorized — no tubes to ever replace.
- Provide mobile rig with more variety — car-car, car-base plus more repeaters you can work through.
- Is fully guaranteed to perform with an outstanding warranty program.

A model for virtually EVERY 2M rig!

Model Line Up:

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Power</th>
<th>Output Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-0</td>
<td>10 W</td>
<td>100 W</td>
<td>$195.00</td>
</tr>
<tr>
<td>D</td>
<td>10 W</td>
<td>40 W</td>
<td>99.95</td>
</tr>
<tr>
<td>ES</td>
<td>1 W</td>
<td>40 W</td>
<td>99.95</td>
</tr>
</tbody>
</table>

Write for a brochure or call your nearest amateur dealer — you hear!

* A common term for add-on amplifiers.

DYNAMIC COMMUNICATIONS, INC.
948 AVENUE E, P. O. BOX 10116
RIVIERA BEACH, FLORIDA 33404
305-844-1323

NEW CT-1 From
Will allow you
to Dynamically test all
types of capacitors.

The Model CT-1 features a built-in electronic power supply providing BOTH AC and DC Test Voltages in a special circuit with highly sensitive NEON type leakage indicator.

Only $16.95 postpaid
Capacitor Range: .00025 — 1000 mfd.
Sensitivity: Over 200 MEGOHMS
30 DAY MONEY-BACK GUARANTEE

LEE ELECTRONIC LABS, INC.
88 Evans St., Watertown, MA 02172
Dealer Inquiries Invited.
FACTORY CLOSEOUT!

POWERFUL LINEAR AMPLIFIER
for knowledgeable amateurs!

SAVE $200.00

• Current Model
 *FREE FREIGHT if you ACT NOW! (see below)

• Fully Guaranteed and Warranted

All the quality features you demand... and then some!
FULL 1000 WATTS plate dissipation with rugged, low cost 3-1000Z triode by Eimac.
CONVENIENT band switching, control and metering.
FULL LOADING on all amateur bands 80-10 meters.
MORE AND CLEANER TALK POWER without flat topping with adjustable ALC on RF panel.
EASY to load and tune all bands.
EFFICIENT grounded grid, zero bias linear circuit.
INSTANT transmit — no warm up wait with solid state power supply.
HANDY desk-high size for easy operation, rolls easily on casters.
COMPATIBLE with most modern transceiver exciters.
BROADBAND tuned cathode inputs for all bands.

BTI LK-2000 HD
LINEAR AMPLIFIER

Parts maintained for your convenience for a full year. Most parts standard, and all domestic, no imports.

*FREE Freight! Buy now and save freight cost! If your check or Money Order accompanies your order now, we will send it to you prepaid!

If you're not quite ready to buy then send for the complete Instruction Manual for only $1.

More Details? CHECK-OFF Page 110
GATEWAY ELECTRONICS

8123 PAGE AVENUE
ST. LOUIS, MISSOURI 63130
314-427-6116

- **8298/6146B. New.** $4.50
- **6146A. New.** $3.75
- **B421. “Nixie” Tube. New.** $3.50

THUMBWHEEL SWITCHES — Min. size 0.312x 1.3x1.3. 10 pos. decimal — $2.00, 10 pos. BCD & compliment — $2.75, end plates $.50 pr.

STANDARD SIZE — 0.5x.125x1.75. 10 pos. decimal — $2.75, 10 pos. BCD & compliment — $3.75, end plates $1.00 pr. Shipping wt. 1/4 lb.

PRINTED CIRCUIT BOARD ASSORT. 2 lbs. $2.50

ZENER DIODES 1 watt 5% .75 each 3.9v, 4.7v, 5.1v, 5.6v, 6.2v, 6.8v, 9.1v, 12v, 24v 10 for $7.00

IC SOCKETS. 14 pin .50, 10/$4.50. 16 PIN .55, 10/$5.00.

115 V.A.C. TIME DELAY RELAYS Normally open 30 sec., 75 sec. $1.50

TEFLON WIRE ASSORTMENT. 100' 5 assorted colors, 20-24 gauge. $1.50

$5.00 Minimum Order
Visit us when in St. Louis

STRUCTURAL GLASS

GEM-QUAD
FOR 10, 15 AND 20 METERS

A two element fibre glass quad antenna designed for better signal discrimination & directivity on 10, 15 & 20 meters!

- **NEW**
 - Stronger Arms (closer wound).
 - Strong alloy RF wire.
 - Improved quality nylon straps.
 - UV resistant.
 - Low wind resistance (2.4 sq. ft.)

Send for literature
STRUCTURAL GLASS LIMITED

20 Burnett Ave., Winnipeg 16, Manitoba

W2DLT ELECTRONICS

302H Passaic Ave., STIRLING, N.J. 07980
Phone: 201-647-3639
Div. of Teletype Communication Specialists
ARC-5 VHF RECEIVER, TRANSMITTER, MODULATOR 100-156 Mhz $19.50
R-28 RECEIVER with tubes and crystal, Excellent Used........ 1 $19.50
T-23 TRANSMITTER with tubes and crystals, Brand New in Original Carton........ $23.50
MD-7 MODULATOR with tubes, Excellent Used........ 1 $10.50
Set of Plugs for MD-7........ 1 $8.50

AV/ANT-12 TRANSMITTER
Makes fine Ham transmitter for 80, 40, 20 and 10 meters. Power output 100 watts on AM, CW, MCW. 10 preset channels, Complete with all tubes, crystal, Exc. Used........ 1 $49.50 LIKE NEW........ 1 $59.50
Accessories Available; Prices Upon Request

2" DC VOLTOMETER
Mounts in 2-1/8" hole, Flange diameter 2-5/8" Two scales: 0-15 and 0-600, Calibrated for use on steel panel. Special Brand, SPECIAL NEW, boxed........ 1 $1.75 2 for $3.00

HEADSET
Low impedance. With large channel ear cushions. 4-ft cord and plug, Reg. $12.50. Our Special Price........ 1 $2.95
Less ear cushions........ 1 $1.95
High impedance adaptor for above........ 1 $0.69

SCR-274-N, ARC-5 COMMAND SET HQ/$1.95

TG-34A CODE KEYER, self-contained, automatic, reproduces code practice signals from paper tape. 5 to 12 WPM Built-in speaker. Brand new with tech manual and AC line cord........ 1 $24.50

BC-1206C RECEIVER
Aircraft Beacon Receiver 200 to 400 Kc. Operates from 24V DC 1.5A. Continuous tuning, vol control, on-off switch and phone jack. Very sensitive. Compact. Complete with tubes, NEW........ 1 $12.50

DUAL AMPLIFIER
Has two input circuits each feeding a single 6SN7GT twin triode amplifier. Complete with 115V 60 cy power supply using 6X5GT rectifier........ 1 $5.95

BC-603 FM RECEIVER
Converted for 35-50 Mhz. 10 preset pushbutton channels or manual tuning. Complete with 10 tubes, checked out, like new........ 1 $39.50
AC Power Supply, New........ 1 $14.95
DM-34 12V Power Supply, New........ 1 $4.45
DM-36 24V Power Supply, Exc.Used........ 1 $2.25
Technical Manual........ 1 $2.50
Set of 10 tubes for BC-603 Receiver........ 1 $5.95

BC-604 FM TRANSMITTER
20 to 27.9 Mz. Output approx 30 watts, 10 crystal controlled channels. Complete with tubes, NEW........ 1 $12.50

ARC-811A Modern Q-5 Receiver 190 - 550 KHz 1 $10.95
ARC-822 540 - 1600 KHz Receiver with tuning graph 1 $15.95
R-4/AR-2 Receiver 234-258 Mhz, 11 tubes, NEW........ 1 $8.95

BC-605 INTERPHONE AMPLIFIER, NEW $3.45, EXC.Used........ 1 $1.95
TELEPHONE HANDSET, W. L. type LIKE NEW........ 1 $2.95
SCR-022 TRANSMITTER-RECEIVER, with 18 tubes, LIKE NEW $32.50

HANDMIKE
Rugged, heavy-duty carbon hand mike with press-to-talk switch. Equipped with 4-ft cord & phone plug. SPECIAL NEW, boxed........ 1 $1.88 2 for $3.25

LM FREQUENCY METER
Fine general purpose Navy unit 125 to 20,000 Hz. Operates on 12 or 24 VDC. Complete with tubes, crystal, calibration book. Checked out, Excellent Used........ 1 $59.50
As above, less book........ 1 $22.50

BRAND NEW BC-645 TRANSCEIVER
EASILY CONVERTED FOR 420 MC. OPERATION

FOR FIXED OR MOBILE USE
BRAND NEW, complete with 15 tubes, less dynamotor and accessories........ 1 $16.95
DEPENDABLE TWO WAY COMMUNICATION MORE THAN 15 MILES!

