conduction-cooled
five-band
linear amplifier

this month

- AFSK generator 13
- audio oscillators 18
- low-power vfo transmitter 39
- using Y-parameters 46
In a time when transceivers are a dime a dozen,

ours costs an arm and a leg.

The signal/one CX7A will set you back $2,195 — but set you way ahead in amateur radio operation. That’s because the CX7A has just about every feature you can think of. Including the most sensitive receiver made, the most “talk-powered” 300 watts of power you ever heard, and much more. Like an extra receiver, an RF clipper, a built-in power supply and an electronic keyer.

Suddenly, $2,195 sounds more like a bargain than a bundle. Because you’re getting, in effect, a room full of gear in one compact desk-top unit. A unit that features the industry’s highest quality control standards, the finest components obtainable, the most features, the best performance . . . we could go on.

Better yet, you go on over to your signal/one dealer and see the rig for yourself. Or write us for a detailed brochure. Once you see the CX7A, you’ll be willing to give up an arm and a leg for it. Or at least $2,195.

signal/one
a subsidiary of
Computer Measurements, Inc.
1645 West 135th Street
Gardena, California 90249
Phone: (213) 532-9754
The voice of

HY-GAIN'S

THUNDERBIRD

10-15-20

is heard around the world

Here's why Thunderbirds outperform all other tri-banders:

* Thunderbird's "Hy-Q" traps provide separate traps for each band. "Hy-Q" traps are electronically tuned at the factory to perform better at any frequency in the band—either phone or CW. And you can tune the antenna, using charts supplied in the manual, to substantially outperform any other antennas made.

* Thunderbird's superior construction includes a new, cast aluminum, tilt-head universal boom-to-mast bracket that accommodates masts from 1 1/4" x 2 1/2". Allows easy tilting for installation, maintenance and tuning and provides mast feed-thru for beam stacking.

 Taper swaged, slotted tubing on all elements allows easy adjustment and readjustment. Taper swaged to permit larger diameter tubing where it counts! And less wind loading. Full circumference compression clamps are mechanically and electrically superior to self-tapping metal screws.

* Thunderbird's exclusive Beta Match achieves balanced input, optimum matching on all 3 bands and provides DC ground to eliminate precipitation static.

 * 25 db front-to-back ratio.
 * SWR less than 1.5 to 1 on all bands.
 * 24-foot boom...none longer in the industry.
 * Extra heavy gauge, machine formed, element to boom brackets, with plastic sleeves used only for insulation. Bracket design allows full mechanical support.
 * Interlaced, optimum spaced elements for higher gain and better pattern control.
 * 3 active elements on 20 and 15 meters. 4 active elements on 10 meters.

New 6-Element Super Thunderbird
Model 389
Suggested retail price, $179.95

Improved 3-Element Thunderbird
Model 388
Suggested retail price, $144.95

Buy one today at your favorite Hy-Gain distributor!

HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407-WG, Lincoln, Nebraska 68505

Suggested retail price, $99.95

Suggested retail price, $99.95

Suggested retail price, $99.95

More Details? CHECK-OFF Page 110
Complete packaged Multi-Band Antenna Systems employing the famous Bassett Sealed Resonators and a special Balun. Air has been evacuated from both and replaced with pure helium at one atmosphere.

Highly efficient system packages including all hardware, insulation, coax cable, and copperweld elements assembled at the factory. Complete installation instructions included.

Multi-frequency models available for all amateur bands and for commercial use, point to point, ground to air, military and government.

MODEL DGA-4075 — $59.50
A complete system package for primary use in the 40 and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-152040 — $79.50
A complete system package for primary use in the 15, 20, and 40 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-2040 — $59.50
A complete system package for primary use in the 20 and 40 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-204075 — $79.50
A complete system package for primary use in the 20, 40, and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc.
P.O. Box 7127 - Fort Lauderdale, Florida - 33304
Tel: 305-566-8418 or 305-947-1191

2 July 1972

More Details? CHECK-OFF Page 110
July, 1972
volume 5, number 7

staff
James R. Fisk, W1DTY
teditor
Douglas S. Stivison, WA1KWJ
assistant editor
Nicholas D. Skeer, K1PSR
vhf editor
J. Jay O'Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, WA6IAK
associate editors

Curt J. Witt
art director
Wayne T. Pierce, K3SUK
cover
T. H. Tenney, Jr., W1NLB
publisher
Hilda M. Wetherbee
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is published monthly by
Communications Technology, Inc
Greenville, New Hampshire 03048

Subscription rates, world-wide
one year, $6.00, three years, $12.00
Second class postage
paid at Greenville, N. H. 03048
and at additional mailing offices

Foreign subscription agents
United Kingdom
Radio Society of Great Britain
35 Doughty Street, London WC1, England

All European countries
Eskil Persson, SM5CJP, Frotunagrand 1
19400 Upplands Vasby, Sweden

African continent
Holland Radio, 143 Greenway
Greenside, Johannesburg
Republic of South Africa

Copyright 1972 by
Communications Technology, Inc
Title registered at U. S. Patent Office
Printed by Wellesley Press, Inc
Wellesley, Massachusetts 02181, USA

ham radio is available to the blind
and physically handicapped on magnetic tape
from Science for the Blind
221 Rock Hill Road, Bala Cynwyd
Pennsylvania 19440
Microfilm copies of current
and back issues are available
from University Microfilms
Ann Arbor, Michigan 48103

Postmaster: Please send form 1379 to
ham radio magazine, Greenville
New Hampshire 03048

Contents

6 conduction-cooled linear amplifier
Richard I. Bain, W9KIT

13 crystal-controlled AFSK generator
Charles R. Barrows, K7BVT

18 resistance-capacitance oscillators
Henry D. Olson, W6GXN

26 converting the Motorola Dispatcher
to 12 volts
John C. Darjany, WB6HXU

32 optimizing the superregenerative
detector
Charles L. Ring

36 cooled preamplifier for vhf-uhf
James L. Dietrich, WAØRDX

39 vfo-controlled low-power transmitter
Adrian B. Weiss, K8EEG

46 y-parameters in rf amplifier design
Julian M. Pike, WAØTCU

58 1972 sweepstakes winners
T. H. Tenney, Jr., W1NLB

60 integrated-circuit flip-flops
Edward M. Noll, W3FQJ

4 a second look

99 flea market

110 advertisers index

66 ham notebook

60 circuits and techniques

76 new products

72 comments

110 reader service

July 1972
Our society is a very mobile one, and when it comes to traveling long distances, most of us fly with one of the commercial airlines. It's only natural for the fm'er, with his portable fm rig, to question the possibility of using his equipment on commercial flights. It is popularly believed that all we have to do is obtain the Captain's permission to operate; surely our little two-watt fm rig is not going to cause any interference with the high-powered radio equipment used on board the aircraft. However, this is not the case — according to the Federal Air Regulations, approval must be obtained from the air carrier (airline) and not the pilot in command. However, once approved by the air carrier, the permission of the Captain in command must also be obtained to operate equipment aboard a particular flight.

Shortly after World War II, portable Japanese fm broadcast receivers started appearing on the market, and passengers started using them aboard commercial flights. At the same time, aircraft navigation radios started doing funny things, and it didn't take long to determine that the interference was being caused by rf radiation from the portable fm receivers. The aircraft radios literally went wild, and at least two aircraft accidents have been attributed to interference of this type.

When it was determined that this interference was present, the FAA promulgated new regulations, paragraph 91.19 of the Federal Air Regulations. This paragraph states that no electronic device may be operated aboard a commercial airliner except heart pacemakers, voice recorders, hearing aids, electric shavers and electric watches, unless the device has been approved by the air carrier or operator. The regulation further states that the captain of the aircraft does not have the authority to authorize such operation.

Consider, for a moment, what might happen if such operation were allowed. Suppose you have been operating all across the country, and your plane is about to land. A passenger with a briefcase telephone sitting across from you has been watching you operate. About 10 minutes before landing, he decides to call his wife. Unfortunately, his telephone operates on a frequency right in the middle of the glide slope spectrum. As soon as his transmitter is keyed, the glide slope indicator cross pointer goes up or down, and the autopilot follows it. This could be disastrous.

As an airliner flies across the country, the pilot changes frequency every 5 minutes or so. If several fm operators are on the same flight, only one can talk at a time, so some may decide to switch to other frequencies. When you start to figure out all of the i-f and carrier frequencies of the aircraft radios, plus the
Don't be misled by: **"WHAT YOU SEE IS WHAT YOU GET,"**

when buying 2 meter FM equipment (or any other Ham gear, for that matter).

SWAN ELECTRONICS
gives you much more
—a lot of which you can't see!

INVESTIGATE BEFORE YOU BUY! Compare Swan's FM-1210A for, example, to other 2 meter FM transceivers with a rated RF output of 10 watts. The FM-1210A gives you:

- 144 channel combinations through independent switching of 12 transmit and 12 receive frequencies from 144 to 148 mHz.
- Eight crystals (not just 3) . . . TRANSMIT: 146.22, 146.34, 146.76 & 146.94 mHz; RECEIVE: 146.28, 146.76, 146.88 & 146.94 mHz.
- A 16.9 mHz crystal lattice filter for adjacent channel rejection of -55 dB providing greatly improved selectivity.
- A fully solid state transmitter with automatic protection of the output transistor from improper-load damage.

FM-1210A Transceiver **$329.00**

A crystal oven for superior stability of ± 0.001% from -30° to + 50°C. (Who else gives you this for 2 meters?)

A squelch threshold of less than 0.3 mv with 2 watts of clear reception at less than 10% distortion.

PLUS: A heavy-duty pedestal type AC power supply, dynamic microphone, antenna connector plug, spare fuses and lamps, DC power cord, and mobile mounting bracket.

Write for your free copy of Swan’s 1972 Spring catalog containing complete details and specifications on the full line of Swan products.

2 Meter FM Economy is available with the SWAN FM-2X everything you need for AC or DC operation is included at one low price, just hook up your antenna and you’re on the air. Frequency coverage extends from 144 to 148 mHz over 12 channels. Crystals are installed for Channel 1 to transmit and receive on 146.94 mHz; Channel 2 to transmit on 146.34 and receive on 146.94 mHz; Channel 3 to transmit on 146.34 and receive on 146.76 mHz. 10 watt RF output. Microphone, AC power supply, DC power cord and mobile mounting bracket furnished.

FM-2X Transceiver **$259.00**

When reaching out for long range contacts, Swan’s VHF-150 Linear Amplifier is a perfect companion to the FM-1210A or the FM-2X. Operates class “C” at 150 watts DC input on CW or FM with a frequency range of 143 to 149 mHz. A flip of a switch gives you 180 watts of P.E.P. when working SSB class “B”. Its self-contained AC power supply is designed for continuous operation, and a DC converter is available for mobile installations.

VHF-150 Linear Amplifier **$279.00**

14C DC Converter **$ 65.00**

USE YOUR SWAN REVOLVING CREDIT SERVICE ACCOUNT AT 10% DOWN

SWAN ELECTRONICS
A subsidiary of Cubic Corporation
305 Airport Road • Oceanside, CA 92054 • Phone (714) 757-7525

More Details? CHECK-OFF Page 110
The idea of adding a linear amplifier to your station becomes quite attractive after fighting the DX dog-piles on 20, foreign broadcast QRM on 40, or QRN on 80. When I started planning a high-power linear amplifier for my station, I wanted a table-top unit that was quiet, lightweight, stable and efficient, and that would dissipate very little power or standby. I also wanted an amplifier as uncomplicated as possible; the fewer parts there are, the fewer there are to fail. The conduction-cooled linear shown in fig. 1 nicely fills all of these requirements. The conduction-cooled Eimac 8875 power tubes provide up to 1500 watts PEP input without a blower, so the amplifier is absolutely quiet.

The amplifier is housed in a table-top sized cabinet 24 inches long and 12 inches high. The unit dissipates little power on standby, and power output on 80, 40, 20 and 15 meters is 600 watts; or 10 meters power output is slightly less.

Circuit

In the complete amplifier circuit shown in fig. 1, two vacuum relays are used to switch the linear in and out of the circuit. These two relays are controlled by a third, smaller relay which also short out the protective-bias resistor. The use of input and output switching allows use of the linear with transceivers. The relay can be energized only when the high voltage power supply is turned on.

The parasitic choke is located in th-
cathode input circuit, and seems to be just as effective as if it were placed in the plate circuit. The cathode and filaments are isolated from rf ground by a 3-winding rf choke wound on a \(\frac{3}{4}\)-by 5-inch ferrite rod. The winding, consisting of two no. 16 wires for the filaments and one no. 20 for the cathode, fills the full length of the ferrite rod. The 8.2-volt zener diode provides cathode bias to hold the two tubes to a total cathode current of approximately 50 mA. I used a 10-watt diode, which should be sufficient for up to 1500 watts input; for 2-kW operation, a 50-watt zener would be preferable. The resistor in parallel with the zener provides insurance against damage due to a floating ground in case the zener opens up. The 10k resistor in series with the zener diode provides cut-off bias during standby.

The rf plate choke I used is a surplus pie-wound unit. The National R-175A or B&W 800 are suitable substitutes. The plate switch has three sections, but only two are used. One switch section selects taps on the coil and adds extra loading capacitance on 3.5 MHz. The other section adds capacitance in the plate side in the 3.5-MHz position.

The cathode input impedance is in the 60- to 70-ohm region, a reasonable match for most exciters. A problem that popped up while using the linear was that exciter drive dropped off as a transmission progressed. I added a power-dropping attenuator pad so the exciter could be operated this stray capacitance is sufficient to resonate the desired tank inductance on 10 meters. Therefore, I had to settle for a smaller coil, and consequently, higher Q. The sacrifice is small, however, and the 10-meter coil does not heat excessively during normal operation.

I debated about adding tuned circuits for cathode matching to gain the 1 or 2 dB advantage in intermodulation distortion, but decided to try the amplifier without them and see how it worked out. The cathode input impedance is in the 60- to 70-ohm region, a reasonable match for most exciters. A problem that popped up while using the linear was that exciter drive dropped off as a transmission progressed. I added a power-dropping attenuator pad so the exciter could be operated
CONTROL LINES 1

K1,K2 28 Vdc vacuum relays
K3 miniature 2-pole 28-Vdc relay
Heath sinks are 6" pieces of extruded stock, Thermal Associates no. 5-511

L1 5 turns 3/16" copper tubing, 1 1/4" diameter, 2" long, tapped at 4 turns
L2 Air-Dux 2408D4 tapped at 1, 4, 7 and 13 turns from coarse-wound end

Fig. 1. Schematic diagram of the five-band 1500-watt conduction-cooled linear amplifier. Resistor Rs is chosen to give 1 ampere full-scale deflection.

at normal input levels where the output remains stable. The attenuator circuit is shown in fig. 2.

The attenuator is housed in a 2-by-3-by 5-inch minibox, with numerous ventilation holes. The pad could have been built on the amplifier chassis, but by being able to patch it in and out, it can be replaced by a coax jumper for operation with low-power exciters. The amplifier only requires about 16 watts drive for 1000 watts input on the lower bands, and slightly more on the higher bands.

One advantage of the pad is that the exciter sees a resistive 50-ohm load. Also, the pad tends to swamp out variations in cathode impedance due to plate tuning, so the exciter doesn't have to be returned each time the linear is adjusted.

construction

The amplifier shown in the photos was built on a 17- by 13- by 3-inch chassis with a panel 22 inches long by 11 inches high. The panel size was chosen to fit a surplus cabinet I had on hand. The chassis is supported by two side brackets to prevent excessive flexing.

The heat sinks used to cool the tubes are 6 by 4 inches with 1 1/2-inch cooling fins. Thus, each heat sink provides 36 cubic inches of cooling volume. The heat sinks are faced with 1/16-inch copper to provide improved heat transfer from the vicinity of the thermal link blocks to the rest of the heat sink. The heat sinks are sub-mounted 1 1/2 inch below the top of the chassis so the thermal links are
Close-up photograph shows the details of the final-tube mounting. Careful alignment of the tubes, heat sinks and clamping block is necessary to assure efficient and equal cooling of both tubes. To assure adequate ventilation of the heat sinks, drill plenty of holes in the equipment cabinet.

centered. Slots on the chassis sides beside the heat sinks allow free air movement up through the cooling fins.

The tube socket mounting holes are elongated to allow alignment of the flat face on the tubes with the heat sink surfaces. Also, the mounting holes in the aluminum angle brackets that hold the heat sinks in place are oversized - this allows some tilt adjustment of the heat sinks.

The alignment of the tubes and sinks must be nearly perfect, or the thermal link blocks will not sit flat on the sink, and heat transfer from the tubes to the heat sinks will be impaired. Thermal compound should be used liberally between the tubes and thermal links, between the thermal link and copper plate, and the copper facing.

The 8873s are held tightly against the heat sinks by a semicircular piece of diallyl phthalate, which is clamped in place by a number-10 screw through a hole tapped in a piece of aluminum angle bracket. The material used for the clamping block must be a good electrical insulator and be able to take temperatures up to 200° C. A tapered ceramic insulator might be used for this purpose. The chassis holes for the angle bracket are slotted so the bracket can be rotated to properly align the clamping block to

![fig. 2. Power attenuator for use with high-power exciters. The amplifier requires only 16 watts drive for 1500 watts PEP input.](image)

\[
\begin{align*}
R1 & \quad \text{six 33-ohm, 2-watt resistors in parallel} \\
R2 & \quad \text{four 47-ohm, 2-watt resistors in parallel}
\end{align*}
\]
insure equal pressure on the two tubes.

It would, of course, be possible to mount the heat sinks in-line and clamp each tube individually with a toggle clamp. However, regardless of the mounting you use, external air must be able to enter the cabinet, pass through the heat sinks and exhaust, all with ease. I put several rows of ¼ inch holes in the cabinet above and below each heat sink. The cabinet must be mounted on at least ¾ inch feet to allow air to enter through the bottom.

power supply

The high-voltage power supply has six series-connected capacitors for a total of 21 μF. This amount of filtering is adequate for up to 1500 watts PEP, but if you want to run 2000 watts input, more capacitance should be used. The rectifiers are 5000-volt bridges connected to give a 10 kV PIV diode array on each side of the transformer. The high voltage drops about 400 volts with a 500-mA load when operating from 117 Vac. Operation from 220 Vac should result in better regulation due to reduced primary current.

My diode rectifiers generate a small amount of hash, probably due to switching transients. Capacitors on the primary and secondary side of the power transformer keep most of the hash out of the 117-Vac line. Filter chokes may be needed for tougher cases.

The bypass capacitors also protect the diodes from large amplitude, narrow spikes which may be present on the ac line. The 28-volt supply provides power to the high-voltage indicator and the relays (see fig. 3).

The high-voltage supply is metered by tapping off the top of the bottom bleeder resistor. Since the bleeder resistors are not precision types, the actual value of...
the high voltage should be measured by a more accurate means to obtain a correction factor; alternately, the value of the series-dropping resistor may be selected to make the meter read correctly.

The five-ohm resistor and S5 were

![Circuit Diagram](image)

fig. 3. Power supply for the five-band linear amplifier.

added after six months of operation. I found that the surge current through S3 caused the switch contacts to stick closed. Closing S5 after S3 protects S3 and the high-voltage diodes.

tuning and adjustment

The amplifier should be tuned to achieve maximum output at a given plate-current level while insuring that grid current does not exceed the normal operating value. When you have determined the normal settings for the tuning controls, it is easy to use these as starting points when changing bands. The amount of grid current at a given amount of plate current is determined by the setting of the loading control. With light loading, grid current will be excessive, while with heavy loading, grid current will be small, high as 15%. This means that the grid current could run a bit higher than that listed on the manufacturer's data sheet, and still not be excessive.

The best way to determine the correct grid current for a given power input is to check power output. My linear delivers 600 watts output on all bands except ten meters where it is a bit less. Allowing more than minimum grid current to achieve this power level does not result in more output, so this minimum grid current is my operating value. It is, of course, desirable to use a scope when operating and tuning up on ssb.

heat tests

Heat tests were run to determine the temperatures that the tubes and heat sinks reach during normal operation. The
temperatures were checked with temperature-sensitive compound sticks known as *Tempilstiks.* The heat sinks were allowed to stabilize with just the filaments running before the heat-test runs were started. Static dissipation tests were made by reducing the bias on the tubes until each tube was dissipating 200 watts.

The anode temperature (on the side of the tube away from the sink) reached 200°C in 8 to 10 minutes. There was a 50°C drop from the tubes to the heat sinks. The tubes must not be operated above 250°C, so a limit of 200°C under normal operating conditions is reasonable.

Tube temperature seemed to slowly increase beyond 200°C. This indicates that key-down operation for periods longer than ten minutes would require some additional cooling measures, such as a thermostat on the heat sink to turn on a fan. The thermal link blocks used on my tubes are 3/8-inch thick, but thinner blocks are available for improved heat transfer. However, thinner blocks add more stray capacitance to the plate circuit.

Since the heat sinks are attached to the chassis, it receives conducted heat. Therefore it is wise to avoid mounting parts that could be damaged by the elevated temperatures close to the heat sinks. The hottest spot on the chassis is in the area around the tubes.

It was noted while running the static heat tests that one tube drew about 10 mA more than the other, so it was running much hotter. Diodes were added as shown in fig. 4 to place more bias on the higher current tube. The reverse diode provides a current path during the negative half of the rf cycle. This simple addition seemed to achieve balance between the two tubes.

Tube operating temperatures were also checked during operation. Under extended operating times, such as a CW ragchew, tube temperatures did not reach 200°C. Likewise, ssb operation at 1500 watts PEP did not result in excessive tube temperatures. Even hot and heavy contest operation doesn’t overheat the tubes.

operation

The linear should be placed so air can freely enter and leave the cabinet since cooling relies primarily on air moving by convection upward through the cooling fins. The cabinet should be mounted on feet, 3/4 inch or higher, to allow free entry of air into the bottom of the cabinet.

The thermal links should be checked from time to time to insure that they have not changed position. It might be possible to place a ridge of solder or epoxy on the heat sinks around the location of the blocks to prevent creeping.

I have found this linear amplifier to be quite stable. The only problem I had was my homebrew exciter taking off on 80 meters. This was due to a poor ground connection between the exciter and the linear, and was cured with a ground strap between the units. I am well satisfied with the amplifier, and find that it fulfills all my operating requirements.

references

crystal-controlled

AFSK generator

Using one oscillator with a variable frequency divider, allows crystal-controlled AFSK without envelope aberrations.

Several crystal-controlled AFSK circuits have been described using two separate oscillators and a common digital dividing circuit. The circuit presented here is unique in that it uses a single oscillator and varies the division factor of the counter circuit. This has the inherent advantage that transitions between tones always occur at zero crossings, thus eliminating envelope aberrations often generated when switching between two non-synchronous tones.

I used a 1-MHz crystal because these crystals are readily available on the surplus market. Dividing 1 MHz by 2.125 kHz yields a ratio of 470.59. Since the counter can only divide by an integer I use a compromise ratio of 470, resulting in an output tone of 2.1277 kHz; 2.7 Hz higher than the standard mark frequency. Starting with a 100-MHz oscillator and dividing by 4,706 would give a 2.12504-kHz output, but the cost of ICs operating over 10 MHz and the problems of 100-MHz circuitry would not justify the added accuracy.

I used a standard ripple counter for the frequency-divider circuit (see fig. 1). These counters give an output with a non-symmetrical period when dividing by ratios other than two, four, eight and so forth. Since a non-symmetrical period represents even harmonics, the filtering requirements are eased by designing the basic counter to yield twice the desired frequency and then dividing again by two in a simple toggle circuit.

The output at pin 5 of U5 is differentiated through the RC network at pin 2 of U6 providing a clear pulse for the appropriate stages to provide the different ratios. For instance, when 2.127 kHz is required each time pin 5 of U5 goes negative, a pulse is coupled through the NAND gate logic scheme to the 1, 4, 16 and 256 stages. The counter will start each cycle with a count of

Chuck Barrows, K7VBT, 5541 SW Miles Court, Portland, Oregon 97219

july 1972
Q7 2N3440, TO-5 case, 1W
R1 dual 25k potentiometer, single shaft
U1, U2, SN7474 Dual D-type edge-triggered
U3, U4, U5 flip-flop

U6 SN7404 Hex inverter
U7 SN7400 Quad 2-input NAND gate
U8 SN7410 Triple 3-input NAND gate
U9 μA741 Operational amplifier

14 July 1972
1+4+16+256=277, thus pin 5 of U5 will go negative at an actual count of 511-277=234. The output of U5 will be a non-symmetrical square wave with a frequency of 4.154 kHz providing a 2.127 symmetrical square wave at pin 9 of U6. Since the clear pulse is derived from the 256 stage, an RC network is placed ahead of the 256 clear input to insure enough delay for proper self-clearing action.

When a keying transition appears at the input (the network connected to the base of Q3), the counter ratio cannot change until the cycle in progress is completed.

The output of the counter is fed to a 3-pole Butterworth low-pass filter with a -3 dB point of 2.5 kHz. The low-pass filter is followed by an active variable band-pass filter. Tuning this filter between the mark and space tones provides amplitude compensation to counteract unequal attenuation of the two tones in the low-pass filter and the filter in the ssb exciter.

construction

The entire circuit was built on a 22-pin plug-in Vectorbord. I used a BC-929 cabinet to enclose the AFSK circuit as well as a version of the ST-6 demodulator. The ST-6 ±15 V supply provides enough current for the AFSK, ST-6 and a transistorized transformer-coupled deflection amplifier (see fig. 2) that drives the original BC-929 3-inch CRT.

The circuit is fairly complex for the average amateur with nine ICs and seven transistors. The new Motorola frequency-synthesizer ICs (MC4318) would simplify the design, but at least two would be required at $7.50 each versus less than $10 for all of the TTL ICs through surplus outlets. The total cost of components through surplus houses is around $25. The 5-volt supply is marginal and
was used for economy. An independent rectifier running from a 6-Vac filament transformer with a Zener diode controlling Q7 would be a definite improvement.

The low-pass filter does not remove the third harmonic of the 1.275 kHz tone completely, and this is compounded when the band-pass filter is aligned to boost the 2.125 kHz tone. An additional 88 mH toroid would provide a 5-pole filter which would reduce the third harmonic, but the ssb exciter filter seems to prevent radiation of the third harmonic.

While the audio envelope does not have any aberrations and tone transitions occur at zero crossings, there is some ripple on the rf envelope during transitions. This is probably due to attenuation of audio sidebands in the sharp ssb filter.

The speed of transitions between tones could be slowed, using an RC oscillator with a damping network in the frequency determining voltage loop for instance.

summary and criticism

The AFSK unit has been used to drive a Heathkit HW-100 for several months with very satisfactory results. While the output tones are not exact, they are more accurate and stable than typical LC or RC oscillators. For normal operation, I use upper sideband and I adjust my ST-6 tuned circuits to match the tones I use: mark-2125, space-1275, for 850 Hz shift; mark-2125, space-1955, for 170-Hz shift. The CW identification shift is 132 Hz. Since the change between narrow and wide shift requires only a ground closure, it is simple to control the AFSK shift and the shift of the demodu-

[Images of waveforms showing wide and narrow shift adjustments are shown.]

fig. 3. Performance of the AFSK generator. An electronic pulse generator was used to key the AFSK unit for these photos. All photographs were taken from a Tektronix type 547/1A4 50 MHz oscilloscope.
thus reducing the audio sidebands and the rf envelope aberrations. This would increase the rise and fall times of the demodulated waveform, thus reducing the effective width of the mark and space pulses, resulting in less immunity to noise, particularly on 100-wpm signals.

Thanks to W7GNI for many helpful circuit design suggestions, and to K7TBQ and WB6BZW/7 for help in evaluating the circuit.

references

Ham Radio
resistance-capacitance oscillators

Replacing the large inductors of the traditional L-C circuit with resistors and capacitors for today's miniature audio oscillators

The trend to microcircuits and its resultant reduction in size of electronic equipment has been accompanied by a move to eliminate inductors. This is not only because inductors (at least those with henries of inductance) are large and heavy, but because the inductor is one component that will apparently not be put on a silicon chip. (At vhf and uhf where very small inductances are useful, inductances can and are being made using etched circuit and metal-deposited-on-substrate techniques.)

Because of the engineering drive to get rid of the iron, new ideas for circuits using resistances and capacitances instead of inductances and capacitances are rapidly coming to the fore. One of the areas where R-C replaces L-C is in filtering. The techniques for systematic multiple-pole low-pass, high-pass, and bandpass filters using only resistances, capacitances and IC operational amplifiers are pretty well established.1 Tuned transformers associated with ratio detectors and discriminators are also on their way out, having been designed around by IC phase-locked loops and other IC circuits for fm demodulation.

Another area wherein R-C circuits are widely used is oscillators; unlike the circuit designs mentioned above, R-C oscillators are not new technology. R-C oscillators have been with us for decades, at least for audio frequencies.2 The
phase-shift oscillator, bridged-tee oscillator, twin-tee oscillator, and Wien Bridge oscillator (with vacuum tubes) are good examples. Circuits of these are shown in fig. 1 as they were originally used, with vacuum tubes as the gain blocks. Only the equivalent ac circuits are shown; that is, no blocking capacitors or biasing resistors are included.

basic circuits

The circuits presented in fig. 1 have only one thing in common—all are R-C types. These circuits differ significantly in details. The phase-shift oscillator and the twin tee oscillator shown in figs. 1A and 1B have no amplitude control system, and require their R-C networks to shift 180° at the oscillation frequency. The bridged-tee oscillator shown in fig. 1C, however, uses the R-C network as a null in the negative feedback path to increase the loop gain at the oscillation frequency. Positive feedback is broadband and provided by the resistance of I_1 in fig. 1C.3 The phase shift of the bridged-tee network is 0° at the null frequency. Like the bridged-tee oscillator, the Wien Bridge oscillator has an R-C network which provides 0° phase shift at the oscillation frequency. The R-C network, however, provides a peak instead of a null at the oscillation frequency, and so is placed in the *positive* feedback loop.

