focus on communications technology...

SEPTEMBER 1968

this month

- calibrated uhf signal source 20
- frequency translation in ssb 22
- experimental dummy loads 36
- solid-state screen clamp 44
- thermoelectric generators 48

new single-ended design

2-kw strip-line amplifier for 432 mhz
EVER WONDER
IF YOU’RE WANDERING?

With a Collins 32S-3 Transmitter, you’ll know you’re locked on frequency. That’s because the 32S-3 has Collins’ stable PTO, plus crystal-controlled beat frequency and HF conversion oscillators.
Don’t be a drifter. See your Collins distributor.

COMMUNICATION / COMPUTATION / CONTROL
Great Things are Happening with Verticals

at Mosley

- All New 3 and 5 Band Operation
- Improved 4-Band Performance
- New Simplified Ground Mount
- Versatile Ground or Roof-Top Installation

Mosley's World-Renowned TRAP-MASTER traps offer a new dimension in Vertical Performance... plus easy, low cost installation. Three New RV-Series Verticals with the Versatility of Six! New design - from the Simplified Ground Mount (no longer is a concrete footing necessary) to the addition of a 'Top Hat' where it counts most for a low, low angle of roof-top radiation.

Trap-Master Verticals will take you places... Outstanding Omni-Directional Radiation - Top DX-Ability. Whatever your needs, Mosley has a New RV-Vertical designed and engineered to give you a real 5-9 signal.

- Model RV-3C for 10, 15, and 20 Meter Bands
- Model RV-4C for 10, 15, 20, and 40 Meter Bands
- Model RV-5C for 10, 15, 20, 40, and 75/80 Meter Bands

For detailed Brochure on Specifications and Performance Data, see your nearest authorized Mosley dealer, or write factory direct: Dept. 170

Mosley Electronics Inc.
4610 N. Lindbergh Blvd.,
Bridgeton, Mo. 63042

September 1968
SO YOU WANT CRYSTALS FASTER!

24 HOUR DELIVERY ON ALL ORDERS OF TEN CRYSTALS OR LESS

...well it will take someone with manufacturing "know how" to do it

But of more importance the crystal must be manufactured to Strict Specifications, have good activity and operate "on frequency" in the circuit for which it was ordered.

SENTRY can manufacture crystals for all two-way radio equipment: Commercial, Amateur, Aircraft, Military and Citizen Band. You need only to specify the model of set and channel frequency.

You don't believe it, when we say - "Buy the Best"?

You are satisfied with your present supplier?

You are satisfied with "second best"?

Until you try SENTRY you will never know!

Try Us! Make Us Prove It! "Buy the Best"

SENTRY MANUFACTURING COMPANY
1634 Linwood Boulevard - Oklahoma City, Oklahoma 73106

PHONE: 405-232-1431
contents

Strip-Line Kilowatt for 432 MHz
William I. Orr, W6SAI
John T. Chambers, W6NLZ

Digital Wind-Direction Indicator
Henry D. Olson, W6GXN

Calibrated UHF Signal Source
Delbert D. Crowell, K5RIL

Frequency Translation in SSB Transmitters
Forest H. Belt

What You Should Know about Coaxial Cable
Charles Camillo, W9ISB

Experimental Dummy Loads
William A. Wildenhain, W8YFB

Solid-State Screen Clamp
Christopher Grant, W0LRW

Thermoelectric Power Supplies
Jesse J. Bryant, K1AJE

Converting A-M Amplifiers to SSB
W. G. Blankenship, Jr., WA4GNW

Aligning VHF Transmitters
Larry Allen

The New Heath HW-100 SSB Transceiver
T. H. Tenney, Jr., W1NLB

departments
A Second Look 4
New Products 80
Advertisers Index 96
Next Month 57
Classified Ads 87
Propagation 70
Comments 78
Repair Bench 58
Ham Notebook 76
In case you don't know it, the frequency spectrum above 30 MHz is in serious trouble. Communications technology has outstripped our methods for controlling it and many harried users are clamoring for more space. The FCC has traditionally allocated blocks of frequencies to various users—in the vhf and uhf range they have taken advantage of line-of-sight propagation to allocate the same frequencies to various sections of the country. However, with satellite communications, a new problem arises: since a single satellite signal blankets a large region, the same frequency can't be allocated in other areas.

In the past, when a particular band of frequencies became too crowded, we simply improved our technology and moved higher in the spectrum. However, now the only higher bands lie in the region above 10,000 MHz. These frequencies are not too attractive, even if we develop equipment to use them, because of high atmospheric attenuation.

A four-year study sponsored by the IEEE and the EIA has recommended the allocation of space on the basis of need rather than the existing "block" approach. This is where the amateur frequencies are liable to be looked at very closely. Although our bands represent a small portion of the total spectrum between 30 and 960 MHz (about 5%), a complete overhaul may reduce this—particularly if the overhaul is based on use and need!

Some of the other recommendations proposed for putting more transmitters into the same amount of space include: more "splitting" to reduce the originally-assigned bandwidth to make room for other users, narrowing the 6-MHz now allowed for TV stations so that adjacent and in-between frequencies can be used for other purposes, and tightening of standards for both receivers and transmitters to conserve bandwidth. This last proposal could have some interesting effects on amateur operation—for one thing, improved standards governing receiver susceptibility could reduce TVI problems. On the other hand, improved standards might carry a "type-acceptance" clause that could eliminate our traditional privilege of building our own equipment.

In addition to the four-year study sponsored by the IEEE and the EIA, the President's Task Force on Communications Policy is working on the problem. Although their report was originally due in the summer, it's not expected to be released until this month. Among other things, it's expected that they will recommend a new Department of Telecommunications with a Cabinet-level administrator or the creation of a telecommunications agency along the lines of NASA or the FAA.

Although no action is expected this year, things are apt to happen when the new President takes office. However, before the government makes any drastic changes, they'll probably set up a pilot project in a representative region to test the recommended frequency allocation concepts. Now is the time to think about vhf—not after the serious action starts. Conduct your close-in communications and rag chews on the bands above 100 MHz, resolve to get on 220 and 432, and if you're already on 432, consider going to 1296 or 2304 MHz. If you're a member of a local traffic net, consider moving from 75 meters to vhf—you'll get the same coverage with less QRM. We may not be able to save everything from other frequency-hungry services, but we should give it a jolly good try.

Jim Fisk, W1DTY
Editor
THE NEW SWAN TV-2 TRANSVERTER

2 METER SINGLE SIDEBAND

144-148 MC 240 WATTS P.E.P. INPUT. THE TV-2 IS A TOP QUALITY RECEIVING AND TRANSMITTING CONVERTER FOR THE 2 METER BAND... DESIGNED TO OPERATE WITH SWAN TRANSCEIVERS, MODELS 250, 350, 350-C, 400, 500 AND 500-C. 14 MC INTERMEDIATE FREQUENCY IS STANDARD, HOWEVER ADDITIONAL CRYSTALS MAY BE ADDED AND SWITCHED IN FOR OTHER PORTIONS OF THE 2 METER BAND. THE TV-2 MAY, OF COURSE, BE ADAPTED TO OTHER TRANSCEIVERS ALSO.

PRICE: $295.00

EASY FINANCING - 10% DOWN OR TRADE-IN DOWN - NO FINANCE CHARGE IF PAID IN 90 DAYS - GOOD RECONDITIONED APPARATUS - Nearly all makes & models.
Our reconditioned equipment carries a 15 day trial, 90 day warranty and may be traded back within 90 days for full credit toward the purchase of NEW equipment. Write for bulletin.

CALL DIRECT... USE AREA CODE

Henry Radio has a great antenna package program... big savings. Write for literature.

Henry Radio Stores

Butler, Missouri 64730 816 579-3127
11240 W. Olympic, Los Angeles, Calif. 90064 213 477-6701
931 N. Euclid, Anaheim, Calif. 92801 714 772-9200

"World’s Largest Distributor of Amateur Radio Equipment"
2-kw pep amplifier
for 432 mhz

The combination of a new ceramic zero-bias triode and unique circuitry promises higher power and greater efficiency in high-power rf amplifiers for the vhf/uhf region.

The design of a high-power linear amplifier for 432 MHz poses some interesting problems. Most important is choosing the tube to be used. Most medium-cost transmitting tubes tend to “run out of gas” in this portion of the radio frequency spectrum while others require extensive and expensive cavity enclosures to make them play. The vhf enthusiast, then, is severely limited in his approach to high power on 432 MHz, and the goal of a so-called “two-kilowatt PEP” amplifier has been outside practical radio amateur capabilities until now.

The new Eimac 3CX1000A7 ceramic zero-bias triode shows promise of superior performance in the vhf region. This interesting “bottle” resembles the well-known 4CX1000A in general shape and outward appearance, although electrically it is a cousin to the 31000Z. Although the 3CX1000A7 is rated for operation to 220 MHz, it has been run on an experimental basis at higher frequencies.

Suggested maximum peak-power input in the high-frequency region is 2000 watts (2500 volts at 800 mA) with maximum peak power output of 1200 watts. Peak drive power, according to the data sheet, is 67 watts. The all-important question, of course, is, “How closely can these low-frequency operating conditions be duplicated at 432 MHz where circuit losses are higher, tube efficiency lower and driving power dearer?”

Since no operational data for the 3CX-
1000A7 was available for 432 MHz, the only answer was to build an amplifier, try the tube at this frequency and obtain the results on a first-hand basis. A grounded-grid cathode-driven configuration was chosen, as shown in fig. 1.

strip-line plate circuit

In the interest of simplicity, it was decided to try the simple strip-line plate tank circuit shown in fig. 2. Since the output capacitance seemingly large value would pose problems at 432 MHz. We hoped that excessive driving power wouldn't be expended in the charging currents flowing through the input capacitance and that the power gain of the stage wouldn't be excessively low. Both of these difficulties were overcome by properly designed tank circuits.

The plate circuit strip line consists of a 1/8-inch-thick copper plate, rounded at one end and placed in an aluminum cavity box. The half-wavelength strip line is supported at anode height by two ceramic insulators. Anode of 3CX1000A7 is encircled by copper collar bolted to strip line; the inner circumference is lined with flexible finger stock. Plate rf choke is at right and antenna capacitor plate is mounted to coaxial plug. Edge of the plate-tuning capacitor is visible below end of strip line.

of the 3CX1000A7 is only about 15 pF in the grounded-grid configuration, a half-wave-length plate line was chosen. Even so, a large portion of the line is swallowed up inside the tube because of its internal capacitance and rather large physical size. The half-wave-length line eased coupling problems and promised better operating efficiency than a shorter line.

The input capacitance of the 3CX1000A7 is approximately 30 pF. We thought this rounded end of the strip line encircles the anode of the 3CX1000A7 and is connected to it with a matching copper collar, fig. 3, with flexible finger stock soldered to its inner circumference.

The collar is bolted to the strip line which, in turn, is supported at the center by a pair of 2-inch high ceramic insulators. The free end of the strip line is capacitance tuned by means of a copper flipper that is hinged to the chassis and moved to and fro by the arm.
C1 Coupling capacitor. Copper tab 1" x 1/4" spaced approximately 1/4" from plate line. Tab is supported by copper rod 0.188" diameter, soldered to center pin of coaxial connector J2. Rod may be made from center conductor taken from RG-17/U coaxial cable.

C2 Tuning capacitor. Aluminum tab 1" x 4" spaced about 1/4" to 1/4" from plate line. Tab is portion of longer strip bent in an inverted L with brass hinge at bottom. Hinge is jumpered with copper shim stock to provide low-impedance ground path. Tab is moved by an eccentric arm and 3/16" diameter teflon drive rod driven by worm gear.

C3 220-pF dipped silver mica capacitors (4 required) mounted from heater terminals to socket ring.

C4 50 pF (Centralab 8505-50Z)
C5, C6 200 pF, 30 A capacity (Erie 482-463-10)
C7, C8 6.01 µF, 30 A capacity (Sprague 80-P3)
C9 3 pF. Grounded to two through-bolts of the socket assembly. Connect bolts in parallel and to one side of capacitor (Centralab 855-3Z)

J1 UG-58A/U
J2 UG-352/U
RFC 15 turns number 16, 1/4" diameter, 1-1/4" long
T1 5 V, 30 A filament transformer (Stencor P-646B)
Blower 80 cubic feet per minute (Dayton 1C-180)
Socket Eimac SK-870

fig. 1. Schematic diagram of the kilowatt amplifier for 432 MHz.

and worm gear arrangement shown in the photo. The antenna circuit is capacitively coupled at this end of the line.

grid circuit

The grid of the 3C1000A7 is at nominal ground potential since the Eimac SK-870 air-system socket grounds the multiple grid terminals to the chassis. Even so, the grid structure within the tube is above ground at 432 MHz by virtue of the small but discrete cumulative inductance of the socket, grid terminals and grid cone assembly within the tube. A portion of the driving voltage appears across this cumulative grid inductance, and makes the circuit degenerative and reduces the input-to-output isolation of the tube.

Improved circuit stability and increased stage gain is achieved by adding a small capacitance between the input circuit and the grid circuit at the tube socket terminals. This partially compensates for the effects of the
inductance of the socket and internal grid structure of the tube.

filament circuit

The broadly resonant tuned filament circuit is composed of a segment of parallel transmission line run from the socket terminals to feedthrough capacitors mounted on a nearby aluminum bracket. From this point, shielded filament leads run to a second pair of feedthrough capacitors mounted on the chassis deck. The filament transformer is mounted above the deck in a corner of the main chassis out of the field of the amplifier plate-tank assembly.

amplifier construction

Amplifier construction is relatively easy and simple. The complete assembly is mounted on a 10 x 17 x 3-inch aluminum chassis, supported behind a 19-inch relay-rack panel. A space is left between the chassis and panel to accommodate the gear mechanism of the plate-circuit counter dial.

The plate-circuit assembly box is a standard aluminum enclosure measuring 6 x 4 x 10 inches, with removable 6 x 10-inch sides. The box is firmly bolted to the chassis by the lips of one of the open sides and the other side serves as the top of the enclosure.

In order to cool the 3CX1000A7 properly, a blower is used, and the under-chassis area is pressurized by a bottom plate. The air is fed through the tube socket, past the anode of the tube, and exhausted through the perforated top plate of the amplifier box.

The half-wavelength anode strip line is shown in fig. 2. A copper ring is cut on a lathe, and the anode finger stock* is soldered to the inner diameter of the ring. The ring is drilled for sixteen 4-40 screws and firmly bolted to the strip line. The whole assembly is supported over the tube socket opening by two ceramic insulators. The electrical center of the plate line is very nearly at the outer anode diameter of the tube, so the plate rf choke is attached at this point as shown in the photograph.

* Eimac CF-300. Available from Allied Radio Corporation, 100 N. Western Avenue, Chicago, Illinois 60680. Order catalog number 47E2087. $5.80 plus postage; shipping weight 12 ounces.

Underneath the amplifier. Socket and filament lines are at right; input connector is tapped on one line at approximately mid-point. The surplus gear drive and flexible couplers connect the plate-tuning capacitor to the counter dial on the front panel.
The complete anode assembly with the 3CX1000A7 in the socket resonates near the high end of the 432-MHz band. A small variable capacitance placed at the opposite end of the line from the tube permits circuit resonance across the complete amateur band.

The plate-tuning capacitor is built from a brass hinge purchased at the local hardware store. The hinge is attached to the chassis and supports an inverted L-shaped aluminum plate, which swings in close proximity to the strip line. When the top portion of the plate is parallel to the plate line, it is about \(\frac{3}{8}\)-inch away from the line.

The moving part of the hinge is jumpered with a wide strap of flashing copper. The hinge provides mechanical stability—electrical conductivity through the hinge joint is provided by the flashing copper. The capacitor is varied by means of an eccentric arm driven by an under-chassis worm drive from the counter dial. A \(\frac{1}{4}\)-inch diameter teflon rod insulates the drive system from the hinged capacitor plate.

The filament line is made of two 4-inch lengths of number-10 copper wire spaced \(\frac{3}{4}\)-inch apart. They are bent back to reach the filament bypass capacitors mounted on an aluminum bracket in the corner of the chassis. The filament circuit tunes quite broadly and is relatively uncritical.

The rf drive point is attached to one leg of the line, near the midpoint, and may be juggled a bit to establish the lowest drive level after the amplifier is in operation. This is best accomplished with a directional wattmeter in the drive line. In the interest of conserving drive power, RG-225/U teflon coaxial cable is used to couple the driver to the amplifier.

The Eimac SK-870 air socket and chimney ground the multiple grid terminals of the 3CX1000A7. Four small mica capacitors are placed across the heater terminals of the socket to bypass the two sides of the heater. The 3-pF neutralizing capacitor is connected from one side of the heater to a short length of wire soldered to two adjacent bolts of the mounting socket.

A small value of cathode bias—11 volts—is applied to the 3CX1000A7 to reduce the zero-signal plate current. In lieu of an expensive zener diode, a homebrew version was made by placing 13 bargain-counter 3-ampere stud rectifiers in series and using their summed forward voltage drop as zener bias. The rectifiers are rated at 50 volts PIV and provide enormous carrying capacity at minimum price. The diodes were mounted on a \(\frac{1}{4}\)-inch aluminum plate with mica insulating washers and placed in the power supply unit. Alternatively, two 1N4561 50-watt zener diodes may be connected in series to provide a bias of 11.2 volts at a substantially higher cost.

The output circuit is capacitively coupled to the plate line by means of a small, semi-variable capacitor made of a copper tab supported by the center pin of the coaxial antenna connector. The output circuit of the amplifier is designed for heavy-duty RG-17/U coaxial line. The mounting holes of the co-
axial connector are made oversize; antenna coupling may be adjusted by loosening the bolts holding the connector to the chassis and moving it about in the mounting hole.

amplifier adjustment

The filament line and plate line may be grid-dipped to 432 MHz with the 3CX1000A7 in the socket and no voltages applied. Alternatively, the plate circuit may be tested cold by applying grid drive (no plate or filament voltage) and coupling a diode voltmeter to the antenna terminal. The resonance point should be achieved in the mid-range of the "flipper" capacitor. For "hot" adjustment, a dummy load and power output indicator are required since plate-current dip is not a true indicator of performance.

For initial adjustment, reduced plate voltage, 2000 volts or so, and reduced rf drive are applied to the amplifier. The plate circuit is resonated for maximum output, and the antenna coupling capacitor (C7) is adjusted for best power transfer. Coupling exists between the input and output circuits, and while the amplifier remains stable, grid current varies abruptly with plate-circuit tuning and loading. Grid current should run about 40 percent of the loaded plate current at all times.

It may be necessary to experiment with the value of the feedback capacitor (C9) to obtain the proper ratio of grid-to-plate current at the full input level. Either a 3-pF or a 5-pF capacitor may be used. A variable capacitor is not recommended at this point because the internal inductance of such a unit is too high.

Once you have established a feel for the tuning, the plate voltage and drive may be increased to the values shown in the table. The filament voltage should be reduced to the minimum value that will provide full output—about 4.7 volts or so. This is because backheating tends to raise cathode temperature above normal. Standby bias is incorporated in the power supply and is removed for proper operation by shorting out the VOX terminals.

When antenna coupling is too heavy, resonance indication of the plate current will be very broad, and the output will be low. When coupling is too light, you'll find a sharp resonance combined with rather severe fluctuations in grid current as the plate circuit is tuned. When properly loaded, maximum power output will be achieved with the plate circuit slightly detuned from the apparent point of resonance, as noted on the plate meter.

operation

At a plate potential of 3000 volts and with 670 mA of plate current, power output into a dummy load was measured at better than 850 watts. This is an over-all amplifier efficiency of 41 percent and includes losses in the measuring circuit. Operating efficiency was estimated to be nearer 45 percent, with an actual plate-circuit power output of about 900 watts or better. Driving power was measured at 170 watts including circuit losses. Raising the plate voltage to 4000 volts permitted a plate current of 900 mA for an input of 3.6 kilowatts with a measured output of 1.75 kilowatt into the load and an over-all efficiency of about 48 percent.

A word of caution: the 3CX1000A7 has not
been rated for operation at this frequency nor for plate potentials above 3.5 kV. Experimental operations of this magnitude at this frequency exceed the warranty of the tube. In addition, it should be noted that full grid drive should not be applied without the plate circuit loaded and high voltage applied under any circumstances—otherwise the grid structure may be damaged. The data derived is based on an experimental test, and the Application Engineering department of the Eimac Division of Varian should be consulted before using this information for final equipment design.

While this amplifier is an experimental unit, it points the way toward future amplifier design in the upper portion of the vhf spectrum. This design could be scaled down in size and power for a single 4CX250B running at the 500-watt level. Meanwhile, tests to determine the full capability of the 3CX1000A7 tube in the vhf region continue.

Ham Radio

using an outboard receiver with a transceiver

There are many times when it's helpful to have an outboard receiver available for listening on frequencies other than your transmit frequency. Remote VFO's accomplish this in most cases, but not always. A good example occurs when working DX stations on 80 meters. With your transceiver tuned to 3850 kHz, the preselector isn't peaked up on the European section of the band even if you have a remote VFO. Also, with a separate receiver, you can monitor other bands for activity. This is particularly useful when you're waiting for ten or fifteen meters to open up in the morning.

With the circuit shown in fig. 1, an outboard receiver may be switched onto the antenna and speaker at the flick of a switch. When the transceiver is switched to transmit, the speaker and antenna are automatically connected to the transceiver. Relay K1 is a 3PDT relay and K2 is a 115-Vac coaxial relay with auxiliary dpdt contacts. Before connecting this circuit to your transceiver, check the ratings on the external contacts of the relay in the transceiver; some of them are not designed for 115 volts. If this is the case, you'll have to go to a lower voltage 4pdt relay at K1 and use the extra contact to control the coaxial relay.

Jim Fisk, W1DTY

fig. 1. Here is a way to use an outboard receiver with your transceiver for split-frequency operation.
Ask a commercial radio operator—he knows the Super-Pro! Ask a military communicator—he knows the Super-Pro! Ask a ham—he knows the Super-Pro! Continuously updated, the Super-Pro is still a standard for commercial communications world wide!

In the best Super-Pro tradition, all Hammarlund receivers offer you the same high standards of performance and quality!

The all new solid state HQ-215 Receiver is setting records of performance unmatched by radios costing many dollars more! The HQ-180A and HQ-145A Receivers are tops in their price range and give you high sensitivity with your choice of selectivity—from 540 khz to 30 mhz.

The HQ-110A and VHF models are the only receivers you can operate from 160 through 2 meters with everything built in! Feature-full, the improved HX-50A Transmitter permits novice and extra class alike, unmatched operating versatility!

Hammarlund equipment is built by the people who man our military production lines—with a heritage beginning in 1910.

So if it carries the name of Hammarlund—it's got to be good.

Send for full specifications—we'll happily tell you how to "Ham" with Hammarlund!
If you know that the wind speed is on the increase, you can certainly lower your beam before the storm hits, but to many hams, the wind direction is important. This is especially true if you can't lower your beam below surrounding buildings and trees, and must rely on "turning the elements into the wind" for protection. Here is a digital wind-direction indicator.

If you like to turn your beam into the wind when the wind starts blowing, why not try this simple system for remote wind-direction indication.

Hank Olson, W6CN, P. O. Box 339, Menlo Park, California 94025

September 1968
indicator of relatively unusual design using integrated circuits.

The usual method of remotely indicating wind-direction is to use a pair of selsyns. This scheme requires five wires between the selsyn mounted on the weather-head and the indicator in the shack. Selsyns, while normally very expensive, are available inexpensively as military surplus and are readily adaptable to wind-direction-indicator service. The fact that many surplus selsyns are designed for 400 or 800 Hz is not a deterrent to hams; they just use them on 60 Hz with lower voltages.