FREQUENCY RANGE: About 435 to 500 Mz. TRANSMITTER has 4 tubes: WE-316A, 2-646, 717 RECEIVER has 11 tubes: 2-955, 4-747, 2-766, 3-777 RECEIVER 1.5-40 Mc. SIZE: 10-1/2" x 13-1/2" x 4-1/2", Shpg Wt 25 lbs.
Superb quality components and circuitry, ideal for the technician experimenter. Many fabulous experiments, for example: you can construct a Yagi antenna for the 420 Mc band that will produce a gain of 10 db and yet fit on your operating desk!

ACCESSORIES FOR BC-645
MOUNTING for BC-645 Transceiver........ 1 $1.50
PE-101C DYNAMOTOR, 12-24 Volts, (easily converted to 6 volts)........ 1 $7.95
MOUNTING for PE-101C Dynamotor........ 1 $1.50
UHF ANTENNA ASSEMBLY, of 1/2 Mz........ 1 $2.95
COMPLETE SET OF 11 CONNECTORS........ 1 $5.95
CONTROL BOX BC-646........ 1 $2.95
MOUNTING for BC-645 Control Box........ 1 $1.00

SPECIAL "PACKAGE" OFFER:
BC-645 Transceiver, Dynamotor and all accessories above, COMPLETE, BRAND NEW, While Stocks Last........ 1 $25.95

CATHODE RAY TUBES - STANDARD MAKE
All New in Original Carton
3FP7*........ 1.98 ea. 3JFP7*........ 1.75 ea. 3CP7*........ 1.98 ea. 3AP1........ 1.95 ea.
5MP1........ 2.75 5JFP2........ 4.50 5AP1........ 3.75
*Sold in lots of 3 only

NEW SHIELD FOR 3" Cathode Ray Tube........ 1 $1.29

NEW SHIELD FOR 5" Cathode Ray Tube........ 1 $2.25

EE-8 SIGNAL CORPS FIELD PHONES
Checked out, perfect working order. Complete with batteries. Excellent Used........ 1 $16.95

APN-1 FM TRANSCEIVER 400-450 Mc.Freq. modulated by moving coil transducer. Easily converted for radio control or 70 cms. Complete with 14 tubes, dyn. BRAND NEW........ 1 $9.95

WILLARD 2-VOLT STORAGE BATTERY
Rated at 20 Amp.-Hours. Model 20-2. Rechargeable. Compact nonspill construction. Lightweight polystyrene container, 3.5x3-1/2x1-3/8". Shipped dry, uses standard electrolyte. Shipping Weight 3 Ibs. BRAND NEW........ 1 $2.79

TERMS: F.O.B., NYC, 25% deposit with order, balance COD or remittance. In full; MINIMUM ORDER $5.00. Subject to prior sale and price change

G&G RADIO ELECTRONICS COMPANY
45-47 Warren St. (2nd fl.) New York, N.Y. 10007 Phone 212-267-6605

august 1972
the Incomparable **CX7A** by [signal/one]

Features:
- RELIABILITY IS NOW standard equipment. Every CX7A "burnt-in" and cycled more than 48 hours.
- QUALITY-PLUS. Every component is instrument grade, American-made, and individually tested.
- ALL MODES 10 thru 160 meters in full 1 MHz bands with overlaps.
- BROAD-BAND TUNING. Instant band changes without tuning.
- TRUE BREAK-IN CW with T/R switching.
- IF SHIFT — deluxe QRM slicer.
- PRE-IF NOISE-BLANKER that really works.
- RF ENVELOPE CLIPPING — sounds like a Kw.
- TWO VFO'S. Transceiver Plus receiver.
- BUILT-IN: Spotter, FSK shift, transmit offset, wattmeter, SWR meter, electronic CW Keyer.

It's Perfection for $2195

If you want to move up to the BEST, give DON PAYNE, K41D, a call for personalized service, a brochure, and a KING-SIZE trade-in on any gear you have — one piece — or the whole station.

PAYNE RADIO
Box 525
Springfield, Tenn. 37172

(615) 384-5573 (615) 384-5643

ENJOY CW! USE A MATRIC KEYER & PADDLE

- SELF COMPLETING
- BATTERY OPERATED
- RELAY OUTPUT

MODEL 10
CIRCUIT BOARD KIT (LESS CASE) $12.95
KIT (LESS BATT) $21.90
WIRED (LESS BATT) $26.50
SIDETONE KIT $4.95

PADDLE
MODEL 11

- ADJUSTABLE TRAVEL
- NON-SKID WEIGHTED BASE
- FULLY ASSEMBLED

ONLY $9.95

SEE YOUR DEALER
OR ORDER DIRECT. PRICES F.O.B. SENECA, PA.

WORLDS ONLY WEEKLY DX MAGAZINE
CURRENT DX NEWS · COMING EVENTS · DATES · FREQUENCIES · TIMES · ALL THE NEWS IN DEPTH · 160 METERS THROUGH 10 METERS · DX CONTEST INFO & CLAIMED SCORES · MONTHLY PROPAGATION PREDICTIONS · DX HONOR ROLLS · and a very SPECIAL "FLASH CARD" SERVICE TO both SUBSCRIBERS and NON-SUBSCRIBERS · 10¢ PER CARD FOR SUBSCRIBERS & 25¢ PER card from NON-SUBSCRIBERS. YOU FURNISH STAMPED AND SELF ADDRESSED CARD (CAN BE EITHER AIR MAIL OR REGULAR FIRST CLASS POST CARD. JUST PUT PREFIX ON LOWER LEFT, BOTTOM ON FRONT OF YOUR CARD (WE ONLY FILE BY PREFIXES) ANY GOOD DX NEWS FROM THE PREFIXES ON YOUR CARDS SENT TO YOU IMMEDIATELY! DXING EASY!!

DX NEWS IS OUR BUSINESS

THE DX'ERS MAGAZINE
(Gus M. Browning, W4BPD)
Drawer "DX"
CORDOVA, S. C. 29039

WE ALSO PRINT QSL CARDS · FREE SAMPLES & PRICE LIST UPON REQUEST · WE PRINT ALMOST ANYTHING ELSE YOU NEED TOO · PRICES RIGHT

94 August 1972

More Details? CHECK—OFF Page 110
The Model 8800 Digital Clock has versatility unmatched by similar units at more than twice the price. Ideal for electronics enthusiasts, hams, radio and television studios and event timing. Solid State LED displays end display replacement problems. Foolproof presetting controls combined in a conservative reliable design assure long term accuracy. The 8800 may be used with its own internal time standard or external standards can be used. BCD outputs are available. The unit is shipped fully assembled and calibrated.

| 8800 Digital Clock | $94.95 |

KEYBOARDS

At last! A low cost keyboard with touch-tone coding built into the switches. Great for repeater and relay applications. The KB-3 will interface directly with all popular logic types and can program the 566 VOC for the standard frequencies. The KB-3 measures 3" x 2½" and has a total depth of ½". Keyboard legends will not chip or wear off. Contacts rated at 25 V and 40 mA. Bought straight from the manufacturer.

| KB-3 Touch-Tone Keyboard | $7.95 |

Get your 48-page, 1972 catalog immediately! Send 30¢ for First Class, 40¢ for Air Mail delivery.
Radio Handbook, 18th Edition
by William I. Orr, W6SAI

Latest updated edition of the famous communications handbook which is the electronics industry standard for engineers, technicians and advanced amateurs. Explains in authoritative detail how to design and build all types of radio communications equipment. RTTY circuits, latest semiconductor and computer circuitry. 896 pages, hardbound.

Regularly $13.50

RSGB: Radio Communication Handbook
Amateur Radio's most complete technical reference. This page setting book covers virtually every phase of radio theory and practice in very complete and useful detail. Whether you use HF or VHF, SSB or RTTY you need this handbook.

Regularly $12.95

The Radio Amateur's Handbook
ARRL Staff
The standard reference for the radio amateur. Latest 1972 edition contains 47 additional pages and has 250 new circuits and charts. Covers everything from the basics to such new areas as FM and slow-scan TV. The largest selling technical book ever published.

702 pages, softbound
Only $4.50

POPULAR RADIO PUBLICATIONS

Latest 2nd Edition
KH6LI, W6AM & VK6AZ and other famous DX'ers recommend it highly.