In figs. 1A and 1B no attempt is made to automatically control the amplitude of oscillation. For this reason, these two circuits will generally produce a somewhat distorted sine-wave output.

The circuits of figs. 1C and 1D, however, have a non-linear resistance (I_1) which increases its resistance with an

fig. 1. Some basic R-C oscillators: phase-shift (A), twin-tee (B), bridged-tee (C) and Wien Bridge (D). The bridged-tee and the Wien Bridge both contain non-linear resistances which result in a more pure sine wave than that produced by the phase-shift or twin-tee oscillators shown.

[Diagram of circuits]
increase in output level. The series position of I_1 in fig. 1C assures that if the output level increases the effect will be to decrease the positive feedback factor. The parallel position of I_1 in fig. 1D has the effect of increasing the negative-feedback factor upon an increase in output. In both cases the effect of I_1, in increasing resistance with an increase in level, is to restore the operating condition that existed before the change.

The two oscillator circuits, with a nonlinear resistance for feedback control, produce very nearly sinusoidal waveforms, since the automatic feature holds them in the linear operating region. For this reason, these circuits have been widely used as laboratory audio generators; the famous Hewlett Packard 200 series is based on the Wien-Bridge circuit. Similarly, the bridged-tee is used in the Heathkit IG72 audio generator. It is also feasible, however, to apply amplitude control to the circuits of figs. 1A or 1B.

op amps

Let us now redraw the four R-C oscillators using operational amplifiers as the gain-blocks. These are shown in figs. 2, 3, 4 and 5. The resistor R_3 establishes the input impedance into which the R-C network must operate. Also, in all of these circuits, the ratio R_4/R_3 determines the closed-loop gain of the amplifier.

In the basic phase-shift oscillator, there are three R-C sections, each with 60° of phase shift at the operating frequency. These phase shifts all add up to 180°, causing the input and output to be 360° out of phase so that oscillation will start if the gain of the amplifier is adequate.

The twin-tee oscillator operates in much the same fashion as does the phase-shift oscillator. At the frequency of oscillation, there is 180° phase shift through the R-C network. The twin-tee network will be remembered by some readers as a notch network, which was often used in a-m radios to suppress the 10 kHz interstation whistle in early hi-fi tuners. In the oscillator use, however, it never quite operates in the notch, or no positive feedback could occur.

In the bridged-tee oscillator of fig. 4, the amplifier has an all-pass network (resistive voltage divider) in the positive-feedback path; so that except for the presence of negative feedback, it could oscillate at any frequency. However, the bridge-tee network is a null network, and so gives minimum negative feedback at its null frequency. This minimum negative feedback at the null frequency means that the amplifier has its maximum gain at that frequency, and so that’s where the oscillations occur.

The Wien Bridge as shown in fig. 5 is quite different in that the R-C network does not control the negative feedback but rather the positive feedback. The negative feedback is controlled by R_3 and R_4.

All the circuits of figs. 2, 3, 4 and 5
use relatively low impedance values in their R-C frequency-controlling networks because of the low input impedances of the monolithic IC op amps they use. By using op amps with higher input impedances (such as the fet-input types), it is possible to make the C values smaller. This seemingly tiny advantage is really quite significant; it allows some important circuit possibilities: use of 15 to 468 pF dual- or triple-section variable capacitors for tuning, use of varactors for tuning, and use of on-chip capacitors. A few of the things that can then be constructed are: a capacitively-tuned continuously variable R-C oscillator, a voltage-variable R-C oscillator (for generating fm) and an R-C oscillator entirely built on a silicon chip.

variations

There are also some important variations on the basic oscillators that are worth looking at. The phase-shift oscillator, for instance, need not have the simple form of fig. 1, wherein all the Rs and Cs have equal values. A useful variation is that of tapering the R-C network. This method uses a larger value of R and a smaller C in each successive R-C section. In this manner, the C of the first section is not loaded by the R of the following section (see fig. 6A). If R3 is much larger than R2, R2 is much larger than R1, C1 is much larger than C2, and C2 is much larger than C3, true tapering results. By "much larger than," I usually mean ten times as large. However, five times as
large is adequate for tapering in a phase-shift oscillator.

Fig. 6B shows another variation of the phase-shift oscillator network, using four sections. This variation can be extended to as many sections as desired.

Finally in fig. 6C, the Rs and Cs are exchanged in the circuit, and the phase-shift oscillator still operates. This works because it doesn’t matter whether there is 180° lead or lag for oscillations to take place. This network may have some advantages in some circuits since it makes coupling capacitors and the amplifier input resistor part of the network. A concrete example of this is shown in fig. 7.

Fig. 7 also combines the techniques of multiple sections (more than 3), and tapering, to show that these several variations are all compatible. Tapering and increasing the number of sections both have the effect of reducing the loss in the R-C network, allowing us to use less amplifier voltage gain to sustain oscillation. A simple, three-section, equal R and C phase-shift oscillator takes a minimum voltage gain of 29 to make it oscillate. A four-section tapered network may require a voltage gain of less than 5 to oscillate.

A rather interesting modification of the phase-shift oscillator uses a distributed R-C line as the network. This

fig. 5. Wien-Bridge oscillator using an IC op amp. All pin connections refer to the TO5 case.

fig. 6. Variations of the basic oscillator. The tapered network is shown in A. C1 is much greater than C2 which is larger than C3. Similarly, R3 is greater than R2 which is greater than R1. B shows an extra section added to the R-C network. Any number of extra sections could be added. The usual location of the resistors and the capacitors has been switched in the oscillator in C.
could be thought of as a piece of coax cable with a high-resistance center conductor. It is then effectively a multi-section R-C network with its shunt capacity to ground continuously in effect along the length of the line. Such a distributed R-C line phase-shift oscillator was actually built and tested as shown in fig. 8. The R-C line was made up of a deposited-carbon resistor (40K) of the older non-encapsulated style. A layer of ordinary kitchen-type aluminum foil was wrapped around its body and taped in place. This foil served as the outer conductor of the line, and the paint on the resistor formed the dielectric. The circuit oscillated at about 200 kHz, so it was necessary to use an IC op amp which had a high slew rate; I chose the Signetics NE531T because its slew rate is uniform at about 30 V/μsec regardless of the closed-loop gain. The NE531T is not internally compensated, however, and requires a single external capacitor for this purpose (100 pF between pins 8 and 6).

There are some other interesting ways of modifying the phase-shift oscillator. Combining tapering with a distributed line suggests itself, but is a bit difficult to implement using standard components. However, this is the sort of thing that may be very easy to do on a silicon chip in ICs of the future.

Wien Bridge variations

The Wien-Bridge oscillator has been well worked over; many variations have appeared. Early efforts to make a Wien-Bridge oscillator using bipolar transistors were inevitably tuned by a dual variable resistor, or used switched Rs and Cs. This,
of course, was simply due to the low input impedance of the base of a bipolar transistor. An interesting variation of the Wien Bridge is the Baxandall modified Wien Bridge circuit as shown in fig. 9.6 The main reason for using the Baxandall version of the Wien Bridge is to prevent the op amp input impedance from loading the parallel R-C branch of the bridge. A practical circuit before op amps used four 2N404s.7

Fig. 9 also demonstrates the use of a thermistor as the nonlinear resistor in the feedback control. Unlike the lamp bulb, the thermistor decreases resistance as it is heated; so it is placed in the position shown to increase negative feedback as it heats. This type of feedback control element is used in at least one laboratory audio oscillator, the General Radio 1311A.8

It is also possible to rectify the output of the oscillator and apply the filtered dc to some form of agc element. The agc element can be any one of a number of devices such as a diode, transistor or fet.9

An fet can also be used as a voltage-controlled resistance, and so is sometimes used in the negative-feedback voltage divider of the Wien Bridge oscil-
fig. 11. Wien Bridge oscillator using diodes for non-linear control element.

The source and drain terminals of the fet are treated as the two terminals of a resistor, and the control voltage is applied between source and gate. The fet used as a voltage-variable resistor should be operated with zero dc from source to drain and with very small ac voltage across it. Special fets characterized as voltage-controlled resistors are Siliconix. An actual example of a Wien Bridge oscillator using an fet for feedback-control and an IC op amp as the gain stage is shown in fig. 10.

There is one version of the Wien-Bridge oscillator that has no time constant inherent in the negative feedback control element. This circuit is shown in fig. 11. As the nonlinear element is a pair of back-to-back diodes essentially operating instantaneously, there is no time constant to them. In fact, the negative feedback portion is very much like an operational voltage clipper. The 47-kilohm resistor in series with the diode pair and the fact that the diodes go into conduction symmetrically, however, allow this oscillator to produce fairly pure sine-wave output.

Of course, there are many other types of R-C oscillators besides the four basic circuits covered here. The ones which produce non-sinusoidal waveforms, such as astable multi-vibrators, would provide enough subject material for another article. Even in the restricted area of sinusoidal oscillators there are a couple more types that have not been covered here. These types are rarely used, and in some the reasons for their invention (low mu limitations of early tubes) no longer exist.

references

ham radio july 1972
converting the Motorola Dispatcher to 12 v operation

Using an inexpensive homemade toroid to convert these surplus bargains from 6 V to 12 V operation.

There are a lot of Motorola Dispatcher 6- and 2-meter transceivers just waiting to be put into service by amateurs. These partially transistorized radios started becoming available several years ago as police departments decided to replace their old equipment. Sometimes called motorcycle radios, the units are reliable, small, easy to tune to amateur frequencies and are relatively inexpensive. They are priced as low as $30.00, including accessories, mainly because of their not-so-popular 6 V power supply. Dispatchers with 12 V supplies are available, but not as readily or inexpensively.

The 6 V supplies can be modified for 12 V operation the conventional way, but the expense can easily equal the cost of the entire radio. The 12 V transformer alone is priced in the tens of dollars. For this reason, many hams resort to a series regulator to drop their 12 V system to 6 V for the radio. But this method is terribly inefficient, and the cost is about
the same as the method described here.*

theory

The principle behind the conversion is simple. In the original circuit, the transformer primary is a 6-0-6 V winding, fig. 1A. The switching transistors alternately connect the 6 V battery between the center tap and one 6 V winding, and the center tap and the other 6 V winding, figs. 1B and 1C. The alternating field then induces various voltages into the other windings of the transformer. While Q1 and Q2 are conducting, fig. 1B, winding W2 is open and has a voltage induced in it. Likewise, while Q3 and Q4 are conducting, fig. 1C, W1 is open and has a voltage induced in it. Since W1 contains the same number of turns as W2, when 6V is switched across either winding, then 6 V is induced into the other. Furthermore, because the windings are in series this fashion is equivalent to switching a 12 V battery across the entire winding (A-to-C). This is precisely what is accomplished by the modification described here.

The original supply consists of four transistors wired in push-pull-parallel. Their configuration is changed to that of a quasi-complimentary bridge for the 12 V supply. During one half of the cycle, Q1 and Q4 conduct, connecting the 12 V battery between A and C with positive on A (fig. 2A). During the other half of the cycle, the polarity is reversed by the action of Q1 and Q4 turning off as Q2 and Q3 turn on (fig. 2B).

Drive is obtained by the addition of a

* A complete parts kit, including a wound toroid, is available for $6.50 postpaid from John Darjany, WB6HXU, 2347 Angela, Suite 4, Pomona, California 91766.
small home-wound toroidal transformer which utilizes the dc resistance of its windings for base-current limiting and balancing (fig. 3A). The start circuit, fig. 3B, generates a pulse rather than a continuous level so that receive current drain is held to a minimum (about 500 mA). The original 6 V circuit may be compared with the complete modified 12 V circuit for further clarification (figs. 4 and 5).

Modification procedure

The first step in the modification is to

wind the driver transformer. Cut a bobbin out of stiff cardboard and wind around it about 9 feet of six strands of number 30 enameled copper wire. Then, using the bobbin as a sewing needle, thread 80 turns of the six-strand bunch onto a Magnetics 55206-A2 toroid core, leaving about six inches of wire at each end. Set the transformer aside until later.

Remove the power supply chassis from the bottom compartment and position it upside down in front of you, oriented as in the photographs. Note that there are several versions of this supply, and some may appear somewhat different than the ones shown. For example, one later version uses TO-3 transistors rather than TO-36 as pictured here.

Unsolder Q2 (see the photo for transistor locations) and remove it from the chassis. Install a mica washer with some thermal joint compound, reinstall and rewire Q2. Next, remove the jumper between the collector of Q1 and Q2. Remove the black and yellow wire from the transformer at the collector of Q3. Remove the emitter wires from Q3 and Q4 at the terminal strip. Connect the emitter of Q3 to the collector of Q1. Connect the emitter of Q4 to the collector of Q2.
tor of Q2. Extend the black and yellow wire from the transformer with some number 16 wire, and connect to the collector of Q2. Remove all four base wires from the transistors at the terminal strips and remove the jumpers between adjacent terminals. Remove the yellow and white and the red and white wires coming from the transformer at the terminal strip. Connect the base wires of the four transistors individually to the four empty terminal lugs. Disconnect the black and brown wire from the transformer and tape it so that it will not short to something.

The phenolic mounting platform for the toroid is part of the newer supplies. Avoid short circuits by mounting it so that no sharp or hard edges or surfaces contact the wires. Connect a wire from the collectors of Q3 and Q4 to the negative supply (heavy green wires coming from terminals 2, 3, 4 and 5 on the power connector). If an earlier version supply is being converted, mount the toroid below the chassis, held in place by its leads and the green wires.

Remove the 330 ohm, ½ W resistor. Remove the white and brown wire from the transformer and tape the free end. Remove the positive supply wire from the 25 ohm, 10 W adjustable resistor and connect the resistor to the white and red wire from the transformer. Change the 220 ohm, ½ W resistor to a 220 ohm 1 W resistor.

toroid wiring

For clarification, the six wires leaving the center of the toroid nearest the chassis will be called positive, and those leaving the center of the toroid away from the chassis will be called negative. This will help in connecting the windings in proper phases.

Connect any two positive toroid wires to the 220 ohm, 1 W resistor at the side not connected to the 25 ohm, 10 W adjustable resistor. Find the two corresponding negative wires with an ohmmeter, and connect them to the white and yellow wire coming from the original transformer. Connect any one remaining positive wire to the base of Q1, and its corresponding negative wire to the emitter of Q1.

Connect another positive wire to the base of Q4 and its corresponding negative wire to the emitter of Q4. Connect a remaining negative wire to the base of Q2.
and its corresponding positive wire to the emitter of Q2. Connect the last negative wire to the base of Q3 and the last positive wire to the emitter of Q3. The wiring of the starting circuit is straight-

available in the average junk box. The 2N697 transistors can be replaced with any silicon npn switching transistor with similar characteristics. There are surplus toroids available which can replace the

forward and can be done by following the diagram of fig. 3B and the photos.

operation

The modification is now complete and should require no adjustments. If, however, the transmit voltages are low, careful adjustment of the 25 ohm, 10 W resistor should help. Of course, it is advisable to disconnect power while making adjustments.

Most of the parts used should be one called for – but the new, single-unit price is much less than a dollar, so surplus store hunting may not be worth the effort.

The results have been excellent. One unit has been in 12 V operation for nearly three years, and has not given any trouble at all. Another was completed along with this article, and looks as good as the first. Inquiries accompanied by a return envelope will be answered gladly.

ham radio
AMATEUR ELECTRONIC SUPPLY
RECONDITIONED HAM EQUIPMENT

★ 10 Day Free Trial (lose only shipping charges) ★ 30 Day Guarantee ★ Full Credit Within 6 Months on Higher Priced New Equipment ★ EZ Terms—Convenient REVOLVING CHARGE Payment Plan ★ Order Direct from this Ad!

AMATEUR ELECTRONIC SUPPLY
4028 W. Fond du Lac Ave. Milwaukee, Wis. 53216
Phone (414) 442-4200

HOURS: Mon & Fri 9 - 9; Tues, Wed & Thurs 9 - 5:30; Sat 9 - 3

CLEVELAND Area Hams may wish to visit our Branch store located at 17929 Euclid Avenue, Cleveland, Ohio. Ph. 486-7330. Pete Smith, Mgr. All Mail Orders and Inquiries should be sent to our Milwaukee Office.

More Details? CHECK—OFF Page 110

july 1972
optimizing
the
superregenerative
detector

Hangover and receiver radiation can be minimized with these circuit refinements.

The superregenerative detector, known since the early 1920's, has seen limited commercial application but has appealed to radio amateurs and radio-control enthusiasts. Few circuits are capable of providing such high gain from a minimum of conventional parts, not to mention additional advantages such as low power requirements and good high-frequency performance.

The superregenerative circuit has been described in previous issues of *ham radio*. The problems of hangover (blocking that limits sensitivity) and receiver radiation were shown to be minimized by adding a diode across part of the tank inductance.

While many subtleties are involved in circuit operation, I've found that two simple factors are outstanding in achieving optimum efficiency: time constant and applied bias, which influence the blocking-voltage waveform.

The superregenerative circuit is a blocking oscillator operating at radio frequency. The circuit contains an RC network with a time constant long with respect to the natural frequency of the circuit. After a few cycles of oscillation, a reverse bias develops on the RC network. The reverse bias becomes sufficiently large to cause circuit losses to exceed circuit gain. Residual oscillation then decays, and the remaining dc bias bleeds off until the conduction point of the circuit active device is reached; then the process repeats. The process is illustrated in fig. 1, a typical blocking-oscillator waveform developed at the input.

The rate at which the circuit goes into and out of oscillation is the quench frequency, which is made to occur at a supersonic rate so as not to interfere with the received signal. Detection occurs because any rf signal (or other electrical disturbance) will cause the bias slope to encounter the conduction point ahead of its natural time, thus increasing the quench frequency. Since a higher quench frequency means a higher average current through the circuit, a replica of the signal modulation is available.
The key to successful operation of the circuit is in the quenching voltage waveform, which influences circuit performance in two major ways. It determines:

- The amount of audio that will be developed from a given input signal.
- The degree of regeneration a given signal will experience prior to the actual circuit oscillation burst.

It is this latter factor which controls circuit selectivity and sensitivity.

Consider now the effect of the quenching voltage waveform on circuit audio response, as illustrated in fig. 2. (In this figure the initial oscillation burst has been eliminated since it doesn’t directly pertain to the following discussion.) In fig. 2A a relatively long time constant is used with a large value of forward bias. The forward bias increases the quench frequency by eliminating the shallow portion of the decay slope. The remaining portion of the slope crosses the circuit firing point (approximately equal to cutoff in the case of transistors) at a steep angle. If a signal having an instantaneous amplitude represented by the line A-B is applied to the slope, the circuit fires at T2 rather than at T1. The increase in quench frequency is small, resulting in a relatively low audio output.

The circuit conditions for fig. 2B are the same except that forward bias has been greatly reduced, preserving the shallow portion of the decay slope. If the same signal represented by line A-B is applied to this slope, a much greater change in quench frequency is produced, resulting in a much higher audio output. Unfortunately, the reduction in forward bias also results in a normal quench frequency well within the audio range, which destroys the usefulness of the circuit. What is important here is that (a) slope shape rather than quench frequency per se influences circuit efficiency, and (b) a shallow slope depends on the application of minimum forward bias.

Having established one condition for optimum performance, the second problem is to eliminate the low quench frequency. This condition can be achieved by reducing the value of the time-constant network: if the time-constant is made as short as possible, the net effect will be a usable, supersonic quench frequency with a shallow slope.

selectivity and sensitivity

The most significant advantage of the
sensitivity, which is related to the amount of pure regeneration present in the circuit. It is well known that simple regenerative receivers achieve a Q multiplying effect by operating close to the unity gain or oscillation point.

The superregenerative circuit is also regenerative when the decay slope is near the unity-gain bias level. Here, the advantage of a shallow slope, as compared to a steep slope, is that the shallow slope permits the signal to dwell in the threshold region for a longer period. This action allows a greater regenerative buildup with a resultant increase in gain and decrease in bandwidth. Since circuit losses are compensated by regeneration, the Q of the tank circuit doesn't greatly influence selectivity as it is sometimes believed. In fact, an excessively high Q tank is not permissible in the circuit.

hangover

In the superregenerative circuit, it is essential that no oscillations remain in the tank circuit after oscillation has terminated. Such persistent oscillation, sometimes referred to as hangover, can create spurious responses that block detection by forcing the receiver to listen to its own residual rf signal.

Hangover, which results from the large reactances involved, prevents efficient operation in the lower frequency ranges. In this case efficient operation can be obtained only at excessively low quench frequencies, which allow time for natural tank damping. Furthermore, attempts at constructing a truly narrowband circuit, such as using a quartz crystal in conjunction with the tank, are doomed to failure unless some method of damping is developed.

The performance of conventional superregen circuits can be improved by adding a damping diode across a portion of the tank inductance. The diode is connected so that it doesn’t prevent positive feedback. The diode dissipates energy immediately after the circuit oscillation burst, thus hangover is eliminated. Since the barrier potential (approximately 0.2 volt in the case of germanium diodes) exceeds any normal signal input, no tank loading will occur. The advantages resulting from diode inclusion are:

1. Residual oscillations are eliminated from the sensitive portion of the decay slope.
2. A more highly regenerative (shallow) slope can be employed since the tendency of the circuit to lapse into cw oscillation will be reduced.
3. Receiver radiation is greatly reduced: Diode damping lowers the amplitude and shortens the duration of the radiated pulse. (Preliminary measurements indicated a 12:1 reduction of radiated noise in the case of the 28-MHz circuit described below.)
Two circuits are presented, which exemplify the superregen operational principles. The first (fig. 3) covers the 28-MHz band and tunes from approximately 21 to 40 MHz. The second circuit, fig. 4, covers the 144-MHz band.

The difference between these circuits in the use of a Colpitts oscillator in the 144-MHz range to compensate for shunt capacitance.

In both circuits, the time-constant network consists of R_1, C_1. As a general rule, the time constant of R_1, C_1 should be as short as possible, the limiting factor being the point at which the circuit tends to lapse into cw oscillation. In this regard, one variable requiring compensation will be the beta spread within given transistor types, with high-gain units requiring a longer time constant. Here, the best method of adjustment consisted of holding C_1 at 500 pF and adjusting the value of R_1. When making this change isolating resistor R_2 should have a value at least twice that of R_1. Potentiometer R_3 controls the forward bias and acts as a quench-frequency control. The most sensitive setting will correspond to the minimum bias consistent with a usable quench frequency — usually in the order of 20 kHz. Occasionally, this sensitive setting of R_3 will result in oscillator pulling from strong local signals. If this occurs, the control should be advanced to a slightly less sensitive setting.

A simple resonant circuit and diode detector were placed near the antenna of the 28-MHz receiver to detect receiver radiation. The output was fed to a scope and displayed as a vertical line. When the diode was inserted, the radiation-pulse amplitude fell to 20 percent of its former value. The pulse width (scope sweep on) also decreased to about 70 percent of its former value.

The net effect on a nearby linearized receiver (no avc; no rf overload) was to reduce the audio noise voltage measured at the receiver output to 1/12th of its former value. This reduction amounts to about 21 dB. The 144-MHz circuit demonstrated the same effect; thus the principles appear to apply to every superregenerative circuit, allowing operation beyond the point at which a conventional circuit would be limited.

references
cooled preamplifier
for
vhf-uhf reception

An experiment into lowering solid-state device noise figure by cooling the unit hundreds of degrees

As a result of improved solid-state devices, noise figures have dropped substantially in the last few years. Today, a common-gate fet amplifier will readily provide a noise figure of 1.5 dB or better at 144 MHz. With this kind of performance from such a simple circuit, any improvement would be more or less academic. At 432 MHz, where low noise figures really begin to pay off, you can use a transistor with a possible noise figure of 1 dB. Fets are slightly inferior at this frequency but can give a 2 dB noise figure. Performance at 1296 MHz is similar, with state-of-the-art noise figures being approximately 2 dB for transistors and 3 dB for fets. In spite of all this, the parametric amplifier is still king. At 432 MHz, 0.5 dB can be achieved, and 1 dB is possible up to 2.3 GHz. However, the paramp represents a rather formidable project; at least it does to all of us who have never built one.

theory

In order to see how much these low noise figures can help your receiving setup, we'll review briefly a few expressions. These are:

\[\frac{(S/N)_0}{(S/N)} \propto 1/T_n \] \hspace{1cm} (1)

\[T_n = T_s + T_e \] \hspace{1cm} (2)

One of the ingredients necessary for weak-signal reception at uhf is a receiver with the lowest possible noise figure. A lower noise rf amplifier in your frontend can make weak, fading stations easily readable as well as bring new signals up, out of the noise.
Where

\[T_s = \text{source noise temperature} \]
\[T_e = \text{effective receiver noise temperature} \]
\[T_n = \text{system noise temperature} \]
\[(S/N)_o = \text{output signal to noise ratio} \]

The equations tell us that the output signal-to-noise ratio is inversely proportional to the system noise temperature. Further, noise figure is related to receiver noise temperature by

\[T_e = (F - 1)290^\circ K \tag{3} \]

Noise performance, therefore, is specified by either. It should be pointed out that \(F \) in equation 3 is the ratio noise figure, not in dB. These are related by equation 4.

\[F_{db} = 10 \log F \tag{4} \]

Now, \(T_S \) depends on several factors, but if everything is right, can be as low as 200\(^\circ\)K at 144 MHz and 20\(^\circ\)K at 432 MHz for a moonbounce link. If you're not familiar with this noise figure business, try reading K6MLO's article, and then plug in a few numbers and see what happens.\(^1\) It shouldn't take long to convince yourself of the value of a low noise figure.

The approach to a low-noise amplifier used here is based on the fact that most noise added to the amplified input by a fet is thermal noise and proportional to the physical temperature of the device. Thus we should find that equation 5 is true.

\[T_e \propto T_{device} \tag{5} \]

test procedure

To test this hypothesis, I built the circuit of fig. 1. You may wonder why the common-gate configuration was used instead of the common-source. This is simply because a common-gate amplifier will give just as low a noise figure as a common-source circuit. This is so even though the device noise figure is lower in common-source. The input tuned circuit has a higher loaded \(Q \) and hence more loss than the corresponding circuit in the common-gate amplifier. Also remember that as we get rid of device noise, the lossy components preceding the fet become important. Therefore, it is desirable to use the common-gate configuration with its low-Q input.

Before cooling the amplifier, I adjusted the circuit for best noise figure at room temperature. I adjusted the supply voltage, drain current, input coil tap, output coupling capacitor and input and output tuning capacitors. I found that the output coupling capacitor had little effect on noise figure. I finally set it at about 2 pF. The position of the input-coil tap was not critical, but a minimum was obtained with it about 30% up from ground.

Input tuning was broad. Again, however, there was no question that a dip in noise figure did exist. With the output tuning I obtained best noise figure at approximately the position of the capacitor that gave maximum gain. This point was, however, with the circuit tuned slightly on the high side of the signal frequency.

The results of varying the supply voltage and drain current differ somewhat from what is usually recommended as optimum. Most amplifiers use a supply voltage of 10 to 15 Vdc and a drain current of approximately 5 mA. I found with this amplifier that the best noise figure occurred at \(V_{gs} = 0 \) and \(V_{ds} = 5 \) Vdc.

To clarify this somewhat, if \(V_{gs} = 0 \), a
rather high drain current results, which requires that the supply voltage be low so that power dissipation and hence noise figure stay down. Turning things around, if we start with a high supply voltage, then drain current must be low for the same reason. Even with $I_{ds} = 7.9$ mA ($V_g = 0$) and $V_{ds} = 5$ Vdc, you would see an increase in noise figure as the device rose to operating temperature.

All the adjustments mentioned lowered the initial noise figure from 2.0 dB to 1.5 dB, and although there was no guarantee that the amplifier would remain optimized upon cooling, this seemed the best way to start.

Results

The results of cooling the preamp are tabulated in table 1 and the data plotted in fig. 2. The 200°K temperature was achieved by holding a small cube of dry ice directly on the case of the 2N4416 with a pair of small tweezers. Some slight retuning was necessary to minimize the noise figure. Liquid nitrogen at 77°K was used to get the lowest point in fig. 2. The amplifier was carefully lowered about a half inch into a Dewar containing the liquid nitrogen.

The three noise-figure readings are plotted in fig. 2 and may be connected by a straight line. This shows that the noise temperature of the amplifier is proportional to the physical temperature of the fet. It is seen that at $T_{device} = 0$, T_e is greater than zero. This is due to circuit and transmission-line loss preceding the fet and noise added by receiver stages following the cooled preamp. In this case the preamp was followed by two common-gate amplifiers and a transistor mixer into the noise-figure meter.

Because of the relatively high antenna noise temperature at 144 MHz, the low receiver noise temperature at 144 MHz, the low receiver noise temperature obtained cannot be fully appreciated in actual use. However, at 432 MHz this is not so, and if similar device behavior at this frequency is assumed, then a noise figure of 1.2 dB should be possible upon cooling with liquid nitrogen. This number is obtained by drawing a graph similar to fig. 2 and taking the noise figure at 300°K to be 2.5 dB. While this is good, a parametric amplifier and some transistor amplifiers can do better.

Table 1. Tabulated results of cooling a 144 MHz common-gate, fet preamplifier.