I used digital encoding for this indicator because I wanted to explore some new techniques. If you build this unit, you'll not only end up with a durable wind-direction indicator, you may also get a foothold on the rapidly expanding field of digital control and integrated-circuit logic.

digital shaft encoder

The heart of the indicator is the digital shaft encoder illustrated in fig. 1. This encoder is a very simple one that will indicate only sixteen discrete directions (points of the compass). This example is a binary-coded disc; note that there are four tracks on it. These four tracks cut the information-carrying region of any direction sector into four boxes. Since any box can be white or black, every direction sector has a different pattern of black and white boxes. If you doubt this, go through them and check. These black and white patterns can easily be converted to voltages by lamps and cadmium sulphide (CdS) photocells and transmitted to a remote readout. The wires necessary would be six; one common, four for CdS cells, and one for the lamp-supply voltage.

As an example, the system could be connected as shown in fig. 2, with a +1.5-volt cell to determine the logic-level. Assume a CdS cell "dark resistance" of 2 megohms and an "illuminated resistance" of 200 ohms. The output will be +1 V when a cell is covered by a black box and nearly zero when covered by a white (clear) box. This gives the series of outputs listed in table 1. You may recognize this series of numbers as the binary equivalent of our decimal numbers zero through 15, if the segments were numbered clockwise starting at N (north).

However, for direction indication, the ordinary binary-coded disc has a major drawback —if there are CdS cell misalignments, errors as great as 180° can occur. For this reason, we will use the Gray-scale coded disc shown in fig. 3. Notice that on this disc, misalignment of a CdS cell can't cause an error greater than one sector. The voltage outputs using this disc are listed in table 2. This electrical code will appear at the shack end of a multi-conductor cable and resistor-battery combination.

digital decoding

The binary code is used to actuate sixteen lamps that are labeled with the sixteen points...
of the compass (N, NNE, NE, etc). The decoding will be done with integrated-circuit four-input gates. These particular gates belong to the DTL (diode-transistor logic) family, but any of the other logic families would be used in a similar way. The main reason I used DTL logic was because DTL units were available at a very low price.

The 930 series of DTL integrated circuits come as close to an industry standard as any digital IC made. This series is made by Fairchild, Motorola, Raytheon, Sylvania and Texas Instruments, as well as several others. With such industry-wide acceptance of the 930 series, and with so many companies grinding them out to mil specs, it is only natural that a large quantity of rejects are available through the surplus electronics emporiums. Such is the case in the San Francisco Bay Area, where 930 DTL series units are produced, and where one local surplus store offers them at ten for a dollar—mixed, unmarked, and of unknown worth. I built the wind-direction indicator shown in the photos from 930's and 946's that were gleaned from $5.00 worth of such offerings.

Several large mail-order companies who specialize in surplus semiconductors have 930 DTL series IC's for sale at 50c to $1.50 each, depending on whether they are tested or not. While it's true that these are IC's
from a production line turning out units which sell for $10 and up, they may or may not be bargains. The reason for this is the Motorola MC830P DTL line, in the plastic dual-inline package.

The MC830P line is electrically identical to the 930 series but it is not in a ceramic package nor is it tested to military specifications. The MC830P and MC846P are $1.55 and $1.65 respectively. This pricing makes the surplus mail-order units much less attractive because the MC830P series has defined specifications.

The way these DTL gates are used is the crux of this system. To understand it we must take a look at the basic DTL gate. The circuit of a 930 four-input gate is shown in fig. 4. With all four inputs open-circuited, or connected to +1.5 volts, the output level will be nearly zero since both transistors are conducting. If any one or more inputs are grounded, both transistors stop conducting, and the output level goes up to at least 3 volts. We can sum this up by saying that the output is low when all the inputs are “high,” and the output is “high” when any input is “low.”

The only exclusive state for the gate is when all the inputs are high, the “and” condition. That is, input number 1 is high and input number 2 is high and input number 3 is high and input number 4 is high. This is called NAND logic (short for Negative AND) since the output has a logic state opposite from the inputs. Since the exclusive state will be the one that lights the indicator, a “low” gate output is used for the turn-on signal. The circuit of fig. 5 will turn the lamp on when driven by a “low” gate output.

The circuit of fig. 4 is generally abbreviated in logic diagrams. A combination of fig. 4 and 5 is drawn in fig. 6. It is the circuit of fig. 6 which is duplicated sixteen times—once for each indicator lamp at each point of the compass. Each one of these circuits has the same function: when all four inputs are “high,” the lamp lights. If the sixteen indicator circuits all work the same way, how is the lamp that corresponds to the digital code-wheel position lighted? Figs. 7 and 8 show the circuitry that does the job.

Unlike the example of fig. 2, no 1.5-volt cell is used to generate zero and 1-volt logic levels in this system. If a dark square is des-
fig. 7. Circuit for generating a logic output from the gray-scale direction wheel.

fig. 8. Decoding the logic output from the gray-scale direction wheel.

fig. 9. Layout of the etched circuit boards used to mount the integrated circuits. Wiring between IC's is done with small insulated wire.
fig. 10. Regulated power supply for the direction indicator.

- **Regulated Power Supply For Direction Indicator**

ignated as 1 and a white (clear) square as zero, the resistance of any of the four CdS cells is low for zero and high for 1. By connecting each CdS cell from input to ground of a DTL inverter (a DTL gate with only one input used) we will get an output with the correct DTL logic levels, but inverted in sense. Another inverter is added to restore the sense of the input signal.

If the CdS cells are designated as A, B, C and D, the eight outputs will be \overline{A}, A, \overline{B}, B, \overline{C}, C, \overline{D}, and D. A is the inverse of \overline{A}, or as the logic designers say, "not A." So \overline{A} will be 1 when A is zero and zero when A is 1. B, C and D are "not B," "not C" and "not D." By connecting \overline{A}, A, \overline{B}, B, \overline{C}, C, \overline{D} and D to the four-input gates as shown in fig. 8, the correct gate (and only the correct gate) will always end up with four 1 inputs when the wind vane points to the direction that corresponds to that gate. You can check this by methodically going through and checking (by penciling in zero and 1) for each possible input condition (direction) and determining which gate has all its inputs at 1.

Construction

The details of construction are shown in the photos. The indicator unit is built around a 3-1/2-inch rack panel with odd bits of scrap aluminum to form a box-type arrangement. The power supply is located in the right-rear corner. The indicator circuits are built on perforated Vector board (64AA18) in the front of the unit right next to the indicator lamps. The IC's are mounted on two six-section strips of etched-circuit board at the left center. The layout of these etched-circuit boards is shown in fig. 9. Note that an rf-interference filter was put in each of the four input signal lines to prevent false-triggering the DTL circuits with your transmitter. The particular filters I used are simple toroid-L, coaxial-C filters from the surplus store, but any good rf lowpass filter should do as well.

The Gray-scale encoder wheel is cut from 1/8-inch plexiglass, scribed, and the dark sections pasted on with masking tape. The masking tape is then colored with a black felt marking pen. The CdS cell assembly is made from odd pieces of phenolic; the cells are held in the holes with GE RTV Silastic which is widely available for caulking showers.

Although this remote-wind direction indicator only indicates sixteen point of the compass, it eliminates most of the moving parts associated with remote indicators—in addition, you don't have to worry about a long multiconductor selsyn cable. The sixteen indicator points have another advantage—if you want to tie an antenna rotator to the wind-direction system, small deviations in wind direction won't activate the rotating system. If you want more than sixteen points of the compass, a more complex coded wheel will do the job.

Ham Radio

September 1968
A stable signal source for the uhf bands is a very useful item for all vhf and uhf experimenters. The circuit shown here is simple, has good stability and is very portable. It puts out a strong signal on 432, and when it was carried three blocks from home a strong signal was received.

The signal source is simply a 108-MHz crystal-controlled oscillator using a single 2N708 transistor with a 1N916 diode connected from the output tap on L1 to ground for generating harmonics. When the output is displayed on a Hewett-Packard spectrum analyzer, the twentieth harmonic is still quite large. The spectrum chart in fig. 2 shows the output before and after the diode was in-
installed. The General Electric 1N916 was recommended by K6UQH, and I find it does very nicely as a multiplier. You can also use this diode in local oscillator chains for 432- and 1296-MHz receiving converters; for 50 cents, it's a very good varactor.

The signal source can be built into most any type of package—I used a home-made sheet-brass box $2\frac{1}{2} \times 5 \times 1$ inch. Make all the leads as short as possible. A $6\frac{3}{4}$-inch antenna made from number-12 copper wire can be used for both bands. This is an excellent signal source for tuning antennas and adjusting receiver front ends. Stability is very good, and I use it on 432 MHz for frequency calibration. The oscillator is checked periodically on a Hewlett-Packard frequency counter; usually it is within 1kHz at 432 MHz. Drift is very slight—with a stable BFO, I can only detect approximately 200-Hz drift during a 10- to 15-minute period. This is apparently due to slight voltage drops in the flashlight cells.
After an ssb is generated, it has to be put on at least one of the amateur bands; here’s how it is done.

Single-sideband signals for ham communications are almost never generated at the operating frequency of the ssb transmitter. For example, a transmitter output consisting of either the upper or lower sideband of 14.25 MHz is not actually generated at that frequency. No matter what the output frequency of the transmitter, sidebands are developed in the balanced modulator with a constant "carrier" frequency.

The fixed-frequency sideband is changed to the several operating frequencies through what is basically a heterodyne process. The sideband is mixed with a pure rf signal; they beat together and form a new sideband signal near the desired frequency. The process has several names. The most common is frequency conversion. But, in transmitters, to distinguish from the similar process in receivers, the term frequency translation is more accurate.

The simplest system

You can understand the basics of the process easily if you refer to fig. 1. The block diagram illustrates the simplest form of frequency translation.

A crystal oscillator generates the carrier for modulation. Its signal is mixed with voice signals in the balanced modulator, producing a double-sideband signal with the carrier eliminated. A sideband filter, either mechanical or crystal-lattice, trims off the unneeded sideband. All that is left is the one sideband of the initial carrier frequency.

To translate the desired sideband upward to an operating frequency, a heterodyne mixer is used. A variable-frequency oscillator (VFO) furnishes a signal that beats with the sideband from the filter and produces a sideband at the desired frequency. In the
process, the simple mixer can't avoid also producing a carrier at the VFO frequency and an image sideband (as far from the VFO carrier as the desired sideband, but on the opposite side).

Ordinary tank circuits, tuned to the desired sideband, eliminate the carrier and the unwanted sideband—neither of which is very close to the frequency of the wanted sideband. The sideband, which is now the sideband of the operating frequency, is fed to the linear power amplifier.

The reasons for going through this process may not be obvious. First of all, the isolated sideband can't be raised in frequency by simple frequency multipliers, as in non-SSB transmitters, because they would lose their identity completely. In the second place, a

A typical double-heterodyne system is diagramed in fig. 2. The diagram includes more detail of an actual transmitter than did fig. 1, yet it is still simplified. Also included are frequencies as they occur in one model of transmitter; they will help you understand exactly what's happening in a transmitter like this.

The carrier oscillator in this one is in the 455-kHz range. (Others include 1.65 MHz, 2.2 MHz, 3.3 MHz, 5.5 MHz, and 9 MHz.) To pick which sideband will be generated, the carrier frequency is shifted above and below the nominal 455 kHz; the two frequencies are listed on the diagram. I'll base my explanation of the system on generating a lower sideband (lsb) in the transmitter output; the carrier oscillator runs at 453.65 kHz.

double heterodyning

Not many ham transmitters use the simplest single-translation version just described—only a couple of kit-type models, that I know of. Such systems are not very effective at producing high output frequencies. Therefore, in multiband SSB transmitters and in those for VHF use, something more elaborate is preferable. A double heterodyne arrangement can produce the higher output frequencies needed. It's the most popular frequency-translating system found in ham transmitters.

Fig. 1. Simplest means of translating a sideband from a carrier-generated frequency to an operating frequency.

Constant carrier frequency in the balanced modulator means that the resulting sidebands can always be fed to the same filter. If there were a lot of different frequencies, a different filter would be needed for each one. It's much easier to heterodyne or translate the fixed frequency up to the various desired ones.

Mixed in the balanced modulator with the .1–3 kHz voice signals, the carrier produces a pair of sidebands. The lower sideband contains frequencies from 450.65 to 454.55 kHz (the differences between the lsb carrier frequency and the voice frequencies). The upper sideband contains frequencies from 453.75 to 456.65 kHz (the sums). The mechanical filter sharply chops off the upper sideband, leaving only a single sideband encompassing 450.65 to 453.55 kHz. For simplicity, this can be called the lower sideband of 455 kHz, even though there is some separation from that frequency. The carrier itself is eliminated in the balanced modulator.

The first frequency translation takes place in the first mixer. The VFO is tunable from 2.5 to 2.7 MHz; a frequency of 2.6 MHz (2600 kHz) is chosen for the example. Again, because of the heterodyne process, two side-
bands are produced, but they are far apart. The desired one encompasses the sideband frequencies from 3050.65 to 3053.55 kHz; the other is an "image," with frequencies from 2146.45 to 2149.35 kHz. The desired sideband is still a lower sideband even though it has an "upper" position with respect to the image. The desired sideband is the lower sideband of 3055 kHz (2600 + 455 kHz).

The tuned circuits that follow the first mixer get rid of the 2.1-MHz sideband, being tuned to the vicinity of 3 MHz. The VFO carrier doesn't appear in the output of this mixer, as it did in fig. 1, because the mixer is a balanced mixer. It's a close relative of a balanced modulator and cancels whatever rf carrier is applied to it. Translation therefore affects only the sideband that is applied to the balanced mixer.

The 3055-kHz sideband must still be raised to the operating frequency. The second translation is handled much like the first. A switchable crystal oscillator supplies an rf signal for the second balanced mixer. Beat- ing with the sideband signals that were produced in the first mixer, the rf signal develops a single-sideband signal in one of the ham bands. The band depends on the crystal selected in the hf oscillator, and the exact frequency depends on the setting of the VFO. An example will show you how this works.

Suppose you want to produce the lower sideband of 14.25 MHz. You set the switch of the hf oscillator to the crystal that places the output frequency in that vicinity. The crystal for this happens to have a frequency of 8.6775; but its oscillator is a doubler, so its operating frequency is 17.3550 MHz. The lower sideband of 14.25 MHz lies from 14.2470 to 14.2499 MHz. The sideband signal fed to the second mixer must therefore be the difference between those frequencies and the hf crystal frequency; that sideband covers from 3.1051 to 3.1080 MHz.

For the first mixer to produce that sideband for the second mixer, the VFO must be set at the difference between it and the input sideband from the filter. Calculating the differences, you can find that the VFO must produce an rf signal at 2654.45 kHz. (You can subtract 450.65 from 3105.1 kHz or you can subtract 453.55 from 3108.0 kHz; those are the limits of the lower sideband coming from the mechanical filter and the limits of the sidebands to be developed by the first mixer.)

On the front of the transmitter, the hf-crystal switch would point to the 14.2-MHz sector of the 20-meter band, and the VFO dial would indicate 50 kHz. The combined readings would signify an operating frequency of 14.25 MHz. The transmitter output would be the lower sideband of that frequency.

Frequency synthesis

Developing bands of frequencies by one translation and developing the frequencies within that band by another are excellent reasons for using double and triple heterodyne systems. Frequencies can be spread out wider than with any other system. Bands can even be sectored, and the VFO range used to cover...
only a portion of each ham band—thus spreading the frequencies even wider and making it that much easier to tune a particular operating frequency.

There's another way this can be done—by a method called frequency synthesis. The chief principle behind synthesis is illustrated in the transmitter diagramed in fig. 3. For simplicity, the frequencies are marked without reference to the sidebands; you know that what comes through the 9-MHz amplifier is actually one sideband or the other of 9 MHz. The same is true of the frequencies following the mixer.

The switching from band to band, and the tuning within bands, is all accomplished before the rf signal is mixed with the sideband signal. Developing all the various rf mixing signals artificially is where the term synthesis comes from. In commercial multi-frequency transmitters, it is done entirely with crystals; a few crystals can synthesize hundreds of individual frequencies by the heterodyne translation method.

How the transmitter in fig. 3 works is not hard to figure out. The 9-MHz carrier oscillator is common in modern ham transmitters. After the balanced modulator, the sideband filter, and some amplification, the single sideband is applied to the mixer. There, the translation process is simple—just a single heterodyne. The synthesizer (sometimes called heterodyne mixer or premixer) must supply a signal that will heterodyne with the 9-MHz sideband to form the sideband of the desired operating frequency.

If the desired operating frequency is to be, say, 28.9 MHz, the synthesizer must supply an rf signal at 37.9 MHz to beat with the 9-MHz sideband signal coming from the filter and amplifier.

How does the synthesizer create such a signal? It mixes the signal from the 43-MHz crystal with a signal from the VFO. To synthesize a 37.9-MHz signal, the VFO must be set to generate a 5.1-MHz signal.

From the viewpoint of the operator, it looks like this: the bandswitch knob is tuned to cover the segment of ham band from 28.5 to 29 MHz; this selects the 43-MHz crystal. The VFO dial is twisted until it reads .9; this represents 900 kHz (.9 MHz) on the dial and sets the VFO frequency at 5.1 MHz. The synthesizer mixes the 43-MHz and the 5.1 MHz signals. A tuned circuit that was selected by the bandswitch control picks off the difference between the two, or 37.9 MHz, which is fed to the main mixer. There, the 37.9-MHz signal beats with a sideband of 9 MHz; another tuned circuit picks off the difference, which is the sideband of 28.9 MHz—the desired operating frequency.

Other crystals and mixing schemes in this transmitter produce the other frequencies in the ham bands that are used for ssb. In some bands, the VFO is fed to the mixer directly to produce the desired operating-frequency translation.

triple heterodyning

From the words, you can figure out that
a transmitter with triple translation is one with three mixers. And, of course, it also needs three oscillators in addition to the carrier generator.

You can probably picture the arrangement in your mind. After the balanced modulator and sideband filter, the sideband signal goes to a first mixer where a crystal-generated signal is beat against it to produce a sort of intermediate-frequency sideband signal. At the second mixer, a VFO puts in a signal to tune the sideband signal within each band. A third mixer, usually with crystal switching, translates the sideband signal to bands or segments of bands. In other words, a triple-heterodyne system works like a double system with an extra stage of mixing in front of it.

An interesting example of triple translation in a ham ssb transmitter is in the Sideband Engineers SB-34 transceiver. Fig. 4 is a block diagram of it. An interesting thing about this one is the use of the carrier oscillator to also furnish the rf signal at the first mixer. By careful choice of the carrier frequency, the designer has also come up with a novel way to shift sidebands.

fig. 4. Special case of triple translation. The first mixer gets multiplied signal from the carrier oscillator.

The 456.38-kHz carrier is modulated as usual, amplified, and filtered to produce the sideband signal. A sample of the carrier is also fed to a doubler to produce a 912.75-kHz signal. The stage following that is either a doubler or a tripler, depending on the setting of the sideband switch. With the signal frequency doubled, a signal at 1825.5 kHz is fed to the first mixer. There it beats with the sideband of 456.38 kHz, translating to a sideband near 2281.9 kHz. If the stage is operating as a tripler, the signal going to the first mixer is 2738.2 kHz. That translates the 456.38-kHz sideband signal to a sideband near 2281.8 kHz.

The VFO generates a signal that is tunable from 5456 to 5706 kHz. This translates the sideband to some frequency between 3.174 and 3.424 MHz—the exact frequency depending on the dial setting of the VFO. Whatever the VFO setting, the sideband developed is on the upper or lower side of the new frequency, whichever is selected at the doubler/tripler stage.

You've probably already figured out the third mixer, if you've been studying fig. 4. With the crystal selector set for the 7.2-MHz crystal, the range of difference frequencies tuned in the second mixer by the VFO is from 3.775 to 4.025 MHz. For the 10.475 crystal, it is from 7.05 to 7.3 MHz; for the 17.525 crystal, from 14.1 to 14.35 MHz; for the 24.625 crystal, from 21.0 to 21.45 MHz. Thus, the 80-, 40-, 20-, and 15-meter ham ssb bands are all covered. Naturally, the VFO dial is calibrated to show each of these band sectors.

mixers that translate ssb

In most single-sideband ham transmitters, the mixer circuits are ordinary tube or transistor mixers. In one transmitter I know of, a semiconductor diode mixer is used for translating the carrier frequency to an intermediate frequency. Typical tube and transistor transmitter mixers are shown in fig. 5.

These are not the only configurations used, by any means, but they are typical. Tube
Mixers are usually pentodes in modern SSB transmitters; seldom do you find a triode used for this purpose. The two signals are merely coupled to the grid, mixed inside the tube, and fed along to the next stage.

In transistor mixers, common practice is to couple one signal to the base and the other to the emitter. In the transistor stage shown, the sideband is fed to the base, and the VFO signal to the emitter. The output frequencies are developed in the collector circuit.

Simple frequency conversion like this is okay for SSB transmitters, although it does create a problem. When two signals are beat together in a nonlinear mixer, the output consists of the two original frequencies, their sum, and their differences. As an example, suppose the VFO in the transmitter of Fig. 4 is set at 5500 kHz, and the lower sideband has been chosen. The frequencies applied to the mixer (the transistor in Fig. 5) are 2281.9 and 5500.0 kHz. The output consists of four frequencies: 5500.0 kHz, a sideband of 2281.0 kHz, a sideband of 7781.9 kHz (sum), and a sideband of 3218.1 kHz (difference). Picking out the right one is the job of the tuned circuits following the mixer. In this example, a broadband tuned circuit centered around 3.3 MHz can do the job. Only the sideband of 3218.1 kHz gets through. The tuned circuit thus eliminates the new carrier that was generated as part of the translating process, as well as the original sideband and the new image sideband.

In first mixers, getting rid of the new carrier can be a problem because it is so near the sideband frequencies. It may even be troublesome to get rid of the image sideband unless the translation is a long step upward. Also, some of the original carrier may be lingering with the sideband, having slipped through the balanced modulator and the sideband filter.

The solution to all these possibilities is a balanced mixer, which was already mentioned briefly. An example of a tube-type balanced mixer is shown in Fig. 6. A balanced mixer looks and operates just like a balanced modulator; the difference is that two RF signals are fed in rather than RF and AF signals.

As in the usual balanced modulator stage, the signal to be canceled out is fed into the stage in parallel, and the output is taken in push-pull. Mixing is accomplished by feeding in the other signal—in this instance the sidebands—in the same mode as the signal is taken out of the stage. Thus, the VFO signal is fed simultaneously to the grids of both tubes (in parallel), and the sidebands from the mechanical filter are fed to the mixer grids in push-pull. The two 220-pF capacitors couple the VFO signal equally to the grids.

Balance is important in the two tubes, so a balancing-type cathode bias circuit is common to both tubes. During alignment of a transmitter using this system of translation, the balancing potentiometer is adjusted for a null of VFO signal in the mixer output.*

Bringing the sideband up to the operating frequency in a single-sideband transmitter is obviously not as simple as mere frequency multiplication. That approach would be im-

* The subject of SSB transmitter alignment, including how to adjust balanced modulators, is covered by Larry Allen in Repair Bench on page 58.
fig. 6. Balanced mixer used in some ssb transmitters to eliminate the carrier that is generated by frequency translation.

possible with sideband. An alternative, in hf ssb transmitters, is phase-shift generation of the sideband signal; the sideband can be produced right at the operating frequency. This method was discussed in the July issue of *Ham Radio*. Modern designs shy away from the phase-shift method because multiband characteristics are desirable in ham transmitters. Frequency translation seems to be the most practical way to raise the sideband frequency.

Next month I'll delve into another little-understood facet of the modern ham ssb transmitter: voice-operated transmission, better known as VOX. I'll explain various methods of accomplishing this type of hands-off operation. Also, we'll take a quick look at MOX—the manual version, usually called PTT or push-to-talk. VOX and MOX go together, in a way, and the up-to-date ham should understand both.

the i-f cathode jack

Here is a very simple modification that will greatly increase the versatility of your communications receiver. Only one part is required: an ordinary closed-circuit phone jack. The diagram shows where the jack goes: in the lead between the i-f stage cathode bypass capacitor and ground. The jack may be mounted on the rear apron of the receiver chassis near the last i-f stage.