Regular $3.95

IMPORTANT E & E AMATEUR BOOKS

Solid-State QRP Projects
by Edward M. Noll, W3FQJ
For the most part QRP projects. The units covered have power ratings from less than 100 milliwatts up to about 20 watts. Emphasizes solid state, and a variety of solid-state oscillators, both crystal-controlled and vfo. Deals in detail with bipolar transistors, field-effect transistors, and integrated circuits. Some QRP test equipment is covered. Both a.m. and sidetone circuits are presented. 128 pages, $1.50 x 8½, softbound.

Only $4.25

73 Dipole and Long-Wire Antennas
by Edward M. Noll, W3FQJ
This is the first collection of virtually every type of wire antennas used by amateurs. Includes dimensions, configurations, and detailed construction data for 73 different antenna types. Appendices describe the construction of noise bridges, line tuners, and data on measuring resonant frequency, velocity factor, and SWR. 160 pages.

Only $4.50

The Radio Amateur's F-M Repeater Handbook
by Ken Sessions, Jr., W6MVH
This is the definitive work on the challenging subject of amateur F-M repeaters, a vital new development which has been virtually undocumented. Chapters include: Overview: Repeater Planning and Controlling Sites for Repeaters; How to Build a Repeater; Repeater Applications. There is no other comparable book available. 228 pages, hardbound.

Regularly $6.95

73 Vertical, Beam, and Triangle Antennas
by Howard M. Noll, W3FQJ
Describes the design and construction of 73 different antennas used by amateurs. Each design is the result of the author's own experiment with various antenna configurations. Each has actually been built and air-tested. Includes appendices covering the construction of noise bridges and antenna line tuners, as well as methods for measuring resonant frequency, velocity factor, and standing-wave ratios. 160 pages.

Only $4.95

Bind your HAM RADIO's with our handsome Ham Radio Binders then find the articles you want with our new 1968-71 Cumulative Index covering every article published in HAM RADIO from our first issue through December 1971. Of course, if your shack is like ours you may have to find'em, bind'em and find it, but that's where the fun is all about. Get organized. Get maximum use from your HAM RADIO collection.

Binders $3.95 each or 3 for $10.00 — Cumulative Index $1.00 each — Super Package - 5 Binders plus Index An $18.90 value only $17.00.
RADIO AMATEUR CALLBOOK

1972 U.S. Radio Amateur Callbook
The United States CALLBOOK lists over 285,000 radio amateurs in the 50 United States, its possessions and persons in foreign countries. Over 30,000 changes, including many thousand new licenses.

Only $8.95

Radio Amateur’s DX Guide
A handy reference containing such valuable information as a World Map, Showing Radio Amateur Prefixes, Great Circle Maps, ARRL Section Map, Great Circle Bearing Tables, Time Conversion Table, Air Line Distances in the United States, Postal Information, ARRL Countries List and much more. Vital for any DXer.

Only $2.50

HOWARD W. SAMS

First-Class Radiotelephone License Handbook - 3rd Edition
by Edward M. Noll, W3FQJ
Provides all the information needed to progress from a 2nd to a 1st class FCC Radiotelephone license. In addition, an excellent reference handbook for those who have already obtained their 1st class license. While containing questions and answers based on Element IV of the FCC Exam, this volume is far more than just a question and answer book. It is a comprehensive textbook in broadcast communication and is designed to develop a real understanding of the theory and basic principles necessary to hold a responsible position as a communication engineer. 400 pages.

Only $6.50

FROM RSGB

Amateur Radio Techniques
by J. Pat Hawker, G3VA
Do you have the time to review all the dozens of amateur and commercial magazines which are brought out each month to collect the best of their many good new ideas? Here it has already been done for you in this complete collection of material taken from the major magazines. It is presented in a most useful and well organized manner. Chapter headings include: Semiconductors, Receivers, Transmitters, Oscillators, Antennas, Power Supplies, and Test Equipment. Regularly $3.75

Special Only $1.87 (save 50%)

by Howard M. Noll, W3FQJ
Provides information needed to pass the 2nd class FCC radiotelephone license. Questions and answers based on the FCC exam for Elements I, II, and III are arranged to allow the reader to progress logically from topic to topic. Provides thorough background and comprehensive knowledge of theory and practice needed to fully understand the subject. Complete discussion of the latest solid-state transceiver equipment. Covers FCC Rules and Regulations, operating practices and procedures, plus uses of test equipment and transmitter tuning and adjustment. 338 pages.

Only $6.50

Radio Data Reference Book
by G. R. Jessop, G6JP
Regularly $3.00

Special Just $2.50

BONUS DISCOUNT SPECIAL OFFER
If you order the Summer Sale order total of $15.00 or more, you may deduct 5% and if it is over $30.00 you may deduct 10% from the cost of the order.

TO: HAM RADIO, GREENVILLE, N. H. 03048

(See below for Mastercharge and BankAmericard Orders)

Please send the following books:

- All About Cubical Quad Antennas
- Beam Antenna Handbook
- Radio Handbook (Editors & Engineers)
- Communications Handbook (RSGB)
- Radio Amateur’s Handbook (ARRL)
- 3 Handbook Package
- Some State QRP Projects
- FM Repeater Handbook
- 73 Dipole & Long Wire Antennas
- 73 Vertical, Beam & Triangle Antennas
- First Class License Handbook
- Second Class License Handbook
- 1972 U.S. Callbook
- 1972 Foreign Callbook
- Radio Amateur’s DX Guide
- Prefix Map of the World
- Amateur Radio Techniques
- Amateur Radio Circuits Book
- Radio Data Reference Book
- Ham Radio Cumulative Index
- Ham Radio Binders
 - One for Three for
 - Five Binders & Cumulative Index

NAME
CALL
STREET
CITY
STATE ZIP

Other Mastercharge

Bank No.
Expiration Date

Please charge my Mastercharge Account No.

Bank No.
Expiration Date

Please charge my BankAmericard Account No.

Bank No.
Expiration Date

Over $15.00, have deducted 5%.

Over $30.00, have deducted 10%.

More Details? CHECK-OFF Page 110

august 1972
FIRST CLASS COMMERCIAL FCC TEST answers for quick and proven method to pass test $4.00 for complete kit. CRD Laboratories, P. O. Box 291, Weston Springs, Illinois 60558.

TONE BURST. Inoue Registry owners, now available. 4 frequency, internally mounted tone burst oscillator. $29.50. WHE Communications, 15112 S.E. 44th, Bellevue, Wash. 98006. Phone 206 747-8421.

TV & RADIO TUBES 36¢. FREE CATALOG. Cornell, 4219 N. University, San Diego, California 92105.

TELETYPERS — Toroids, tools, supplies, parts. SASE (16¢) for list. Typtertronics, Box 8873, Ft. Lauderdale, Fl. 33310. W4NYF.

NEW 4-1000/8166 with fil-xmf, socket $75. Plate pur supply 3400V@500 ma, continuous with spare SB28's in 19 inch panel $35. (4) 10 of 2000vdc Cornell-Dubilier Cap @ $9.95 each. (1) 2 of 4000 vdc Cap $10. Variac 120 vac @ 20 Amps $13.50. Call or write K4AVQ/3. AL 20 Lepore Drive, Lancaster, Pa. 17602. Area Code 717 day 393-3313, nights 392-3947.

CV-253/ALR FREQUENCY CONVERTER, 38-1000 MHz. Continuous tuning, 30 MHz out. New, un-opened carton. $35.00. K4EPW, 1230 Briar Hills, Atlanta, Georgia 30305.

OMEGA AT NIGE BRIDGE HEADQUARTERS. 1-100 MHz $29.95. 1-300 MHz $39.95 p/d. Miss. add 5% tax. MPQ Industries, P. O. Box 217, Hernando, Miss. 38632.

TOROIDs. IRON POWDER "E". 80-100 microns. O.D. .047, I.D. .030, 1200 Gauss. $4.00 each, special of 5 for $18.00. (coin) for 20-page list. Typetronics, Box 291, Martin, N. J. 08236.

TART DAILY QSL rate for 20-page list. Typetronics, Box 291, Martin, N. J. 08236.

BARLA Antelope. Deer. 10 level acres $20 down, $20 mo. Owner Mike Gauthier, K6ICS, 9418 East Florence, Downey, CA 90240.

2 METER FM, Brand New, Inoue IC-20. 1 & 10 watts. 12 channels, w/mike, cable, mobile mount $29.50.

Bob Brunkov, 10E, 44th, Bellevue, Wash. 98006. Phone 206 747-8421.

WE BUY ELECTRONIC TUBES, diodes, transistors, integrated circuits, semiconductors. ASTRAL ELECTRONICS, 150 Miller Street, Elizabeth, N. J. 07207. (201) 354-2420.