<table>
<thead>
<tr>
<th>T_{device} ($^\circ$K)</th>
<th>Noise figure (F dB)</th>
<th>Drain current (I_{ds} mA)</th>
<th>Supply voltage (V_{dd} Vdc)</th>
<th>T_e ($^\circ$K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.5</td>
<td>7.9</td>
<td>6</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>1.2</td>
<td>9.8</td>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>77</td>
<td>0.8</td>
<td>16</td>
<td>12</td>
<td>77</td>
</tr>
</tbody>
</table>

The possibility of improvement with further experimentation should be evident. Barring some physical change in the operation of the device, cooling with liquid helium at about 4°K would give an extremely low noise temperature. Also, the possibility of operation above 1 GHz should not be overlooked since low-noise microwave fets may be just around the corner. I'd be very interested in hearing results from anyone who might try something along these lines.

Reference

Ham Radio
a multiband fet vfo
QRPP transmitter

For the real low-power newcomer this rig covers the 80- through 15-meter bands with an inexpensive rf module and a versatile vfo.

Operating with less than five watts of power is lots of fun, but the newcomer to the sport of QRPP often faces many unexpected problems. This is particularly true when the newcomer chooses to build his own solid-state gear.

First, most of the published designs for solid-state gear are exclusively for crystal control. This is a serious drawback in actual QRPP operation where the weaker QRPP signal is often smothered by the higher-powered interference. The ability to change frequency to dodge interference is essential to successful operation. Also, the weak QRPP signal is less likely to work stations by calling CQ than by answering another station’s CQ on the other station’s frequency.

Second, most solid-state gear is designed for the 80- or 40-meter bands or vhf, totally overlooking the bands which provide the greatest opportunity for consistent success—20 through 10 meters. This is unfortunate because the propagation and lower atmospheric loss factors of these bands foster low-power operation. For example, during the past year I have worked about 40 states including Hawaii and the Commonwealth of Puerto Rico.
on 20 and 15 meters while using only a simple antenna and an output never exceeding 120 milliwatts. Any QRPPer seriously interested in DX must be able to work these bands.

Third, the QRP neophyte building his first solid-state rig often is baffled by the factory wired and tested, has band-switching capability for 80 through 15 meters, is able to put out between 0.6 and 1.4 watts and has performed well in thousands of installations.

The multiband vfo (fig. 1) uses the HEP-801, available at most radio supply stores; an MPF-102, or its recent derivatives - the 2N5668, 2N5669 or 2N5670 - will also work. I achieved isolation and buffering through two emitter-follower stages and using isolating

<table>
<thead>
<tr>
<th>band</th>
<th>L1</th>
<th>L2</th>
<th>C2</th>
<th>coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>50 t. no. 28</td>
<td>17 t. no. 24</td>
<td>47 pF</td>
<td>225 kHz</td>
</tr>
<tr>
<td>40</td>
<td>19 t. no. 28</td>
<td>9 t. no. 24</td>
<td>180 pF</td>
<td>110 kHz</td>
</tr>
<tr>
<td>20</td>
<td>8 t. no. 24</td>
<td>4 t. no. 24</td>
<td>150 pF</td>
<td>120 kHz</td>
</tr>
<tr>
<td>15</td>
<td>7 t. no. 24</td>
<td>3.5 t. no. 24</td>
<td>100 pF</td>
<td>340 kHz</td>
</tr>
</tbody>
</table>

All coils are wound on Amidon T-50-2 cores except for the 15 meter coil which is wound on a T-38-2 core. In all cases, L2 is wound over L1 over the full diameter of the core. Both windings start at the dots shown in fig. 1 and are wound in the same direction! All wire is enameled copper.

Available from Ten-Tec, Inc., Highway 411 East, Sevierville, Tennessee 37862 for $7.95 postpaid.
rf chokes in the B+ leads to the oscillator and final buffer. Zener-diode regulation of the oscillator voltage insures frequency stability regardless of wide excursions in supply voltage. Although operation of the vfo and final on the same frequency frequently causes chirp, the buffering and

The circuit board is designed for standard size components. The trimmer capacitors are subminiature Elmenoo 404 types (since some stores carry only 30- or 40-pF size of this type, these may be substituted if the size of C2 is increased accordingly); the coils are wound

isolation features of this design result in a chirp-free vfo. In fact, you can key the entire transmitter and vfo by breaking the B+ leads without any chirp at all! It is wiser, however, to allow the vfo to run continuously while keying the driver and final stages. Since the vfo emits a healthy signal, you will want to turn off the vfo while receiving by flipping the vfo band-switch to the crystal position.

I change bands with a two-pole five-position rotary switch. I use four positions, while the fifth shuts off the oscillator for crystal operation or stand-by. The circuit board has provision for five bands if you wish to use it. You can get bandspread of about 125 kHz by placing a small 33-pF mica capacitor in series with the 30-pF APC vfo tuning capacitor; on 20 and 15 meters, an 18-pF mica is switched into the series circuit for more useful bandspread.

on Amidon toroid cores making for extremely compact high-Q tank circuits.

It can be an interesting task to design and make your own circuit board, as I have done. Besides actually etching a board there are many other construction techniques you can use like no-etch stick-on copper foil patterns, using copper-clad board with insulated stand-offs or insulated islands and the simple technique of using plain epoxy board, drilling holes for component leads and wiring the circuit with short insulated jumpers and the protruding component leads.1,2,3

Regardless of the construction method chosen, use care in soldering component leads and use a heat sink when soldering the semiconductors. A no. 60 drill*—the

*Available for 50c from America's Hobby Center, 146 West 22nd Street, New York, New York 10011.
At that time, cement the toroids to the right size for drilling holes for component leads—is invaluable.

To tune and calibrate the vfo, work on one band at a time. After installing the proper L/C combination, temporarily connect the tank to the proper oscillator ports with short wires. Find the vfo signal by listening on the station receiver while adjusting C1. The best way to tune a toroid is to use a variable capacitor, but an adequate compromise tuning method would be to squeeze the turns closer together or spread them further apart. Remember though, this type of adjustment will upset the symmetry of the toroid and can lead to some slight losses and stray radiation. However, some coil tuning will probably be necessary on 20 and 15 meters.

Once you initially calibrate all bands, mount the board, connect the B+, the driver base and the tuning capacitor. Calibrate the vfo for final bandspread only after the transmitter is completed. Which can be replaced by the cheaper 2N5188 at 60c, with their collectors tapped down on toroids for proper impedance matching. Preparation of the TX-1 requires two minor modifications. First, remove the trimmer capacitors used in the two tank circuits. To do this, insert a knife blade between the board and one end of the capacitor, melt the solder, and twist the knife blade until the capacitor lead is clear of the board. Second, if you wish crystal control capability, remove the crystal socket from the board and mount it on a panel. A third possible modification is the addition of an antenna tuning capacitor across the output link (see schematic). Simply break the

transmitter module

The two-stage TX-1 (fig. 2) uses high fT high-gain devices (MPS6514, 2N4427, MPS6514)

fig. 2. Schematic of the Ten-Tec TX-1 transmitter module. The letters given in parenthesis correspond to the proper port on the TX-1 circuit board.
common (ground) copper strip at the bottom of the circuit board before it reaches the ground side port (G1) of the antenna link. Attach the antenna link directly to the dpdt switch, thus allowing you to shift between series and parallel tuning to accommodate any inductive or capacitive reactances your feedline may present. However, this luxury is not essential and may be omitted without limiting the rig's effectiveness.

To mount the TX-1, simply connect the key leads, B+, vfo output, crystal socket and bandswitch. A word of caution about the bandswitch. Keep the bandswitch leads as short as possible. The capacitance added by four inches of leads, for example, will make it impossible to peak the driver on 15 meters. I recommend mounting the TX-1 flush against the panel where the switch is to be mounted. Two spdt switches instead of a single dpdt will insure the shortest possible leads.

tuning

If you haven't worked with a solid-state transmitter before, a few words of advice are in order. First and foremost, do not attempt to operate the transmitter without a proper load! To do so is the easiest way to zap transistors. Further, if your swr is over 3:1, do not hold the key down for long periods – three seconds on is a good rule of thumb. Mismatch can cause thermal runaway – the puncturing of internal transistor junctions because of the heat resulting from the excessive current. Normally the 2N4427 should be comfortably warm. Also watch for self-oscillation, shown by the transmitter continuing to put out rf after the key has been opened. If you encounter this problem, immediately remove the B+. It is usually caused by improper final tuning. Transistors can be tricky devices and they have suicidal tendencies; self-oscillation inevitably leads to self-destruction in the transistor world.

Become familiar with the tuning of the TX-1 before making modifications. Install a crystal and jumper wires for the proper band, and tune the driver trimmer until the crystal breaks into oscillation. Peak tuning is accompanied by pulling of the crystal frequency. With a 50-ohm non-inductive load and rf indicator (fig. 3) connected across the output posts, close the key and tune for an output indication. Retuning the driver and final will be necessary for peak output. Remember the 2N4427 is not a 4-1000; it should be respected and not pushed unnecessarily. Tuning with the vfo is about the same as with a crystal. The final tuning with the vfo will result in pulling the vfo frequency several hundred hertz when the key is closed. This is normal, and peak output should occur with a pulling of about 500 hertz.

construction

The photos show my approach to construction. I housed the transmitter in a 3 x 4 x 5-inch box, making for some tight fits. The only critical aspect of mounting is the drive/final bandswitch. I used cheap mica-dielectric variable capacitors, and they work well. The switch used to insert series capacitance to the vfo tuning capacitor should be a good toggle

Table 2. Measured outputs from finished rig:

<table>
<thead>
<tr>
<th>band</th>
<th>voltage</th>
<th>watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>13</td>
<td>1.87</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>1.4</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>1.02</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Measured using the circuit of figure 3; R = 49 ohms. P = V^2/2R

fig. 3. Simple rf output indicator for use with almost any QRP transmitter. Voltmeter should read at least 15 volts full scale for use with this rig.
switch - slide switches usually exhibit intermittent contact, a detriment to vfo stability. A small vernier and 30-pF APC capacitor provide smooth tuning on all bands. Since all critical parts are mounted on the circuit boards, you can work out your own mounting setup.

operation

It is hard to define what is so fascinating about QRPP. I suspect it is accepting the challenges of QRM and propagation, and with a dry cell and a transmitter that fits into a lunchbox, working the world. In a sense, it is getting back to the basics that characterized most of our Novice experiences. The story told by converted appliance operators is always the same: the KWS-1 gathers dust while the QRPP rig is worked to death providing all the excitement that ham radio can offer. And the thrill never seems to leave - you can work a KH6 on 40 meters three nights in a row (as I did this spring) with a couple hundred milliwatts, and you still tremble as he comes back to your call, you still feel the exhilaration of man stripped to the bare essentials confronting and overcoming nature. It's a great experience!

Let me try to give you a realistic idea of what to expect from QRPP operation and how to go about it. QRPP operation requires skill, patience and an understanding of how everything in the transmitting system works together. Propagation is important - what to expect of your rig and antenna in terms of distance and signal strength during a given season at a particular time of day on a particular band. Likewise, the QRPP operator attempts to be as efficient as possible in his overall system — good matching, efficient feedline, accurately cut antenna, clean signal. In short, he attempts to offset his power disadvantage by knowledge, skill, and above all, patience.

Every newcomer to QRPP is amazed at what can be done with a few hundred milliwatts; for example, newcomer WA8WWS, during the first ten days of operation at 2.5-watts input, managed to work 54 stations in 18 states on 40 meters. Some guys turn into fanatics upon seeing what QRPP can do — WA8DDI was so excited that after six months he has WAS and over 50 countries with his 1-watt output rig! But for most of us, QRPP is just the way we approach ham radio for daily enjoyment of the hobby — ragchews, casual contacts and the like. Here are some brief suggestions to help you master QRPP operating skills.

You can assume that most stations will be running high power, and if a station calling CQ is weak, it is very likely that propagation between his location and yours is bad. Instead of calling him, find a stronger signal that you can copy well. Experience has shown that calling CQ with QRPP is futile - although, it doesn't hurt to try as long as you don't expect a logjam of answers! Third, select your transmitting frequency carefully. Many hams use transceivers with ±1-kHz offset tuning, so this is normally the limit of deviation for a calling station. But even in a crowded situation, this is usually enough to put your signal into the open. If interference appears after making contact, suggest changing frequency, but let him call you so you can zero beat him. Cultivate a good clean fist and send at medium speed until asked to speed up — it is easier to copy a slow signal than a fast one. Don't be afraid to repeat things two or three times if the going is.

Rear view of the completed transmitter shows use of inexpensive bc type capacitors and the shield around the vfo compartment.
rough — the other guy will appreciate it. Inform the other station that you are QRPP immediately upon making contact — this inevitably causes him to turn up the rf gain and notch the filter a bit deeper. Most amateurs find it exciting to work a milliwatt station; take advantage of it. Similarly, always affix QR to your beginning and concluding signature, at the end of a contact, give a short ORZ — it’s amazing how many fellows will read the mail when they hear someone sign QR, and will gladly come back to a ORZ to give you a report. Don’t waste all night calling the same station — if he hasn’t come back on the third call, he probably has the rf gain turned back waiting for a blockbuster to shake his shack. Don’t be shy — usually a station calling CQ DX will gladly accommodate a milliwatt station, and the psychology is perfect — he’s tuning for weak signals in the first place, and that’s you! Above all, be patient and know what to expect from your gear and propagation phenomenon. You will find that after getting the hang of it, it will be possible to do almost as much with QRPP as with high power. In populous areas of the country, QRPP stations have as high as an 85% call-to-contact ratio. The main point is the QRPP operator voluntarily imposes upon himself a power limitation, but after getting the hang of operating QRPP, wonders why he ever thought he needed the kW amplifier in the first place.

Whether you are a newcomer or old-timer, this is a good rig for the investment of time and money, and it has performed flawlessly for me. Give yourself a break — try QRPP.

reference
By using Y parameters in rf circuit design, the designer can determine stability and gain before building a breadboard.

On the data sheet for the RCA 40673, a dual-gate mosfet, is the statement, "The reduced capacitance allows operation at maximum gain without neutralization." This is a comforting thought when looking for a suitable rf amplifier. But then you stumble onto a circuit in the 1970 ARRL Radio Amateur's Handbook for a dual-gate mosfet rf amplifier, and it is pointed out that neutralization is usually required.

The truth is, both assertions may be correct. The secret of the stability or instability of a device is locked up in its Y parameters; the purpose of this article is to give some explanation of them and practical instruction in their use. Let's define some basic notions.

The quantities resistance, r, reactance, x, and impedance, z, should be generally familiar. If not, there is a good primer in the ARRL Handbook. The reciprocals of these quantities are very useful and have the following nomenclature and symbolism:
Conductance $= g = 1/r$ \(1\)

Susceptance $= b = 1/x$ \(2\)

Admittance $= y = 1/z$ \(3\)

Note that these quantities are measured in mhos, derived from ohm spelled backwards!

Understanding the relationships between these six quantities is not too difficult, however. The standard way of handling them mathematically is to use the complex plane and complex algebra. It’s not too much fun on a slide rule, but quite necessary to get the answers. Since the y parameters are all complex, and the stability calculations involving them must be carried out using complex arithmetic, I have added an appendix on complex numbers with an example or two. Don’t let the word “complex” scare you. High-school math books should have additional information on them.

y parameters

In this discussion, I will not deal with all the whys and wherefores that design engineers use in the rf amplifier problem. Suffice it to say, that although impedance could be directly used in design, and although other parameters (like the s and h parameters) could be used, the y parameters make the work the easiest, and are commonly found on device spec sheets. Let’s begin by defining them.

Assume for discussion that the transistor is a “black box” sketched in fig. 1 to which is connected an rf signal source and an output load. In a real circuit you must apply power and bias, etc., but these are ignored for this simple analysis. Likewise, you might, in real life, have an antenna for the signal source, or generator, and an output tuned circuit coupled to a mixer for the load. But let’s be completely general and simply specify that at the input of the black box there is a generator of voltage e_1, which sends a current i_1 into the box.

Seemingly a bit strange at first, the load is also viewed as a generator. Why not? A voltage e_2 appears across it with its associated current i_2. To a design engineer, the “generator” of voltage e_2 producing a current i_2 is a perfectly logical analysis tool. You may get a bit more feeling for this view if you remember that coupling energy from the load to the input (the load now becomes a signal source or generator) is precisely what is needed to make an oscillator. The truth is, there are coupling paths through the transistor itself — completely divorced from your external circuit layout — which will make your rf amplifier an oscillator, and that’s precisely what this article is trying to help you avoid!

Let us now simply state some results which can be derived mathematically from ac circuit theory, namely

\[
i_1 = P_{11}e_1 + P_{12}e_2, \quad \text{and} \quad i_2 = P_{21}e_1 + P_{22}e_2 \quad \text{\(4\)}
\]

The mathematical coefficients or “P” parameters in these equations are characteristic of what’s in the black box (i.e., the transistor) and are constant except for changes in bias, temperature or signal frequency.

Let’s explore the first equation a little. Suppose we short circuit the output. The voltage e_2 must then be zero. (Would you hear that VU2 with a jumper across your rf stage output?) The equation then reduces to $i_1 = P_{11}e_1$ under these circumstances. We could also write this as $e_1 = i_1(1/P_{11})$ which is nothing more than Ohm’s law in slight disguise. What usually goes in place of the $(1/P_{11})$ is...
be measured in *mhos*, and it is one of four similar parameters (including P_{12}, P_{21} and P_{22}) in the equations.

Since the parameters are all in *mhos* — that is units of admittance — they are called admittance parameters or y parameters. Having thus identified them the equations may be written:

$$i_1 = y_{11} e_1 + y_{12} e_2 \quad (6)$$

$$i_2 = y_{21} e_1 + y_{22} e_2 \quad (7)$$

When a spec sheet gives you a number value for a y parameter, it must also specify the operating point, frequency, etc. Curves of the y parameters against frequency or bias are often given.

How does the transistor manufacturer get values for the y parameters published on the spec sheets? Several manufacturers make admittance bridges which do the job and are capable of measuring over a wide range of frequencies — even into the GHz region. Some use capacitors for output ac short circuit, others use tuned lines. Neither short upsets the dc operating point, and, of course, a large number of devices must be measured to get the so-called typical values.

Why should the y parameter be measured by shorting the device? Mathematically, either e must be eliminated by short circuit, or i by open circuit to make the equations solvable. At radio frequencies a true rf short-circuit is easier to make than a true open-circuit, so making measurements becomes more practical this way. As hinted before, there are other parameters such as z parameters for impedance, h for hybrid, etc. However, if you have a complete set of one kind of parameter, it can be mathematically transformed into any other kind.

Therefore, the definitions for the y parameters can be written using eqs. 6 and 7

$$y_{11} = \frac{i_1}{e_1} \quad \text{when } e_2 = 0 \ (\text{output shorted}) \quad (8)$$

$$y_{12} = \frac{i_1}{e_2} \quad \text{when } e_1 = 0 \ (\text{input shorted}) \quad (9)$$

$$y_{21} = \frac{i_2}{e_1} \quad \text{when } e_2 = 0 \quad (10)$$

$$y_{22} = \frac{i_2}{e_2} \quad \text{when } e_1 = 0 \quad (11)$$

These equations apply to any "linear active two-port (that is, input and output) network," (LAN) and are good for bipolar transistors as well as fets and IC rf amplifiers. However, when applied to fets, the number subscripts have yielded to descriptive letters which I will use since the example design will use an fet. Table 1 cross references and names the parameters. The s in all the designations refers to a common-source configuration.

Note that the y parameters are complex quantities, that is, $y_{is} = g_{is} + j b_{is}$ or, input admittance is the sum of input conductance and input susceptance.

Let's see what we can make of these. Looking into the fet amplifier (i.e. gate) you would see both resistance and capacitance. The same would hold true for a circuit looking into the fet output (i.e. drain). These impedances (resistances and capacitive reactances) can be expressed as admittance according to eq. 3 and are exactly what y_{is} and y_{rs} are when appropriate short circuits are made as outlined before.

y_{fs} is similar except that it relates to output current and input voltage and is therefore transadmittance. Remember transconductance in vacuum tubes? y_{fs} is essentially the same but includes the reactive part too.

y_{rs} involves output voltage and input current and is the path for signals back through the device. Remember plate-grid capacitance and neutralization of your rf amplifier? y_{rs} is much the same but includes the non-reactive (i.e. conductive) part of the feedback path as well.

You see, a properly designed vacuum tube normally has no conductive path for
electrons from plate to grid, only capacitance. But a transistor does have a conductive path back through the semiconductor material, although it is negligible for many purposes. \(Y_{rs} \) then includes both the resistance and capacitance, expressed in terms of conductance and susceptance.

stability

Several years back, J. G. Linvill\(^1\) devised a method of determining the stability of a device using the \(Y \) parameters. The Linvill stability factor \(C \) is given as

\[
C = \frac{|Y_{12} Y_{21}|}{2g_{11} g_{22} - \text{Re}(Y_{11} Y_{21})} \tag{12}
\]

Absolute values and real parts are discussed in the appendix (\(g_{11} \) is the real part of \(Y_{11} \), etc.). When \(C \) is less than 1, the device is unconditionally stable. If it is greater than 1, it is potentially unstable.

Since the Linvill stability is taken for the worst possible case, that of infinitely large source and load resistances (i.e. open circuit), there arises the possibility of rendering the potentially unstable device tractable. Note that I say device. This stability refers to signal paths through the transistor, not to paths due to stray circuit capacitance, etc. A. P. Stern\(^2\) has defined the Stern stability factor \(K \) which includes the effects of input and output loads as

\[
K = \frac{2(g_{11} + G_S)(g_{22} + G_L)}{|Y_{12} Y_{21}| + \text{Re}(Y_{12} Y_{21})} \tag{13}
\]

\(G_S \) and \(G_L \) are the conductances of the source and load impedance respectively. If the value of \(K \) is less than 1, the amplifier is unstable. Values of \(K \) around 2 to 4 should be satisfactory for a well laid out amplifier to be stable. For some devices at some loads \(K \) values over 100 appear.

The first step in amplifier design then, is to compute \(C \). If it is less than 1, stable design in easy, and only external feedback paths must be eliminated by proper layout. If \(C \) is greater than one, you must compute \(K \), adding in the source and load conductances which are frequently derived from the resonant impedance of a parallel tuned circuit.

The tuned circuit is designed for inductance, capacitance and loaded \(Q \) values compatible with the selected goals in impedance matching, bandwidth, etc. The tuned circuit design may lead you into conflict, however. Maximum gain occurs when the source and load are matched to the transistor. However, for many purposes quite wide mismatching affects the gain by few enough dB that gain can be sacrificed to achieve other objectives.

Indeed, deliberate mismatching is one way to achieve a large \(K \) and a stable amplifier. You can see in eq. 13 that as the source and load resistances decrease, \(G_S \) and \(G_L \) increase, and, being in the numerator, increase \(K \). So, smaller source and load impedances make for a more stable amplifier.

To see how badly mismatching affects gain, you can compute the gain from the \(Y \) parameters:

\[
\text{Gain} = \frac{|Y_{21}|^2 G_L}{|Y_L + Y_{22}|^2 \text{Re}(Y_{11} - (Y_{12} Y_{21}/Y_{22} + Y_L)} \tag{14}
\]

For a tuned circuit at resonance \(Y_L \) equals \(G_L \).

feedback

A second method may be used to achieve stability — feedback. There are two kinds provided by proper feedback networks. The first is unilateralization

table 1. \(Y \) parameters for field-effect transistors. The subscript \(s \) indicates a common-source configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_{11})</td>
<td>(Y) admittance</td>
<td>(Y_{11} = y_{is})</td>
</tr>
<tr>
<td>(Y_{12})</td>
<td>reverse transadmittance</td>
<td>(Y_{12} = y_{rs})</td>
</tr>
<tr>
<td>(Y_{21})</td>
<td>forward transadmittance</td>
<td>(Y_{21} = y_{fs})</td>
</tr>
<tr>
<td>(Y_{22})</td>
<td>output admittance</td>
<td>(Y_{22} = y_{os})</td>
</tr>
</tbody>
</table>
which reduces \(y_{12} \) to zero. Since there is then no input/output communication, the amplifier is stable if well laid out, and a bonus is that tuning the output can't detune the input (good input/output isolation).

The second feedback scheme is neutralization which reduces \(y_{12} \) to some value other than zero. The common circuit with a neutralization capacitor wipes out the reverse transsusceptance, but not the reverse transconductance, so \(y_{12} \) is not zero. Maximum input/output isolation is not achieved, but perfectly sufficient stability may be.

In summary then, mismatching is the easiest way to achieve stability since it requires no additional circuitry, but is achieved at the expense of gain. This loss may be small, and quite tolerable, however. You have seen reference to detuning to make an rf amplifier stable; this is pretty crude mismatching. It is likely to be quite costly in gain, and is no substitute for selection of optimum resonant circuit impedances which will meet the various stability, bandwidth and other criteria.

Finally, before some examples, there are several other useful expressions which involve \(y \) parameters and are used by the sophisticated design engineer. I will mention only two in passing, the input and output admittance equations:

\[
Y_{\text{in}} = y_{11} - \frac{y_{12}y_{21}}{y_{22} + Y_L} \tag{15}
\]

\[
Y_{\text{out}} = y_{22} - \frac{y_{12}y_{21}}{y_{11} + Y_S} \tag{16}
\]

Normally, in a tuned rf amplifier, the reactive (imaginary) parts of \(Y_{\text{in}} \) and \(Y_{\text{out}} \) simply become part of the tuned circuit reactances and disappear when tuning for peak response. The real parts \(G_{\text{in}} \) and \(G_{\text{out}} \) load the tuned circuits and enter into their design for proper bandwidth; that is, they contribute to the value of loaded \(Q \). They are expressed as equivalent resistances which appear in parallel with the tuned circuit and figure into the calculations for circuit \(Q \).

practical design

I will now give a design example with some numerical values with which you may check your understanding of complex calculations. A set of \(y \) parameter curves is given for the MPF121 dual-gate mosfet in fig. 2. The values are in millimhos; the answers will be also. Let's try the design of converters for 2 and 6 meters with a 10- to 14-MHz tunable i-f provided by the station receiver. Reading off the values at 50 and 150 MHz, for 6 meters we get:

\[
\begin{align*}
y_{is} &= 0.08 + j1.2 \\
y_{rs} &= 0 - j0.065 \\
y_{fs} &= 12.9 - j1.4 \\
y_{os} &= 0.08 + j1.7
\end{align*}
\]

and for 2 meters:

\[
\begin{align*}
y_{is} &= 0.69 + j4.5 \\
y_{rs} &= 0 - j0.023 \\
y_{fs} &= 12.1 - j4.7 \\
y_{os} &= 0.28 + j2.1
\end{align*}
\]

First compute the Linvill stability for these two cases. It turns out to be 0.60 for 2 meters and 3.9 at 6 meters. Thus, the MPF121 is unconditionally stable at 144 MHz and conditionally unstable at 50 MHz. Let's proceed with the simpler design first, for 2 meters.

two-meter design

Using normalized tuned-circuit response curves such as those in the Radio Amateur's Handbook, and starting somewhat arbitrarily with a reactance of 150 ohms, you find that the required inductance is 0.16 \(\mu \)H, with a capacitance of 7.3 pF. For a response across the 144-148 MHz band within 1 dB down, the required loaded \(Q \) is 16, and the parallel resonant impedance of the tuned circuit is 2400 ohms.
This last fact means that the total effective parallel resistance across the tank must be 2400 ohms if our criterion of 1 dB response is to hold. This resistance includes that contributed by the input resistance, while the reciprocal of the susceptance yields the input capacitive reactance. (Remember that millimhos yield answers in kilohms.) The susceptance may be converted to a capacitance using \(C = \frac{1}{2\pi f X_c} \), and turns out to be 4.9 pF. This is part of the 7.3-pF tank capacitance, a goodly part indeed; you may need to recalculate for a higher C circuit.

The input resistance is quite low at this frequency, only 1200 ohms. Suddenly you realize that this will degrade the Q if the fet is connected across the whole tank. This may not hurt; however,
you should look for possible poor image response.

At Q = 16, the response curves show that an image at 122 MHz would be 15 dB down. Using a second identical tuned circuit at the output would yield a ± 1 dB response across the band and image response of -30 dB. You would most likely want to tap the fet input down on the tank to preserve the Q under these circumstances.

Similar procedures apply to the output circuit with fet output resistance of 2900 ohms and output capacitance of 2.3 pF. Incidentally, the Stern stability for 2400 ohms source and load resistances turns out to be 8.1 and the calculated gain 12.4 dB. The fet is thus very stable, but it is up to the builder to avoid external feedback paths in his layout.

six-meter design

Let's look at the 6-meter case next. Starting with a reactance of 150 ohms, and ± ½ dB response across 50 to 51 MHz (i.e., 1 dB down at the band edges), you find that L = 0.47 µH, C = 21.0 pF and loaded Q must be 22.2. This gives a resonant impedance of 3333 ohms, and an image response at 30 MHz of -25 dB for the single circuit. If you use identical input and output tanks, the response across the band segment would be ± 2 dB and the Stern stability 3.8, which is adequate. The calculated gain is 26.5 dB. Suppose the slug-tuned coils had unloaded Qs of 80. R = QX = 80(150) = 12k which is the resistance contribution of the coil alone. The input resistance of the MPF121 is 5620 ohms, so the following parallel resistance relationship must hold:

$$\frac{1}{5620} + \frac{1}{12K} + \frac{1}{R_{\text{ant}}} = \frac{1}{3333}$$

(17)

Solving, R_{\text{ant}} must be 26k. Thus, the antenna (perhaps 50 ohms) must be transformed to 26k by the input circuit in order to preserve the loaded Q of 22.2. Frankly, this makes an antenna coupling of rather poor efficiency.