As long as nothing is plugged into the jack, it is a short circuit and the receiver works exactly as before the modification. When a phone plug is inserted, the i-f stage becomes a cathode follower, and provides a low-impedance i-f output for driving a Q-5'er, fm adapter, monitor scope, etc. An ac vtvm can be plugged into the jack for precise indication of signal level. With a vtvm plugged in, it is possible to make comparisons of antenna gain, measurement of front-to-back ratio, transmission line attenuation, preamp gain, TR switch loss, image rejection, signal fading, skirt steepness ratio—practically any measurement requiring dB comparisons or rf signal levels. Be sure to turn the agc off.

Sometimes a cathode follower becomes regenerative if terminated in a capacitive reactance. If there is any sign of instability, the phone plug should be shunted with a suitable loading resistor.

Fred Brown, W6HPH
There must be some very good reasons why Swan has become the leading manufacturer of transceivers for the amateur radio service. One of the most important reasons is our dedication to the principles of Value Analysis.

Value Analysis is the process of examining a product to find ways of improving its performance, reducing costs, or whatever can be done to make the product a better value to the buyer. It is surprising how often this leads to greater simplicity, improved reliability, and overall consumer satisfaction.

At Swan our engineering department is constantly applying these principles in an intensive search for improvements in our products. The 500C transceiver is an outstanding example of the results. It combines all the features you require in a complete SSB-AM-CW transceiver with performance, quality, and reliability second to none. Yet the price is substantially less than competitive gear. There's really no secret or mystery about this. We believe that the 500C is the most completely "Value Engineered" transceiver on the market, and this is why we are in the lead. Visit your Swan dealer soon, and see for yourself.

500C Amateur Net $520
117XC POWER SUPPLY $105
what you should know about standard RG-type coax cable

Most amateurs who need standard coax cable will merely call out a catalog number, an RG designation and a length requirement—and patiently wait at the counter for the merchandise. To other hams, particularly those with vhf background, more thought is given to selecting the line. Unfortunately, this consideration never gets much further than the length of feedline required vs attenuation per foot. And even then they are likely to purchase inferior cabling.

behind the problem
To all too many, standard coaxial cable is a foolproof commodity which can normally be bought “blind.” Few realize that today a feedline made by one manufacturer can
exhibit completely different characteristics from that made by another—even though both cables carry the same RG designation.

Moreover, too free usage of the term “RG cable” has led to considerable confusion. The term RG actually connotes cable meeting latest revision specs of MIL-C-17; older versions of JAN-spec and MIL-C-17 cable do not. Unless the manufacturer clearly states this, it cannot be assumed that the latest spec is being adhered to.

Additionally, some manufacturers have blurred this distinction with meaningless terms such as “RG-type.” It is essential that you be aware of these things—since your entire cabling system could fail as a direct result of buying the wrong coax for your individual application. Slow cable degradation, prime cause of gradually-deterioration signals, is extremely hard to detect.

In some instances, it might prove valuable to review military specifications. While many will be irrelevant, some reveal key parameters applicable to amateur needs.

For example, consider percentage of braid coverage in a typical ssb transmission system. To prevent signal leakage that might interfere with other services such as television, the percentage of braid cover should be quite high—at least 90 percent of the dielectric must be completely shielded. Yet, many cables presently being used in this kind of rf work exhibit only 65 percent coverage. Add to this other problems that frequently develop, and the over-all evaluation process can be more clearly appreciated.

determine characteristics, spot problems

Some amateurs are confused by the significance of the cable dielectric. Simply stated, the dielectric quality of any coaxial line determines both long- and short-term attenuation as well as over-all power-handling capabilities.

How do you spot a poor dielectric? If a thick-wall coaxial line with silver-plated copper conductor has a dielectric that appears amber or gray when placed on a sheet of white paper, it is probably composed of inferior or scrap polyethylene. Inspect a sample of the cable you are replacing (or currently using).

Demonstrating the color check can be extremely helpful. Bear in mind, however, that wall thickness—which varies from one impedance to another (between 50-, 75- and 95-ohm types)—determines opacity; opacity, in turn, determines color hue. Also, conductor color can affect over-all hue.

What about foam cables? Here, too, some evaluation can be accomplished visually. Bubbles should be of similar size and round in shape throughout. If a micrometer’s handy, check the extrusion of the cable and check to see if the dielectric is tight on the conductor.

If you ask yourself a few key questions, you can shed a lot of light on both the operational efficiency of your system and the requirements that should be met with new cable. Does the line become brittle or fluid during periods of temperature extremes? Or, is it presently fluid or brittle? What about dimensional stability? Have gradual changes been noticed?

watch for capacity

Although few amateurs are aware of this characteristic, standard coax lines are actually extremely long capacitors—each exhibiting a pronounced effect on the tuned output circuit at each end (transmitter, antenna, etc.).

To cope with this problem, coaxial cables are rated in terms of dielectric constants. As
the constant approaches 1.00, the more nearly the capacity (and subsequent attenuation) approaches the low figure of open-wire lines. Knowledge of this figure allows you to analyze frequency-handling capabilities of the coax in question.

For example, cellular polyethylene types (foam cable) are rated at a dielectric constant of 1.5, compared to 2.26 for conventional solid polyethylene. A look at solid dielectric RG-8/U cable in terms of capacity shows an actual capacity of 29.5 pF per foot. This compares with 24.5 pF for foam lines of equal size.

<table>
<thead>
<tr>
<th>type</th>
<th>dB per 100 feet nominal attenuation</th>
<th>watts</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 50 100 200</td>
<td></td>
<td>10 50 100 200</td>
</tr>
<tr>
<td>RG-8/U solid</td>
<td>0.55 1.33 2.00 3.50</td>
<td>3500</td>
<td>1500</td>
</tr>
<tr>
<td>RG-8/U foam</td>
<td>0.32 0.77 1.18 2.07</td>
<td>3500</td>
<td>1500</td>
</tr>
<tr>
<td>RG-58/U solid</td>
<td>1.25 3.13 4.16 6.30</td>
<td>1000</td>
<td>450</td>
</tr>
</tbody>
</table>

If you want to buy a 100-foot length, the difference between one dielectric and another can be 500 pF—enough to severely degrade matching of the most well-designed 220- or 432-MHz transmission system.

solve migration problem now

While nearly all standard coaxial cables have black polyvinyl-chloride jackets, there are actually two sub-categories of jacket material that should be evaluated early in the game. If you don't consider this now, you may be plagued with high attenuation in a few months.

The first kind, known as Type I, is found only in older versions of JAN and MIL cables and can prove troublesome in certain applications. Depending upon age and environmental temperatures, it's possible for the polyvinyl chloride's "plasticizer" to migrate out of the jacket and into the cable.

Result of wrong application choice? Electrical characteristics will be drastically changed, to say nothing of attenuation. In nearly all instances you should use Type Ila polyvinyl-chloride jacketing material. Incidentally, the cost of this extra protection seldom exceeds $.02 per foot.

rf power attenuation

RG-8/U and RG-58/U cable should be examined at this point in terms of attenuation. Both solid-polyethylene and polyethylene-foam types are compared in Table 1. The dB rating is per 100-foot length. These figures assume no cable degradation due to heat or general aging.

Suppose you have a 144-MHz vhf system. Given such information, it can be seen that with RG-58/U, more than 5 dB of rf power output is lost at 144 MHz. With RG-8/U foam, however, only 2.7 dB is sacrificed. This means you would have to generate almost twice the power with RG-58/U to achieve the same results as you would with foam-dielectric RG-8/U.

In lower right foreground, cable conductors enter an extruder. The extruder puts an insulation of polyethylene on the conductor wire—then the cable travels through a cooling bath.
Table 2. Sampling of popular foamed polyethylene dielectric coaxial cables.

<table>
<thead>
<tr>
<th>RG/U number</th>
<th>Amphenol number</th>
<th>jacket OD</th>
<th>jacket type</th>
<th>shield OD</th>
<th>dielectric type</th>
<th>center conductor OD</th>
<th>VP capacitance</th>
<th>maximum operating nominal volts</th>
<th>maximum impedance in ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>621-111</td>
<td>.405 I</td>
<td>C</td>
<td>.285</td>
<td>7/19C</td>
<td>80</td>
<td>24.5</td>
<td>1500</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>621-100</td>
<td>.405 llle C</td>
<td>.285</td>
<td>14 C</td>
<td>80</td>
<td>16.5</td>
<td>3000</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>59 type</td>
<td>621-715</td>
<td>.195 llle C</td>
<td>.107</td>
<td>22 CW</td>
<td>80</td>
<td>17.0</td>
<td>500</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>621-186</td>
<td>.242 P</td>
<td>C</td>
<td>.146</td>
<td>20 CW</td>
<td>80</td>
<td>17.3</td>
<td>1000</td>
<td>75</td>
</tr>
</tbody>
</table>

C—copper, CW—copperweld, P—polyethylene, VP—propagation velocity

determine power requirement

Note the maximum power ratings for standard communications cables listed in Table 1. It is important to know both the power-handling capability of the cable in question as well as the specific frequency intended for use. The ratings in Table 1 assume a perfect match between transmitter and line, and line and antenna. If vswr is high, power-handling capability diminishes and losses run high as dielectric heating occurs.

check conductors

It is important to realize that in order to meet many of the standards and ratings discussed so far, other elements of coax construction come into play. Many of these—while seemingly obscure—may account for difficulty you are experiencing now with a particular brand of cable.

Again, if a sample can be obtained of existing in-use cable, much can be determined. Visually, for example, check whether the conductor is off center in the dielectric. If there is more than 10-percent error, serious problems can be expected. Are there as many strands in the center conductor as specified in the latest MIL-spec requirement? Though this might seem unimportant, it can be crucial in work above 10 meters.

In most good-quality standard coax lines, braid should fit tightly. If it doesn't, this can indicate a strong possibility of a change in electrical characteristics. Braid tightness, however, can vary; RG-8A/U, for example, has an extremely loose braid. It's wise to check cable specifications.

Be sure to inquire as to flexibility requirements. Maximum flexibility is achieved with stranded center conductors, although attenuation losses can be cut appreciably with solid conductor carriers. The answer to this question involves considerations discussed earlier—including frequency of operation and transmitted power in watts.

cable selection checklist

In addition to the above, an amateur should consider the following checklist:

1. **Impedance**: What is the actual impedance and percentage of spec variation?
2. **Frequency**: Is there any attenuation periodicity (high points) along the intended frequency curve?
Table 3. Coaxial cable joint jacket characteristics.

<table>
<thead>
<tr>
<th>MIL-C-17 designation</th>
<th>jacket type</th>
<th>temperature limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>type I</td>
<td>black polyvinyl chloride</td>
<td>$-40^{\circ}C$ to $+80^{\circ}C$</td>
</tr>
<tr>
<td>type IIa</td>
<td>black polyvinyl chloride, non-contaminating</td>
<td>$-55^{\circ}C$ to $+80^{\circ}C$ over $\frac{1}{4}''$, $-40^{\circ}C$ to $+80^{\circ}C$</td>
</tr>
</tbody>
</table>

3. **Power:** What is theoretical corona voltage? Actual voltage?

4. **Jacket composition:** Is it of non-contamination material, according to MIL specifications? What are the changes in attenuation at 432 and 1296 MHz after aging tests?

5. **Jacket tightness:** Does it fit tight enough to show braid marks clearly, or is it loose, possibly indicating poor extrusion and instability?

Lightweight Headphones

Many DX'ers find that heavy headphones are too heavy on the head and ears for long periods. The solution to the problem is a bit complex and will be discussed here.

EP2BQ uses the TELEX twinset which has a headband plus eartips. On test, however, it was found that this type has a strong peak above 2kHz that causes problems with interference and voice intelligibility.

There is a group of TELEX secretarial-type under-the-chin units called Dynaset, Monoset, and Tele-fi. Although not offered to the mass market, Allied and Newmark also carry a “new 799;” this appears to be a Monoset built for additional impedances. These devices all use the same transducer with a response of 50 to 500 Hz and are very light, weighing from one-half to 1.25 ounces.

KH61J highly recommends the Dynaset HUP-01. This has the transducer in a phone plug, with plastic tubing leading up to a junction below the chin. This is available only in 15 ohms, however. It is frequently found in airliners.

Don Miller, W9WNV, has been pictured wearing the Monoset unit, which has the transducer in the junction under the chin. Although these have been offered in 125 and 2000 ohms, Newark now shows them as the “new 799” in 15, 500 and 1000 ohms too. For those of you with 500-ohm equipment such as Collins, this appears to be the best solution.

The remaining design is the Tele-fi. This has the transducer in one earphone, with a tube leading to the other ear. This results in a half-ounce unit but puts a millisecond time delay in the line to the other ear. This promises good performance on music and voice, but we have no reports on the possible effect of this small time delay on code reception. However, it is available in the full range of five impedances, is extremely lightweight and passes under the chin. Further, it appears to have small earmuffs that fit into the outer ear rather than plastic tips to fit the entrance to the ear canal as found in the other units.
What's the BIG Idea?

When it's tough to separate last year's science fiction from today's state of the electronic art... when even the "new" transistor has been superseded in many cases by more versatile and efficient devices... and most of the electronics industry has been turned upside down... why does Amateur Radio stick to the technology of the Fifties?

The manager of advanced development for a big communications company—an active ham since his early teens—asked the same question of another long-time enthusiast and nationally-known authority on solid state devices. They observed that effective application of the new technology—largely a product of the aerospace industry—demanded a high degree of engineering sophistication and a variety of technical capabilities not generally found outside of that industry... their idea... why not organize a group of outstanding professional engineer/hams... to do the job... and develop their own new generation of no-compromise, ham gear?

The idea grew...

Word got around... and it became obvious from the interest it aroused that a lot of serious amateurs were eager for really modern equipment...

... and grew... with the creation of a unique engineering team... young and enthusiastic... encompassing several advanced EE degrees... more than half-century of up-to-the-minute communications engineering experience... plus some seventy years' post-war hamming... DX, contests, VHF, RTTY... the whole spectrum of amateur radio... and became really big... when the backing of a major corporation turned it into an intensive, full-time professional operation.

The "BIG IDEA" became SIGNAL/ONE. SIGNAL/ONE is the new criterion for judging amateur radio equipment... sophisticated engineering combined with classic ham ingenuity to offer you unprecedented performance... and operating pleasure. Unique new marketing and warranty policies reflect SIGNAL/ONE's pride and confidence in this superb new line... and the determination to keep SIGNAL/ONE... NUMBER/ONE... in investment value.

WHAT'S THE BIG IDEA?

It's all the performance... the versatility and convenience... the quality... that a few demanding engineers knew was possible... and wanted to put into their own ham gear... They did... and the result is... SIGNAL/ONE.

The remarkable SIGNAL/ONE line will soon be available for you to put through its paces... when you use it you'll agree... the idea was great... and the result well worth waiting for.

SIGNAL/ONE

Indian Rocks Beach, Florida
As so often happens to the inveterate home brewer, I needed a good dummy load which was usable well into the vhf region. Like many others, I had some misgivings about the accuracy of homebrew loads. The following information is presented as a guide to the design and construction of dummy loads, as well as a description of my load and its characteristics as measured on a laboratory-type rf impedance meter.

The better commercial loads are built around deposited film or similar resistors where the film thickness is made small to minimize variations in bulk resistance due to skin effect. At low frequencies, rf currents penetrate more deeply into a conductor and as the frequency is increased, penetration becomes progressively less. Depending upon the type of resistor, other effects are also present. Since the average homebrewer can't afford an ideal resistor, we must do the best we can with ordinary carbon composition resistors.

In addition, at vhf the reactive effects can become rather formidable. Commercial practice is to construct the load shield in the form of tapered line sections to match the load impedance at all points as shown in fig. 1. Notice that the tubular resistor element is long compared to diameter. Also, the
resistor-to-connector lead is in the form of a cone that tapers from the outside diameter of the resistor element to the diameter of the connector center conductor.

The coaxial structure between point A and B is a tapered line section which is designed so that its characteristic impedance is the same as the impedance of the resistive element at all points. The resistive element starts at point B, and from that point to point C the impedance diminishes uniformly to zero. At point C the outer section of the coax structure is fastened to the resistor to form the return leg back to the connector body.

I designed it for an air dielectric—it wasn't intended to be used with an oil coolant. The dimensions and values were chosen for a 50-ohm load.

The completed unit looked good enough to consider as a permanent load, so I mounted it in a coffee can and added oil coolant. If you intend to use cooling oil, the shield diameters should be increased about 30% to allow for the different dielectric constant of oil. The performance curve shown in fig. 3 from 4 to 50 MHz shows some deviation from the measured dc value of 52 ohms.

The impedance meter indicated that the reactive effects through this range were small compared to the variations in resistance and were negligible below 30 MHz. At 50 MHz, resistance variations contributed approximately 1% of the impedance variation. The load, then, is resistive for all practical purposes to 50 MHz.

The changes in resistive value are a built-in factor determined by the use of plain old carbon resistors. Above 50 MHz, the load impedance begins to do some pretty wild things. This is shown in curve A of fig. 4. Again, the wildest excursions were due to variations in the resistive value, while the reactive value remained surprisingly reasonable. It was apparent that the over-all geometry of the load wasn't too bad, and the limitation seemed to be the resistors themselves.

Any departure from the mathematically derived curve of the coaxial shield, or any departure in the linearity of the deposited resistive film on the ceramic tube which makes up the resistor element, results in something other than a purely resistive load; this becomes progressively worse as frequency is increased.

Since I've worked with and rebuilt precision dummy loads, I was dubious about the prospects of building anything useful with available components. However, since I had a large number of 390-ohm, 2-watt resistors with very short leads (I bought one of those "five for a buck" board deals) I built the dummy load shown in fig. 2. I didn't know if the load would be worthwhile or not, so

fig. 1. Geometry used in commercial loads to maintain the load impedance at all points.
fig. 2. The air-cooled dummy load built by WB7F. The performance of this load at various frequencies is plotted in fig. 3 and 4.

the load leveler

To improve the performance of the load, I built a load leveler. This is nothing more than a long length of coax—the longer the better. It's connected in series with the load. This piece of coax improves the load through attenuation.

For example, suppose you were to feed a vhf transmitter into an SWR bridge, then out to a long length of coax which could be open or short circuited at the far end. If the cable were long enough to represent a 10-dB loss and you fed 100 watts to the line, only 10 watts would actually arrive at the far end. The remainder would be dissipated in line loss. Since the 10-dB loss works both ways, the line would appear beautifully matched,
because the reflected signal would be 1/100 of the forward power indicated on the SWR bridge—and with an infinite mismatch at that! This, incidentally, is the reason why a vhf antenna should be measured at the antenna rather than the transmitter end of the line.

I coiled 80 feet of RG-58A/U into another coffee can, fed the ends through rubber grommets in the lid, and put coaxial connectors on the ends. With the load leveler, a recheck on the impedance meter showed the expected results—curve B in fig. 4. The improvement is already felt near 50 MHz; above 150 MHz the curve begins to flatten out. Since the impedance meter I used only goes to 250 MHz, this represents the end of the line for actual measurements.

However, because of the characteristics of the load leveler, the undulations of the curve will become progressively smaller with increased frequency; the curve tends to center around the mean impedance of the coax used in the load leveler. It should be noted that an appreciable part of the total power may be dissipated in the load leveler. At frequencies above 50 MHz, watch for hot spots in the load leveler cable. One way to do this is to use a length of coax from the transmitter to the load leveler—perhaps eight feet long. As you use this combination, run your hand along the 8-foot length of cable. Don't let it get very warm.

Similar hot spots will occur at half-wave intervals all along the line coiled up in the can, and inside the can, heat dissipation is impeded. It helps heat dissipation if the inside layers of coiled coax go to the dummy load instead of the transmitter. This is particularly true if the inside layers are coiled on a form. I used a 1-1/2-inch wood dowel as a form.

The combination dummy load and load leveler certainly isn't the sort of thing needed for lab-standard work, but it does represent a fair resistive load for amateur practice. At worst, it exhibits a SWR of about 1.25, and over much of the range it is considerably better.

choosing the resistors

Since the impedance meter indicated that the maximum variations were a result of the resistive component, it appears that the basic geometry of the load allows considerable latitude in resistor choice as long as the basic configuration is maintained. It's economically unsound to buy all new resistors to duplicate my load when a Heathkit Cantenna is available for the same money. However, if you have a bunch of resistors stripped out of television sets and old equipment, it's worthwhile to see if you have a usable group of values. One such group is illustrated in fig. 5. Maximum power capability is available when all resistors are the same value. When using dissimilar values, group values together which are closest in resistance. To find the total resistance value, proceed as follows:

1. Find the equivalent resistance of each group of identical resistors; merely divide the value of one resistor by the number of resistors in the group.

2. Find the resistance of each paralleled group: this can be done rapidly on a piece of cross-ruled paper as shown in fig. 6 or calculated from $R_{\text{total}} = \frac{R_1 \times R_2}{R_1 + R_2}$

3. Add the values of each of the series banks to obtain the total for the load; this value should be between 50 and 53 ohms.

The next problem is to determine the wattage capability of the load:

4. First, determine the maximum voltage capability of the second highest group of three resistors—in fig. 5, this is group 5:
\[E = \sqrt{PR} = \sqrt{6 \times 40} = 15.4V \]

5. Determine the current through this bank from Ohm's law:
\[I = E/R = 15.4/40 = 0.385 \, \text{A} \]

6. Since this same voltage will appear across resistor bank number 6, determine the current through bank number 6:
\[I = E/R = 15.4/50 = 0.31 \, \text{A} \]

7. Determine the maximum current through the dummy load by adding the currents found in steps 2 and 3:
\[0.385 + 0.31 = 0.695 \, \text{A} \]

8. Determine total power capability for load:
\[P = I^2R = (0.695)^2 \times 52.7 = 25.6 \, \text{watts} \]

If you use an oil coolant, this number may be safely multiplied by four for short periods. This load would then have a peak capability of about 100 watts.

Some of you may question the value I obtained in step 5. Since we have eighteen 2-watt resistors, you may think that the load should be capable of dissipating 36 watts. However, remember that the current that flows through banks 1 and 2 also has to flow through banks 3 and 4 and 5 and 6. If you raise the current through banks 1 and 2 to the point where they are dissipating their maximum power, the same current exceeds the ratings of the higher resistance banks.

It is often helpful to determine the dissipation of each bank of resistors separately—or at least each paralleled bank. For example, banks 1 and 2 have an equivalent resistance of 12.4 ohms; from step 8 the power dissipation is calculated at 6 watts.

To measure the resistance of the load with a simple ohmmeter, it's best to buy one good resistor; preferably a 50-ohm 1% film resistor but at least a 51-ohm 5% carbon composition type. If you use resistors that may be on hand for the load, you may find that although the finished load is calculated to be 50 ohms, it will measure 55 to 60 ohms after assembly. You can measure the 50-ohm standard resistor with your ohmmeter, adjust the meter so that it reads exactly 50 ohms and connect the meter across the dummy load. Then connect resistors across the highest resistance bank in the load until you find a value that gives a reading of 50 ohms.

Under no circumstances use wire-wound resistors—even those that are claimed to be non-inductive. Be wary of resistors which look like molded carbon types but have one color band much wider than the others. They are wire wound.
Make four rings of thin brass shimstock, dairy tin (light gauge steel which is tinned on both sides) or light galvanized iron. See fig. 8 for details. Space the resistors around a circle so there is an 1/8-inch or more between resistors to allow coolant circulation. If a resistor has to be added later to make the entire string look like 50 ohms, it can be mounted in the center of one bank. The center hole in the rings is necessary for free flow of coolant through the resistor assembly.