TECH MANUALS for Govt. surplus gear only $6.50 20021.

QSL'S PREPARE FOR HAM EXAMS! Use FIRST CUSS COMMERCIAL FCC TEST answers for quick and proven method to pass test $4.00 for complete kit. CRD Laboratories, P. O. Box 291, Weston Springs, Illinois 60558.

TONE BURST. Inoue Registry owners, now available. 4 frequency, internally mounted tone burst oscillator. $29.50. WHE Communications, 15112 S.E. 44th, Bellevue, Wash. 98006. Phone 206 747-8421.

TV & RADIO TUBES 36¢. FREE CATALOG. Cornell, 4219 N. University, San Diego, California 92105.

TELETYPERS — Toroids, tools, supplies, parts. SASE (16¢) for list. Typtertronics, Box 8873, Ft. Lauderdale, Fl. 33310. W4NYF.

NEW 4-1000/8166 with fil-xmf, socket $75. Plate pur supply 3400V@500 ma, continuous with spare SB28's in 19 inch panel $35. (4) 10 of 2000vdc Cornell-Dubilier Cap @ $9.95 each. (1) 2 of 4000 vdc Cap $10. Variac 120 vac @ 20 Amps $13.50. Call or write K4AVQ/3. AL 20 Lepore Drive, Lancaster, Pa. 17602. Area Code 717 day 393-3313, nights 392-3947.

CV-253/ALR FREQUENCY CONVERTER, 38-1000 MHz. Continuous tuning, 30 MHz out. New, un-opened carton. $35.00. K4EPW, 1230 Briar Hills, Atlanta, Georgia 30305.

OMEGA AT NIGE BRIDGE HEADQUARTERS. 1-100 MHz $29.95. 1-300 MHz $39.95 p/d. Miss. add 5% tax. MPQ Industries, P. O. Box 217, Hernando, Miss. 38632.

TOROIDs. IRON POWDER "E". 80-100 microns. O.D. .047, I.D. .030, 1200 Gauss. $4.00 each, special of 5 for $18.00. (coin) for 20-page list. Typetronics, Box 291, Martin, N. J. 08236.

TART DAILY QSL rate for 20-page list. Typetronics, Box 291, Martin, N. J. 08236.

BARLA Antelope. Deer. 10 level acres $20 down, $20 mo. Owner Mike Gauthier, K6ICS, 9418 East Florence, Downey, CA 90240.

Now a Keyer with every feature of the most expensive units without the unnecessary frills. Woerner Enterprises has designed a complete ready to use Keyer on a single printed circuit board. Use your own Paddle and incorporate the Keyer in your station console or power supply. Built-in regulated power supply operates from 6.3 VAC or 7½ VDC and only requires 100 Ma.

- Self completing Dots & Dashes.
- Dot & Dash Memory.
- Automatic Character Spacing.
- Ambimatic Output.
- Dot or Dash Injection.
- Built-in Variable Pitch Side Tone.
- 6 to 80 WPM.
- Reed Relay Output for Compatability With any Rig.
- Only 2 x 6 inches.

$34.95

ALSO AVAILABLE:
K2-12/24 HOUR CLOCK
K2-AGC AMPLIFIER

WOERNER ENTERPRISES, INC.
170 Chestnut St. Ridgewood, N. J.
THE RADIO CLUB OF TACOMA HAM-FAIR will be August 15th and 20th at the Sportsmen's Chateau, 154th and Canyon Road, south of Tacoma. Contests, transmitter hunts, technical talks and displays, manufacturer's displays, auction, country store, beauty contest, and door prizes. Grand prize a solid-state 2 meter transceiver. Talk-in frequencies - 146.76 and 3965. Camping - $1.50 per night with electrical hookup. Advance registration will cost $5.00 and includes Saturday evening dinner, or $3.00 without dinner. Contact Emile Koh, KG5PK, 13616 10th Ave. East, Tacoma, Washington 98445.

RECIPROCATING DETECTOR PARTS KIT. Write Peter Utah. Samples requested. QSLS. Second to none. Same day service. 164th and Canyon Road, south of Tacoma. Contests. Large catalog $1.00 including manufacturer's displays, door prizes. For further info. contact: John WBDSR, 6307 Fairhurst Avenue, Yakima, Washington 98-02.

AUDIO FILTERS: Knock down that background noise. KOJO SSB, AM and CW filters do the job. KOJO, Box 7774, 741 E. Highl-land Ave., Phoenix, Arizona 85011.

MECHANICAL FILTERS: 455KHz. 2.1 Khz $18.95 300Hz $22.95. J. A. Fredricks, 314 South 13th Avenue, Yakima, Washington 98-02.

OPERATING ACHIEVEMENT AWARD CERTIFICATE signed by Governor Daniel J. Evans for contacts made during Washington State Convention August 11, 12, and 13 at the Villa Capri Motor Hotel in Austin, Texas. Technical sessions, manufacturer's displays, door prizes, ladies activities. Call-in will be through the Austin 34-94 repeater. For more information write Larry Higgins, W5QMU, 2522 Old Hickory Trail, San Antonio, Texas 78230, or Gene Chapline, K5YFL, 2206 La Casa, Austin, Texas 78704.

NEW PORTABLE oxygen unit. breathing aid. 12 minutes oxygen, refillable. $39.95. GUARANTEED. Write Fire Safety Equipment, 232b Windsor Parkway, Hempstead, N. Y. 11550.

THE TEXAS VHF-FM SOCIETY will hold its annual Summer Convention August 11, 12, and 13 at the Villa Capri Motor Hotel in Austin, Texas. Technical sessions, manufacturer's displays, door prizes, ladies activities. Call-in will be through the Austin 34-94 repeater. For more information write Larry Higgins, W5QMU, 2522 Old Hickory Trail, San Antonio, Texas 78230, or Gene Chapline, K5YFL, 2206 La Casa, Austin, Texas 78704.

GONSET IV - 2 meter transceiver - $135.00; Gonset III - $75.00; Gonset III - $50.00; Poly Comm IV - $130.00; Clegg 22r - $135.00; Gonset III - 6 meter - $80.00. WB2GKF, Stan Nazimek, Jr., 506 Mount Prospect Avenue, Clifton, N. J. 07012.

This monthly technical magazine fills a "communication gap" within the electronic communication and navigation equipment industry. Its function is to provide comprehensive and authentic information not available in any other single publication. The types of feature articles include the following:

SYSTEM DESIGN
The planning of radio communication and electronic navigation systems, as well as CCTV and electronic security systems.

EQUIPMENT DESIGN
State-of-the-art design techniques—analysis of newly developed equipment.

TECHNOLOGY
Reports on technical developments—looking into the future—measurement techniques.

FCC REPORTS
Comprehensive reports on FCC petitions, proposed rulemaking and newly adopted rules changes—long before they are published in FCC Rules and Regulations.

Subscription rate $12 per year, $20 for two years. When Check or Money Order accompanies subscription request, special rate is $10 for one year or $16 for two years. Advertising rate card sent on request.

COMMUNICATION AND NAVIGATION, INC.
250 PARK AVE., NEW YORK, NY 10017

250 MHz! 6 DIGITS!
FREQ. RANGE: 10 hz to 250 mhz. LEVEL: 1 mw to 50 watts. ACCURACY: .0005%. Write for specs.
MODEL 6-VHF-A $350 fob

2 METER PREAMP
More Gain, Less Noise For The Money!
20 DB GAIN
NOISE FIGURE 2.5
12 VDC OPERATION
Small Size: 1¼ x 2 ¼ x ⅛ - Only $12.50
Kit $9.50
Option for 150-250 VDC Operation - $1.00

DATA ENGINEERING INC.
8742 C. TAMPA AVENUE
RESEDA, CALIF. 91335

More Details? CHECK-OFF Page 110
AMATEUR SALES
$200. Other equipment available. SASE for list.
James Walter, 2697 Nickel St., San Pedro, Ca. 94806.

TELETYPE: 11/16" perforator tape. 10 can be picked up anywhere.
Write Lee Brody, New York-New Jersey Phone-TTY for the Deaf, 15-06 Radburn Rd., Fair Lawn, New Jersey 07410 or call 201-796-5414 evenings.

COLLINS 75S2, clean, $270 air mail, HP 425A Microvolt Ammeter, book. Or Sales 80 air mail, Maj. Don Bohart, Det. 6, 1114 SAS, Box 8895, APO NY 09012.