The design has several alternatives at this point, some of limited usefulness, including: tap the fet down on the tank; use a higher Q coil; accept a lower Q through tighter antenna coupling with its wider bandwidth and poorer image rejection; use a coupled circuit to gain selectivity and largely separate the fet and antenna loadings. Choices like these must be weighed to arrive at a final good design.

Suppose you wish to use a transistor for a high-frequency receiver, but no y values are given below 30 MHz? After inspecting a number of data sheets, a few of which had values for lower frequencies, and assuming that dual-gate mosfets have similar general characteristics, even though they are advertised for a given frequency range, I conclude that the following rules-of-thumb would be better than using single values for the high-frequency region:

1. g_{rs}, g_{fs} and g_{ds} are constant throughout the hf region.

2. The four susceptances may be approximated assuming they are proportional to frequency. That is, a b_{is} of 1.1 at 40 MHz would be close to 0.4 at 14 MHz. Use the parameter value at the lowest frequency given on the spec sheet as a starting point.

3. g_{is} appears to fall off by a factor of four per octave. For instance, a value of 0.24 for 10 meters would reduce to 0.06 for 20 meters, 0.015 for 40 meters, etc.

Note that y_{is} means input admittance in the common-source configuration. What about common-gate and common drain? Formulas to convert the common-source parameters to the other configurations, Y_{g}, Y_{id}, etc., have been worked out and are given in reference 4. All equations for stability, gain, etc. are applicable to the common-gate and common-drain configurations as they stand, simply by using the appropriate y parameters for the configuration of interest.

summary

I may summarize then, with some
rules-of-thumb which may prove beneficial even if you make no calculations:

1. A typical dual-gate mosfet will be unconditionally stable if the frequency is high enough.

2. A potentially unstable device may be stabilized by feedback or mismatching.

3. Mismatching may be preferable for stabilization since it requires no extra components, no adjustment, is not frequency sensitive, and the cost in gain is usually tolerably small for amateur work.

4. The smaller the source and load impedances, the greater will be the stability. Thus, at parallel resonance, smaller values of both reactance and Q give smaller parallel impedance and greater stability.

In conclusion, I must point out that there are techniques in rf amplifier design used by the professional design engineer which have not been mentioned here. Some of these methods require access to a computer since the number of computations may be vast. In addition, I have not pursued the design examples through to final optimization, but rather pointed out procedures and design choices. As you can easily see, there are tradeoffs between many factors such as selectivity, high gain, optimum noise figure and reasonable cost which a designer must evaluate.

Ultimately, the stability criteria are of key importance since no one can accept an unstable oscillating rf amplifier! Although I was privileged to program and run my calculations on a computer, I hope that someone may be brave enough to tackle the calculations and possibly avoid generating his own input signals in that new receiving system!

appendix

complex numbers

The square roots of negative numbers are designated imaginary numbers and there are definite algebraic rules for dealing with them. The square root of minus one is the basis for complex operations, and it is generally given the symbol i in mathematics while engineers use j. Thus, \(i = \sqrt{-1} \), and from the rules governing square roots, you can verify that \(j^2 = -1 \), \(j^3 = \sqrt{-1} \), \(j^4 = 1 \) and so forth. Ordinary algebraic rules also apply such as \((j)(j) = j^2 \), \(j^3 / j = j^2 \), etc. Any nonimaginary number is a real number.

fig. 3. Circuit elements L, R and C plotted on a complex coordinate system. Each division is 100 ohms.

A complex number is the sum of two numbers, the first real and the second imaginary, such as \(3 + j2 \), \(2.5 - j7 \), or in general, \(a + jb \). The properties of \(j \) and complex numbers make them suitable for describing the characteristics of resistors, capacitors and inductors plotted on coordinate axes on the complex plane. These plots make it easy to visualize the behavior of these circuit elements, and the associated complex algebra makes it possible to determine their behavior with slide rule or computer.

The basic reason that the complex plane is needed is that the voltage is 90° out of phase with the current in any pure reactive element. Thus, in fig. 3, the complex coordinate system is shown with three circuit elements plotted thereon, all
at a frequency of 60 Hz. A pure 350 ohm resistor is shown at R. It lies on the R axis and has no component along the jX axis. A pure 10 μF capacitance is labeled C and since \(X_C = 1/(2\pi fC) \), it has 270 ohms capacitive reactance at 60 Hz. The voltage across the capacitor is 90° behind the current, and the capacitive reactance is along the negative jX axis.

The 1.06-henry inductor is not pure since the wire has a resistance of 100 ohms. (Any real capacitor has some resistance associated with it too!) The inductive reactance is \(+jX = +j(2\pi fL)\) (positive since the applied voltage leads the current by 90°) and has a value of 400 ohms. The inductor then has two components, 400 ohms of pure inductive reactance and 100 ohms of pure resistance (plus some stray capacitance in any real inductor which we ignore). These two quantities have the properties of vectors, and are shown plotted in fig. 4.

The two components R and jX lie along the axes while the representation of the inductor \(R + jX = 100 + j400 \) ohms is the resultant of the two, and is a complex number. We say that the device has 100 ohms resistance plus 400 ohms inductive reactance. The sum of these (and it is a vector sum) has a magnitude obtainable by the Pythagorean theorem as follows:

\[
\sqrt{100^2 + 400^2} = \sqrt{170,000} = 412.3 \text{ ohms}
\]

It also has a phase angle \(\theta \) which is 75.5°.

![fig. 4. R + jX characteristics of 1.06-H inductor discussed in text. Each division is 100 ohms.](image)

Both the complex representation \(100 + j400 \) ohms and the vector form \(412.3 + 75.5^\circ \) ohms are equivalent and are simply different ways of stating the impedance of the inductor \(Z_L \). We may then state the general relationship that \(Z = R + jX \).

As an example of how the behavior of a circuit can be visualized, plot the characteristics of the circuit in fig. 5 on the complex plane. The capacitor has a reactance of \(-j400 \) ohms. All components are shown in fig. 6A. All components are added vectorially together to find the result; you can see that \(-j400 \) cancels \(+j400 \) while \(150 + 100 = 250 \) ohms. This can be done by computation alone as follows:

\[
Z_{\text{total}} = Z_R + Z_C + Z_L
= 150 - j400 + 100 + j400
\]

Real and imaginary parts are grouped together giving

\[
Z_{\text{total}} = (150 + 100) + (j400 - j400) = 250 \text{ Ohms}
\]

If you change the frequency to 120 Hz,

\[
Z_{\text{total}} = Z_R + Z_C + Z_L
= 150 - j200 + 100 + j800
= 250 + j600 \text{ ohms}
\]

and at 30 Hz

\[
Z_{\text{total}} = 250 - j600 \text{ ohms}
\]

54 July 1972
These values of L and C are series resonant at 60 Hz since the inductive and capacitive reactance cancel at series resonance; the current is determined only by the resistor and the resistance in the inductor. Incidentally, you may relate the negative R axis to amplification.

In the preceding manipulation of complex numbers, no special techniques were required. But multiplication and division must be added to the list. Let’s try an example by multiplying the following complex numbers:

\[(2 + j3)(3 - j5)\]

This operation is carried out just as the algebraic multiplication of two binomials:

\[(a+b)(c+d) = ac+ad+bc+bd\]
\[(2)(3) = 6\]
\[(2)(-j5) = -j10\]
\[(+j3)(3) = +j9\]
\[(+j3)(-j5) = (+j)(-j)(+3)(+5) = -(1)(15)\]

Adding all terms, we get \((21 - j1)\)

You thus get rid of j’s in the denominator and can easily get a simple answer.

Two additional complex manipulations will be necessary. The first is commonly designated \(\text{Re}(a + jb)\), and means the real part of \((a + jb)\), or just a. Thus \(\text{Re}(5 - j2) = 5\). Secondly, \(a + jb\) designates the absolute value. It is always positive, and by definition, is the magnitude of the quantity when expressed in vector form. Thus

\[|5 - j2| = \sqrt{5^2 + 2^2} = \sqrt{29} = 5.4\]

For the inductor in fig. 4, \((100 + j400)\) ohms, you may write \(\text{Re}(100 + j400) = 100\) and \(|100 + j400| = 412.3\).

In summary, addition, subtraction, multiplication, division and the evaluation of real and absolute values just about covers the needed techniques to get started with complex numbers in a useful way.

references
The most powerful signals under the sun!

The Hy-Gain 550A is more than precision, professional-quality HAM equipment...it's a complete communications system. Each separate piece is an integral part of a matched system, precision designed and engineered toward one goal...ultimate efficiency.

GT-550A Transceiver
Top power, runs 550 watts PEP input / Unmatched dependability, flexibility either fixed station or mobile / Low cost / Upper and lower SB selectable without frequency jump / Frequency calibration and read-out accurate to 1 kc using interpolation / Fast attack-slow release AVC for no-pop signal control / Automatic ALC prevents over-driving and adjacent channel splatter / Constant output through high end of 10 meters / Hybrid construction for low-temperature operation and reliability / Standard of the industry in frequency stability / Outstanding receiver sensitivity and selectivity.

Order No. 855 Ham Net $595.00

RV-550A Remote VFO
Solid-state construction / Complete with plug-in cables / Function switch controls Receive-Transceive-Transmit frequency independently.

Order No. 856 Ham Net $95.00

RF-550A R.F. Console
Contains precision wattmeter with top accuracy in range of 3.5/30.0 MHz / Switch select forward or reflected power—calibrated scales are 400 and 4,000 watts full scale / 6-position switch selects 5 antennas or a dummy load.

Order No. 857 Ham Net $75.00

SC-550A Speaker Console
Matching speaker with headphone jack for the transceiver, complete with cable / AC-400 power supply mounts inside console.

Order No. 858 Ham Net $29.95
The Sound System

Phone Patch PR-550 Order No. 812
Crystal Controlled Adaptor XO-550 Order No. 811
AC Supply AC-400 Order No. 801
Mobile Supply G-1000DC Order No. 802
CW Filter F-3 Order No. 808
Calibrator CAL-250 Order No. 806
VOX Accessory VOX-35C Order No. 807
Mobile Dashboard Mounting Bracket—GTM Order No. 809
Floorboard Adaptor—ZZM (Not Shown) Order No. 810

Get the complete Sound System...550 from Hy-Gain

HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407- WG Lincoln, Nebraska 68505

More Details? CHECK—OFF Page 110
Ham Radio Magazine's 1972 Sweepstakes is now history, and it was a busy bit of history at that. After many months of hard work by our staff here in Greenville (have you ever tried to open and read over a thousand pieces of mail in one day?), the big drawing finally took place as scheduled on May 18th. As you can see, we had quite a box full of entries. In fact, it was a large job just to mix them up thoroughly so that everyone had an even chance.

W3PTG wins grand prize, puts all new Drake station on the air; WAØKKC proudly using new Standard fm station on two meters.

Many of the people who bring you HAM RADIO each month gathered to watch Pat Hawes draw the name of this year's Sweepstakes winner—Gus Haak, W3PTG.
The winner of the grand prize was Gus Haak, W3PTG, who by now has had his new Drake TR-4, RV-4 and L4-B in operation for over a month. Gus was a perfect choice for this gear as he is active on 10, 15 and 20 meter sideband and was running a considerably more modest station before now.

This new station provides him with an outstanding signal on all the hf bands. The Drake TR-4 is one of the most respected ssb transceivers on the market while the RV-4 allows split frequency operation. The L4-B linear permits 2 kW PEP ssb operation and 1 kW a-m, CW and RTTY on a continuous-duty basis.

Our second prize went to Dick Mollentine, WAOKKC. Again, the prize was ideally suited to it's winner's needs. Dick has primarily been active on 6-meter a-m until now, and he had been eyeing 2-meter fm with great interest.

With his Standard trio consisting of a SR-C146 hand-held 2-meter fm transceiver, SR-C826M mobile rig and the all-new SR-C14 base station, he can claim to have the perfect piece of fm gear for every operating requirement. Of particular interest is the base station. When the prize was awarded it was one of the first of this model to arrive in this country!

The 50 third prizes of Radio Communications Handbooks pretty well covered the whole country as you can see from the list of winners. We were glad to find that the list included three Y Ls and two novices, along with a wide variety of calls, both old and new.

Again, we would like to thank the many thousands of you who entered. Someday we hope to figure out a way so that everyone can win.
ic flip-flops

Last month this column contained a series of experiments that permit you to observe the operational characteristics of various gates and a basic flip-flop multivibrator. Data on the construction of a 100-kHz calibrator oscillator and the use of a universal flip-flop as a two-to-one counter was presented. In this month’s column, specific experiments permit you to take a more detailed look at the operational characteristics of a universal (JK, R-S and clocked) digital multivibrator.

universal flip-flop logic

The very simple circuit arrangement of fig. 1 is appropriate for checking the logic voltages at the various terminals of the SN7472 J-K master-slave flip-flop. Use Fahnestock clips or binding posts as a convenience in making circuit changes. The unit has three sets of J and K inputs; only one set need be used. Other inputs are R, S (clear and set) and clock. At each of these inputs, logic 1 is the no-connection condition. Logic 0 is established by shorting any one of the inputs to ground. This simple procedure permits you to check out the dc logic 0 and logic 1 operating conditions.

The R and S inputs are overriding. When they are used the unit operates as a simple R-S flip-flop. A basic flip-flop logic diagram is given in fig. 2. Generally when the set input is logic 1, the Q output is logic 1 and the Q is logic 0. In the case of the SN7472, there is an inversion in the S and R line as indicated by small circles in the logic diagram, fig. 2B. This means that with input S set to logic 1, the Q output is logic 0 and the Q output is logic 1.

step 1:

Connect a voltmeter to the Q output. Leave the S terminal at logic 1 (no connection) and set the R terminal to logic 0 by connecting a short between the R terminal and ground. The Q output is zero and the Q output is positive logic 1 voltage (positive logic device). Reverse the logics of inputs R and S. Note the output logics flip over. What are the output logics with both the R and S terminals at logic 0? Do the same with both the R and S inputs at logic 1. The output logic for the latter condition can be 1,0 or 0,1 depending upon the previous logic of the R and S inputs. The above logic conditions hold regardless of the logic at the J, K and C inputs; R and S are overriding.

step 2:

Momentarily apply logic 0 to the R input and logic 1 to the S input to
establish the set state of the Q and \overline{Q} outputs with \overline{Q} at logic 1. Keep the R and S inputs on logic 1 (no connections). Set the K input on logic 0 and the J input on logic 1. Momentarily apply logic 0 to the clock input. Note that the output logic changes and holds whether the clock input is kept on zero or one. Momentarily apply logic 0 to the R input. This returns the output logic to its set state.

Now connect logic 0 to J and logic 1 to K. Again, momentarily apply logic 0 to the clock input. Note that the output logic again flips and holds. Momentarily apply logic 0 to the S input. Note that the output logic goes back to its reset state.

signal operation

Additional understanding of the operation of the universal flip-flop can be gained by using a signal from an audio sine- or square-wave generator and the 100-kHz crystal calibrator detailed in last month’s column.

step 3:

Set all inputs to logic 1 (no connection). Apply the 100-kHz output of the crystal calibrator to the clock input. Observe the signal at the Q and \overline{Q} outputs. Compare the input and output frequencies. The unit is operating as a two-to-one counter. Disconnect the 100-kHz clock.

step 4:

Apply the output of the audio generator across the R-S inputs. To activate the unit it may be necessary to increase the audio gain above that required at the clock input. Output and input frequencies are now the same, but the waveform has been improved and the output is steep-sided compared to the input signal.

step 5:

Disconnect the audio generator. Connect the output of the 100-kHz crystal calibrator to the clock input. Observe the output waveforms at Q and \overline{Q}.

Connect the output of the audio oscillator to the J input of the flip-flop. Set the audio oscillator frequency to 1000 Hz. Display one cycle of the 1000-Hz repetition rate on the oscilloscope screen. During approximately one-half of its period, the clock signal appears in the output while the second alternation contains no clock component. Momentarily connect 0 logic to the R input. Output is removed and the flip-flop is returned to the set state.

inhibiting

In an inhibiting circuit a certain logic at one of the input circuits prevents or inhibits the transfer of logic information between another input and the output. A basic inhibiting circuit is shown in fig. 3. The transistor is normally non-conducting because the emitter junction is
not forward biased. This represents logic zero condition at the base. When a positive pulse of sufficient magnitude (logic 1 level) is applied to the base, the transistor conducts, and its inversion produces a logic 0 output. This is true provided no logic 1 voltage is applied to the emitter.

If a logic 1 pulse arrives at the emitter at the same time a logic 1 pulse is applied to the base, the transistor remains non-conducting. Therefore, the output of the transistor remains normal at logic 1 potential.

Likewise, the two other possible conditions of X and Y both being at logic 0 or both being at logic 1 result in a logic 1 output. The truth chart for the circuit is given with fig. 3.

In considering the universal flip-flop you learned that the R and S inputs were overriding. One might state that these inputs inhibit the clock's, J and K inputs just as input Y in fig. 3 is able to inhibit input X. The inhibiting process is used to advantage in counters because they permit a binary counter chain (all even count) to also function in an odd-count manner. In our next experiment a divide-by-eight counter consisting of three binary 2-to-1 counters in series is made to divide by 5. This is done by feeding back inhibiting information from the output.

even and odd counting

The final construction experiment last month consisted of a crystal-controlled multivibrator and a 7472 two-to-one counter. The versatility of this calibrator can be extended with the addition of still another integrated circuit. In this case it is the inexpensive 7473 dual J-K master-slave flip-flop. Two binary counters are included in the same case with separate inputs, outputs and clear terminals, fig. 4. They can be operated separately or joined together to obtain an overall count of four-to-one. Combined with the previous counter, a total division of eight \((2 \times 2 \times 2)\) can be obtained.

step 1:

Connect the circuit as shown in fig. 5. The output of the previous counter is joined to the new dual flip-flop by connecting its \(\bar{Q}\) output to the clock input, pin 1. The two counters in the 7473 are joined by tying together the \(\bar{Q}\) output at pin 13 to the second clock input at pin 5. A divide-by-eight output is made available at either pin 8 or pin 9.

step 2:

Turn on the calibrator circuit, connect the oscilloscope to the output of the crystal oscillator and display eight cycles on the scope screen. Now connect the oscilloscope to the output of the last counter. Note that only a single waveform is displayed, indicating a division by eight. Two cycles will be seen at the junction between the two dual counters and four cycles at the output of the first
counter. Waveforms will be those of fig. 5.

step 3:

Now connect the circuit of fig. 6. A 2000-pF capacitor is used to connect the Q output of the last counter to the reset or clear inputs of the first and second counters. Capacitor C1 provides a feedback path for a reset pulse. Pulse polarity is such that it cancels out or inhibits the activities of the first two counters at the proper time to start a new five-pulse sequence.

Note in fig. 5 (divide-by-eight counter) that the edges of all five waveforms are coincident at the leading edge of the fifth clock pulse. Furthermore, the trailing edge of the Q output of the last counter is swinging from logic 1 to logic 0, a polarity which can be used to clear and reset the first two counters. This very activity is shown as coinciding with the leading edge of the fifth clock pulse in fig. 6. The leading edge of the sixth clock pulse will now switch all three counters just as the leading edge of clock pulse one at the very beginning. The counters see everything as starting anew and they go off to try and count eight again only to be met by another reset pulse coincident with the leading edge of clock pulse ten.

The feedback spikes shown in the counter 1 and counter 2 outputs coincide with the leading edge of the fifth clock pulse. Observe these spikes on the oscilloscope. Note how the entire cycle of events repeats itself. Actually, the counter chain is never permitted to go through its eight-count cycle but is interrupted in a manner that continues a five-count sequence.

step 4:

Turn on the counter and observe the waveforms at the outputs of each counter. Look for the inhibiting spike in the outputs of the first and second counters, exactly as shown in the waveforms of fig. 6.

step 5:

Attach the oscilloscope to the output of the last counter and adjust it until eight cycles are displayed. Note also that the output is now asymmetrical (pulse of shorter duration then the intervening spacing). Recall that the outputs for the even-count activity were symmetrical square waves. Momentarily disconnect...
the capacitor from the Q output of the last counter. How many cycles are displayed now? The number has dropped to five, indicating a change back to an even eight-to-one count.

step 6:
Operate the counter in the divide-by-five mode. Connect the output to the input of your receiver. As you tune over the band you will find a calibration point every 20 kHz. This pulsed output is again rich in harmonics with marks to be found over the 6-meter band, and even on 2 meters with proper low-loss coupling.

Beverage termination resistance
Here is an instructive note from Robert N. Morris, W7ALU. It has to do with the normal 200-ohm termination value for a Beverage antenna,

"... this is a close to theoretical value as per the radiation resistance of a non-resonant terminated antenna about three and one-half wavelengths long and being remote from earth. The Beverage however, not being remote from earth, has a very high earth loss for both transmitting and receiving. A much higher order of termination would be indicated as being necessary due to the very low height of the Beverage, ten to twenty feet being...

keyed vfo
Cal Sondgeroth, W9ZTK, modified the
CA3020 QRP unit described in the August, 1971 issue of ham radio. His stable and clean keying circuit is shown in fig. 7. His description is as follows:

"...as you can see, I used a slug-tuned coil for L1 with the slug attached to a shaft for tuning from the front panel. Grounding the slug was important to eliminate hand-capacitance effects. The shaft is fitted with a little bearing near the panel, and this tuning arrangement works out to be very stable even though it's not calibrated.

"The main drawback of the oscillator at first was that it drifted quite badly every time it was turned on. Putting a soldering iron on the IC seemed to indicate that it was pulling the frequency as it warmed up. Attempts to let it run all the time and open the emitter lead of the oscillator transistor to shut off the oscillator really didn't seem to help much, and this doesn't provide good keying for CW either. So, I came up with the diode-keying circuit shown. This allows everything to be on all the time to level out the temperature of the IC. With the key open, oscillation is prevented by the fact that there is no capacitance (or 100 pF as in my circuit) from emitter to ground on the oscillator. Oscillations can be stopped in this way, or the oscillator can be shifted off the oscillating frequency by moving about 100 kHz during standby. The frequency shift can be varied by the amount of capacitance switched in and out of the circuit. For CW keying, of course, it would be necessary to completely stop the oscillator. Frequency-shift keying for RTTY can be obtained by the same sort of circuit with smaller values of shift capacitance.

"My output transformer is a toroid coil with bifilar primary. The secondary is matched to about 50 ohms, and I did not get as much output as I expected. However, this is a secondary consideration for a vfo, anyway. With the keying circuit shown and the zener regulator, the keying is now really stable and after all, stability was what I was after."

AMATEUR ELECTRONIC SUPPLY

simple intercom

Here's a simple intercom that can be put together in a couple of nights and is guaranteed to pacify the wife when you're in the basement and dinner is waiting on the table. It uses a half-watt audio IC, Motorola MC 1306P ($1.10). This IC was designed for use in portable a-m/fm radios and tape recorders and takes a regular 9-V transistor radio battery for power. Since these circuits usually have a high-impedance output, this IC was made with a high-impedance input. The output, however, is low impedance and will work directly into an 8-ohm speaker without the usual output transformer.

The circuit, shown in fig. 1, is very simple. I made a small etched-circuit board for the IC and associated components. For the master control, I used an old ac-dc radio, with all parts removed except the speaker and its output trans-
The output transformer is necessary to step up the input (talking) speaker to a high impedance. The etched-circuit board and battery were mounted inside and the talk switch (Burstein Applebee 18A1309) was mounted in the dial hole with the volume control in the regular volume control hole. Shielded cable from the volume control to the input may be necessary. The remote can be any 8-ohm speaker in whatever enclosure is available.

Once installed, the remote is on all the time and any activity or talk can be heard by the control. By pushing the switch to the talk position, the master control can talk to the remote. In my setup the remote picked up so much noise from machinery that it was distracting. To remedy this I ran a 4-wire cable instead of the usual 2-wire. I used the two extra wires for a buzzer at the control end and a push-button switch at the remote end. I now leave the unit off (unless I want to listen in or call the remote) and the remote can buzz when someone wants to talk. Since there are no tubes to heat up, the unit will work as soon as it is turned on. This also conserves battery power. An ac supply can be used, and one is shown in fig. 2. This will probably have to be mounted outboard to avoid hum pickup from proximity to the circuit board.

When this unit was first turned on it picked up the local broadcasting station, but a 0.002 bypass capacitor from one side of the remote line to ground cured the trouble. In extreme cases of this type, try different values of capacitors on either or both sides of the line to ground. Perhaps chokes in both lines would help.

The IC will take up to 12 Vdc, but more than 9 V will make it run hot and high voltage isn’t really necessary. If you have 12 Vdc available and want to get 9 V, try the circuit in fig. 3 using a 3 V, 1 W Zener. A dropping resistor will not work as the current varies with speech input and a stable 9 V would not result. Also note that neither side of the remote line is grounded because the positive voltage is on the line for the output speaker.

Nat Stinnette, W4AYV

miniature power supply transformers

When powering really compact equipment such as electronic keyers and digital devices, obtaining a suitable tiny power transformer may prove difficult and expensive. This fact came to light while I was designing a sixteen IC keyer which was to be no larger than a conventional bug, yet completely self-contained including squeeze paddles, monitor and power supply.

The requirement for a miniature power transformer was met by using an audio output transformer intended for service in pocket transistor radios. A bridge rectifier of small glass diodes across the voice coil winding and a simple resistor-capacitor filter provided a full 3 V at 200 mA. The compact keyer, made possible by the tiny transformer, has been in service for four years without failure.

Gene Brizendine, W4ATE
meter safety

Amateurs often overlook the fact that high-voltage meter multipliers are dependent upon the meter coil for their return to ground. Should this coil open, the entire high voltage will appear at one terminal of the meter! To preclude this risk, a very high value resistor, Rx, is connected across the meter as shown in fig. 1. This resistor must be large enough to introduce only a small error in the meter reading, which may be compensated by a corresponding decrease in the value of R2 to correct the meter.

As a further note of safety, the multipliers, R1 through R3, generally should be 2 W or larger, because a 500 V maximum drop across each resistor is an acceptable value. Otherwise, the resistor drift due to heating may be excessive and the voltage breakdown of the multipliers will be exceeded.

M. H. Gonsior, W6VFR

electronic fence interference

I live in a built-up area which permits keeping horses. I have had very strong noise interference on one bearing on the higher bands, and on all 3.5- and 7-MHz signals when I use a nondirectional antenna. I found the source of the noise very quickly with an inexpensive vhf aircraft-band portable a-m radio.

The interference consists of about one buzz per second, somewhat more regular than thermostatic devices. It is caused by the less expensive Sears weed and stock-control charger with pulser timer, which is described more extensively in the Suburban and Farm Catalog than in the general catalog.

Bill Nelson, the radio interference expert with The Southern California Edison Company and author of a very good article on the subject several years ago in QST, says that some electric fences produce only a series of clicks, while others have the buzzes.

During a 21-MHz contact with VK3AKB, Bill turned on the charger that was located near his ssb equipment and heard no interference at all.

The Sears general catalog did not mention any radio interference filter in the lower-priced charger, but did for the more expensive one. The farm catalog, in addition to mentioning the filter in the $40 unit, says that the $24 unit will not interfere with radio and tv. The noisy one here puts intermittent show on a tv screen near the noise source, and can be heard a hundred yards away on 140 MHz.

Sears has written extensively to assist in eliminating the radio interference and has provided factory comment. They say that both of their chargers are shielded and filtered to prevent radio, tv and telephone interference. When the interference is present, it is usually caused by one or both of the following conditions:

First: A current leak to ground somewhere along the fence line. This could be caused by very dirty or broken insulators, the wire touching against the side of a post, tree or building or heavy vegetation growing up against the wire.

Second: A loose connection somewhere along the fence line. This could be due to poor splices (usually just twisted connections in a rusting wire), a gate opening or very badly rusted spots in the wire.

Either of the two conditions above would cause a gap across which sparks could jump, exciting the fence wire as an antenna, thus resulting in very broad interference to radio, television or telephone. A careful check of the fence line should disclose the trouble — and may require some soldering for permanent connections.

Sears also says that you can determine definitely whether the controller (charger) itself is at fault by disconnecting it.
Why won't Don Wallace listen to anyone else?

W6AM doesn't have to, since he began using our professional quality VHF-FM 2 meter transceiver with exclusive Astropoint. The precise and powerful Astropoint system actually blocks out all interference. So when one of the nation's number one hams is having a 2-way conversation he won't have unwanted interference.

Astropoint is featured on all standard transceivers including the rugged, 12 channel SR-C826M.

It's not only a compact mobile but even fully portable with the addition of a battery pack. And there's a lot more that appeals to Don about the SR-C826M than just Astropoint. All silicon semiconductors with solid state circuitry. Ten watts of R.F. output power combined with low power consumption. MOSFET R.F. Amplifiers and mixers. And the list of features goes on.

Which is why Don Wallace hasn't been listening to anyone else lately. Not that he's choosy about who he listens to. Just whose equipment he listens on.

For complete specifications and the name of your nearest dealer, write:

STANDARD COMMUNICATIONS CORP.
639 North Marine Ave.,
Wilmington, Calif. 90744
(213) 775-6284
from the fence and allowing it to operate. Of course, the removal of the antenna will reduce the interference markedly in any event. However, if a nearby receiver shows that the interference disappears entirely, the fence rather than the charger is at fault.

If the noise continues, the charger unit — possibly due to an open filter condenser — is at fault and may be returned to a service station for repair. First, however, you may try a new pulser in the charger, as this possibly could be the source of the difficulty.