If your resistor banks are made up of unequal groups of resistance values, alternate the resistors around the circle. The conical group of wires connecting the ring nearest the connector are installed next. A dozen pieces of number 22 or 20 wire make an adequate cone. Get the apex of this cone of wires as close to the center line of the holes in the resistor rings as possible. This will help in assembly of the outer coaxial shield later. When you have completed the cone,

fig. 6. Nomograph for determining the equivalent parallel resistance of two parallel resistors. Example: what is the equivalent resistance when a 20- and 30-ohm resistor are connected in parallel? Plot a line from B on the right-hand scale to 30 on the left-hand scale and a line from A on the left to 20 on the right. The cross-over point of these two lines gives the equivalent resistance. This chart can easily be extended to higher values if desired since both scales are the same length.

fig. 7. Laying out the outer shield.

the coaxial shield

Next, determine the dimensions and layout of the conical pieces. These are made from copper window screen. Don't use aluminum screen; it's difficult to make a solder joint. If any substitution is necessary, go to good clean galvanized screen.

The screen can be cut by trial and error to form the desired sections, but it's easy to make an accurate cardboard template and use this to cut the screen sections to exact size and shape. Fig. 2 shows the overall assembly, but is drawn to illustrate the original load. We'll make one modification. The ratio of diameters shown for the screen diameter and resistor ring diameter were for air dielectric. In this design example, we'll make the ring diameter 1-1/4 inches to accommodate fewer resistors. Also, the ratio of this diameter to the screen diameter will be calculated for oil dielectric.
For oil dielectric, multiply the desired load impedance by $\sqrt[2]{K}$, where K is the dielectric constant of the oil, to obtain the proper ratio of diameters using the conventional coaxial-line impedance formula. The dielectric constant of transformer oil is about 2.2 and the square root of 2.2 is 1.48. Multiply the desired 52.7-ohm load impedance by 1.48; 78 ohms. From the coaxial-line impedance formula:

$$Z_0 = \frac{138}{\sqrt{K}} \log_{10}(D_1/D_2)$$

we find that the ratio of diameters for an air dielectric is 2.38, while for transformer oil the ratio of diameters is 3.67.

Regardless of the diameter of the resistor banks, you only have to multiply the resistor-bank diameter by 3.67 to obtain the correct screen diameter for a 52.7-ohm impedance in fig. 8.

![Resistor mounting ring construction.](image)

A method for making an accurate layout of these screen segments is shown in fig. 7. First, draw an accurate side view of one half of the screen cone as shown in fig. 7A. Extend the line representing the outside of the cone until it intersects the centerline at point P. This line provides the needed radii. Measure the dashed segment with a scale; it is 1-1/2 inches long—total length is 5-5/8 inches. Now draw two concentric circles with these radii on a piece of cardboard as shown in fig. 7B. To determine the angle of the cut-out portion:

1. Find the circumference of the finished cone from circumference = π diameter = $3.14 \times 4.5/8 = 14.1/2$ inches

2. Determine the circumference of the outer circle you have drawn: $3.14 \times 11-1/4 = 35$ inches

3. From proportion, determine the number of degrees of circle needed:

$$\frac{360 \times 14.5}{35} = 150^\circ$$

Lay out this 150 degree segment on your cardboard template with a protractor; allow about 1/4 inch more for overlap. Cut the screen to match the template. Roll the screen up into a cone with the same amount of overlap. The loose ends of screen wire can be used to hook the thing together until it is soldered along the entire length of the screen. Be sure to solder it thoroughly because it is the return lead and will be carrying fairly heavy rf currents.

Make the top screen cone using the same method. Securely solder the inner conductor of the coax connector to the apex of the wire cone. Then solder the top cone to the body of the connector. Before soldering the lower cone in place, cut a hole in it for the rectifier diode. Mount the diode on the resistor ring and slide the lower cone into position.

Make a thorough solder connection all around the cone where it meets the lowest resistor ring. Then solder the junction of the two screen cones. The can lid can be made of galvanized iron or sheet brass. Be sure to include a vent that can be opened to release internal pressure when the load runs warm.

calibration

A word about the diode rectifier. It can be any germanium rectifier such as an 1N34A. Many of these diodes are rated in the vicinity of 40 volts or so. To prevent breakdown, it's wise to connect them to the resistor ring closest to the ground end of the resistor banks. A vtvm or 20,000 ohm/volt dc meter may be used to measure the relative output. Because of the nonlinear characteristic of the diode at low power levels, it's desirable to have a rough idea of power into the load. Otherwise, small power increases may look far better than they actually are. Any power calibration, of course, will be a rude approximation unless you have some lab gear available.

Calibration can be done at 60 Hz by feeding the load with a variable transformer or a
group of series-connected filament transformers. First, calculate a number of calibration points from $P = \frac{E^2}{R}$. With 12.6V applied to a 50-ohm load, for example, there is 3.2 watts into the load. After calculating a number of points, step through them with the variable transformer or other supply and record the meter readings. These points can be plotted on graph paper so the intermediate points can be read.

The finished load may be filled with mineral oil from the drug store, or transformer oil if you know someone in the utility business. Be sure the top resistor bank is submerged an inch or so below the oil level but allow some air space for expansion. This load shouldn't be run at maximum rating (about four times rated resistor capability) for much over three minutes without allowing a ten-minute cooling period before reapplying power. I've run mine at this overload level repeatedly for 5-minute periods, but extended abuse could result in long-term impedance variations that will eventually send the load to the scrap heap.

\[P = \frac{E^2}{R}\]
solid-state screen clamp

Here’s a solid-state version of the clamp tube that provides high performance with low-power dissipation and almost no heat.

The clamp tube has been a popular circuit in amateur transmitters for a long time. Its primary purpose is to lower the screen voltage of the final in the absence of excitation and prevent excessive current in the final tubes. It has also been used as an a-m modulator. In this application it varies the final screen voltage—and thus the plate current—in response to an audio input. The third reason for using a screen clamp resulted in this article.

My transmitter uses fixed bias and grid-block keying. The final tubes are maintained at low plate current during key-up by this bias, but they’re not completely cut off. As a result, when the transmitter is used with a T-R switch, current in the plate circuit causes objectionable noise in the receiver.

I originally installed a 6AQ5 clamp tube to cut off the final amplifier tubes completely and eliminate the noise. Before long, the tube circuit was discarded in favor of a transistorized version. To see why, let’s discuss the principles of each concept.

tube vs transistors

As shown in fig. 1, the clamp tube may be represented by a switch and a resistor connected between the screen and ground. When the final tube is operating normally and excitation is present on the grid, excitation also puts bias on the clamp-tube grid. This bias is sufficient to cut off the clamp tube so that no plate current flows, and it looks like an open switch.

Screen current flows normally through the screen-dropping resistor, and the final tube operates as if the clamp tube were not present. If excitation is lost, the bias on the clamp tube disappears, and it conducts heav-
ily. The screen voltage in the final amplifier drops to a low voltage and prevents the amplifier from drawing too much plate current. The clamp tube plate voltage (and final tube screen voltage) depends upon the voltage divider formed by the screen dropping resistor R_s and the clamp tube's saturation plate resistance R_{PS}. In my transmitter, this voltage is about 15 volts.

This clamp tube circuit has two serious disadvantages. First, since final amplifier screen voltage is not dropped to zero, some plate current may still flow. Secondly, a great deal of power is dissipated in the clamp tube itself and in the screen resistor, R_s, because of the high plate current through the clamp tube. This power is wasted and appears as unwanted heat inside the transmitter cabinet.

fig. 1. Clamp-tube equivalent.

These disadvantages may be overcome by devising a circuit which will work like fig. 2. Here a single-pole, double-throw switch alternately connects the screen to the supply and then to ground. When excitation is applied to the final, the switch connects the final amplifier screen to the screen supply. If excitation is removed, the switch moves to the opposite position, connects the screen to ground and prevents any final plate current.

Note that in contrast to the circuit in fig. 1, no supply current is drawn when the final screen is grounded. This can be accomplished quite simply by using inexpensive high-voltage silicon transistors in the circuit shown in fig. 3.

transistor circuit operation

The diagram of the solid-state screen clamp I use in my transmitter is shown in fig. 3. The basic principles of operation are quite simple. If excitation is present on the final amplifier grid, r_f is coupled through the 470-pF capacitor to the 1N60 diode. The capacitor is charged during the positive half cycle of the excitation signal and puts a negative voltage on the base of the 2N3440, cutting it off. The collector voltage rises to a value determined by the 91k and 220k voltage divider.

The other 2N3440 is connected as an emitter follower. Its emitter voltage is about 0.6 volts less positive than the base. Therefore, the final amplifier is effectively connected to a source having the same output voltage as the junction of the 91k and 220k voltage divider. Note the addition benefit of this circuit: final screen voltage is relatively independent of screen current.

If excitation is lost, the negative voltage at the base of the first 2N3440 disappears. It is then biased into conduction by the current flowing through the 3.9M resistor to the screen supply. The transistor saturates and brings the base of the other 2N3440 down to a few tenths of a volt; the transistor cuts off and holds the screen at ground (I measured about a tenth of a volt on the screen). Therefore, there is no final-amplifier plate current.

design considerations

You have to go a little farther than basic operation if you want to adapt this circuit to transmitters with different voltage sources and screen requirements. The first consideration is transistor selection. Since the transistors don't handle high frequencies, audio types will do. The collector-to-emitter breakdown voltage, BV_{CEO} should equal or exceed the voltage of the screen source. The 2N3440's I used with a 300-volt supply in fig. 3 have a rated BV_{CEO} of only 250 volts. However, out of five units I tested, all had breakdown voltages of at least 500 volts.

The next step is to determine the voltage
divider resistances (91k and 220k in fig. 3). The resistors are chosen so that their junction will be at the recommended screen voltage when the screen supply voltage is connected. When the first transistor conducts, this junction is at ground potential, so the power rating of the 91k resistor must be computed using the full screen supply voltage. With the values in fig. 3, a half-watt rating was sufficient. The divider as shown draws about 1 mA from the screen supply during normal operation of the final tubes.

The transistor in series with the screen supply must pass all of the screen current. The 2.2k resistor is necessary to limit the power dissipation of the transistor by dropping more of the voltage difference between the supply and the screen as the screen current increases. Thus, as screen current (and transistor current) increase, the voltage drop across the transistor goes down. In the circuit shown in fig. 3, the maximum power dissipated by the 2N3440 emitter follower is less than 1.25 watts.

The IN60 peak rectifier and filter (33k and 330 pF) are a simple way of switching the transistors with rf excitation from the final amplifier grid. The circuit is fast and sensitive enough to function properly even during ssb operation where excitation varies rapidly. If the final uses no fixed bias, the input end of the 33k resistor may be connected directly to the final grid, and the 470-pF coupling capacitor and IN60 are not needed. With a direct connection, it may be necessary to increase the value of the resistor to reduce loading on the grid circuit. The 3.9M resistor is chosen so that the first 2N3440 conducts and its collector goes to ground when there is no excitation on the final grid.

There are four other components which haven't been mentioned. The .01's on the screen and supply terminals are used as bypasses. The two 1N914's are necessary to protect the transistors from reverse breakdown at the emitter-base junction.

The design information in the preceding paragraphs is offered for those of you whose requirements differ greatly from the ones shown in fig. 3. If you have or are building a transmitter which has a low-voltage supply of about 300 volts and requires about 200 volts in the screen, the circuit may be used without changes.

operation

When the board is mounted and all connections are made, turn on the transmitter. Measure the voltage at the screen terminal with a vtm. It shouldn't read more than several tenths of a volt. Before going on, switch the voltmeter to a range at least as high as the screen supply. Next, key the transmitter. If all is well, the voltage should jump to the level determined by the voltage divider.

In case of trouble check all connections first. Be especially careful of connections to the transistors and diodes. If the screen voltage does not drop with loss of excitation, try reducing the size of the 3.9M resistor. If the screen voltage does not rise with excitation, check for a low negative voltage at the base of the first transistor. If the voltage is present, it indicates the peak rectifier and filter are operating and that one of the transistors is probably defective. When correct operation is obtained, the transmitter is ready to use on all modes.

The transistorized screen clamp outperforms the old 6AQ5 and uses a small fraction of the power. As evidenced above, it has held up well in operation. I strongly recommend that you use this circuit or a variation of it if you're building any new equipment requiring a screen clamp; the savings in power and the reduction of heat are worth it.

ham radio
LARGE ANTENNA LOAD

BUILT FOR WIND

THE TRI-EX FREESTANDING

LM 470

(70 FEET HIGH)

This advanced state of the art tower is aerodynamically designed to reduce tower wind drag. This means you can carry more antenna than ever before. Tri-Ex engineers have made this possible by using high-strength, solid-steel rod bracing. Only at Tri-Ex do you get "W" type continuous truss bracing. Developer of the freestanding, crank-up tower, Tri-Ex prides itself on the quality of its products. More Tri-Ex crank-up towers are in use today than all other crank-up towers combined. Find out why the LM 470 tower is such an outstanding success. Write today for free literature.

AS LOW AS

$1159.60

NO SHIPPING CHARGES WITHIN CONTINENTAL U.S.A.

Tri-Ex TOWER CORPORATION 7182 Rasmussen Ave., Visalia, Calif. 93277

september 1968
a discussion of thermoelectric power supplies

Current prices rule out thermoelectric generators for hams, but in not too many years you may be using them on field day.

With the growth of the atomic age, a new breed of power supplies has come into being—thermoelectric power generation. These are direct-conversion units with no moving parts, maintenance and lubrication free, silent in operation, and which provide one of the most promising long-lived, dependable power supplies for extended space trips.

Since they are so dependable, the Nassau Satellite Tracking Amateur Radio Society has chosen this type of power supply for the Moonray package they hope to put on the moon in 1970. Some day in the near future we will find these power supplies being used from the outermost fringes of our galaxy to twenty-thousand leagues under the sea.

Jesse Bryant, K1AIE, 21 Whimhaven Drive, Hudson, New Hampshire 03051
Thermoelectric power supplies are not limited to costly space programs. As of now they are in use around the world in remote positions, above, in, and under the sea. That buoy you passed on your last weekend cruise could possibly have been powered by a thermoelectric generator supplemented by batteries, and operating at a considerable saving in cost over conventional systems.

Groups who are contemplating remote mountain-top repeater stations, microwave links, etc., would do well to consider this type of power supply where electricity is not readily available. For example, a commercially available thermoelectric power supply with approximately 12 watts continuous output (12 volts, 1 ampere) would require about 300 gallons of propane per year.

Wait! Before you stop reading, remember that although 12 watts is not much, it's enough to charge a ballast battery (preferably nickel-cadmium for long-life and low maintenance) during non-transmit periods. A 10-ampere-hour, nickel-cadmium, 12-volt battery could supply a 120-watt steady-state load for one hour—but our loads are only intermittent. With properly designed solid-state transmitting and receiving equipment, the peak-power duty cycle is very low. The 12-watt thermoelectric generator would continue to supply power day and night for charging the ballast batteries—they would permit a relatively high-power drain during periods of peak power requirements.

theory

Direct conversion of heat into electricity has been with us for over 145 years. In 1822, Johann Seebeck reported he had observed that a magnetic needle was deflected when placed near a closed loop of two dissimilar metals when a temperature difference was maintained between the two junctions. A very basic thermoelectric circuit is shown in fig. 1. One end is hot and the other end is immersed in an ice bath; by using dissimilar metal wire in a closed loop, a small voltage is developed. With the exception of its usefulness in measuring temperature, Seebeck's discovery went rather unnoticed. In fact, you can buy a complete set of temperature vs emf tables for various dissimilar metal thermocouples from the U. S. Government Printing Office.

Very little progress was made until after the discovery of the transistor in 1948. The demand for ultrapure metals for semiconductors made it possible for further research on thermoelectrics. It was found that by doping certain pure metals, a positive or negative

Commercial 1-watt thermoelectric generator. Total weight is 4.8 pounds; volume, 0.07 cubic feet.
valance could be achieved as in transistors and diodes. By making a closed loop and applying heat, at temperatures which were previously considered destructive, to one junction and cooling the other, considerable power could be generated. So much interest was generated in this type of thermoelectric that the Navy contracted Westinghouse for material research and development with the possibility of quieter power generation for ships.

A typical thermoelectric module is shown in fig. 2. By applying heat to one end and cooling the other, power is produced. The voltage output will be very low, but the amperage output could be quite high, 25 amps or more, depending on the size of the module. The P and N legs are hooked in series; by hooking many more together, you can get an appreciable voltage output. As with battery circuits, voltage will increase as cells are added in series, but current is common to all.

The type of material and size of the legs determine the electrical resistance. This is normally very low, approximately 0.01 ohm per P and N leg. The thermoelectric materials are very susceptible to poisoning when at operating temperatures; therefore, they are usually sealed in an inert atmosphere or vacuum.

Some of the metals now used are silicon-germanium, bismuth-telluride and lead-telluride. They are usually selected according to operating temperature, ease of fabrication and cost per unit. As the state of the art improves in metallurgy, the temperature limit on the hot end is reaching 2000°F and above.

radioisotopic thermoelectric generators

With the recovery of radioisotopes from spent nuclear reactor elements, we have a constantly enlarging fuel supply for use as a source of heat in thermoelectric generators. The radioisotope is a byproduct of nuclear reactor operation and generates heat as it decays. Radioactive isotopes are rated in half lives; that is, they will decay to one-half their original thermal power when they reach their half-life. Typical half lives of several radio-active elements or isotopes that show promise in the thermoelectric field are listed in table 1.

With the present state of the art, the efficiency of thermoelectric generators is approaching 10%. If a generator output of 10 watts (thermal) is required at the end of 5 years (half-life of fuel), assuming 10% efficiency, the initial fuel load for the generator must be 200 thermal watts. At the beginning of life, 100 watts of thermal heat must be dissipated. This is wasteful but necessary if the rated power of 10 electrical watts is to be maintained at the end of 5 years. This is called power flattening or dampening.

A radioisotopic thermoelectric generator for space applications is shown in the photographs. This generator has an unbelievable two-watts-per-pound power-to-weight ratio and is available in 5- to 50-watt output class. As shown in the graph in fig. 4, the generator has an optimum operating range where the load resistance matches the generator electrical resistance and provides maximum peak
power.

The high cost of efficient generators and the tremendous cost of the long-lived fuel, Plutonium-238, which is controlled by the Atomic Energy Commission, leads to caution when considering the use of isotopic generators. However, they can be used to charge batteries (made to last 5 years or more) which will supply peak power demands.

The battery pack will supply tremendous power for a short time and is rechargeable with a thermoelectric generator. At the end of the sensed battery life, the batteries may be disconnected remotely; low power would still be furnished by the thermoelectric generator until the end of several half-lives of the radioisotope fuel. For the Moonray project the thermoelectric generator has another benefit: when the cold lunar night sets in, the heat from the radioisotope fuel could keep the batteries from freezing.

For less sophisticated applications there is another breed of generators called terrestrial generators. These are for remote applications and use cheaper fuel and abundant shielding. They can be placed anywhere. Automatic remote repeaters and microwave relay stations could operate using batteries that are recharged by the generator. A typical low-power generator is shown in the cutaway drawing.

If you don't want to go nuclear, there are several manufacturers offering off-the-shelf generators with outputs of 100 mW to 50 watts and higher. These are usually heated with fossil fuel such as gas, oil or propane; any heat producer can be used. They are presently used to charge communications batteries on railroads, supply power for Coast Guard buoys, supply power to fire towers in remote areas and in many many more ways.

Thermoelectric generators are unique in that the output can be short-circuited temporarily without harm to the elements. They are inherently self-protecting. The only real dangers are overheating and exposing the internal parts of the generator to air at operating temperature. Most manufacturers build in safety features to protect against overheating; they also seal the internal parts.

In most thermoelectric generators, the voltage is very low—3 to 5 volts output. This is
almost useless unless it's converted to a higher output voltage. Dc-to-dc converters are used to step up the voltage to a useable value such as 6, 12, 24 or 28 volts using highly efficient toroid-core transformers and solid-state circuitry.

It's my opinion that this can be improved by adding enough legs to get the voltage up to 13 volts or more. Paralleled generators would be possible with less power loss by using diodes to prevent the flow of current to the lower voltage generator.

Diodes have a 0.75-volt drop, and with low voltage units this is a considerable power loss. However, by increasing the initial voltage, 0.75 volt would be a small loss, and generators with different characteristics could be used as shown in fig. 3. By using thermoelectrics on both sides of the heat source, costly insulation would be replaced with another bank of thermoelectrics, thereby increasing efficiency.

other uses for thermoelectrics

Ok, so you don't want a unique power supply. How about cooling the hot final in that super-duper factory-built rig that threatens to melt under sustained key-down conditions or the VFO that never stops drifting? By passing current with less than 1% ripple through a thermoelectric module, you can have a cooler; one end will get cool, and the other end will get hot. In effect it's a heat pump. When you reverse the polarity, the hot and cold ends will also reverse. These are off-the-shelf items carried by most of the large electronic distributors and are fairly reasonable in price.

Thermoelectric power generation is still in its infancy, and advances are being made every day. In the next five to ten years, engineers will be getting the power up and the price down—priced low enough perhaps to compete with batteries at the corner drug store. Can you think of a better way to power that field-day station?

references

table 1. Typical half lives and power density of several radioactive elements that show promise in the thermoelectric field.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half Life (Years)</th>
<th>Power Density (Thermal Watts/in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thulium 170</td>
<td>0.3</td>
<td>100</td>
</tr>
<tr>
<td>Thulium 171</td>
<td>1.9</td>
<td>10</td>
</tr>
<tr>
<td>Strontium 90</td>
<td>28.0</td>
<td>6</td>
</tr>
<tr>
<td>Plutonium 238</td>
<td>89.0</td>
<td>25</td>
</tr>
</tbody>
</table>

"You wouldn't think it was so funny if your husband was building his first ham rig!"
AT LAST!

2 METER FM TRANSCEIVERS

SPECIALLY FOR HAMS

FULLY TRANSISTORIZED — NO TUBES

Operates on — 117 VAC — 12 Volts DC — Or Optional Internal Batteries — Separate receiver and transmitter 3 channel operation — Self-contained 3 x 5 speaker — Strong fiberglass Epoxy printed circuit boards — Power supply even regulates and filters on 12 VDC operation — cannot be damaged by Reverse Polarity — 21 transistors — 14 diodes — Double conversion crystal controlled receiver with 3 full watts of audio output and better than .3μV sensitivity (12 DB SINAD) — Transmitter and receiver may be ordered in either wide or narrow band at no extra charge (wide band supplied unless specified) — Small size 8"w x 3 1/2"h x 9 1/2"d — Light Weight· Less than 4 1/2 lbs — True FM receiver not a slope detector — Dynamic microphone input with push to talk — Built in 117 VAC power supply — Simply plug in proper power cable for either 117 VAC or 12 VDC operation — Transmitter power output 4 watts minimum.

Complete with one set of crystals on 146.94, 117 VAC and 12 VDC power cables, less microphone and antenna .. $285.00

Extra crystals (transmit or receive) $7.00 Mobile Mounting kit .. $7.00

ICE

INTERNATIONAL COMMUNICATIONS AND ELECTRONICS, INC.
1017 NW MILITARY HIGHWAY/SAN ANTONIO, TEXAS 78213 512 344-1311

september 1968
The AutoLevel is the ultimate in volume compressors. This unique device provides all the talk power your transmitter can use. The AutoLevel was designed for use with SSB or AM transmitters, with or without ALC capabilities.

The AutoLevel is not an audio or RF clipper — all compression is attained by a photo-optical regulator which provides 14 dB's of compression with a minimum of waveform distortion. The AutoLevel is easily installed in the mike line, and it contains its own power supply; (there's no need to bother with batteries). It can also be used with your phone patch for the utmost in ease of operation. When you're ready for the finest, ask your local dealer for the AutoLevel.