WANTED - M15 and M32 TELEPRINTERS in any quantity in good condition for use by deaf people . . . will accept donations or for fair prices . . . can be picked up anywhere. Write Lee Brody, New York-New Jersey Phone-TTY for the Deaf, 15-06 Radburn Rd., Fair Lawn, New Jersey 07410 or call 201-796-5414 evenings.

GLASS EPOXY P.C. BOARD. Type G10 1/16 in. Single sided. 10 sq/ft. $5 each or 6 for $25 pp. Your choice 2 sq/ft. P.P.D. WA0TXV, 5331 Cherryview, St. Louis, Mo. 63128.

GOLDEN JUBILEE HAMFEST beginning Sept. 15 at Silver Slipper Saloon, Klondike Days Exhibition. Full details Box 5986, Station L, Edmonton, Alberta, Canada.

FOR SALE: TR-44A rotor $50.00. NO SHIPPING. WHZB.

LINEAR BUILDERS - Motorola HEP170 diodes 2.5A/1000IV 30e each; Plate Choke 90uh., 5KV/2A $6.45; Shielded 30A Dual Filament Choke $6.95; 12.000pF/2VA Diode board with RC transient suppressors $9.95; Diode board unfilled $2.50. All Postpaid. K.E. Electronics, Box 1279, Tustin, Cal. 92680.

TELETYPE: 11/16" perforator tape, 10 rolls/$3.00, 40 roll case $10.95; M28 RO base $12; M14 T.D. $35; FACSIMILE Converter CV-2A, w/clean $45; Facsimile Recorder TXC-1, $110 (as a set, $145 for both); UHF Receiver (200-400Mhz tuneable), R-266A/URR-13, $60; Newer model with same tuning, R-482C/URR-35, $75. Jim Cooper, POB 73H, Paramus, N.J. 07652.

COLLINS, MECHANICAL FILTERS. NEW. F3002-4 F3002-5, 300X-68. Make offer. Need 455 KHZ/2.1 KHZ filter, WBQYQF. B5 HOWard Ave., Copiague, N.Y. 11726. (516-842-9284).

SAVE MONEY servicing your own fire extinguishers. New Valuable guide, only $1.00 satisfaction guaranteed. Fire Safety Equipment, 232d Windsor Parkway, Hempstead, N.Y. 11550.

AMATEUR SALES & SERVICE. Start with discount prices and get service after the sale. We stock Cush Craft and Mosley. Towers by Rohn. Comic Strip AM at 11 Rand Mill Road, Garner, North Carolina 27529, Tel. 1-919-772-6044.

FCC ANSWER BOOKLETS. 1st and 2nd class tests $4.00. General/Technician Class tests $2.00. More. Send 25c for catalog, CRD Associates, P. O. Box 291, Western Springs, Illinois 60558.

MORE DETAILS? CHECK-OFF Page 110

COMPUTER KEYBOARD W/ENCODER $35
Another shipment just received. Alpha-numeric keyboard excellent condition. Once again we expect an early sellout. Price of $35 includes prepaid shipment in the US and shipment made within 24 hours of receipt of order.

COMPUTER KEYSWITCHES
Another fantastic bargain for the builder. We have brand new bounce-less micro switch keys, spares from the above units, less key-tops. Make up your own keyboards. Made for PC mount. Package of 48 brand new key-switches only $12.00 postpaid.

We still have a few Panoramic Adapters BC 1031 excellent condition. "IF" 450-470 Kc. operate from standard 115 volt 60 cycle. $45 each complete with schematic, FOB Lynn, Mass. (60 lbs.)

POWER TUNABLE VARACTOR $5.00
Similar to MA-4060, used in doublers, triplers, amplifiers, etc. Fully guaranteed, with specs and some circuits. $5 each or 6 for $25 pp.

DIGITAL READOUTS
GE Y 4075 25V Miniature
$3 ea. 10/$25
GE Y 1938 24V Standard
$3 ea. 10/$25
RAY CK 1905 Standard
$3 ea. 10/$25
MAN-3 1.7V Miniature
$3.50 ea. 10/$30
GIANT ALPHA NUMERIC
$3 ea. 10/$25

MEMORY CORE STACK
Complete brand new memory core stack w/diode matrix, 65, 536 core. Appear to be brand new. $100

LASER DIODE 3 WATT
RCA TA-2628 w/specs. $5

ROPE MEMORY MODULE
From APOLLO project $25

All material f.o.b. Lynn, Mass. Send self-addressed envelope for complete list.

JOHN MESHNA JR. ELECTRONICS
P.O. Box 62 E. Lynn, Mass. 01904
MOTOROLA 2 METER POWER AMPLIFIER

Up To 1,000 Watts (1KW) Out!

Brand New In Original Factory Cartons!

This is a completely self-contained power amplifier designed specifically to increase the power output of low power transmitters. Ready to go! No modifications required! Rated 250 watts out, CONTINUOUS DUTY! Can be easily modified for up to 1,000 watts output! (Details supplied with each unit.) Fully metered, with antenna change over relay, blower motor. No external keying circuits required. Amplifier keys automatically. Just hook a piece of co-ax from your low power base or handi talkie and push the mike button! Unit measures only 26" H, 20" W, 16" D. Original cost: $2,100.00, our price, brand new in original factory sealed cartons with manual is only $350.00 FOB Trenton, Michigan. Limited quantity, don't miss out!

NEWSOME ELECTRONICS • P. O. Box 176-H • Trenton, Michigan 48183

(our store hours are by appointment only)

EK 404 DELUXE KEYER $124.95
• ALL THE FEATURES YOU’VE ASKED FOR
• 115VAC AND 12VDC
• READ JAN 1972 CO AND MAR, 1972 GST FOR REVIEW OF SIMILAR EK 402 PROGRAMMABLE KEYER
WRITE FOR BROCHURES

SPACE SAVER TOWERS & MASTS

CZ series towers, cranks up, installs without guy wires. New facing design creates greater strength. Mini and Magma rotating masts... high strength galvanized tubing, self supporting crank-up.

For complete details and prices please check your local dealer or write

TRISTAO TOWER CO.
P. O. Box 115, Hanford, California 93230

Central New York Specialty Headquarters

FM by STANDARD COMMUNICATIONS
and CLEGG

ANTENNAS by HY-GAIN

Quality-Selected Used Ham Gear

Write for listing, updated twice monthly

CFP ENTERPRISES
866 Ridge Road
Ludlowville, N. Y. 14862

FREE ALARM CATALOG

44 PAGES FILLED WITH 350 BURGLAR AND FIRE ALARM PRODUCTS FOR INSTALLERS AND ELECTRONIC TECHNICIANS. INCLUDES RADAR, INFRARED, CONTROLS, HARD-TO-FIND PARTS, AND 6 PAGES OF APPLICATION NOTES.

mountain west alarm
4215 n. 16th st., phoenix, az. 85016

BROADBAND AMPLIFIERS at a price you can afford

The BBA-1 series offers high gain over the HF to UHF region with low noise figures. BBA-1PA, a remotely powered unit for mounting near the antenna, covers 30 to 400 MHz with a 20 ± 1dB gain dropping to 17 dB at 500 MHz. Maximum NF is 3.5dB. BBA-1PB has the same specs as the BBA-1PA but it is locally powered. BBA-1P covers 3 to 500 MHz with gain between 15 and 30dB. Maximum NF is 3.0dB. For less critical use order BBA-1 with same coverage as the BBA-1P, but reduced UHF gain and higher NF.

BBA-1PA - $50.00; Adapter Kit, KT-1 - $5.00
BBA-1PB, BBA-1P - $45.00; BBA-1 - $30.00

Please include $1.00 for shipping.

RADIATION DEVICES CO.
P. O. Box 8450, Baltimore, Md. 21234

FM Schematic Digest

A COLLECTION OF MOTOROLA SCHEMATICS

Alignment, Crystal, and Technical Notes covering 1947-1960

136 pages 11½" x 17" ppd $6.50

S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173
USED TEST EQUIPMENT

All checked and operating unless otherwise noted. FOB Monroe. Money back (less shipping) if not satisfied.