E.H. Conklin, K6KA

low-band vertical antenna

The 4BTV four-band vertical antenna requires frequent readjustment when you are changing frequency and using the 75-meter resonator or loading coil. The same problem is present when using base loading. If a remote motor drive is used, additional cabling is required. There is a solution available that allows the operator to tune the 4BTV over the entire 80- and 75-meter band from his station location and still maintain a reasonable bandwidth. The technique uses a coaxial quarter wave transformer tuned to 3.750 MHz (43.3 feet long) and a broadcast type ganged variable capacitor connected at the remote end as shown in fig. 1.

In my case, the tap on L2 for proper impedance matching occurs at the top of the coil. L1 requires exactly half of the 30 available turns when C1 is half meshed. The vswr is 1:1 at the mid-band resonance frequency of 3.750 MHz. The inductive loading for quarter-wave resonance and a near 50-ohm resistive impedance is found by varying the tap on L2 while L1 is varied for quarter-wave resonance (L1 and L2 are mounted with zero mutual coupling).

After L1 and L2 are adjusted for a minimum vswr at 3.750 MHz with C1 at half mesh, then C1 need only be adjusted at any other frequency in the 80-meter band for a vswr better than 1.3:1.

The arrangement and components used have been exposed to a 300-watt power output level. At 500-watts output, the base antenna connection of the 4BTV arced across to ground. Therefore, 30-watts output is used with the 4BTV on 80 meters with this arrangement.

The stub may lie on the ground since it is connected at the low-impedance point (shield of coax to top of L2 and center conductor to bottom of L1). Negligible loss and capacitance-to-ground effects are experienced and the quarter-wave transformer inversion properties present a variable series inductance and capacitance between L1 and L2. The coils, once set at 3.750 MHz, require no further adjustment over the band.

A 4BTV can be replaced by a full quarter-wavelength 40-meter vertical or an all-band vertical with equally good performance on the 80- and 75-meter bands.

One word of caution: When using base loading of a quarter wavelength 40-meter vertical antenna on 80 meters, a healthy rf voltage will appear at the base of the antenna, a hazard to unsuspecting people or animals.

The values of L1 and L2 may vary at different installations and must be determined experimentally. Those given in fig. 1 should be about right for those installations using one ground rod and mounting pipe with the 4BTV.

Fred M. Griffee, W4IYB
CW or RTTY, whichever way you go,

HAL HAS TOP QUALITY
YOU CAN AFFORD!

TOP QUALITY RTTY...WITH THE HAL MAINLINE ST-6 TU. Only 7 HAL circuit boards (drilled G10 glass) for all features, plug-in IC sockets, and custom Thordarson transformer for both supplies, 115/230 V, 50-60 Hz. Kit without cabinet, only $135.00; screened, punched cabinet with pre-drilled connector rails, $35.00; boards and complete manual, $19.50; wired and tested units, only $280.00 (with AK-1, $320.00).*

OTHER HAL PRODUCTS INCLUDE:

ID-1 Repeater Identifier (wired circuit board) ... $ 75.00*
ID-1 (completely assembled in 1½" rack cabinet) ... $115.00*
HAL ARRL FM Transmitter Kit .. $ 50.00*
W3FFG SSTV Converter Kit .. $ 55.00*
Mainline ST-5 TU Kit ... $ 50.00*
Mainline AK-1 AFSK Kit .. $ 27.50*
HAL RT-1 TU/AFSK Kit .. $ 51.50*

NEW FROM HAL—TOP QUALITY RVD-1002 RTTY VIDEO DISPLAY UNIT. Revolutionary approach to amateur RTTY...provides visual display of received RTTY signal from any TU, at four speeds (60, 66, 75, and 100 WPM), using a TV receiver modified for video monitoring. Panasonic solid-state TV receiver/monitor, or monitor only, available. Complete, $525.00; Panasonic TV receiver/monitor, $180.00; monitor only, $140.00.*

TOP QUALITY...WITH THE HAL KRB-1 TTY KEYBOARD. Gives you typewriter-easy operation with automatic letter/number shift at four speeds (60, 66, 75, and 100 WPM). Use with RVD-1002 video display system, or insert in loop of any teleprinter, for fast and easy RTTY. Completely solid-state, TTL circuitry using G10 glass boards, regulated power supplies, and transistor loop switch. Optional automatic ID available. KRB-1 assembled, only $275.00; in kit form, only $175.00.*

HAL provides a complete line of components, semi-conductors, and IC's to fill practically any construction need. Send 24¢ to cover postage for catalog with info and photos on all HAL products available.

*Above prices do not include shipping costs. Please add 75¢ on parts orders. $2.00 on larger kits. Shipping via UPS whenever possible; therefore, street address required.

HAL COMMUNICATIONS CORP., Box 365 H, Urbana, Illinois 61801

More Details? CHECK-OFF Page 110

july 1972
speech clipping

Dear HR:

I write this letter to question the general understanding and use of rf clipping circuits as given in many schematic diagrams; namely, I question the conventional explanation given for clipping at an intermediate frequency such as 9 MHz.

Squires and Bedrosian ("The Computation of Single-Sideband Peak Power," Proceedings of the IRE, page 123, January, 1960) have used a Fourier analysis, coupled with the concept of "frequency incommensurability" to show that audio clipping results in an increase in ssb peak amplitude rather than the expected reduction. This, of course, arises because a single-sideband signal does not preserve relative phase information; hence, there always exists a point in the ssb envelope where all frequency components add for an instant to produce a peak (the more frequency components present, the higher the peak). Thus, because audio clipping produces additional frequency components, the rf peaks become more intense, contrary to expectations.

However, the mathematics of the subject article also appear to be applicable to a situation where one clipped rf wave modulates another rf sine wave (heterodyning), and one of the sidebands (say, the difference frequency) is rejected. In this case, as in the audio case (which is not really a special one), phase information is lost, and one can use Squires' and Bedrosian's mathematics to show that the final signal should be degraded too. I therefore feel that this is a matter which ought to be clarified, because this particular article has become the raison d'etre for rf clipping.

It appears that if Squires' and Bedrosian's analysis is correct, then rf clipping can only be expected to produce optimum results when it is used at the operating frequency. If that is true, as my own brief inspection seems to indicate, then someone who has the time to pursue it further should discuss in detail this apparent negation of rf clipping. After all, how do you filter the out-of-passband products at the operating frequency?

Furthermore, if my interpretation of the mathematics is correct, clipped dsb should be far more effective than unclipped dsb, whereas clipped ssb will supposedly be a disappointment.

Oscillograms appearing in the 1969 "Radio Amateur's Handbook" appear to support the notion that rf clipping at intermediate frequencies works, but one can again take note that "spikes" (many
of them) appear in the output of a clipped and heterodyned, ssb waveform, and that they do not follow the i-f envelope faithfully, all in accord with the subject article’s predictions. Perhaps clipping at the i-f is effective, but if it is, someone must look more closely for the reasons and, perhaps, determine if Squires and Bedrosian produced an analysis that was too simplified. (It never really concerned itself with speech — merely distorted “sine” waves — and it totally ignored filtering.) As a matter of fact, I suspect that the analysis is over-simplified and that amateurs may have succeeded in regions not really covered by theory. Perhaps there are later papers which clarify the situation, and one of your readers who keeps up with IEEE’s journals can help out. I hope so, because in my mind the case for conventional rf clipping does not seem to be on solid ground.

Richard R. Slater, W3EJD

Dear HR:

I was pleased to get the reference to the Proceedings of the IRE note by Squires and Bedrosian, since it nicely supports my simplified explanation of why speech clipping and the ssb mode are incompatible. (See my article in HR for February, 1971) I was not aware of the material though I have the Proceedings issue in my collection!

Let me start by assuring you that rf (or i-f) clipping is indeed well understood. I believe your difficulty arises from the fact that in the IRE article an infinite bandwidth is assumed. This is why the authors get even worse results for clipped speech in a ssb system than I, because I assumed practical limits for bandwidth (3 kHz) and the lowest audio frequency (400 Hz). An infinite, or to be more practical, a large bandwidth, is a purely relative term and must be viewed against the signal frequency. A 3-kHz bandwidth is indeed nearly infinite when you consider the distortion products or harmonics of a clipped 300-Hz tone. However, a 3-kHz or even a 30-kHz bandwidth is small when you consider a 100-kHz (or 9-MHz) clipped signal.

Since the distortion products or harmonics (multiples of the frequency of the clipped signal) are sufficiently filtered out by a single i-f transformer after the i-f clipper, the problem which is causing your concern does not arise. The subsequent mixers and amplifiers are dealing with an amplitude-limited signal without the distortion components.

Some time ago, there was a widespread belief that when you filtered a clipped signal so that all harmonics were removed, you got back the unclipped original. This of course is a fallacy; inspection of the Fourier series for a square wave shows that the output variation is 2 dB for inputs between 1 (the clipping level) and infinity!

Within the context of your letter, clipping at audio is a special case, since the lower harmonics generated by the clipper fall into the band of interest. Clipping at i-f or rf avoids this through the selectivity inherent in most designs so that there is no phase information to lose. (I agree of course that later mixers are in effect ssb mixers.) For example, when clipping a 300-Hz tone, the distortion products are at 900, 1500, 2100, 2700 Hz etc. When you clip a 100-kHz ssb signal, the distortion terms show up at 300 kHz, 500 kHz etc. Obviously, it is no major task to get rid of these, as the band of interest is still only 3 kHz wide.

Walter Schreuer, K1YZW
Ipswich, Massachusetts

mosfets maligned

Dear HR:

An article in the March, 1972 issue, Gerald Vogt’s writeup on a two-meter preamplifier, inspires this missive, since I am of the opinion that he leaves some misrepresentations in his article.

I am pleased to see that Mr. Vogt
recognizes the ease with which the classic cascode amplifier circuit can be directly implemented with fet devices. The excellent results that may be obtained with this circuit arrangement without the need for neutralization are recognized advantages of the cascode amplifier. The 2N4416 or other jfets can produce a fine two-meter preamplifier.

However, I do feel that the author has been inclined to dismiss the dual-gate mosfet devices in much too casual a manner, and without a sufficient understanding of their true virtues. The argument that the mos junctions are subject to destruction by electrostatic discharges is archaic in this day of the diode-protected device. Certainly the use of dual-gate mosfets in the Heath SB-303 shows the practicality of the protected device. I am presently involved with a receiver design which is in production, using RCA dual-gate 40822 fets, and we have used some 4000 devices on the assembly floor without a failure due to electrostatic problems. Incidentally, I am using this type fet for rf, mixer, i-f, audio and oscillator stages and find it admirably suited for all applications.

The inherent cascode internal connection of the dual-gate mosfet makes it ideally suited for cascode preamplifiers, and it is regrettable that its superiority was not recognized.

The dual-gate device offers better intermod and crossmod performance than any other device in the solid state museum, and permits the introduction of an rf gain control or agc function that actually increases the signal handling capabilities as the gain is reduced. This is even better performance than that offered by the pentode variable-mu vacuum tube!

I would suggest that Mr. Vogt read over some of the informative application notes produced by Motorola and RCA, for example, on the use of dual-gate mosfets in rf applications. Data on the RCA 40673, RCA 40822, or Motorola MFE121, for instance, will reveal that these devices will give noise figures in the 2- to 5-dB range at two meters with stage gains near 20 dB as cascode amplifiers at 150 MHz.

RCA application notes give particular insight into uses of these fets. RCA publication ST-3233 on small-signal rf amplification of mos devices; AN-3435 on cross modulation effects; ST-3486 on receiver applications of dual gate mosfets and AN-4431 on rf applications of the dual-gate mosfet up to 500 MHz should be particularly informative.

Finally, I am surprised that Vogt's circuit does not include any local feedback, such as a source resistor with suitable rf-bypass capacity. Since the parameters of fets vary considerably from device to device, it is very important to incorporate dc feedback to make the circuit less critical of device parameter controls. Since Idss varies from device to device, and Gm does also, it is better to smooth out these variables with feedback than to accept large performance variations in the circuit as devices are changed.

I fear that the circuit given by Mr. Vogt will function best only with low-level signals, since nothing is done to optimize the large-signal capability. Further, an rf gain control can be readily introduced to a dual-gate cascode circuit by controlling the voltage applied to gate number 2. If this gate is biased initially at say 30 to 40 percent of the (drain) supply voltage, rf gain can be easily reduced by merely lowering this gate number 2 voltage, which at the same time actually increases the signal-handling ability while reducing the stage gain. Certainly this is a virtue not to be so lightly dismissed.

The above comments are not intended to be hyper-critical of Mr. Vogt's article, as certainly the use of fets as a cascode rf amplifier is far superior to usual bipolar circuits. However, I do feel that the mosfet, especially in the diode-protected dual-gate form, should not be overlooked as the best of the solid-state devices for small-signal circuit designs.

Maurice P. Johnson, W3TRR
Randallstown, Maryland
for the EXPERIMENTER!

INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR
RF MIXER
A single tuned circuit intended for
signal conversion in the 3 to 170
MHz range. Harmonics of the OX
oscillator are used for injection in
the 60 to 170 MHz range. Lo Kit 3
to 20 MHz, Hi Kit 20 to 170 MHz
(Specify when ordering) $3.50

2. SAX-1 TRANSISTOR
RF AMP
A small signal amplifier to drive
MXX-1 mixer. Single tuned input
and link output. Lo Kit 3 to 20
MHz, Hi Kit 20 to 170 MHz
(Specify when ordering) $3.50

3. PAX-1 TRANSISTOR
RF POWER AMP
A single tuned output amplifier
designed to follow the OX oscil-
lator. Outputs up to 200 mw.,
depending on the frequency and
voltage. Amplifier can be ampli-
tude modulated. Frequency 3,000
to 30,000 KHz.......................... $3.75

4. BAX-1 BROADBAND
AMP
General purpose unit which may
be used as a tuned or untuned
amplifier in RF and audio appli-
cations 20 Hz to 150 MHz. Pro-
vides 6 to 30 db gain. Ideal for
SWL. Experimenter or
Amateur $3.75

5. OX OSCILLATOR
Crystal controlled transistor type.
Lo Kit 3,000 to 19,999 KHz, Hi Kit
20,000 to 60,000 KHz. (Specify
when ordering) $2.95

6. TYPE EX CRYSTAL
Available only from 3,000 to 60,000 KHz.
Supplied in HC 6/U holder.
Calibration is ± 0.02% when oper-
ated in International OX circuit
or its equivalent. (Specify
frequency) $3.95

for the COMMERCIAL user...

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz
to 160 MHz in a wide variety of holders.
Crystals for use in military equipment can be
supplied to meet specifications MIL-C-30966.

CRYSTAL TYPES:
(GP) for "General Purpose"
applications
(CS) for "Commercial Standard"
(HA) for "High Accuracy" close tem-
perature tolerance requirements.

write for CATALOG

INTERNATIONAL
CRYSTAL MFG. CO., INC.
10 NO. LEE • OKLAH. CITY, OKLA. 73102

More Details? CHECK—OFF Page 110

july 1972 / 75
metal-etching tool

You can mark tools, metal components, chassis as well as camping gear and household items with a new metal-etching instrument from Jensen Tools. The Model 17 Marking system can electronically etch flat or round metal surfaces and can make two-color metal labels. The tool is safe, silent, vibration free and powered by ordinary 117 Vac.

Simple to use, all that is required is to type, write or draw the mark to be etched on the special stencil included in the kit. A wetting solution is applied to the head of the marker, stencil attached, and the tool is ready for impression making. Chrome plated and solid brass labels with strong adhesive backing are available for etching with a black, copper, or brass-colored mark for a striking two-tone effect.

Model 17 is packaged in an economical kit which includes the marking tool, electrical cord, ground plate, electrolyte solution in plastic bottle, an adapter clip for deep etching and full instructions. The kit includes supplies sufficient for marking up to 2000 items. It is priced at $24.95. Refill supplies are readily available.

Further information is available by using check-off on page 110 or by writing to the manufacturer and requesting the descriptive folder on the Model 17 Marking system from Jensen Tools and Alloys, 4117 North 44th Street, Phoenix, Arizona 85018.

great circle map

A new edition of the Radio Amateur’s Great Circle Chart of the World has just been published by the Radio Amateur Call-book. Measuring 29” by 25”, the six-color map is centered on the geographical center of the United States and includes a chart giving great circle bearings to all parts of the world from Boston, Miami, Seattle, Los Angeles, San Francisco and Washington, DC. The chart, an azimuthal equidistant projection, shows the great circle course from its center point to any other point on the earth as a straight line. Additionally, distances along the straight line can be
measured accurately against one standard scale.

The chart, besides dressing up a radio shack, is helpful for orienting antennas and comparing long and short paths to distant spots. The map amazes visitors to the station as it shows some interesting facts such as the shortest path to Singapore, Vietnam or Burma from Greenville, New Hampshire right over the North Pole.

The map is available for $1.25 from Comtec Books, Greenville, New Hampshire 03048.

four pole antenna

Cush Craft announced the addition of two new models to their Four Pole antenna design. The Four Pole is a series of four stacked dipoles for amateur fm and commercial use.

Four Poles are supplied with the dipoles, mounting booms, harness and all hardware. The center support mast is not supplied, allowing the user to custom select a mast for his installation or to tower mount the antenna.

Gain figures for the antennas show 6-dB omnidirectional and 9-dB semi-directional pattern. The three models now available are the AFM-4D, 144 - 150 MHz, $42.50; the AFM-24D, 220 - 225 MHz, $40.50 and the AFM-44D, 435 - 450 MHz, $38.50.

More Details? CHECK-OFF Page 110
The First AM-FM Solid-State Transceiver For Two Meters

No longer is it necessary to choose between AM and FM on two meters. Now you can have both in one compact unit. Join the gang on the new FM repeaters yet still be able to "rag chew" with old friends either AM or FM anywhere in the two meter band.

FEATURES

TRANSMITTER:
- Built-in VFO (Frequency converted for stability)
- AM and FM both crystal and VFO
- Four transmit crystal positions (8 MHz)
- 12 watt input AM and FM
- High level transmitter modulation on AM
- Bandpass coupled transmitter requiring only final tune and load
- Three internal transmit crystal sockets with trimmers for netting
- One transmitter crystal socket on the front panel
- Deviation limiting 146.94 MHz crystal included

RECEIVER:
- Double conversion
- Crystal controlled first conversion
- MOS FET receiver front-end
- Integrated circuit limiter and discriminator for FM
- Envelope detector and series gate noise clipper for AM
- Built-in squelch for both AM and FM

GENERAL:
- Separate transmitter and receiver tuning
- Built-in 115VAC power supply
- Direct 12VDC operation for mobile or portable operation
- Optional portable rechargeable snap-on battery pack available
- "S" Meter also used for transmitter tune up
- Military style glass epoxy circuit boards
- Anodized lettering and front panel
- Baked epoxy finish on the cabinet
- 47 transistors, 22 diodes, 1 integrated circuit
- Dimensions: 10¼"W x 6¼"H x 7¼"D

Warranty—90 Days Parts and Labor

The CTR-144 is available at your DEALER or order FACTORY DIRECT $459.95

COMCRAFT COMPANY
P.O. BOX 266—GOLETA, CALIF. 93017
Write for more information or use READER SERVICE

More information is available from Cush Craft Corporation, 621 Hayward Street, Manchester, New Hampshire 03103 or from check-off on page 110.

Circuit Zaps

Circuit Zaps, copper component patterns and accessories used to produce instant printed-circuit boards, have been developed for the hobbyist. International Rectifier Corporation recently introduced its complete line of Circuit Zaps for custom and prototype production of printed-circuit boards.

Circuit Zaps are available in four design groups, and each card contains three to twelve of one pattern. Each pattern is precision-etched on a 5-mil glass-epoxy base material and backed with a special pressure-sensitive adhesive.

In actual use, the Circuit Zaps are placed on a pre-punched or unpunched circuit board in any desired layout. The Circuit Zaps can be removed and repositioned without damage to the adhesive.

The board is then ready for testing, drilling (for unpunched boards) and positioning of conductor paths. The final step is the mounting of components with standard hand-soldering techniques.

Specific Circuit Zap patterns available include: TO-type patterns with 3, 4, 6, 8, 10 and 12 leads; dual in-line with 14 and 16 leads; resistor/diode types, conductor path and both single-and dual-component pads. Also available from the Semiconductor Division of International Rectifier are: unpunched XXXP laminates, pre-punched with 0.1 x 1.0-inch centers and printed-circuit board terminals. Available at your local dealer. For more information use check-off on page 110.
Xcelite has just added three new all-purpose screwdriver and nutdriver sets to its family of "compact convertibles." Each set consists of an assortment of color-coded midget tools and a unique "piggyback" torque amplifier handle which enlarges gripping surface, extends reach and increases driving power. The new units bring to nine the number of "compact convertible" sets now available, with various assortments of drivers for slotted, Phillips, Allen, Scrulox, hex and clutch head screws, plus hex nuts.

Featured is a new transparent container with a positive snap-lock. Optically clear for easy set identification, the tough, injection-molded cover stays closed even when tossed into a tool box. The case is also designed to hold tools upright on a bench for easy selection. All nine members of the "compact convertible" family are now housed in these transparent, "show case" cases.

Contents of the three new sets are:

PS-6 Screwdriver Set — miniature drivers for No. 00, 0 and 1 Phillips; 3/32"", 1/8" and 5/32"" slotted screws.

PS-140 Screwdriver and Nutdriver Set — popular assortment includes drivers for No. 0, 1, and 2 Phillips screws; 3/32", 1/8", 3/16" and 1/4" slotted screws; and 1/4", 5/16" and 3/8" hex nuts.

PS-130 Screwdriver and Nutdriver Set — similar to PS-140 with larger assortment of nutdrivers, 3/16", 1/4", 5/16", 11/32" and 3/8" hex sizes; plus drivers for No. 1 and 2 Phillips screws, and 1/8"
THE K2-KEYER

Now, a Keyer with every feature of the most expensive units without the unnecessary frills. Berkshire Inst. has designed a complete ready to use Keyer on a single printed circuit board. Use your own Key and incorporate it in your station console or power supply. Built-in regulated power supply operates from 6.3 VAC or 7½ VDC and only requires 60 Ma.

- Self Completing Dots & Dashes.
- Dot & Dash Memory.
- Automatic Character Spacing.
- Ambimatic Output.
- Dot or Dash Injection.
- Built-in Variable Pitch Side Tone.
- 6 to 80 WPM.

Also available:
K2 12/24 HOUR CLOCK
K2 AGC AMPLIFIER

WOERNER ENTERPRISES, INC.
170 Chestnut St.
Ridgewood, N. J.

CAMP ALBERT BUTLER INVITES
HAM RADIO ENTHUSIASTS OF ALL AGES
TO TRY FOR YOUR
GENERAL CLASS TICKET
This Summer! Our 13th Season
STUDY INSTRUCTION
LEADING TO GENERAL ADVANCE
and AMATEUR EXTRA LICENSE

This co-ed Amateur Radio Camp, Y.M.C.A. owned and operated, can accommodate 60 campers. There is no age limit. We have had campers from 7 through 74 years of age. It is very helpful if you can copy 5wpm or have a Novice or Technician ticket but it is not necessary. Time is divided between radio classes in code and theory and usual camp activities, such as swimming, archery, riflery, hiking, etc. Golf privileges are included at the beautiful New River Country Club course.

Entire staff consists of licensed hams who are instructors in electrical engineering in some of our finest colleges and universities. Camp opens July 29th and closes August 12th. Tuition of $200.00 includes all camp expenses: room, meals, notebooks, textbooks, and insurance. Send for our brochure.

C. L. Peters, K4DNJ
General Secretary
Gilvin Roth Y.M.C.A., Elkin, N. C. 28621
Please send me the Booklet and Application Blank for the Camp Albert Butler Radio Session.

NAME
CALL
ADDRESS
CITY STATE ZIP

3/16" and 1/4" slotted screws. Both this set and PS-140 are expansions of the very popular PS-7.

Complete details are given in the new Catalog 171 available without charge from Xcelite Incorporated, Orchard Park, New York 14127 or by using check-off on page 110.

current-controlled resistors

Radiation Devices has introduced two new current-controlled resistor (CCR) pairs. CCR pairs and quads may be used in tuning, switching, attenuating or isolating functions in electronic equipment or systems. They consist of a light-emitting diode optically coupled to a pair or quad of cadmium selenide photo-resistors, selected and adjusted so that their resistance values track over a thousand-to-one range. The control current through the LED required to cover this range varies from a few tens of microamperes at one megohm to 20 milliamperes maximum at one kilohm.

Fourteen pin DIP packaging, combined with carefully considered pin assignment, provides convenience in utilization, compatibility with modern circuit-board technique and maximum signal isolation.

The model 500-104 is a resistor pair selling for $18, and the model 500-105 is a resistor quad selling for $24. Complete specifications are available by using check-off on page 110 or by writing to Radiation Devices Company, Box 8450, Baltimore, Maryland 21234.

logic tester

Requiring no visual observation, the model 95 logic tester gives a high audio tone to indicate logic 1 state and a low audio tone to indicate a logic 0 state when checking normal 5 V digital logic circuits. The unit sells for $19.95. More information is available from Production Devices, 7857 Raytheon Road, San Diego, California 92111 or by using check-off on page 110.
high-current logic driver

High-current loads can now be driven by logic circuitry, using the Motorola MCH2890, dual power driver rather than using more complex discrete circuitry. This new device translates logic voltage levels to high-power outputs. Either DTL or TTL logic levels may be used to control the device, and loads can be either resistive or inductive.

Many applications such as RTTY magnet drivers and tape punches, hammer-drivers, relay drivers, stepping motors and lamp drivers require high current pulses that are digitally controlled. The new device provides this interface in a single package replacing an IC and two Darlington transistor packages.

The MCH 2890 combines a dual 2-input MTTL AND gate similar to the MC3101 and a pair of Darlington power transistors in a hybrid design to provide up to 6 amps at 10% duty cycle and 25 ms pulse width. Continuous output current is 1 ampere maximum. The output Darlington transistors have 120 V minimum breakdown voltage ratings which is desirable for driving inductive loads at high current.

A factor which has hampered IC drivers in the past was package power dissipation. A new 10-pin aluminum package similar to the popular TO-3 was designed for the MCH2890. Besides the power handling capabilities of the TO-3 package, it was also chosen because of its longterm popularity as the standard industrial power package.

For further information contact the Technical Information Center, Motorola Inc., Semiconductor Products Division, P.O. Box 20924, Phoenix, Arizona 85036 or by using check-off on page 110.

itu lists available

Formerly available only from Geneva, Switzerland; International Telecommunications Union publications are now avail-
ic power supplies

Viking Electronics has introduced a line of low-cost power supplies for logic and linear-system applications. Priced from $17 to $24 in single quantities, the OEM 70 series provides typical outputs of 3.5 to 6 V at 3 A and 8 to 15 V at 1.2 A with regulation of 0.5 to 0.1 percent and ripple of 1 to 2 mV, dependent on models.

Features include electronic current limiting, floating output, stable differential amplifier circuitry, silicon transistors and computer grade capacitors. For more information contact Viking Electronics, Inc., 721 Saint Croix, Hudson, Wisconsin 54016 or use check-off on page 110.
BROADBAND AMPLIFIERS at a price you can afford

The BRA-1 series offers high gain over the HF to UHF region with low noise figures. BRA-1PA, a remotely powered unit for mounting near the antenna, covers 30 to 400 MHz with a 20±1dB gain dropping to 17 dB at 500 MHz. Maximum NF is 3.5dB. BRA-1PB has the same specs as the BRA-1PA but is locally powered. BRA-1P covers 3 to 500 MHz. with gain between 15 and 30dB. Maximum NF is 3.0dB. For less critical use order BRA-1 with same coverage as the BRA-1P, but reduced UHF gain and higher NF.

BRA-1PA - $50.00; Adapter Kit, KT-1 - $5.00
BRA-1PB, BRA-1P - $45.00; BRA-1 - $30.00
Please include $1.00 for shipping.

RADIATION DEVICES CO.
P. O. Box 8450, Baltimore, Md. 21234

SUMMER IN VERMONT

is a beautiful thing.
Come see for yourself while you attend

1972 INTERNATIONAL FIELD DAY
Charlotte, Vermont

SUNDAY, AUGUST 13, 1972
Details from Bob Hall, W1DQO
General Greene Rd., Shelburne, Vt. 05482

WORLDS ONLY WEEKLY DX MAGAZINE
CURRENT DX NEWS - COMING EVENTS - DATES - FREQUENCIES - TIMES - ALL THE NEWS IN DEPTH - 160 METERS THROUGH 10 METERS - DX CONTEST INFO & CLAIMED SCORES - MONTHLY PROPAGATION PREDICTIONS - DX HONOR ROLLS - and a very SPECIAL "FLASH CARD" SERVICE TO both SUBSCRIBERS and NON-SUBSCRIBERS - 10c PER CARD FOR SUBSCRIBERS & 25c PER card from NON-SUBSCRIBERS. YOU FURNISH STAMPED AND SELF ADDRESSED CARD (CAN BE EITHER AIR MAIL OR REGULAR FIRST Class POST CARD. JUST PUT PREFIX ON LOWER LEFT, BOTTOM ON FRONT OF YOUR CARD (WE ONLY FILE BY PREFIXES) ANY GOOD DX NEWS FROM THE PREFIXES ON YOUR CARDS SENT TO YOU IMMEDIATELY! DXING EASY!!

DX NEWS IS OUR BUSINESS
THE DX'ERS MAGAZINE
(Gus M. Browning, W4BPD)
Drawer "DX"
CORDOVA, S. C. 29039

WE ALSO PRINT QSL CARDS - FREE SAMPLES & PRICE LIST UPON REQUEST - WE PRINT ALMOST ANYTHING ELSE YOU NEED TOO - PRICES RIGHT

More Details? CHECK-OFF Page 110

the EL SOCKET

Test new circuit ideas... I.C. circuits... discreet components... at no risk!
Money back guarantee!