SPECIFICATIONS

- **dB's compression** - 14 dB minimum
- **Wave form distortion** - negligible
- **Input impedance** - suitable for dynamic or crystal microphone
- **Output impedance** - 50K (nominal)
- **Power supply** - 115 volts AC

Dimensions - 2-3/4'' x 4-11/16'' x 6-3/8''

Weight - 32 ounces

Color - Bone White with Black front panel

Price - $87.50

AUTHORIZED DEALERS (listed alphabetically)

- **AMATEUR ELECTRONIC SUPPLY**
 4826 W. Fond du Lac Avenue
 Milwaukee, Wisconsin 53216
 Tel: 414 - 442-4200

- **AMRAD SUPPLY, INC.**
 3425 Balboa Street
 San Francisco, California 94121
 Tel: 415 - 751-4061

- **AMRAD SUPPLY, INC.**
 1025 Harrison Street
 Oakland, California 94607
 Tel: 415 - 451-7755

- **ELECTRONIC CENTER, INC.**
 107 3rd Ave. North
 Minneapolis, Minnesota
 Tel: 612 - 338-5981

- **EVANSVILLE AMATEUR RADIO SUPPLY**
 1314 North Fulton Ave.
 Evansville, Indiana 47710

- **GRAHAM ELECTRONICS SUPPLY, INC.**
 122 S. Senate Avenue
 Indianapolis, Indiana 46225
 Tel: 317 - 834-8486

- **HAM RADIO OUTLET**
 999 Howard Avenue
 Burlingame, California 94010
 Tel: 415 - 342-5757

- **THE HAM SHACK (Tel-Appliance Center, Inc.)**
 1966 Hillview Street
 Sarasota, Florida 33579
 Tel: 813 - 953-7161

DEALERSHIPS AVAILABLE IN SOME AREAS — WRITE FOR FREE SPECIFICATION SHEET
In countless ham shacks across the country there are a great many a-m components and complete a-m rigs which you may think are obsolete, but in actuality, they can be used with outstanding success on ssb. After many years on a-m, I was faced with the same problem as most amateurs changing to ssb: whether to junk existing equipment, sell it at give-away prices and buy new gear, or modify the old rig for ssb operation. Most amateurs buy a commercial ssb transceiver which runs at power levels of 100- to 500-watts PEP. Ultimately, however, they feel the urge to tack on a linear for increased power.

Unfortunately, the average amateur doesn’t have sufficient know-how or time to design and build a complete ssb transmitter or transceiver, so it makes good sense for him to buy a commercial unit. When it comes to the linear, it’s a different story. Back in the attic among the cobwebs are many fine pieces of equipment which are equal or superior to anything commercially available. This is not intended as an indictment of the many fine commercial linears available; but if iron is more plentiful than silver around your shack, the following may prove of interest.

My first step in “going ssb” was to put together a Heathkit SB-401 transmitter. My old kW plate-modulated amplifier was an unlikely candidate for ssb service—at first glance. The basic circuitry didn’t conform with the generally-accepted configuration of today’s ssb linears. It used a pair of push-pull 250TH’s in a tuned-grid, tuned-plate configuration with a split-stator butterfly tank capacitor with a plug-in coil and swinging-link plus a five-band coil turret in the grid

Bill Blankenship, W4AGNW/W1RDR 6/9 Green Meadow Court, Louisville, Kentucky 40207

September 1968
circuit tuned with a two-section capacitor. Sound familiar?

When I took a closer look at the amplifier, I couldn't see any reason why a push-pull circuit, with its inherent harmonic cancellation, wouldn't actually be better than a single-ended final. Similarly, a tuned-grid circuit should be as good or better than a broadband untuned input. The use of 250TH's is irrelevant, and many other tubes will perform just as well. If the a-m amplifier uses a single-ended configuration, so be it. The point is that many existing a-m amplifiers can be converted to linear service at practically no additional cost.

power supplies

The plate voltage supply consists of two 4400-Vct, 1.5-kVA hypersil-core pole transformers in parallel, a pair of 872A rectifiers, a capacitor-input filter consisting of a 2-µF, 4000-V oil-filled capacitor, a 20-H broadcast-type choke, another 2-µF oil-filled capacitor and a 100k-ohm, 200-watt bleeder resistor. The 3-kVA continuous-duty rating of the plate transformer is the key to the hard regulation I get with this supply without the big filter capacitance usually required. The plate transformer never has to deliver more than half of its rated output. From idling plate current to maximum current on voice peaks, voltage regulation is on the order of 3%.

Grid bias is obtained from a 2500-ohm, 100-watt resistor across the output of a heavy-duty full-wave supply. The resistor is tapped at the grid cut-off point of the 250TH. No grid-leak bias is used. An overload relay protects the tubes in case of excessive plate current.

amplifier modifications

I installed a small relay adjacent to the bias supply and connected the cut-off bias voltage to one set of relay contacts. A second slider tap on the bias supply resistor was positioned so the final draws the correct no-signal idling plate current when plate voltage is applied; this bias is connected to the normally-open relay contact. The armature is connected to a feedthrough capacitor which feeds the bias to the shielded grid circuit. The relay coil is connected to an "external relay" socket on the exciter. When receiving, the final is biased to cut-off, and when the exciter's PTT-VOX relay is closed, ssb operating bias is applied to the amplifier.

A dpdt center-off switch replaces the original spst plate voltage switch on the front panel. This allows instant switching from ssb to high-level plate-modulated a-m, primarily for working DX stations still operating a-m on 10 meters. If you're only interested in ssb operation, this change is not needed.

Conventional control circuitry is used: one side of the ac line to the amplifier is connected to the high-voltage plate relay coil. The other side is wired in series through the door interlock, the overload relay contacts and one set of contacts on the dpdt front panel switch to the other side of the coil. With this wiring, high voltage to the amplifier is independent of exciter control. For a-m operation one side of a two-conductor control line from the a-m exciter is connected to the plate relay coil; the other side is connected as above except that it uses the other side of the dpdt switch so plate voltage can be controlled by the "transmit-standby" switch on the a-m exciter.

A switch in the modulator filament circuit and a switch which operates a relay to jumper high voltage across the modulation transformer secondary for CW operation are used for ssb. Therefore, three switches and a relay convert the amplifier from 1-kW plate-modulated a-m to 2-kW PEP ssb.

operation

The amplifier is loaded to 1200 watts dc input—3000 Vdc at 400 mA with the exciter switch in the "tune" position. Switching the exciter to upper or lower sideband, a steady tone is applied to the mike and the mike level control advanced until the amplifier plate current is 330 mA—990 watts dc input.

In regulating the amount of drive to the amplifier, the exciter should be tuned for normal maximum output. If this produces excessive drive to the amplifier, the exciter drive control can be reduced slightly. However, make sure that the drive to the exciter's own final is not reduced below the manufacturer's specifications for minimum drive. Otherwise, the alc circuit and carrier sup-
pression will be upset and signal quality seriously affected. If minimum permissible output from the exciter still results in excessive drive, use an attenuator.

construction

Little specific mention has been made about design and construction of the amplifier. Just remember that the dictates of good engineering practice should be followed when adapting an existing amplifier to ssb service. Briefly, the amplifier should have a well-regulated bias supply; a plate voltage supply with minimum voltage drop from idling current to full current drawn on voice peaks; adequate isolation of grid and plate circuits; good neutralization; complete shielding; impedance matching to the transmission line; a good low-pass filter and adequate cooling. My amplifier—which is typical of most well-designed a-m amplifiers—incorporates all these provisions.

One inexpensive way to match a swinging link to coaxial line is by using a 30- to 500-pF variable in series with the center conductor of the coax line. The capacitor is mounted inside the shielded enclosure on an insulated plate with its shaft extended through the front panel. To adjust the link correctly, mesh it to the point where the amplifier draws a very small amount of current and tune the loading capacitor for a peak current reading (usually an increase of a few mils). Then mesh the link until the amplifier is drawing the proper operating current.

If the link is correctly tuned, retuning the loading capacitor after the amplifier is loaded to the proper value will indicate no change in the resonant point of the link-tuning capacitor. Fairly wide frequency excursions within any given band are possible without retuning. The tuned-grid, tuned-plate, tuned-link configuration provides very effective suppression of spurious radiations.

cooling

Proper cooling of the shielded plate-circuit compartment is very important. To quote a recent article by a well-known ham engineer, “The only time you have too much cooling is when the blast of air blows the tubes out of the sockets.” I might add that you may also have too much cooling—or a bad bearing—when blower noise makes it hard to hear the receiver. My amplifier uses the pressurized chassis method; the chassis has a solid bottom plate.

The top of the chassis forms the floor of the plate-circuit compartment with twenty-four 1/4-inch holes drilled around the periphery of each tube socket. Mounted on the rear edge of the chassis are two 4-inch centrifugal blowers rated at 250 cfm each with zero back pressure. Since the total area of the drilled holes is considerably less than the combined area of the two blower nozzles, there’s a certain amount of back pressure, but this is inconsequential. Blower noise is at a very tolerable level and do a nonsense cooling job.

An old axiom states that, “the proof of the pudding is in the eating.” The old warmed-over pudding at this QTH is tasty indeed. I have been literally swamped with unsolicited signal reports lauding the quality and strength of the signal. So many reports have been made of, “strongest signal on the band,” “beautiful pattern on the scope,” “extremely narrow, but pinning the S-meter,” etcetera, that I’m almost beginning to believe it. I hope this apparent immodesty will spur some of you to make your own conversions. Borrow a derrick and drag that old a-m rig out of the corner and join the fun!

next month in ham radio magazine:

- Solid-State Six-Meter Transmitter
- Three-Band Ground-Plane Antenna
- Simple Panoramic Receiver Adapter
- Amateur Frequency Measurements
- Trouble Shooting around FET’s
- Low-Noise Two-Meter Preamp
- Interstage Networks
- Plus many more . . .
aligning vhf transmitters

Speaking generally, aligning the broadband tuned circuits between stages in a vhf transmitter is a lot like aligning them in any transmitter. Yet, there are subtle differences you should know about. Take a simple 2-meter a-m transmitter as an example; one is shown in block-schematic form in fig. 1.

First, you need some sort of alignment indicator. Monitoring rf power output of the transmitter is inadequate for adjusting the early stages; the indications are too broad to be any help. A vtvm connected across the grid resistor of a late stage—say the driver—is usually effective; it measures class-C grid current. The manual that comes with the transmitter may tell you what point is best.

The first slight peculiarity arises in adjusting the oscillator. In many vhf transmitters, inexpensive 8-MHz fundamental crystals generate the carrier, as shown in fig. 1. However, the oscillator is also a tripler. Its output is at 24 MHz. Tuning its plate coil isn't exactly as simple as merely peaking it for maximum vtvm indication, but the proper technique is seldom spelled out in a manufacturer's alignment instructions.

For oscillator alignment, you should plug in the highest-frequency crystal you have. This permits you to set the plate coil for best stability, since any instability of oscillator-tripler operation shows up first at the higher frequencies.

Most important is the way you do the adjustment. Key the transmitter, and tune the oscillator plate coil for a peak on the vtvm. Don't stop with that, though. Rock the slug back and forth a little; you'll notice the reading drops off more quickly on one side of the peak than on the other. With the adjustment peaked, turn the slug in the direction of the slow drop-off—just enough so you can notice the lower meter reading. Leave the slug set slightly on the "slow" side of the peak. That's the point of maximum stability. This adjustment is even more critical when the oscillator uses overtone- or harmonic-type crystals.

For the later stages, such as the driver and the final, it is better to monitor rf output. In vhf power stages, the plate-current dip doesn't usually occur exactly at the most efficient point. Therefore, for all output-stage adjustments, an rf wattmeter or other rf output meter is the most effective tuning indicator.

For interstage and output adjustments, use a crystal frequency near the center of the over-all range. Only the oscillator needs the special treatment at the high end. Just peak the interstage multiplier or amplifier adjustments for maximum rf output.

The order in which you make the final-stage and output-coupling adjustments can be a factor in vhf transmitters. Start with coupling as loose as possible (least rf output). If there is a plate-current meter, use it
to dip the power-amplifier tank as a preliminary step; later, however, you'll retune the tank for maximum rf output. Drive in vhf transmitters is seldom adjustable; you just tune the driver stage for strongest drive to the final.

Start by increasing antenna coupling just enough to get some output reading on the rf wattmeter or whatever you're using as an output indicator. Ignore final plate current at this point. Now tune the plate tank for maximum rf output. Then peak the antenna trimmer, if there is one. In small steps, increase rf output to the rated wattage for the transmitter, repeating the sequence just outlined: increase coupling, tune plate, tune indicator. At the grid of the final is a good place to hook a vtvm to check alignment results in the earlier stages. Loosen antenna coupling to begin with.

Plug in the highest-frequency crystal you have for either band. Key the transmitter and peak both slugs (top and bottom) in the first interstage transformer. Then go back and shift the plate-winding adjustment slightly to the stable side, as already described. Change to a crystal whose frequency is near the center of the bands. If necessary, use two: one near the center of each band. Peak both adjustments of the second interstage transformer for best drive at the final, measured by the vtvm.

Start by increasing antenna coupling just enough to get some output reading on the rf wattmeter or whatever you're using as an output indicator. Ignore final plate current at this point. Now tune the plate tank for maximum rf output. Then peak the antenna trimmer, if there is one. In small steps, increase rf output to the rated wattage for the transmitter, repeating the sequence just outlined: increase coupling, tune plate, tune indicator. At the grid of the final is a good place to hook a vtvm to check alignment results in the earlier stages. Loosen antenna coupling to begin with.

Plug in the highest-frequency crystal you have for either band. Key the transmitter and peak both slugs (top and bottom) in the first interstage transformer. Then go back and shift the plate-winding adjustment slightly to the stable side, as already described. Change to a crystal whose frequency is near the center of the bands. If necessary, use two: one near the center of each band. Peak both adjustments of the second interstage transformer for best drive at the final, measured by the vtvm.

fig. 1. Common configuration for an amateur vhf transmitter.

antenna. Don't allow plate current to exceed whatever is recommended for the tube; also, don't exceed the FCC-ordained plate power input. Don't tune the plate tank for a dip on the meter—tune for output, always. If plate current gets too high, back off the coupling so there's less rf output; then retune the plate and antenna controls for peak output.

a-m vhf transmitter

Another vhf ham transmitter is diagramed in fig. 2. This one is a two-band rig. Also, interstage coupling is by double-tuned transformer, although that makes little difference to alignment—just a couple of extra slugs to turn. Let's run through its alignment quickly.

Connect a dummy load and rf output

fig. 2. Common configuration for an amateur vhf transmitter.

output coupling systems for each band are separate and different. Tune the 6-meter band first, which uses the pi-network output system. The standard alignment procedure applies, except that there is no coupling adjustment. Tune the plate trimmer (C1) for maximum rf into the dummy load. Then adjust the antenna-tuning trimmer (C2). Peak

 Switching from 2 meters to 6 meters changes the interstage coupling to the final (power amp), and also alters the mode of operation in the last multiplier stage. For 6 meters, it becomes merely an amplifier. There's no driver-stage adjustment for 6 meters, so switch to 2-meter operation. Peak the two series-resonant trimmers for maximum drive to the final.

Switching from 2 meters to 6 meters changes the interstage coupling to the final (power amp), and also alters the mode of operation in the last multiplier stage. For 6 meters, it becomes merely an amplifier. There's no driver-stage adjustment for 6 meters, so switch to 2-meter operation. Peak the two series-resonant trimmers for maximum drive to the final.
them both, going back and forth a couple of times to make sure interaction doesn't affect the result. You'll have to refine them both a little when you connect an antenna.

Switch to the 2-meter band. Output coupling is a simple link, series-tuned. Peak the trimmer for maximum output, with either the dummy load or the antenna connected. If you use the dummy, retouch the adjustment when you change to the antenna.

Many vhf transmitters have the plate and antenna tuning controls on the front panel. They should be readjusted with each crystal change, or with each change in VFO tuning. Always peak them for maximum rf output.

single-sideband vhf

There are some differences between vhf transmitters for a-m only and those that operate in the ssb mode. The variations aren't major, but they are sufficient to alter the general alignment procedure. The block-schematic of fig. 3 shows the layout of one double-conversion vhf ssb transmitter—from the Gonset Sidewinder series. This one is about average among this class of transmitter, so it makes a fair example. The steps, VFO, which is part of the transmitter, you can tune any frequency within the sector. The carrier oscillator is the 9-MHz type that is common in modern transceivers. It is this synthesis method of developing the vhf output frequency that dictates a special sequence for transmitter alignment steps. The procedure isn't as straightforward as in simpler a-m units with frequency multipliers.

The 9-MHz i-f amp and the 15-MHz band-pass i-f amp are part of the receiver, too (the Sidewinder units are transceivers). You can align the two stages with a signal generator; a sweep generator is recommended for the band-pass amplifier. However, you can also do a fairly close job with the transmitter keyed on, using the signals generated by the unit's own oscillators. Follow the manufacturer's instructions religiously if you have the test equipment; if not, the technique I'll outline here will work.

The first step is to align the 9-MHz section. Disable the tuning oscillator or VFO. Connect a vtvm with rf demodulator to the output of the first mixer (the transistor collector, in this instance). Key the transmitter on, with its mode switch set for CW operation. Peak T10 for maximum. Move the vtvm probe to the 9-MHz input of the mixer (emitter, here). Adjust the crystal trimming capacitor (C23) for exactly 65 mV on the vtvm. Move the vtvm probe back to the mixer collector again, and again peak T10. The trimmer capacitor puts the crystal signal at exactly the right spot on the response slope of the sideband filter, and you have peaked T10 to

fig. 2. Two-band vhf transmitter is only slightly more complex than the design shown in fig. 1.
fig. 3. Adjustments and their sequence are complicated in this vhf single-sideband transmitter. Special equipment is recommended for adjusting some of the tuned band-pass circuits.

pass the resulting 9-MHz signal efficiently.

Reactivate the tuning oscillator or VFO. Move the vtm probe to the input of the second mixer. Tune the VFO to the center of its dial, and peak C36 for maximum reading on the vtm. That couples the tuning oscillator most efficiently to the first mixer.

Next, if you do have a frequency meter, check the frequency of each of the four sector crystals. If you don’t have a frequency meter, you must simply take them for granted. If, later, you find one sector isn’t accurately calibrated, its crystal is probably off frequency. It’s unlikely that more than one will be off. If they all are off, you can warp them onto frequency with L12.

Move the vtm probe to the output of the second mixer. Now align the band-pass i-f amp. It must be stagger-tuned and is best done with a sweep generator. However, you can get by this way: key the transmitter and peak T9, T8, T7, T6, and L18 for maximum signal reading on the vtm. Go over all five a couple of times to make up for any interaction. To get the bandwidth needed, go back to T7 and T6. Turn the slug of T7 counterclockwise one quarter-turn, and the slug of T6 clockwise one quarter-turn. This is a rough approximation, but you can usually get by. To check it, tune the VFO from one end to the other of its range. The vtm reading will vary from one end to the other, but there should not be any sharp dropoff in the reading near either end of the VFO range. If there is, try correcting it with T8, T9, or L18. If you can’t, realign them
at their peaks and try correcting the too-narrow band pass with T7 or T6.

Now go back to the front end and adjust the balanced modulator. Start with the transmitter still in the CW mode. Connect the vtvm rf probe at the input terminal of the sideband filter. Key the transmitter, and peak T11. Switch to the upper-sideband mode, and adjust R62 for a null (minimum on the vtvm). With a nonmetallic screwdriver, rock C25 slightly. If the rf indication on the vtvm can be reduced by turning C25 in either direction, turn it that way only slightly and re-null R62. Continue this in small increments—C25 for a slightly lesser reading and then R62 for minimum—stopping when turning C25 further starts increasing the meter reading instead of decreasing it. The meter should finally null at less than a millivolt.

Interstage coupling from the second mixer to the driver and final stages is also band-pass circuitry. Though they are not stagger-tuned, the circuits are heavily interdependent. Also, the neutralization network that includes L21 and capacitor C111 complicates adjustment. The manufacturer recommends alignment with a sweep generator, and it's a good idea. If you don't have a sweep generator, or don't know how to use it, do not bother the neutralization.

To align the driver-coupling circuits as best you can, connect a dummy load and rf output indicator to the antenna output jack. With the transmitter in the CW mode, and the sector switch set at the 51-52 range, peak L22 and L23 for most rf output. As you switch sector crystals over the entire 6-meter band, with the VFO set at center range, you should notice some variation in output power. If it varies more than 5 or 6 watts, try readjusting L22 and L23 to compromise between absolute maximum output and fairly even distribution of power over the band.

Tune capacitor C112 (the final-amplifier tune knob on the front panel) for maximum transmitter output, with the sector switch set to produce 51-52 MHz and the VFO at center. Also tune C113 (antenna tune on the front panel) for best rf output.

antenna adjustments at vhf

Any vhf transmitter should be connected to its working antenna for finishing adjustments in the final amp and output network. Antenna matching is critically important in vhf operation, and the adjustments in the final stages can seriously affect this matching.

The most useful indicator is an in-line wattmeter or reverse-reading rf indicator. It connects in the coax line between the vhf transmitter and the antenna. Lacking this kind of meter, you can get by with a simple field-strength meter.

With the in-line rf indicator, you first tune the final tank for maximum output. If the output matching network has several adjustments as does the one in fig. 3, start by setting the panel control to the center of its capacitance range (the plates half-closed); you may have to open the cabinet to see where halfway is, if there are no stops on the capacitor. Tune the first trimmer (C119, here) for best output. Change the indicator to read reflected power and tune the last trimmer for minimum reflected power. Then touch up the first trimmer for minimum, too.

Recheck forward power. Touch up C113, and then—still measuring forward power—touch up C119 and C120. If you have to turn these two very much, and if turning them increases the reflected power indicated by the meter, the mismatch is serious and is at the antenna itself. You can't "adjust" it out.

If you are doing the output alignment with only a field-strength meter, adjust the final-amplifier tune control first, then the antenna tune. Set both for maximum rf radiation measured by the meter. Adjust the trimmers also for maximum radiated field strength. Go through the final-amplifier tuning, antenna tuning, and matching adjustments several times to overcome any interaction.

With any vhf transmitter, your best bet is always to follow the alignment instructions supplied by the manufacturer. If you need special equipment, buy or borrow it. For best communications, always try to do a thorough alignment job. It takes time and care, but the results are worth it. In a later column, if you want to know more about it, I'll tell you how to set up the scope and sweep generator to do band-pass alignments in receivers and transmitters (important in ssb transceivers). Drop me a note and let me know.
GRAND CAYMAN
B. W. I.

SWAN 250
WAS THERE!

FRANCHISED DISTRIBUTOR AND SERVICE FOR

COLLINS
GALAXY
SWAN
Hy-Gain
BTI National
AMECO
NEW-TRONICS
E-Z WAY TOWER
Mosley
HAMMARLUND

HIGHEST TRADES! NO ONE ANYWHERE will beat our price! We will TOP any advertised or written price from any other dealer. We trade on both new and used equipment and we service what we sell. Instant credit on both new and used equipment. General Electric revolving charge.

International Electronic Systems, Inc.
AND AMATEUR — WHOLESALE ELECTRONICS
280 ARAGON AVENUE, CORAL GABLES, FLORIDA 33134
305-444-6207
Cable: "INTEL"
Export orders our specialty

september 1968 63
One of the more intriguing new pieces of equipment to be placed on the market in recent months is the Heath HW-100—a five-band ssb transceiver selling in kit form for only $240.00! This certainly bears looking into, and a more careful review uncovers a very interesting piece of gear.

A quick definition might call it a cross between the well-known Heath HW-series single banders and their well-respected SB-101 that sells for $130.00 more. Nothing has been left out of the HW-100. It gives complete coverage of all amateur bands between 3.5 and 29.7 MHz in 500-kHz segments with selectable sideband or CW operation. Included are features sometimes considered extras—CW sidetone, VOX and a 100-kHz crystal calibrator.