GR736A-Wave analyzer 10Hz-16kHz $249
Borg 1526B-Freq stand.-1/5mHz out-acc. of 1x10-9 per day $110
Dumont 322A-Dual Beam scope-300kHz $180
HP1000-Freq. stand. w/scope-Acc. 1ppm $165
HP150A - 10mHz Scope $95
HP1600B (USM-105)-1.4mHz dual trace scope $415
HP175A-50mHz scope w/dual trace $395
HP185B-DC-1GHz smp. scope w/186B $350
HP2026-Audiog. Gen.-5Hz-50kHz-1.10V output $110
HP212A-Pulse Gen. var. width and rate $175
HP522B-Freq. Counter-10Hz-120kHz-digital $150
HP540-B-Trans. Osc. for counter-toscale of 12kHz $195
HP616B-Sig.-Gen.-450-1200kHz, calib. attn. $365
HP686A-Sig.-Gen.8.2-12.4GHz $795
HP2590B-Precision Trans. osc-synchr. $1165
Kintel 301-DC standard-null voltmeter $220
Meas. 80 - Standard Sig. Gen. 2.4mHz $275
NE 14-20C-Freq. counter (sim. HP524C) $209
Nems Clark 1671-FM crvr. 17.5-260mHz $110
Polarad R-microwave rcrv. (plug-ins avail) $285
Polarad S-1410B-spectrum analyzer 10Hz-4GHz (plug-ins avail) $315
Polarad SAB84-spectrum analyzer, band-switching 10Hz-4GHz $260
Rollin 10-900 Sign. Gen.40-400mHz hi-pwr. $385
Stoddart NMS24-AE RFI mtr, 375-1GHz, w/acc. $985
Tek RM15-DC-15MHz GP scope $325
ME260-UH (HP410B) VTM to 700mHz $85
SG24/3TR-3 Sweep Gen. 15-400 MHz, CW, AM, FM Xtal Markers, scope-dev. to 20% $95
TS-403A-Sig. Gen. (HP616) 1.64GHz $385
USM-16-Stand. Sig. Gen.10.440mHz AM-CW-FM Pulse-Sweep, Phase-locked osc. $675
(Send SASE for complete list)

GRAY

Electronics

P. O. Box 941, Monroe, WI 53181

Specializing in used test equipment

220 MHz

Join the action on 220MHz with the JANEL deluxe receiving converters and preamps. Extremely sensitive with freedom from spurious responses.

220CA Converter, 28-32MHz i-f $69.95 ppd
220PA Preamp, 2.5 dB NF $19.95 ppd

Write for full details. Other models available for 50, 144, and 432 MHz.

P. O. Box 112
SUCASCUANIA, N. J.
07876
(201) 584-6521

220 MHz

Join the action on 220MHz with the JANEL deluxe receiving converters and preamps. Extremely sensitive with freedom from spurious responses.

220CA Converter, 28-32MHz i-f $69.95 ppd
220PA Preamp, 2.5 dB NF $19.95 ppd

Write for full details. Other models available for 50, 144, and 432 MHz.

P. O. Box 112
SUCASCUANIA, N. J.
07876
(201) 584-6521

GROTH-/Type

COUNTERS & DISPLAYS

TO YOUR TURNS

99.99 Turns
One Hole Panel Mount
Handy Logging Area
Spinner Handle Available

Case: 2x4"; shaft 3/8x3"
Model TC2: Skirt 2 1/4"; Knob 1 1/4"
Model TC3: Skirt 3"; Knob 2 1/4"

R. H. BAUMAN SALES
P.O. Box 122, Itasca, Ill. 60143

More Details? CHECK-OFF Page 110

august 1972
NEW! HANDY-TALKY
STANDARD SRC-146

- 5 Channels — .94/.94 and .34/.94 supplied
- .3 μV Receiver
- 1.5 W Transmitter
- Compact — 8x3x1 1/2"

Full line of optional accessories includes external speaker-mike, desktop charger, "stubby" antenna — and more

Available NOW

... Only $279.00

Send QSL or circle number for detailed brochure

ERICKSON COMMUNICATIONS
4659 North Ravenswood Avenue
Chicago, Ill. 60640 (312) 334-3200

FOCUS COIL
FOR 1 inch VIDICON

$12.95 each ppd. USA except Alaska & Hawaii. Mfg. quantity 10 for $100.00 CWO — transp. collect.

Brand new Synrmonic Focus Coils (360 ohm) made for Fairchild TC-175 cameras with camera schematic.

Matching Deflection Yoke only $19.95. Either Tube or Solid-state type (specify).

Free Flyers 972/F3M & 972/#6 now available. Loads of Bargains in CCTV Cameras, Lenses, etc.

THE DENSON ELECTRONICS CORP.
P. O. Box 85, Longview St.
Rockville, Conn. 06066
Tel. (203) 875-5198

MINIATURE SUB-AUDIBLE
TONE $14.95
ENCODER Tested

- Compatible with all sub-audible tone systems such as Private Line, Channel Guard, Quiet Channel, etc.
- Glass Epoxy PCB, silicon transistors, and tantalum electrolytics used throughout
- Any miniature dual coil contactless reed may be used (Motorola TLN6824A, TLN6709-B — Bramco RF-20)
- Powered by 12vdc @ 3ma
- Use on any tone frequency 67Hz to 250Hz
- Miniature in size 2.5 x .75 x 1.5" high
- Complete less reed (Available in 33 freqs, for $17.50 ea)
- Output 3v RMS sinewave, low distortion

Postpaid — Calif. residents add 5% sales tax

COMMUNICATIONS SPECIALISTS
P. O. Box 153, Brea, CA 92621

STOP CUTTING HOLES IN YOUR CAR!!

Mobile Antenna Gutter Mount

Also, trunk lid mount! Installs quickly with only a screw driver. Surprising signal results are received using a small spring and resonator only mounted on the 2½-24 stud — no mast section is required. $7.95 . . . (Spring, resonator and coax not included.)

REJSA ENGINEERING CO.
7632 Plymouth Ave. N., Minneapolis, Minn. 55427

READOUTS $3.00

7-SEGMENT 5 VDC
Long life incandescent tube ½ inch high character. Drive with 7447 IC. Write for complete list including polarizing filters, complete counter modules, many more items.

Display Electronics P. O. BOX 1044
LITTLETON, CO 80120

MODEL SG83C — Standard
Signal Generator $295.00
Covers 50 kHz thru 54 MHz Battery or AC powered. Write for free copy of Instruction Booklet with schematic and full description.

CLEMENS MFG. CO.
630 S. Berry Rd., St. Louis, Mo. 63122

GET TOP ENGINE PERFORMANCE

Only an electronic Capacitor Discharge Ignition System delivers high spark energy at all speeds.
- No over 60 power fade
- Increased gas mileage
- Instant cold starts
- Long point and plug life

INSTALL CAPACITRON II THE ULTIMATE IGNITION!

Complete system $44.95 ppd. Satisfaction guaranteed or money back. Drop us a card for a free descriptive brochure.

General Analog Box 589 Tustin, Ca. 92680

106 August 1972
VHF NOISE BLANKER — See Westcom ad in Dec. '70 and Mar. '71 Ham Radio.

INDIANAPOLIS HAMFEST — Sept. 17, 1972. Gas Co. Recreational area on Thompson Road, East of Five Points Road and west of Franklin Road. Easy access from I-465 & I-74. Vendors FREE. Public admission $2.50. Indianapolis Radio Club members participating. QSL—P. O. Box 19449.

NORTH ALA. HAMFEST August 20, Huntsville, Ala. Air conditioned Mall. Prizes, games, contests. Plenty parking for Swap-Sell. More info. contact K4EHT.

VAC. VARIABLE CAP. Elmac 6-50 Pf. $15.00. Three new 572A Tubes, $4.00 ea. Two new 8236 Tubes and one new 6146, $2.50 ea. W2BNY/M, Moe Joffe, 7259 Willoughby Ave., Los Angeles, Ca. 90046.

TELETYPE 28ASR Excellent Condition. 6 manuals. TT/L-2 TU. $1,100 for lot. Pick-up only. Henry Rainville, 106 S. Cornwall Ave., Ventnor, N.J. 08406. 609-822-0098.

F.C.C. TYPE Exams guaranteed to prepare for F.C.C. 3rd. ($7.00). 2nd. ($12.00), and 1st. ($16.00), phone exams; Complete package, $25.00 Research Company, Rt 2, Box 448, Calera, Alabama 35040.

BE SURE to take advantage of Ham Radio's Summer Sale. Details were sent to you, but if you want another copy of this offer write: Summer Sale, Ham Radio, Greenville, NH 03048.

ELECTRIC BUG KILLER. Rugged, highly efficient black light design will solve your summer insect problems. Model G-15 Rid-O-Ray covers ⅛ acre for just $79.95. Model D-15 covers 1/4 acre for just $99.95. Prices include shipping in 48 states. Send check, M.O. or Mastercharge or BankAmericard number. Comtec, Greenville, NH 03048.