$17.25

All you need are #4 mounting screws... just plug-in components... like ¼ watt resistors, ceramic capacitors, diodes, I.C.s, transistors and more... and your circuit's built! No special patch cords needed! Components interconnected with any solid No. 22-26 gauge wire.

And you can try it with absolutely no risk for 5 days. If not satisfied, just return your EL Socket and receive a full refund. Trying is believing. How can you go wrong? Order your EL Socket now!

- Nickel/silver plated terminals — very low contact resistance
- Low insertion force
- Mounts with #4 screws
- Initial contact characteristics beyond 10,000 insertions
- Vertical, horizontal interconnecting matrices
- Accommodates wide range of wire and component leads from .015"-.032"

Send check or M.O. today!

EL INSTRUMENTS, INC
61 First St., Derby, Conn. 06418
Telephone: 203/735-8774

Call Dick Vuillequez, W1FBS

july 1972
LAKE COUNTY ILLINOIS
FAIR GROUNDS
JULY 8, 9, 1972
FLEA MARKET
6 a.m.-6 p.m.
EXHIBITION HALL
9 a.m.-6 p.m.

The Largest Meeting of Radio and Electronic Enthusiasts in the Midwest

Indoor Manufacturers Displays — Under Roof
Giant Flea Market —
Many Door Prizes —
Camp Area —
Refreshments —
Unlimited Free Parking — Technical Movies and Seminars

$2.00 for both days
Children under 12 free

 TICKETS
RADIO EXPO '72
Box WA9ORC
230 East Ontario Street
Chicago, Illinois 60611

Gentlemen: Enclosed is $........................ (Check or Money Order) in payment for tickets at $2.00 each.
Send tickets to:
Name..
Address..
Town...
State Zip...

Make checks payable to: Radio Expo '72

220 MHz

Join the action on 220 MHz with the JANEL deluxe receiving converters and preamps. Extremely sensitive with freedom from spurious responses.

220CA Converter, 28-32 MHz i-f, $69.95 ppd
220PA Preamp, 2.5 dB NF, $19.95 ppd

Write for full details. Other models available for 50, 144, and 432 MHz.

P. O. BOX 112
SUCCASUNNA, N. J.
07876

K2DEL
KNIGHT RAIDERS VHF CLUB INC.
SIXTH ANNUAL HAMFEST
PASSAIC-CLIFTON YM-YWHA DAY CAMP
West Paterson, N. J.
SATURDAY, AUGUST 12, 1972
10:00 A.M. TIL DUSK

Gigantic Flea Market, Equipment Displays, Contests, Door Prizes, Swimming, Boating and Play Area.
Talk-in station on 50.2, 145.71 and 146.94 FM • Tables and Cooking area • Come early — Stay late!

ADULTS — $1.00 IN ADVANCE
$1.25 AT THE DOOR
CHILDREN UNDER 12 — FREE

Many thousands of you have become very familiar with the various Radio Society of Great Britain books and handbooks, but very few of you are familiar with their excellent magazine, Radio Communication.

It includes numerous technical and construction articles in addition to a complete rundown on the month's events in amateur radio. Surely a most interesting addition to your amateur radio activities.

We can now offer this fine magazine to you along with the other advantages of membership in the RSGB (such as use of their outgoing QSL Bureau) for $9.95 a year.

comtec
Greenville, New Hampshire 03048

More Details? CHECK-OFF Page 110
The Best Vertical There IS!
80 through 10 meters

The 18AVT/WB is constructed of extra heavy duty, taper swaged, seamless aircraft aluminum with full circumference, corrosion resistant compression clamps at all tubing joints. This antenna is so rigid, so rugged...that its full 25' height may be mounted using only a 12'' double grip mast bracket...no guy wires, no extra support...the 18AVT/WB just stands up and dishes it out!

Order No. 386

Get the strength, the performance and the price you want...from the man who sells the complete line of quality Hy-Gain equipment.

HY-GAIN ELECTRONICS CORPORATION
P. O. Box 5407-WG, Lincoln, Nebraska 68505
amateur gear, plus all the possible mixes of sums and differences, you can appreciate the magnitude of the problem.

Recently, a well known fm'er prevailed upon an airline to test his Motorola HT in one of their aircraft so he could operate during a flight he planned to take. After months of correspondence and personal appearances at airline headquarters, and meetings with communications department people, many of whom are amateurs, the airline agreed to run the necessary tests.

The fm'er tweeked and peaked his trusty HT and checked it thoroughly with a spectrum analyzer; it was clean. On the appointed day the aircraft was removed from line operation and the test began. The test required three hours and four men to complete. The HT caused absolutely no interference, and the fm'er received a letter authorizing the operation of that HT on that particular trip in only that type of aircraft. It is easy to understand why the airlines, who are trying to cut costs, would prefer not to get involved in testing each amateur’s fm rig.

Unfortunately for the fm'er who went to all this trouble, the aircraft on which the tests were conducted is to be phased out of operation soon, and he’s right back with the rest of us — speechless while aboard an airliner.

Many fm’ers continue to ask the Captain’s permission to operate, and he may give it, not realizing the position he is putting himself in. He could have his license suspended or he could be fined. Don’t put him in that position, and don’t subject yourself and other passengers to a situation which could be hazardous to all on board, and perhaps to someone on the ground.

Remember, you may not cause any interference all across the country, but the ILS glide slope receiver is used only during the last few minutes of flight, and interference to these units may not be noticed until it is too late.

Jim Fisk, W1DTY editor
feature after feature after feature

There's a new enjoyment horizon waiting on 420-450MHz, an amateur band 7½ times wider than 144-148MHz! Here's wide open space for the ragchewer—paradise for the antenna experimenter. With half-wave antennas only about a foot in length, "dream beams"—the kind that literally drip with gain—become practical realities.

The highly knowledgeable repeater group has, of course, had equipment operating in this band for years. However, SB-450, SBE's exclusive, all-new FM transceiver gives the amateur something he has long needed, equipment with small size, convenience and performance characteristics considered to be indigenous to the "DC" bands. It is certain that repeater and 450MHz band activity will be given a big boost with this fine unit.

Beautifully constructed, book size, the SB-450 has 12 channel capability, delivers 5 watts FM output. It's all solid-state—no warmup—low drain from 12V car battery (operates on 115VAC for base station use with available accessory supply). Two sets of crystals are supplied for repeater and simplex operation.

Try UHF! Try SB-450! Enjoy!

SB-450
UHF/FM TRANSCEIVER
LOOK

The CRICKET is here — and it has the jump on all the others in its field!

This low cost keyer has more features for your dollar than all others in its price range. Even some in a higher price range! Go ahead — look around — compare the rest! Then buy the BEST — Data Engineering’s new CRICKET I.

- Jam-proof spacing
- Self-completing dots and dashes
- Sidetone osc. and speaker
- Built-in key
- Relay keys 300 V at 1 amp
- Keyed time base. Instant start
- 3.5 to 50 w.p.m.

- "Full-control" weight ratio
- Speed, volume and tone controls
- Transmitter tune switch
- Auto/semi-auto. switch
- AC powered. Can also operate from 12V battery.

Why don't you get the jump on all the others — too?

$49.95

AT LAST —

A FREQUENCY STANDARD DESIGNED SPECIFICALLY FOR THE FM'ER!

Now, for the first time, you can be exact with your channel spacing and deviation.

This deluxe marker allows you to check your receive and transmit spacing for channels in the 10, 6, 2, and 11/4 meter FM bands. Markers are at 5, 10, 15, 20, 30, 40, 60 and 120 KHz. Precision 12 MHz crystal. Osc. and output buffered. No unwanted markers. Rich harmonics beyond 220 MHz.

$44.50 (Less batteries)

MEMORY-MATIC 500 KEYER

$198.50

FREQUENCY MARKER STANDARD

Markers at 5, 10, 25, 50, 100, 200 and 400 kHz. 400 kHz crystal. No unwanted markers. Latest low power ICs. Buffered osc. and output.

$32.95 (Less Batteries)

SPACE-MATIC 21 KEYER

$89.50

ELECTRONIC FEATHER TOUCH KEY

The solid-state design detects the mere touch of your finger and eliminates such problems as contact bounce, proper adjustments and dirty contacts. Operates with all keyers. Weighted.

$22.95, $25.95 (with SPDT Switch Option)

DATA ENGINEERING INC.

Box 1245 · Springfield, Va. 22151

5-year guarantees · PPD USA · Send for brochures

More Details? CHECK-OFF Page 110
CNE communication/navigation electronics MAGAZINE

This monthly technical magazine fills a "communication gap" within the electronic communication and navigation equipment industry. Its function is to provide comprehensive and authentic information not available in any other single publication. The types of feature articles include the following:

SYSTEM DESIGN
The planning of radio communication and electronic navigation systems, as well as CCTV and electronic security systems.

EQUIPMENT DESIGN
State-of-the-art design techniques — analysis of newly developed equipment.

TECHNOLOGY
Reports on technical developments — looking into the future — measurement techniques.

FCC REPORTS
Comprehensive reports on FCC petitions, proposed rulemaking and newly adopted rules changes — long before they are published in FCC Rules and Regulations.

SERVICING
The latest techniques for maintaining equipment — troubleshooting — analysis and use of test equipment.

INSTALLATION
Solutions to unique installation problems — local and national codes — interference and interface problems.

APPLICATIONS
Utilization of system components — scope of equipment applications — interface requirements.

CASE HISTORIES
Economic and operational aspects of unique systems — examples of how problems were solved.

Subscription rate $12 per year, $20 for two years. When Check or Money Order accompanies subscription request, special rate is $10 for one year or $16 for two years. Advertising rate card sent on request.

COMMUNICATION AND NAVIGATION, INC.
250 PARK AVE., NEW YORK, NY 10017

More Details? CHECK-OFF Page 110
TOWER CORP.

LAE MW35 “STANDARD” Package

Free Standing Crank-Up Tower 9.5 Sq. Ft., 50 MPH

LAE AR.22R Rotator

CDR RG-58U Coax & Control Cable

Substitute 50 ft. free standing, add $100

Complete with one of the following antennas:

- HY-GAIN TH2MK3 $275
- HY-GAIN TH3JR $275
- HY-GAIN DB10-15A $285
- HY-GAIN HY QUAD $285
- HY-GAIN TH3MK3 $295
- TR-44 rotor w/cable add: $35
- HAM-M rotor w/cable add: $65

LAE W51 “DELUXE” Package

Free Standing, 9 Sq. Ft. - 50 MPH

CDR TR-44 rotor

100 ft. RG58U Coax & Control Cable

Substitute 67 ft. free standing, add $400

Complete with one of the following antennas:

- HY-GAIN DB 10-15A $590
- HY-GAIN HY QUAD $599
- HY-GAIN TH4BA $625
- HY-GAIN TH3MK3 $625
- HY-GAIN TH6DXX $645

Free stdg. base incld. NO/CHARGE

*HAM-M rotor w/RGB/U add: $ 45

LAE LM354 “SUPER” Package

(16 Sq. Ft. - 60 MPH)

CDR HAM-M Rotator

100 ft. RGB/U Coax & Control Cable

Substitute 70 ft. free standing, add $650

Complete with one of the following antennas:

- HY-GAIN TH3MK3 $750
- HY-GAIN 204BA $765
- HY-GAIN TH6DXX $785

Freight PREPAID to your door in the Continental USA west of the Rockies. For shipment east of the Rockies, add $16.00. Substitutions may be made. Write for prices.

W51 SHOWN

"WEST COAST'S FASTEST GROWING AMATEUR RADIO DISTRIBUTOR" "WE SELL ONLY THE BEST"
G&G CATALOG
MILITARY ELECTRONICS

24 PAGES, crammed with Gov't Surplus Electronic Gear - the biggest Bargain Buys in America! It will pay you to order early for your copy - Refundable with your first order.

SEND 25C

ARC-5 VHF RECEIVER, TRANSMITTER, MODULATOR 100-156 Mhz
R-28 RECEIVER with tubes and crystals...
Excellent Used... $19.50
1-23 TRANSMITTER with tubes and crystals...
Brand New in Original Carton...
$23.50
MD-7 MODULATOR with tubes...
Excellent Used...
$10.50
Set of Plugs for MD-7...
2 $8.50

AN/ART-13 TRANSMITTER
Makes fine Ham transmitter for 80, 40, 20 and
10 meters, Power output 100 watts on AM, CW,
MCW, 10 preset channels. Complete with all
tubes, crystal.
Exc.Used... $49.50 LIKE NEW...
$59.50
Accessories Available: Prices Upon Request

HEADSET
Low impedance. With large chomals ear cushions.
4-fit cord and plug. Reg. $12.50. Our Special Price $2.95
Less ear cushions...
$1.95
High impedance adapter for above...
$.69

SCR-724-N, ARC-5 COMMAND SET HQ!

<table>
<thead>
<tr>
<th>Freq. Range</th>
<th>Type</th>
<th>New</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 - 250 Kc</td>
<td>Receiver COMPLETE...</td>
<td>$16.95</td>
<td>$23.50</td>
</tr>
<tr>
<td>5 - 9.1 Mc</td>
<td>Receiver COMPLETE...</td>
<td>$18.95</td>
<td>$25.50</td>
</tr>
<tr>
<td>3.5 - 7 Mc</td>
<td>Transmitter COMPLETE...</td>
<td>$8.95</td>
<td>$11.95</td>
</tr>
</tbody>
</table>

TG-34A CODE KEYER, self-contained, automatic, reproduces code practice signals from paper tape.

BC-1206-C RECEIVER Aircraft Beacon Receiver 1200 to 4000 Hz. Operates from 24V DC 1.5A. Continuous tuning, vol control, on-off switch and phone jack. Very sensitive. Complete with tubes, NEW...

$24.50

BC-603 FM RECEIVER
Converted from 35-50 Mhz, 10 preset pushbutton
channels or manual tuning. Complete with 10 tubes, checked out...

$39.50

AC Power Supply...
$14.95

DM-12 12V Power Supply...
$4.45

DM-36 24V Power Supply...
$2.75

Technical Manual...
$5.95

Set of 10 tubes for BC-603 Receiver...
$5.95

BC-604 FM TRANSMITTER
20 to 27.9 Mhz. Output approx 30 watts. 10 crystal controlled channels. Complete with tubes...

$12.50

ARC-511A Modern G-5 Receiver 150 - 500 KHz...
$10.95

ARC-822 150 - 500 KHz Receiver with tuning graph...
$15.95

K-49R-2 Receiver 234-258 Mhz, 11 tubes.
$8.95

BC-605 INTERPHONE AMPLIFIER, NEW...
$34.45

TELEPHONE HANDSET, W. L. type...
$2.95

SCR-522 TRANSMITTER-RECEIVER...
$12.95

HANDMIKE
Rugged, heavy-duty carbon hand mike with press-to-talk switch. Equipped with 4-fit cord and phone plug...

NEW, boxed...

$1.88

2 for $3.25

LM FREQUENCY METER
Fine general purpose Navy unit 125 to 20,000
Hz. Operates on 12 or 24 VDC. Complete with
... $59.50

As above, less book...
$22.50

BRAND NEW...

BC-645 TRANSCIEVER
EASILY CONVERTED FOR 420 MC. OPERATION

FOR FIXED OR MOBILE USE... $16.95

DEPENDABLE TWO WAY COMMUNICATION MORE THAN 15 MILES!

FREQUENCY RANGE: About 435 to 500 Mc. TRANSMITTER has 4 tubes: WE-316A, 4-66Q, 7-77 RECEIVER has 11 tubes: 2-955, 4-717, 2-766, 3-777 RECEIVER I.F.: 40 Mc.

SIZE: 10 1/2" x 13 1/2" x 4 1/2". Shpg Wt: 25 lbs.

Superb quality components and circuitry, ideal for the technician experimenter. Many fabulous experiments, for example: you can construct a Yagi antenna for the 420 Mc band that will produce a gain of 10 db and yet fit on your operating desk!

ACCESSORIES FOR BC-645

MOUNTING for BC-645 Transceiver...
$1.95

PE-101C DYNAMOTOM...
$2.95

MOUNTING for PE-101C Dynamotor...
$1.00

USH ANTENNA ASSEMBLY...
$2.95

COMPLETE SET OF 11 CONNECTORS...
$1.95

CONTROL BOX BC-646...
$2.95

MOUNTING for BC-646 Control Box...
$1.00

SPECIAL "PACKAGE" OFFER:

BC-645 Transceiver, Dynamotor and all accessories above, COMPLETE...
$26.95

ACCESSORIES FOR BC-645

ACCESSORIES FOR AVAILABLE FROM STOCK.

3FP7... .98 ea...

3JFP7... .75 ea...

3CP1... .98 ea...

3AP1... .95 ea...

* Sold in Lots of 3 only

$9.95

TERMS: F.O.B. NYC, 25% deposit with order, balance COD or remittance in full, MINIMUM ORDER $5.00. Subject to price and price change.

G&G RADIO ELECTRONICS COMPANY
45-47 Warren St. (2nd Fl) New York, N.Y. 10007 Ph. 212-262-4409
If your dealer can't supply, write...

The SSB filter is of a low pass configuration, designed with a sharp cutoff to provide a rejection of better than 780 Hz and a passband of 1100 Hz with a reference level, 40 decibels below the signal level at the design frequency. The peak of the passband is 100 Hz wide at the -3 decibel reference points.

The CW filter is specifically designed for low-deluxe model is completely built up and ready for use and is enclosed in a Gray cabinet without notice.

* Slight cabinet layout changes may occur without notice.

CW Filter Kit $ 8.95 Deluxe CW Filter $16.95
SSB Filter Kit $12.95 Deluxe SSB Filter $21.95
All filters shipped postpaid. Arizona residents add 4% sales tax.

THE J. LYNCH CO.
P. O. Box 7774, Phoenix, Arizona 85011

WE PAY HIGHEST PRICES FOR ELECTRON TUBES AND SEMICONDUCTORS

H & L ASSOCIATES
ELIZABETHPORT INDUSTRIAL PARK
ELIZABETH, NEW JERSEY 07206
(201) 351-4200

ROBOT MODEL 70 MONITOR $495
ROBOT MODEL 80 CAMERA $465
25mm, fl.9 lens $ 30
25mm, fl.4 lens $ 40
25mm, fl.4 Macro lens $ 60

NO ONE ANYWHERE BEATS OUR DEALS!
- EXPORT ORDERS OUR SPECIALTY -

AMATEUR-WHOLESALE ELECTRONICS
8817 S.W. 129 Terrace • Miami, FL 33156
Days (305) 233-3631
Weekends (305) 666-1347

STATE OF THE ART... FM ...
INOUIC-20 12 ch., 1 or 10 watts, mobile complete with mike, mount, & 6 matted ch., module const. $259.50
INOUIC-21, mobile/base unit with AC/DC supply 24 ch., SWR & Disc. meter, RIT, Calif., m.k.e. $359.00
Customer servicing & warranty inc. Many Xtls avail.
Tone Burst-4 freq, for IC20 & 21, internal mounting. $29.50
Write or Phone (206-747-8421) for more info. or send cashier checks to: NHE Communications, 15112 S.E. 44th, Bellevue, WA 98006.

5 VOLT, 1 AMP POWER SUPPLY on a plug-in PC card
PERFECT FOR DIGITAL IC'S

INPUT 115 VAC 60 HZ
OUTPUT 5V 1 AMP DC
LOAD REGULATION 100 mv (NL = F)
LINE REGULATION 50 mv (105-125VAC)
SHORT CIRCUIT PROTECTED 1 sec = 750 ma; typ.
SIZE: 3.60" x 1.23" x 1.77"
MATING CONNECTOR 22 pin on .156 cts.

PRICE: $14.90 ppd. U.S.A.,
Mass. residents add 5% sales tax

ELCOM Industries, Inc.
CIVILIAN TERMINAL, HANCOCK FIELD
BOSTON, MASS. 01730
617-274-0505

THE J. LYNCH CO.
P. O. Box 7774, Phoenix, Arizona 85011

92 h July 1972

More Details? CHECK-OFF Page 110
USER NOTES

User Notes is an applications note series on the latest linear and digital IC's with construction projects such as the Digital Multimeter and Calculator kits. Also included is information on state-of-the-art electronic components. This series is available only on an annual subscription basis from Environmental Products and contains circuits never published elsewhere.

Thousands of beginning and advanced hobbyists have found the series informative and stimulating. The approach is nonmathematical and oriented towards actually building the circuits rather than theorizing about them. Below is a partial list of the current topics. Subscribe now and receive all the back issues FREE.

UN312 CALCULATOR CIRCUIT - 10 DIGIT
UN313 TTL DESIGN GUIDE
UN316 POWER SUPPLIES FOR DIGITAL CIRCUITS
UN317 DECIMAL COUNTING AND SEVEN-SEGMENT DISPLAYS
UN319 THE 741 OPERATIONAL AMPLIFIER
UN321 HIGH SPEED VOLTAGE COMPARATORS
UN324 INTERFACING RTL WITH TTL AND DTL LOGIC
UN326 DUAL OUTPUT TRACKING OP-AMP SUPPLY
UN329 ELECTRONIC DICE GAME
UN330 HIGH ACCURACY LOW COST DIGITAL MULTIMETER
UN334 DRIVING AND SENSING CORE MEMORIES
UN335 DECAY COUNTING AND LED DISPLAY
UN337 LIGHT EMITTING DIODES
UN338 DIGITAL STOP WATCH CIRCUITRY
UN339 A 12-HOUR DIGITAL CLOCK
UN347 AUTOMATIC TELEPHONE DIALER
UN350 DECADE COUNTER, LATCH, DECODER/DRIVER AND LED DISPLAY IN ONE PACKAGE
UN352 A UNIVERSAL PRECISION VOLTAGE REGULATOR

The series is mailed four times per year. Subscription rates are $5 annually for the US except Alaska and Hawaii which are sent Air Mail at $6. Canada and Mexico $6. All other countries $7.50.

KEYBOARDS

This keyboard is a must for repeater and relay applications. The recently developed elastomeric process is responsible for both the low cost and very long life. The key characters can not be rubbed or chipped off. All contacts are single pole, normally off with one side of each switch connected to a common buss.

The KB-1 will interface directly with all standard logic. Contacts are rated at 40 mA and 25 volts. The housing measures 3" x 3" and has a maximum depth of ½". We supply applications information including a circuit to convert each switch to a BCD output. The KB-1 comes straight from the factory at less than surplus prices.

KB-2 sixteen key calculator keyboard available—same price.

KB-1 Touch-Tone Keyboard $7.95
DRAKE ML-2

EXCEPTIONAL QUALITY...

VHF FM Transceiver

Including transceiver, 3 channels supplied, mobile mount, dynamic mike and built-in AC-DC power supply.

$299.95 Amateur Net

Accessory BBLT-144D Antenna: Hustler 3.4 dB gain $27.95

GENERAL
- Freq. coverage: 144-148 MHz
- 12 channels, 3 supplied
- Push-to-talk Xmit
- AC drain: Rcv, 6W; Xmit, 50 W
- DC drain: Rcv, 0.5A; Xmit, 4A

TRANSMITTER:
- Transistorized with 6360 output tube
- RF Output: over 10 W
- Freq. Dev: Adj. to 15 kHz max.
- Freq. Stability: ±0.01% or less
- Output Imped: 50 ohms.

RECEIVER:
- Completely transistorized, crystal-controlled superhet
- Intermed. Freq: 1st 10.7 MHz, 2nd 455 kHz
- Input Imped: 50 to 75 ohms
- Sensitivity: 0.5μV or less/20 dB quieting; 1μV or less/30 dB S+N/N at 10 kHz dev., 1 kHz mod.
- Audio Output, 0.5 W
- Spurious Sens.: > -60 dB.

NEW 3 Digit Counter

- The model fm-36 3-digit frequency meter has the same features that has made the 2 digit model so popular with Hams. For a low price, small size (smaller than a QSL card), 35 MHz top frequency, simple connection to your transceiver. 0.01 to 1 Khz readout - PLUS the added convenience of a third digit to provide a 6 digit capability. Kit or Assembled.

Example: 28,649,900 Hz reads 28.6 MHz or 49.8 Khz. (Add the 10 Hz module to read 9.80.)

FM-36 KIT $134.50

NEW

300 MHz PRESCALER only $45.00 with fm-36 order

Micro-Z Co.

Box 2426 Rolling Hills, Calif. 90274
12-DIGIT "CALCULATOR ON A CHIP"
Similar to Montek 5091, Outperforms Texas 8-digit TM510 for $29.50! A 40-pin DIP. Adds, multiplies, subtracts, and divides. Use with 7-segment readouts or a digital voltmeter and D. We include schematics, instructions from factory to build calculator.

NATIONAL VOLTAGE REGULATOR
LM-209K 5 volts, 1 amp TO-1 case. Internally set, overload, and short circuit proof. No external components. With separate.

LOWEST PRICES ON "TRIACS"
* 2 SCR's in one case! * Most complete listing!

ALPHA-NUMERIC 7-SEGMENT READOUTS

GIANI SALE ON NEW TIB TEXAS & NATIONAL IC's

POLY PAKS
P.O. BOX #22, LYNNFIELD, MASS 01940

More Details? CHECK-OFF Page 110
July 1972 95
When you want an authoritative, up to date, complete, reference, it’s the CALLBOOK and you know it.

The U.S. and DX Editions lists licensed radio amateurs throughout the world plus many other valuable features including maps, charts & tables all designed to make your operating more efficient and more fun.

PLUS
Now this year!
A special subscription service of one basic CALLBOOK plus three service editions, one issued every three months to keep you completely up-to-date for less than half of the cost of purchasing four complete CALLBOOKS as before. You save money — you stay better informed.

Over 285,000 OTH's in the U.S. edition
Complete for 1972 U.S. CALLBOOK subscription
just $14.95

U.S. CALLBOOK for 1972 (less service editions)
$8.95

Over 180,000 OTH's in the DX edition
Complete for 1972 DX CALLBOOK subscription
just $11.45

DX CALLBOOK for 1972 (less service editions)
$6.95

See your favorite dealer or Send today to
(Mail orders add 25¢ per CALLBOOK for postage and handling)

WRITE FOR FREE BROCHURE
Radio Amator
CALLBOOK INC.
Dept. E 925 Sherwood Drive
Lake Bluff, Ill. 60044

When you need something... call us.

NEW GLADDING 25
FM TRANSCiever, 25 Watts Output, 6 Channels complete with tab for 146.54/146.76 and 146.64/146.94, low power position, completely separate null-recall switch built in. 12V DC supply. Amateur net $599.95. OUR LOW INTRODUCTORY PRICE $299.50. With matching AC supply (extra $299.95). $354.00. Write for literature. Ham-M's $99.00.

AMATEUR-WHOLESALE ELECTRONICS
8817 S.W. 129 Terrace, Miami, FL 33156 305-233-3631

BRAND NEW FREQ-SHIFT TTY MONITOR:
NAVY OCT-3: FM Receiver type, freq. range 1 to 26 MHz in 4 bands, cont. tuning, Crystal calib. Reads up to 1500 Hz deviation on built-in VTVM. Cost $1100.00 each! In original box, with instruc. book & cord, for Mariposa, Cal. Min. signal needed: 15 mv. Shpg wt 110 lbs. $49.50

HIGH-SENSITIVITY WIDE-BAND RECEIVER
COMMUNICATIONS • BUG DETECTION
SPECTRUM STUDIES
38-1000 MHz AN/ALR-5: Consists of brand new tuner/ converter CV-253/ALR in original factory pack and an exc. used, checked OK & grid main receiver R-444 modified for 120v. 50/60 Hz. The tuner covers the range in 4 bands; each band has its own Type N Ant. input. Packed with each tuner is the factory inspector's checkout sheet. The one we opened showed SENSITIVITY: 1.1 uv at 38.4 MHz, 0.9 at 133 MHz, 5 at 538 MHz, 1/4 at 778 MHz, 1/2 at 1 ghz. The receiver is actually a 30 MHz IF ampl. with all IF's color, including a slotted meter for relative signal strength in an attenuated in 6 db steps to -74 db, followed by an AVG position; Pan, Video & AF output, switch select pass of ±200 kHz or ±2 kHz, and SELECT AM or FMI. With Handbook & war. input plug, all on 375.00

CV-253 Converter only, good used, w/book. $99.50

We have SP-600-JX, R390, WRR-2 Receivers. Ask!

REGUL. PWR SPLY FOR COMMAND, LM, ETC.
PP-106/U: Metered. Knob-adjustable 90-270 v up to 80 ma; also select an AC of 6-3 v 5A, or 12-6 v 2½ A or 24 v 2½ A. With mating output plug & all tech. data. Shpg wt. 50 lbs. $19.50

BARGAINS WHICH THE ABOVE WILL POWER:
LM-35 Freq. Meter: 125-200 MHz, 0.1%. CW or AM, with serially-matched calib. book, tech. data, mating plug. Shipping wt. 16 lbs. $37.50
TS-323 Freq. Meter: 20-480 MHz 0.01%. $49.50
523A/ARC5 Command 5-50 MHz, exc. cond. 36.50
A.R.C. R15 (MLR-R509) Command, 108-135 MHz, new 17.50

R. E. GOODHEART CO. INC.
Box 1220-HR, Beverly Hills, Calif. 90213
Phone: Area Code 213, Office 272-5707

96 july 1972

More Details? CHECK—OFF Page 110
If there ever was a personalized amateur rig, this is it . . . the jewel-like FT-101 portable transceiver.

Hardly larger than a portable typewriter, the FT-101 packs 260 watts PEP SSB, 180 watts CW, 80 watts AM input power.