When the kit arrived here at *Ham Radio*, we looked it over and were all quite impressed to find that the folks at Heath hadn't cut any corners quality-wise to give you a dependable piece of equipment. I'd certainly hate to try and put a similar group of parts on my bench for the same price. Among the branded components were many well-known names including Westinghouse, E. F. Johnson and Potter & Brumfield.

assembly

The kit should go together in about 35 or 40 hours, although I did a bit better. Alignment and tune-up went very quickly and were not at all difficult. About another hour or so had the rig on the air in good order. As is usual for the larger kit manufacturers, the directions were very detailed and excellently prepared. There were one of two areas which might have used a bit of clarification, but I suspect that these will be cleared up in later kits. Ours was in the first group of production units shipped. None of these problems was serious, however, and by reference elsewhere in the instructions they were quickly clarified.

Most of the wiring was handled by nine circuit boards; a large wiring harness provided most of the interconnections between the boards, controls and other points. The only
two major portions of the transceiver which are hand wired are the VFO and the final amplifier. Both of these were quite straightforward and went together very nicely. The manufacturer was very careful to provide ample warning regarding any operations requiring special care such as the use of heat sinks on semiconductor leads, etc.

As mentioned earlier, the unit was amazingly easy to align. The receiver is tuned up first. This procedure requires only a vtvm and another receiver (even a broadcast receiver will suffice). As you are aligning the receiver, most of the stages of the transmitter are tuned up, too, since the receiver and transmitter sections share many stages and tuned circuits; final peaking is done later in the transmitting mode to assure maximum drive and proper operation.

One point of interest which didn't affect our kit, but did trouble a neighbor, was the initial tune-up of the transmitter. The instructions assume that T1 at the output of the balanced modulator will be sufficiently close to alignment as shipped from the factory so some drive will be available before this transformer is touched. Our friend found this to be untrue and had to jump ahead four steps in the alignment procedure to obtain any initial drive whatsoever. This may well have been a random case, but we pass it along for what it's worth.

receiver section

A block diagram of the HW-100 is shown in fig. 1. You will see that it is a very straightforward unit with a double-conversion receiver of conventional design.

The incoming signal is first passed through a single stage rf amplifier/preselector and on to a crystal-controlled first mixer. The first intermediate frequency is tunable from 8.395 MHz to 8.895 MHz. The second mixer converts this signal to 3.395 MHz and uses the VFO/VFO-amplifier from the transmitter as a local oscillator; this insures common operating frequencies for both transmitting and receiving. It is at this frequency that a four-pole crystal-lattice filter is inserted between the second mixer and the first i-f amplifier.

This filter offers a shape factor of 3 to 1, which, although not outstanding, is more than ample for good selectivity, even under crowded conditions. After passing through two stages of i-f amplification, the 3.395-MHz signal is passed into the product detector along with the crystal-controlled output of the combination carrier-oscillator/BFO stage. The audio output of the product detector is passed through a two-stage audio amplifier to the speaker or headphone jack.

The operation of the receiver is identical
in all modes of reception with the exception that the BFO frequency is varied for lower sideband, upper sideband or CW reception. Numerous a-m stations have been copied very successfully with this receiver using both the lower and upper sideband modes. The lack of an envelope detector for a-m certainly appears to be no disadvantage.

transmitting section

The transmitting section of the HW-100 is a typical example of a modern filter-type multiband ssb transmitter in the 150-watt class. In ssb operation, the audio signal, after passing through a speech amplifier and cathode follower, is mixed with the output from the carrier-oscillator/BFO in a four-diode balanced modulator to produce a double-sideband suppressed-carrier signal. During tune-up and CW operation the balanced modulator is unbalanced to allow the carrier signal to be passed on to the isolation amplifier which follows.

The same four-pole crystal filter is then used to both attenuate the undesired sideband and further suppress the carrier. For CW or tune-up operation, the frequency of the carrier oscillator is shifted to place it within the pass band of the filter. This filter does an adequate job of sideband suppression. Although in running tests of my rig I have been able to copy the undesired sideband, it has been too weak to make any actual power measurements of it. I feel sure that the manufacturer's specifications of 45-dB suppression are being met and that under normal band conditions this sideband would never be detected.

In checking out carrier suppression, I was very pleasantly surprised. My test consisted of using a calibrated communications receiver with a short stub antenna. Coupling was adjusted to give a 60-dB S-meter reading with carrier inserted. When the HW-100 was switched to either sideband position, the S-meter reading dropped to below 5 dB—a difference in excess of 55 dB. I'm sure that this wouldn't be considered a completely accurate test by laboratory standards, but it certainly indicates carrier suppression well in excess of the manufacturer's claimed 45 dB. Local on-the-air tests have shown no sign of a carrier being transmitted.

From the filter the signal is given one stage of i-f amplification and is delivered to the first transmitter mixer. The VFO/VFO-amplifier is used as a local oscillator for this mixer.

The VFO is quite interesting and deserves some attention. It uses an MPF-105 FET in a
Hartley oscillator circuit. This solid-state design largely eliminates heat and the drifting which it causes. The engineers at Heath obtained regulated power for the MPF105 in a clever manner; they inserted a 2N3393 used as a Zener diode in the cathode leg of the 6AU6 VFO amplifier. This amplifier is run in a steady-state condition, so it provides a very stable source of low-voltage dc of ample power for a VFO circuit.

By varying the polarity of the voltage across a 1N191 diode, a carrier-shift capacitor is switched in or out of the VFO circuit. This causes a frequency shift in the VFO signal and maintains a constant output carrier frequency regardless of the sideband being used. This corrects for the carrier oscillator shift necessary when shifting modes to allow the proper portion of the signal to fall within the pass band of the crystal filter.

The output of the first mixer varies in frequency from 8.395 to 8.895 MHz. This signal is sent through a band-pass filter to eliminate harmonics or other spurious signals and is then converted by the second mixer to the final operating frequency. This second mixer is crystal controlled by the same heterodyne oscillator that is used for receiving.

A 6CL6 driver delivers a signal with sufficient power to drive a pair of 6146's in the final to a maximum dc power input of 180 watts PEP or 170 watts CW (50% duty factor). The output of my transmitter varied from about 110 watts on 75 meters to approximately 80 watts on 10 meters when measured with a Waters reflectometer and a 50-ohm load.

The manufacturer is to be commended on the choice of a transmitting-type tube in the final rather than one of the popular TV sweep tubes. I am sure that the signal is much better for it*, but the temptation must have been great when you consider the price tag on this kit.

Other circuit features which should be noted include a CW sidetone generator. This is used to create an audible monitoring signal when sending CW. It is not used to generate the CW signal itself. The VOX circuit is conventional, taking either the output of the

speech amplifier or the CW tone oscillator, as the case may be, and using it to switch from receive to transmit.

harmonic drive mechanism

Another interesting area is the main tuning dial. This dial is a unique assembly using the Harmonic Drive principle developed by the United Shoe Machinery Corporation. To the best of my knowledge, this is its first application in a piece of amateur equipment, although mechanical assemblies designed around the Harmonic Drive principle have been used by both industry and the military for a number of years.

The principle of this unit is best illustrated in fig. 2. There are three basic parts to this drive. One is a fixed spline which does not rotate (shown in white). Next is a flexible concentric spline (shown in black) which has two more teeth than the first spline and is sufficiently larger in diameter to clear the internal spline. The variable capacitor shaft is attached to the outer spline.

The tuning knob fits over these splines. The bore of this knob has two flats (shown in gray) which force engagement of the two splines at two points 180° apart. As the knob is turned, the point of engagement of the splines will also see the same angular displacement. Since there is an unequal number of teeth on the two splines, relative motion will be created between them. Because the inner spline is fixed, the outer spline will turn in the same direction as the tuning knob. The reduction ratio of the tuning knob to the outer spline is the number of teeth on the outer spline to the difference in number of teeth on the two splines. In this case there are 82 teeth on the outer spline and 80 on the inner. Thus, the reduction in the Harmonic Drive assembly is 82/2 or 41:1. Add this to a further gear reduction at the variable capacitor in the VFO and you end up with a tuning rate of 18 kHz per turn, a very pleasant dial indeed.

When this dial is first assembled, it may seem unsatisfactory. The "stiction" or breakaway force required each time you start to turn it may be annoying. **Don't worry!** With proper lubrication as outlined in the directions, and a bit of use, this dial rapidly becomes a real beauty. I have been well pleased with mine.

operation

In actual use, I was quite pleased with the VOX operation of this transceiver, and I happen to be one of those not usually given to VOX operation. The semi-break-in operation on CW is also quite satisfactory.

In summary, I can say that the HW-100 fig. 2. Internal construction of the Harmonic-Drive dial used on the Heath HW-100.

has given a fine account of itself on the air. Critical comments regarding audio quality have been excellent. Sensitivity of the receiver has been very surprising. It has been placed on the bench beside a very good receiver costing several times as much, and it has held its own with no trouble at all. The ease of tune-up and handling of this transceiver in all modes of operation are a pleasure. Whether you are considering your first plunge into sideband or are looking for a versatile transceiver for both home and mobile operations, you should be well pleased with the Heath HW-100.
NEW FET SIX METER CONVERTER

The Horizon VI incorporates the latest in solid state VHF techniques. Field-effect transistors are used throughout the unit to provide excellent protection against overload and cross modulation. All power is provided by a built-in 115 volt AC power supply - (no need to buy extras). An additional crystal position has been provided to allow the owner the option of expanded frequency coverage. Local oscillator output is accessible from the front of the unit for those who desire transceive operation.

The low noise figure of the Horizon VI assures the operator of excellent performance when stations are weak.

See your local dealer for a demonstration of the Horizon VI; you'll be impressed by its exceptional performance.

SPECIFICATIONS

Freq. range: 50 – 54 MHz; L.F. output: 14 – 18 MHz; Input impedance: 50 ohms; Output impedance: 50 ohms; Noise figure: 3 dB typical; Gain: 15 dB nominal; One 36 MHz crystal installed; Built-in power supply: 115 volts AC; Weight: 18 ounces; Dimensions: L-6¼” x W-3¼” x D-2”; Price: $59.95.

AUTHORIZED DEALERS (listed alphabetically)

AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Avenue
Milwaukee, Wisconsin 53216
Tel: 414 – 442-4200

AMRAD SUPPLY, INC.
3425 Balboa Street
San Francisco, California 94121
Tel: 415 – 751-4661

AMRAD SUPPLY, INC.
1025 Harrison Street
Oakland, California 94607
Tel: 415 – 451-7755

ELECTRONIC CENTER, INC.
107 3rd Ave, North
Minneapolis, Minnesota
Tel: 612 – 338-5581

EVANSVILLE AMATEUR RADIO SUPPLY
1311 North Fulton Ave.
Evansville, Indiana 47710

GRAHAM ELECTRONICS SUPPLY, INC.
122 S. Senate Avenue
Indianapolis, Indiana 46225
Tel: 317 – 634-8486

HAM RADIO OUTLET
999 Howard Avenue
Burlington, California 94010
Tel: 415 – 342-5757

THE HAM SHACK (Tel-Appliance Center, Inc.)
1966 Hilview Street
Sarasota, Florida 33579
Tel: 813 - 955-7161

HENRY RADIO STORE
931 N. Euclid
Anaheim, California 92801
Tel: 714 – 772-9200

HENRY RADIO STORE
11240 West Olympic Blvd.
Los Angeles, California 90064
Tel: 213 – 472-0701

L. A. AMATEUR RADIO SUPPLY
23028 Artesia Blvd.
Redondo Beach, California 90278

ED MOORY WHOLESALE RADIO
Box 506 -
De Witt, Arkansas
Tel: 501 – W1 6-2820

PIONEER-STANDARD ELECTRONICS, INC.
5403 Prospect Avenue
Cleveland, Ohio 44103
Tel: 216 – 432-0010

PIONEER-STANDARD ELECTRONICS, INC.
SRPCO ELECTRONICS DIVISION
314 Leo Street
Dayton, Ohio 45404
Tel: 513 – 224-0871

UNIVERSAL SERVICE
114 North Third Street
Columbus, Ohio 43215
Tel: 614 – 221-2335

VALLEY HAM SHACK
4109 N. 39th Street
Phoenix, Arizona
Tel: 602 – 955-4850

DEALERSHIPS AVAILABLE IN SOME AREAS — WRITE FOR FREE SPECIFICATION SHEET

Raytrack Company

2211 Springhill Drive
Columbus, Ohio 43221

Telephone 614/486-7090

September 1968
September is a month of large seasonal change in ionospheric behavior; Perhaps now is the time to consider changing your operating schedules.

During the past few months, amateurs in the Northern Hemisphere have enjoyed excellent twenty-meter propagation during hours of darkness, and fifteen meters has frequently remained open into the middle of the night. Ten meters has opened late, or not at all, and primarily to the south.

During September, all this will change. Fifteen and ten meters will open and close earlier and be open to higher latitudes. This is the month when median ionospheric predictions are least representative of conditions on any particular day during the month. The reason for this change is that the apparent solar latitude has dropped from 8° North to 3° South during the month of September. The resulting change in ionospheric propagation conditions has caught many an unwary amateur with his schedules down.

predicting the muf

Propagation conditions during September 1968 will be very similar to those that occurred during September 1967. The observed smoothed sunspot number for September 1967 was 96; the predicted smoothed sunspot number for September 1968 is 103. As a result, the predicted MUF's for September 1968 are only about 5% greater than those of September 1967.

With this in mind, I scaled a number of vertical incidence ionograms taken at Point Arguello, California, (35.5° North latitude) during September 1967 to determine the MUF for the east-west path with a control point at 35.5° North latitude. The transformation from vertical to oblique incidence propagation is not without its problems, and the MUF's derived this way are invariably low. This is due to a number of causes. However,
the MUF error for east-west F2-layer propagation in temperate latitudes is usually less than 8%.

The particular scaling method I used yields MUF values that are somewhat higher than those scaled for a fixed transmission distance of 2500 miles (4000 km). This discrepancy arises from consideration of reflection from virtual heights (apparent heights of reflection) as great as 400 miles which result in single F2-layer hops up to 3300 miles.

This type of propagation is not usually considered for commercial communication circuits, but amateur radio communications can stand the spreading loss that occurs with upper rays. The point is that the scaled MUF's come as close to those useful for amateur work as you'll see except from oblique-incidence ionogram data. Oblique-incidence data is not as available nor as well understood as vertical-incidence ionogram data.

The change in MUF with time of day that occurs during the month is illustrated in fig. 1. This chart shows the scaled values of MUF's for September 1 and September 30, 1968. The predicted MUF values for Point Arguello, as corrected by the ITS semimonthly revision factors (1.05 for the second half of September), are shown by the open circles.

Note the following characteristics which mark the change of MUF behavior throughout the month:

1. Night-time MUF's decrease and 14 MHz closes some nights.

2. MUF's rise faster during the morning and fall faster during the evening as the month progresses.

Note particularly that for a path with a control point at 35.5° North latitude at the beginning of the month, 21 MHz is open until 10 PM (at the control point) and 14 MHz remains open throughout the night. At the end of the month, the 21 MHz band closes by 7 PM, and 14 MHz closes occasionally during the night.

You can see just how much day-to-day MUF variation may be expected by looking at fig. 2. This chart shows the scaled MUF during the last ten days of September 1967. On at least five days, the highest scaled MUF during the day was greater than 40 MHz (25% higher than the highest predicted MUF). The peak MUF occurred between 2 PM and 5 PM local time.

September 20, 21, 28, 29 and 30 were disturbed days. The disturbances lowered maximum daytime MUF's until a few days after the disturbance, and raised minimum nighttime MUF's on the first night after the disturbance. Sporadic-E propagation was very evident on the 21st and 22nd and also occurred on the 30th.

The scaled MUF's are for ordinary waves. The extraordinary-wave MUF is somewhat higher, and depends on the orientation of the path with respect to the earth's magnetic field. It is about 200 kHz higher for a long east-west path in temperate latitudes and as
much as 1400 kHz higher for a north-south path at low latitudes.

Within 2000 miles of the magnetic equator (between 8° and 14° South latitude over South America), transequatorial forward scatter (TE) may extend the operational MUF to almost twice that obtained by ordinary refraction during the evening hours near the equinoxes. During disturbed conditions (usually early in the disturbance), TE may be worked at higher latitudes than normal. It is not known whether this extension is due to sporadic-E or a distortion of the normal F2-layer.

It appears that there are a number of forms of TE. One form has propagated signals at frequencies as high as 100 MHz between Hawaii and Raratonga. But I digress; a close look at the trends in fig. 2 leads to a possible prediction means for propagation by ordinary refraction during stable conditions: if the nighttime MUF is higher than the night before, then tomorrow’s daytime MUF will be higher than today’s. On the other hand, nights with exceptionally high MUF’s (during disturbances) are not usually followed by days with exceptionally high MUF’s.

If the predicted variation of MUF with latitude holds (MUF’s increase proportionately), then you could expect the daytime MUF’s to be 13% higher at 30° N, 30% higher at 25° N, and 43% higher at 20° N than those at 35.5° N. In addition, if the MUF’s are 5% higher this year than last, then you could expect 50 MHz to open for a control-point latitude of 30° N at least once during the month, to 25° N at least five days during the month, and to 20° N at least ten days during the month.

However, just because the MUF is high enough doesn’t insure communications (even by backscatter), since 50 MHz activity is low in the proper places. By the time you receive this, it’s almost too late to send equipment or line up schedules with amateurs in Costa Rica, Easter Island, Pitcairn, Tahiti or New Zealand. You may be able to work these places plus parts of South America if someone is active on 50 MHz.

It appears that paths with predicted MUF’s in excess of 36 MHz could stand serious watching for occasional 50 MHz openings; paths with predicted MUF’s in excess of 42 MHz won’t need watching. So much for 50 MHz DX possibilities.

maximum usable frequency

A time chart of the median MUF derived from September 1968 ITS predictions for 105° West longitude is shown in fig. 3. The MUF’s derived from this time chart are believed to be accurate within 10% for the continental United States.

The time and latitude are those of your control point, 1250 miles away from your station in the direction of propagation. If only one control point is considered, all that is
guaranteed is that a frequency below the MUF will propagate to a distance of 2500 miles during half the days of the month. A signal at this frequency may, and probably will, propagate much further.

The time chart can be treated as a contour map of MUF over a limited geographical area. If a possible MUF error of 20-30% is not serious, the time chart could be used worldwide. However, much more accurate worldwide predictions can be obtained from the series of ITS MUF contour maps in Ionospheric Predictions.

maximum range

Time charts of maximum range determined by absorption and atmospheric noise levels are shown in fig. 4 to fig. 6. These charts are based on an output power of 100 watts CW or 800 watts ssb with combined receiving and transmitting antenna gains compared to an isotropic radiator of -12 dB for 80 meters, 0 dB for 40 meters and 12 dB for 20 meters.

Transmission losses because of ground reflection on multi-hop paths are neglected as is any focussing gain. Reflection losses from poor grounds may be as great as 6 dB per
fig. 4. Maximum range due to absorption and noise vs local time from 38° N latitude to the north.

fig. 5. Maximum range due to absorption and noise vs local time from 38° N latitude to the northeast (top time scale) and to the northwest (bottom time scale).

fig. 6. Maximum range due to absorption and noise vs local time from 38° N latitude to the east (top time scale) and to the west (lower time scale).

fig. 7. Maximum range due to absorption and noise vs local time from 38° N latitude to the southeast (top time scale) and to the southwest (bottom time scale).

74 September 1968
fig. 8. Maximum range due to absorption and noise vs local time from 38° latitude to the south.

Propagation summary for September

80 and 40 meters. On these two bands, decreasing noise levels and increasing hours of darkness will improve DX conditions in the Northern Hemisphere.

20 meters. Twenty will be open to somewhere most of the time, but mostly to the Southern Hemisphere during predawn hours. Polar paths will be more favored during daylight hours.

15 meters. Fifteen will open and close earlier as the month progresses. Polar paths should be workable from most of the United States during hours of daylight (at both ends of the path) most of the days of the month.

10 meters. Ten will open to the Southern Hemisphere and between East and West Coasts of the United States most of the days of the month. Openings between the East Coast and Europe and between the West Coast and Japan may be expected to increase in frequency as the month progresses.
using industrial cartridge fuses

The cartridge fuses used by industry in electric-motor controls for machine tools and the like can be put to good use by the radio amateur. These fuses, since they are designed to handle the 440- and 550-Vac voltages used by industry, are ruggedly built. A typical fuse is about an inch in diameter by six inches long. Its body is made from either ceramic material or phenolic. The brass contacts, one at each end, will easily “take” solder.

These fuses can easily be made into coil forms for VFO’s or small transmitters. With a little ingenuity on the part of the builder, a whole set of mobile loading coils could be fabricated from a few fuses. Finally, a length of resistance wire wound around the fuse body will make an inexpensive voltage-dropping resistor.

When using these fuses, two precautions are in order; make sure that the fuse body can handle the heat generated by a dropping resistor or transmitter coil. Secondly, make sure the fuse is blown—otherwise it will present a direct short circuit. A good source for blown fuses of this type is a small machine shop or industrial electrician.

D. E. Hausman, VE3BUUE

hook, line 'n sinker

Two items for the tool box that are valuable in the shack and out in the field are often overlooked—fishing line and sinkers. Not the kind used for sunfish, but heavy-duty nylon cord and some four- or six-ounce saltwater sinkers. These two low-cost items provide a way of getting a line across a tree limb to support a dipole. They may also be used to transport tools to the top of a tower or mast, or even up to the roof.

When they are used to haul tools up and down, a large heavy-duty battery clip tied on the end of the line in place of the sinker provides a quick means of attaching tools without the bother and risk of untieing them with one hand at the top of the tower. I wish I could suggest a simple method for lifting a beam, but not every ham has a helicopter in his junk-box!

George Haymans, WA4NED

simple solder dispenser

Here’s a neat solder dispenser some hams may not know about. It’s made by simply punching a small hole in the side of the box that a one-pound roll of solder comes in. Put some tape over the hole for reinforcement. If the solder is 16 gauage (.062”) or larger, the assembly can be used as a third hand when soldering.

Tony Felese, W2KID
makeshift test equipment

Since there are few tools and no test instruments available at sea, I've often used a long-wire antenna as a signal generator. It works fine, even in the audio stages of a receiver. Ashore, an 80-meter (or shorter) dipole will work due to the multitude of stations.

If you have access to another receiver in good operating condition, it can often be used as a signal tracer if you turn the audio gain up—just clip a lead to the grid of the detector stage or to the rf end of the detector diode.

A receiver tuned to WWV or a multiplex signal, or beat against an internal crystal calibrator, makes a fine audio generator; just put a couple of clip leads across the speaker terminals. If you must know what audio frequency you're using, invest a dollar in a harmonica and mark the standard musical pitches on the blow holes with a sharp scribe.

Keith Olson, W7FS

vhf antenna switching without relays

Fig. 1 shows an unusual circuit which—without switches or relays—permits a vhf receiver/ converter combination to be permanently connected to a transmitting antenna without damage to the receiver when the transmitter is turned on.

The unit, simply called the electronic "switcher" around my shack, taps into the transmission line and allows low-level incoming signals to pass into the receiver. When the transmitter is operating, however, the high-level signal voltage on the line activates the switcher and it blocks the path to the converter.

A few precautionary words however: the unit was designed specifically for 50-ohm coaxial feedlines and the power-handling capability drops off sharply as frequency increases. At 50 MHz, it will handle a peak of 500 watts; at 144 MHz, 350 watts peak; and, at 220 MHz, 125 watts.

The advantages of such a system should be obvious to dyed-in-the-wool contesters who are frequently plagued with relay failures or too many mechanical switches.