STOLEN — from motel in Kansas City, Kansas, June 4, 1972, Variotronics IC-2F with Call (WOFWY) and social security number (515-05-9029) engraved on back of chassis and mike. Vinton G. Johnson, WOFWY, P. O. Box 151, Farmington, Mo. 63640.

NATIONAL TOWN AND COUNTRY FESTIVAL GB3TFC will be operational on 25, 26 and 27 August. There will be four stations operating on 1910 kHz, 3.7-3.8 MHz, 14.150-14.300 MHz and 21.375. Ten meters-28.5 MHz will be worked if conditions permit. Operations will cease at 2400 GMT 27th August. Skeds will be worked on any band and time, please contact G3000 at 14 Townsend Rd., Tiddington, Stratford-upon-Avon, England.

YOUR AD belongs here too. Commercial ads 25¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads changed each month.
BRAND NEW FREQ-SHIFT TTY MONITOR: NAVY OCT-3; FM Receiver type, freq. range 1 to 26 MHz in 4 bands, cont. tuning, Crystal calib. Reads up to 1500 Hz deviation on built-in VTVM. Cost $1100.00 each! In original box, with instruc. book & cord. FOB Marlboro, Cal. Min. signal needed: 15 mv. Shpg wt 110 lbs. 49.50

HIGH-SENSITIVITY WIDE-BAND RECEIVER COMMUNICATIONS & BUG DETECTION * SPECTRUM STUDIES 38-1000 MHz AN/ALR-5: Consists of brand new tuner/converter CV-253/ALR in original factory pack and an exc. used, checked OK & grid main receiver R-444 modified for 120' 50/60 hertz. The receiver is actually a 30 MHz IF ampl. with all that follows, including a diode meter for relative signal strength; an AVC position; Pan., Video & AF outputs; switch select pass of ±200 kHz; and SELECT AM or FM! With Handbook & pwr. input plug, all only 375.00

CV-253 Converter only, used, w/book. 99.50

We have SP-600-JX, R-390, WRR-2 Receivers. Ask!

REGUL. PWR SPLY FOR COMMAND, LM, ETC. PP-106/U: Metered. Knob-adjustable 90-270 v up to 80 ma; also select an AC of 6.3 v 5A, or 12.6 v 2½ A or 28 v 2½ A. With mating output plug & all tech. data. Shpg wt. 50 lbs. 49.50

BARGAINS WHICH THE ABOVE WILL POWER: LM(-) Freq. Meter: 125-20 MHz, .01%, CW or AM. $49.50

R23A/ARCS Combo/Filter 50' or 150' or exc. cond. 16.95

A.R.C. R15 (MLR R-509) Condenser. 108-135 MHz. new. 17.50

NEMS-CLARKE #1670 FM Receiver 55-60 MHz

like new. 275.00

WWV Rec/Comparator 2½ 50 MHz w/scope. 250.00

Empire Devices NF-114 RFI meter is a red-hot receiver from 150 kHz to 80 MHz. 295.00

Attention! Buyers, Engineers, Advanced Technicians: We have the best test-equipment & oscilloscope inventory in the country so ask for your needs don't ask for an overall catalog we also buy, so tell us what you have. Price it.

R. E. GOODHEART CO. INC. Box 1220-RR, Beverly Hills, Calif. 90213 Phone: Area Code 213, Office 272-5707

WORLD QSL BUREAU THE ONLY QSL BUREAU to handle all of your QSLs to anywhere; next door, the next state, the next country, the whole world. Just bundle them up (please arrange alphabetically) and send them to us with payment of 5¢ each. 5200 Panama Ave., Richmond, CA USA 94804

FRANK ELECTRONICS 407 Ritter Road, Harrisburg, Pa. 17109

SPACE-AGE TV CAMERA KITS & PLANS BE A PIONEER IN HOME TELEVISION! Build your own TV CAMERA. KITS & PLANS. $7.95. Includes Parts Kit #1A (Valve Camera) Complete. $12.95. Complete with Instruction Book. Build any TV model -- WITHOUT MODIFICATION. Ideal for home, school, church, club, civic, etc. Simple, easy to build. Write for catalog. DIAL 745-9077

1301 BROADWAY NW. ATV Research DAKOTA CITY, SIOUX FALLS, SD 57037

A New Magazine?

Not really. New in the U.S.A. perhaps, but very well known in Great Britain and now being offered to you here.

RADIO CONSTRUCTOR is almost exclusively construction material. Clearly written, concise articles give you full details on:

- Audio Construction Projects
- Receiver Construction Projects
- Transmitter Construction Projects
- Test Equipment Projects
- Radio Control Projects ... and much more

Try a subscription to this interesting magazine; we are sure that you will not be disappointed.

ONE YEAR SUBSCRIPTION — $7.00
Write

RADIO CONSTRUCTOR
Greenville, N. H. 03048

5 VOLT, 1 AMP POWER SUPPLY on a plug-in PC card for DIGITAL IC'S

INPUT 115 VAC 60 Hz
OUTPUT 5V 1 AMP DC
LOAD REGULATION 100 mv (NL to FL)
LINE REGULATION 50 mv (105-125 VAC)
SHORT CIRCUIT PROTECTED 1 sec = 750 ma, typ. SIZE 21/2" x 3 1/2" x 1 7/8" MATING CONNECTOR 72 pin on .156 ctns.

PRICE: $14.90 ppd. U.S.A.
Mass. residents add 5% sales tax

ELCOM Industries, Inc.
CIVILIAN TERMINAL, HUNTINGFIELD
BEDFORD, MASS. 01730

SPEECH COMPRESSOR INCREASED TALK POWER
Provides > 30Db Volume Compression Clipping For Maximum Average Power
Optimum Bandwidth Compression
Plugs Into Present Mic Jack
Auxiliary Input For Phone Patch
Two Models — Mono Or Din - In-Out Switch

KSINDUSTRIES Box 271, Melbourne, Fl. 32901

More Details? CHECK-OFF Page 110

august 1972
6 and 2 Meter WHIP
MODEL LA 150

Sale Priced **15.77**

Gain (2 Meters) 3db
Gain (6 Meters) Unity
VSWR (At resonance) 1.5:1
Maximum Power 100 Watts
Nominal Impedance 52 ohms
Overall Length 55 in.

WANTED

CLEAN DRAKE GEAR

<table>
<thead>
<tr>
<th>REWARD FOR</th>
<th>NEW</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$195.00</td>
<td>2B or 2C</td>
<td>R4B</td>
</tr>
<tr>
<td>$220.00</td>
<td>R4</td>
<td>R4B</td>
</tr>
<tr>
<td>$275.00</td>
<td>R4A</td>
<td>R4B</td>
</tr>
<tr>
<td>$200.00</td>
<td>T4</td>
<td>T4XB</td>
</tr>
<tr>
<td>$125.00</td>
<td>2NT</td>
<td>T4XB</td>
</tr>
<tr>
<td>$285.00</td>
<td>T4X</td>
<td>T4XB</td>
</tr>
<tr>
<td>$ 60.00</td>
<td>AC3</td>
<td>AC4</td>
</tr>
<tr>
<td>$ 70.00</td>
<td>DC3</td>
<td>DC4</td>
</tr>
</tbody>
</table>

Electronix

LOW PASS

3-30 Mc w/80 dB Atten.

STOP THAT T.V.I.

Power 2 KW D.C.
3-30 Mc.
80 dB Down 42 Mc.