It even includes built-in 117 VAC and 12 VDC power supplies. A noise blanker, so essential for mobile operation. VOX. A built-in speaker. 25 and 100 KHz calibrators. A ±5 KHz clarifier. Break-in CW. And much, much more, even a mike.

The compactness of the FT-101 chassis is a marvel of electronic engineering. One look inside and you'll know what we mean. For instance, all critical circuitry is on customer-replaceable PC cards. And, except for the finals and driver, it's all solid state. A complete transceiving package, reduced to a compact, thirty-pound wonder.

There's nothing else like it on the market. Anywhere. Isn't this the rig you have to have? Whether you're a seasoned amateur, or whether you're just starting out, the FT-101 is the rig you've been waiting for. And it's here right now. For only $559.95, you can have it.

Owning and using the FT-101 is a very gratifying, very personal thing. You know the feeling.
COMPUTER KEYBOARD W/ENCODER $35
Another shipment just received. Alpha-numeric keyboard excellent condition. Once again we expect an early sellout. Price of $35 includes prepaid shipment in the US and shipment made within 24 hours of receipt of order.

COMPUTER KEYSWITCHES
Another fantastic bargain for the builder. We have brand new bounce-less micro switch keys, spares from the above units, less key-tops. Make up your own keyboards. Made for PC mount. Package of 48 brand new key-switches only $12.00 postpaid.

1.00 Or F 450V CAPS
For photo flash or linear power supplies $1.50 each.

LASER DISCHARGE CAPS
Brand new Laser Storage high speed discharge caps. 40µF at 3KV. each $10

GOV'T SURPLUS OPTICS

6" f/6.3 METROGON wide-angle lens (73° angle of view). In cone with shutter; fabric shipping trunk included. $15.00. Filters, red or yellow, $3.00 each.

POWER TUNEABLE VARACTOR $5.00
Similar to MA-4060, used in doublers, triplers, amplifiers, etc. Fully guaranteed, with specs and some circuits. $5 each or 6 for $25 pp.

POLAROID 110 60MM F/5.6 JUPITER 8 camera. $80.00. Fiberglass trunk, 24" by 24" by 20", $25.00.

MEMORY CORE STACK
Complete brand new memory core stack w/diode matrix, 65, 536 core. Appear to be brand new. $100

ROPE MEMORY MODULE
From APOLLO project $25

1,000µF 450V CAPS

GE Y 4075 25V Miniature $3 ea. 10/$25
GE Y 1938 24V Standard $3 ea. 10/$25
RAY CK 1905 Standard $3 ea. 10/$25
MAN-3 1.7V Miniature $3.50 ea. 10/$30
GIANT ALPHA NUMERIC $3 ea. 10/$25

MEMORY CORE STACK

FIBERGLASS shipping trunks. Lightweight and rugged for protection of equipment on field trips. 21" by 18" by 20", $20.00.
26" by 20" by 13", $25.00.

Digital Readouts

GE Y 4075 25V Miniature $3 ea. 10/$25
GE Y 1938 24V Standard $3 ea. 10/$25
RAY CK 1905 Standard $3 ea. 10/$25
MAN-3 1.7V Miniature $3.50 ea. 10/$30
GIANT ALPHA NUMERIC $3 ea. 10/$25

POWER TUNEABLE VARACTOR $5.00
Similar to MA-4060, used in doublers, triplers, amplifiers, etc. Fully guaranteed, with specs and some circuits. $5 each or 6 for $25 pp.

We still have a few Panoramic Adapters BC 1031 excellent condition, "IF" 450-470 Kc. operate from standard 115 volt 60 cycle. $45 each complete with schematic, FOB Lynn, Mass. (60 lbs.)

Digital Readouts

12" f/4 Perkin-Elmer lens with electric high-speed shutter. $100.00. Filters, red or yellow, $5.00 each. Aluminum trunk, 21" by 18" by 13", $20.00.

RCA TA-2628 w/specs. $5

On items above, we can remove and ship lens assembly if the cone is not wanted.

6" f/6.3 METROGON wide-angle lens (73° angle of view). In cone with electric Rapidyn shutter. $25.00. Filters, red or yellow, $3.00 each. Fiberglass shipping trunk, 21" by 18" by 13", $20.00.

24" f/6 lens assembly in K-17 cone with shutter and iris. $30.00 each. Filters, red or yellow, $5.00 each. With electric Rapidyn shutter, $40.00. Fiberglass trunk, 26" by 30", $25.00.

36" f/8 lens with cone, iris, and shutter, $39.00. With electric high-speed Rapidyn shutter, $49.00. Filters, red or yellow, $5.00 each. Fiberglass trunk, 26" by 20" by 13", $25.00.

12" f/4 Perkin-Elmer lens with electric high-speed shutter. $40.00 each. Filters, red or yellow, $5.00 each. Aluminum trunk, 21" by 18" by 13" $20.00.

24" f/4 (write for particulars), $100.00.

12" f/2.5 Aero-Ektar K-37 camera. 41° angle of view. With light-sensitive shutter trip control. Choice of A5A or LA-21 magazine. $125.00. Fiberglass trunk, 24" by 24" by 21", $25.00.

All material f.o.b. Lynn, Mass. Send self-addressed envelope for complete list.

JOHN MESHNA JR. ELECTRONICS
P.O. Box 62 E. Lynn, Mass. 01904

98 July 1972

More Details? CHECK-OFF Page 110
GOLDEN JUBILEE HAMFEST beginning Sept. 15 at Silver Sliper Saloon, Klonkide Days Exhibition. Full details Box 5986, Station L, Edmonton, Alberta, Canada.

NO QRM-ORN — Wyoming ranch land, Wild Horses, Antelope, Deer, 10 level acres $20 down, $20 mo. view. St. Louis, Mo. 63128. NEW YORK-NEW JERSEY PHONE-TTY FOR THE DEAF. Call-in will be through the Austin Lake. Rt. 7 near 1-80. Details: QSL Cushnings, W5QMU. 2206 La Casa. San Diego, CA 92106.

LOW PASS FILTER — 34/76 machines for talk-in traffic. $125.00. Call or write for fair prices. . . . will accept donations or for fair prices . . . can be picked up anywhere . . . write Lee Brody, 15.06 Radburn Rd., Fair Lawn, New Jersey 07410.

MECHANICAL FILTERS: 455KHz. 2.1 Khz $18.95 3000Hz, $22.95. J. A. Freclick, 314 South 13th Avenue, Yakima, Washington 98902.

AMATEUR SALES & SERVICE. Discount prices and service after the sale. Such leading names as Clegg, Kool-Dow, Pearce Simpson, Regency, SBE, Signal/One, and Tempo One. Write or call today. Amateur Sales and Service, 111 Rand Mill Road, Garner, North Carolina 27529. Tel. 919-772-6044.

"DON AND BOB" GUARANTEED BUYS. Gladding 24 AC supply 255.00; SBE K14A $99.00; Motorola HEP170 epoxy diode 2.5A/1000PV 39t; Ham-M 99.00; TR44 59.95; AR22R 31.95; 8448 Belden 8 wire, $20.00; Belden 8237 6815/ft; $20.00; Monacor 16 ligne 1200.00; $12.00; 8214 foam 16/l; Tri-Ex MW50 229.00; MW65 305.00; W51 399.00; Aflux 75K (clean) 34.50; SI15 250.00; Sangamo DCM600MDF/450V 4.95; KY65 code identifier 5.95; 6.3VCT/600MA transformer 1.95; Tempo Kenwood dealer. Prices correct. Write quote note. Mastercharge. BAG. Warranty guaranteed. Madison Electronics, 1508 McKinnon, Houston, Texas 77002. (713) 224-2268.

THE FOURTH ANNUAL DANVILLE HAMFEST will be held September 3 at Douglas Park. 146.94 will be monitored along with the Danville 22/82 and the Champaign-Danville 34/76 machines for talk-in traffic. Call in to advance and to receive your membership card. $55.00 and 1/2.14 for the gate. For further information write: Alan Woodruff, W9IAC, 1615 N. Bowman, Danville, Illinois 61832.

SAS: APRIL 1970 HAM RADIO any reasonable price. Tom Morrison, W9GSH, P. O. Box 13442, Austin, TX 78711.

THE TEXAS VH-FM SOCIETY will hold its annual Summer Convention August 11, 12, and 13 at the Villa Capri Motor Hotel in Austin, Texas. Technical sessions, manufacturers' displays, door prizes, ladies activities. Call-in will be through the Austin 34-94 repeater. For more information write Larry Higgins, W5QMJ. 2252 Old Hickory Trail, San Antonio, 78230, or Gene Chapline, K5YFL, 2206 La Casa, Austin, Texas 78704.

WANTED — M15 and M32 TELEPRINTERS in any condition. Will accept donations or for fair prices. . . . will be picked up anywhere . . . write Lee Brody, New York-New Jersey. Phone-TTY for the Deaf, 15-06 Radburn Rd., Fair Lawn, New Jersey 07410 or call 201-796-5144 evenings.

WANTED: APRIL 1970 HAM RADIO any reasonable price. Tom Morrison, W9GSH, P. O. Box 13442, Austin, TX 78711.

WARREN, OHIO ARA'S Family Hamfest. Aug. 20. Giant fleamart, swimming, picnicking, all free. Displays, mobile checks, Camping available. Call today for entry details. QSL WB7WD.

WARREN, OHIO ARA'S Family Hamfest. Aug. 20. Giant fleamart, swimming, picnicking, all free. Displays, mobile checks, Camping available. Call today for entry details. QSL WB7WD.

WARREN, OHIO ARA'S Family Hamfest. Aug. 20. Giant fleamart, swimming, picnicking, all free. Displays, mobile checks, Camping available. Call today for entry details. QSL WB7WD.

POPULAR ELECTRONICS. Complete file. 35 volumes in size, usable from second preceding month. Must be males only. Male material limited to corrected ad in next available issue. Deadline is 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

RATES Commercial Ads 25c per word; non-commercial ads 10c per word payable in advance. No cash discounts or agency commissions allowed.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check out each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue. Deadline is 15th of second preceding month.

READOUT TUBES — 7 Segment, 5 Volt Incandescent $3.00. Polarizing filters, SASE complete list. Display Electronics, Box 1044, Littleton, Colo. 80120.

FIGHT TV with the RSO Low Pass Filter — p115 March 73 — write for brochure — Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada.

CLEANING OUT SHACK, miscellaneous components and 6C21 triodes. Send for list. Clyde Peters, WATOTH. 185 East 550 No., Bountiful, Utah 84010.

GLASS EPOXY P.C. BOARD. Type G10 1/16 in. Thickness. Side 1 oz. Double sided 1 oz. or 2 oz. Your choice $5 sq./ft. P.P.D. WAOTXV, 5331 Cherryview, St. Louis, Mo. 63128.

MOTOROLA B73MPY-3101AT 120W. Low split repeater new on skid. Robert Anderson, WA3PVD, 10314 Pierce Drive, Silver Spring, Maryland 20901.

FOR SALE ROBOT SSTV monitor, serial #15203 — $300.00. Fred Muller, WAGQVL, 1133 86th Avenue, Oakland, CA 94621.

TONE ENCODERS AND DECODERS — New line of solid state encoders and decoders compatible with any sub-audible continuous tone system. Small in size, usable from 67.250 Hz, $8.95 to $14.95. Send for literature. Communications Specialists, Box 153, Brea, Calif. 92621.
LOWEST PRICES: ON BRAND NEW FULLY TESTED & GUARANTEED IC'S

BEST SERVICE: 10% DISCOUNT ON ALL ITEMS NOT SHIPPED IN 24 HOURS

MOST CONVENIENT: ORDER DESK 1-800-325-2595 (TOLL FREE)

Please note: To qualify for prices in the last three columns, you must order in EXACT multiples of 10 per item for all IC's on your order.

Universal Decade Counting Units

1. Easy to read single plane LED or Filament-type Readout with wide angle viewing.
2. BCD Outputs available.
3. Headcut Lamp Test.
4. Selectable Decimal Point.
5. Counter.
7. Optional Socket for all IC's & Readout.
8. Tin-Plated G-10, 2-oz Copper, Glass Epoxy Board.
9. Your choice of 1 to 6 decades on one card or two cards on the same card, for custom designed appearance.
10. Fully compatible simple supply.
11. First in a series of universal plug-in modules to be established for frequency counting, tach speed, RPM, DVM, magnitude comparison, etc.

LED 7-SEGMENT DISPLAY

Large 4" 7-segment LED readout similar to the regular NM-1 but with improved brightness. Has left-hand decimal point. Fits in a 3/4" frame with our NM-1. Designed for wall mount. Regularly $2.95 in single lots. These are SHOWN HERE with full data sheet and 4-page MULTIPLEXING Application Note. Needs a U474 for drivers and one CURRENT-LIMITING RESISTORS OR POWER SUPPLY. We can supply you with one of these thousand from STOCK. Also available, all OVERFLOW digit at the same price. Mix- ing of Regular & Overflow digit allowed.

Package of 3, 470 -40 limit 5%-10%

Tandem Readout of 7-segment display. With right-hand decimal point. Rated 100 per segment at TTL supply of 5V. Design for a unit of $90,000,000. Needs a U474 as a driver. IN MP PACKAGE. Each $2.75

NIXIE IC SOCKET PINS: Use these economical pins instead of soldering your IC's to PC boards. Sold in minimums of 100 per order. All 100 pins only. Each $0.80. 50 for $3.60; 25 for $4.60; 10 for $5.60; 4 for $8.20. Each additional 100 $1.55

ALLEN-BRADLEY 11-DIGIT (BAND) RESISTORS: Any of the 10 STANDARD 1% values from 2.7 to 2000, $4.95 to $9.00 EACH. **

CERAMIC DISC CAPACITORS: Type 50G-10000K.

1. Preset, 37K, 39K, 56K, 68, 75, 82, 100, 150, 180, 220, 330, 390, 470, 510, 560, 680, 750, 820, 910, 1000, 1500, 2200, 3300, 3900, 4700, 5000pF each... **

LOW POWER DIODE, TYPE T2

1. 1µ p...**

ELECTROLYTIC CAPACITORS: All values are given both in exact or nearest equal (PC Board) mfd value and in the NOT AVAILABLE IN ANY ORDER. YOUR CHOICE.

VOLTAGE REGULATORS: Internally, over-load, short-circuit and short-circuit proof regulators need no external components. Ideal for use with our LED and DVM applications notes. TO-3 Package.

STANCO P-1658, 25.2 KW, 1-amp Transformer, Ideal for use with JK-series. Each $35.00

SOLID STATE SYSTEMS, INC.

P. O. BOX 773

COLUMBIA, S. C. 29201

PHONE 314-443-3673

TWX 910-760-1453

Terms: RATED PRICES NET 30 DAYS. OTHER CHECKS MUST BE ON S/S/1 ACCOUNTS UNDER $500. FOR POSTAGE & HANDLING. FOR UPS add $4.00 and for IRS 15% to all orders under $500. FOR INSURANCE. COD orders are accepted. Canadian residents please add 50¢ for INSURANCE.

MISSOURI RESIDENTS: Please add 4% Sales Tax.

WRITE OR CALL READER SERVICE CARD FOR OUR CATALOG OF PARTS & SERVICES. IT'S FREE!

100 july 1972

More Details? CHECK-OFF Page 110

FM HAMFEST — Sunday August 6, Steuben Co. 4-H Fairgrounds near Angola, Indiana. Large flea grounds, campsites, boating, swimming, food, soft drinks available. Entertainment for XYL. No vendors fee. For more information write FWRA, Box 6022, Fort Wayne, Indiana 46806.

MORSAYER READS HAND-SENT MORSE CODE off the air and corrects it to RTTY code. Connects to station receiver and Teletype. No speed adjustments required 5-40 WPM. Supplies CR, LP, LTR, FIGS automatically. All on one 8x10 inch circuit board. Kits from $185, wired and tested $560. Write for information. LittleLogics, 908 Washington, Wenatchee, Wash. 98801.

WE BUY ELECTRON TUBES, diodes, transistors, integrated circuits, semiconductors. ASTRAL ELECTRONICS, 150 Miller Street, Elizabeth, N. J. 07207. (201) 354-2420.

THE 15th ANNUAL HAMFEST of the Six Meter Market, gate prices — 1st prize and HT220. Picnic grounds, campsites, boating, swimming, food, soft drinks available. Entertainment for XYL. No vendors fee. For more information write FWRA, Box 6022, Fort Wayne, Indiana 46806.

MORSAYER READS HAND-SENT MORSE CODE off the air and corrects it to RTTY code. Connects to station receiver and Teletype. No speed adjustments required 5-40 WPM. Supplies CR, LP, LTR, FIGS automatically. All on one 8x10 inch circuit board. Kits from $185, wired and tested $560. Write for information. LittleLogics, 908 Washington, Wenatchee, Wash. 98801.

WE BUY ELECTRON TUBES, diodes, transistors, integrated circuits, semiconductors. ASTRAL ELECTRONICS, 150 Miller Street, Elizabeth, N. J. 07207. (201) 354-2420.

THE 15th ANNUAL HAMFEST of the Six Meter Club of Chicago Inc. will be held Sunday, August 6, 1972 at the Picnic Grove on U.S. 45, 1 mile north of U.S. 30, 5 miles South of U.S. 6, Frankfort, Illinois. Food and drinks will be available. Swap and Shop section provided. Advance registration $1.50, admission at the gate $2.00. For tickets and further information contact Val Helwig, K9ZWV, 3420 South 60th Court, Cicero, Ill. 60650. Talk-in frequencies will be on 146.54 MHz FM.

SURPLUS MILITARY RADIOS, Electronics, Radar Parts, tons of material for the ham, free catalogue available. Sabre Industries, 1370 Sargent Avenue, Winnipeg 21, Manitoba, Canada.

TROIDS, iron "E" powder 80-10 meters. .500/8/$1.00, .940/.4/$1.00, 1.437/.75e each or 3/.200, 2.310/.51.00 or 3/.400. Please include 50¢ postage, slightly more on larger orders. Fred Barten, WA2BIL, 274 E. Mt. Pleasant Ave., Livingsion, N. J. 07039.

TONE BURST Inoue Regency owners, now available, 4 frequencies, internally mounted tone burst oscillator $29.50. NHE Communications, 15112 S.E. 44th Bellevue Wash. 98006. Phone 206 747-8421.

P.C. BOARD NEGATIVES made, up to 6" x 6" $2.25 p.d.d. Same day service. VAF Photo, 4124 Coblebrook Rd., Charlotte, N. C. 28215.

1000 PIV AT 1 AMP new epoxy diodes 10 for $2.50, 1000 PIV at 2 ½ volts, new epoxy diodes 10 for $4.50, both include disc bypass and bridging resistors. 490MF at 500 volt electrolytic caps 10 for $17.50. All above postpaid USA. East Coast Electronics, 123 St. Boniface Ave., Cheektowaga, New York 14225.

VHF NOISE BLANKER — See Westcom ad in Dec. ’70 and Mar. ’71 Ham Radio.

TV & RADIO TUBES 36¢. FREE CATALOG. Cornell, 4219 N. University, San Diego, California 92105.

The "STANDARD" 72' ALUMINUM Tower FOR DX'ing

All towers mounted on hinged bases.

Complete Telescoping and Fold-Over Series available.

*so light you can put it up all by yourself! No climbing, no jin poles, no heart attacks.

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.

See your local distributor, or write for 12 page brochure giving dozens of combinations of height, weight, and wind load.
CRYSTAL FILTERS

and

DISCRIMINATORS

1 27/64" x 1 3/64" x 3/4"

by

K.V.G.

9.0 MHz FILTERS

9.0 MHz DISCRIMINATORS

XF9-A	2.5kHz SSB TX	$23.12	XD9-01	5kHz RTTY	$17.95
XF9-B	2.4kHz SSB RX	$32.85	XD9-02	10kHz NBFM	$17.95
XF9-C	3.75kHz AM	$35.40	XD9-03	12kHz NBFM	$17.95
XF9-D	5.0kHz AM	$35.40			
XF9-E	12.0kHz NBFM	$35.40			
XF9-M	0.5kHz CW	$24.49			
XL10-M	0.5kHz CW	10 pole Gaussian $65.64			

Matching HC25/U crystals XF900 9000.0, XF901 8998.5, XF902 9001.5, XF903 8999.0 (CW) all $2.75 ea.

VHF CONVERTERS UHF

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MM 50</td>
<td>50-52</td>
<td>2.5dB</td>
<td>30dB</td>
<td>$49.95</td>
<td></td>
</tr>
<tr>
<td>MM 144</td>
<td>144-146</td>
<td>2.8dB</td>
<td>30dB</td>
<td>$49.95</td>
<td></td>
</tr>
<tr>
<td>MM 220</td>
<td>220-222</td>
<td>3.4dB</td>
<td>30dB</td>
<td>$54.95</td>
<td></td>
</tr>
<tr>
<td>MM 432</td>
<td>432-434</td>
<td>3.8dB</td>
<td>30dB</td>
<td>$59.95</td>
<td></td>
</tr>
<tr>
<td>MM 1296</td>
<td>COMING</td>
<td>SOON</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A DYCOMM BOOSTER* can do for you what it has for over 3,000 amateurs:

- Provide up to 50 times increase in power.
- Reduce the cost over a higher power rig.
- Is fully transistorized — no tubes to ever replace.
- Provide mobile rig with more variety — car-car, car-base plus more repeaters you can work through.
- Is fully guaranteed to perform with an outstanding warranty program.

A model for virtually EVERY 2M rig!

Model Line Up:

10-0	10 W input	100 W output	$195.00
D	10 W input	40 W output	99.95
ES	1 W input	40 W output	99.95

Write for a brochure or call your nearest amateur dealer — you hear!

* A common term for add-on amplifiers.

DYNAMIC COMMUNICATIONS, INC.

948 AVENUE E, P. O. BOX 10116
RIVIERA BEACH, FLORIDA 33404
305-844-1323
NEW ELECTRONIC PARTS. Buy-Sell. Free Flyer. Large catalog $1.00 deposit. Bigelow Electronics, Dept. HR, Bluffton, Ohio 45817.

QSLs. Second to none. Same day service. Samples 25¢. Ray, K7HLL, Box 331, Clearfield, Utah 84015.

MINI-MITTER II TRANSCEIVER 40 m. S.S.B. walkie talkie with accessory antenna. Brand new — ready & factory checked — less batteries — $14.00. Certified check or money order — R. J. Best, 2802 S. Staples, Corpus Christi, Texas 78404.

WORLD QSL — See ad page 109.

WANTED: tubes, transistors, equipment what have you? Bernard Goldstein, W2MNP, Box 257, Canal Station, New York, N. Y. 10013.

COPY MORSE CODE automatically, (Ham Radio November 1971) detailed construction plans $14.95. VMG Electronics, 2138 West Sunnyside, Phoenix, Arizona 85029.

SIERRA HAMFEST on Saturday, August 5 in California Building in Idlewild Park, Reno, Nev. Write Sierra Hamfest, 1047 Mark Way, Carson City, Nevada 89701.

THE ZERO-BEATERS AMATEUR RADIO CLUB will hold their annual Hamfest at Washington, Mo. City Park Sunday, August 6, 1972.$600.00 in door prizes, free ham gear auction, free bingo for XYL's. Free candy scramble for kids.

OMEGA-T NOISE BRIDGE HEADQUARTERS. 1-100 MHz $29.95. 1-300 MHz $39.95 ppp. Miss. add 5% tax. MQP Industries, P. O. Box 217, Hernandez, Miss. 38632.

HOT AS A FIRECRACKER! That's the upcoming ARRL Hudson Division Convention, Hilton Motor Inn, Tarrytown, N. Y. October 21-22 are the happy days. Spend your July 4th weekend anticipating exhibits, lectures, 2-Meter FM, RTTY, contests, gabfests, New York sightseeing fun. It's a blast! Write Dave Pickin, W2CCF, 103 Tenafly Road, Englewood, N. J. 07631. He'll fire off the info to you.

NOVICE-TECHNICIAN CLASS. Cassettes for learning code. Voice and code instruction. New system parts kits described in VHF Communications magazine. Write for free information, complete magazine index and price lists. VHF Communications, Robert R. Eide, W0ENC, 53 St. Andrew, Rapid City, S. D. 57701.

CINCY STAG HAMFEST: Attention Hams: Mark this date, Sept. 24, for the 1972 Cincinnati 35th Annual STAG Hamfest, the one big STAG Amateur Radio Event of the '72 year. At the ALL New Stricker's Grove, Ross (Venice), Ohio. New location. More details later. Hamfest Secretary, John Bruning, W8DSR, 6307 Fairhust Avenue, Cincinnati, Ohio 45213.

QST MAGS OCTOBER 1916 to present. Many others. Best offer. SASE for list. W6AG, 213-786-1214.

VHF-UHF CONSTRUCTION ARTICLES and available parts kits described in VHF Communications magazine. Write for free information, complete magazine index and price lists. VHF Communications, Robert R. Eide, W0ENC, 53 St. Andrew, Rapid City, S. D. 57701.

HELP WANTED: MAN FRIDAY. Everything from the front office to the shipping room with duties in sales, stockroom, etc. If you are the person who wants to join an exciting, fast moving, ham oriented organization then write Box FM, Ham Radio Magazine, Greenville, NH 03048.

YOUR AD belongs here too. Commercial ads 25¢ per word. Non-commercial ads 5¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.

More Details? CHECK-OFF Page 110
Versatility plus!... in a 2 Meter FM Transceiver

Over-the-shoulder, mobile, or at home
Completely transistorized, compact, portable. Capacity for 6 channels. Built-in telescoping antenna, and connector for external antenna. Use barefoot or with accessory amplifier. External 12 VDC or internal Ni-Cad batteries, built-in 120 VAC battery charger.

GENERAL: Freq. coverage: 144-148 MHz • 6 channels, 3 supplied • Push-to-talk Xmit • DC Drain: Rcv, 45 mA; Xmit, 450 mA • Size: 5-3/8" x 2-5/16" x 7-1/8", 3-3/4 lbs.

RECEIVER: Transistorized crystal-controlled superhet • 1st IF: 10.7 MHz, 2nd IF: 455 kHz • Ant. Input Imped: 50 ohms • Sensitivity: 1 µV or less/20 dB • Audio Output: 0.7 W • Built-in speaker.

TRANSMITTER: RF Output over 1 W • Freq. Dev. adj. to 15 kHz max., factory set to 5 kHz.

Complete with: Dynamic Mike, O-T-S Carrying Case, 120 VAC and 12 VDC Cords, Speaker/Headphone Plug and 10 Ni-Cad Batteries.

$199.95 Amateur Net
AA-22 Amplifier $149.95
MMK-22 Mobile Mount $6.95
BBLT-144D Hustler Ant. $27.95

R. L. DRAKE COMPANY

Just Printed!

Application Rules FOR TTL INTEGRATED CIRCUITS INCLUDING Operating Instructions FOR ALL POPULAR MODELS

MINITRON 7-SEGMENT READOUT $3.70
SEND 25c FOR CATALOG

Digital Clock Semi-kit
15 IC'S & 8 MINITRON'S (ONLY) 120 VAC 5.35.06

Send 50c for Your Copy...with my order

Arizona Semiconductor

PO BOX 112
GODDARD, ARIZONA 85238

SUMMER SPECIAL

B & W Model 361 Codax Keyer improve your C. W. operation. The B & W Codax Keyer provides smooth rhythm keying. Automatic spacing and timing of any speed from 5-50 W.P.M. Built in double paddle key (one for dots, one for dashes) readily adjusts to any list. Model 361 has a monitor built in order to monitor your own keying. Offer expires Aug. 31

Regular Price $69.95
Summer Special Price $39.95

See your dealer or write:
Barker & Williamson, Inc.
Canal Street, Bristol, Pa. 19007

SAROC
HELD ANNUALLY IN LAS VEGAS, NEVADA

HE SIGNED HIS TAB W7PBV - IS HE SOME KIND OF A NUT E?

THEY ALL ARE, HONEY.