Some trial-and-error may be required with coils L1 and L2 to obtain optimum performance and accurate low-level triggering. I found that for 220 MHz, both coils can be a 3/4-turn of number 18 wire, 3/4" diameter. At two meters, 1-3/4 turns of the same provided best results. For six meters, 6-1/2 turns of number 18 enameled wire on a 3/4" diameter form did the trick.

Bob Brown, K2ZSQ/W9HBF

fig. 1. The vhf switcher, a device that automatically isolates your converter from the antenna whenever the transmitter is turned on. Note that separate coils are required for each band you use. The 30-pF capacitor between the coils is a variable.
Dear HR:
The reason that 146 and 440 MHz have developed considerable FM activity while 220 MHz has been bypassed is the very nature of the equipment available. I've been working my way through Syracuse University by servicing GE two-way FM gear. The high-band units are designed to cover the 450- to 470-MHz range. Movement into the ham bands is simply a matter of buying new crystals and retuning the rf stages in most cases, or at most, the addition of a small capacitance to a few tuned circuits in order to make them tune. No expensive rf modifications are required.

I recently attempted to put some gear on 220 for a RACES link. All rf and multiplier coils in the Pre-Progress receiver had to be rebuilt and the transmitter just wouldn't do. And this with a complete DATAFILE full of maintenance info at my fingertips backed up by a mountain of parts and commercial test gear! The frequency was just too great for the equipment and performance was seriously degraded when I finally got the receiver moved. Ten microvolts were required to open the squelch whereas an identical receiver on two meters has 0.5 μV sensitivity for quieting.

Bill Santiff, WA2QKT

Dear HR:
Fantastic!! Amateur Radio is alive and living in Greenville!

Ted Cohen, W9VZL/4

Dear HR:
I just received my first copy of Ham radio, and read half of it before even opening the rest of my mail—it's great!

Of the fourteen articles on the "contents" page, I'm now researching or working on projects directly related to seven of them. The magazine couldn't be more timely.

Lawrence W. Banks, W1DYJ
Massachusetts Institute of Technology

Dear HR:
I had hoped that, since you took the word "ham" in the title of your magazine, your writing would set the communications world straight on the most probable and likely origin of the term. However, I was disappointed to see that your “second look" repeated the apocryphal tales broadcast by the general press.

I am enclosing photo copies of pages from “The Telegraph Instructor” that document the most likely origin of our beloved title. (See text below. Ed.) A letter from Paul Godley in the September 1965 QST is sufficient evidence alone that “ham" was a Morse man's term. . . . Somewhere in the past, I have heard a poor operator referred to as a “ham fisted bum.”

Your magazine is great, keep it up.

Bob Jones, KH6AD

Dear HR:

Fantastic!! Amateur Radio is alive and living in Greenville!

Ted Cohen, W9VZL/4
Ham—A telegraph operator who is not proficient.

The "Correspondence From Members" section of QST for September 1965 sheds more light on the subject. W2PXR reports that H. C. Gawler, a radio inspector in Boston in 1912, was completely unaware of three young operators whose initials would coin the word "ham." Mr. Gawler also confirmed that in those days a ham operator usually referred to a railroad telegrapher whose code speed was approximately 10 words per minute and no more.

In the same issue of QST, Paul Godley, Ex-2EZ, wrote that in 1907 he had asked an old-time wireless operator with whom he was working why a particular operator was called a ham. The old timer replied, "He's got a ham for a 'fist'!"

Dear HR:

Back in 1910 around Boston we kids used to work each other at 5 wpm with our spark coils and transformer. I had a United Wireless coffing, a 20-wire aerial and ten-cent key, e.g., two dimes for contacts. NAD and BH called us "hams" and told us to get off their wave lengths. The English operators on the White Star and Cunarders never called us "hams." I used a silicon detector in 1910 and am still using one in 1968! What's new?

Bill Dickson, K4BQ
1914 call—BK

MISSION HAM ELECTRONICS
3316 Main Street, Riverside 3, California 92501
Phone 683-0523 (area code 714)
PRO TAX™ ANTENNA SWITCHES
Unique coaxial selector switches that automatically ground entire antenna system when station is not in use. Handle 1000 watts; complete with hardware.

MODEL 375 SP6T
Rear Axial Connectors $13.95

MODEL 376 SP5T
Side Radial Connectors $12.50

MODEL 380 SPDT
Rear Axial Connectors $12.45

DUMMY LOAD/WATTMETERS
An effective means of measuring and peaking RF power into a dummy load. Four calibrated scales permit accurate readings of RF watts. Protective warning light.

MODEL 334A
1000 watts. 2 to 230 MHz $135

MODEL 374
1500 watts. 2 to 30 MHz $135

The complete Waters line is always in stock at "The Southwest's Leading Ham Store"

dictionary of electronic terms

The field of electronics continues to expand at a rate that has never been equalled in the arts and sciences in the long history of man's pursuit for knowledge. Of necessity, the language of electronics has kept pace to cover semiconductors and integrated circuits, space and nuclear technology, computers and automation, and audio and video recording. The new edition of the Dictionary of Electronic Terms has been enlarged and revised to include new terms and to clarify old ones with accepted and up-to-date usage.

This new dictionary, edited by Robert E. Beam, Ph.D., professor of Electrical Engineering at Northwestern University, includes definitions of over 4800 terms and hundreds of illustrations. The appendix provides data on schematic symbols, EIA color codes, abbreviations and letter symbols for electronic terms, Ohm's law formulas and Greek letters.

This book, priced at $1.00, provides a low-priced, authoritative reference for everyone in electronics, including amateurs, engineers, technicians, students and experimenters. It is also an excellent electronics spelling guide. $1.00 postpaid from Allied Radio Corporation, 100 N. Western Avenue, Chicago, Illinois 60680.
New Readers
WE’VE BEEN LOOKING
FOR YOU!
we hope you’ve been looking for

Here is an exciting new amateur magazine devoted to the very best in home construction and technical articles. This is the magazine which has amateurs from coast to coast talking.

Look it over carefully. Read the finest authors in our field. See the clean crisp new layout. Then check our subscription rates. Our rates are by far the best value in the amateur field today!

ham radio
magazine, greenville, new hampshire 03048

Please enter my subscription to Ham Radio as checked below. My check or money order is enclosed.

☐ One Year $5.00
☐ I’d like one year free.
 Here is $10.00 for 3 years.

Name... Call

Address..

City.. Zip

september 1968

81
you're missing some top notch articles and great ideas
If you aren't getting new [Image 0x0 to 451x680]

applications note catalog

Motorola has just published a new Applications Note Catalog with the title and a brief summary of more than 130 technical write-ups that describe semiconductor design. A selector guide in the front of the 11-page catalog lists the notes by application categories for easy reference. Also included in the index is a partial list of selection and cross-reference guides, as well as full-line catalogs, available from Motorola. For your copy of this handy guide, the Motorola Application Note Catalog, write on your company letterhead to Department TIC, Motorola Semiconductor Products, Inc., Box 20924, Phoenix, Arizona 85036.

high power with new npn transistors

New 40- and 60-volt npn transistors recently introduced by Motorola can be paired with 30-ampere 2N4398-99 pnp devices to furnish the highest silicon power transistor complementary symmetry capability ever possible. Since the pnp-npn complementary symmetry design approach can now be used in high-current applications, they are ideal for cost-cutting circuit-simplifying applications in audio and servo amplifiers. The pair also furnishes a higher degree of frequency stability in both ac- and dc-driven loads without the addition of expensive impedance-matching driver transformers.

Both the new 2N5301-2 npn series and the 2N398-99 pnp devices can handle 200 watts of power to 30 volts VCE. They can be used as plug-in replacements of germanium types in difficult amplifier, voltage-regulator and modulator designs. Also, because of the low thermal resistance of these devices, simpler and less-costly heat sinking can be used. Other advantages of these new transistors include excellent gain linearity over a 5- to 20-ampere range, 50-A peak current and TO-3 packaging; fT of these devices is 4 MHz. For more information, write on your letterhead to Motorola Semiconductor Products, Inc., P.O. Box 955, Phoenix, Arizona 85001.
S.W.R. BRIDGE
- MODEL SWB-2
- READS FORWARD AND REFLECTED POWER SIMULTANEOUSLY
- "EASY READ" Meters
- USE FOR REFERENCE POWER METER
- DUAL 100-MICROAMP METER MOVEMENTS
- LOW INSERTION LOSS
- SIZE 8" x 2" x 2"

$15.95

THE BEST VALUE WE HAVE EVER OFFERED!

MAY BE LEFT IN LINE, UP TO 2000 WATTS.

GOOD THROUGH 2 METERS

SINCE 1933 • FAST SERVICE • Phone CY 4-0464
QUEMENT ELECTRONICS
1000 SOUTH BASCOM AVENUE
SAN JOSE, CALIFORNIA 95128

"Northern California's Most Complete Ham Store"

FOR THAT "Extra Class" YOU NEED THE

BTI LK-2000
LINEAR AMPLIFIER
For SSB, CW, RTTY
Maximum legal input
Full loading 80-10M
Rugged Eimac 3-1000Z
Dependable operation
Easy to load and tune
No flat topping with ALC
Distinguished console
Instant transmit
High efficiency circuit
Designed for safety
Fast band switching
Real signal impact
Price $795.00
READY TO OPERATE!

LISTEN FOR THE HUNDREDS OF LK-2000 Liners now on the air and judge for yourself. Write for free illustrated brochure or send $1.00 for technical and instruction manual.

BTI AMATEUR DIVISION
Hafstrom Technical Products
4616 Santa Fe, San Diego, Ca. 92109

GET YOUR NEW ISSUE NOW!
Over 283,000 QTHs in the U.S. edition
$6.95
Over 135,000 QTHs in the DX edition
$4.95

See your favorite dealer or order direct (add 50¢ for mailing in U.S., Possessions & Canada. Elsewhere add 75¢).

These valuable EXTRA features included in both editions:
- QSL Managers Around the World!
- Census of Radio Amateurs throughout the world!
- Radio Amateurs’ License Class!
- World Prefix Map!
- International Radio Amateur Prefixes
- Radio Amateurs’ Prefixes by Countries!
- A.R.R.L. Phonetic Alphabet!
- Where To Buy!
- Great Circle Bearings!
- International Postal Information!
- Plus much more!

WRITE FOR FREE BROCHURE!

RADIO AMATEUR "Callbook" INC
Dept. Q 4844 W. Fullerton Ave.
Chicago, Ill. 60639

september 1968 83
The latest evolutionary development of the Classic Model 350

The new SWAN 350-C

5 band, 520 Watt SSB-AM-CW TRANSCEIVER

The introduction of the new model 350-C at no increase in price over the popular 350 is a real triumph of value engineering.

Power rating of the 350-C is the same as the Deluxe Model 500-C, which is 520 watts P.E.P. input on single sideband, 360 watts CW input, 125 watts AM input. A pair of rugged, blast-rated 6LQ6 tubes handle this input with ease. Selectivity is provided by the same superb crystal lattice filter used in the 500-C, with skirt selectivity and ultimate rejection superior to any other filter being used in amateur equipment today. Audio quality has the same degree of fidelity which Swan has stressed from the very first single band transceivers.

The 350-C is designed to operate automatically on the normally used sideband with extended frequency coverage of all five bands, 10 through 80 meters. Basically the difference between the 350-C and the 500-C is in the deletion of optional features which are not essential to communication. These include such things as crystal calibration, sideband selector, CW sidetone, automatic noise limiter, automatic level control, etc. For the operator who desires these features, we are proud to recommend the deluxe model 500-C. However for powerful and reliable communications without all extras, we now offer the new 350-C, and we are confident that you will rate it a truly exceptional value.

ACCESSORIES
117XC Matching AC supply with speaker $105
14-117 12 VDC Mobile Supply $130

WANTED:
WE BUY USED AMATEUR AND CB GEAR FOR CASH!

RECONDITIONED USED GEAR: FULLY GUARANTEED
JOHNSON
2000 Complete Very Good $525.00
500 Complete Very Good Cond. $325.00

LOTS OF GOOD CHOICE GEAR FOR SALE OR TRADE — WRITE FOR LATEST LIST.
IN STOCK FOR IMMEDIATE DELIVERY, GALAXY, SWAN, SBE AND DRAKE.

NEW!

TYPE PERFECT CODE with

The Autovolt Alphacoder Model AC-1

The new Autovolt Alphacoder, AC-1, makes any letter or digit with one stroke of your finger. You can produce perfectly uniform code, including preset letter-to-letter spacing using the standard electric typewriter keyboard of the AC-1.

It is only necessary to start a letter, an automatic electronic latch will complete it and, indeed, let you depress the next key without disturbing it. The AC-1 has provision to make AR, SK etc. without gaps.

also

The Autovolt Memokey

Mk-1 $65.00 Mk-2 $85.00

Self completing automatic keyers featuring
• Instant letter start
• Both dot and dash memories
• Lamatic output

MK-2 includes sidetone system and AC power supply

All of the units described are of solid state design. They include a 100 VA reed type relay with "floating contacts" for greatest flexibility in transmitter control.

All prices FOB Boston, Mass.
25% with COD orders, please
To order or for further amplification of details write

AUOVOLT, INC.
68 Richmond Rd., Belmont, Mass. 02178 • 484-4954

Bob's AMATEUR ELECTRONICS
"THE COMPLETE HAM STORE" Phone CE 5-6387
927 N.W. 1st Oklahoma City, Oklahoma 73106
"WE TAKE TRADES ON ALL LINES OF NEW EQUIPMENT"
TWO-WAY RADIOS • SALES • SERVICE • INSTALLATIONS

84 SEPTEMBER 1968
BOOKS
FOR YOUR AMATEUR RADIO LIBRARY

Radio Society of Great Britain Publications

AMATEUR RADIO CIRCUITS BOOK
Completely revised - new addition just now available. A very handy collection of many useful circuits for amateur use. Loaded with good ideas for that new converter, exciter or other project you are working on. Only $2.00

Here in a 148 page book is one of the most complete compilations of radio and electronic charts, nomographs, formulas and design data available. Sections are included which permit you to design everything from rf power amplifiers to TVI filters. Also included is much related information such as world-wide frequency allocations and commonly used mathematical tables. Whether you design, build or operate, this is a book you should have. Only $2.50

WORLD AT THEIR FINGER TIPS — John Clarricoats G6CL
A very interesting history of the RSGB and of amateur radio in Great Britain. It gives a great insight into the development of our hobby in England and Europe and the effects these events have had on amateurs here in the United States. Paper back edition $2.50 Deluxe edition $6.50

HANDBOOKS BY RADIO PUBLICATIONS, INC.

BEAM ANTENNA HANDBOOK by William Orr, W6SAI
New edition. Theory, design, construction, and the installation of rotary beam antennas! SWR data! Multiband beams. 40 meter beams, 20 meter DX beams! How to make your beam work! 200 pages. $3.95

VHF HANDBOOK by Orr, W6SAI and Johnson, W6QK!
First complete Handbook covering the VHF spectrum! Many VHF construction projects! Design and construction of VHF transmitters, receivers and antennas! Make your VHF station work! $3.75

ELECTRONIC CONSTRUCTION HANDBOOK by Robert Lewis, WSMQ!
All about design, construction, layout and testing of electronic equipment. Nontechnical guide for kit-builders and your key to better performance of your equipment! $2.95

ALL ABOUT CUBICAL QUAD ANTENNAS by W6SAI
Construction and tuning data. Multiband Quads. Charts, drawings and photos for your Quad. Full complete data on homemade Quad antennas. The new X-Q Quad. $3.95

NOVICE & TECHNICIAN HANDBOOK by W6SAI and W6TNS
All about amateur radio in nontechnical language! How to learn the code. How to assemble your ham station. Transmitters! Receivers! DX! How to Get QSL cards. $2.95

BETTER SHORTWAVE RECEPTION, by Wm. Orr, W6SAI
Your introduction to shortwave radio. How to hear DX. How to buy a receiver. Amateur radio. How to align your receiver. Antennas! QSLs. Getting your ham license. $3.25

S-9 SIGNALS by William Orr, W6SAI
Inexpensive DX antennas for your station! Multiband ground plane. $5 beam antenna. 2 and 6 meter beams, Demi-Quad beam, and others! $1.00

ALL PRICES POSTPAID IN U. S. A. AND CANADA
ORDER TODAY FROM book division comtec

Box 592 • Amherst, New Hampshire 03031

"WE ARE THE EXCLUSIVE NORTH AMERICAN DISTRIBUTOR FOR RSGB PUBLICATIONS — DEALER INQUIRIES INVITED"

september 1968
YOUR ROCKY MOUNTAIN **Galaxy** HEADQUARTERS

FEATURING THE GALAXY V Mk 3 AND GALAXY R-530

THE GREAT, NEW 500 WATT GALAXY V MARK 3

5 BAND TRANSCEIVER

These NEW Features

- New 500 Watt Power
- New Precise Vernier Logging Scale
- New Printed Circuit VFO
- New CW Sidetone Audio
- New CW Break-In Option
- New CW Filter Option

Plus all the great features that put the **Galaxy V** in a CLASS by ITSELF.

Price $420.00

R-530 SOLID STATE RECEIVER

Continuous Coverage 0.5 - 30 MHz
Solid State Modular Construction

Features include

1) Main Tuning Dial with 1KHz readout and 50 KHz calibrator.
2) Noise Blanker to reduce background noise and interference.
3) R. F. Attenuator for positive control of cross modulation.
4) Variable BFO for USB, LSB, CW and RTTY reception.
5) Pre-selector — Permeability tuned for optimum performance at all frequencies.
6) PTO — Permeability tuned oscillator provides outstanding linearity, stability and reset capability.
7) Crystal Lattice filter — 2.1 KHz with near rectangular bandpass. Optional 0.5 and 5.0 KHz filters available.
8) Phase-lock-oscillator — Eliminates the necessity of multiple crystals and band-switch problems plus insuring the optimum in stability.

Price $695.00

ALL ACCESSORIES IN STOCK FOR BOTH UNITS

THE OLD RADIO CORNER FOR OVER A QUARTER CENTURY. COME IN AND PAY US A VISIT, OR GET IN TOUCH WITH ONE OF OUR ABLE STAFF FOR A LIBERAL TRADE QUOTE ON THE TERRIFIC GALAXY LINE.

WE ARE THE HAMS AT CW

JOHN WA$ADV
WILLARD WØBQQ
GARY WÅKLP

JOHN WØFU
MIKE WAØKXR
JEFF KOUFA/WØLDU

ELECTRONIC SALES CO.

1237 - 16TH ST., DENVER, COLO. 80202

303 / 244-5523
YES!

ham
radio
will now accept
CLASSIFIED ADVERTISING

Starting with the September issue of Ham Radio we will have a classified advertising section each month open to both commercial and non-commercial ads.

The dead-line for each issue will be the 15th of the second preceding month. So hurry if you want to get rid of that old receiver or what ever you have.

Ham Radio can not check out each advertiser and therefore can not be held responsible for claims which are made. Our liability for correctness of material will be limited to a corrected ad in the next available issue. Ham Radio reserves the right to reject unsuitable copy.

★

Non-commercial ads 10¢ per word. Commercial ads 25¢ per word.

Payment must be included with your order. No agency discounts.

★

Send your order today to
CLASSIFIED ADS
HAM RADIO MAGAZINE
GREENVILLE, N. H. 03048

OGINAL EZ-IN DOUBLE HOLDERS display 20 cards each in plastic, 3 for $1.00 or 10 for $3.00 prepaid and guaranteed. Patent No. 3309805. Free sample to dealers. Tepabco, John K4NMT, Box 198R, Gallatin, Tennessee 37066.

QSL CARDS ($6.95) per 1000 up. Free samples, C. B. Printers, P. O. Box 2231, Anderson, Ind. 46011

EICO 753 TRANSCEIVER, Antenna, Mike and Speaker. Model 753 Mobile Power Supply — can be heard by making Sked — less than 10 hours operating. $200 WRLTV, Box 161, Amherst, N. H. 03031. 603-673-2736.

MALAYSIAN RADIO CLUB wants extra Handbooks, Call Books or Radio Magazines. Send to Kushal Harvant Singh, 31. (744), Upper Museum Road, Taiping, Perak, Malaysia.

FOR ASSISTANCE with your FM Problems particularly with Motorola equipment contact Neil McKie, WASKLA, 5005 W. 21st Street, Los Angeles, California 90016

FORTH MASSACHUSETTS QSO PARTY October 5 and 6. For details see QST, or write MIT Radio Society, W1WX, Box 558, 3 Ames St., Cambridge, Mass. 02139

VARIACS; panel mount, in new condition — 20 A-$32.50; 6 A-$12.95; 1 1/4A-$6.25. Condenser, computer grade, 74,000 mfd @ 10 VDC — $1.89. Send for catalogue listing other condenser bargains; Nicads; Solid State material; Test Eq. and other desirable items. Advance Electronics, 54-H West 45th St., New York, N. Y. 10036.

WANTED: Collins PTO type 399C1. Please state price and condition first letter. All inquiries answered. J. Fisk, W1DTY, Box 139, Rindge, N. H. 03461

NORTHEASTERN MICHIGAN HAMFEST October 4, 5 & 6 at East Tawas, Michigan. For additional information contact Glenn A. Pohl, K8IYZ, 29245 Oakfield, Detroit, Michigan 48235.

THE WINDBLOWERS will hold their annual "Big Blow" Sept. 28, 1968 from 2 P.M. to 10 P.M. EDT. Four stations will be manned on 2 meter AM in four states to provide contacts with amateurs in the greater New York area. Certificate awarded for contacting all four. Stations to be used are: Connecticut K2GOS/1, Pennsylvania W2ERZ/3, New Jersey W2ZDR/2, New York W2RRP/2.
IMPORTANT ANNOUNCEMENT

ALL VANGUARD CONVERTERS NOW USE
R C A DUAL GATE MOSFETS
FOR BOTH THE RF AND MIXER STAGES

The performance and features of our new converters are so spectacular that they can only be fully described in our new illustrated catalog which is available FREE. Send for it today and see our entire line of converters, pre-amps and other communications equipment.

VANGUARD now makes the best converters. Buy one and be convinced.

VANGUARD LABS 196-23 Jamaica Ave. Dept. R
Hallis, N.Y. 11423
ATTENTION! ALL QUAD USERS!

A NEW FIRST IN QUAD SPREADERS
NEW TYPE QUAD SPREADER
THAT BREAKS THE PRICE BARRIER.

W2AU now brings you a new W2AU Super 2el. tri-band 10-15-20 meter quad using the all new EXCLUSIVE heavy duty vinyl jacketed spreader. This new spreader is made of selected bamboo entirely encased in a heavy duty vinyl covering, making it salt spray proof and completely weather resistant. No varnishing or treating necessary. Dark brown in color for resistance to ultra violet sun rays.

W2AU Super 2el. tri-band, 10-15-20 meter quad with vinyl coated spreaders. Introductory price $64.95 complete quad.

W2AU Fiberglass model 2el. tri-band 10-15-20 meter quad $99.95 complete quad.

W2AU QUAD ACCESSORIES NOW AVAILABLE TO HOME-BREWERS

Set of 8 Vinyl Jacketed spreaders, 12'/6" long (sets only) $21.50 set
W2AU quad spiders to fit 2" boom, heavy cast aluminum $6.95 ea.
Set of 8 Fiberglass spreaders 12'/6" long (sets only) $54.95 set
Boom to motor-driven mast mount plate, complete with all hardware $9.95

ALL PRICES FOB UNADILLA, N. Y.

UNADILLA RADIATION PRODUCTS, UNADILLA, NEW YORK
Manufacturer of W2AU Baluns and Quads. See page 93 this issue.

LOW PRICE, QUALITY, COAXIAL SWITCHES . . .

Don't pay for the 5th and 6th position. The average HAM rarely uses more than 4!