INTRODUCTORY OFFER **$14.95**

Electronix Sales

23044 S. Crenshaw Blvd., Torrance, Calif. 90505
Phone: (213) 534-4456 or (213) 534-4402

CLOSED SUNDAY & MONDAY

More Details? CHECK-OFF Page 110
we'll rush your name to the companies whose names you "check-off"

INDEX

--- Arizona --- Janel
--- Barry --- Justin
--- Bauman --- KE
--- CFP --- KS
--- CNE --- KW
--- C. T. G. Bitcik --- L. A.
--- Carlingella --- Lee
--- Circuit Specialists --- Lynch
--- Clemens --- Martronics
--- Command --- Matric
--- Communications --- Meshna
--- Specialists --- Micro-Z
--- Comtec --- Mission
--- Crystek --- Mountain West
--- Curtis --- Newsome
--- DXer --- Pagel
--- Dale --- Palomar
--- Data --- Pennwood
--- Denson --- Poly Paks
--- Display --- Radiation
--- Drake --- Callbook
--- Dycomm --- Regency
--- Eimac --- Rejsa
--- El --- Robot
--- Eicom --- SAROC
--- Environmental --- Savoy
--- Erickson --- Signal/One
--- Frank --- Solid State
--- Gateway --- Spectronics
--- General Analog --- Spectrum
--- Gray --- Standard
--- H & L --- Structural Glass
--- HAL --- Tristao
--- Hamtronics --- Van's
--- Heath --- Weinschener
--- Henry --- Weinschener
--- Hy-Gain --- Woerner
--- International Crystal --- Wolf
--- Jan --- World

August 1972
Please use before September 30, 1972

Tear off and mail to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03048

NAME

CALL

ADDRESS

CITY

STATE

ZIP

Advertisers Index

ATV Research 108
Amateur Electronic Supply 56, 57
Arizona Semi-Conductor 107
Barry 87
Bauman 105
CFP Enterprises 104
CNE Magazine 102
C. T. G. Bitcik 77
Caringella Electronics 77
Circuit Specialists 85
Clemens Manufacturing Company 106
Command Productions 106
Communications Specialists 106
Comtec 96, 97
Crystek 90
Clemens 104
DXer Magazine 94
Dale Electronics Corp 102
Data Engineering, Inc. 83, 82
Denson Electronic Corp., The 106
Display Electronics 106
Drake Co., R. L. 72
Dycomm 90
Eimac, Div. of Varian Assoc. Cover IV
El Instruments, Inc. 69
Electron Industries, Inc. 108
Environmental Products 95
Erickson Communications 106
Frank Electronics 108
G & G Radio Supply Co. 93
Gateway Electronics 92
General Analog 106
Goodheart Co., Inc. R. E. 108
Gray Electronics 105
H & L Associates 107
HAL Communications Corp. 73
Hamtronics, Inc. 100
Heath Co. 35
Henry Radio Stores Cover III
Hy-Gain Electronics Corp. 78-81
International Crystal Mfg. Co., Inc. 112
Jan Crystals 88
Janel Labs 105
Justin Inc. 82
KE Electronics 107
KS Industries 108
KW Electronics 84
L. A. Electronix Sales 109, 111
Lee Electronics 90
Lynch, C. J. 82
Martronics 88
Matric 94
Meshna, John, Jr. 103
Micro-Z Co. 86
Mission Electronics 91
Mountain West Alarm 104
Newson Electronics 104
Pagel Electronics 102
Palomar Engineers 84
Payne 84
Pennwood Numechron Co. 107
Poly Paks 98
RP Electronics 88
Radiation Devices Co. 104
Radio Amateur Callbook 25, 84
Regency Electronics, Inc. 86
Rejsa Engineering Co. 106
Robot Research 11
SAROC 86
Savoy Electronics Cover II
Signal/One Corporation 75
Solid State Systems, Inc. 89
Spectronics, Inc. 5
Spectrum International 82
Standard Communication Corp. 47
Structural Glass Limited 92
Tristao Tower Co. 104
Van's, W2DLT 79
Vanguard Labs 77
Weinschener, M. 101
Woerner Enterprises, Inc. 100
Wolf 104
World QSL Bureau 108
BONUS
THE BEST ANTENNA PACKAGES YET!
OPTIMUM PERFORMANCE GUARANTEED SAVINGS

Tri-Ex Tower Corp.

Local Bank Financing - 15% Down or Trade-In Down - Good Reconditioned Equipment. Nearly all makes and models. Our reconditioned equipment carries a 30 day warranty and may be traded back within 90 days for full credit toward the purchase of NEW equipment. Inquiries invited.

"Certified Welders & Approved by L.A. City"

LAE MW35 "STANDARD" Package
(Free Standing Crank-Up Tower
9.5 Sq. Ft. - 50 MPH) (35 FT.)
CDR AR-22R Rotator
100 ft. RG-58/U Coax & Control Cable
Substitute 50 ft. free standing, add $100
Complete with one of the following antennas:
HY-GAIN TH2MK3 $275
HY-GAIN TH3JR $275
HY-GAIN DB10-15A $285
HY-GAIN HY QUAD $285
HY-GAIN TH3MK3 $295
*TR-44 rotor w/cable add: $ 35
HAM-M rotor w/cable add: $ 65

LAE W51 "DELUXE" Package (51 Ft.)
(Free Standing, 9 Sq. Ft. - 50 MPH)
CDR TR-44 rotor
100 ft. RG58/U Coax & Control Cable
Substitute 67 ft. free standing, add $400
Complete with one of the following antennas:
HY-GAIN DB 10-15A $590
HY-GAIN HY QUAD $599
HY-GAIN 204BA $625
HY-GAIN TH3MK3 $625
HY-GAIN TH6DXX $645
Free stdg. base incl. NO/CHARGE
*HAM-M rotor w/RG8/U add: $ 45

"WEST COAST'S FASTEST GROWING AMATEUR RADIO DISTRIBUTOR"
"WE SELL ONLY THE BEST"

Electronix Sales
23044 S. CRENSHAW BLVD., TORRANCE, CALIF. 90505
Phone: (213) 534-4456 or (213) 534-4402
HOME of LA AMATEUR RADIO SALES

"HOME OF LA AMATEUR RADIO SALES"
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR
RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
RF AMP
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
RF POWER AMP
A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw, depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz $3.75

4. BAX-1 BROADBAND AMP
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur $3.75

5. OX OSCILLATOR
Crystal controlled transistor type. Lo Kit 3,000 to 19.999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering) $2.95

6. TYPE EX CRYSTAL
Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ±0.02% when operated in International OX circuit or its equivalent. (Specify frequency) $3.95

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3086E.

CRYSTAL TYPES:
- (GP) for "General Purpose" applications
- (CS) for "Commercial Standard"
- (HA) for "High Accuracy" close temperature tolerance requirements

write for CATALOG

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLA. CITY, OKLA. 73102
The Kenwood R-599 Receiver

IN ALL THE WORLD

MOST AMATEURS HAVE NEVER OWNED A RECEIVER AS GOOD AS THE R-599

The R-599 is all Solid-State... no tubes to wear out and be replaced. Less heat so it is more stable and more reliable. Most owners report service free performance month after month, year after year.

The R-599 is more versatile. It copies SSB, CW, AM and FM. And it copies them well. One half microvolt sensitivity on SSB means you hear any signal audible on any other receiver regardless of price.

The R-599 has greater frequency range. All amateur bands 160 through 10 meters as supplied and including 6 and 2 meters with accessory self-contained converters.

The R-599 is part of a system. When operated with its companion T-599 transmitter you get full transceive operation. The R-599 literally screams value. Dollar for dollar you can't buy another receiver anywhere that will match the R-599.

The R-599 can be operated directly off your 12V battery... with very low drain. It is also an ideal novice receiver... having standard provisions for crystal controlling the T-599.

The Price... $395.00

Another Kenwood value leader... the superb TS-511S Transceiver
Five bands, SSB and CW transceive, Built-in VOX, crystal calibrator, noise blanker, receiver incremental tuning, 1 KHZ frequency readout, 8 pole filter, stable FET VFO, dual conversion and accessory CW filter. The price... $415.00.

The R-599 Transmitter: Clear, stable, selectable sideband, AM and CW • 4-way VFO flexibility plus Receiver Incremental Tuning (RIT) when used with the R-599 • Amplified ALC • Built-in VOX • Full metering, including cathode current, plate voltage, ALC and relative Power Output • Built-in CW Sideband monitor and semi-automatic break-in CW • Built-in power supply • Maximum TVI protection • Employs only 3 vacuum tubes • The price... $395.00

Henry Radio
11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/779-3127
Longer Life
for an Old Timer

Introduced in 1947, the EIMAC 4-400A quickly became the mainstay for the majority of broadcast, shortwave and FM transmitters. Still popular today, this power tetrode design is now available as the improved long-life 4-400C.

Get an EIMAC 4-400C — the new generation tetrode specifically designed for long-life, high-performance broadcast and FM service. This premium quality tetrode is directly interchangeable with the 4-400A in existing equipment and is recommended for new equipment design.

The EIMAC 4-400C features a low temperature filament structure which retains its initial high level of electron emission for an extended period of time, greatly reducing frequency of tube replacement. This improved filament structure, plus strict processing and quality control, combines with improved current division and low drive requirements to provide a high-quality, long-life product.

Reduce down-time and replacement cost with the EIMAC 4-400C when you re-tube. And use this improved tetrode in your new equipment design. With a maximum plate dissipation of 400 watts, the EIMAC 4-400C provides long-life and consistent performance as an amplifier, oscillator or modulator. Another example of EIMAC's continuing program of quality, reliability and service.

For further information, contact EIMAC, Division of Varian, 301 Industrial Way, San Carlos, Calif. 94070. Or any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.

Old Timer

EIMAC
division varian