SEE YOUR FAVORITE AMATEUR MAGAZINE FOR FURTHER DETAILS OR WRITE
SOUTHERN NEVADA AMATEUR RADIO CLUB, INC.
P.O. BOX 73, BOULDER CITY, NEVADA 89005

104 july 1972

More Details? CHECK-OFF Page 110
DX Engineering RF speech clipper .. $ 79.50
(Raycom 325 or KWM model)
Robot model #80 camera .. $465.00
Robot model #70 monitor .. $495.00
Robot macro lens, f 1.4 .. $ 60.00
Robot lens, f 1.9 ... $ 30.00
Johnson Kilowatt Matchbox, new $154.95
Johnson 250 watt Matchbox, new $ 94.95
Hy-Gain BN-86 Balun ... $ 14.95
AN/SRA-15, 6-18mhz antenna coupler $ 99.95
Dycomm 10-0 FM Amp, 100 watt output $195.00
Gold-Line RF Wattmeter - 1 KW .. $ 39.95
Boonton 202B AM/FM signal generator with built in attenuator, covers 54 to 216 mhz, excellent condition .. $275.00
ZM-3/A/U capacitor analyzer, 5pf to 10,000 mf measures capacity, insulation resistance and leakage current at rated voltage .. $125.00
TS-382B/U audio oscillator, 20hz-20000hz with 60/400 hz frequency meter (like new) .. $ 75.00
Tektronix 105 square wave generator $ 90.00
Tektronix 545 scope with 53/54 plug in, good condition $775.00
Remote control box for FM transmitter $ 3.95
Optional Handset for above ... $ 5.95
PRD Broadband Microwave Oscillator, 7" rack mount, less tube and PS, 3.5-7.5ghz .. $19.95
Probescope MD-500 spectrum analyzer main unit, good condition .. $150.00
Sorenson Nobatron power supply model MR-3630 5-36 VDC at 0-30 Amps regulated output, input 117 VAC at 60hz 10 A .. $325.00
Behlman Invertron power supply, 30 400hz output at 0-120 VAC. Frequency, Phase and Voltage are regulated. (250 VA max. output) Input is 117 VAC 60hz 10 A .. $325.00
Electro-Measurements Comparison Bridge, useful for matching inductors, resistors and capacitors at 1 kHz. Oscillator is built in and the readout sensitivity is .01% for both phase and magnitude .. $ 95.00
TH-3MK3 tribander, 3 element .. $144.95
TH-2 tribander, 2 element .. $ 99.95
Lafayette Stereo 850 tape recorder, four track unit previously in use for SSTV .. $ 95.00
2 Meter magnetic mounted ground plane for mobile use, w/coax & PL-299 .. $ 9.95
Collins 75A-2; Serial No. 2032 w/book $175.00
Drake SW4-A, xint ... $225.00
Drake 2-C xint ... $175.00
Hammarlund HQ-215, good condition $295.00
HQ-215 includes original speaker
Hammarlund HQ-210/clock, fair ... $145.00
Kenwood TS-511S Transceiver with PS-511S power supply/speaker. Includes optional CW filter #CW-1, mint-like new .. $525.00
Hallicrafters FPM-300 transceiver with built in universal 110/220 AC and 12 DC power supply. Covers 80-10 meters. 250W PEP .. $595.00
Eico 723 tansmitter. 90W CW, new $ 50.00
Lafayette HA-460 6 meter transceiver $ 95.00
Lafayette HA-750 6 meter mobile unit $ 85.00
Ten-Tec PM2B, 80-40-20 CW ... $ 65.95
Ten-Tec PM3A, 40-20 CW, 5 Watts $ 79.95
Ten-Tec KR40 deluxe squeeze keyee $ 89.95
Ten-Tec KR20 paddle type keyer ... $ 59.95
Ten-Tec KR5 basic paddle keyer .. $ 34.95
Ten-Tec RX10 receiver, 80-15M .. $ 59.95
Ten-Tec TX100 transmitter, 80-40-15M $109.95
We carry most of the other Ten-Tec units.
Drake TR-22, new ... $199.95
Drake ML-2, new ... $299.95
Hallicrafters HT-44&PS150-120 .. $250.00
Pearce-Simpson Gladding-25, new $249.95
SBE SB-144 2M FM transceiver .. $239.95
Icom IC-21 24 channel FM transceiver $389.95
Kaar CH-25 commercial 6 channel SSB/AM transceiver, FCC type accepted .. $295.00
Infot power supply model RR 120-25, 32-120 volt dc output, input 208 30, max. output current is 25 amps .. $275.00
Collins 75S-3/C, unused ... $850.00
Collins S3S-1, excellent .. $1400.00
A50-3, 6 meter 3 element beam .. $ 18.50
A26-9, 6 & 2 meter beam .. $ 29.95
A144-7, 2 meter 7 element beam ... $ 13.95
A144-11, 2 meter 11 element beam $ 17.95
AR-2, % wave 2 meter vertical .. $ 13.50
14AVQ/WB, 40-60 meter vertical .. $ 39.95
18AVT/WB, 20-10 meter vertical .. $ 59.95
HAM-M rotator .. $ 99.95
TR-44 rotator ... $ 63.95
We carry a large inventory of Airdux and James Millen parts.

Come in and look around! Our hours are 9:00 till 7:30 weekdays and 10:00 till 3:00 on Saturday. We stock very large quantities of tubes. Write for a quote or else call us at (212) 925-7000. We are distributors for Eimac, Amperex, Cetron, Westinghouse, etc.

BARRY 512 Broadway NY, NY 10012
212-625-7000

July 1972

More Details? CHECK-OFF Page 110
ALL TRANSISTOR SSB TRANSCEIVER KIT DESIGNED EXPRESSLY FOR THE HAM

- BIG TRANSMITTER SOPHISTICATION
- ALL SOLID STATE
- EASY TO ASSEMBLE
- SIMPLE TO OPERATE
- POWERED BY 8 Ni-CAD BATTERIES
- RUGGED ALL METAL CASE
- 3 3/8" W X 1 3/4" D X 10" H
- WEIGHTS LESS THAN 11 1/3
- PRINTED CIRCUIT BOARD
- QUALITY COMPONENTS

SSB GEAR THAT DOES WITH YOU! Introducing the new, delightfully wild MINI-MITTER II KIT designed especially for the Ham. Get it together in a few enjoyable hours of creative fun. Carefully engineered using the latest techniques this fully transistorized solid state transceiver features commercial grade components, diode switching, and Collins Mechanical filter along with the easy to follow instructions for assembly. The transceiver is powered by 8 Ni-Cad batteries easily accessible through a hinged door at the rear of the case for recharging. The printed circuit board chassis and the complement of Field Effect Transistors along with integrated circuits ensures the highest performance, yet simplifies the circuitry for easy assembly. The tune-up procedure requires no special test equipment since all of the tuned circuits are pre-tuned at the factory and need only minor adjustment. For final setting and performance checks a receiver is recommended.

AMERICAN STATES ELECTRONICS
1074 WENTWORTH STREET MOUNTAIN VIEW CALIFORNIA 94040

NEW from RP TONE BURST ENCODERS
- UP to 5 fixed tones (factory set)
- ADJUSTABLE:
 - Duration (in dB)
 - Output
- NO BATTERIES needed.
- FULLY ADAPTABLE
- EASY INSTALLATION
- CONTINUOUS TONE POSSIBLE
- FULL 1 YEAR RP Warranty

PRICES:
TB-5 5 tone std. encoder........ $37.50
(1800, 1950, 2100, 2250, 2400 Hz.)
ST-2 Single tone decoder........ $37.50
(Specify 1800, 1950, 1950, 2100, 2250, or 2400 Hz.)
Special tones — Inquire
Add $1.80/unit for shipping (Ill. residents add 5% tax)

RP Electronics
FREE SPEC SHEETS
NOW AVAILABLE
ORDER DIRECT OR FROM
AUTHORIZED DEALERS
BOX 1201H
CHAMPAIGN, ILL.
61820

STRUCTURAL GLASS
GEM-QUAD*
FOR 10, 15 AND 20 METERS

A two element fibre glass quad antenna designed for better signal discrimination & directivity on 10, 15 & 20 meters!

NEW
- Stronger Arms (closer wound).
- Strong alloy RF wire.
- Improved quality nylon straps.
- UV resistant.
- Low wind resistance (2.4 sq. ft.)

Send for literature
STRUCTURAL GLASS LIMITED
20 Burnett Ave., Winnipeg 16, Manitoba

106 JULY 1972
MORE RANGE... with NO NOISE
FOR ALL MOBILE UNITS

ELIMINATE IGNITION NOISE ELECTRO-SHIELD®
YOUR ENGINE
FROM $44.95

ESTES ENGINEERING CO.
543A W. 184th St., Gardena, Calif. 90248

Features:
- RELIABILITY IS NOW standard equipment. Every CX7A "burnt-in" and cycled more than 48 hours.
- QUALITY-PLUS. Every component is instrument grade, American-made, and individually tested.
- ALL MODES 10 thru 160 meters in full 1 MHz bands with overlaps.
- BROAD-BAND TUNING. Instant band changes without tuning.
- TRUE BREAK-IN CW with T/R switching.
- IF SHIFT — deluxe QRM slicer.
- PRE-IF NOISE-BLANKER that really works.
- RF ENVELOPE CLIPPING — sounds like a Kw.
- TWO VFO'S. Transceiver Plus receiver.
- BUILT-IN: Spotter, FSK shift, transmit offset, wattmeter, SWR meter, electronic CW Keyer.

It's Perfection for $2195

Specifications:
- SENSITIVITY: Better than 10db signal-plus-noise-to-noise ratio for .25 microvolts at 28MHz.
- SELECTIVITY: 2.4 KHz +6dB 1.8:1 (6:60db) shape factor, (16 pole crystal lattice filters) optional: CW-400 and 250 HZ. FSK-1200 HZ.
- CARRIER and unwanted sideband suppression: Minimum 60db.
- POWER LEVEL: 300 to 500 watts p.e.p. plus, continuous duty cycle.
- POWER AMPLIFIER: 8072 final completely broadbanded driver and final. 150 watt continuous dissipation rating.

Payne Radio
Box 525
Springfield, Tenn. 37172

Days (615) 384-5573
Nites - Sundays (615) 384-5643

Tymeter
Time At A Glance
Digital Clocks

Made in U.S.A.

At Your Dealer, or DIRECT FROM
PENNWOOD NUMECHRON CO.
DIVISION OF LCA CORPORATION
7249 FRANKSTOWN AVE
PITTSBURG PA 15208

Headset-Microphone H-63/U $5.95. Chest Set AN/GSA-6 $3.95. Victoreen Inst. Co. Radiation Survey Meter 7408 $7.95. Field Telephone TA43/PT $24.95 ea. Modification Kit #1 Transistors, Diodes, Caps, Resistors, Relay Wire, Tie Wraps, Hardware, etc. Gov. Cost $89.00 Special $2.95. Modification Kit #2 2.05-400V cap., solderless crimp Terminals, Hardware, etc. 25c ea. 5/$1.00. ARC R19 (R508) rec. 110-148MHZ w/schematic $14.95. Catalogue $10.

FRANK ELECTRONICS
407 Ritter Road, Harrisburg, Pa. 17109

INCOMPARABLE

the

CX7A by

signalone

If you want to move up to the BEST, give DON PAYNE, K4ID, a call for personalized service, a brochure, and a KING-SIZE trade-in on any gear you have — one piece — or the whole station.

Days Nites - Sundays (615) 384-5573 (615) 384-5643

Wolnut or ebony plastic case. 4"H, 73/4"W, 4"D. 110V 60 cy. Guaranteed One Year.

More Details? CHECK-OFF Page 110
IC PRICES SLASHED
FACTORY FIRSTS
SIGNETICS • NATIONAL
RAYTHEON
SATISFACTION GUARANTEED
DIGITAL TTL 7442N 7404N
7420N 7401N 2N5134 723C
7400N 7474N 7454N 7447N
7442N 7441N 7472N 7430N
7432N 7401N 2N5134 723C
7400N 7474N 7454N 7447N
7442N 7441N 7472N 7430N
LINEAR INTEGRATED CIRCUITS
DIP or TO-5 709 458 10/$4.25
741 7402N 1N 1N4002 100 PIV 1N4004 400 PIV
1N4005 600 PIV 10/$1.00, 100/$7.50
Free catalog - Large quantity discounts - Orders less than $10. Add 25¢ - others postpaid.
PRICE PACESETTER FOR QUALITY IC'S
DIGI-KEY, Box 126A, Thief River Falls, MN 56701

ULTRA-BAL 2000
* Advanced design
* No radiation from cores, more power to antenna
* Low noise on receive
* Full 2K W-3 to 30 Mhz. 1 1/2 or 1 1/4 ratios.
* Encapsulated out of weather proof
* Mt type 2KV Teflon insulation over silver plated wire for ultra low loss.
Specify ratio desired $ 8.95 p.d.
K.E. Electronics
Box 1279, Tustin Calif. 92680

FM YOUR GONSET COMMUNICATOR
* New! Plug-in modulator puts the Communicator transmitter on FM.
* No modification or rewiring on your Communicator - just plug into mike jack and crystal socket.
* Compact self-contained modulator measures 4" x 3" x 1 1/2".
* Works with Communicator I, II, III, IV and GC-105.
* FM at a tenth the cost of a new rig.
* Frequency adjust for built-in tuning.
* Built-in tone burst available. Keyed by push-to-talk switch.
* $34.50 postpaid U.S.A. Built-in tone burst $10.00. Specify Communicator model and tone-burst frequency. California residents add 5% sales tax. (MC-6/J crystal and 9 volt transistor battery not supplied.)
* Send for free descriptive brochure.

GATEWAY ELECTRONICS
8123 PAGE AVENUE
ST. LOUIS, MISSOURI 63130
413-427-6116
TUEND CAVITY BANDPASS FILTER - Contains two gold-plated tunable cavities. Type N conn.
for input & output. Frequency tunable from 121-142 Mhz. Ship wt. 7 lbs. $25.00
2½" SQUIRREL CAGE BLOWER — 115 volt AC. New. Ship wt. 1 lb. $7.50
MC-724P — Quad 2-input RTL Gate 15¢ ea.
7/$1.00
115 VOLT AC TIME DELAY relay 9 pin min. tube base — normally open 30 second or 75 second delay. New.
$1.50
RG-8/U FOAM CO-AX CABLE. Ship wt. 10 lbs. $100/$13.50
RG-58C/U CO-AX CABLE. Ship wt. 6 lbs. $100/$4.50
PL-259 CO-AX CONNECTOR. New. Ship wt. 1 lb. $10/$4.50
SO-239 CO-AX CONNECTOR. New. Ship wt. 1 lb. $10/$4.00
UG-175 ADAPTER CONNECTOR. New. Ship wt. 1 lb. $10/$1.50
UG-188 C/U BNC CONNECTOR. New. Ship wt. 1 lb. $10/$7.50
UG-210/U TYPE N CO-AX CONNECTOR. New. Ship wt. 1 lb. $10/$10.00

$5.00 Minimum Order
Visit us when in St. Louis

TV-7/U ELECTRON TUBE TESTER
PORTABLE DYNAMIC MUTUAL CONDUCTANCE TYPE
Used to test and measure the performance capabilities, and to determine the rejection limits for Electron Tubes used in Receivers, low power Transmitters, & in many other electronic equipment. The tests made are for dynamic mutual conductance, emission, short, open, commutation, heat lamps, etc. Test sockets are for coaxial, octal 4.5, 5, 7 pin, Nenvol 9, 7 pin miniature, submin.
- & female, etc. With use adapters (THAT ARE OPTIONAL) 829, 832, 1C19 and submin. tubes with long leads also can be tested. Power required is 115 Volt AC to 1000 cycles. Test tube data charts, test leads and pin straighteners for 7 & 9 pin are included. Size: 14½ x 8½ x 15½" Wt. 20 lbs. PRICES: Used, service 230$; New, test $255.00. Adapter: For 829 $15.00 For 829/832 $25.00. For submin. Lg Lead $1.50. All prices FOB Lima.
Dept. HR — SEND FOR NEW CATALOG

FAIR RADIO SALES
P.O. Box 1105 • LIMA, OHIO • 45802

COMPUTER BOARDS, CORE MEMORIES, I.C.'s and EXPERIMENTER'S ELECTRONIC COMPONENTS AT TRUE BARGAIN PRICES. 16 BIT CORE MEMORY WITH DRIVERS & SENSE CIRCUITRY ALL ON PLUG-IN CARDS • $135.00
ALL POSTPAID
SEND 10c FOR CURRENT CATALOG.
TRI-TEK, INC.
P.O. BOX 14206, PHOENIX, ARIZ. 85031

108 ir july 1972 More Details? CHECK-OFF Page 110
DRAKE
HENRY
TEMPO
KENWOOD
SONAR
STANDARD
CLEGG
I'COM
SBE
CUSHCRAFT
ANTENNA
SPECIALISTS
MOSLEY

New Address!

BRISTOL RADIO
Route 136
325 Metacom Avenue
Bristol, Rhode Island
02809
(401-253-7105)

Much Larger
Quarters!

This is the Beautiful KW202 Receiver
that you keep hearing about!

KW
Electronics
ALL FOR ONLY
$395
10 Peru St., Pittsburgh, PA 15201
In Canada: 222 New York Road,
Richmond Hill, Ontario

WORLD QSL BUREAU
THE ONLY QSL BUREAU to handle all
of your QSLs to anywhere; next door; the
next state, the next country, the whole
world. Just bundle them up (please arrange
alphabetically) and send them to us with
payment of 5¢ each.

5200 Panama Ave., Richmond, CA 94804

INOUE 2 mtr FM
12 chan. IC-20 mob. unit/10 crystals $259.50
24 channel IC-21, built-in AC supply, RX, DISC,
mtr SWR ind., with 10 crystals $339.50
Extra crystals, w/purchase $3.50, without $4.00
90 day warranty

Send Cashier's Check or Postal M/O to:
Woody W7RC — RC ENGINEERING
15051 SE 128th St., Renton, Washington 98055
Area code 206 AL 5-8955

2 METER PREAMP
More Gain, Less Noise For The Money!
20 DB GAIN
NOISE FIGURE 2.5
12 VDC OPERATION
Small Size: 1¼ x 2½ x ⅜ - Only $12.50
Kit $9.50
Option for 150-250 VDC Operation - $1.00

FM Schematic Digest
A COLLECTION OF
MOTOROLA SCHEMATICS
Alignment, Crystal, and Technical Notes
covering 1947-1960
136 pages 11¼" x 17" ppd $6.50
S. Wolf
P. O. Box 535
Lexington, Massachusetts 02173

More Details? CHECK-OFF Page 110

july 1972 109
Advertisers Index

INDEX

- Alco
- American States
- Amateur-Wholesale
- Arizona
- Barker-Williamson
- Barry
- Bristol
- CNE
- Camp Butler
- Caringella
- Circuit Specialists
- Comcraft
- Command
- Comtec
- Crawford
- Crystek
- CTG-Bitcii
- Curtis
- Cushcraft
- DX Magazine
- Data
- Digi-Key
- Drake
- Dyncom
- Eimac
- El
- Elcom
- Electronic Distributors
- Environmental
- Estes
- Fair
- Frank
- Gateway
- Giffen
- Global
- Gryt
- H & L
- HAL
- Heights
- Henry
- Hi-Gain
- International Crystal
- International Field Day
- International Rectifier
- Jan
- Janel
- Jensen
- KE
- KW
- Knight Raiders
- L.A.
- Linear
- Lynch
- Micro-Z
- NHE
- Palomar
- Pennwood
- Poly Paks
- Production Devices
- RC
- RF
- Radiation
- Callbook
- SAROC
- Signal/One
- Solid State
- Space-Military
- Spectronics, Inc.
- Spectrum
- Standard
- Structural Glass
- Swan
- Technical Information
- Tri-Ex
- Tri-Tek
- Van's
- Vanguard
- Viking
- Weinschenker
- Woerner
- World QSL
- Xcelite

ATV Research ... 109
Alco Electronic Products, Inc. 82
American States Electronics 106
Amateur Electronic Supply 31, 77, 95
Amateur-Wholesale Electronics 90, 92, 96, 109
Arizona Semi-Condutor 104
Barker-Williamson, Inc. 104
Barry ... 105
Bristol Radio .. 109
CNE Magazine ... 89
CTG-Bitcii Systems, Inc. 113
Camp Albert Butler 80
Caringella Electronics 79
Circuit Specialists Co. 112
Comcraft .. 78
Command Productions 90
Comtec .. 84
Crawford Electronics 90
Crystek .. 92
Curtis Electro Devices 92
Cushcraft ... 86
DX Magazine .. 83
Data Engineering, Inc. 88, 109
Digi-Key ... 104
Drake Co., R. L. 104
Dycomm .. 102
Eimac, Div. of Varian Assoc. Cover IV
El Instruments, Inc. 83
Elcom Industries, Inc. 92
Electronic Distributor, Inc. 103
Environmental Products 95
Estes Engineering Co. 107
Expo '72 .. 84
Fair Radio Sales 108
Frank Electronics 107
G & G Radio Supply Co. 91
Gateway Electronics 108
Global Import Co. 96
Goodheart Co., Inc., R. E. 96
Gray Electronics 94
H & L Associates 93
HAL Communications Corp. 71
Heights Manufacturing Co. 101
Henry Radio Stores 17, Cover III
Hy-Gain Electronics Corp. 1, 56, 57, 85
International Crystal Mfg. Co., Inc. 75
International Field Day 83
Jan Crystals .. 90
Janel Labs ... 84
KE Electronics .. 108
KW Electronics .. 109
Knight Raiders ... 94
L.A. Electronix Sales 90, 111
Linear Systems, Inc. 87
Lynch Co. J. ... 92
Meshna, John, Jr. 98
Micro-Z Co. .. 94
NHE Communications 92
Palomar Engineers 108
Payne Radio .. 107
Pennwood Numechron Co. 107
Poly Paks ... 95
RC Engineering 109
RF Electronics .. 106
Radiation Devices Co. 83
Radio Amateur Callbook 96
SAROC ... 104
Savoy Electronics 2
Signal/One Corporation Cover II
Solid State Systems, Inc. 100
Space-Military Electronics 109
Spectronics, Inc. 97
Spectrum International 102
Standard Communication Corp. 69
Structural Glass Limited 106
Swan Electronics Co. 5
Tri-Ex Tower Corp. 45
Tri-Tek, Inc. .. 108
Van's W2DLT ... 89
Vanguard Labs 82
Weinschenker, M. 81
Woerner Enterprises, Inc. 80
Wolf, S. ... 109
World QSL Bureau 109

July 1972

Please use before August 31, 1972

Tear off and mail to
HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03048

NAME .. CALL

STREET ..

CITY ..

STATE .. ZIP

110 july 1972
6 and 2 Meter WHIP

MODEL LA 150

Sale Priced $15.77

- **Gain** (2 Meters) ... 3db
- **Gain** (6 Meters) ... Unity
- **VSWR** (At resonance) .. 1.5:1
- **Maximum Power** ... 100 Watts
- **Nominal Impedance** .. 52 ohms
- **Overall Length** ... 55 in.

WANTED

CLEAN DRAKE GEAR

<table>
<thead>
<tr>
<th>REWARD FOR</th>
<th>NEW</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$195.00</td>
<td>2B or 2C</td>
<td>R4B</td>
</tr>
<tr>
<td>$220.00</td>
<td>R4</td>
<td>R4B</td>
</tr>
<tr>
<td>$275.00</td>
<td>R4A</td>
<td>R4B</td>
</tr>
<tr>
<td>$200.00</td>
<td>T4</td>
<td>T4XB</td>
</tr>
<tr>
<td>$125.00</td>
<td>2NT</td>
<td>T4XB</td>
</tr>
<tr>
<td>$285.00</td>
<td>T4X</td>
<td>T4XB</td>
</tr>
<tr>
<td>$ 60.00</td>
<td>AC3</td>
<td>AC4</td>
</tr>
<tr>
<td>$ 70.00</td>
<td>DC3</td>
<td>DC4</td>
</tr>
</tbody>
</table>

Electronix LOW PASS

- **Model LP-2000**
- **3-30 Mc w/80 dB Attenuation**

STOP THAT T.V.I.
- **Power 2 KW D.C.**
- **3-30 Mc.**
- **80 dB Down 42 Mc.**

INTRODUCTORY OFFER $14.95

Electronix Sales

23044 S. CRENSHAW BLVD., TORRANCE, CALIF. 90505

Phone: (213) 534-4456 or (213) 534-4402

CLOSED SUNDAY & MONDAY
DIGITAL READOUT

At a price everyone can afford
- Operates from 5 VDC
- Same as TTL and DTL
- Will last 250,000 hours.

Actual Size

The MINITRON readout is a miniature direct viewed incandescent filament (7-Segment) display in a 16-pin DIP with a hermetically sealed front lens. Size, and appearance are very similar to LED readouts. The big difference is in the price. Any color filter can be used.

SPECIAL OFFER

PLESSEY SL403D
3.5 W AUDIO AMP IC
HI-FI QUALITY
$3.95

Only $8.20 with 12 pages of construction data

NATIONAL DEVICES

- LM370 AGC/Squelch amp $4.85
- LM373 AM/FM/SSB IF strip/Det $4.85
- LM309K 5V 1A regulator. If you are using TTL you need this on $3.00

PREMIUM QUALITY TTL IC's

- 7447 7-seg. decoder/driver for the digital readout $1.65
- 7400 gates .29
- 7401 high speed gate .96
- 7402 Quad 2-input NOR gate .29
- 7404 Hex inverter .30
- 7405 Hex Inverter .29
- 7410 Triple 3-input NAND .29
- 7420 Dual 4-input NAND .29
- 7441 NIXIE driver $1.65
- 7490 decade counter .95
- 7475 quad latch $1.00
- 7495 shift Reg. $1.45
- 7493 divide by 16 $1.20
- 74121 monostable $1.80
- 7473 dual flip-flop .60
- 851/951 DTL monostable multivibrator $1.00

MOTOROLA DIGITAL

- MC724 Quad 2-input RTL Gate $1.00
- MC788P Dual Buffer RTL $1.00
- MC789P Hex Inverter RTL $1.00
- MC790P Dual J-K Flip-flop $2.00
- MC799P Dual Buffer RTL $1.00
- MC1013P 85 MHz Flip-flop MECL $3.25
- MC1027P 120 MHz Flip-flop MECL $4.50
- MC1023 MECL Clock driver $2.50
- MC4024 Dual VCO $3.00
- MC4044 Freq. Phase Det $3.00

Please add 35c for shipping

CIRCUIT SPECIALISTS CO.
Box 3047, Scottsdale, AZ 85257
FACTORY AUTHORIZED
HEP-CIRCUIT-STIK DISTRIBUTOR

POPULAR IC's

- MC1550 Motorola RF amp $1.80
- CA3020 RCA 1/2 W audio $3.07
- CA3028A RCA RF amp $1.77
- CA3001 RCA $6.66
- MC1305P Motorola 1/2 W audio $1.10
- MC1350P High gain RF amp/IF amp $1.15
- MC1357P FM IF amp Quadrature det $2.25
- MC1496 Hard to find Bal. Mod. $3.25
- MFC9020 Motorola 2-Watt audio $2.50
- MFC4010 Multi-purpose wide-band amp $1.25
- MFC8040 Low noise preamp $1.50
- MC1303P Dual Stereo preamp $2.75
- MC1304P FM multiplexer stereo demod $4.95

FETS

- MPF102 JFET ... $0.60
- MPF105/2N459 JFET96
- MPF107/2N5486 JFET VHF/UHF $1.26
- MPF121 Low-cost dual gate VHF RF ... $0.85
- MFE3007 Dual-gate ... $1.98
- 40673 ... $1.75
- 3N140 Dual-gate ... $1.95
- 3N141 Dual-gate ... $1.86

TRANSISTORS & DIODES

- MPS5671 ... $0.60
- MPS A12 NPN Darlington gain 20K90
- 2N706 packet of 4 ... $1.00
- 2N2218 packet of 2 ... $1.00
- 1N4001 packet of 6 ... $1.00
- 1N4002 packet of 6 ... $1.00
- 1N4004 packet of 6 ... $1.00

SIGNETICS PHASE LOCKED LOOP

- NE561B Phase Lock Loop ... $4.75
- NE562B Phase Lock Loop ... $4.75
- NE566V Function Generator ... $4.75
- NE567V Tone Decoder ... $4.75
- NS111A FM/IF Demodulator ... $1.50
The Best!!! No matter how you evaluate it...the 2K-4 linear amplifier is the best. It offers engineering, construction and features second to none, and at a price that makes it the best amplifier value ever offered to the amateur. The 2K-4 is constructed with ruggedness guaranteed to provide a long life of reliable service. Its heavy duty components allow the 2K-4 to loaf along even at full legal power. If you want to put that strong clear signal on the air that you've heard from other 2K users, now is the time. Move up to the best! Two rugged Eimac 3-500Z grounded grid triodes...1000 watts of plate dissipation. Pi-L plate circuit with silver plated tank coil. Resonant cathode pi input circuit for finest linearity, for maximum drive. Plug-in design permits operation from 3.5 to 30 megacycles. New high efficiency toroidal filament choke. Built-in SWR bridge and relative RF output meter. Electrical re-set overload relay. Double rugged band change switch with 20 amp contacts and solid straight-through mechanical linkage. Heavy duty bronze gear drive for resonance and load condensers. Conservative, heavy-duty 2800 volt DC supply. Resonant choke input filter. Solid state rectifiers. Instantaneous start-stop. Ultimate simplicity...no screen supply...no bias supply. Maximum legal input all modes: 2 KW PEP SSB, 1 KW CW-AM-FSK A long life 50 amp mercury power relay. Feed around antenna relay. When the power switch is off the exciter feeds around to the antenna. DC relay system for hum-free positive operation. All aluminum cabinet. Double RF shielding. FLOOR CONSOLE 2K-4 $795.00

The 2K ULTRA...the ultimate! A miniature powerhouse of R.F. energy. The Ultra loaf along at full legal power...quiet and cool. Its signal is clean, clear and strong.

The 2K ULTRA...$845.

Henry Radio also features a line of superbly engineered and constructed high power linear amplifiers for commercial and military operation. Please write or call.
Introduced in 1947, the EIMAC 4-400A quickly became the mainstay for the majority of broadcast, shortwave and FM transmitters. Still popular today, this power tetrode design is now available as the improved long-life 4-400C.

Get an EIMAC 4-400C — the new generation tetrode specifically designed for long-life, high-performance broadcast and FM service. This premium quality tetrode is directly interchangeable with the 4-400A in existing equipment and is recommended for new equipment design.

The EIMAC 4-400C features a low temperature filament structure which retains its initial high level of electron emission for an extended period of time, greatly reducing frequency of tube replacement. This improved filament structure, plus strict processing and quality control, combines with improved current division and low drive requirements to provide a high-quality, long-life product.

Reduce down-time and replacement cost with the EIMAC 4-400C when you re-tube. And use this improved tetrode in your new equipment design. With a maximum plate dissipation of 400 watts, the EIMAC 4-400C provides long-life and consistent performance as an amplifier, oscillator or modulator. Another example of EIMAC's continuing program of quality, reliability and service.

For further information, contact EIMAC, Division of Varian, 301 Industrial Way, San Carlos, Calif. 94070. Or any of the more than 30 Varian/EIMAC Electron Tube and Device Group Sales Offices throughout the world.