SPECIFICATIONS: Silvered Contacts. Write-on ERASABLE escutcheon plate. AVAILABLE EITHER 4 PST (COAX-4) OR LINEAR (COAX-LINEAR) IN-OUT VERSION. Handles 1000 W AM or 2000 W SSB. Insertion loss negligible to 180 Mc. VSWR: Less than 1.2 at 180 Mc. Size: 3 1/2" dia. x 1 1/4" overall. Single hole mount. SPECIFY MODEL. $7.65 ea.

COAXIAL LIGHTNING ARRESTORS

PRICES above are amateur net. Shipped ppd. in U.S.A. Send Check or M.O. (N.J. ADD 3% Sales Tax)

OTHER PRODUCTS: Feed thru capacitors. Tuned noise filters. Alternator, generator, low-pass and field filters. SEND FOR CATALOG.

"COMMUNICATION ENGINEERED"
By "HAMMIE" RICHARDT—W2WIY

ELECTRONIC APPLICATIONS CO.
ROUTE 46, Pine Brook, N. J. 07058
Transistors may be models 14, 15, and 19 telephones. Over 40 different items include cams, bails, and semiconductor tester, code practice "a" and "b" 1.5 to 6.0 volts, and have transformer reels, covers, springs, type, key caps, etc.

Government isolated shift oscillators, etc. TTC components are good. We sell 184 components/boards for $5.90 plus postage (include $1.00 east of Miss., $2.00 west).

Printed circuit boards — 9 for $1.25 P.P. These new printed boards were spare parts to a high speed Gov't. Computer. Each board contains a total of 22 components of 10 high grade diodes, 5% capacitors etc. All components are good. We sell 184 components/60 diodes for $1.25 postage paid.

B & F ENTERPRISES
P. O. BOX 44, HATHORNE, MASS. 01937

GOVT. SURPLUS - ELECTRONIC - OPTICAL - HOROROLOGICAL - MECHANICAL

FM
formerly FM BULLETIN
THE national FM'ers' journal

A monthly Ham Magazine for the Amateur
who is interested in . . .

- SIMPLEX FM
- REMOTE OPERATION
- SIGNALING & TONES
- CONTROL TECHNIQUES
- CONSTRUCTION
- DECODING
- FREQUENCY LISTINGS
- MOBILE FM
- MOBILE RELAYS
- AUTOMATIC PHONES
- DESIGN DATA
- REPEATER INFO
- TRENDS
- OPERATION
- NEWS & VIEWS
- HUMOR
- SATIRE
- CLUBS
- ACTIVITIES
- DIRECTORIES
- EVENTS

$3.00 per year or 2 years for $5.00

SAMPLE COPY 35¢

FM MAGAZINE - 2005 HOLLYWOOD AVE., GROSSE POINTE, MICHIGAN 48236

90 september 1968
“FLAT PAK” INTEGRATED CIRCUITS!!

We include
30 Basic IC Projects
RADIO-ELECTRONICS
January & July 68

RTL Logic
80° C to +125° C
Electronics World.

First time anywhere two identical IC’s in one package.

** EPOXY SILICON TRANSISTORS **

- 3-9K4046, 1W, 0.5A, npn, 250MC $1.00
- 3-2N3568, 350MW, 200MC, 200BV, NPN $1.00
- 4-2N3563, NPN, 600MC, 200MW $1.00
- 4-2N3683, NPN, 1000MC, 5MA, 200MW $1.00
- 4-2N3563, PNP, 600MC, 200MW $1.00

** FAIRCHILD IN-LINE INTEGRATED CIRCUITS **

Tested, with data sheets
- 930 DUAL 4 INPUT GATE & EXPANDER $1.00
- 933 DUAL INPUT EXPANDER $1.00
- 944 DUAL POWER GATE $1.00
- 946 QUAD 2 INPUT NAND/NOR GATE $1.00
- 952 DUAL 2 INPUT INVERTER GATE $1.00
- 953 2-2-3 INPUT AND GATE $1.00
- 954 DUAL 4 INPUT AND GATE $1.00
- 955 8 INPUT AND GATE W/2 INPUTS $1.00
- 956 DUAL INPUT BUFFER $1.00

*First time anywhere two identical IC’s in one package, example 928-925 contains two separate JK flip-flops in one package. 914’s and 923. We include 50 uses. “Licensed. 1/4 x 1/4”

** FAIRCHILD “FLAT PAK” RTL INTEGRATED CIRCUITS **

Sale
- 900 Buffer $1.49
- 903-902* 3 Input Gate $1.69
- 904-904* Half Adder $1.49
- 914-914* Dual 2 Input Gate $1.49
- 923 JK Flip Flop $1.69
- 923-923* JK Flip Flop $1.69
- 927 Quad Inverter $1.69

Linear Amplifiers with circuits & data
- 702C WIDE BAND DC $3.98
- 703H RF-IF-FM $1.49
- 709C HI-GAIN OPERATIONAL $3.98
- 710C HI-SPEED DIFF. COMP. $3.98
- 711C DUAL COMPARATOR $4.98

** SILICON POWER STUD RECTIFIERS **

PIV 3A 6A 12A 55A
50 .06 .16 .20 .50
100 .07 .22 .25 .75
200 .09 .30 .39 1.25
400 .16 .40 .50 1.50
600 .20 .55 .75 1.80
800 .30 .75 .90 2.30
1000 .40 .90 1.15 2.70

* Handles 2 Amps

2 AMP 800 PIV for $1

** TUNNEL DIODE 1N3716/TD3 **

Used in many oscillator and amplifier circuits

** POLY PAKS **

P.O. Box 942 Lynnfield, Mass. 01940
NOW
RAZOR SHARP CW
RECEPTION WITH YOUR TRANSCEIVER!
WITH A MAIN CWF-I
Between Your Headphones
And Your Rig
REQUEST BROCHURE $19.95
Dept. H-6
353 Pattie
Wichita, Kans. 67211
(316) 267-3581

REVIEWED IN MARCH, 1968 HAM RADIO

oscillator/monitor
- a sensitive broadband RF detector
 gives audible tone signal in the
 presence of any RF field from 10mw
 to 1 kw and 100kc to 1000mc
- a CW monitor with positive "RF"
 switch uses only 8" pickup antenna
 and NO connection to rig or key
- a code practice oscillator with
 adjustable tone & built in speaker
- a high gain 4 transistor circuit
 powered by long life AA pencell
- a 16 gauge aluminum cabinet in
 white & black epoxy finish, 3 1/2" x
 2 3/4" by 1 1/4" weight 8 ounces
- 100% US made and guaranteed

1295 (batt incl)
pdp use & can
send cert ch or m.o.
ny res add 3% tax

the James research company
11 schermerhorn st., brooklyn ny. 11201

HIGHEST $ $ PAID FOR TUBES
Ceto
120 WEST 18th STREET
NEW YORK 10011 . 212-242-7400
Free Tube List

ALL-BAND ANTENNA CONNECTOR

HYE-QUE 1 molded connector has
eyelits for securing antenna elements,
heavy copper leads coax 1/2:59 con-
nector for feedline, and tie-point for
antenna support. Drop-cap protects
connector. Reinforced. At your deal-
er's, or $2.95 postpaid. Companion in-
sulators. 2 for 99c ppd. Instructions
included.

BUDWIG MFG. CO., P.O. Box 97H, Ramona, Calif. 92065

BUILD YOUR
AMATEUR RADIO
LIBRARY
See Page 85

MOCHTEN SIE WISSEN WAS DIE VHF-
UND UHF- AMATEURTECHNIK IN
EUROPA LEISTET?

Lesen Sie die UKW-BERICHTE, die autoritative
Viertel-Jahres Veröffentlichung in Deutscher Sprache.
Jedes Heft enthält sechzig Seiten mit praktischen
Artikeln über VHF- und UHF-Radio-Technik, beigefügt
von den führenden Amateurfunklern.

INTERNED IN WHAT EUROPEAN
HAMS ARE ACCOMPLISHING AT THE
HIGHER FREQUENCIES?

Read UKW-BERICHTE, the authoritative German
quarterly, now with English summaries! Applications
of the latest VHF and UHF techniques; equipment and
antenna construction details. Each sixty-page issue
packed with practical articles written by the most
outstanding amateurs in Europe.

Annual subscription U.S.A. $3.00,
Canada $3.25
H. Ingwersen, PA@AFN Box 87, Topsfield,
Mass. 01983
EVERY DIODE WE SELL IS CURVE TRACED ON A SPECIAL TESTER. THIS TESTER DRIVES 2 AMP AVERAGE CURRENT THROUGH THE UNIT IN THE FORWARD DIRECTION, WHILE THE REVERSE LEAKAGE IS MEASURED (20 MICROAMPS). THE OPERATOR EXAMINES THE CURRENT-VOLTAGE PLOT OF EACH DIODE ON AN OSCILLOSCOPE SCREEN. WE FULLY GUARANTEE EVERY UNIT SOLD OR YOUR MONEY REFUNDED.

<table>
<thead>
<tr>
<th>PIV</th>
<th>TOP-HAT</th>
<th>EPOXY</th>
<th>EPOXY</th>
<th>STUD-MOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>.04</td>
<td>.06</td>
<td>.12</td>
<td>.16</td>
</tr>
<tr>
<td>100</td>
<td>.08</td>
<td>.10</td>
<td>.18</td>
<td>.20</td>
</tr>
<tr>
<td>200</td>
<td>.12</td>
<td>.14</td>
<td>.20</td>
<td>.25</td>
</tr>
<tr>
<td>400</td>
<td>.16</td>
<td>.18</td>
<td>.30</td>
<td>.30</td>
</tr>
<tr>
<td>600</td>
<td>.17</td>
<td>.20</td>
<td>.40</td>
<td>.65</td>
</tr>
<tr>
<td>1000</td>
<td>.20</td>
<td>.24</td>
<td>.48</td>
<td>.75</td>
</tr>
</tbody>
</table>

ALL UNITS TESTED AND GUARANTEED
3 YEARS OF SERVICE
TO THE AMATEUR FRATERNITY

ZENERS

ALL UNITS TESTED AND GUARANTEED

HAMS SERVING HAMS
PLACE YOUR ORDER WITH

M. Weinschenker
K3DPJ
PO Box 353
Irwin, Pa. 15642

PERIODICALS

KEEP UP TO DATE ON YOUR DXING
A weekly magazine (16 to 24 pages each week.

Current DX that's on the air, and info about what's planned for the immediate future.

What's being heard by the boys. Etc.

FULL DX INFO EVERY WEEK.

Per year---Surface mail (they say most 1st class mail actually goes via air) $11.00

The DXERS Magazine, (W4BPD)
Route 1, Box 161-A,
Cordova, S.C. 29039

WE PAY CASH FOR TUBES
LEWISPAUL ELECTRONICS INC.
303 W. Crescent Avenue
Allendale, New Jersey 07401

ATV'ERS

For the largest US ATV magazine; Technical reports & ATV directory
SEND $2 for a 1 year subscription TO:
A5 MAGAZINE
150 Delong Ave.,
Dumont, NJ 07628

TELL YOUR FRIENDS ABOUT . . .

SURPLUS EQUIPMENT WANTED TO BUY BY THE FASTEST GUN IN THE EAST

No haring around, we pay fast . . . in 24 hours . . . and we pay more. We'll swap or trade new equipment too . . . We quote fast too. We also pay for shipping, insurance, etc. You call fast, now, collect, for fast quote.

SPACE ELECTRONICS
dir. of MILITARY ELECTRONICS CORP.
4178 Park Avenue, Bronx, New York 10457, (212) CY 9-0300

94 september 1968
LET W3KT
FORWARD YOUR
DX QSLS

Add for postage and handling per
4c. If you have any questions about this service, please contact the QSL manager, or send any
requests to W3KT, or if necessary, directly.

The charge: Four cents per QSL, 30 cards per
dollar. NO MEMBERSHIP FEE.

SAVE TIME! SAVE MONEY!

W3KT QSL SERVICE
RD 1, Valley Hill Road
Malvern, Penna. 19355

ETCHED CIRCUIT BOARDS
Novice Trans. 2.75
RTTY Encoder 2.50
Lab Supply 3.50
Keyer 4.95
Conn. Residents add Sales Tax.

SAND FOR BROCHURE

NOVICE CRYSTALS
Fundamental frequencies in FT-243 holders. Pin size
0.03 in., spacing .480 in. Tolerance .03% measured in
oscillator with .02 mmid. capacity.

60 meters 3705-3745 kc, 1.75 ea.
40 meters 7155-7195 kc, 1.25 ea.
15 meters 7034-7092 kc, 1.25 ea.
2 meters 8058-8186 kc, 1.25 ea.

Add for postage and handling per crystal: 8c first class;
12c airmail. Specify frequency desired and nearest avail-
able will be sent. Other frequencies in stock. Send for
free list. Satisfaction guaranteed.

HAT STINNETTE, P.O. Drawer Q-1, Umatilla, Fla. 32784

R E GOODHEART CO. INC.
Box 1220-HR, Beverly Hills, Calif. 90213
Tel: Area 213, office 272-5707, messages 275-5342

September 1968
Advertisers Index

- **A-5 Magazine** .. 94
- **Aerotron, Inc.** .. Back Cover
- **Autovolt, Inc.** .. 84
- **B & F Enterprises** 90
- **Barry Electronics** 83
- **Bob's Amateur Electronics** 84
- **Budwig Mfg., Co.** 92
- **CW Electronic Sales Co.** 86
- **Ceco** .. 92
- **Collins Radio Co.** Cover II
- **Comdel, Inc.** ... 88
- **Comtec, Book Division** 85
- **Cushcraft** ... 96
- **Dames Co., Theodore E.** 95
- **DXer's Magazine** 94
- **Electronic Applications Co.** 89
- **Electronics Center, Inc.** 80
- **FM Magazine** .. 90
- **Gauthier Industries** 93
- **Goodheart Co., Inc., R. E.** 95
- **Gordon Co., Herbert W.** Cover III
- **H & L Associates** 94
- **Hafstrom Technical Products** 83
- **Ham Radio Magazine** 81, 82
- **Hammarlund Manufacturing Co., Inc.** 13
- **Harris Co., The** ... 95
- **Henry Radio Stores** 5
- **International Communications and Electronics, Inc.** 63
- **International Electronic Systems, Inc.** 63
- **James Research** ... 92, 95
- **Lewispaul Electronics, Inc.** 94
- **Liberty Electronics, Inc.** 95
- **Main Electronics, Inc.** 92
- **Meshna, John, Jr.** 83
- **Military Electronics Corp.** 94
- **Mission Ham Electronics** 79
- **Mosley Electronics, Inc.** 1
- **Poly Paks** ... 91
- **Quement Electronics** 43, 83
- **Radio Amateur Callbook, Inc.** 83, 92
- **Radio Communication Co.** 83
- **Raytrack Co.** ... 54, 69
- **Salch & Co., Herbert** 89
- **Sentry Manufacturing Co.** 2
- **Shortwave Guide** .. 95
- **Signal One** .. 85
- **Slep Electronics Co.** 93
- **Stinnette, Nat** .. 95
- **Straesser, Walter E.** 94
- **Swan Electronics Corp.** 29
- **Tri-Ex Tower Corp.** 47
- **Tristao Tower Co.** 95
- **UKW Magazine** .. 92
- **Unadilla Radiation Products** 89, 93
- **Vanguard Labs** ... 88
- **W3KT QSL Service** 86
- **Weinschenker, M.** .. 94
- **Westcom Engineering Co.** 93

Cush Craft

- **MONOBEAMS FOR MORE DX PUNCH**
 - Cush Craft Monobooms combine superior electrical and mechanical features with the best quality materials and workmanship.

 - **A28-3** 10 meter, 3 element, boom 10' $31.95
 - **A28-4** 10 meter, 4 element, boom 10' $34.95
 - **A21-3** 15 meter, 3 element, boom 15' $39.95
 - **A21-4** 15 meter, 4 element, boom 22' $39.95
 - **A14-2** 20 meter, 2 element, boom 10' $49.95
 - **A14-3** 20 meter, 3 element, boom 15' 77.75

THE BIG WHEEL

- HORIZONTALLY POLARIZED 360° GAIN ANTENNA
 - 2 Meter #ABW-144 .. $11.95
 - 2 Boy Stacking Kit 3.95
 - 6 Boy Stacking Kit 11.75

VHF-UHF COLINEAR ARRAYS

- Lightweight High Gain Antenna Systems
 - **CL-116** 2 meter, 16 element $17.50
 - **CL-216** 1½ meter, 16 element 14.50
 - **CL-416** ¾ meter, 16 element 11.50
 - 32 & 64 Element Stacking Kits Available

MOBILE/FIXED SQUALO

- Squalo is a full half wave, horizontally polarized, omni-directional antenna.
 - ASQ-2 2 meter, 10" square $9.95
 - ASQ-22 2 meter stacked 16.95
 - ASQ-6 6 meter, 30" square 15.95

VHF/UHF YAGIS

- Combines all-out performance with optimum size for ease of assembly and mounting at your site. They can be mounted vertically, horizontally, in pairs, or quads.
 - **A144-11** 2 meter, 11 element $14.95
 - **A144-7** 2 meter, 7 element 11.95
 - **A220-11** 1½ meter, 11 element 12.95
 - **A430-11** ¾ meter, 11 element 10.95
 - **A144-20T** Multi polarized 29.50
 - **A50-3** 6 meter, 3 element 13.95
 - **A50-5** 6 meter, 5 element 21.95
 - **A50-6** 6 meter, 6 element 34.95
 - **A50-10** 6 meter, 10 element 34.95
 - **A26-9** 6 & 2 meter, 10 element 29.95

"HAM STIK"

- 6 - 10 - 15 - 20 Meter Adjustable Dipole
 - With Universal Mount Ideal For Small Lots, Apartments, Vacations

- **$23.50 Net**

SEE YOUR DISTRIBUTOR OR WRITE FOR FREE CATALOG

621 HAYWARD STREET

MANCHESTER, N. H. 03103

96

September 1968
WHEN YOU WERE A KID

Did you ever plant a seed and then go out the next morning to find out what happened? Remember how pleased you were when the first tuft of dirt was pushed aside by the germinating sprout. My dad thought me impatient with all my questions, but Mom said that my garden would teach me many things. Certain it was that I learned not to expect too much too quickly.

In later life this lesson served me well, particularly in ham radio, where improvements were especially slow and hard to measure. Now as we approach the season when most of us are disposed to antenna work, I should like to explain that one device is inexpensively available that will easily permit an immediate improvement in your station's performance. I am referring to the balun - to be inserted as a replacement for the center insulator on your coaxially-fed dipoles.

There is nothing you can buy that will obtain as much relative improvement in your overall station capability as a proper balun. The 2AU balun at $12.95 is the most popular.

Most rigs today have unbalanced outputs; that is, they have a pi network as the plate tank, and this gear is designed to work into loads between 25 and 100 ohms — unbalanced loads.

In my preceding ads I have repeatedly stressed the need for low VSWR. High reflected power causes more anguish and frustration than anything else. By balancing your antenna system, you may lower your VSWR, but more important is the fact that with the balun, your radiation efficiency is often higher. Normally, the grounded chassis side of the coax connects to one side of the dipole, and this side has very little induced electro-magnetic radiation from it (the dipole isn't a particularly good transformer). Thus a balun, and especially a well-designed product like the 2AU, accepts the unbalanced input from the coax and permits equal distribution, and consequently equal electromagnetic radiation, from both halves of your antenna.

Any improvement from the use of a balun will give you more reach-out ability on receive as well as transmit.

One balun may be used with the same coax to feed two or more dipoles. All you require is a resonant length for each band you operate. You can't expect the balun, which in itself is a broad band device, to work properly when, for example, you feed 40 meter energy to it with just 80 meter resonators connected. In other words you actually need a separate set of driven elements for each band you operate — though they can all be connected to the same balun and feed.

The 2AU balun pictured here is its own lightning arrestor and center insulator as well. It is furnished with a metallic eye that will permit you to support the entire center of your antenna from your tower or tree. It's side connections are good for a 600-pound pull. Condensation drips out from small holes in its bottom. It is rated for a full 1 KW. The 2AU balun may reduce TVI, improve antenna system efficiency, and protect against lightning, all at the same time.

To encourage better ham operation, and for a limited time, I am offering the 2AU balun with either 1:1 ratio (for most 50 or 72 ohm application) or 4:1 ratio at just $12.95, postpaid to your U.S. or Canadian door.

Unless you are already using one, you ought to buy now. Send your order in today and we will send out with the balun, one of our newly revised used equipment lists.

HERBERT W. GORDON COMPANY
Harvard, Massachusetts 01451 • Telephone 617-456-3548

"Helping Hams to Help Themselves"
MODEL R-5 ALLWAVE RECEIVER
An exceptionally fine receiver for the short wave listener and beginning amateur operator. Fully transistorized—solid state. Covers 54 through 516 Mc in five continuous bands. Includes standard broadcast band, all foreign broadcast bands, all amateur bands from 160 through 6 meters, all 27 Mc CB Channels, all 2-way radio frequencies from 30 to 50 Mc including many police and fire departments. Controls include Volume, Band, Frequency Dial, Noise Limiter, Bandspread. Compare with tube-type units costing as much!
Kit.................................. $6.49
Wired and tested 79.95

VFO-621
VFO for 6, 2 and 1.8 Mc meters. Transistorized oscillator plus built-in reed-relay-regulated power supply gives highest stability. Ideal match for TX-62 and other VHF transmitters. Wired and tested $59.95

TX-62 TRANSMITTER
In response to the demand for an inexpensive, compact VHF transmitter, Ameco has brought out its 2 and 6 meter transmitter. There is no other transmitter like it on the market. JW 80s input phone and CW. Built-in solid state power supply. Broadband circuits make tuning easy. Uses inexpensive crystals or external VFO. Wired and tested $149.95

CODE PRACTICE OSCILLATOR AND MONITOR
A combination code practice oscillator and CW Monitor. No connection to transmitter required. Transistorized. Has built-in speaker, tone control and headphone jack.
Model GMK, Kit........................ $9.95
Model OM, wired and tested, (less batteries) $15.20

160 THRU 6 METER TRANSCEIVER PRE-AMP
Low noise, high gain pre-amp. Built-in power supply. Interconnecting cables included. Station power control center—one switch controls everything. Automatic channel selector, transmit to receive. Feeds and mutes receiver second receiver.
Wired and tested $49.95

PASS NEW ADVANCED AND EXTRA CLASS LICENSE EXAMS WITH NEW AMECO LICENSE GUIDES
New Ameco License Guides contain simple, detailed, easy-to-understand answers for FCC study questions, plus a sample FCC-type exam, using multiple choice questions.
Advanced Class Guide #16-01 (32 pages) 50¢
Extra Class Guide #17-01 (48 pages) 75¢

COMPLETE HAM RIGS
Receivers, transmitters, VFO, Pre-amplifiers, converters, code practice oscillators, code records, theory and license books.

NUVISTOR CONVERTERS FOR 50, 144 and 220 Mc. HIGH GAIN, LOW NOISE
Deluxe line of Ameco VHF Converters uses three RCA Nuviatrons to obtain an extremely low noise figure and high gain. A gain control is included to reduce the gain if necessary. These converters do not become obsolete when the receiver is changed.
Model CN-50W, CN-144W or CN-220W wired. (specific IF) $49.95
Model CN-50K, CN-144K or CN-220K in kit form, (specific IF) $34.95
FS-1 Power Supply, Wired and tested $12.50

NOVICE TRANSMITTER KIT
Ideal kit for the beginner who requires a reliable TVI-suppressed transmitter. Keying is clean and crisp free. Kit is simple to build and easy to operate. Crystal-controlled frequency output includes A.C. Power Supply. For 40 and 80 meters CW 15 Watts input
Kit coil for any 1 band, including lube.......................... $21.95
Extra coil kit for any 1 band, CK-1 $1.00

Write for name of your local Ameco dealer and free catalog
Prices Subject to Change Without Notice